]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/exit.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
1da177e4 LT |
7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | |
9 | #include <linux/interrupt.h> | |
1da177e4 | 10 | #include <linux/module.h> |
c59ede7b | 11 | #include <linux/capability.h> |
1da177e4 LT |
12 | #include <linux/completion.h> |
13 | #include <linux/personality.h> | |
14 | #include <linux/tty.h> | |
6b3286ed | 15 | #include <linux/mnt_namespace.h> |
da9cbc87 | 16 | #include <linux/iocontext.h> |
1da177e4 LT |
17 | #include <linux/key.h> |
18 | #include <linux/security.h> | |
19 | #include <linux/cpu.h> | |
20 | #include <linux/acct.h> | |
8f0ab514 | 21 | #include <linux/tsacct_kern.h> |
1da177e4 | 22 | #include <linux/file.h> |
9f3acc31 | 23 | #include <linux/fdtable.h> |
1da177e4 | 24 | #include <linux/binfmts.h> |
ab516013 | 25 | #include <linux/nsproxy.h> |
84d73786 | 26 | #include <linux/pid_namespace.h> |
1da177e4 LT |
27 | #include <linux/ptrace.h> |
28 | #include <linux/profile.h> | |
29 | #include <linux/mount.h> | |
30 | #include <linux/proc_fs.h> | |
49d769d5 | 31 | #include <linux/kthread.h> |
1da177e4 | 32 | #include <linux/mempolicy.h> |
c757249a | 33 | #include <linux/taskstats_kern.h> |
ca74e92b | 34 | #include <linux/delayacct.h> |
83144186 | 35 | #include <linux/freezer.h> |
b4f48b63 | 36 | #include <linux/cgroup.h> |
1da177e4 | 37 | #include <linux/syscalls.h> |
7ed20e1a | 38 | #include <linux/signal.h> |
6a14c5c9 | 39 | #include <linux/posix-timers.h> |
9f46080c | 40 | #include <linux/cn_proc.h> |
de5097c2 | 41 | #include <linux/mutex.h> |
0771dfef | 42 | #include <linux/futex.h> |
34f192c6 | 43 | #include <linux/compat.h> |
b92ce558 | 44 | #include <linux/pipe_fs_i.h> |
fa84cb93 | 45 | #include <linux/audit.h> /* for audit_free() */ |
83cc5ed3 | 46 | #include <linux/resource.h> |
0d67a46d | 47 | #include <linux/blkdev.h> |
6eaeeaba | 48 | #include <linux/task_io_accounting_ops.h> |
30199f5a | 49 | #include <linux/tracehook.h> |
0a16b607 | 50 | #include <trace/sched.h> |
1da177e4 LT |
51 | |
52 | #include <asm/uaccess.h> | |
53 | #include <asm/unistd.h> | |
54 | #include <asm/pgtable.h> | |
55 | #include <asm/mmu_context.h> | |
56 | ||
408b664a AB |
57 | static void exit_mm(struct task_struct * tsk); |
58 | ||
d839fd4d ON |
59 | static inline int task_detached(struct task_struct *p) |
60 | { | |
61 | return p->exit_signal == -1; | |
62 | } | |
63 | ||
1da177e4 LT |
64 | static void __unhash_process(struct task_struct *p) |
65 | { | |
66 | nr_threads--; | |
67 | detach_pid(p, PIDTYPE_PID); | |
1da177e4 LT |
68 | if (thread_group_leader(p)) { |
69 | detach_pid(p, PIDTYPE_PGID); | |
70 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 | 71 | |
5e85d4ab | 72 | list_del_rcu(&p->tasks); |
73b9ebfe | 73 | __get_cpu_var(process_counts)--; |
1da177e4 | 74 | } |
47e65328 | 75 | list_del_rcu(&p->thread_group); |
f470021a | 76 | list_del_init(&p->sibling); |
1da177e4 LT |
77 | } |
78 | ||
6a14c5c9 ON |
79 | /* |
80 | * This function expects the tasklist_lock write-locked. | |
81 | */ | |
82 | static void __exit_signal(struct task_struct *tsk) | |
83 | { | |
84 | struct signal_struct *sig = tsk->signal; | |
85 | struct sighand_struct *sighand; | |
86 | ||
87 | BUG_ON(!sig); | |
88 | BUG_ON(!atomic_read(&sig->count)); | |
89 | ||
6a14c5c9 ON |
90 | sighand = rcu_dereference(tsk->sighand); |
91 | spin_lock(&sighand->siglock); | |
92 | ||
93 | posix_cpu_timers_exit(tsk); | |
94 | if (atomic_dec_and_test(&sig->count)) | |
95 | posix_cpu_timers_exit_group(tsk); | |
96 | else { | |
97 | /* | |
98 | * If there is any task waiting for the group exit | |
99 | * then notify it: | |
100 | */ | |
6db840fa | 101 | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) |
6a14c5c9 | 102 | wake_up_process(sig->group_exit_task); |
6db840fa | 103 | |
6a14c5c9 ON |
104 | if (tsk == sig->curr_target) |
105 | sig->curr_target = next_thread(tsk); | |
106 | /* | |
107 | * Accumulate here the counters for all threads but the | |
108 | * group leader as they die, so they can be added into | |
109 | * the process-wide totals when those are taken. | |
110 | * The group leader stays around as a zombie as long | |
111 | * as there are other threads. When it gets reaped, | |
112 | * the exit.c code will add its counts into these totals. | |
113 | * We won't ever get here for the group leader, since it | |
114 | * will have been the last reference on the signal_struct. | |
115 | */ | |
49048622 | 116 | sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); |
6a14c5c9 ON |
117 | sig->min_flt += tsk->min_flt; |
118 | sig->maj_flt += tsk->maj_flt; | |
119 | sig->nvcsw += tsk->nvcsw; | |
120 | sig->nivcsw += tsk->nivcsw; | |
6eaeeaba ED |
121 | sig->inblock += task_io_get_inblock(tsk); |
122 | sig->oublock += task_io_get_oublock(tsk); | |
5995477a | 123 | task_io_accounting_add(&sig->ioac, &tsk->ioac); |
6a14c5c9 ON |
124 | sig = NULL; /* Marker for below. */ |
125 | } | |
126 | ||
5876700c ON |
127 | __unhash_process(tsk); |
128 | ||
da7978b0 ON |
129 | /* |
130 | * Do this under ->siglock, we can race with another thread | |
131 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | |
132 | */ | |
133 | flush_sigqueue(&tsk->pending); | |
134 | ||
6a14c5c9 | 135 | tsk->signal = NULL; |
a7e5328a | 136 | tsk->sighand = NULL; |
6a14c5c9 | 137 | spin_unlock(&sighand->siglock); |
6a14c5c9 | 138 | |
a7e5328a | 139 | __cleanup_sighand(sighand); |
6a14c5c9 | 140 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
6a14c5c9 ON |
141 | if (sig) { |
142 | flush_sigqueue(&sig->shared_pending); | |
093a8e8a | 143 | taskstats_tgid_free(sig); |
6a14c5c9 ON |
144 | __cleanup_signal(sig); |
145 | } | |
146 | } | |
147 | ||
8c7904a0 EB |
148 | static void delayed_put_task_struct(struct rcu_head *rhp) |
149 | { | |
0a16b607 MD |
150 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
151 | ||
152 | trace_sched_process_free(tsk); | |
153 | put_task_struct(tsk); | |
8c7904a0 EB |
154 | } |
155 | ||
f470021a | 156 | |
1da177e4 LT |
157 | void release_task(struct task_struct * p) |
158 | { | |
36c8b586 | 159 | struct task_struct *leader; |
1da177e4 | 160 | int zap_leader; |
1f09f974 | 161 | repeat: |
dae33574 | 162 | tracehook_prepare_release_task(p); |
1da177e4 | 163 | atomic_dec(&p->user->processes); |
60347f67 | 164 | proc_flush_task(p); |
1da177e4 | 165 | write_lock_irq(&tasklist_lock); |
dae33574 | 166 | tracehook_finish_release_task(p); |
1da177e4 | 167 | __exit_signal(p); |
35f5cad8 | 168 | |
1da177e4 LT |
169 | /* |
170 | * If we are the last non-leader member of the thread | |
171 | * group, and the leader is zombie, then notify the | |
172 | * group leader's parent process. (if it wants notification.) | |
173 | */ | |
174 | zap_leader = 0; | |
175 | leader = p->group_leader; | |
176 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | |
d839fd4d | 177 | BUG_ON(task_detached(leader)); |
1da177e4 LT |
178 | do_notify_parent(leader, leader->exit_signal); |
179 | /* | |
180 | * If we were the last child thread and the leader has | |
181 | * exited already, and the leader's parent ignores SIGCHLD, | |
182 | * then we are the one who should release the leader. | |
183 | * | |
184 | * do_notify_parent() will have marked it self-reaping in | |
185 | * that case. | |
186 | */ | |
d839fd4d | 187 | zap_leader = task_detached(leader); |
dae33574 RM |
188 | |
189 | /* | |
190 | * This maintains the invariant that release_task() | |
191 | * only runs on a task in EXIT_DEAD, just for sanity. | |
192 | */ | |
193 | if (zap_leader) | |
194 | leader->exit_state = EXIT_DEAD; | |
1da177e4 LT |
195 | } |
196 | ||
1da177e4 | 197 | write_unlock_irq(&tasklist_lock); |
1da177e4 | 198 | release_thread(p); |
8c7904a0 | 199 | call_rcu(&p->rcu, delayed_put_task_struct); |
1da177e4 LT |
200 | |
201 | p = leader; | |
202 | if (unlikely(zap_leader)) | |
203 | goto repeat; | |
204 | } | |
205 | ||
1da177e4 LT |
206 | /* |
207 | * This checks not only the pgrp, but falls back on the pid if no | |
208 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | |
209 | * without this... | |
04a2e6a5 EB |
210 | * |
211 | * The caller must hold rcu lock or the tasklist lock. | |
1da177e4 | 212 | */ |
04a2e6a5 | 213 | struct pid *session_of_pgrp(struct pid *pgrp) |
1da177e4 LT |
214 | { |
215 | struct task_struct *p; | |
04a2e6a5 | 216 | struct pid *sid = NULL; |
62dfb554 | 217 | |
04a2e6a5 | 218 | p = pid_task(pgrp, PIDTYPE_PGID); |
62dfb554 | 219 | if (p == NULL) |
04a2e6a5 | 220 | p = pid_task(pgrp, PIDTYPE_PID); |
62dfb554 | 221 | if (p != NULL) |
04a2e6a5 | 222 | sid = task_session(p); |
62dfb554 | 223 | |
1da177e4 LT |
224 | return sid; |
225 | } | |
226 | ||
227 | /* | |
228 | * Determine if a process group is "orphaned", according to the POSIX | |
229 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
230 | * by terminal-generated stop signals. Newly orphaned process groups are | |
231 | * to receive a SIGHUP and a SIGCONT. | |
232 | * | |
233 | * "I ask you, have you ever known what it is to be an orphan?" | |
234 | */ | |
0475ac08 | 235 | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) |
1da177e4 LT |
236 | { |
237 | struct task_struct *p; | |
1da177e4 | 238 | |
0475ac08 | 239 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
05e83df6 ON |
240 | if ((p == ignored_task) || |
241 | (p->exit_state && thread_group_empty(p)) || | |
242 | is_global_init(p->real_parent)) | |
1da177e4 | 243 | continue; |
05e83df6 | 244 | |
0475ac08 | 245 | if (task_pgrp(p->real_parent) != pgrp && |
05e83df6 ON |
246 | task_session(p->real_parent) == task_session(p)) |
247 | return 0; | |
0475ac08 | 248 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
05e83df6 ON |
249 | |
250 | return 1; | |
1da177e4 LT |
251 | } |
252 | ||
3e7cd6c4 | 253 | int is_current_pgrp_orphaned(void) |
1da177e4 LT |
254 | { |
255 | int retval; | |
256 | ||
257 | read_lock(&tasklist_lock); | |
3e7cd6c4 | 258 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
1da177e4 LT |
259 | read_unlock(&tasklist_lock); |
260 | ||
261 | return retval; | |
262 | } | |
263 | ||
0475ac08 | 264 | static int has_stopped_jobs(struct pid *pgrp) |
1da177e4 LT |
265 | { |
266 | int retval = 0; | |
267 | struct task_struct *p; | |
268 | ||
0475ac08 | 269 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
338077e5 | 270 | if (!task_is_stopped(p)) |
1da177e4 | 271 | continue; |
1da177e4 LT |
272 | retval = 1; |
273 | break; | |
0475ac08 | 274 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
1da177e4 LT |
275 | return retval; |
276 | } | |
277 | ||
f49ee505 ON |
278 | /* |
279 | * Check to see if any process groups have become orphaned as | |
280 | * a result of our exiting, and if they have any stopped jobs, | |
281 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
282 | */ | |
283 | static void | |
284 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | |
285 | { | |
286 | struct pid *pgrp = task_pgrp(tsk); | |
287 | struct task_struct *ignored_task = tsk; | |
288 | ||
289 | if (!parent) | |
290 | /* exit: our father is in a different pgrp than | |
291 | * we are and we were the only connection outside. | |
292 | */ | |
293 | parent = tsk->real_parent; | |
294 | else | |
295 | /* reparent: our child is in a different pgrp than | |
296 | * we are, and it was the only connection outside. | |
297 | */ | |
298 | ignored_task = NULL; | |
299 | ||
300 | if (task_pgrp(parent) != pgrp && | |
301 | task_session(parent) == task_session(tsk) && | |
302 | will_become_orphaned_pgrp(pgrp, ignored_task) && | |
303 | has_stopped_jobs(pgrp)) { | |
304 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | |
305 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
306 | } | |
307 | } | |
308 | ||
1da177e4 | 309 | /** |
49d769d5 | 310 | * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd |
1da177e4 LT |
311 | * |
312 | * If a kernel thread is launched as a result of a system call, or if | |
49d769d5 EB |
313 | * it ever exits, it should generally reparent itself to kthreadd so it |
314 | * isn't in the way of other processes and is correctly cleaned up on exit. | |
1da177e4 LT |
315 | * |
316 | * The various task state such as scheduling policy and priority may have | |
317 | * been inherited from a user process, so we reset them to sane values here. | |
318 | * | |
49d769d5 | 319 | * NOTE that reparent_to_kthreadd() gives the caller full capabilities. |
1da177e4 | 320 | */ |
49d769d5 | 321 | static void reparent_to_kthreadd(void) |
1da177e4 LT |
322 | { |
323 | write_lock_irq(&tasklist_lock); | |
324 | ||
325 | ptrace_unlink(current); | |
326 | /* Reparent to init */ | |
49d769d5 | 327 | current->real_parent = current->parent = kthreadd_task; |
f470021a | 328 | list_move_tail(¤t->sibling, ¤t->real_parent->children); |
1da177e4 LT |
329 | |
330 | /* Set the exit signal to SIGCHLD so we signal init on exit */ | |
331 | current->exit_signal = SIGCHLD; | |
332 | ||
e05606d3 | 333 | if (task_nice(current) < 0) |
1da177e4 LT |
334 | set_user_nice(current, 0); |
335 | /* cpus_allowed? */ | |
336 | /* rt_priority? */ | |
337 | /* signals? */ | |
338 | security_task_reparent_to_init(current); | |
339 | memcpy(current->signal->rlim, init_task.signal->rlim, | |
340 | sizeof(current->signal->rlim)); | |
341 | atomic_inc(&(INIT_USER->__count)); | |
342 | write_unlock_irq(&tasklist_lock); | |
343 | switch_uid(INIT_USER); | |
344 | } | |
345 | ||
8520d7c7 | 346 | void __set_special_pids(struct pid *pid) |
1da177e4 | 347 | { |
e19f247a | 348 | struct task_struct *curr = current->group_leader; |
8520d7c7 | 349 | pid_t nr = pid_nr(pid); |
1da177e4 | 350 | |
8520d7c7 | 351 | if (task_session(curr) != pid) { |
7d8da096 | 352 | change_pid(curr, PIDTYPE_SID, pid); |
8520d7c7 | 353 | set_task_session(curr, nr); |
1da177e4 | 354 | } |
8520d7c7 | 355 | if (task_pgrp(curr) != pid) { |
7d8da096 | 356 | change_pid(curr, PIDTYPE_PGID, pid); |
8520d7c7 | 357 | set_task_pgrp(curr, nr); |
1da177e4 LT |
358 | } |
359 | } | |
360 | ||
8520d7c7 | 361 | static void set_special_pids(struct pid *pid) |
1da177e4 LT |
362 | { |
363 | write_lock_irq(&tasklist_lock); | |
8520d7c7 | 364 | __set_special_pids(pid); |
1da177e4 LT |
365 | write_unlock_irq(&tasklist_lock); |
366 | } | |
367 | ||
368 | /* | |
369 | * Let kernel threads use this to say that they | |
370 | * allow a certain signal (since daemonize() will | |
371 | * have disabled all of them by default). | |
372 | */ | |
373 | int allow_signal(int sig) | |
374 | { | |
7ed20e1a | 375 | if (!valid_signal(sig) || sig < 1) |
1da177e4 LT |
376 | return -EINVAL; |
377 | ||
378 | spin_lock_irq(¤t->sighand->siglock); | |
379 | sigdelset(¤t->blocked, sig); | |
380 | if (!current->mm) { | |
381 | /* Kernel threads handle their own signals. | |
382 | Let the signal code know it'll be handled, so | |
383 | that they don't get converted to SIGKILL or | |
384 | just silently dropped */ | |
385 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | |
386 | } | |
387 | recalc_sigpending(); | |
388 | spin_unlock_irq(¤t->sighand->siglock); | |
389 | return 0; | |
390 | } | |
391 | ||
392 | EXPORT_SYMBOL(allow_signal); | |
393 | ||
394 | int disallow_signal(int sig) | |
395 | { | |
7ed20e1a | 396 | if (!valid_signal(sig) || sig < 1) |
1da177e4 LT |
397 | return -EINVAL; |
398 | ||
399 | spin_lock_irq(¤t->sighand->siglock); | |
10ab825b | 400 | current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; |
1da177e4 LT |
401 | recalc_sigpending(); |
402 | spin_unlock_irq(¤t->sighand->siglock); | |
403 | return 0; | |
404 | } | |
405 | ||
406 | EXPORT_SYMBOL(disallow_signal); | |
407 | ||
408 | /* | |
409 | * Put all the gunge required to become a kernel thread without | |
410 | * attached user resources in one place where it belongs. | |
411 | */ | |
412 | ||
413 | void daemonize(const char *name, ...) | |
414 | { | |
415 | va_list args; | |
416 | struct fs_struct *fs; | |
417 | sigset_t blocked; | |
418 | ||
419 | va_start(args, name); | |
420 | vsnprintf(current->comm, sizeof(current->comm), name, args); | |
421 | va_end(args); | |
422 | ||
423 | /* | |
424 | * If we were started as result of loading a module, close all of the | |
425 | * user space pages. We don't need them, and if we didn't close them | |
426 | * they would be locked into memory. | |
427 | */ | |
428 | exit_mm(current); | |
83144186 RW |
429 | /* |
430 | * We don't want to have TIF_FREEZE set if the system-wide hibernation | |
431 | * or suspend transition begins right now. | |
432 | */ | |
7b34e428 | 433 | current->flags |= (PF_NOFREEZE | PF_KTHREAD); |
1da177e4 | 434 | |
8520d7c7 ON |
435 | if (current->nsproxy != &init_nsproxy) { |
436 | get_nsproxy(&init_nsproxy); | |
437 | switch_task_namespaces(current, &init_nsproxy); | |
438 | } | |
297bd42b | 439 | set_special_pids(&init_struct_pid); |
24ec839c | 440 | proc_clear_tty(current); |
1da177e4 LT |
441 | |
442 | /* Block and flush all signals */ | |
443 | sigfillset(&blocked); | |
444 | sigprocmask(SIG_BLOCK, &blocked, NULL); | |
445 | flush_signals(current); | |
446 | ||
447 | /* Become as one with the init task */ | |
448 | ||
449 | exit_fs(current); /* current->fs->count--; */ | |
450 | fs = init_task.fs; | |
451 | current->fs = fs; | |
452 | atomic_inc(&fs->count); | |
ab516013 | 453 | |
d4c5e41f | 454 | exit_files(current); |
1da177e4 LT |
455 | current->files = init_task.files; |
456 | atomic_inc(¤t->files->count); | |
457 | ||
49d769d5 | 458 | reparent_to_kthreadd(); |
1da177e4 LT |
459 | } |
460 | ||
461 | EXPORT_SYMBOL(daemonize); | |
462 | ||
858119e1 | 463 | static void close_files(struct files_struct * files) |
1da177e4 LT |
464 | { |
465 | int i, j; | |
badf1662 | 466 | struct fdtable *fdt; |
1da177e4 LT |
467 | |
468 | j = 0; | |
4fb3a538 DS |
469 | |
470 | /* | |
471 | * It is safe to dereference the fd table without RCU or | |
472 | * ->file_lock because this is the last reference to the | |
473 | * files structure. | |
474 | */ | |
badf1662 | 475 | fdt = files_fdtable(files); |
1da177e4 LT |
476 | for (;;) { |
477 | unsigned long set; | |
478 | i = j * __NFDBITS; | |
bbea9f69 | 479 | if (i >= fdt->max_fds) |
1da177e4 | 480 | break; |
badf1662 | 481 | set = fdt->open_fds->fds_bits[j++]; |
1da177e4 LT |
482 | while (set) { |
483 | if (set & 1) { | |
badf1662 | 484 | struct file * file = xchg(&fdt->fd[i], NULL); |
944be0b2 | 485 | if (file) { |
1da177e4 | 486 | filp_close(file, files); |
944be0b2 IM |
487 | cond_resched(); |
488 | } | |
1da177e4 LT |
489 | } |
490 | i++; | |
491 | set >>= 1; | |
492 | } | |
493 | } | |
494 | } | |
495 | ||
496 | struct files_struct *get_files_struct(struct task_struct *task) | |
497 | { | |
498 | struct files_struct *files; | |
499 | ||
500 | task_lock(task); | |
501 | files = task->files; | |
502 | if (files) | |
503 | atomic_inc(&files->count); | |
504 | task_unlock(task); | |
505 | ||
506 | return files; | |
507 | } | |
508 | ||
7ad5b3a5 | 509 | void put_files_struct(struct files_struct *files) |
1da177e4 | 510 | { |
badf1662 DS |
511 | struct fdtable *fdt; |
512 | ||
1da177e4 LT |
513 | if (atomic_dec_and_test(&files->count)) { |
514 | close_files(files); | |
515 | /* | |
516 | * Free the fd and fdset arrays if we expanded them. | |
ab2af1f5 DS |
517 | * If the fdtable was embedded, pass files for freeing |
518 | * at the end of the RCU grace period. Otherwise, | |
519 | * you can free files immediately. | |
1da177e4 | 520 | */ |
badf1662 | 521 | fdt = files_fdtable(files); |
4fd45812 | 522 | if (fdt != &files->fdtab) |
ab2af1f5 | 523 | kmem_cache_free(files_cachep, files); |
01b2d93c | 524 | free_fdtable(fdt); |
1da177e4 LT |
525 | } |
526 | } | |
527 | ||
3b125388 | 528 | void reset_files_struct(struct files_struct *files) |
3b9b8ab6 | 529 | { |
3b125388 | 530 | struct task_struct *tsk = current; |
3b9b8ab6 KK |
531 | struct files_struct *old; |
532 | ||
533 | old = tsk->files; | |
534 | task_lock(tsk); | |
535 | tsk->files = files; | |
536 | task_unlock(tsk); | |
537 | put_files_struct(old); | |
538 | } | |
3b9b8ab6 | 539 | |
1ec7f1dd | 540 | void exit_files(struct task_struct *tsk) |
1da177e4 LT |
541 | { |
542 | struct files_struct * files = tsk->files; | |
543 | ||
544 | if (files) { | |
545 | task_lock(tsk); | |
546 | tsk->files = NULL; | |
547 | task_unlock(tsk); | |
548 | put_files_struct(files); | |
549 | } | |
550 | } | |
551 | ||
1ec7f1dd | 552 | void put_fs_struct(struct fs_struct *fs) |
1da177e4 LT |
553 | { |
554 | /* No need to hold fs->lock if we are killing it */ | |
555 | if (atomic_dec_and_test(&fs->count)) { | |
6ac08c39 JB |
556 | path_put(&fs->root); |
557 | path_put(&fs->pwd); | |
1da177e4 LT |
558 | kmem_cache_free(fs_cachep, fs); |
559 | } | |
560 | } | |
561 | ||
1ec7f1dd | 562 | void exit_fs(struct task_struct *tsk) |
1da177e4 LT |
563 | { |
564 | struct fs_struct * fs = tsk->fs; | |
565 | ||
566 | if (fs) { | |
567 | task_lock(tsk); | |
568 | tsk->fs = NULL; | |
569 | task_unlock(tsk); | |
1ec7f1dd | 570 | put_fs_struct(fs); |
1da177e4 LT |
571 | } |
572 | } | |
573 | ||
1da177e4 LT |
574 | EXPORT_SYMBOL_GPL(exit_fs); |
575 | ||
cf475ad2 BS |
576 | #ifdef CONFIG_MM_OWNER |
577 | /* | |
578 | * Task p is exiting and it owned mm, lets find a new owner for it | |
579 | */ | |
580 | static inline int | |
581 | mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) | |
582 | { | |
583 | /* | |
584 | * If there are other users of the mm and the owner (us) is exiting | |
585 | * we need to find a new owner to take on the responsibility. | |
586 | */ | |
cf475ad2 BS |
587 | if (atomic_read(&mm->mm_users) <= 1) |
588 | return 0; | |
589 | if (mm->owner != p) | |
590 | return 0; | |
591 | return 1; | |
592 | } | |
593 | ||
594 | void mm_update_next_owner(struct mm_struct *mm) | |
595 | { | |
596 | struct task_struct *c, *g, *p = current; | |
597 | ||
598 | retry: | |
599 | if (!mm_need_new_owner(mm, p)) | |
600 | return; | |
601 | ||
602 | read_lock(&tasklist_lock); | |
603 | /* | |
604 | * Search in the children | |
605 | */ | |
606 | list_for_each_entry(c, &p->children, sibling) { | |
607 | if (c->mm == mm) | |
608 | goto assign_new_owner; | |
609 | } | |
610 | ||
611 | /* | |
612 | * Search in the siblings | |
613 | */ | |
614 | list_for_each_entry(c, &p->parent->children, sibling) { | |
615 | if (c->mm == mm) | |
616 | goto assign_new_owner; | |
617 | } | |
618 | ||
619 | /* | |
620 | * Search through everything else. We should not get | |
621 | * here often | |
622 | */ | |
623 | do_each_thread(g, c) { | |
624 | if (c->mm == mm) | |
625 | goto assign_new_owner; | |
626 | } while_each_thread(g, c); | |
627 | ||
628 | read_unlock(&tasklist_lock); | |
31a78f23 BS |
629 | /* |
630 | * We found no owner yet mm_users > 1: this implies that we are | |
631 | * most likely racing with swapoff (try_to_unuse()) or /proc or | |
632 | * ptrace or page migration (get_task_mm()). Mark owner as NULL, | |
633 | * so that subsystems can understand the callback and take action. | |
634 | */ | |
635 | down_write(&mm->mmap_sem); | |
636 | cgroup_mm_owner_callbacks(mm->owner, NULL); | |
637 | mm->owner = NULL; | |
638 | up_write(&mm->mmap_sem); | |
cf475ad2 BS |
639 | return; |
640 | ||
641 | assign_new_owner: | |
642 | BUG_ON(c == p); | |
643 | get_task_struct(c); | |
9363b9f2 BS |
644 | read_unlock(&tasklist_lock); |
645 | down_write(&mm->mmap_sem); | |
cf475ad2 BS |
646 | /* |
647 | * The task_lock protects c->mm from changing. | |
648 | * We always want mm->owner->mm == mm | |
649 | */ | |
650 | task_lock(c); | |
cf475ad2 BS |
651 | if (c->mm != mm) { |
652 | task_unlock(c); | |
9363b9f2 | 653 | up_write(&mm->mmap_sem); |
cf475ad2 BS |
654 | put_task_struct(c); |
655 | goto retry; | |
656 | } | |
657 | cgroup_mm_owner_callbacks(mm->owner, c); | |
658 | mm->owner = c; | |
659 | task_unlock(c); | |
9363b9f2 | 660 | up_write(&mm->mmap_sem); |
cf475ad2 BS |
661 | put_task_struct(c); |
662 | } | |
663 | #endif /* CONFIG_MM_OWNER */ | |
664 | ||
1da177e4 LT |
665 | /* |
666 | * Turn us into a lazy TLB process if we | |
667 | * aren't already.. | |
668 | */ | |
408b664a | 669 | static void exit_mm(struct task_struct * tsk) |
1da177e4 LT |
670 | { |
671 | struct mm_struct *mm = tsk->mm; | |
b564daf8 | 672 | struct core_state *core_state; |
1da177e4 LT |
673 | |
674 | mm_release(tsk, mm); | |
675 | if (!mm) | |
676 | return; | |
677 | /* | |
678 | * Serialize with any possible pending coredump. | |
999d9fc1 | 679 | * We must hold mmap_sem around checking core_state |
1da177e4 | 680 | * and clearing tsk->mm. The core-inducing thread |
999d9fc1 | 681 | * will increment ->nr_threads for each thread in the |
1da177e4 LT |
682 | * group with ->mm != NULL. |
683 | */ | |
684 | down_read(&mm->mmap_sem); | |
b564daf8 ON |
685 | core_state = mm->core_state; |
686 | if (core_state) { | |
687 | struct core_thread self; | |
1da177e4 | 688 | up_read(&mm->mmap_sem); |
c5f1cc8c | 689 | |
b564daf8 ON |
690 | self.task = tsk; |
691 | self.next = xchg(&core_state->dumper.next, &self); | |
692 | /* | |
693 | * Implies mb(), the result of xchg() must be visible | |
694 | * to core_state->dumper. | |
695 | */ | |
696 | if (atomic_dec_and_test(&core_state->nr_threads)) | |
697 | complete(&core_state->startup); | |
1da177e4 | 698 | |
a94e2d40 ON |
699 | for (;;) { |
700 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | |
701 | if (!self.task) /* see coredump_finish() */ | |
702 | break; | |
703 | schedule(); | |
704 | } | |
705 | __set_task_state(tsk, TASK_RUNNING); | |
1da177e4 LT |
706 | down_read(&mm->mmap_sem); |
707 | } | |
708 | atomic_inc(&mm->mm_count); | |
125e1874 | 709 | BUG_ON(mm != tsk->active_mm); |
1da177e4 LT |
710 | /* more a memory barrier than a real lock */ |
711 | task_lock(tsk); | |
712 | tsk->mm = NULL; | |
713 | up_read(&mm->mmap_sem); | |
714 | enter_lazy_tlb(mm, current); | |
0c1eecfb RW |
715 | /* We don't want this task to be frozen prematurely */ |
716 | clear_freeze_flag(tsk); | |
1da177e4 | 717 | task_unlock(tsk); |
cf475ad2 | 718 | mm_update_next_owner(mm); |
1da177e4 LT |
719 | mmput(mm); |
720 | } | |
721 | ||
666f164f RM |
722 | /* |
723 | * Return nonzero if @parent's children should reap themselves. | |
724 | * | |
725 | * Called with write_lock_irq(&tasklist_lock) held. | |
726 | */ | |
727 | static int ignoring_children(struct task_struct *parent) | |
728 | { | |
729 | int ret; | |
730 | struct sighand_struct *psig = parent->sighand; | |
731 | unsigned long flags; | |
732 | spin_lock_irqsave(&psig->siglock, flags); | |
733 | ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | |
734 | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); | |
735 | spin_unlock_irqrestore(&psig->siglock, flags); | |
736 | return ret; | |
737 | } | |
738 | ||
f470021a RM |
739 | /* |
740 | * Detach all tasks we were using ptrace on. | |
741 | * Any that need to be release_task'd are put on the @dead list. | |
742 | * | |
743 | * Called with write_lock(&tasklist_lock) held. | |
744 | */ | |
745 | static void ptrace_exit(struct task_struct *parent, struct list_head *dead) | |
1da177e4 | 746 | { |
f470021a | 747 | struct task_struct *p, *n; |
666f164f | 748 | int ign = -1; |
241ceee0 | 749 | |
f470021a RM |
750 | list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { |
751 | __ptrace_unlink(p); | |
752 | ||
753 | if (p->exit_state != EXIT_ZOMBIE) | |
754 | continue; | |
755 | ||
756 | /* | |
757 | * If it's a zombie, our attachedness prevented normal | |
758 | * parent notification or self-reaping. Do notification | |
759 | * now if it would have happened earlier. If it should | |
760 | * reap itself, add it to the @dead list. We can't call | |
761 | * release_task() here because we already hold tasklist_lock. | |
762 | * | |
763 | * If it's our own child, there is no notification to do. | |
666f164f RM |
764 | * But if our normal children self-reap, then this child |
765 | * was prevented by ptrace and we must reap it now. | |
1da177e4 | 766 | */ |
f470021a RM |
767 | if (!task_detached(p) && thread_group_empty(p)) { |
768 | if (!same_thread_group(p->real_parent, parent)) | |
769 | do_notify_parent(p, p->exit_signal); | |
666f164f RM |
770 | else { |
771 | if (ign < 0) | |
772 | ign = ignoring_children(parent); | |
773 | if (ign) | |
774 | p->exit_signal = -1; | |
775 | } | |
f470021a | 776 | } |
1da177e4 | 777 | |
f470021a | 778 | if (task_detached(p)) { |
1da177e4 | 779 | /* |
f470021a | 780 | * Mark it as in the process of being reaped. |
1da177e4 | 781 | */ |
f470021a RM |
782 | p->exit_state = EXIT_DEAD; |
783 | list_add(&p->ptrace_entry, dead); | |
1da177e4 LT |
784 | } |
785 | } | |
f470021a RM |
786 | } |
787 | ||
788 | /* | |
789 | * Finish up exit-time ptrace cleanup. | |
790 | * | |
791 | * Called without locks. | |
792 | */ | |
793 | static void ptrace_exit_finish(struct task_struct *parent, | |
794 | struct list_head *dead) | |
795 | { | |
796 | struct task_struct *p, *n; | |
797 | ||
798 | BUG_ON(!list_empty(&parent->ptraced)); | |
799 | ||
800 | list_for_each_entry_safe(p, n, dead, ptrace_entry) { | |
801 | list_del_init(&p->ptrace_entry); | |
802 | release_task(p); | |
803 | } | |
804 | } | |
805 | ||
806 | static void reparent_thread(struct task_struct *p, struct task_struct *father) | |
807 | { | |
808 | if (p->pdeath_signal) | |
809 | /* We already hold the tasklist_lock here. */ | |
810 | group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); | |
811 | ||
812 | list_move_tail(&p->sibling, &p->real_parent->children); | |
1da177e4 | 813 | |
b2b2cbc4 EB |
814 | /* If this is a threaded reparent there is no need to |
815 | * notify anyone anything has happened. | |
816 | */ | |
376e1d25 | 817 | if (same_thread_group(p->real_parent, father)) |
b2b2cbc4 EB |
818 | return; |
819 | ||
820 | /* We don't want people slaying init. */ | |
d839fd4d | 821 | if (!task_detached(p)) |
b2b2cbc4 | 822 | p->exit_signal = SIGCHLD; |
b2b2cbc4 EB |
823 | |
824 | /* If we'd notified the old parent about this child's death, | |
825 | * also notify the new parent. | |
826 | */ | |
f470021a RM |
827 | if (!ptrace_reparented(p) && |
828 | p->exit_state == EXIT_ZOMBIE && | |
d839fd4d | 829 | !task_detached(p) && thread_group_empty(p)) |
b2b2cbc4 EB |
830 | do_notify_parent(p, p->exit_signal); |
831 | ||
f49ee505 | 832 | kill_orphaned_pgrp(p, father); |
1da177e4 LT |
833 | } |
834 | ||
835 | /* | |
836 | * When we die, we re-parent all our children. | |
837 | * Try to give them to another thread in our thread | |
838 | * group, and if no such member exists, give it to | |
84d73786 SB |
839 | * the child reaper process (ie "init") in our pid |
840 | * space. | |
1da177e4 | 841 | */ |
950bbabb ON |
842 | static struct task_struct *find_new_reaper(struct task_struct *father) |
843 | { | |
844 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | |
845 | struct task_struct *thread; | |
846 | ||
847 | thread = father; | |
848 | while_each_thread(father, thread) { | |
849 | if (thread->flags & PF_EXITING) | |
850 | continue; | |
851 | if (unlikely(pid_ns->child_reaper == father)) | |
852 | pid_ns->child_reaper = thread; | |
853 | return thread; | |
854 | } | |
855 | ||
856 | if (unlikely(pid_ns->child_reaper == father)) { | |
857 | write_unlock_irq(&tasklist_lock); | |
858 | if (unlikely(pid_ns == &init_pid_ns)) | |
859 | panic("Attempted to kill init!"); | |
860 | ||
861 | zap_pid_ns_processes(pid_ns); | |
862 | write_lock_irq(&tasklist_lock); | |
863 | /* | |
864 | * We can not clear ->child_reaper or leave it alone. | |
865 | * There may by stealth EXIT_DEAD tasks on ->children, | |
866 | * forget_original_parent() must move them somewhere. | |
867 | */ | |
868 | pid_ns->child_reaper = init_pid_ns.child_reaper; | |
869 | } | |
870 | ||
871 | return pid_ns->child_reaper; | |
872 | } | |
873 | ||
762a24be | 874 | static void forget_original_parent(struct task_struct *father) |
1da177e4 | 875 | { |
950bbabb | 876 | struct task_struct *p, *n, *reaper; |
f470021a | 877 | LIST_HEAD(ptrace_dead); |
762a24be ON |
878 | |
879 | write_lock_irq(&tasklist_lock); | |
950bbabb | 880 | reaper = find_new_reaper(father); |
f470021a RM |
881 | /* |
882 | * First clean up ptrace if we were using it. | |
883 | */ | |
884 | ptrace_exit(father, &ptrace_dead); | |
885 | ||
03ff1797 | 886 | list_for_each_entry_safe(p, n, &father->children, sibling) { |
84eb646b | 887 | p->real_parent = reaper; |
f470021a RM |
888 | if (p->parent == father) { |
889 | BUG_ON(p->ptrace); | |
890 | p->parent = p->real_parent; | |
891 | } | |
892 | reparent_thread(p, father); | |
1da177e4 | 893 | } |
762a24be ON |
894 | |
895 | write_unlock_irq(&tasklist_lock); | |
896 | BUG_ON(!list_empty(&father->children)); | |
762a24be | 897 | |
f470021a | 898 | ptrace_exit_finish(father, &ptrace_dead); |
1da177e4 LT |
899 | } |
900 | ||
901 | /* | |
902 | * Send signals to all our closest relatives so that they know | |
903 | * to properly mourn us.. | |
904 | */ | |
821c7de7 | 905 | static void exit_notify(struct task_struct *tsk, int group_dead) |
1da177e4 | 906 | { |
2b2a1ff6 RM |
907 | int signal; |
908 | void *cookie; | |
1da177e4 | 909 | |
1da177e4 LT |
910 | /* |
911 | * This does two things: | |
912 | * | |
913 | * A. Make init inherit all the child processes | |
914 | * B. Check to see if any process groups have become orphaned | |
915 | * as a result of our exiting, and if they have any stopped | |
916 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
917 | */ | |
762a24be | 918 | forget_original_parent(tsk); |
2e4a7072 | 919 | exit_task_namespaces(tsk); |
1da177e4 | 920 | |
762a24be | 921 | write_lock_irq(&tasklist_lock); |
821c7de7 ON |
922 | if (group_dead) |
923 | kill_orphaned_pgrp(tsk->group_leader, NULL); | |
1da177e4 | 924 | |
24728448 | 925 | /* Let father know we died |
1da177e4 LT |
926 | * |
927 | * Thread signals are configurable, but you aren't going to use | |
d4c5e41f | 928 | * that to send signals to arbitary processes. |
1da177e4 LT |
929 | * That stops right now. |
930 | * | |
931 | * If the parent exec id doesn't match the exec id we saved | |
932 | * when we started then we know the parent has changed security | |
933 | * domain. | |
934 | * | |
935 | * If our self_exec id doesn't match our parent_exec_id then | |
936 | * we have changed execution domain as these two values started | |
937 | * the same after a fork. | |
1da177e4 | 938 | */ |
d839fd4d | 939 | if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && |
f49ee505 | 940 | (tsk->parent_exec_id != tsk->real_parent->self_exec_id || |
d839fd4d ON |
941 | tsk->self_exec_id != tsk->parent_exec_id) && |
942 | !capable(CAP_KILL)) | |
1da177e4 LT |
943 | tsk->exit_signal = SIGCHLD; |
944 | ||
2b2a1ff6 | 945 | signal = tracehook_notify_death(tsk, &cookie, group_dead); |
5c7edcd7 | 946 | if (signal >= 0) |
2b2a1ff6 | 947 | signal = do_notify_parent(tsk, signal); |
1da177e4 | 948 | |
5c7edcd7 | 949 | tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; |
1da177e4 | 950 | |
2800d8d1 | 951 | /* mt-exec, de_thread() is waiting for us */ |
6db840fa | 952 | if (thread_group_leader(tsk) && |
2633f0e5 SV |
953 | tsk->signal->group_exit_task && |
954 | tsk->signal->notify_count < 0) | |
6db840fa ON |
955 | wake_up_process(tsk->signal->group_exit_task); |
956 | ||
1da177e4 LT |
957 | write_unlock_irq(&tasklist_lock); |
958 | ||
2b2a1ff6 RM |
959 | tracehook_report_death(tsk, signal, cookie, group_dead); |
960 | ||
1da177e4 | 961 | /* If the process is dead, release it - nobody will wait for it */ |
5c7edcd7 | 962 | if (signal == DEATH_REAP) |
1da177e4 | 963 | release_task(tsk); |
1da177e4 LT |
964 | } |
965 | ||
e18eecb8 JD |
966 | #ifdef CONFIG_DEBUG_STACK_USAGE |
967 | static void check_stack_usage(void) | |
968 | { | |
969 | static DEFINE_SPINLOCK(low_water_lock); | |
970 | static int lowest_to_date = THREAD_SIZE; | |
971 | unsigned long *n = end_of_stack(current); | |
972 | unsigned long free; | |
973 | ||
974 | while (*n == 0) | |
975 | n++; | |
976 | free = (unsigned long)n - (unsigned long)end_of_stack(current); | |
977 | ||
978 | if (free >= lowest_to_date) | |
979 | return; | |
980 | ||
981 | spin_lock(&low_water_lock); | |
982 | if (free < lowest_to_date) { | |
983 | printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " | |
984 | "left\n", | |
985 | current->comm, free); | |
986 | lowest_to_date = free; | |
987 | } | |
988 | spin_unlock(&low_water_lock); | |
989 | } | |
990 | #else | |
991 | static inline void check_stack_usage(void) {} | |
992 | #endif | |
993 | ||
7ad5b3a5 | 994 | NORET_TYPE void do_exit(long code) |
1da177e4 LT |
995 | { |
996 | struct task_struct *tsk = current; | |
997 | int group_dead; | |
998 | ||
999 | profile_task_exit(tsk); | |
1000 | ||
22e2c507 JA |
1001 | WARN_ON(atomic_read(&tsk->fs_excl)); |
1002 | ||
1da177e4 LT |
1003 | if (unlikely(in_interrupt())) |
1004 | panic("Aiee, killing interrupt handler!"); | |
1005 | if (unlikely(!tsk->pid)) | |
1006 | panic("Attempted to kill the idle task!"); | |
1da177e4 | 1007 | |
30199f5a | 1008 | tracehook_report_exit(&code); |
1da177e4 | 1009 | |
df164db5 AN |
1010 | /* |
1011 | * We're taking recursive faults here in do_exit. Safest is to just | |
1012 | * leave this task alone and wait for reboot. | |
1013 | */ | |
1014 | if (unlikely(tsk->flags & PF_EXITING)) { | |
1015 | printk(KERN_ALERT | |
1016 | "Fixing recursive fault but reboot is needed!\n"); | |
778e9a9c AK |
1017 | /* |
1018 | * We can do this unlocked here. The futex code uses | |
1019 | * this flag just to verify whether the pi state | |
1020 | * cleanup has been done or not. In the worst case it | |
1021 | * loops once more. We pretend that the cleanup was | |
1022 | * done as there is no way to return. Either the | |
1023 | * OWNER_DIED bit is set by now or we push the blocked | |
1024 | * task into the wait for ever nirwana as well. | |
1025 | */ | |
1026 | tsk->flags |= PF_EXITPIDONE; | |
afc847b7 AV |
1027 | if (tsk->io_context) |
1028 | exit_io_context(); | |
df164db5 AN |
1029 | set_current_state(TASK_UNINTERRUPTIBLE); |
1030 | schedule(); | |
1031 | } | |
1032 | ||
d12619b5 | 1033 | exit_signals(tsk); /* sets PF_EXITING */ |
778e9a9c AK |
1034 | /* |
1035 | * tsk->flags are checked in the futex code to protect against | |
1036 | * an exiting task cleaning up the robust pi futexes. | |
1037 | */ | |
d2ee7198 ON |
1038 | smp_mb(); |
1039 | spin_unlock_wait(&tsk->pi_lock); | |
1da177e4 | 1040 | |
1da177e4 LT |
1041 | if (unlikely(in_atomic())) |
1042 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | |
ba25f9dc | 1043 | current->comm, task_pid_nr(current), |
1da177e4 LT |
1044 | preempt_count()); |
1045 | ||
1046 | acct_update_integrals(tsk); | |
365e9c87 HD |
1047 | if (tsk->mm) { |
1048 | update_hiwater_rss(tsk->mm); | |
1049 | update_hiwater_vm(tsk->mm); | |
1050 | } | |
1da177e4 | 1051 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 1052 | if (group_dead) { |
778e9a9c | 1053 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 1054 | exit_itimers(tsk->signal); |
c3068951 | 1055 | } |
f6ec29a4 | 1056 | acct_collect(code, group_dead); |
42b2dd0a | 1057 | #ifdef CONFIG_FUTEX |
0771dfef IM |
1058 | if (unlikely(tsk->robust_list)) |
1059 | exit_robust_list(tsk); | |
42b2dd0a | 1060 | #ifdef CONFIG_COMPAT |
34f192c6 IM |
1061 | if (unlikely(tsk->compat_robust_list)) |
1062 | compat_exit_robust_list(tsk); | |
42b2dd0a | 1063 | #endif |
34f192c6 | 1064 | #endif |
522ed776 MT |
1065 | if (group_dead) |
1066 | tty_audit_exit(); | |
fa84cb93 AV |
1067 | if (unlikely(tsk->audit_context)) |
1068 | audit_free(tsk); | |
115085ea | 1069 | |
f2ab6d88 | 1070 | tsk->exit_code = code; |
115085ea | 1071 | taskstats_exit(tsk, group_dead); |
c757249a | 1072 | |
1da177e4 LT |
1073 | exit_mm(tsk); |
1074 | ||
0e464814 | 1075 | if (group_dead) |
f6ec29a4 | 1076 | acct_process(); |
0a16b607 MD |
1077 | trace_sched_process_exit(tsk); |
1078 | ||
1da177e4 | 1079 | exit_sem(tsk); |
1ec7f1dd AV |
1080 | exit_files(tsk); |
1081 | exit_fs(tsk); | |
e18eecb8 | 1082 | check_stack_usage(); |
1da177e4 | 1083 | exit_thread(); |
b4f48b63 | 1084 | cgroup_exit(tsk, 1); |
1da177e4 LT |
1085 | exit_keys(tsk); |
1086 | ||
1087 | if (group_dead && tsk->signal->leader) | |
1088 | disassociate_ctty(1); | |
1089 | ||
a1261f54 | 1090 | module_put(task_thread_info(tsk)->exec_domain->module); |
1da177e4 LT |
1091 | if (tsk->binfmt) |
1092 | module_put(tsk->binfmt->module); | |
1093 | ||
9f46080c | 1094 | proc_exit_connector(tsk); |
821c7de7 | 1095 | exit_notify(tsk, group_dead); |
1da177e4 | 1096 | #ifdef CONFIG_NUMA |
f0be3d32 | 1097 | mpol_put(tsk->mempolicy); |
1da177e4 LT |
1098 | tsk->mempolicy = NULL; |
1099 | #endif | |
42b2dd0a | 1100 | #ifdef CONFIG_FUTEX |
c87e2837 IM |
1101 | /* |
1102 | * This must happen late, after the PID is not | |
1103 | * hashed anymore: | |
1104 | */ | |
1105 | if (unlikely(!list_empty(&tsk->pi_state_list))) | |
1106 | exit_pi_state_list(tsk); | |
1107 | if (unlikely(current->pi_state_cache)) | |
1108 | kfree(current->pi_state_cache); | |
42b2dd0a | 1109 | #endif |
de5097c2 | 1110 | /* |
9a11b49a | 1111 | * Make sure we are holding no locks: |
de5097c2 | 1112 | */ |
9a11b49a | 1113 | debug_check_no_locks_held(tsk); |
778e9a9c AK |
1114 | /* |
1115 | * We can do this unlocked here. The futex code uses this flag | |
1116 | * just to verify whether the pi state cleanup has been done | |
1117 | * or not. In the worst case it loops once more. | |
1118 | */ | |
1119 | tsk->flags |= PF_EXITPIDONE; | |
1da177e4 | 1120 | |
afc847b7 AV |
1121 | if (tsk->io_context) |
1122 | exit_io_context(); | |
1123 | ||
b92ce558 JA |
1124 | if (tsk->splice_pipe) |
1125 | __free_pipe_info(tsk->splice_pipe); | |
1126 | ||
7407251a | 1127 | preempt_disable(); |
55a101f8 | 1128 | /* causes final put_task_struct in finish_task_switch(). */ |
c394cc9f | 1129 | tsk->state = TASK_DEAD; |
7407251a | 1130 | |
1da177e4 LT |
1131 | schedule(); |
1132 | BUG(); | |
1133 | /* Avoid "noreturn function does return". */ | |
54306cf0 AC |
1134 | for (;;) |
1135 | cpu_relax(); /* For when BUG is null */ | |
1da177e4 LT |
1136 | } |
1137 | ||
012914da RA |
1138 | EXPORT_SYMBOL_GPL(do_exit); |
1139 | ||
1da177e4 LT |
1140 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) |
1141 | { | |
1142 | if (comp) | |
1143 | complete(comp); | |
55a101f8 | 1144 | |
1da177e4 LT |
1145 | do_exit(code); |
1146 | } | |
1147 | ||
1148 | EXPORT_SYMBOL(complete_and_exit); | |
1149 | ||
1150 | asmlinkage long sys_exit(int error_code) | |
1151 | { | |
1152 | do_exit((error_code&0xff)<<8); | |
1153 | } | |
1154 | ||
1da177e4 LT |
1155 | /* |
1156 | * Take down every thread in the group. This is called by fatal signals | |
1157 | * as well as by sys_exit_group (below). | |
1158 | */ | |
1159 | NORET_TYPE void | |
1160 | do_group_exit(int exit_code) | |
1161 | { | |
bfc4b089 ON |
1162 | struct signal_struct *sig = current->signal; |
1163 | ||
1da177e4 LT |
1164 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
1165 | ||
bfc4b089 ON |
1166 | if (signal_group_exit(sig)) |
1167 | exit_code = sig->group_exit_code; | |
1da177e4 | 1168 | else if (!thread_group_empty(current)) { |
1da177e4 | 1169 | struct sighand_struct *const sighand = current->sighand; |
1da177e4 | 1170 | spin_lock_irq(&sighand->siglock); |
ed5d2cac | 1171 | if (signal_group_exit(sig)) |
1da177e4 LT |
1172 | /* Another thread got here before we took the lock. */ |
1173 | exit_code = sig->group_exit_code; | |
1174 | else { | |
1da177e4 | 1175 | sig->group_exit_code = exit_code; |
ed5d2cac | 1176 | sig->flags = SIGNAL_GROUP_EXIT; |
1da177e4 LT |
1177 | zap_other_threads(current); |
1178 | } | |
1179 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
1180 | } |
1181 | ||
1182 | do_exit(exit_code); | |
1183 | /* NOTREACHED */ | |
1184 | } | |
1185 | ||
1186 | /* | |
1187 | * this kills every thread in the thread group. Note that any externally | |
1188 | * wait4()-ing process will get the correct exit code - even if this | |
1189 | * thread is not the thread group leader. | |
1190 | */ | |
1191 | asmlinkage void sys_exit_group(int error_code) | |
1192 | { | |
1193 | do_group_exit((error_code & 0xff) << 8); | |
1194 | } | |
1195 | ||
161550d7 EB |
1196 | static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) |
1197 | { | |
1198 | struct pid *pid = NULL; | |
1199 | if (type == PIDTYPE_PID) | |
1200 | pid = task->pids[type].pid; | |
1201 | else if (type < PIDTYPE_MAX) | |
1202 | pid = task->group_leader->pids[type].pid; | |
1203 | return pid; | |
1204 | } | |
1205 | ||
1206 | static int eligible_child(enum pid_type type, struct pid *pid, int options, | |
1207 | struct task_struct *p) | |
1da177e4 | 1208 | { |
73243284 RM |
1209 | int err; |
1210 | ||
161550d7 EB |
1211 | if (type < PIDTYPE_MAX) { |
1212 | if (task_pid_type(p, type) != pid) | |
1da177e4 LT |
1213 | return 0; |
1214 | } | |
1215 | ||
1da177e4 LT |
1216 | /* Wait for all children (clone and not) if __WALL is set; |
1217 | * otherwise, wait for clone children *only* if __WCLONE is | |
1218 | * set; otherwise, wait for non-clone children *only*. (Note: | |
1219 | * A "clone" child here is one that reports to its parent | |
1220 | * using a signal other than SIGCHLD.) */ | |
1221 | if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) | |
1222 | && !(options & __WALL)) | |
1223 | return 0; | |
1da177e4 | 1224 | |
73243284 | 1225 | err = security_task_wait(p); |
14dd0b81 RM |
1226 | if (err) |
1227 | return err; | |
1da177e4 | 1228 | |
14dd0b81 | 1229 | return 1; |
1da177e4 LT |
1230 | } |
1231 | ||
36c8b586 | 1232 | static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, |
1da177e4 LT |
1233 | int why, int status, |
1234 | struct siginfo __user *infop, | |
1235 | struct rusage __user *rusagep) | |
1236 | { | |
1237 | int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; | |
36c8b586 | 1238 | |
1da177e4 LT |
1239 | put_task_struct(p); |
1240 | if (!retval) | |
1241 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1242 | if (!retval) | |
1243 | retval = put_user(0, &infop->si_errno); | |
1244 | if (!retval) | |
1245 | retval = put_user((short)why, &infop->si_code); | |
1246 | if (!retval) | |
1247 | retval = put_user(pid, &infop->si_pid); | |
1248 | if (!retval) | |
1249 | retval = put_user(uid, &infop->si_uid); | |
1250 | if (!retval) | |
1251 | retval = put_user(status, &infop->si_status); | |
1252 | if (!retval) | |
1253 | retval = pid; | |
1254 | return retval; | |
1255 | } | |
1256 | ||
1257 | /* | |
1258 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
1259 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1260 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1261 | * released the lock and the system call should return. | |
1262 | */ | |
98abed02 | 1263 | static int wait_task_zombie(struct task_struct *p, int options, |
1da177e4 LT |
1264 | struct siginfo __user *infop, |
1265 | int __user *stat_addr, struct rusage __user *ru) | |
1266 | { | |
1267 | unsigned long state; | |
2f4e6e2a | 1268 | int retval, status, traced; |
6c5f3e7b | 1269 | pid_t pid = task_pid_vnr(p); |
1da177e4 | 1270 | |
98abed02 RM |
1271 | if (!likely(options & WEXITED)) |
1272 | return 0; | |
1273 | ||
1274 | if (unlikely(options & WNOWAIT)) { | |
1da177e4 LT |
1275 | uid_t uid = p->uid; |
1276 | int exit_code = p->exit_code; | |
1277 | int why, status; | |
1278 | ||
1da177e4 LT |
1279 | get_task_struct(p); |
1280 | read_unlock(&tasklist_lock); | |
1281 | if ((exit_code & 0x7f) == 0) { | |
1282 | why = CLD_EXITED; | |
1283 | status = exit_code >> 8; | |
1284 | } else { | |
1285 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1286 | status = exit_code & 0x7f; | |
1287 | } | |
1288 | return wait_noreap_copyout(p, pid, uid, why, | |
1289 | status, infop, ru); | |
1290 | } | |
1291 | ||
1292 | /* | |
1293 | * Try to move the task's state to DEAD | |
1294 | * only one thread is allowed to do this: | |
1295 | */ | |
1296 | state = xchg(&p->exit_state, EXIT_DEAD); | |
1297 | if (state != EXIT_ZOMBIE) { | |
1298 | BUG_ON(state != EXIT_DEAD); | |
1299 | return 0; | |
1300 | } | |
1da177e4 | 1301 | |
53b6f9fb | 1302 | traced = ptrace_reparented(p); |
2f4e6e2a ON |
1303 | |
1304 | if (likely(!traced)) { | |
3795e161 JJ |
1305 | struct signal_struct *psig; |
1306 | struct signal_struct *sig; | |
f06febc9 | 1307 | struct task_cputime cputime; |
3795e161 | 1308 | |
1da177e4 LT |
1309 | /* |
1310 | * The resource counters for the group leader are in its | |
1311 | * own task_struct. Those for dead threads in the group | |
1312 | * are in its signal_struct, as are those for the child | |
1313 | * processes it has previously reaped. All these | |
1314 | * accumulate in the parent's signal_struct c* fields. | |
1315 | * | |
1316 | * We don't bother to take a lock here to protect these | |
1317 | * p->signal fields, because they are only touched by | |
1318 | * __exit_signal, which runs with tasklist_lock | |
1319 | * write-locked anyway, and so is excluded here. We do | |
1320 | * need to protect the access to p->parent->signal fields, | |
1321 | * as other threads in the parent group can be right | |
1322 | * here reaping other children at the same time. | |
f06febc9 FM |
1323 | * |
1324 | * We use thread_group_cputime() to get times for the thread | |
1325 | * group, which consolidates times for all threads in the | |
1326 | * group including the group leader. | |
1da177e4 LT |
1327 | */ |
1328 | spin_lock_irq(&p->parent->sighand->siglock); | |
3795e161 JJ |
1329 | psig = p->parent->signal; |
1330 | sig = p->signal; | |
f06febc9 | 1331 | thread_group_cputime(p, &cputime); |
3795e161 JJ |
1332 | psig->cutime = |
1333 | cputime_add(psig->cutime, | |
f06febc9 FM |
1334 | cputime_add(cputime.utime, |
1335 | sig->cutime)); | |
3795e161 JJ |
1336 | psig->cstime = |
1337 | cputime_add(psig->cstime, | |
f06febc9 FM |
1338 | cputime_add(cputime.stime, |
1339 | sig->cstime)); | |
9ac52315 LV |
1340 | psig->cgtime = |
1341 | cputime_add(psig->cgtime, | |
1342 | cputime_add(p->gtime, | |
1343 | cputime_add(sig->gtime, | |
1344 | sig->cgtime))); | |
3795e161 JJ |
1345 | psig->cmin_flt += |
1346 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1347 | psig->cmaj_flt += | |
1348 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1349 | psig->cnvcsw += | |
1350 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1351 | psig->cnivcsw += | |
1352 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
6eaeeaba ED |
1353 | psig->cinblock += |
1354 | task_io_get_inblock(p) + | |
1355 | sig->inblock + sig->cinblock; | |
1356 | psig->coublock += | |
1357 | task_io_get_oublock(p) + | |
1358 | sig->oublock + sig->coublock; | |
5995477a AR |
1359 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1360 | task_io_accounting_add(&psig->ioac, &sig->ioac); | |
1da177e4 LT |
1361 | spin_unlock_irq(&p->parent->sighand->siglock); |
1362 | } | |
1363 | ||
1364 | /* | |
1365 | * Now we are sure this task is interesting, and no other | |
1366 | * thread can reap it because we set its state to EXIT_DEAD. | |
1367 | */ | |
1368 | read_unlock(&tasklist_lock); | |
1369 | ||
1370 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1371 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | |
1372 | ? p->signal->group_exit_code : p->exit_code; | |
1373 | if (!retval && stat_addr) | |
1374 | retval = put_user(status, stat_addr); | |
1375 | if (!retval && infop) | |
1376 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1377 | if (!retval && infop) | |
1378 | retval = put_user(0, &infop->si_errno); | |
1379 | if (!retval && infop) { | |
1380 | int why; | |
1381 | ||
1382 | if ((status & 0x7f) == 0) { | |
1383 | why = CLD_EXITED; | |
1384 | status >>= 8; | |
1385 | } else { | |
1386 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1387 | status &= 0x7f; | |
1388 | } | |
1389 | retval = put_user((short)why, &infop->si_code); | |
1390 | if (!retval) | |
1391 | retval = put_user(status, &infop->si_status); | |
1392 | } | |
1393 | if (!retval && infop) | |
3a515e4a | 1394 | retval = put_user(pid, &infop->si_pid); |
1da177e4 LT |
1395 | if (!retval && infop) |
1396 | retval = put_user(p->uid, &infop->si_uid); | |
2f4e6e2a | 1397 | if (!retval) |
3a515e4a | 1398 | retval = pid; |
2f4e6e2a ON |
1399 | |
1400 | if (traced) { | |
1da177e4 | 1401 | write_lock_irq(&tasklist_lock); |
2f4e6e2a ON |
1402 | /* We dropped tasklist, ptracer could die and untrace */ |
1403 | ptrace_unlink(p); | |
1404 | /* | |
1405 | * If this is not a detached task, notify the parent. | |
1406 | * If it's still not detached after that, don't release | |
1407 | * it now. | |
1408 | */ | |
d839fd4d | 1409 | if (!task_detached(p)) { |
2f4e6e2a | 1410 | do_notify_parent(p, p->exit_signal); |
d839fd4d | 1411 | if (!task_detached(p)) { |
2f4e6e2a ON |
1412 | p->exit_state = EXIT_ZOMBIE; |
1413 | p = NULL; | |
1da177e4 LT |
1414 | } |
1415 | } | |
1416 | write_unlock_irq(&tasklist_lock); | |
1417 | } | |
1418 | if (p != NULL) | |
1419 | release_task(p); | |
2f4e6e2a | 1420 | |
1da177e4 LT |
1421 | return retval; |
1422 | } | |
1423 | ||
1424 | /* | |
1425 | * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold | |
1426 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1427 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1428 | * released the lock and the system call should return. | |
1429 | */ | |
f470021a | 1430 | static int wait_task_stopped(int ptrace, struct task_struct *p, |
98abed02 | 1431 | int options, struct siginfo __user *infop, |
1da177e4 LT |
1432 | int __user *stat_addr, struct rusage __user *ru) |
1433 | { | |
ee7c82da ON |
1434 | int retval, exit_code, why; |
1435 | uid_t uid = 0; /* unneeded, required by compiler */ | |
c8950783 | 1436 | pid_t pid; |
1da177e4 | 1437 | |
f470021a | 1438 | if (!(options & WUNTRACED)) |
98abed02 RM |
1439 | return 0; |
1440 | ||
ee7c82da ON |
1441 | exit_code = 0; |
1442 | spin_lock_irq(&p->sighand->siglock); | |
1443 | ||
1444 | if (unlikely(!task_is_stopped_or_traced(p))) | |
1445 | goto unlock_sig; | |
1446 | ||
f470021a | 1447 | if (!ptrace && p->signal->group_stop_count > 0) |
1da177e4 LT |
1448 | /* |
1449 | * A group stop is in progress and this is the group leader. | |
1450 | * We won't report until all threads have stopped. | |
1451 | */ | |
ee7c82da ON |
1452 | goto unlock_sig; |
1453 | ||
1454 | exit_code = p->exit_code; | |
1455 | if (!exit_code) | |
1456 | goto unlock_sig; | |
1457 | ||
98abed02 | 1458 | if (!unlikely(options & WNOWAIT)) |
ee7c82da ON |
1459 | p->exit_code = 0; |
1460 | ||
1461 | uid = p->uid; | |
1462 | unlock_sig: | |
1463 | spin_unlock_irq(&p->sighand->siglock); | |
1464 | if (!exit_code) | |
1da177e4 LT |
1465 | return 0; |
1466 | ||
1467 | /* | |
1468 | * Now we are pretty sure this task is interesting. | |
1469 | * Make sure it doesn't get reaped out from under us while we | |
1470 | * give up the lock and then examine it below. We don't want to | |
1471 | * keep holding onto the tasklist_lock while we call getrusage and | |
1472 | * possibly take page faults for user memory. | |
1473 | */ | |
1474 | get_task_struct(p); | |
6c5f3e7b | 1475 | pid = task_pid_vnr(p); |
f470021a | 1476 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1da177e4 LT |
1477 | read_unlock(&tasklist_lock); |
1478 | ||
98abed02 | 1479 | if (unlikely(options & WNOWAIT)) |
1da177e4 | 1480 | return wait_noreap_copyout(p, pid, uid, |
e6ceb32a | 1481 | why, exit_code, |
1da177e4 | 1482 | infop, ru); |
1da177e4 LT |
1483 | |
1484 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1485 | if (!retval && stat_addr) | |
1486 | retval = put_user((exit_code << 8) | 0x7f, stat_addr); | |
1487 | if (!retval && infop) | |
1488 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1489 | if (!retval && infop) | |
1490 | retval = put_user(0, &infop->si_errno); | |
1491 | if (!retval && infop) | |
6efcae46 | 1492 | retval = put_user((short)why, &infop->si_code); |
1da177e4 LT |
1493 | if (!retval && infop) |
1494 | retval = put_user(exit_code, &infop->si_status); | |
1495 | if (!retval && infop) | |
c8950783 | 1496 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1497 | if (!retval && infop) |
ee7c82da | 1498 | retval = put_user(uid, &infop->si_uid); |
1da177e4 | 1499 | if (!retval) |
c8950783 | 1500 | retval = pid; |
1da177e4 LT |
1501 | put_task_struct(p); |
1502 | ||
1503 | BUG_ON(!retval); | |
1504 | return retval; | |
1505 | } | |
1506 | ||
1507 | /* | |
1508 | * Handle do_wait work for one task in a live, non-stopped state. | |
1509 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1510 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1511 | * released the lock and the system call should return. | |
1512 | */ | |
98abed02 | 1513 | static int wait_task_continued(struct task_struct *p, int options, |
1da177e4 LT |
1514 | struct siginfo __user *infop, |
1515 | int __user *stat_addr, struct rusage __user *ru) | |
1516 | { | |
1517 | int retval; | |
1518 | pid_t pid; | |
1519 | uid_t uid; | |
1520 | ||
98abed02 RM |
1521 | if (!unlikely(options & WCONTINUED)) |
1522 | return 0; | |
1523 | ||
1da177e4 LT |
1524 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1525 | return 0; | |
1526 | ||
1527 | spin_lock_irq(&p->sighand->siglock); | |
1528 | /* Re-check with the lock held. */ | |
1529 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1530 | spin_unlock_irq(&p->sighand->siglock); | |
1531 | return 0; | |
1532 | } | |
98abed02 | 1533 | if (!unlikely(options & WNOWAIT)) |
1da177e4 LT |
1534 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
1535 | spin_unlock_irq(&p->sighand->siglock); | |
1536 | ||
6c5f3e7b | 1537 | pid = task_pid_vnr(p); |
1da177e4 LT |
1538 | uid = p->uid; |
1539 | get_task_struct(p); | |
1540 | read_unlock(&tasklist_lock); | |
1541 | ||
1542 | if (!infop) { | |
1543 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1544 | put_task_struct(p); | |
1545 | if (!retval && stat_addr) | |
1546 | retval = put_user(0xffff, stat_addr); | |
1547 | if (!retval) | |
3a515e4a | 1548 | retval = pid; |
1da177e4 LT |
1549 | } else { |
1550 | retval = wait_noreap_copyout(p, pid, uid, | |
1551 | CLD_CONTINUED, SIGCONT, | |
1552 | infop, ru); | |
1553 | BUG_ON(retval == 0); | |
1554 | } | |
1555 | ||
1556 | return retval; | |
1557 | } | |
1558 | ||
98abed02 RM |
1559 | /* |
1560 | * Consider @p for a wait by @parent. | |
1561 | * | |
1562 | * -ECHILD should be in *@notask_error before the first call. | |
1563 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | |
1564 | * Returns zero if the search for a child should continue; | |
14dd0b81 RM |
1565 | * then *@notask_error is 0 if @p is an eligible child, |
1566 | * or another error from security_task_wait(), or still -ECHILD. | |
98abed02 | 1567 | */ |
f470021a | 1568 | static int wait_consider_task(struct task_struct *parent, int ptrace, |
98abed02 RM |
1569 | struct task_struct *p, int *notask_error, |
1570 | enum pid_type type, struct pid *pid, int options, | |
1571 | struct siginfo __user *infop, | |
1572 | int __user *stat_addr, struct rusage __user *ru) | |
1573 | { | |
1574 | int ret = eligible_child(type, pid, options, p); | |
14dd0b81 | 1575 | if (!ret) |
98abed02 RM |
1576 | return ret; |
1577 | ||
14dd0b81 RM |
1578 | if (unlikely(ret < 0)) { |
1579 | /* | |
1580 | * If we have not yet seen any eligible child, | |
1581 | * then let this error code replace -ECHILD. | |
1582 | * A permission error will give the user a clue | |
1583 | * to look for security policy problems, rather | |
1584 | * than for mysterious wait bugs. | |
1585 | */ | |
1586 | if (*notask_error) | |
1587 | *notask_error = ret; | |
1588 | } | |
1589 | ||
f470021a RM |
1590 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1591 | /* | |
1592 | * This child is hidden by ptrace. | |
1593 | * We aren't allowed to see it now, but eventually we will. | |
1594 | */ | |
1595 | *notask_error = 0; | |
1596 | return 0; | |
1597 | } | |
1598 | ||
98abed02 RM |
1599 | if (p->exit_state == EXIT_DEAD) |
1600 | return 0; | |
1601 | ||
1602 | /* | |
1603 | * We don't reap group leaders with subthreads. | |
1604 | */ | |
1605 | if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) | |
1606 | return wait_task_zombie(p, options, infop, stat_addr, ru); | |
1607 | ||
1608 | /* | |
1609 | * It's stopped or running now, so it might | |
1610 | * later continue, exit, or stop again. | |
1611 | */ | |
1612 | *notask_error = 0; | |
1613 | ||
1614 | if (task_is_stopped_or_traced(p)) | |
f470021a RM |
1615 | return wait_task_stopped(ptrace, p, options, |
1616 | infop, stat_addr, ru); | |
98abed02 RM |
1617 | |
1618 | return wait_task_continued(p, options, infop, stat_addr, ru); | |
1619 | } | |
1620 | ||
1621 | /* | |
1622 | * Do the work of do_wait() for one thread in the group, @tsk. | |
1623 | * | |
1624 | * -ECHILD should be in *@notask_error before the first call. | |
1625 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | |
1626 | * Returns zero if the search for a child should continue; then | |
14dd0b81 RM |
1627 | * *@notask_error is 0 if there were any eligible children, |
1628 | * or another error from security_task_wait(), or still -ECHILD. | |
98abed02 RM |
1629 | */ |
1630 | static int do_wait_thread(struct task_struct *tsk, int *notask_error, | |
1631 | enum pid_type type, struct pid *pid, int options, | |
1632 | struct siginfo __user *infop, int __user *stat_addr, | |
1633 | struct rusage __user *ru) | |
1634 | { | |
1635 | struct task_struct *p; | |
1636 | ||
1637 | list_for_each_entry(p, &tsk->children, sibling) { | |
f470021a RM |
1638 | /* |
1639 | * Do not consider detached threads. | |
1640 | */ | |
1641 | if (!task_detached(p)) { | |
1642 | int ret = wait_consider_task(tsk, 0, p, notask_error, | |
1643 | type, pid, options, | |
1644 | infop, stat_addr, ru); | |
1645 | if (ret) | |
1646 | return ret; | |
1647 | } | |
98abed02 RM |
1648 | } |
1649 | ||
1650 | return 0; | |
1651 | } | |
1652 | ||
1653 | static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, | |
1654 | enum pid_type type, struct pid *pid, int options, | |
1655 | struct siginfo __user *infop, int __user *stat_addr, | |
1656 | struct rusage __user *ru) | |
1657 | { | |
1658 | struct task_struct *p; | |
1659 | ||
1660 | /* | |
f470021a | 1661 | * Traditionally we see ptrace'd stopped tasks regardless of options. |
98abed02 | 1662 | */ |
f470021a | 1663 | options |= WUNTRACED; |
98abed02 | 1664 | |
f470021a RM |
1665 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
1666 | int ret = wait_consider_task(tsk, 1, p, notask_error, | |
1667 | type, pid, options, | |
1668 | infop, stat_addr, ru); | |
1669 | if (ret) | |
98abed02 | 1670 | return ret; |
98abed02 RM |
1671 | } |
1672 | ||
1673 | return 0; | |
1674 | } | |
1675 | ||
161550d7 EB |
1676 | static long do_wait(enum pid_type type, struct pid *pid, int options, |
1677 | struct siginfo __user *infop, int __user *stat_addr, | |
1678 | struct rusage __user *ru) | |
1da177e4 LT |
1679 | { |
1680 | DECLARE_WAITQUEUE(wait, current); | |
1681 | struct task_struct *tsk; | |
98abed02 | 1682 | int retval; |
1da177e4 | 1683 | |
0a16b607 MD |
1684 | trace_sched_process_wait(pid); |
1685 | ||
1da177e4 LT |
1686 | add_wait_queue(¤t->signal->wait_chldexit,&wait); |
1687 | repeat: | |
98abed02 RM |
1688 | /* |
1689 | * If there is nothing that can match our critiera just get out. | |
1690 | * We will clear @retval to zero if we see any child that might later | |
1691 | * match our criteria, even if we are not able to reap it yet. | |
1692 | */ | |
161550d7 EB |
1693 | retval = -ECHILD; |
1694 | if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) | |
1695 | goto end; | |
1696 | ||
1da177e4 LT |
1697 | current->state = TASK_INTERRUPTIBLE; |
1698 | read_lock(&tasklist_lock); | |
1699 | tsk = current; | |
1700 | do { | |
98abed02 RM |
1701 | int tsk_result = do_wait_thread(tsk, &retval, |
1702 | type, pid, options, | |
1703 | infop, stat_addr, ru); | |
1704 | if (!tsk_result) | |
1705 | tsk_result = ptrace_do_wait(tsk, &retval, | |
1706 | type, pid, options, | |
1707 | infop, stat_addr, ru); | |
1708 | if (tsk_result) { | |
1709 | /* | |
1710 | * tasklist_lock is unlocked and we have a final result. | |
1711 | */ | |
1712 | retval = tsk_result; | |
1713 | goto end; | |
1da177e4 | 1714 | } |
98abed02 | 1715 | |
1da177e4 LT |
1716 | if (options & __WNOTHREAD) |
1717 | break; | |
1718 | tsk = next_thread(tsk); | |
125e1874 | 1719 | BUG_ON(tsk->signal != current->signal); |
1da177e4 | 1720 | } while (tsk != current); |
1da177e4 | 1721 | read_unlock(&tasklist_lock); |
f2cc3eb1 | 1722 | |
98abed02 | 1723 | if (!retval && !(options & WNOHANG)) { |
1da177e4 | 1724 | retval = -ERESTARTSYS; |
98abed02 RM |
1725 | if (!signal_pending(current)) { |
1726 | schedule(); | |
1727 | goto repeat; | |
1728 | } | |
1da177e4 | 1729 | } |
98abed02 | 1730 | |
1da177e4 LT |
1731 | end: |
1732 | current->state = TASK_RUNNING; | |
1733 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | |
1734 | if (infop) { | |
1735 | if (retval > 0) | |
9cbab810 | 1736 | retval = 0; |
1da177e4 LT |
1737 | else { |
1738 | /* | |
1739 | * For a WNOHANG return, clear out all the fields | |
1740 | * we would set so the user can easily tell the | |
1741 | * difference. | |
1742 | */ | |
1743 | if (!retval) | |
1744 | retval = put_user(0, &infop->si_signo); | |
1745 | if (!retval) | |
1746 | retval = put_user(0, &infop->si_errno); | |
1747 | if (!retval) | |
1748 | retval = put_user(0, &infop->si_code); | |
1749 | if (!retval) | |
1750 | retval = put_user(0, &infop->si_pid); | |
1751 | if (!retval) | |
1752 | retval = put_user(0, &infop->si_uid); | |
1753 | if (!retval) | |
1754 | retval = put_user(0, &infop->si_status); | |
1755 | } | |
1756 | } | |
1757 | return retval; | |
1758 | } | |
1759 | ||
161550d7 | 1760 | asmlinkage long sys_waitid(int which, pid_t upid, |
1da177e4 LT |
1761 | struct siginfo __user *infop, int options, |
1762 | struct rusage __user *ru) | |
1763 | { | |
161550d7 EB |
1764 | struct pid *pid = NULL; |
1765 | enum pid_type type; | |
1da177e4 LT |
1766 | long ret; |
1767 | ||
1768 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | |
1769 | return -EINVAL; | |
1770 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1771 | return -EINVAL; | |
1772 | ||
1773 | switch (which) { | |
1774 | case P_ALL: | |
161550d7 | 1775 | type = PIDTYPE_MAX; |
1da177e4 LT |
1776 | break; |
1777 | case P_PID: | |
161550d7 EB |
1778 | type = PIDTYPE_PID; |
1779 | if (upid <= 0) | |
1da177e4 LT |
1780 | return -EINVAL; |
1781 | break; | |
1782 | case P_PGID: | |
161550d7 EB |
1783 | type = PIDTYPE_PGID; |
1784 | if (upid <= 0) | |
1da177e4 | 1785 | return -EINVAL; |
1da177e4 LT |
1786 | break; |
1787 | default: | |
1788 | return -EINVAL; | |
1789 | } | |
1790 | ||
161550d7 EB |
1791 | if (type < PIDTYPE_MAX) |
1792 | pid = find_get_pid(upid); | |
1793 | ret = do_wait(type, pid, options, infop, NULL, ru); | |
1794 | put_pid(pid); | |
1da177e4 LT |
1795 | |
1796 | /* avoid REGPARM breakage on x86: */ | |
54a01510 | 1797 | asmlinkage_protect(5, ret, which, upid, infop, options, ru); |
1da177e4 LT |
1798 | return ret; |
1799 | } | |
1800 | ||
161550d7 | 1801 | asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, |
1da177e4 LT |
1802 | int options, struct rusage __user *ru) |
1803 | { | |
161550d7 EB |
1804 | struct pid *pid = NULL; |
1805 | enum pid_type type; | |
1da177e4 LT |
1806 | long ret; |
1807 | ||
1808 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1809 | __WNOTHREAD|__WCLONE|__WALL)) | |
1810 | return -EINVAL; | |
161550d7 EB |
1811 | |
1812 | if (upid == -1) | |
1813 | type = PIDTYPE_MAX; | |
1814 | else if (upid < 0) { | |
1815 | type = PIDTYPE_PGID; | |
1816 | pid = find_get_pid(-upid); | |
1817 | } else if (upid == 0) { | |
1818 | type = PIDTYPE_PGID; | |
1819 | pid = get_pid(task_pgrp(current)); | |
1820 | } else /* upid > 0 */ { | |
1821 | type = PIDTYPE_PID; | |
1822 | pid = find_get_pid(upid); | |
1823 | } | |
1824 | ||
1825 | ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); | |
1826 | put_pid(pid); | |
1da177e4 LT |
1827 | |
1828 | /* avoid REGPARM breakage on x86: */ | |
54a01510 | 1829 | asmlinkage_protect(4, ret, upid, stat_addr, options, ru); |
1da177e4 LT |
1830 | return ret; |
1831 | } | |
1832 | ||
1833 | #ifdef __ARCH_WANT_SYS_WAITPID | |
1834 | ||
1835 | /* | |
1836 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1837 | * implemented by calling sys_wait4() from libc.a. | |
1838 | */ | |
1839 | asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) | |
1840 | { | |
1841 | return sys_wait4(pid, stat_addr, options, NULL); | |
1842 | } | |
1843 | ||
1844 | #endif |