]> Git Repo - linux.git/blame - mm/util.c
KVM: SVM: Skip WRMSR fastpath on VM-Exit if next RIP isn't valid
[linux.git] / mm / util.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
16d69265 2#include <linux/mm.h>
30992c97
MM
3#include <linux/slab.h>
4#include <linux/string.h>
3b32123d 5#include <linux/compiler.h>
b95f1b31 6#include <linux/export.h>
96840aa0 7#include <linux/err.h>
3b8f14b4 8#include <linux/sched.h>
6e84f315 9#include <linux/sched/mm.h>
79eb597c 10#include <linux/sched/signal.h>
68db0cf1 11#include <linux/sched/task_stack.h>
eb36c587 12#include <linux/security.h>
9800339b 13#include <linux/swap.h>
33806f06 14#include <linux/swapops.h>
00619bcc
JM
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
39f1f78d 17#include <linux/vmalloc.h>
897ab3e0 18#include <linux/userfaultfd_k.h>
649775be 19#include <linux/elf.h>
67f3977f
AG
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
649775be 22#include <linux/random.h>
67f3977f
AG
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
00619bcc 26
7c0f6ba6 27#include <linux/uaccess.h>
30992c97 28
6038def0 29#include "internal.h"
014bb1de 30#include "swap.h"
6038def0 31
a4bb1e43
AH
32/**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
38void kfree_const(const void *x)
39{
40 if (!is_kernel_rodata((unsigned long)x))
41 kfree(x);
42}
43EXPORT_SYMBOL(kfree_const);
44
30992c97 45/**
30992c97 46 * kstrdup - allocate space for and copy an existing string
30992c97
MM
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
30992c97
MM
51 */
52char *kstrdup(const char *s, gfp_t gfp)
53{
54 size_t len;
55 char *buf;
56
57 if (!s)
58 return NULL;
59
60 len = strlen(s) + 1;
1d2c8eea 61 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
62 if (buf)
63 memcpy(buf, s, len);
64 return buf;
65}
66EXPORT_SYMBOL(kstrdup);
96840aa0 67
a4bb1e43
AH
68/**
69 * kstrdup_const - conditionally duplicate an existing const string
70 * @s: the string to duplicate
71 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
72 *
295a1730
BG
73 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
74 * must not be passed to krealloc().
a862f68a
MR
75 *
76 * Return: source string if it is in .rodata section otherwise
77 * fallback to kstrdup.
a4bb1e43
AH
78 */
79const char *kstrdup_const(const char *s, gfp_t gfp)
80{
81 if (is_kernel_rodata((unsigned long)s))
82 return s;
83
84 return kstrdup(s, gfp);
85}
86EXPORT_SYMBOL(kstrdup_const);
87
1e66df3e
JF
88/**
89 * kstrndup - allocate space for and copy an existing string
90 * @s: the string to duplicate
91 * @max: read at most @max chars from @s
92 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
f3515741
DH
93 *
94 * Note: Use kmemdup_nul() instead if the size is known exactly.
a862f68a
MR
95 *
96 * Return: newly allocated copy of @s or %NULL in case of error
1e66df3e
JF
97 */
98char *kstrndup(const char *s, size_t max, gfp_t gfp)
99{
100 size_t len;
101 char *buf;
102
103 if (!s)
104 return NULL;
105
106 len = strnlen(s, max);
107 buf = kmalloc_track_caller(len+1, gfp);
108 if (buf) {
109 memcpy(buf, s, len);
110 buf[len] = '\0';
111 }
112 return buf;
113}
114EXPORT_SYMBOL(kstrndup);
115
1a2f67b4
AD
116/**
117 * kmemdup - duplicate region of memory
118 *
119 * @src: memory region to duplicate
120 * @len: memory region length
121 * @gfp: GFP mask to use
a862f68a
MR
122 *
123 * Return: newly allocated copy of @src or %NULL in case of error
1a2f67b4
AD
124 */
125void *kmemdup(const void *src, size_t len, gfp_t gfp)
126{
127 void *p;
128
1d2c8eea 129 p = kmalloc_track_caller(len, gfp);
1a2f67b4
AD
130 if (p)
131 memcpy(p, src, len);
132 return p;
133}
134EXPORT_SYMBOL(kmemdup);
135
f3515741
DH
136/**
137 * kmemdup_nul - Create a NUL-terminated string from unterminated data
138 * @s: The data to stringify
139 * @len: The size of the data
140 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
141 *
142 * Return: newly allocated copy of @s with NUL-termination or %NULL in
143 * case of error
f3515741
DH
144 */
145char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
146{
147 char *buf;
148
149 if (!s)
150 return NULL;
151
152 buf = kmalloc_track_caller(len + 1, gfp);
153 if (buf) {
154 memcpy(buf, s, len);
155 buf[len] = '\0';
156 }
157 return buf;
158}
159EXPORT_SYMBOL(kmemdup_nul);
160
610a77e0
LZ
161/**
162 * memdup_user - duplicate memory region from user space
163 *
164 * @src: source address in user space
165 * @len: number of bytes to copy
166 *
a862f68a 167 * Return: an ERR_PTR() on failure. Result is physically
50fd2f29 168 * contiguous, to be freed by kfree().
610a77e0
LZ
169 */
170void *memdup_user(const void __user *src, size_t len)
171{
172 void *p;
173
6c8fcc09 174 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
610a77e0
LZ
175 if (!p)
176 return ERR_PTR(-ENOMEM);
177
178 if (copy_from_user(p, src, len)) {
179 kfree(p);
180 return ERR_PTR(-EFAULT);
181 }
182
183 return p;
184}
185EXPORT_SYMBOL(memdup_user);
186
50fd2f29
AV
187/**
188 * vmemdup_user - duplicate memory region from user space
189 *
190 * @src: source address in user space
191 * @len: number of bytes to copy
192 *
a862f68a 193 * Return: an ERR_PTR() on failure. Result may be not
50fd2f29
AV
194 * physically contiguous. Use kvfree() to free.
195 */
196void *vmemdup_user(const void __user *src, size_t len)
197{
198 void *p;
199
200 p = kvmalloc(len, GFP_USER);
201 if (!p)
202 return ERR_PTR(-ENOMEM);
203
204 if (copy_from_user(p, src, len)) {
205 kvfree(p);
206 return ERR_PTR(-EFAULT);
207 }
208
209 return p;
210}
211EXPORT_SYMBOL(vmemdup_user);
212
b86181f1 213/**
96840aa0 214 * strndup_user - duplicate an existing string from user space
96840aa0
DA
215 * @s: The string to duplicate
216 * @n: Maximum number of bytes to copy, including the trailing NUL.
a862f68a 217 *
e9145521 218 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
96840aa0
DA
219 */
220char *strndup_user(const char __user *s, long n)
221{
222 char *p;
223 long length;
224
225 length = strnlen_user(s, n);
226
227 if (!length)
228 return ERR_PTR(-EFAULT);
229
230 if (length > n)
231 return ERR_PTR(-EINVAL);
232
90d74045 233 p = memdup_user(s, length);
96840aa0 234
90d74045
JL
235 if (IS_ERR(p))
236 return p;
96840aa0
DA
237
238 p[length - 1] = '\0';
239
240 return p;
241}
242EXPORT_SYMBOL(strndup_user);
16d69265 243
e9d408e1
AV
244/**
245 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
246 *
247 * @src: source address in user space
248 * @len: number of bytes to copy
249 *
a862f68a 250 * Return: an ERR_PTR() on failure.
e9d408e1
AV
251 */
252void *memdup_user_nul(const void __user *src, size_t len)
253{
254 char *p;
255
256 /*
257 * Always use GFP_KERNEL, since copy_from_user() can sleep and
258 * cause pagefault, which makes it pointless to use GFP_NOFS
259 * or GFP_ATOMIC.
260 */
261 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
262 if (!p)
263 return ERR_PTR(-ENOMEM);
264
265 if (copy_from_user(p, src, len)) {
266 kfree(p);
267 return ERR_PTR(-EFAULT);
268 }
269 p[len] = '\0';
270
271 return p;
272}
273EXPORT_SYMBOL(memdup_user_nul);
274
b7643757 275/* Check if the vma is being used as a stack by this task */
d17af505 276int vma_is_stack_for_current(struct vm_area_struct *vma)
b7643757 277{
d17af505
AL
278 struct task_struct * __maybe_unused t = current;
279
b7643757
SP
280 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
281}
282
295992fb
CK
283/*
284 * Change backing file, only valid to use during initial VMA setup.
285 */
286void vma_set_file(struct vm_area_struct *vma, struct file *file)
287{
288 /* Changing an anonymous vma with this is illegal */
289 get_file(file);
290 swap(vma->vm_file, file);
291 fput(file);
292}
293EXPORT_SYMBOL(vma_set_file);
294
649775be
AG
295#ifndef STACK_RND_MASK
296#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
297#endif
298
299unsigned long randomize_stack_top(unsigned long stack_top)
300{
301 unsigned long random_variable = 0;
302
303 if (current->flags & PF_RANDOMIZE) {
304 random_variable = get_random_long();
305 random_variable &= STACK_RND_MASK;
306 random_variable <<= PAGE_SHIFT;
307 }
308#ifdef CONFIG_STACK_GROWSUP
309 return PAGE_ALIGN(stack_top) + random_variable;
310#else
311 return PAGE_ALIGN(stack_top) - random_variable;
312#endif
313}
314
5ad7dd88
JD
315/**
316 * randomize_page - Generate a random, page aligned address
317 * @start: The smallest acceptable address the caller will take.
318 * @range: The size of the area, starting at @start, within which the
319 * random address must fall.
320 *
321 * If @start + @range would overflow, @range is capped.
322 *
323 * NOTE: Historical use of randomize_range, which this replaces, presumed that
324 * @start was already page aligned. We now align it regardless.
325 *
326 * Return: A page aligned address within [start, start + range). On error,
327 * @start is returned.
328 */
329unsigned long randomize_page(unsigned long start, unsigned long range)
330{
331 if (!PAGE_ALIGNED(start)) {
332 range -= PAGE_ALIGN(start) - start;
333 start = PAGE_ALIGN(start);
334 }
335
336 if (start > ULONG_MAX - range)
337 range = ULONG_MAX - start;
338
339 range >>= PAGE_SHIFT;
340
341 if (range == 0)
342 return start;
343
344 return start + (get_random_long() % range << PAGE_SHIFT);
345}
346
67f3977f 347#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
723820f3 348unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
e7142bf5
AG
349{
350 /* Is the current task 32bit ? */
351 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
352 return randomize_page(mm->brk, SZ_32M);
353
354 return randomize_page(mm->brk, SZ_1G);
355}
356
67f3977f
AG
357unsigned long arch_mmap_rnd(void)
358{
359 unsigned long rnd;
360
361#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
362 if (is_compat_task())
363 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
364 else
365#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
366 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
367
368 return rnd << PAGE_SHIFT;
369}
67f3977f
AG
370
371static int mmap_is_legacy(struct rlimit *rlim_stack)
372{
373 if (current->personality & ADDR_COMPAT_LAYOUT)
374 return 1;
375
376 if (rlim_stack->rlim_cur == RLIM_INFINITY)
377 return 1;
378
379 return sysctl_legacy_va_layout;
380}
381
382/*
383 * Leave enough space between the mmap area and the stack to honour ulimit in
384 * the face of randomisation.
385 */
386#define MIN_GAP (SZ_128M)
387#define MAX_GAP (STACK_TOP / 6 * 5)
388
389static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
390{
391 unsigned long gap = rlim_stack->rlim_cur;
392 unsigned long pad = stack_guard_gap;
393
394 /* Account for stack randomization if necessary */
395 if (current->flags & PF_RANDOMIZE)
396 pad += (STACK_RND_MASK << PAGE_SHIFT);
397
398 /* Values close to RLIM_INFINITY can overflow. */
399 if (gap + pad > gap)
400 gap += pad;
401
402 if (gap < MIN_GAP)
403 gap = MIN_GAP;
404 else if (gap > MAX_GAP)
405 gap = MAX_GAP;
406
407 return PAGE_ALIGN(STACK_TOP - gap - rnd);
408}
409
410void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
411{
412 unsigned long random_factor = 0UL;
413
414 if (current->flags & PF_RANDOMIZE)
415 random_factor = arch_mmap_rnd();
416
417 if (mmap_is_legacy(rlim_stack)) {
418 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
419 mm->get_unmapped_area = arch_get_unmapped_area;
420 } else {
421 mm->mmap_base = mmap_base(random_factor, rlim_stack);
422 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
423 }
424}
425#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
8f2af155 426void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
16d69265
AM
427{
428 mm->mmap_base = TASK_UNMAPPED_BASE;
429 mm->get_unmapped_area = arch_get_unmapped_area;
16d69265
AM
430}
431#endif
912985dc 432
79eb597c
DJ
433/**
434 * __account_locked_vm - account locked pages to an mm's locked_vm
435 * @mm: mm to account against
436 * @pages: number of pages to account
437 * @inc: %true if @pages should be considered positive, %false if not
438 * @task: task used to check RLIMIT_MEMLOCK
439 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
440 *
441 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
c1e8d7c6 442 * that mmap_lock is held as writer.
79eb597c
DJ
443 *
444 * Return:
445 * * 0 on success
446 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
447 */
448int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
449 struct task_struct *task, bool bypass_rlim)
450{
451 unsigned long locked_vm, limit;
452 int ret = 0;
453
42fc5414 454 mmap_assert_write_locked(mm);
79eb597c
DJ
455
456 locked_vm = mm->locked_vm;
457 if (inc) {
458 if (!bypass_rlim) {
459 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
460 if (locked_vm + pages > limit)
461 ret = -ENOMEM;
462 }
463 if (!ret)
464 mm->locked_vm = locked_vm + pages;
465 } else {
466 WARN_ON_ONCE(pages > locked_vm);
467 mm->locked_vm = locked_vm - pages;
468 }
469
470 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
471 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
472 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
473 ret ? " - exceeded" : "");
474
475 return ret;
476}
477EXPORT_SYMBOL_GPL(__account_locked_vm);
478
479/**
480 * account_locked_vm - account locked pages to an mm's locked_vm
481 * @mm: mm to account against, may be NULL
482 * @pages: number of pages to account
483 * @inc: %true if @pages should be considered positive, %false if not
484 *
485 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
486 *
487 * Return:
488 * * 0 on success, or if mm is NULL
489 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
490 */
491int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
492{
493 int ret;
494
495 if (pages == 0 || !mm)
496 return 0;
497
d8ed45c5 498 mmap_write_lock(mm);
79eb597c
DJ
499 ret = __account_locked_vm(mm, pages, inc, current,
500 capable(CAP_IPC_LOCK));
d8ed45c5 501 mmap_write_unlock(mm);
79eb597c
DJ
502
503 return ret;
504}
505EXPORT_SYMBOL_GPL(account_locked_vm);
506
eb36c587
AV
507unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
508 unsigned long len, unsigned long prot,
9fbeb5ab 509 unsigned long flag, unsigned long pgoff)
eb36c587
AV
510{
511 unsigned long ret;
512 struct mm_struct *mm = current->mm;
41badc15 513 unsigned long populate;
897ab3e0 514 LIST_HEAD(uf);
eb36c587
AV
515
516 ret = security_mmap_file(file, prot, flag);
517 if (!ret) {
d8ed45c5 518 if (mmap_write_lock_killable(mm))
9fbeb5ab 519 return -EINTR;
45e55300
PC
520 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
521 &uf);
d8ed45c5 522 mmap_write_unlock(mm);
897ab3e0 523 userfaultfd_unmap_complete(mm, &uf);
41badc15
ML
524 if (populate)
525 mm_populate(ret, populate);
eb36c587
AV
526 }
527 return ret;
528}
529
530unsigned long vm_mmap(struct file *file, unsigned long addr,
531 unsigned long len, unsigned long prot,
532 unsigned long flag, unsigned long offset)
533{
534 if (unlikely(offset + PAGE_ALIGN(len) < offset))
535 return -EINVAL;
ea53cde0 536 if (unlikely(offset_in_page(offset)))
eb36c587
AV
537 return -EINVAL;
538
9fbeb5ab 539 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
eb36c587
AV
540}
541EXPORT_SYMBOL(vm_mmap);
542
a7c3e901
MH
543/**
544 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
545 * failure, fall back to non-contiguous (vmalloc) allocation.
546 * @size: size of the request.
547 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
548 * @node: numa node to allocate from
549 *
550 * Uses kmalloc to get the memory but if the allocation fails then falls back
551 * to the vmalloc allocator. Use kvfree for freeing the memory.
552 *
a421ef30 553 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
cc965a29
MH
554 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
555 * preferable to the vmalloc fallback, due to visible performance drawbacks.
a7c3e901 556 *
a862f68a 557 * Return: pointer to the allocated memory of %NULL in case of failure
a7c3e901
MH
558 */
559void *kvmalloc_node(size_t size, gfp_t flags, int node)
560{
561 gfp_t kmalloc_flags = flags;
562 void *ret;
563
a7c3e901 564 /*
4f4f2ba9
MH
565 * We want to attempt a large physically contiguous block first because
566 * it is less likely to fragment multiple larger blocks and therefore
567 * contribute to a long term fragmentation less than vmalloc fallback.
568 * However make sure that larger requests are not too disruptive - no
569 * OOM killer and no allocation failure warnings as we have a fallback.
a7c3e901 570 */
6c5ab651
MH
571 if (size > PAGE_SIZE) {
572 kmalloc_flags |= __GFP_NOWARN;
573
cc965a29 574 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
6c5ab651 575 kmalloc_flags |= __GFP_NORETRY;
a421ef30
MH
576
577 /* nofail semantic is implemented by the vmalloc fallback */
578 kmalloc_flags &= ~__GFP_NOFAIL;
6c5ab651 579 }
a7c3e901
MH
580
581 ret = kmalloc_node(size, kmalloc_flags, node);
582
583 /*
584 * It doesn't really make sense to fallback to vmalloc for sub page
585 * requests
586 */
587 if (ret || size <= PAGE_SIZE)
588 return ret;
589
30c19366
FW
590 /* non-sleeping allocations are not supported by vmalloc */
591 if (!gfpflags_allow_blocking(flags))
592 return NULL;
593
7661809d 594 /* Don't even allow crazy sizes */
0708a0af
DB
595 if (unlikely(size > INT_MAX)) {
596 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7661809d 597 return NULL;
0708a0af 598 }
7661809d 599
9becb688
LT
600 /*
601 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
602 * since the callers already cannot assume anything
603 * about the resulting pointer, and cannot play
604 * protection games.
605 */
606 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
607 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
608 node, __builtin_return_address(0));
a7c3e901
MH
609}
610EXPORT_SYMBOL(kvmalloc_node);
611
ff4dc772 612/**
04b8e946
AM
613 * kvfree() - Free memory.
614 * @addr: Pointer to allocated memory.
ff4dc772 615 *
04b8e946
AM
616 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
617 * It is slightly more efficient to use kfree() or vfree() if you are certain
618 * that you know which one to use.
619 *
52414d33 620 * Context: Either preemptible task context or not-NMI interrupt.
ff4dc772 621 */
39f1f78d
AV
622void kvfree(const void *addr)
623{
624 if (is_vmalloc_addr(addr))
625 vfree(addr);
626 else
627 kfree(addr);
628}
629EXPORT_SYMBOL(kvfree);
630
d4eaa283
WL
631/**
632 * kvfree_sensitive - Free a data object containing sensitive information.
633 * @addr: address of the data object to be freed.
634 * @len: length of the data object.
635 *
636 * Use the special memzero_explicit() function to clear the content of a
637 * kvmalloc'ed object containing sensitive data to make sure that the
638 * compiler won't optimize out the data clearing.
639 */
640void kvfree_sensitive(const void *addr, size_t len)
641{
642 if (likely(!ZERO_OR_NULL_PTR(addr))) {
643 memzero_explicit((void *)addr, len);
644 kvfree(addr);
645 }
646}
647EXPORT_SYMBOL(kvfree_sensitive);
648
de2860f4
DC
649void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
650{
651 void *newp;
652
653 if (oldsize >= newsize)
654 return (void *)p;
655 newp = kvmalloc(newsize, flags);
656 if (!newp)
657 return NULL;
658 memcpy(newp, p, oldsize);
659 kvfree(p);
660 return newp;
661}
662EXPORT_SYMBOL(kvrealloc);
663
a8749a35
PB
664/**
665 * __vmalloc_array - allocate memory for a virtually contiguous array.
666 * @n: number of elements.
667 * @size: element size.
668 * @flags: the type of memory to allocate (see kmalloc).
669 */
670void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
671{
672 size_t bytes;
673
674 if (unlikely(check_mul_overflow(n, size, &bytes)))
675 return NULL;
676 return __vmalloc(bytes, flags);
677}
678EXPORT_SYMBOL(__vmalloc_array);
679
680/**
681 * vmalloc_array - allocate memory for a virtually contiguous array.
682 * @n: number of elements.
683 * @size: element size.
684 */
685void *vmalloc_array(size_t n, size_t size)
686{
687 return __vmalloc_array(n, size, GFP_KERNEL);
688}
689EXPORT_SYMBOL(vmalloc_array);
690
691/**
692 * __vcalloc - allocate and zero memory for a virtually contiguous array.
693 * @n: number of elements.
694 * @size: element size.
695 * @flags: the type of memory to allocate (see kmalloc).
696 */
697void *__vcalloc(size_t n, size_t size, gfp_t flags)
698{
699 return __vmalloc_array(n, size, flags | __GFP_ZERO);
700}
701EXPORT_SYMBOL(__vcalloc);
702
703/**
704 * vcalloc - allocate and zero memory for a virtually contiguous array.
705 * @n: number of elements.
706 * @size: element size.
707 */
708void *vcalloc(size_t n, size_t size)
709{
710 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
711}
712EXPORT_SYMBOL(vcalloc);
713
e39155ea
KS
714/* Neutral page->mapping pointer to address_space or anon_vma or other */
715void *page_rmapping(struct page *page)
716{
64601000 717 return folio_raw_mapping(page_folio(page));
e39155ea
KS
718}
719
dd10ab04
MWO
720/**
721 * folio_mapped - Is this folio mapped into userspace?
722 * @folio: The folio.
723 *
724 * Return: True if any page in this folio is referenced by user page tables.
1aa8aea5 725 */
dd10ab04 726bool folio_mapped(struct folio *folio)
1aa8aea5 727{
dd10ab04 728 long i, nr;
1aa8aea5 729
a1efe484 730 if (!folio_test_large(folio))
dd10ab04
MWO
731 return atomic_read(&folio->_mapcount) >= 0;
732 if (atomic_read(folio_mapcount_ptr(folio)) >= 0)
1aa8aea5 733 return true;
dd10ab04 734 if (folio_test_hugetlb(folio))
1aa8aea5 735 return false;
dd10ab04
MWO
736
737 nr = folio_nr_pages(folio);
738 for (i = 0; i < nr; i++) {
739 if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0)
1aa8aea5
AM
740 return true;
741 }
742 return false;
743}
dd10ab04 744EXPORT_SYMBOL(folio_mapped);
1aa8aea5 745
e05b3453 746struct anon_vma *folio_anon_vma(struct folio *folio)
e39155ea 747{
64601000 748 unsigned long mapping = (unsigned long)folio->mapping;
e39155ea 749
e39155ea
KS
750 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
751 return NULL;
64601000 752 return (void *)(mapping - PAGE_MAPPING_ANON);
e39155ea
KS
753}
754
2f52578f
MWO
755/**
756 * folio_mapping - Find the mapping where this folio is stored.
757 * @folio: The folio.
758 *
759 * For folios which are in the page cache, return the mapping that this
760 * page belongs to. Folios in the swap cache return the swap mapping
761 * this page is stored in (which is different from the mapping for the
762 * swap file or swap device where the data is stored).
763 *
764 * You can call this for folios which aren't in the swap cache or page
765 * cache and it will return NULL.
766 */
767struct address_space *folio_mapping(struct folio *folio)
9800339b 768{
1c290f64
KS
769 struct address_space *mapping;
770
03e5ac2f 771 /* This happens if someone calls flush_dcache_page on slab page */
2f52578f 772 if (unlikely(folio_test_slab(folio)))
03e5ac2f
MP
773 return NULL;
774
2f52578f
MWO
775 if (unlikely(folio_test_swapcache(folio)))
776 return swap_address_space(folio_swap_entry(folio));
e39155ea 777
2f52578f 778 mapping = folio->mapping;
68f2736a 779 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
e39155ea 780 return NULL;
bda807d4 781
68f2736a 782 return mapping;
9800339b 783}
2f52578f 784EXPORT_SYMBOL(folio_mapping);
9800339b 785
b20ce5e0
KS
786/* Slow path of page_mapcount() for compound pages */
787int __page_mapcount(struct page *page)
788{
789 int ret;
790
791 ret = atomic_read(&page->_mapcount) + 1;
dd78fedd
KS
792 /*
793 * For file THP page->_mapcount contains total number of mapping
794 * of the page: no need to look into compound_mapcount.
795 */
796 if (!PageAnon(page) && !PageHuge(page))
797 return ret;
b20ce5e0
KS
798 page = compound_head(page);
799 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
800 if (PageDoubleMap(page))
801 ret--;
802 return ret;
803}
804EXPORT_SYMBOL_GPL(__page_mapcount);
805
4ba1119c
MWO
806/**
807 * folio_mapcount() - Calculate the number of mappings of this folio.
808 * @folio: The folio.
809 *
810 * A large folio tracks both how many times the entire folio is mapped,
811 * and how many times each individual page in the folio is mapped.
812 * This function calculates the total number of times the folio is
813 * mapped.
814 *
815 * Return: The number of times this folio is mapped.
816 */
817int folio_mapcount(struct folio *folio)
818{
819 int i, compound, nr, ret;
820
821 if (likely(!folio_test_large(folio)))
822 return atomic_read(&folio->_mapcount) + 1;
823
824 compound = folio_entire_mapcount(folio);
4ba1119c
MWO
825 if (folio_test_hugetlb(folio))
826 return compound;
827 ret = compound;
2fd86a07 828 nr = folio_nr_pages(folio);
4ba1119c
MWO
829 for (i = 0; i < nr; i++)
830 ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1;
831 /* File pages has compound_mapcount included in _mapcount */
832 if (!folio_test_anon(folio))
833 return ret - compound * nr;
834 if (folio_test_double_map(folio))
835 ret -= nr;
836 return ret;
837}
838
715cbfd6
MWO
839/**
840 * folio_copy - Copy the contents of one folio to another.
841 * @dst: Folio to copy to.
842 * @src: Folio to copy from.
843 *
844 * The bytes in the folio represented by @src are copied to @dst.
845 * Assumes the caller has validated that @dst is at least as large as @src.
846 * Can be called in atomic context for order-0 folios, but if the folio is
847 * larger, it may sleep.
848 */
849void folio_copy(struct folio *dst, struct folio *src)
79789db0 850{
715cbfd6
MWO
851 long i = 0;
852 long nr = folio_nr_pages(src);
79789db0 853
715cbfd6
MWO
854 for (;;) {
855 copy_highpage(folio_page(dst, i), folio_page(src, i));
856 if (++i == nr)
857 break;
79789db0 858 cond_resched();
79789db0
MWO
859 }
860}
861
39a1aa8e
AR
862int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
863int sysctl_overcommit_ratio __read_mostly = 50;
864unsigned long sysctl_overcommit_kbytes __read_mostly;
865int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
866unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
867unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
868
32927393
CH
869int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
870 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
871{
872 int ret;
873
874 ret = proc_dointvec(table, write, buffer, lenp, ppos);
875 if (ret == 0 && write)
876 sysctl_overcommit_kbytes = 0;
877 return ret;
878}
879
56f3547b
FT
880static void sync_overcommit_as(struct work_struct *dummy)
881{
882 percpu_counter_sync(&vm_committed_as);
883}
884
885int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
886 size_t *lenp, loff_t *ppos)
887{
888 struct ctl_table t;
bcbda810 889 int new_policy = -1;
56f3547b
FT
890 int ret;
891
892 /*
893 * The deviation of sync_overcommit_as could be big with loose policy
894 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
895 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
31454980 896 * with the strict "NEVER", and to avoid possible race condition (even
56f3547b
FT
897 * though user usually won't too frequently do the switching to policy
898 * OVERCOMMIT_NEVER), the switch is done in the following order:
899 * 1. changing the batch
900 * 2. sync percpu count on each CPU
901 * 3. switch the policy
902 */
903 if (write) {
904 t = *table;
905 t.data = &new_policy;
906 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
bcbda810 907 if (ret || new_policy == -1)
56f3547b
FT
908 return ret;
909
910 mm_compute_batch(new_policy);
911 if (new_policy == OVERCOMMIT_NEVER)
912 schedule_on_each_cpu(sync_overcommit_as);
913 sysctl_overcommit_memory = new_policy;
914 } else {
915 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
916 }
917
918 return ret;
919}
920
32927393
CH
921int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
922 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
923{
924 int ret;
925
926 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
927 if (ret == 0 && write)
928 sysctl_overcommit_ratio = 0;
929 return ret;
930}
931
00619bcc
JM
932/*
933 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
934 */
935unsigned long vm_commit_limit(void)
936{
49f0ce5f
JM
937 unsigned long allowed;
938
939 if (sysctl_overcommit_kbytes)
940 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
941 else
ca79b0c2 942 allowed = ((totalram_pages() - hugetlb_total_pages())
49f0ce5f
JM
943 * sysctl_overcommit_ratio / 100);
944 allowed += total_swap_pages;
945
946 return allowed;
00619bcc
JM
947}
948
39a1aa8e
AR
949/*
950 * Make sure vm_committed_as in one cacheline and not cacheline shared with
951 * other variables. It can be updated by several CPUs frequently.
952 */
953struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
954
955/*
956 * The global memory commitment made in the system can be a metric
957 * that can be used to drive ballooning decisions when Linux is hosted
958 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
959 * balancing memory across competing virtual machines that are hosted.
960 * Several metrics drive this policy engine including the guest reported
961 * memory commitment.
4e2ee51e
FT
962 *
963 * The time cost of this is very low for small platforms, and for big
964 * platform like a 2S/36C/72T Skylake server, in worst case where
965 * vm_committed_as's spinlock is under severe contention, the time cost
966 * could be about 30~40 microseconds.
39a1aa8e
AR
967 */
968unsigned long vm_memory_committed(void)
969{
4e2ee51e 970 return percpu_counter_sum_positive(&vm_committed_as);
39a1aa8e
AR
971}
972EXPORT_SYMBOL_GPL(vm_memory_committed);
973
974/*
975 * Check that a process has enough memory to allocate a new virtual
976 * mapping. 0 means there is enough memory for the allocation to
977 * succeed and -ENOMEM implies there is not.
978 *
979 * We currently support three overcommit policies, which are set via the
ee65728e 980 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
39a1aa8e
AR
981 *
982 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
983 * Additional code 2002 Jul 20 by Robert Love.
984 *
985 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
986 *
987 * Note this is a helper function intended to be used by LSMs which
988 * wish to use this logic.
989 */
990int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
991{
8c7829b0 992 long allowed;
39a1aa8e 993
39a1aa8e
AR
994 vm_acct_memory(pages);
995
996 /*
997 * Sometimes we want to use more memory than we have
998 */
999 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1000 return 0;
1001
1002 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
8c7829b0 1003 if (pages > totalram_pages() + total_swap_pages)
39a1aa8e 1004 goto error;
8c7829b0 1005 return 0;
39a1aa8e
AR
1006 }
1007
1008 allowed = vm_commit_limit();
1009 /*
1010 * Reserve some for root
1011 */
1012 if (!cap_sys_admin)
1013 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1014
1015 /*
1016 * Don't let a single process grow so big a user can't recover
1017 */
1018 if (mm) {
8c7829b0
JW
1019 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1020
39a1aa8e
AR
1021 allowed -= min_t(long, mm->total_vm / 32, reserve);
1022 }
1023
1024 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1025 return 0;
1026error:
44b414c8
KW
1027 pr_warn_ratelimited("%s: pid: %d, comm: %s, no enough memory for the allocation\n",
1028 __func__, current->pid, current->comm);
39a1aa8e
AR
1029 vm_unacct_memory(pages);
1030
1031 return -ENOMEM;
1032}
1033
a9090253
WR
1034/**
1035 * get_cmdline() - copy the cmdline value to a buffer.
1036 * @task: the task whose cmdline value to copy.
1037 * @buffer: the buffer to copy to.
1038 * @buflen: the length of the buffer. Larger cmdline values are truncated
1039 * to this length.
a862f68a
MR
1040 *
1041 * Return: the size of the cmdline field copied. Note that the copy does
a9090253
WR
1042 * not guarantee an ending NULL byte.
1043 */
1044int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1045{
1046 int res = 0;
1047 unsigned int len;
1048 struct mm_struct *mm = get_task_mm(task);
a3b609ef 1049 unsigned long arg_start, arg_end, env_start, env_end;
a9090253
WR
1050 if (!mm)
1051 goto out;
1052 if (!mm->arg_end)
1053 goto out_mm; /* Shh! No looking before we're done */
1054
bc81426f 1055 spin_lock(&mm->arg_lock);
a3b609ef
MG
1056 arg_start = mm->arg_start;
1057 arg_end = mm->arg_end;
1058 env_start = mm->env_start;
1059 env_end = mm->env_end;
bc81426f 1060 spin_unlock(&mm->arg_lock);
a3b609ef
MG
1061
1062 len = arg_end - arg_start;
a9090253
WR
1063
1064 if (len > buflen)
1065 len = buflen;
1066
f307ab6d 1067 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
a9090253
WR
1068
1069 /*
1070 * If the nul at the end of args has been overwritten, then
1071 * assume application is using setproctitle(3).
1072 */
1073 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1074 len = strnlen(buffer, res);
1075 if (len < res) {
1076 res = len;
1077 } else {
a3b609ef 1078 len = env_end - env_start;
a9090253
WR
1079 if (len > buflen - res)
1080 len = buflen - res;
a3b609ef 1081 res += access_process_vm(task, env_start,
f307ab6d
LS
1082 buffer+res, len,
1083 FOLL_FORCE);
a9090253
WR
1084 res = strnlen(buffer, res);
1085 }
1086 }
1087out_mm:
1088 mmput(mm);
1089out:
1090 return res;
1091}
010c164a 1092
4d1a8a2d 1093int __weak memcmp_pages(struct page *page1, struct page *page2)
010c164a
SL
1094{
1095 char *addr1, *addr2;
1096 int ret;
1097
1098 addr1 = kmap_atomic(page1);
1099 addr2 = kmap_atomic(page2);
1100 ret = memcmp(addr1, addr2, PAGE_SIZE);
1101 kunmap_atomic(addr2);
1102 kunmap_atomic(addr1);
1103 return ret;
1104}
8e7f37f2 1105
5bb1bb35 1106#ifdef CONFIG_PRINTK
8e7f37f2
PM
1107/**
1108 * mem_dump_obj - Print available provenance information
1109 * @object: object for which to find provenance information.
1110 *
1111 * This function uses pr_cont(), so that the caller is expected to have
1112 * printed out whatever preamble is appropriate. The provenance information
1113 * depends on the type of object and on how much debugging is enabled.
1114 * For example, for a slab-cache object, the slab name is printed, and,
1115 * if available, the return address and stack trace from the allocation
e548eaa1 1116 * and last free path of that object.
8e7f37f2
PM
1117 */
1118void mem_dump_obj(void *object)
1119{
2521781c
JP
1120 const char *type;
1121
98f18083
PM
1122 if (kmem_valid_obj(object)) {
1123 kmem_dump_obj(object);
1124 return;
1125 }
2521781c 1126
98f18083
PM
1127 if (vmalloc_dump_obj(object))
1128 return;
2521781c
JP
1129
1130 if (virt_addr_valid(object))
1131 type = "non-slab/vmalloc memory";
1132 else if (object == NULL)
1133 type = "NULL pointer";
1134 else if (object == ZERO_SIZE_PTR)
1135 type = "zero-size pointer";
1136 else
1137 type = "non-paged memory";
1138
1139 pr_cont(" %s\n", type);
8e7f37f2 1140}
0d3dd2c8 1141EXPORT_SYMBOL_GPL(mem_dump_obj);
5bb1bb35 1142#endif
82840451
DH
1143
1144/*
1145 * A driver might set a page logically offline -- PageOffline() -- and
1146 * turn the page inaccessible in the hypervisor; after that, access to page
1147 * content can be fatal.
1148 *
1149 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1150 * pages after checking PageOffline(); however, these PFN walkers can race
1151 * with drivers that set PageOffline().
1152 *
1153 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1154 * synchronize with such drivers, achieving that a page cannot be set
1155 * PageOffline() while frozen.
1156 *
1157 * page_offline_begin()/page_offline_end() is used by drivers that care about
1158 * such races when setting a page PageOffline().
1159 */
1160static DECLARE_RWSEM(page_offline_rwsem);
1161
1162void page_offline_freeze(void)
1163{
1164 down_read(&page_offline_rwsem);
1165}
1166
1167void page_offline_thaw(void)
1168{
1169 up_read(&page_offline_rwsem);
1170}
1171
1172void page_offline_begin(void)
1173{
1174 down_write(&page_offline_rwsem);
1175}
1176EXPORT_SYMBOL(page_offline_begin);
1177
1178void page_offline_end(void)
1179{
1180 up_write(&page_offline_rwsem);
1181}
1182EXPORT_SYMBOL(page_offline_end);
08b0b005
MWO
1183
1184#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1185void flush_dcache_folio(struct folio *folio)
1186{
1187 long i, nr = folio_nr_pages(folio);
1188
1189 for (i = 0; i < nr; i++)
1190 flush_dcache_page(folio_page(folio, i));
1191}
1192EXPORT_SYMBOL(flush_dcache_folio);
1193#endif
This page took 1.297016 seconds and 4 git commands to generate.