]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved. | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify it | |
5 | * under the terms of version 2 of the GNU General Public License as | |
6 | * published by the Free Software Foundation. | |
7 | * | |
8 | * This program is distributed in the hope that it would be useful, but | |
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | |
11 | * | |
12 | * Further, this software is distributed without any warranty that it is | |
13 | * free of the rightful claim of any third person regarding infringement | |
14 | * or the like. Any license provided herein, whether implied or | |
15 | * otherwise, applies only to this software file. Patent licenses, if | |
16 | * any, provided herein do not apply to combinations of this program with | |
17 | * other software, or any other product whatsoever. | |
18 | * | |
19 | * You should have received a copy of the GNU General Public License along | |
20 | * with this program; if not, write the Free Software Foundation, Inc., 59 | |
21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. | |
22 | * | |
23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, | |
24 | * Mountain View, CA 94043, or: | |
25 | * | |
26 | * http://www.sgi.com | |
27 | * | |
28 | * For further information regarding this notice, see: | |
29 | * | |
30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ | |
31 | */ | |
32 | ||
33 | #include "xfs.h" | |
34 | #include "xfs_macros.h" | |
35 | #include "xfs_types.h" | |
36 | #include "xfs_inum.h" | |
37 | #include "xfs_log.h" | |
38 | #include "xfs_trans.h" | |
39 | #include "xfs_buf_item.h" | |
40 | #include "xfs_sb.h" | |
41 | #include "xfs_ag.h" | |
42 | #include "xfs_dir.h" | |
43 | #include "xfs_dmapi.h" | |
44 | #include "xfs_mount.h" | |
45 | #include "xfs_trans_priv.h" | |
46 | #include "xfs_error.h" | |
47 | #include "xfs_rw.h" | |
48 | ||
49 | ||
50 | STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *, | |
51 | xfs_daddr_t, int); | |
52 | STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *, | |
53 | xfs_daddr_t, int); | |
54 | ||
55 | ||
56 | /* | |
57 | * Get and lock the buffer for the caller if it is not already | |
58 | * locked within the given transaction. If it is already locked | |
59 | * within the transaction, just increment its lock recursion count | |
60 | * and return a pointer to it. | |
61 | * | |
62 | * Use the fast path function xfs_trans_buf_item_match() or the buffer | |
63 | * cache routine incore_match() to find the buffer | |
64 | * if it is already owned by this transaction. | |
65 | * | |
66 | * If we don't already own the buffer, use get_buf() to get it. | |
67 | * If it doesn't yet have an associated xfs_buf_log_item structure, | |
68 | * then allocate one and add the item to this transaction. | |
69 | * | |
70 | * If the transaction pointer is NULL, make this just a normal | |
71 | * get_buf() call. | |
72 | */ | |
73 | xfs_buf_t * | |
74 | xfs_trans_get_buf(xfs_trans_t *tp, | |
75 | xfs_buftarg_t *target_dev, | |
76 | xfs_daddr_t blkno, | |
77 | int len, | |
78 | uint flags) | |
79 | { | |
80 | xfs_buf_t *bp; | |
81 | xfs_buf_log_item_t *bip; | |
82 | ||
83 | if (flags == 0) | |
84 | flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; | |
85 | ||
86 | /* | |
87 | * Default to a normal get_buf() call if the tp is NULL. | |
88 | */ | |
89 | if (tp == NULL) { | |
90 | bp = xfs_buf_get_flags(target_dev, blkno, len, | |
91 | flags | BUF_BUSY); | |
92 | return(bp); | |
93 | } | |
94 | ||
95 | /* | |
96 | * If we find the buffer in the cache with this transaction | |
97 | * pointer in its b_fsprivate2 field, then we know we already | |
98 | * have it locked. In this case we just increment the lock | |
99 | * recursion count and return the buffer to the caller. | |
100 | */ | |
101 | if (tp->t_items.lic_next == NULL) { | |
102 | bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); | |
103 | } else { | |
104 | bp = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len); | |
105 | } | |
106 | if (bp != NULL) { | |
107 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
108 | if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) { | |
109 | xfs_buftrace("TRANS GET RECUR SHUT", bp); | |
110 | XFS_BUF_SUPER_STALE(bp); | |
111 | } | |
112 | /* | |
113 | * If the buffer is stale then it was binval'ed | |
114 | * since last read. This doesn't matter since the | |
115 | * caller isn't allowed to use the data anyway. | |
116 | */ | |
117 | else if (XFS_BUF_ISSTALE(bp)) { | |
118 | xfs_buftrace("TRANS GET RECUR STALE", bp); | |
119 | ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); | |
120 | } | |
121 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
122 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
123 | ASSERT(bip != NULL); | |
124 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
125 | bip->bli_recur++; | |
126 | xfs_buftrace("TRANS GET RECUR", bp); | |
127 | xfs_buf_item_trace("GET RECUR", bip); | |
128 | return (bp); | |
129 | } | |
130 | ||
131 | /* | |
132 | * We always specify the BUF_BUSY flag within a transaction so | |
133 | * that get_buf does not try to push out a delayed write buffer | |
134 | * which might cause another transaction to take place (if the | |
135 | * buffer was delayed alloc). Such recursive transactions can | |
136 | * easily deadlock with our current transaction as well as cause | |
137 | * us to run out of stack space. | |
138 | */ | |
139 | bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY); | |
140 | if (bp == NULL) { | |
141 | return NULL; | |
142 | } | |
143 | ||
144 | ASSERT(!XFS_BUF_GETERROR(bp)); | |
145 | ||
146 | /* | |
147 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
148 | * it doesn't have one yet, then allocate one and initialize it. | |
149 | * The checks to see if one is there are in xfs_buf_item_init(). | |
150 | */ | |
151 | xfs_buf_item_init(bp, tp->t_mountp); | |
152 | ||
153 | /* | |
154 | * Set the recursion count for the buffer within this transaction | |
155 | * to 0. | |
156 | */ | |
157 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
158 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
159 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
160 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
161 | bip->bli_recur = 0; | |
162 | ||
163 | /* | |
164 | * Take a reference for this transaction on the buf item. | |
165 | */ | |
166 | atomic_inc(&bip->bli_refcount); | |
167 | ||
168 | /* | |
169 | * Get a log_item_desc to point at the new item. | |
170 | */ | |
171 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
172 | ||
173 | /* | |
174 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
175 | * above. | |
176 | */ | |
177 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
178 | ||
179 | xfs_buftrace("TRANS GET", bp); | |
180 | xfs_buf_item_trace("GET", bip); | |
181 | return (bp); | |
182 | } | |
183 | ||
184 | /* | |
185 | * Get and lock the superblock buffer of this file system for the | |
186 | * given transaction. | |
187 | * | |
188 | * We don't need to use incore_match() here, because the superblock | |
189 | * buffer is a private buffer which we keep a pointer to in the | |
190 | * mount structure. | |
191 | */ | |
192 | xfs_buf_t * | |
193 | xfs_trans_getsb(xfs_trans_t *tp, | |
194 | struct xfs_mount *mp, | |
195 | int flags) | |
196 | { | |
197 | xfs_buf_t *bp; | |
198 | xfs_buf_log_item_t *bip; | |
199 | ||
200 | /* | |
201 | * Default to just trying to lock the superblock buffer | |
202 | * if tp is NULL. | |
203 | */ | |
204 | if (tp == NULL) { | |
205 | return (xfs_getsb(mp, flags)); | |
206 | } | |
207 | ||
208 | /* | |
209 | * If the superblock buffer already has this transaction | |
210 | * pointer in its b_fsprivate2 field, then we know we already | |
211 | * have it locked. In this case we just increment the lock | |
212 | * recursion count and return the buffer to the caller. | |
213 | */ | |
214 | bp = mp->m_sb_bp; | |
215 | if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) { | |
216 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
217 | ASSERT(bip != NULL); | |
218 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
219 | bip->bli_recur++; | |
220 | xfs_buf_item_trace("GETSB RECUR", bip); | |
221 | return (bp); | |
222 | } | |
223 | ||
224 | bp = xfs_getsb(mp, flags); | |
225 | if (bp == NULL) { | |
226 | return NULL; | |
227 | } | |
228 | ||
229 | /* | |
230 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
231 | * it doesn't have one yet, then allocate one and initialize it. | |
232 | * The checks to see if one is there are in xfs_buf_item_init(). | |
233 | */ | |
234 | xfs_buf_item_init(bp, mp); | |
235 | ||
236 | /* | |
237 | * Set the recursion count for the buffer within this transaction | |
238 | * to 0. | |
239 | */ | |
240 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
241 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
242 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
243 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
244 | bip->bli_recur = 0; | |
245 | ||
246 | /* | |
247 | * Take a reference for this transaction on the buf item. | |
248 | */ | |
249 | atomic_inc(&bip->bli_refcount); | |
250 | ||
251 | /* | |
252 | * Get a log_item_desc to point at the new item. | |
253 | */ | |
254 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
255 | ||
256 | /* | |
257 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
258 | * above. | |
259 | */ | |
260 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
261 | ||
262 | xfs_buf_item_trace("GETSB", bip); | |
263 | return (bp); | |
264 | } | |
265 | ||
266 | #ifdef DEBUG | |
267 | xfs_buftarg_t *xfs_error_target; | |
268 | int xfs_do_error; | |
269 | int xfs_req_num; | |
270 | int xfs_error_mod = 33; | |
271 | #endif | |
272 | ||
273 | /* | |
274 | * Get and lock the buffer for the caller if it is not already | |
275 | * locked within the given transaction. If it has not yet been | |
276 | * read in, read it from disk. If it is already locked | |
277 | * within the transaction and already read in, just increment its | |
278 | * lock recursion count and return a pointer to it. | |
279 | * | |
280 | * Use the fast path function xfs_trans_buf_item_match() or the buffer | |
281 | * cache routine incore_match() to find the buffer | |
282 | * if it is already owned by this transaction. | |
283 | * | |
284 | * If we don't already own the buffer, use read_buf() to get it. | |
285 | * If it doesn't yet have an associated xfs_buf_log_item structure, | |
286 | * then allocate one and add the item to this transaction. | |
287 | * | |
288 | * If the transaction pointer is NULL, make this just a normal | |
289 | * read_buf() call. | |
290 | */ | |
291 | int | |
292 | xfs_trans_read_buf( | |
293 | xfs_mount_t *mp, | |
294 | xfs_trans_t *tp, | |
295 | xfs_buftarg_t *target, | |
296 | xfs_daddr_t blkno, | |
297 | int len, | |
298 | uint flags, | |
299 | xfs_buf_t **bpp) | |
300 | { | |
301 | xfs_buf_t *bp; | |
302 | xfs_buf_log_item_t *bip; | |
303 | int error; | |
304 | ||
305 | if (flags == 0) | |
306 | flags = XFS_BUF_LOCK | XFS_BUF_MAPPED; | |
307 | ||
308 | /* | |
309 | * Default to a normal get_buf() call if the tp is NULL. | |
310 | */ | |
311 | if (tp == NULL) { | |
312 | bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); | |
313 | if (!bp) | |
314 | return XFS_ERROR(ENOMEM); | |
315 | ||
316 | if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) { | |
317 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | |
318 | bp, blkno); | |
319 | error = XFS_BUF_GETERROR(bp); | |
320 | xfs_buf_relse(bp); | |
321 | return error; | |
322 | } | |
323 | #ifdef DEBUG | |
324 | if (xfs_do_error && (bp != NULL)) { | |
325 | if (xfs_error_target == target) { | |
326 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | |
327 | xfs_buf_relse(bp); | |
328 | printk("Returning error!\n"); | |
329 | return XFS_ERROR(EIO); | |
330 | } | |
331 | } | |
332 | } | |
333 | #endif | |
334 | if (XFS_FORCED_SHUTDOWN(mp)) | |
335 | goto shutdown_abort; | |
336 | *bpp = bp; | |
337 | return 0; | |
338 | } | |
339 | ||
340 | /* | |
341 | * If we find the buffer in the cache with this transaction | |
342 | * pointer in its b_fsprivate2 field, then we know we already | |
343 | * have it locked. If it is already read in we just increment | |
344 | * the lock recursion count and return the buffer to the caller. | |
345 | * If the buffer is not yet read in, then we read it in, increment | |
346 | * the lock recursion count, and return it to the caller. | |
347 | */ | |
348 | if (tp->t_items.lic_next == NULL) { | |
349 | bp = xfs_trans_buf_item_match(tp, target, blkno, len); | |
350 | } else { | |
351 | bp = xfs_trans_buf_item_match_all(tp, target, blkno, len); | |
352 | } | |
353 | if (bp != NULL) { | |
354 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
355 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
356 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
357 | ASSERT((XFS_BUF_ISERROR(bp)) == 0); | |
358 | if (!(XFS_BUF_ISDONE(bp))) { | |
359 | xfs_buftrace("READ_BUF_INCORE !DONE", bp); | |
360 | ASSERT(!XFS_BUF_ISASYNC(bp)); | |
361 | XFS_BUF_READ(bp); | |
362 | xfsbdstrat(tp->t_mountp, bp); | |
363 | xfs_iowait(bp); | |
364 | if (XFS_BUF_GETERROR(bp) != 0) { | |
365 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | |
366 | bp, blkno); | |
367 | error = XFS_BUF_GETERROR(bp); | |
368 | xfs_buf_relse(bp); | |
369 | /* | |
370 | * We can gracefully recover from most | |
371 | * read errors. Ones we can't are those | |
372 | * that happen after the transaction's | |
373 | * already dirty. | |
374 | */ | |
375 | if (tp->t_flags & XFS_TRANS_DIRTY) | |
376 | xfs_force_shutdown(tp->t_mountp, | |
377 | XFS_METADATA_IO_ERROR); | |
378 | return error; | |
379 | } | |
380 | } | |
381 | /* | |
382 | * We never locked this buf ourselves, so we shouldn't | |
383 | * brelse it either. Just get out. | |
384 | */ | |
385 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
386 | xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp); | |
387 | *bpp = NULL; | |
388 | return XFS_ERROR(EIO); | |
389 | } | |
390 | ||
391 | ||
392 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
393 | bip->bli_recur++; | |
394 | ||
395 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
396 | xfs_buf_item_trace("READ RECUR", bip); | |
397 | *bpp = bp; | |
398 | return 0; | |
399 | } | |
400 | ||
401 | /* | |
402 | * We always specify the BUF_BUSY flag within a transaction so | |
403 | * that get_buf does not try to push out a delayed write buffer | |
404 | * which might cause another transaction to take place (if the | |
405 | * buffer was delayed alloc). Such recursive transactions can | |
406 | * easily deadlock with our current transaction as well as cause | |
407 | * us to run out of stack space. | |
408 | */ | |
409 | bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY); | |
410 | if (bp == NULL) { | |
411 | *bpp = NULL; | |
412 | return 0; | |
413 | } | |
414 | if (XFS_BUF_GETERROR(bp) != 0) { | |
415 | XFS_BUF_SUPER_STALE(bp); | |
416 | xfs_buftrace("READ ERROR", bp); | |
417 | error = XFS_BUF_GETERROR(bp); | |
418 | ||
419 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | |
420 | bp, blkno); | |
421 | if (tp->t_flags & XFS_TRANS_DIRTY) | |
422 | xfs_force_shutdown(tp->t_mountp, XFS_METADATA_IO_ERROR); | |
423 | xfs_buf_relse(bp); | |
424 | return error; | |
425 | } | |
426 | #ifdef DEBUG | |
427 | if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { | |
428 | if (xfs_error_target == target) { | |
429 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | |
430 | xfs_force_shutdown(tp->t_mountp, | |
431 | XFS_METADATA_IO_ERROR); | |
432 | xfs_buf_relse(bp); | |
433 | printk("Returning error in trans!\n"); | |
434 | return XFS_ERROR(EIO); | |
435 | } | |
436 | } | |
437 | } | |
438 | #endif | |
439 | if (XFS_FORCED_SHUTDOWN(mp)) | |
440 | goto shutdown_abort; | |
441 | ||
442 | /* | |
443 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
444 | * it doesn't have one yet, then allocate one and initialize it. | |
445 | * The checks to see if one is there are in xfs_buf_item_init(). | |
446 | */ | |
447 | xfs_buf_item_init(bp, tp->t_mountp); | |
448 | ||
449 | /* | |
450 | * Set the recursion count for the buffer within this transaction | |
451 | * to 0. | |
452 | */ | |
453 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
454 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
455 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
456 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
457 | bip->bli_recur = 0; | |
458 | ||
459 | /* | |
460 | * Take a reference for this transaction on the buf item. | |
461 | */ | |
462 | atomic_inc(&bip->bli_refcount); | |
463 | ||
464 | /* | |
465 | * Get a log_item_desc to point at the new item. | |
466 | */ | |
467 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
468 | ||
469 | /* | |
470 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
471 | * above. | |
472 | */ | |
473 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
474 | ||
475 | xfs_buftrace("TRANS READ", bp); | |
476 | xfs_buf_item_trace("READ", bip); | |
477 | *bpp = bp; | |
478 | return 0; | |
479 | ||
480 | shutdown_abort: | |
481 | /* | |
482 | * the theory here is that buffer is good but we're | |
483 | * bailing out because the filesystem is being forcibly | |
484 | * shut down. So we should leave the b_flags alone since | |
485 | * the buffer's not staled and just get out. | |
486 | */ | |
487 | #if defined(DEBUG) | |
488 | if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) | |
489 | cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp); | |
490 | #endif | |
491 | ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) != | |
492 | (XFS_B_STALE|XFS_B_DELWRI)); | |
493 | ||
494 | xfs_buftrace("READ_BUF XFSSHUTDN", bp); | |
495 | xfs_buf_relse(bp); | |
496 | *bpp = NULL; | |
497 | return XFS_ERROR(EIO); | |
498 | } | |
499 | ||
500 | ||
501 | /* | |
502 | * Release the buffer bp which was previously acquired with one of the | |
503 | * xfs_trans_... buffer allocation routines if the buffer has not | |
504 | * been modified within this transaction. If the buffer is modified | |
505 | * within this transaction, do decrement the recursion count but do | |
506 | * not release the buffer even if the count goes to 0. If the buffer is not | |
507 | * modified within the transaction, decrement the recursion count and | |
508 | * release the buffer if the recursion count goes to 0. | |
509 | * | |
510 | * If the buffer is to be released and it was not modified before | |
511 | * this transaction began, then free the buf_log_item associated with it. | |
512 | * | |
513 | * If the transaction pointer is NULL, make this just a normal | |
514 | * brelse() call. | |
515 | */ | |
516 | void | |
517 | xfs_trans_brelse(xfs_trans_t *tp, | |
518 | xfs_buf_t *bp) | |
519 | { | |
520 | xfs_buf_log_item_t *bip; | |
521 | xfs_log_item_t *lip; | |
522 | xfs_log_item_desc_t *lidp; | |
523 | ||
524 | /* | |
525 | * Default to a normal brelse() call if the tp is NULL. | |
526 | */ | |
527 | if (tp == NULL) { | |
528 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | |
529 | /* | |
530 | * If there's a buf log item attached to the buffer, | |
531 | * then let the AIL know that the buffer is being | |
532 | * unlocked. | |
533 | */ | |
534 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
535 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
536 | if (lip->li_type == XFS_LI_BUF) { | |
537 | bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); | |
538 | xfs_trans_unlocked_item( | |
539 | bip->bli_item.li_mountp, | |
540 | lip); | |
541 | } | |
542 | } | |
543 | xfs_buf_relse(bp); | |
544 | return; | |
545 | } | |
546 | ||
547 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
548 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
549 | ASSERT(bip->bli_item.li_type == XFS_LI_BUF); | |
550 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
551 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
552 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
553 | ||
554 | /* | |
555 | * Find the item descriptor pointing to this buffer's | |
556 | * log item. It must be there. | |
557 | */ | |
558 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
559 | ASSERT(lidp != NULL); | |
560 | ||
561 | /* | |
562 | * If the release is just for a recursive lock, | |
563 | * then decrement the count and return. | |
564 | */ | |
565 | if (bip->bli_recur > 0) { | |
566 | bip->bli_recur--; | |
567 | xfs_buf_item_trace("RELSE RECUR", bip); | |
568 | return; | |
569 | } | |
570 | ||
571 | /* | |
572 | * If the buffer is dirty within this transaction, we can't | |
573 | * release it until we commit. | |
574 | */ | |
575 | if (lidp->lid_flags & XFS_LID_DIRTY) { | |
576 | xfs_buf_item_trace("RELSE DIRTY", bip); | |
577 | return; | |
578 | } | |
579 | ||
580 | /* | |
581 | * If the buffer has been invalidated, then we can't release | |
582 | * it until the transaction commits to disk unless it is re-dirtied | |
583 | * as part of this transaction. This prevents us from pulling | |
584 | * the item from the AIL before we should. | |
585 | */ | |
586 | if (bip->bli_flags & XFS_BLI_STALE) { | |
587 | xfs_buf_item_trace("RELSE STALE", bip); | |
588 | return; | |
589 | } | |
590 | ||
591 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
592 | xfs_buf_item_trace("RELSE", bip); | |
593 | ||
594 | /* | |
595 | * Free up the log item descriptor tracking the released item. | |
596 | */ | |
597 | xfs_trans_free_item(tp, lidp); | |
598 | ||
599 | /* | |
600 | * Clear the hold flag in the buf log item if it is set. | |
601 | * We wouldn't want the next user of the buffer to | |
602 | * get confused. | |
603 | */ | |
604 | if (bip->bli_flags & XFS_BLI_HOLD) { | |
605 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
606 | } | |
607 | ||
608 | /* | |
609 | * Drop our reference to the buf log item. | |
610 | */ | |
611 | atomic_dec(&bip->bli_refcount); | |
612 | ||
613 | /* | |
614 | * If the buf item is not tracking data in the log, then | |
615 | * we must free it before releasing the buffer back to the | |
616 | * free pool. Before releasing the buffer to the free pool, | |
617 | * clear the transaction pointer in b_fsprivate2 to dissolve | |
618 | * its relation to this transaction. | |
619 | */ | |
620 | if (!xfs_buf_item_dirty(bip)) { | |
621 | /*** | |
622 | ASSERT(bp->b_pincount == 0); | |
623 | ***/ | |
624 | ASSERT(atomic_read(&bip->bli_refcount) == 0); | |
625 | ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); | |
626 | ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); | |
627 | xfs_buf_item_relse(bp); | |
628 | bip = NULL; | |
629 | } | |
630 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | |
631 | ||
632 | /* | |
633 | * If we've still got a buf log item on the buffer, then | |
634 | * tell the AIL that the buffer is being unlocked. | |
635 | */ | |
636 | if (bip != NULL) { | |
637 | xfs_trans_unlocked_item(bip->bli_item.li_mountp, | |
638 | (xfs_log_item_t*)bip); | |
639 | } | |
640 | ||
641 | xfs_buf_relse(bp); | |
642 | return; | |
643 | } | |
644 | ||
645 | /* | |
646 | * Add the locked buffer to the transaction. | |
647 | * The buffer must be locked, and it cannot be associated with any | |
648 | * transaction. | |
649 | * | |
650 | * If the buffer does not yet have a buf log item associated with it, | |
651 | * then allocate one for it. Then add the buf item to the transaction. | |
652 | */ | |
653 | void | |
654 | xfs_trans_bjoin(xfs_trans_t *tp, | |
655 | xfs_buf_t *bp) | |
656 | { | |
657 | xfs_buf_log_item_t *bip; | |
658 | ||
659 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
660 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | |
661 | ||
662 | /* | |
663 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
664 | * it doesn't have one yet, then allocate one and initialize it. | |
665 | * The checks to see if one is there are in xfs_buf_item_init(). | |
666 | */ | |
667 | xfs_buf_item_init(bp, tp->t_mountp); | |
668 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
669 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
670 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
671 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
672 | ||
673 | /* | |
674 | * Take a reference for this transaction on the buf item. | |
675 | */ | |
676 | atomic_inc(&bip->bli_refcount); | |
677 | ||
678 | /* | |
679 | * Get a log_item_desc to point at the new item. | |
680 | */ | |
681 | (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip); | |
682 | ||
683 | /* | |
684 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
685 | * in xfs_trans_get_buf() and friends above. | |
686 | */ | |
687 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
688 | ||
689 | xfs_buf_item_trace("BJOIN", bip); | |
690 | } | |
691 | ||
692 | /* | |
693 | * Mark the buffer as not needing to be unlocked when the buf item's | |
694 | * IOP_UNLOCK() routine is called. The buffer must already be locked | |
695 | * and associated with the given transaction. | |
696 | */ | |
697 | /* ARGSUSED */ | |
698 | void | |
699 | xfs_trans_bhold(xfs_trans_t *tp, | |
700 | xfs_buf_t *bp) | |
701 | { | |
702 | xfs_buf_log_item_t *bip; | |
703 | ||
704 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
705 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
706 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
707 | ||
708 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
709 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
710 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
711 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
712 | bip->bli_flags |= XFS_BLI_HOLD; | |
713 | xfs_buf_item_trace("BHOLD", bip); | |
714 | } | |
715 | ||
716 | /* | |
717 | * This is called to mark bytes first through last inclusive of the given | |
718 | * buffer as needing to be logged when the transaction is committed. | |
719 | * The buffer must already be associated with the given transaction. | |
720 | * | |
721 | * First and last are numbers relative to the beginning of this buffer, | |
722 | * so the first byte in the buffer is numbered 0 regardless of the | |
723 | * value of b_blkno. | |
724 | */ | |
725 | void | |
726 | xfs_trans_log_buf(xfs_trans_t *tp, | |
727 | xfs_buf_t *bp, | |
728 | uint first, | |
729 | uint last) | |
730 | { | |
731 | xfs_buf_log_item_t *bip; | |
732 | xfs_log_item_desc_t *lidp; | |
733 | ||
734 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
735 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
736 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
737 | ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); | |
738 | ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) || | |
739 | (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks)); | |
740 | ||
741 | /* | |
742 | * Mark the buffer as needing to be written out eventually, | |
743 | * and set its iodone function to remove the buffer's buf log | |
744 | * item from the AIL and free it when the buffer is flushed | |
745 | * to disk. See xfs_buf_attach_iodone() for more details | |
746 | * on li_cb and xfs_buf_iodone_callbacks(). | |
747 | * If we end up aborting this transaction, we trap this buffer | |
748 | * inside the b_bdstrat callback so that this won't get written to | |
749 | * disk. | |
750 | */ | |
751 | XFS_BUF_DELAYWRITE(bp); | |
752 | XFS_BUF_DONE(bp); | |
753 | ||
754 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
755 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
756 | XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); | |
757 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone; | |
758 | ||
759 | /* | |
760 | * If we invalidated the buffer within this transaction, then | |
761 | * cancel the invalidation now that we're dirtying the buffer | |
762 | * again. There are no races with the code in xfs_buf_item_unpin(), | |
763 | * because we have a reference to the buffer this entire time. | |
764 | */ | |
765 | if (bip->bli_flags & XFS_BLI_STALE) { | |
766 | xfs_buf_item_trace("BLOG UNSTALE", bip); | |
767 | bip->bli_flags &= ~XFS_BLI_STALE; | |
768 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
769 | XFS_BUF_UNSTALE(bp); | |
770 | bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL; | |
771 | } | |
772 | ||
773 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
774 | ASSERT(lidp != NULL); | |
775 | ||
776 | tp->t_flags |= XFS_TRANS_DIRTY; | |
777 | lidp->lid_flags |= XFS_LID_DIRTY; | |
778 | lidp->lid_flags &= ~XFS_LID_BUF_STALE; | |
779 | bip->bli_flags |= XFS_BLI_LOGGED; | |
780 | xfs_buf_item_log(bip, first, last); | |
781 | xfs_buf_item_trace("BLOG", bip); | |
782 | } | |
783 | ||
784 | ||
785 | /* | |
786 | * This called to invalidate a buffer that is being used within | |
787 | * a transaction. Typically this is because the blocks in the | |
788 | * buffer are being freed, so we need to prevent it from being | |
789 | * written out when we're done. Allowing it to be written again | |
790 | * might overwrite data in the free blocks if they are reallocated | |
791 | * to a file. | |
792 | * | |
793 | * We prevent the buffer from being written out by clearing the | |
794 | * B_DELWRI flag. We can't always | |
795 | * get rid of the buf log item at this point, though, because | |
796 | * the buffer may still be pinned by another transaction. If that | |
797 | * is the case, then we'll wait until the buffer is committed to | |
798 | * disk for the last time (we can tell by the ref count) and | |
799 | * free it in xfs_buf_item_unpin(). Until it is cleaned up we | |
800 | * will keep the buffer locked so that the buffer and buf log item | |
801 | * are not reused. | |
802 | */ | |
803 | void | |
804 | xfs_trans_binval( | |
805 | xfs_trans_t *tp, | |
806 | xfs_buf_t *bp) | |
807 | { | |
808 | xfs_log_item_desc_t *lidp; | |
809 | xfs_buf_log_item_t *bip; | |
810 | ||
811 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
812 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
813 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
814 | ||
815 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
816 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
817 | ASSERT(lidp != NULL); | |
818 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
819 | ||
820 | if (bip->bli_flags & XFS_BLI_STALE) { | |
821 | /* | |
822 | * If the buffer is already invalidated, then | |
823 | * just return. | |
824 | */ | |
825 | ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); | |
826 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
827 | ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); | |
828 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF)); | |
829 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | |
830 | ASSERT(lidp->lid_flags & XFS_LID_DIRTY); | |
831 | ASSERT(tp->t_flags & XFS_TRANS_DIRTY); | |
832 | xfs_buftrace("XFS_BINVAL RECUR", bp); | |
833 | xfs_buf_item_trace("BINVAL RECUR", bip); | |
834 | return; | |
835 | } | |
836 | ||
837 | /* | |
838 | * Clear the dirty bit in the buffer and set the STALE flag | |
839 | * in the buf log item. The STALE flag will be used in | |
840 | * xfs_buf_item_unpin() to determine if it should clean up | |
841 | * when the last reference to the buf item is given up. | |
842 | * We set the XFS_BLI_CANCEL flag in the buf log format structure | |
843 | * and log the buf item. This will be used at recovery time | |
844 | * to determine that copies of the buffer in the log before | |
845 | * this should not be replayed. | |
846 | * We mark the item descriptor and the transaction dirty so | |
847 | * that we'll hold the buffer until after the commit. | |
848 | * | |
849 | * Since we're invalidating the buffer, we also clear the state | |
850 | * about which parts of the buffer have been logged. We also | |
851 | * clear the flag indicating that this is an inode buffer since | |
852 | * the data in the buffer will no longer be valid. | |
853 | * | |
854 | * We set the stale bit in the buffer as well since we're getting | |
855 | * rid of it. | |
856 | */ | |
857 | XFS_BUF_UNDELAYWRITE(bp); | |
858 | XFS_BUF_STALE(bp); | |
859 | bip->bli_flags |= XFS_BLI_STALE; | |
860 | bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY); | |
861 | bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF; | |
862 | bip->bli_format.blf_flags |= XFS_BLI_CANCEL; | |
863 | memset((char *)(bip->bli_format.blf_data_map), 0, | |
864 | (bip->bli_format.blf_map_size * sizeof(uint))); | |
865 | lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE; | |
866 | tp->t_flags |= XFS_TRANS_DIRTY; | |
867 | xfs_buftrace("XFS_BINVAL", bp); | |
868 | xfs_buf_item_trace("BINVAL", bip); | |
869 | } | |
870 | ||
871 | /* | |
872 | * This call is used to indicate that the buffer contains on-disk | |
873 | * inodes which must be handled specially during recovery. They | |
874 | * require special handling because only the di_next_unlinked from | |
875 | * the inodes in the buffer should be recovered. The rest of the | |
876 | * data in the buffer is logged via the inodes themselves. | |
877 | * | |
878 | * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log | |
879 | * format structure so that we'll know what to do at recovery time. | |
880 | */ | |
881 | /* ARGSUSED */ | |
882 | void | |
883 | xfs_trans_inode_buf( | |
884 | xfs_trans_t *tp, | |
885 | xfs_buf_t *bp) | |
886 | { | |
887 | xfs_buf_log_item_t *bip; | |
888 | ||
889 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
890 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
891 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
892 | ||
893 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
894 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
895 | ||
896 | bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF; | |
897 | } | |
898 | ||
899 | /* | |
900 | * This call is used to indicate that the buffer is going to | |
901 | * be staled and was an inode buffer. This means it gets | |
902 | * special processing during unpin - where any inodes | |
903 | * associated with the buffer should be removed from ail. | |
904 | * There is also special processing during recovery, | |
905 | * any replay of the inodes in the buffer needs to be | |
906 | * prevented as the buffer may have been reused. | |
907 | */ | |
908 | void | |
909 | xfs_trans_stale_inode_buf( | |
910 | xfs_trans_t *tp, | |
911 | xfs_buf_t *bp) | |
912 | { | |
913 | xfs_buf_log_item_t *bip; | |
914 | ||
915 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
916 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
917 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
918 | ||
919 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
920 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
921 | ||
922 | bip->bli_flags |= XFS_BLI_STALE_INODE; | |
923 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) | |
924 | xfs_buf_iodone; | |
925 | } | |
926 | ||
927 | ||
928 | ||
929 | /* | |
930 | * Mark the buffer as being one which contains newly allocated | |
931 | * inodes. We need to make sure that even if this buffer is | |
932 | * relogged as an 'inode buf' we still recover all of the inode | |
933 | * images in the face of a crash. This works in coordination with | |
934 | * xfs_buf_item_committed() to ensure that the buffer remains in the | |
935 | * AIL at its original location even after it has been relogged. | |
936 | */ | |
937 | /* ARGSUSED */ | |
938 | void | |
939 | xfs_trans_inode_alloc_buf( | |
940 | xfs_trans_t *tp, | |
941 | xfs_buf_t *bp) | |
942 | { | |
943 | xfs_buf_log_item_t *bip; | |
944 | ||
945 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
946 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
947 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
948 | ||
949 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
950 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
951 | ||
952 | bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; | |
953 | } | |
954 | ||
955 | ||
956 | /* | |
957 | * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of | |
958 | * dquots. However, unlike in inode buffer recovery, dquot buffers get | |
959 | * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). | |
960 | * The only thing that makes dquot buffers different from regular | |
961 | * buffers is that we must not replay dquot bufs when recovering | |
962 | * if a _corresponding_ quotaoff has happened. We also have to distinguish | |
963 | * between usr dquot bufs and grp dquot bufs, because usr and grp quotas | |
964 | * can be turned off independently. | |
965 | */ | |
966 | /* ARGSUSED */ | |
967 | void | |
968 | xfs_trans_dquot_buf( | |
969 | xfs_trans_t *tp, | |
970 | xfs_buf_t *bp, | |
971 | uint type) | |
972 | { | |
973 | xfs_buf_log_item_t *bip; | |
974 | ||
975 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
976 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
977 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
978 | ASSERT(type == XFS_BLI_UDQUOT_BUF || | |
979 | type == XFS_BLI_GDQUOT_BUF); | |
980 | ||
981 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
982 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
983 | ||
984 | bip->bli_format.blf_flags |= type; | |
985 | } | |
986 | ||
987 | /* | |
988 | * Check to see if a buffer matching the given parameters is already | |
989 | * a part of the given transaction. Only check the first, embedded | |
990 | * chunk, since we don't want to spend all day scanning large transactions. | |
991 | */ | |
992 | STATIC xfs_buf_t * | |
993 | xfs_trans_buf_item_match( | |
994 | xfs_trans_t *tp, | |
995 | xfs_buftarg_t *target, | |
996 | xfs_daddr_t blkno, | |
997 | int len) | |
998 | { | |
999 | xfs_log_item_chunk_t *licp; | |
1000 | xfs_log_item_desc_t *lidp; | |
1001 | xfs_buf_log_item_t *blip; | |
1002 | xfs_buf_t *bp; | |
1003 | int i; | |
1004 | ||
1005 | bp = NULL; | |
1006 | len = BBTOB(len); | |
1007 | licp = &tp->t_items; | |
1008 | if (!XFS_LIC_ARE_ALL_FREE(licp)) { | |
1009 | for (i = 0; i < licp->lic_unused; i++) { | |
1010 | /* | |
1011 | * Skip unoccupied slots. | |
1012 | */ | |
1013 | if (XFS_LIC_ISFREE(licp, i)) { | |
1014 | continue; | |
1015 | } | |
1016 | ||
1017 | lidp = XFS_LIC_SLOT(licp, i); | |
1018 | blip = (xfs_buf_log_item_t *)lidp->lid_item; | |
1019 | if (blip->bli_item.li_type != XFS_LI_BUF) { | |
1020 | continue; | |
1021 | } | |
1022 | ||
1023 | bp = blip->bli_buf; | |
1024 | if ((XFS_BUF_TARGET(bp) == target) && | |
1025 | (XFS_BUF_ADDR(bp) == blkno) && | |
1026 | (XFS_BUF_COUNT(bp) == len)) { | |
1027 | /* | |
1028 | * We found it. Break out and | |
1029 | * return the pointer to the buffer. | |
1030 | */ | |
1031 | break; | |
1032 | } else { | |
1033 | bp = NULL; | |
1034 | } | |
1035 | } | |
1036 | } | |
1037 | return bp; | |
1038 | } | |
1039 | ||
1040 | /* | |
1041 | * Check to see if a buffer matching the given parameters is already | |
1042 | * a part of the given transaction. Check all the chunks, we | |
1043 | * want to be thorough. | |
1044 | */ | |
1045 | STATIC xfs_buf_t * | |
1046 | xfs_trans_buf_item_match_all( | |
1047 | xfs_trans_t *tp, | |
1048 | xfs_buftarg_t *target, | |
1049 | xfs_daddr_t blkno, | |
1050 | int len) | |
1051 | { | |
1052 | xfs_log_item_chunk_t *licp; | |
1053 | xfs_log_item_desc_t *lidp; | |
1054 | xfs_buf_log_item_t *blip; | |
1055 | xfs_buf_t *bp; | |
1056 | int i; | |
1057 | ||
1058 | bp = NULL; | |
1059 | len = BBTOB(len); | |
1060 | for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) { | |
1061 | if (XFS_LIC_ARE_ALL_FREE(licp)) { | |
1062 | ASSERT(licp == &tp->t_items); | |
1063 | ASSERT(licp->lic_next == NULL); | |
1064 | return NULL; | |
1065 | } | |
1066 | for (i = 0; i < licp->lic_unused; i++) { | |
1067 | /* | |
1068 | * Skip unoccupied slots. | |
1069 | */ | |
1070 | if (XFS_LIC_ISFREE(licp, i)) { | |
1071 | continue; | |
1072 | } | |
1073 | ||
1074 | lidp = XFS_LIC_SLOT(licp, i); | |
1075 | blip = (xfs_buf_log_item_t *)lidp->lid_item; | |
1076 | if (blip->bli_item.li_type != XFS_LI_BUF) { | |
1077 | continue; | |
1078 | } | |
1079 | ||
1080 | bp = blip->bli_buf; | |
1081 | if ((XFS_BUF_TARGET(bp) == target) && | |
1082 | (XFS_BUF_ADDR(bp) == blkno) && | |
1083 | (XFS_BUF_COUNT(bp) == len)) { | |
1084 | /* | |
1085 | * We found it. Break out and | |
1086 | * return the pointer to the buffer. | |
1087 | */ | |
1088 | return bp; | |
1089 | } | |
1090 | } | |
1091 | } | |
1092 | return NULL; | |
1093 | } |