]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 NS |
2 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
3 | * All Rights Reserved. | |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
1da177e4 | 18 | #include "xfs.h" |
a844f451 | 19 | #include "xfs_fs.h" |
1da177e4 | 20 | #include "xfs_types.h" |
a844f451 | 21 | #include "xfs_bit.h" |
1da177e4 | 22 | #include "xfs_log.h" |
a844f451 | 23 | #include "xfs_inum.h" |
1da177e4 | 24 | #include "xfs_trans.h" |
1da177e4 LT |
25 | #include "xfs_sb.h" |
26 | #include "xfs_ag.h" | |
a844f451 | 27 | #include "xfs_dir2.h" |
1da177e4 LT |
28 | #include "xfs_dmapi.h" |
29 | #include "xfs_mount.h" | |
a844f451 NS |
30 | #include "xfs_bmap_btree.h" |
31 | #include "xfs_alloc_btree.h" | |
32 | #include "xfs_ialloc_btree.h" | |
a844f451 NS |
33 | #include "xfs_dir2_sf.h" |
34 | #include "xfs_attr_sf.h" | |
35 | #include "xfs_dinode.h" | |
36 | #include "xfs_inode.h" | |
37 | #include "xfs_buf_item.h" | |
1da177e4 LT |
38 | #include "xfs_trans_priv.h" |
39 | #include "xfs_error.h" | |
40 | #include "xfs_rw.h" | |
41 | ||
42 | ||
43 | STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *, | |
44 | xfs_daddr_t, int); | |
45 | STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *, | |
46 | xfs_daddr_t, int); | |
47 | ||
48 | ||
49 | /* | |
50 | * Get and lock the buffer for the caller if it is not already | |
51 | * locked within the given transaction. If it is already locked | |
52 | * within the transaction, just increment its lock recursion count | |
53 | * and return a pointer to it. | |
54 | * | |
55 | * Use the fast path function xfs_trans_buf_item_match() or the buffer | |
56 | * cache routine incore_match() to find the buffer | |
57 | * if it is already owned by this transaction. | |
58 | * | |
59 | * If we don't already own the buffer, use get_buf() to get it. | |
60 | * If it doesn't yet have an associated xfs_buf_log_item structure, | |
61 | * then allocate one and add the item to this transaction. | |
62 | * | |
63 | * If the transaction pointer is NULL, make this just a normal | |
64 | * get_buf() call. | |
65 | */ | |
66 | xfs_buf_t * | |
67 | xfs_trans_get_buf(xfs_trans_t *tp, | |
68 | xfs_buftarg_t *target_dev, | |
69 | xfs_daddr_t blkno, | |
70 | int len, | |
71 | uint flags) | |
72 | { | |
73 | xfs_buf_t *bp; | |
74 | xfs_buf_log_item_t *bip; | |
75 | ||
76 | if (flags == 0) | |
77 | flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; | |
78 | ||
79 | /* | |
80 | * Default to a normal get_buf() call if the tp is NULL. | |
81 | */ | |
82 | if (tp == NULL) { | |
83 | bp = xfs_buf_get_flags(target_dev, blkno, len, | |
84 | flags | BUF_BUSY); | |
85 | return(bp); | |
86 | } | |
87 | ||
88 | /* | |
89 | * If we find the buffer in the cache with this transaction | |
90 | * pointer in its b_fsprivate2 field, then we know we already | |
91 | * have it locked. In this case we just increment the lock | |
92 | * recursion count and return the buffer to the caller. | |
93 | */ | |
94 | if (tp->t_items.lic_next == NULL) { | |
95 | bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); | |
96 | } else { | |
97 | bp = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len); | |
98 | } | |
99 | if (bp != NULL) { | |
100 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
101 | if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { | |
102 | xfs_buftrace("TRANS GET RECUR SHUT", bp); | |
103 | XFS_BUF_SUPER_STALE(bp); | |
104 | } | |
105 | /* | |
106 | * If the buffer is stale then it was binval'ed | |
107 | * since last read. This doesn't matter since the | |
108 | * caller isn't allowed to use the data anyway. | |
109 | */ | |
110 | else if (XFS_BUF_ISSTALE(bp)) { | |
111 | xfs_buftrace("TRANS GET RECUR STALE", bp); | |
112 | ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); | |
113 | } | |
114 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
115 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
116 | ASSERT(bip != NULL); | |
117 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
118 | bip->bli_recur++; | |
119 | xfs_buftrace("TRANS GET RECUR", bp); | |
120 | xfs_buf_item_trace("GET RECUR", bip); | |
121 | return (bp); | |
122 | } | |
123 | ||
124 | /* | |
125 | * We always specify the BUF_BUSY flag within a transaction so | |
126 | * that get_buf does not try to push out a delayed write buffer | |
127 | * which might cause another transaction to take place (if the | |
128 | * buffer was delayed alloc). Such recursive transactions can | |
129 | * easily deadlock with our current transaction as well as cause | |
130 | * us to run out of stack space. | |
131 | */ | |
132 | bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY); | |
133 | if (bp == NULL) { | |
134 | return NULL; | |
135 | } | |
136 | ||
137 | ASSERT(!XFS_BUF_GETERROR(bp)); | |
138 | ||
139 | /* | |
140 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
141 | * it doesn't have one yet, then allocate one and initialize it. | |
142 | * The checks to see if one is there are in xfs_buf_item_init(). | |
143 | */ | |
144 | xfs_buf_item_init(bp, tp->t_mountp); | |
145 | ||
146 | /* | |
147 | * Set the recursion count for the buffer within this transaction | |
148 | * to 0. | |
149 | */ | |
150 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
151 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
152 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
153 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
154 | bip->bli_recur = 0; | |
155 | ||
156 | /* | |
157 | * Take a reference for this transaction on the buf item. | |
158 | */ | |
159 | atomic_inc(&bip->bli_refcount); | |
160 | ||
161 | /* | |
162 | * Get a log_item_desc to point at the new item. | |
163 | */ | |
164 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
165 | ||
166 | /* | |
167 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
168 | * above. | |
169 | */ | |
170 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
171 | ||
172 | xfs_buftrace("TRANS GET", bp); | |
173 | xfs_buf_item_trace("GET", bip); | |
174 | return (bp); | |
175 | } | |
176 | ||
177 | /* | |
178 | * Get and lock the superblock buffer of this file system for the | |
179 | * given transaction. | |
180 | * | |
181 | * We don't need to use incore_match() here, because the superblock | |
182 | * buffer is a private buffer which we keep a pointer to in the | |
183 | * mount structure. | |
184 | */ | |
185 | xfs_buf_t * | |
186 | xfs_trans_getsb(xfs_trans_t *tp, | |
187 | struct xfs_mount *mp, | |
188 | int flags) | |
189 | { | |
190 | xfs_buf_t *bp; | |
191 | xfs_buf_log_item_t *bip; | |
192 | ||
193 | /* | |
194 | * Default to just trying to lock the superblock buffer | |
195 | * if tp is NULL. | |
196 | */ | |
197 | if (tp == NULL) { | |
198 | return (xfs_getsb(mp, flags)); | |
199 | } | |
200 | ||
201 | /* | |
202 | * If the superblock buffer already has this transaction | |
203 | * pointer in its b_fsprivate2 field, then we know we already | |
204 | * have it locked. In this case we just increment the lock | |
205 | * recursion count and return the buffer to the caller. | |
206 | */ | |
207 | bp = mp->m_sb_bp; | |
208 | if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) { | |
209 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
210 | ASSERT(bip != NULL); | |
211 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
212 | bip->bli_recur++; | |
213 | xfs_buf_item_trace("GETSB RECUR", bip); | |
214 | return (bp); | |
215 | } | |
216 | ||
217 | bp = xfs_getsb(mp, flags); | |
218 | if (bp == NULL) { | |
219 | return NULL; | |
220 | } | |
221 | ||
222 | /* | |
223 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
224 | * it doesn't have one yet, then allocate one and initialize it. | |
225 | * The checks to see if one is there are in xfs_buf_item_init(). | |
226 | */ | |
227 | xfs_buf_item_init(bp, mp); | |
228 | ||
229 | /* | |
230 | * Set the recursion count for the buffer within this transaction | |
231 | * to 0. | |
232 | */ | |
233 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
234 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
235 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
236 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
237 | bip->bli_recur = 0; | |
238 | ||
239 | /* | |
240 | * Take a reference for this transaction on the buf item. | |
241 | */ | |
242 | atomic_inc(&bip->bli_refcount); | |
243 | ||
244 | /* | |
245 | * Get a log_item_desc to point at the new item. | |
246 | */ | |
247 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
248 | ||
249 | /* | |
250 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
251 | * above. | |
252 | */ | |
253 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
254 | ||
255 | xfs_buf_item_trace("GETSB", bip); | |
256 | return (bp); | |
257 | } | |
258 | ||
259 | #ifdef DEBUG | |
260 | xfs_buftarg_t *xfs_error_target; | |
261 | int xfs_do_error; | |
262 | int xfs_req_num; | |
263 | int xfs_error_mod = 33; | |
264 | #endif | |
265 | ||
266 | /* | |
267 | * Get and lock the buffer for the caller if it is not already | |
268 | * locked within the given transaction. If it has not yet been | |
269 | * read in, read it from disk. If it is already locked | |
270 | * within the transaction and already read in, just increment its | |
271 | * lock recursion count and return a pointer to it. | |
272 | * | |
273 | * Use the fast path function xfs_trans_buf_item_match() or the buffer | |
274 | * cache routine incore_match() to find the buffer | |
275 | * if it is already owned by this transaction. | |
276 | * | |
277 | * If we don't already own the buffer, use read_buf() to get it. | |
278 | * If it doesn't yet have an associated xfs_buf_log_item structure, | |
279 | * then allocate one and add the item to this transaction. | |
280 | * | |
281 | * If the transaction pointer is NULL, make this just a normal | |
282 | * read_buf() call. | |
283 | */ | |
284 | int | |
285 | xfs_trans_read_buf( | |
286 | xfs_mount_t *mp, | |
287 | xfs_trans_t *tp, | |
288 | xfs_buftarg_t *target, | |
289 | xfs_daddr_t blkno, | |
290 | int len, | |
291 | uint flags, | |
292 | xfs_buf_t **bpp) | |
293 | { | |
294 | xfs_buf_t *bp; | |
295 | xfs_buf_log_item_t *bip; | |
296 | int error; | |
297 | ||
298 | if (flags == 0) | |
299 | flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; | |
300 | ||
301 | /* | |
302 | * Default to a normal get_buf() call if the tp is NULL. | |
303 | */ | |
304 | if (tp == NULL) { | |
305 | bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); | |
306 | if (!bp) | |
a3f74ffb DC |
307 | return (flags & XFS_BUF_TRYLOCK) ? |
308 | EAGAIN : XFS_ERROR(ENOMEM); | |
1da177e4 LT |
309 | |
310 | if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) { | |
311 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | |
312 | bp, blkno); | |
313 | error = XFS_BUF_GETERROR(bp); | |
314 | xfs_buf_relse(bp); | |
315 | return error; | |
316 | } | |
317 | #ifdef DEBUG | |
318 | if (xfs_do_error && (bp != NULL)) { | |
319 | if (xfs_error_target == target) { | |
320 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | |
321 | xfs_buf_relse(bp); | |
b6574520 | 322 | cmn_err(CE_DEBUG, "Returning error!\n"); |
1da177e4 LT |
323 | return XFS_ERROR(EIO); |
324 | } | |
325 | } | |
326 | } | |
327 | #endif | |
328 | if (XFS_FORCED_SHUTDOWN(mp)) | |
329 | goto shutdown_abort; | |
330 | *bpp = bp; | |
331 | return 0; | |
332 | } | |
333 | ||
334 | /* | |
335 | * If we find the buffer in the cache with this transaction | |
336 | * pointer in its b_fsprivate2 field, then we know we already | |
337 | * have it locked. If it is already read in we just increment | |
338 | * the lock recursion count and return the buffer to the caller. | |
339 | * If the buffer is not yet read in, then we read it in, increment | |
340 | * the lock recursion count, and return it to the caller. | |
341 | */ | |
342 | if (tp->t_items.lic_next == NULL) { | |
343 | bp = xfs_trans_buf_item_match(tp, target, blkno, len); | |
344 | } else { | |
345 | bp = xfs_trans_buf_item_match_all(tp, target, blkno, len); | |
346 | } | |
347 | if (bp != NULL) { | |
348 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
349 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
350 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
351 | ASSERT((XFS_BUF_ISERROR(bp)) == 0); | |
352 | if (!(XFS_BUF_ISDONE(bp))) { | |
353 | xfs_buftrace("READ_BUF_INCORE !DONE", bp); | |
354 | ASSERT(!XFS_BUF_ISASYNC(bp)); | |
355 | XFS_BUF_READ(bp); | |
356 | xfsbdstrat(tp->t_mountp, bp); | |
d64e31a2 DC |
357 | error = xfs_iowait(bp); |
358 | if (error) { | |
1da177e4 LT |
359 | xfs_ioerror_alert("xfs_trans_read_buf", mp, |
360 | bp, blkno); | |
1da177e4 LT |
361 | xfs_buf_relse(bp); |
362 | /* | |
d64e31a2 DC |
363 | * We can gracefully recover from most read |
364 | * errors. Ones we can't are those that happen | |
365 | * after the transaction's already dirty. | |
1da177e4 LT |
366 | */ |
367 | if (tp->t_flags & XFS_TRANS_DIRTY) | |
368 | xfs_force_shutdown(tp->t_mountp, | |
7d04a335 | 369 | SHUTDOWN_META_IO_ERROR); |
1da177e4 LT |
370 | return error; |
371 | } | |
372 | } | |
373 | /* | |
374 | * We never locked this buf ourselves, so we shouldn't | |
375 | * brelse it either. Just get out. | |
376 | */ | |
377 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
378 | xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp); | |
379 | *bpp = NULL; | |
380 | return XFS_ERROR(EIO); | |
381 | } | |
382 | ||
383 | ||
384 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
385 | bip->bli_recur++; | |
386 | ||
387 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
388 | xfs_buf_item_trace("READ RECUR", bip); | |
389 | *bpp = bp; | |
390 | return 0; | |
391 | } | |
392 | ||
393 | /* | |
394 | * We always specify the BUF_BUSY flag within a transaction so | |
395 | * that get_buf does not try to push out a delayed write buffer | |
396 | * which might cause another transaction to take place (if the | |
397 | * buffer was delayed alloc). Such recursive transactions can | |
398 | * easily deadlock with our current transaction as well as cause | |
399 | * us to run out of stack space. | |
400 | */ | |
401 | bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); | |
402 | if (bp == NULL) { | |
403 | *bpp = NULL; | |
404 | return 0; | |
405 | } | |
406 | if (XFS_BUF_GETERROR(bp) != 0) { | |
407 | XFS_BUF_SUPER_STALE(bp); | |
408 | xfs_buftrace("READ ERROR", bp); | |
409 | error = XFS_BUF_GETERROR(bp); | |
410 | ||
411 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | |
412 | bp, blkno); | |
413 | if (tp->t_flags & XFS_TRANS_DIRTY) | |
7d04a335 | 414 | xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); |
1da177e4 LT |
415 | xfs_buf_relse(bp); |
416 | return error; | |
417 | } | |
418 | #ifdef DEBUG | |
419 | if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { | |
420 | if (xfs_error_target == target) { | |
421 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | |
422 | xfs_force_shutdown(tp->t_mountp, | |
7d04a335 | 423 | SHUTDOWN_META_IO_ERROR); |
1da177e4 | 424 | xfs_buf_relse(bp); |
b6574520 | 425 | cmn_err(CE_DEBUG, "Returning trans error!\n"); |
1da177e4 LT |
426 | return XFS_ERROR(EIO); |
427 | } | |
428 | } | |
429 | } | |
430 | #endif | |
431 | if (XFS_FORCED_SHUTDOWN(mp)) | |
432 | goto shutdown_abort; | |
433 | ||
434 | /* | |
435 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
436 | * it doesn't have one yet, then allocate one and initialize it. | |
437 | * The checks to see if one is there are in xfs_buf_item_init(). | |
438 | */ | |
439 | xfs_buf_item_init(bp, tp->t_mountp); | |
440 | ||
441 | /* | |
442 | * Set the recursion count for the buffer within this transaction | |
443 | * to 0. | |
444 | */ | |
445 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
446 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
447 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
448 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
449 | bip->bli_recur = 0; | |
450 | ||
451 | /* | |
452 | * Take a reference for this transaction on the buf item. | |
453 | */ | |
454 | atomic_inc(&bip->bli_refcount); | |
455 | ||
456 | /* | |
457 | * Get a log_item_desc to point at the new item. | |
458 | */ | |
459 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
460 | ||
461 | /* | |
462 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
463 | * above. | |
464 | */ | |
465 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
466 | ||
467 | xfs_buftrace("TRANS READ", bp); | |
468 | xfs_buf_item_trace("READ", bip); | |
469 | *bpp = bp; | |
470 | return 0; | |
471 | ||
472 | shutdown_abort: | |
473 | /* | |
474 | * the theory here is that buffer is good but we're | |
475 | * bailing out because the filesystem is being forcibly | |
476 | * shut down. So we should leave the b_flags alone since | |
477 | * the buffer's not staled and just get out. | |
478 | */ | |
479 | #if defined(DEBUG) | |
480 | if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) | |
481 | cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp); | |
482 | #endif | |
483 | ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) != | |
484 | (XFS_B_STALE|XFS_B_DELWRI)); | |
485 | ||
486 | xfs_buftrace("READ_BUF XFSSHUTDN", bp); | |
487 | xfs_buf_relse(bp); | |
488 | *bpp = NULL; | |
489 | return XFS_ERROR(EIO); | |
490 | } | |
491 | ||
492 | ||
493 | /* | |
494 | * Release the buffer bp which was previously acquired with one of the | |
495 | * xfs_trans_... buffer allocation routines if the buffer has not | |
496 | * been modified within this transaction. If the buffer is modified | |
497 | * within this transaction, do decrement the recursion count but do | |
498 | * not release the buffer even if the count goes to 0. If the buffer is not | |
499 | * modified within the transaction, decrement the recursion count and | |
500 | * release the buffer if the recursion count goes to 0. | |
501 | * | |
502 | * If the buffer is to be released and it was not modified before | |
503 | * this transaction began, then free the buf_log_item associated with it. | |
504 | * | |
505 | * If the transaction pointer is NULL, make this just a normal | |
506 | * brelse() call. | |
507 | */ | |
508 | void | |
509 | xfs_trans_brelse(xfs_trans_t *tp, | |
510 | xfs_buf_t *bp) | |
511 | { | |
512 | xfs_buf_log_item_t *bip; | |
513 | xfs_log_item_t *lip; | |
514 | xfs_log_item_desc_t *lidp; | |
515 | ||
516 | /* | |
517 | * Default to a normal brelse() call if the tp is NULL. | |
518 | */ | |
519 | if (tp == NULL) { | |
520 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | |
521 | /* | |
522 | * If there's a buf log item attached to the buffer, | |
523 | * then let the AIL know that the buffer is being | |
524 | * unlocked. | |
525 | */ | |
526 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
527 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
528 | if (lip->li_type == XFS_LI_BUF) { | |
529 | bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); | |
530 | xfs_trans_unlocked_item( | |
531 | bip->bli_item.li_mountp, | |
532 | lip); | |
533 | } | |
534 | } | |
535 | xfs_buf_relse(bp); | |
536 | return; | |
537 | } | |
538 | ||
539 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
540 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
541 | ASSERT(bip->bli_item.li_type == XFS_LI_BUF); | |
542 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
543 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
544 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
545 | ||
546 | /* | |
547 | * Find the item descriptor pointing to this buffer's | |
548 | * log item. It must be there. | |
549 | */ | |
550 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
551 | ASSERT(lidp != NULL); | |
552 | ||
553 | /* | |
554 | * If the release is just for a recursive lock, | |
555 | * then decrement the count and return. | |
556 | */ | |
557 | if (bip->bli_recur > 0) { | |
558 | bip->bli_recur--; | |
559 | xfs_buf_item_trace("RELSE RECUR", bip); | |
560 | return; | |
561 | } | |
562 | ||
563 | /* | |
564 | * If the buffer is dirty within this transaction, we can't | |
565 | * release it until we commit. | |
566 | */ | |
567 | if (lidp->lid_flags & XFS_LID_DIRTY) { | |
568 | xfs_buf_item_trace("RELSE DIRTY", bip); | |
569 | return; | |
570 | } | |
571 | ||
572 | /* | |
573 | * If the buffer has been invalidated, then we can't release | |
574 | * it until the transaction commits to disk unless it is re-dirtied | |
575 | * as part of this transaction. This prevents us from pulling | |
576 | * the item from the AIL before we should. | |
577 | */ | |
578 | if (bip->bli_flags & XFS_BLI_STALE) { | |
579 | xfs_buf_item_trace("RELSE STALE", bip); | |
580 | return; | |
581 | } | |
582 | ||
583 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
584 | xfs_buf_item_trace("RELSE", bip); | |
585 | ||
586 | /* | |
587 | * Free up the log item descriptor tracking the released item. | |
588 | */ | |
589 | xfs_trans_free_item(tp, lidp); | |
590 | ||
591 | /* | |
592 | * Clear the hold flag in the buf log item if it is set. | |
593 | * We wouldn't want the next user of the buffer to | |
594 | * get confused. | |
595 | */ | |
596 | if (bip->bli_flags & XFS_BLI_HOLD) { | |
597 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
598 | } | |
599 | ||
600 | /* | |
601 | * Drop our reference to the buf log item. | |
602 | */ | |
603 | atomic_dec(&bip->bli_refcount); | |
604 | ||
605 | /* | |
606 | * If the buf item is not tracking data in the log, then | |
607 | * we must free it before releasing the buffer back to the | |
608 | * free pool. Before releasing the buffer to the free pool, | |
609 | * clear the transaction pointer in b_fsprivate2 to dissolve | |
610 | * its relation to this transaction. | |
611 | */ | |
612 | if (!xfs_buf_item_dirty(bip)) { | |
613 | /*** | |
614 | ASSERT(bp->b_pincount == 0); | |
615 | ***/ | |
616 | ASSERT(atomic_read(&bip->bli_refcount) == 0); | |
617 | ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); | |
618 | ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); | |
619 | xfs_buf_item_relse(bp); | |
620 | bip = NULL; | |
621 | } | |
622 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | |
623 | ||
624 | /* | |
625 | * If we've still got a buf log item on the buffer, then | |
626 | * tell the AIL that the buffer is being unlocked. | |
627 | */ | |
628 | if (bip != NULL) { | |
629 | xfs_trans_unlocked_item(bip->bli_item.li_mountp, | |
630 | (xfs_log_item_t*)bip); | |
631 | } | |
632 | ||
633 | xfs_buf_relse(bp); | |
634 | return; | |
635 | } | |
636 | ||
637 | /* | |
638 | * Add the locked buffer to the transaction. | |
639 | * The buffer must be locked, and it cannot be associated with any | |
640 | * transaction. | |
641 | * | |
642 | * If the buffer does not yet have a buf log item associated with it, | |
643 | * then allocate one for it. Then add the buf item to the transaction. | |
644 | */ | |
645 | void | |
646 | xfs_trans_bjoin(xfs_trans_t *tp, | |
647 | xfs_buf_t *bp) | |
648 | { | |
649 | xfs_buf_log_item_t *bip; | |
650 | ||
651 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
652 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | |
653 | ||
654 | /* | |
655 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
656 | * it doesn't have one yet, then allocate one and initialize it. | |
657 | * The checks to see if one is there are in xfs_buf_item_init(). | |
658 | */ | |
659 | xfs_buf_item_init(bp, tp->t_mountp); | |
660 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
661 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
662 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
663 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
664 | ||
665 | /* | |
666 | * Take a reference for this transaction on the buf item. | |
667 | */ | |
668 | atomic_inc(&bip->bli_refcount); | |
669 | ||
670 | /* | |
671 | * Get a log_item_desc to point at the new item. | |
672 | */ | |
673 | (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip); | |
674 | ||
675 | /* | |
676 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
677 | * in xfs_trans_get_buf() and friends above. | |
678 | */ | |
679 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
680 | ||
681 | xfs_buf_item_trace("BJOIN", bip); | |
682 | } | |
683 | ||
684 | /* | |
685 | * Mark the buffer as not needing to be unlocked when the buf item's | |
686 | * IOP_UNLOCK() routine is called. The buffer must already be locked | |
687 | * and associated with the given transaction. | |
688 | */ | |
689 | /* ARGSUSED */ | |
690 | void | |
691 | xfs_trans_bhold(xfs_trans_t *tp, | |
692 | xfs_buf_t *bp) | |
693 | { | |
694 | xfs_buf_log_item_t *bip; | |
695 | ||
696 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
697 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
698 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
699 | ||
700 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
701 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
702 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
703 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
704 | bip->bli_flags |= XFS_BLI_HOLD; | |
705 | xfs_buf_item_trace("BHOLD", bip); | |
706 | } | |
707 | ||
efa092f3 TS |
708 | /* |
709 | * Cancel the previous buffer hold request made on this buffer | |
710 | * for this transaction. | |
711 | */ | |
712 | void | |
713 | xfs_trans_bhold_release(xfs_trans_t *tp, | |
714 | xfs_buf_t *bp) | |
715 | { | |
716 | xfs_buf_log_item_t *bip; | |
717 | ||
718 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
719 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
720 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
721 | ||
722 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
723 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
724 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
725 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
726 | ASSERT(bip->bli_flags & XFS_BLI_HOLD); | |
727 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
728 | xfs_buf_item_trace("BHOLD RELEASE", bip); | |
729 | } | |
730 | ||
1da177e4 LT |
731 | /* |
732 | * This is called to mark bytes first through last inclusive of the given | |
733 | * buffer as needing to be logged when the transaction is committed. | |
734 | * The buffer must already be associated with the given transaction. | |
735 | * | |
736 | * First and last are numbers relative to the beginning of this buffer, | |
737 | * so the first byte in the buffer is numbered 0 regardless of the | |
738 | * value of b_blkno. | |
739 | */ | |
740 | void | |
741 | xfs_trans_log_buf(xfs_trans_t *tp, | |
742 | xfs_buf_t *bp, | |
743 | uint first, | |
744 | uint last) | |
745 | { | |
746 | xfs_buf_log_item_t *bip; | |
747 | xfs_log_item_desc_t *lidp; | |
748 | ||
749 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
750 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
751 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
752 | ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); | |
753 | ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) || | |
754 | (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks)); | |
755 | ||
756 | /* | |
757 | * Mark the buffer as needing to be written out eventually, | |
758 | * and set its iodone function to remove the buffer's buf log | |
759 | * item from the AIL and free it when the buffer is flushed | |
760 | * to disk. See xfs_buf_attach_iodone() for more details | |
761 | * on li_cb and xfs_buf_iodone_callbacks(). | |
762 | * If we end up aborting this transaction, we trap this buffer | |
763 | * inside the b_bdstrat callback so that this won't get written to | |
764 | * disk. | |
765 | */ | |
766 | XFS_BUF_DELAYWRITE(bp); | |
767 | XFS_BUF_DONE(bp); | |
768 | ||
769 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
770 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
771 | XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); | |
772 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone; | |
773 | ||
774 | /* | |
775 | * If we invalidated the buffer within this transaction, then | |
776 | * cancel the invalidation now that we're dirtying the buffer | |
777 | * again. There are no races with the code in xfs_buf_item_unpin(), | |
778 | * because we have a reference to the buffer this entire time. | |
779 | */ | |
780 | if (bip->bli_flags & XFS_BLI_STALE) { | |
781 | xfs_buf_item_trace("BLOG UNSTALE", bip); | |
782 | bip->bli_flags &= ~XFS_BLI_STALE; | |
783 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
784 | XFS_BUF_UNSTALE(bp); | |
785 | bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL; | |
786 | } | |
787 | ||
788 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
789 | ASSERT(lidp != NULL); | |
790 | ||
791 | tp->t_flags |= XFS_TRANS_DIRTY; | |
792 | lidp->lid_flags |= XFS_LID_DIRTY; | |
793 | lidp->lid_flags &= ~XFS_LID_BUF_STALE; | |
794 | bip->bli_flags |= XFS_BLI_LOGGED; | |
795 | xfs_buf_item_log(bip, first, last); | |
796 | xfs_buf_item_trace("BLOG", bip); | |
797 | } | |
798 | ||
799 | ||
800 | /* | |
801 | * This called to invalidate a buffer that is being used within | |
802 | * a transaction. Typically this is because the blocks in the | |
803 | * buffer are being freed, so we need to prevent it from being | |
804 | * written out when we're done. Allowing it to be written again | |
805 | * might overwrite data in the free blocks if they are reallocated | |
806 | * to a file. | |
807 | * | |
808 | * We prevent the buffer from being written out by clearing the | |
809 | * B_DELWRI flag. We can't always | |
810 | * get rid of the buf log item at this point, though, because | |
811 | * the buffer may still be pinned by another transaction. If that | |
812 | * is the case, then we'll wait until the buffer is committed to | |
813 | * disk for the last time (we can tell by the ref count) and | |
814 | * free it in xfs_buf_item_unpin(). Until it is cleaned up we | |
815 | * will keep the buffer locked so that the buffer and buf log item | |
816 | * are not reused. | |
817 | */ | |
818 | void | |
819 | xfs_trans_binval( | |
820 | xfs_trans_t *tp, | |
821 | xfs_buf_t *bp) | |
822 | { | |
823 | xfs_log_item_desc_t *lidp; | |
824 | xfs_buf_log_item_t *bip; | |
825 | ||
826 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
827 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
828 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
829 | ||
830 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
831 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
832 | ASSERT(lidp != NULL); | |
833 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
834 | ||
835 | if (bip->bli_flags & XFS_BLI_STALE) { | |
836 | /* | |
837 | * If the buffer is already invalidated, then | |
838 | * just return. | |
839 | */ | |
840 | ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); | |
841 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
842 | ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); | |
843 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF)); | |
844 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | |
845 | ASSERT(lidp->lid_flags & XFS_LID_DIRTY); | |
846 | ASSERT(tp->t_flags & XFS_TRANS_DIRTY); | |
847 | xfs_buftrace("XFS_BINVAL RECUR", bp); | |
848 | xfs_buf_item_trace("BINVAL RECUR", bip); | |
849 | return; | |
850 | } | |
851 | ||
852 | /* | |
853 | * Clear the dirty bit in the buffer and set the STALE flag | |
854 | * in the buf log item. The STALE flag will be used in | |
855 | * xfs_buf_item_unpin() to determine if it should clean up | |
856 | * when the last reference to the buf item is given up. | |
857 | * We set the XFS_BLI_CANCEL flag in the buf log format structure | |
858 | * and log the buf item. This will be used at recovery time | |
859 | * to determine that copies of the buffer in the log before | |
860 | * this should not be replayed. | |
861 | * We mark the item descriptor and the transaction dirty so | |
862 | * that we'll hold the buffer until after the commit. | |
863 | * | |
864 | * Since we're invalidating the buffer, we also clear the state | |
865 | * about which parts of the buffer have been logged. We also | |
866 | * clear the flag indicating that this is an inode buffer since | |
867 | * the data in the buffer will no longer be valid. | |
868 | * | |
869 | * We set the stale bit in the buffer as well since we're getting | |
870 | * rid of it. | |
871 | */ | |
872 | XFS_BUF_UNDELAYWRITE(bp); | |
873 | XFS_BUF_STALE(bp); | |
874 | bip->bli_flags |= XFS_BLI_STALE; | |
875 | bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY); | |
876 | bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF; | |
877 | bip->bli_format.blf_flags |= XFS_BLI_CANCEL; | |
878 | memset((char *)(bip->bli_format.blf_data_map), 0, | |
879 | (bip->bli_format.blf_map_size * sizeof(uint))); | |
880 | lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE; | |
881 | tp->t_flags |= XFS_TRANS_DIRTY; | |
882 | xfs_buftrace("XFS_BINVAL", bp); | |
883 | xfs_buf_item_trace("BINVAL", bip); | |
884 | } | |
885 | ||
886 | /* | |
887 | * This call is used to indicate that the buffer contains on-disk | |
888 | * inodes which must be handled specially during recovery. They | |
889 | * require special handling because only the di_next_unlinked from | |
890 | * the inodes in the buffer should be recovered. The rest of the | |
891 | * data in the buffer is logged via the inodes themselves. | |
892 | * | |
893 | * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log | |
894 | * format structure so that we'll know what to do at recovery time. | |
895 | */ | |
896 | /* ARGSUSED */ | |
897 | void | |
898 | xfs_trans_inode_buf( | |
899 | xfs_trans_t *tp, | |
900 | xfs_buf_t *bp) | |
901 | { | |
902 | xfs_buf_log_item_t *bip; | |
903 | ||
904 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
905 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
906 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
907 | ||
908 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
909 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
910 | ||
911 | bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF; | |
912 | } | |
913 | ||
914 | /* | |
915 | * This call is used to indicate that the buffer is going to | |
916 | * be staled and was an inode buffer. This means it gets | |
917 | * special processing during unpin - where any inodes | |
918 | * associated with the buffer should be removed from ail. | |
919 | * There is also special processing during recovery, | |
920 | * any replay of the inodes in the buffer needs to be | |
921 | * prevented as the buffer may have been reused. | |
922 | */ | |
923 | void | |
924 | xfs_trans_stale_inode_buf( | |
925 | xfs_trans_t *tp, | |
926 | xfs_buf_t *bp) | |
927 | { | |
928 | xfs_buf_log_item_t *bip; | |
929 | ||
930 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
931 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
932 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
933 | ||
934 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
935 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
936 | ||
937 | bip->bli_flags |= XFS_BLI_STALE_INODE; | |
938 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) | |
939 | xfs_buf_iodone; | |
940 | } | |
941 | ||
942 | ||
943 | ||
944 | /* | |
945 | * Mark the buffer as being one which contains newly allocated | |
946 | * inodes. We need to make sure that even if this buffer is | |
947 | * relogged as an 'inode buf' we still recover all of the inode | |
948 | * images in the face of a crash. This works in coordination with | |
949 | * xfs_buf_item_committed() to ensure that the buffer remains in the | |
950 | * AIL at its original location even after it has been relogged. | |
951 | */ | |
952 | /* ARGSUSED */ | |
953 | void | |
954 | xfs_trans_inode_alloc_buf( | |
955 | xfs_trans_t *tp, | |
956 | xfs_buf_t *bp) | |
957 | { | |
958 | xfs_buf_log_item_t *bip; | |
959 | ||
960 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
961 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
962 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
963 | ||
964 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
965 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
966 | ||
967 | bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; | |
968 | } | |
969 | ||
970 | ||
971 | /* | |
972 | * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of | |
973 | * dquots. However, unlike in inode buffer recovery, dquot buffers get | |
974 | * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). | |
975 | * The only thing that makes dquot buffers different from regular | |
976 | * buffers is that we must not replay dquot bufs when recovering | |
977 | * if a _corresponding_ quotaoff has happened. We also have to distinguish | |
978 | * between usr dquot bufs and grp dquot bufs, because usr and grp quotas | |
979 | * can be turned off independently. | |
980 | */ | |
981 | /* ARGSUSED */ | |
982 | void | |
983 | xfs_trans_dquot_buf( | |
984 | xfs_trans_t *tp, | |
985 | xfs_buf_t *bp, | |
986 | uint type) | |
987 | { | |
988 | xfs_buf_log_item_t *bip; | |
989 | ||
990 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
991 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
992 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
993 | ASSERT(type == XFS_BLI_UDQUOT_BUF || | |
c8ad20ff | 994 | type == XFS_BLI_PDQUOT_BUF || |
1da177e4 LT |
995 | type == XFS_BLI_GDQUOT_BUF); |
996 | ||
997 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
998 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
999 | ||
1000 | bip->bli_format.blf_flags |= type; | |
1001 | } | |
1002 | ||
1003 | /* | |
1004 | * Check to see if a buffer matching the given parameters is already | |
1005 | * a part of the given transaction. Only check the first, embedded | |
1006 | * chunk, since we don't want to spend all day scanning large transactions. | |
1007 | */ | |
1008 | STATIC xfs_buf_t * | |
1009 | xfs_trans_buf_item_match( | |
1010 | xfs_trans_t *tp, | |
1011 | xfs_buftarg_t *target, | |
1012 | xfs_daddr_t blkno, | |
1013 | int len) | |
1014 | { | |
1015 | xfs_log_item_chunk_t *licp; | |
1016 | xfs_log_item_desc_t *lidp; | |
1017 | xfs_buf_log_item_t *blip; | |
1018 | xfs_buf_t *bp; | |
1019 | int i; | |
1020 | ||
1021 | bp = NULL; | |
1022 | len = BBTOB(len); | |
1023 | licp = &tp->t_items; | |
39dab9d7 | 1024 | if (!xfs_lic_are_all_free(licp)) { |
1da177e4 LT |
1025 | for (i = 0; i < licp->lic_unused; i++) { |
1026 | /* | |
1027 | * Skip unoccupied slots. | |
1028 | */ | |
39dab9d7 | 1029 | if (xfs_lic_isfree(licp, i)) { |
1da177e4 LT |
1030 | continue; |
1031 | } | |
1032 | ||
39dab9d7 | 1033 | lidp = xfs_lic_slot(licp, i); |
1da177e4 LT |
1034 | blip = (xfs_buf_log_item_t *)lidp->lid_item; |
1035 | if (blip->bli_item.li_type != XFS_LI_BUF) { | |
1036 | continue; | |
1037 | } | |
1038 | ||
1039 | bp = blip->bli_buf; | |
1040 | if ((XFS_BUF_TARGET(bp) == target) && | |
1041 | (XFS_BUF_ADDR(bp) == blkno) && | |
1042 | (XFS_BUF_COUNT(bp) == len)) { | |
1043 | /* | |
1044 | * We found it. Break out and | |
1045 | * return the pointer to the buffer. | |
1046 | */ | |
1047 | break; | |
1048 | } else { | |
1049 | bp = NULL; | |
1050 | } | |
1051 | } | |
1052 | } | |
1053 | return bp; | |
1054 | } | |
1055 | ||
1056 | /* | |
1057 | * Check to see if a buffer matching the given parameters is already | |
1058 | * a part of the given transaction. Check all the chunks, we | |
1059 | * want to be thorough. | |
1060 | */ | |
1061 | STATIC xfs_buf_t * | |
1062 | xfs_trans_buf_item_match_all( | |
1063 | xfs_trans_t *tp, | |
1064 | xfs_buftarg_t *target, | |
1065 | xfs_daddr_t blkno, | |
1066 | int len) | |
1067 | { | |
1068 | xfs_log_item_chunk_t *licp; | |
1069 | xfs_log_item_desc_t *lidp; | |
1070 | xfs_buf_log_item_t *blip; | |
1071 | xfs_buf_t *bp; | |
1072 | int i; | |
1073 | ||
1074 | bp = NULL; | |
1075 | len = BBTOB(len); | |
1076 | for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) { | |
39dab9d7 | 1077 | if (xfs_lic_are_all_free(licp)) { |
1da177e4 LT |
1078 | ASSERT(licp == &tp->t_items); |
1079 | ASSERT(licp->lic_next == NULL); | |
1080 | return NULL; | |
1081 | } | |
1082 | for (i = 0; i < licp->lic_unused; i++) { | |
1083 | /* | |
1084 | * Skip unoccupied slots. | |
1085 | */ | |
39dab9d7 | 1086 | if (xfs_lic_isfree(licp, i)) { |
1da177e4 LT |
1087 | continue; |
1088 | } | |
1089 | ||
39dab9d7 | 1090 | lidp = xfs_lic_slot(licp, i); |
1da177e4 LT |
1091 | blip = (xfs_buf_log_item_t *)lidp->lid_item; |
1092 | if (blip->bli_item.li_type != XFS_LI_BUF) { | |
1093 | continue; | |
1094 | } | |
1095 | ||
1096 | bp = blip->bli_buf; | |
1097 | if ((XFS_BUF_TARGET(bp) == target) && | |
1098 | (XFS_BUF_ADDR(bp) == blkno) && | |
1099 | (XFS_BUF_COUNT(bp) == len)) { | |
1100 | /* | |
1101 | * We found it. Break out and | |
1102 | * return the pointer to the buffer. | |
1103 | */ | |
1104 | return bp; | |
1105 | } | |
1106 | } | |
1107 | } | |
1108 | return NULL; | |
1109 | } |