]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/buffer.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | |
9 | * | |
10 | * Removed a lot of unnecessary code and simplified things now that | |
11 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | |
12 | * | |
13 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | |
14 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | |
15 | * | |
16 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | |
17 | * | |
18 | * async buffer flushing, 1999 Andrea Arcangeli <[email protected]> | |
19 | */ | |
20 | ||
21 | #include <linux/config.h> | |
22 | #include <linux/kernel.h> | |
23 | #include <linux/syscalls.h> | |
24 | #include <linux/fs.h> | |
25 | #include <linux/mm.h> | |
26 | #include <linux/percpu.h> | |
27 | #include <linux/slab.h> | |
28 | #include <linux/smp_lock.h> | |
16f7e0fe | 29 | #include <linux/capability.h> |
1da177e4 LT |
30 | #include <linux/blkdev.h> |
31 | #include <linux/file.h> | |
32 | #include <linux/quotaops.h> | |
33 | #include <linux/highmem.h> | |
34 | #include <linux/module.h> | |
35 | #include <linux/writeback.h> | |
36 | #include <linux/hash.h> | |
37 | #include <linux/suspend.h> | |
38 | #include <linux/buffer_head.h> | |
39 | #include <linux/bio.h> | |
40 | #include <linux/notifier.h> | |
41 | #include <linux/cpu.h> | |
42 | #include <linux/bitops.h> | |
43 | #include <linux/mpage.h> | |
fb1c8f93 | 44 | #include <linux/bit_spinlock.h> |
1da177e4 LT |
45 | |
46 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | |
47 | static void invalidate_bh_lrus(void); | |
48 | ||
49 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | |
50 | ||
51 | inline void | |
52 | init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) | |
53 | { | |
54 | bh->b_end_io = handler; | |
55 | bh->b_private = private; | |
56 | } | |
57 | ||
58 | static int sync_buffer(void *word) | |
59 | { | |
60 | struct block_device *bd; | |
61 | struct buffer_head *bh | |
62 | = container_of(word, struct buffer_head, b_state); | |
63 | ||
64 | smp_mb(); | |
65 | bd = bh->b_bdev; | |
66 | if (bd) | |
67 | blk_run_address_space(bd->bd_inode->i_mapping); | |
68 | io_schedule(); | |
69 | return 0; | |
70 | } | |
71 | ||
72 | void fastcall __lock_buffer(struct buffer_head *bh) | |
73 | { | |
74 | wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, | |
75 | TASK_UNINTERRUPTIBLE); | |
76 | } | |
77 | EXPORT_SYMBOL(__lock_buffer); | |
78 | ||
79 | void fastcall unlock_buffer(struct buffer_head *bh) | |
80 | { | |
81 | clear_buffer_locked(bh); | |
82 | smp_mb__after_clear_bit(); | |
83 | wake_up_bit(&bh->b_state, BH_Lock); | |
84 | } | |
85 | ||
86 | /* | |
87 | * Block until a buffer comes unlocked. This doesn't stop it | |
88 | * from becoming locked again - you have to lock it yourself | |
89 | * if you want to preserve its state. | |
90 | */ | |
91 | void __wait_on_buffer(struct buffer_head * bh) | |
92 | { | |
93 | wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); | |
94 | } | |
95 | ||
96 | static void | |
97 | __clear_page_buffers(struct page *page) | |
98 | { | |
99 | ClearPagePrivate(page); | |
4c21e2f2 | 100 | set_page_private(page, 0); |
1da177e4 LT |
101 | page_cache_release(page); |
102 | } | |
103 | ||
104 | static void buffer_io_error(struct buffer_head *bh) | |
105 | { | |
106 | char b[BDEVNAME_SIZE]; | |
107 | ||
108 | printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", | |
109 | bdevname(bh->b_bdev, b), | |
110 | (unsigned long long)bh->b_blocknr); | |
111 | } | |
112 | ||
113 | /* | |
114 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | |
115 | * unlock the buffer. This is what ll_rw_block uses too. | |
116 | */ | |
117 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | |
118 | { | |
119 | if (uptodate) { | |
120 | set_buffer_uptodate(bh); | |
121 | } else { | |
122 | /* This happens, due to failed READA attempts. */ | |
123 | clear_buffer_uptodate(bh); | |
124 | } | |
125 | unlock_buffer(bh); | |
126 | put_bh(bh); | |
127 | } | |
128 | ||
129 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | |
130 | { | |
131 | char b[BDEVNAME_SIZE]; | |
132 | ||
133 | if (uptodate) { | |
134 | set_buffer_uptodate(bh); | |
135 | } else { | |
136 | if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { | |
137 | buffer_io_error(bh); | |
138 | printk(KERN_WARNING "lost page write due to " | |
139 | "I/O error on %s\n", | |
140 | bdevname(bh->b_bdev, b)); | |
141 | } | |
142 | set_buffer_write_io_error(bh); | |
143 | clear_buffer_uptodate(bh); | |
144 | } | |
145 | unlock_buffer(bh); | |
146 | put_bh(bh); | |
147 | } | |
148 | ||
149 | /* | |
150 | * Write out and wait upon all the dirty data associated with a block | |
151 | * device via its mapping. Does not take the superblock lock. | |
152 | */ | |
153 | int sync_blockdev(struct block_device *bdev) | |
154 | { | |
155 | int ret = 0; | |
156 | ||
28fd1298 OH |
157 | if (bdev) |
158 | ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); | |
1da177e4 LT |
159 | return ret; |
160 | } | |
161 | EXPORT_SYMBOL(sync_blockdev); | |
162 | ||
163 | /* | |
164 | * Write out and wait upon all dirty data associated with this | |
165 | * superblock. Filesystem data as well as the underlying block | |
166 | * device. Takes the superblock lock. | |
167 | */ | |
168 | int fsync_super(struct super_block *sb) | |
169 | { | |
170 | sync_inodes_sb(sb, 0); | |
171 | DQUOT_SYNC(sb); | |
172 | lock_super(sb); | |
173 | if (sb->s_dirt && sb->s_op->write_super) | |
174 | sb->s_op->write_super(sb); | |
175 | unlock_super(sb); | |
176 | if (sb->s_op->sync_fs) | |
177 | sb->s_op->sync_fs(sb, 1); | |
178 | sync_blockdev(sb->s_bdev); | |
179 | sync_inodes_sb(sb, 1); | |
180 | ||
181 | return sync_blockdev(sb->s_bdev); | |
182 | } | |
183 | ||
184 | /* | |
185 | * Write out and wait upon all dirty data associated with this | |
186 | * device. Filesystem data as well as the underlying block | |
187 | * device. Takes the superblock lock. | |
188 | */ | |
189 | int fsync_bdev(struct block_device *bdev) | |
190 | { | |
191 | struct super_block *sb = get_super(bdev); | |
192 | if (sb) { | |
193 | int res = fsync_super(sb); | |
194 | drop_super(sb); | |
195 | return res; | |
196 | } | |
197 | return sync_blockdev(bdev); | |
198 | } | |
199 | ||
200 | /** | |
201 | * freeze_bdev -- lock a filesystem and force it into a consistent state | |
202 | * @bdev: blockdevice to lock | |
203 | * | |
204 | * This takes the block device bd_mount_sem to make sure no new mounts | |
205 | * happen on bdev until thaw_bdev() is called. | |
206 | * If a superblock is found on this device, we take the s_umount semaphore | |
207 | * on it to make sure nobody unmounts until the snapshot creation is done. | |
208 | */ | |
209 | struct super_block *freeze_bdev(struct block_device *bdev) | |
210 | { | |
211 | struct super_block *sb; | |
212 | ||
213 | down(&bdev->bd_mount_sem); | |
214 | sb = get_super(bdev); | |
215 | if (sb && !(sb->s_flags & MS_RDONLY)) { | |
216 | sb->s_frozen = SB_FREEZE_WRITE; | |
d59dd462 | 217 | smp_wmb(); |
1da177e4 LT |
218 | |
219 | sync_inodes_sb(sb, 0); | |
220 | DQUOT_SYNC(sb); | |
221 | ||
222 | lock_super(sb); | |
223 | if (sb->s_dirt && sb->s_op->write_super) | |
224 | sb->s_op->write_super(sb); | |
225 | unlock_super(sb); | |
226 | ||
227 | if (sb->s_op->sync_fs) | |
228 | sb->s_op->sync_fs(sb, 1); | |
229 | ||
230 | sync_blockdev(sb->s_bdev); | |
231 | sync_inodes_sb(sb, 1); | |
232 | ||
233 | sb->s_frozen = SB_FREEZE_TRANS; | |
d59dd462 | 234 | smp_wmb(); |
1da177e4 LT |
235 | |
236 | sync_blockdev(sb->s_bdev); | |
237 | ||
238 | if (sb->s_op->write_super_lockfs) | |
239 | sb->s_op->write_super_lockfs(sb); | |
240 | } | |
241 | ||
242 | sync_blockdev(bdev); | |
243 | return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ | |
244 | } | |
245 | EXPORT_SYMBOL(freeze_bdev); | |
246 | ||
247 | /** | |
248 | * thaw_bdev -- unlock filesystem | |
249 | * @bdev: blockdevice to unlock | |
250 | * @sb: associated superblock | |
251 | * | |
252 | * Unlocks the filesystem and marks it writeable again after freeze_bdev(). | |
253 | */ | |
254 | void thaw_bdev(struct block_device *bdev, struct super_block *sb) | |
255 | { | |
256 | if (sb) { | |
257 | BUG_ON(sb->s_bdev != bdev); | |
258 | ||
259 | if (sb->s_op->unlockfs) | |
260 | sb->s_op->unlockfs(sb); | |
261 | sb->s_frozen = SB_UNFROZEN; | |
d59dd462 | 262 | smp_wmb(); |
1da177e4 LT |
263 | wake_up(&sb->s_wait_unfrozen); |
264 | drop_super(sb); | |
265 | } | |
266 | ||
267 | up(&bdev->bd_mount_sem); | |
268 | } | |
269 | EXPORT_SYMBOL(thaw_bdev); | |
270 | ||
271 | /* | |
272 | * sync everything. Start out by waking pdflush, because that writes back | |
273 | * all queues in parallel. | |
274 | */ | |
275 | static void do_sync(unsigned long wait) | |
276 | { | |
687a21ce | 277 | wakeup_pdflush(0); |
1da177e4 LT |
278 | sync_inodes(0); /* All mappings, inodes and their blockdevs */ |
279 | DQUOT_SYNC(NULL); | |
280 | sync_supers(); /* Write the superblocks */ | |
281 | sync_filesystems(0); /* Start syncing the filesystems */ | |
282 | sync_filesystems(wait); /* Waitingly sync the filesystems */ | |
283 | sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */ | |
284 | if (!wait) | |
285 | printk("Emergency Sync complete\n"); | |
286 | if (unlikely(laptop_mode)) | |
287 | laptop_sync_completion(); | |
288 | } | |
289 | ||
290 | asmlinkage long sys_sync(void) | |
291 | { | |
292 | do_sync(1); | |
293 | return 0; | |
294 | } | |
295 | ||
296 | void emergency_sync(void) | |
297 | { | |
298 | pdflush_operation(do_sync, 0); | |
299 | } | |
300 | ||
301 | /* | |
302 | * Generic function to fsync a file. | |
303 | * | |
304 | * filp may be NULL if called via the msync of a vma. | |
305 | */ | |
306 | ||
307 | int file_fsync(struct file *filp, struct dentry *dentry, int datasync) | |
308 | { | |
309 | struct inode * inode = dentry->d_inode; | |
310 | struct super_block * sb; | |
311 | int ret, err; | |
312 | ||
313 | /* sync the inode to buffers */ | |
314 | ret = write_inode_now(inode, 0); | |
315 | ||
316 | /* sync the superblock to buffers */ | |
317 | sb = inode->i_sb; | |
318 | lock_super(sb); | |
319 | if (sb->s_op->write_super) | |
320 | sb->s_op->write_super(sb); | |
321 | unlock_super(sb); | |
322 | ||
323 | /* .. finally sync the buffers to disk */ | |
324 | err = sync_blockdev(sb->s_bdev); | |
325 | if (!ret) | |
326 | ret = err; | |
327 | return ret; | |
328 | } | |
329 | ||
dfb388bf | 330 | static long do_fsync(unsigned int fd, int datasync) |
1da177e4 LT |
331 | { |
332 | struct file * file; | |
333 | struct address_space *mapping; | |
334 | int ret, err; | |
335 | ||
336 | ret = -EBADF; | |
337 | file = fget(fd); | |
338 | if (!file) | |
339 | goto out; | |
340 | ||
1da177e4 LT |
341 | ret = -EINVAL; |
342 | if (!file->f_op || !file->f_op->fsync) { | |
343 | /* Why? We can still call filemap_fdatawrite */ | |
344 | goto out_putf; | |
345 | } | |
346 | ||
dfb388bf ON |
347 | mapping = file->f_mapping; |
348 | ||
1da177e4 LT |
349 | current->flags |= PF_SYNCWRITE; |
350 | ret = filemap_fdatawrite(mapping); | |
351 | ||
352 | /* | |
353 | * We need to protect against concurrent writers, | |
354 | * which could cause livelocks in fsync_buffers_list | |
355 | */ | |
1b1dcc1b | 356 | mutex_lock(&mapping->host->i_mutex); |
dfb388bf | 357 | err = file->f_op->fsync(file, file->f_dentry, datasync); |
1da177e4 LT |
358 | if (!ret) |
359 | ret = err; | |
1b1dcc1b | 360 | mutex_unlock(&mapping->host->i_mutex); |
1da177e4 LT |
361 | err = filemap_fdatawait(mapping); |
362 | if (!ret) | |
363 | ret = err; | |
364 | current->flags &= ~PF_SYNCWRITE; | |
365 | ||
366 | out_putf: | |
367 | fput(file); | |
368 | out: | |
369 | return ret; | |
370 | } | |
371 | ||
dfb388bf | 372 | asmlinkage long sys_fsync(unsigned int fd) |
1da177e4 | 373 | { |
dfb388bf ON |
374 | return do_fsync(fd, 0); |
375 | } | |
1da177e4 | 376 | |
dfb388bf ON |
377 | asmlinkage long sys_fdatasync(unsigned int fd) |
378 | { | |
379 | return do_fsync(fd, 1); | |
1da177e4 LT |
380 | } |
381 | ||
382 | /* | |
383 | * Various filesystems appear to want __find_get_block to be non-blocking. | |
384 | * But it's the page lock which protects the buffers. To get around this, | |
385 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | |
386 | * private_lock. | |
387 | * | |
388 | * Hack idea: for the blockdev mapping, i_bufferlist_lock contention | |
389 | * may be quite high. This code could TryLock the page, and if that | |
390 | * succeeds, there is no need to take private_lock. (But if | |
391 | * private_lock is contended then so is mapping->tree_lock). | |
392 | */ | |
393 | static struct buffer_head * | |
385fd4c5 | 394 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
1da177e4 LT |
395 | { |
396 | struct inode *bd_inode = bdev->bd_inode; | |
397 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
398 | struct buffer_head *ret = NULL; | |
399 | pgoff_t index; | |
400 | struct buffer_head *bh; | |
401 | struct buffer_head *head; | |
402 | struct page *page; | |
403 | int all_mapped = 1; | |
404 | ||
405 | index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); | |
406 | page = find_get_page(bd_mapping, index); | |
407 | if (!page) | |
408 | goto out; | |
409 | ||
410 | spin_lock(&bd_mapping->private_lock); | |
411 | if (!page_has_buffers(page)) | |
412 | goto out_unlock; | |
413 | head = page_buffers(page); | |
414 | bh = head; | |
415 | do { | |
416 | if (bh->b_blocknr == block) { | |
417 | ret = bh; | |
418 | get_bh(bh); | |
419 | goto out_unlock; | |
420 | } | |
421 | if (!buffer_mapped(bh)) | |
422 | all_mapped = 0; | |
423 | bh = bh->b_this_page; | |
424 | } while (bh != head); | |
425 | ||
426 | /* we might be here because some of the buffers on this page are | |
427 | * not mapped. This is due to various races between | |
428 | * file io on the block device and getblk. It gets dealt with | |
429 | * elsewhere, don't buffer_error if we had some unmapped buffers | |
430 | */ | |
431 | if (all_mapped) { | |
432 | printk("__find_get_block_slow() failed. " | |
433 | "block=%llu, b_blocknr=%llu\n", | |
434 | (unsigned long long)block, (unsigned long long)bh->b_blocknr); | |
435 | printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size); | |
436 | printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); | |
437 | } | |
438 | out_unlock: | |
439 | spin_unlock(&bd_mapping->private_lock); | |
440 | page_cache_release(page); | |
441 | out: | |
442 | return ret; | |
443 | } | |
444 | ||
445 | /* If invalidate_buffers() will trash dirty buffers, it means some kind | |
446 | of fs corruption is going on. Trashing dirty data always imply losing | |
447 | information that was supposed to be just stored on the physical layer | |
448 | by the user. | |
449 | ||
450 | Thus invalidate_buffers in general usage is not allwowed to trash | |
451 | dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to | |
452 | be preserved. These buffers are simply skipped. | |
453 | ||
454 | We also skip buffers which are still in use. For example this can | |
455 | happen if a userspace program is reading the block device. | |
456 | ||
457 | NOTE: In the case where the user removed a removable-media-disk even if | |
458 | there's still dirty data not synced on disk (due a bug in the device driver | |
459 | or due an error of the user), by not destroying the dirty buffers we could | |
460 | generate corruption also on the next media inserted, thus a parameter is | |
461 | necessary to handle this case in the most safe way possible (trying | |
462 | to not corrupt also the new disk inserted with the data belonging to | |
463 | the old now corrupted disk). Also for the ramdisk the natural thing | |
464 | to do in order to release the ramdisk memory is to destroy dirty buffers. | |
465 | ||
466 | These are two special cases. Normal usage imply the device driver | |
467 | to issue a sync on the device (without waiting I/O completion) and | |
468 | then an invalidate_buffers call that doesn't trash dirty buffers. | |
469 | ||
470 | For handling cache coherency with the blkdev pagecache the 'update' case | |
471 | is been introduced. It is needed to re-read from disk any pinned | |
472 | buffer. NOTE: re-reading from disk is destructive so we can do it only | |
473 | when we assume nobody is changing the buffercache under our I/O and when | |
474 | we think the disk contains more recent information than the buffercache. | |
475 | The update == 1 pass marks the buffers we need to update, the update == 2 | |
476 | pass does the actual I/O. */ | |
477 | void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers) | |
478 | { | |
479 | invalidate_bh_lrus(); | |
480 | /* | |
481 | * FIXME: what about destroy_dirty_buffers? | |
482 | * We really want to use invalidate_inode_pages2() for | |
483 | * that, but not until that's cleaned up. | |
484 | */ | |
485 | invalidate_inode_pages(bdev->bd_inode->i_mapping); | |
486 | } | |
487 | ||
488 | /* | |
489 | * Kick pdflush then try to free up some ZONE_NORMAL memory. | |
490 | */ | |
491 | static void free_more_memory(void) | |
492 | { | |
493 | struct zone **zones; | |
494 | pg_data_t *pgdat; | |
495 | ||
687a21ce | 496 | wakeup_pdflush(1024); |
1da177e4 LT |
497 | yield(); |
498 | ||
499 | for_each_pgdat(pgdat) { | |
af4ca457 | 500 | zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; |
1da177e4 | 501 | if (*zones) |
1ad539b2 | 502 | try_to_free_pages(zones, GFP_NOFS); |
1da177e4 LT |
503 | } |
504 | } | |
505 | ||
506 | /* | |
507 | * I/O completion handler for block_read_full_page() - pages | |
508 | * which come unlocked at the end of I/O. | |
509 | */ | |
510 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | |
511 | { | |
1da177e4 | 512 | unsigned long flags; |
a3972203 | 513 | struct buffer_head *first; |
1da177e4 LT |
514 | struct buffer_head *tmp; |
515 | struct page *page; | |
516 | int page_uptodate = 1; | |
517 | ||
518 | BUG_ON(!buffer_async_read(bh)); | |
519 | ||
520 | page = bh->b_page; | |
521 | if (uptodate) { | |
522 | set_buffer_uptodate(bh); | |
523 | } else { | |
524 | clear_buffer_uptodate(bh); | |
525 | if (printk_ratelimit()) | |
526 | buffer_io_error(bh); | |
527 | SetPageError(page); | |
528 | } | |
529 | ||
530 | /* | |
531 | * Be _very_ careful from here on. Bad things can happen if | |
532 | * two buffer heads end IO at almost the same time and both | |
533 | * decide that the page is now completely done. | |
534 | */ | |
a3972203 NP |
535 | first = page_buffers(page); |
536 | local_irq_save(flags); | |
537 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
1da177e4 LT |
538 | clear_buffer_async_read(bh); |
539 | unlock_buffer(bh); | |
540 | tmp = bh; | |
541 | do { | |
542 | if (!buffer_uptodate(tmp)) | |
543 | page_uptodate = 0; | |
544 | if (buffer_async_read(tmp)) { | |
545 | BUG_ON(!buffer_locked(tmp)); | |
546 | goto still_busy; | |
547 | } | |
548 | tmp = tmp->b_this_page; | |
549 | } while (tmp != bh); | |
a3972203 NP |
550 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
551 | local_irq_restore(flags); | |
1da177e4 LT |
552 | |
553 | /* | |
554 | * If none of the buffers had errors and they are all | |
555 | * uptodate then we can set the page uptodate. | |
556 | */ | |
557 | if (page_uptodate && !PageError(page)) | |
558 | SetPageUptodate(page); | |
559 | unlock_page(page); | |
560 | return; | |
561 | ||
562 | still_busy: | |
a3972203 NP |
563 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
564 | local_irq_restore(flags); | |
1da177e4 LT |
565 | return; |
566 | } | |
567 | ||
568 | /* | |
569 | * Completion handler for block_write_full_page() - pages which are unlocked | |
570 | * during I/O, and which have PageWriteback cleared upon I/O completion. | |
571 | */ | |
572 | void end_buffer_async_write(struct buffer_head *bh, int uptodate) | |
573 | { | |
574 | char b[BDEVNAME_SIZE]; | |
1da177e4 | 575 | unsigned long flags; |
a3972203 | 576 | struct buffer_head *first; |
1da177e4 LT |
577 | struct buffer_head *tmp; |
578 | struct page *page; | |
579 | ||
580 | BUG_ON(!buffer_async_write(bh)); | |
581 | ||
582 | page = bh->b_page; | |
583 | if (uptodate) { | |
584 | set_buffer_uptodate(bh); | |
585 | } else { | |
586 | if (printk_ratelimit()) { | |
587 | buffer_io_error(bh); | |
588 | printk(KERN_WARNING "lost page write due to " | |
589 | "I/O error on %s\n", | |
590 | bdevname(bh->b_bdev, b)); | |
591 | } | |
592 | set_bit(AS_EIO, &page->mapping->flags); | |
593 | clear_buffer_uptodate(bh); | |
594 | SetPageError(page); | |
595 | } | |
596 | ||
a3972203 NP |
597 | first = page_buffers(page); |
598 | local_irq_save(flags); | |
599 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
600 | ||
1da177e4 LT |
601 | clear_buffer_async_write(bh); |
602 | unlock_buffer(bh); | |
603 | tmp = bh->b_this_page; | |
604 | while (tmp != bh) { | |
605 | if (buffer_async_write(tmp)) { | |
606 | BUG_ON(!buffer_locked(tmp)); | |
607 | goto still_busy; | |
608 | } | |
609 | tmp = tmp->b_this_page; | |
610 | } | |
a3972203 NP |
611 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
612 | local_irq_restore(flags); | |
1da177e4 LT |
613 | end_page_writeback(page); |
614 | return; | |
615 | ||
616 | still_busy: | |
a3972203 NP |
617 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
618 | local_irq_restore(flags); | |
1da177e4 LT |
619 | return; |
620 | } | |
621 | ||
622 | /* | |
623 | * If a page's buffers are under async readin (end_buffer_async_read | |
624 | * completion) then there is a possibility that another thread of | |
625 | * control could lock one of the buffers after it has completed | |
626 | * but while some of the other buffers have not completed. This | |
627 | * locked buffer would confuse end_buffer_async_read() into not unlocking | |
628 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | |
629 | * that this buffer is not under async I/O. | |
630 | * | |
631 | * The page comes unlocked when it has no locked buffer_async buffers | |
632 | * left. | |
633 | * | |
634 | * PageLocked prevents anyone starting new async I/O reads any of | |
635 | * the buffers. | |
636 | * | |
637 | * PageWriteback is used to prevent simultaneous writeout of the same | |
638 | * page. | |
639 | * | |
640 | * PageLocked prevents anyone from starting writeback of a page which is | |
641 | * under read I/O (PageWriteback is only ever set against a locked page). | |
642 | */ | |
643 | static void mark_buffer_async_read(struct buffer_head *bh) | |
644 | { | |
645 | bh->b_end_io = end_buffer_async_read; | |
646 | set_buffer_async_read(bh); | |
647 | } | |
648 | ||
649 | void mark_buffer_async_write(struct buffer_head *bh) | |
650 | { | |
651 | bh->b_end_io = end_buffer_async_write; | |
652 | set_buffer_async_write(bh); | |
653 | } | |
654 | EXPORT_SYMBOL(mark_buffer_async_write); | |
655 | ||
656 | ||
657 | /* | |
658 | * fs/buffer.c contains helper functions for buffer-backed address space's | |
659 | * fsync functions. A common requirement for buffer-based filesystems is | |
660 | * that certain data from the backing blockdev needs to be written out for | |
661 | * a successful fsync(). For example, ext2 indirect blocks need to be | |
662 | * written back and waited upon before fsync() returns. | |
663 | * | |
664 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | |
665 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | |
666 | * management of a list of dependent buffers at ->i_mapping->private_list. | |
667 | * | |
668 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | |
669 | * from their controlling inode's queue when they are being freed. But | |
670 | * try_to_free_buffers() will be operating against the *blockdev* mapping | |
671 | * at the time, not against the S_ISREG file which depends on those buffers. | |
672 | * So the locking for private_list is via the private_lock in the address_space | |
673 | * which backs the buffers. Which is different from the address_space | |
674 | * against which the buffers are listed. So for a particular address_space, | |
675 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | |
676 | * mapping->private_list will always be protected by the backing blockdev's | |
677 | * ->private_lock. | |
678 | * | |
679 | * Which introduces a requirement: all buffers on an address_space's | |
680 | * ->private_list must be from the same address_space: the blockdev's. | |
681 | * | |
682 | * address_spaces which do not place buffers at ->private_list via these | |
683 | * utility functions are free to use private_lock and private_list for | |
684 | * whatever they want. The only requirement is that list_empty(private_list) | |
685 | * be true at clear_inode() time. | |
686 | * | |
687 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | |
688 | * filesystems should do that. invalidate_inode_buffers() should just go | |
689 | * BUG_ON(!list_empty). | |
690 | * | |
691 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | |
692 | * take an address_space, not an inode. And it should be called | |
693 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | |
694 | * queued up. | |
695 | * | |
696 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | |
697 | * list if it is already on a list. Because if the buffer is on a list, | |
698 | * it *must* already be on the right one. If not, the filesystem is being | |
699 | * silly. This will save a ton of locking. But first we have to ensure | |
700 | * that buffers are taken *off* the old inode's list when they are freed | |
701 | * (presumably in truncate). That requires careful auditing of all | |
702 | * filesystems (do it inside bforget()). It could also be done by bringing | |
703 | * b_inode back. | |
704 | */ | |
705 | ||
706 | /* | |
707 | * The buffer's backing address_space's private_lock must be held | |
708 | */ | |
709 | static inline void __remove_assoc_queue(struct buffer_head *bh) | |
710 | { | |
711 | list_del_init(&bh->b_assoc_buffers); | |
712 | } | |
713 | ||
714 | int inode_has_buffers(struct inode *inode) | |
715 | { | |
716 | return !list_empty(&inode->i_data.private_list); | |
717 | } | |
718 | ||
719 | /* | |
720 | * osync is designed to support O_SYNC io. It waits synchronously for | |
721 | * all already-submitted IO to complete, but does not queue any new | |
722 | * writes to the disk. | |
723 | * | |
724 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | |
725 | * you dirty the buffers, and then use osync_inode_buffers to wait for | |
726 | * completion. Any other dirty buffers which are not yet queued for | |
727 | * write will not be flushed to disk by the osync. | |
728 | */ | |
729 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | |
730 | { | |
731 | struct buffer_head *bh; | |
732 | struct list_head *p; | |
733 | int err = 0; | |
734 | ||
735 | spin_lock(lock); | |
736 | repeat: | |
737 | list_for_each_prev(p, list) { | |
738 | bh = BH_ENTRY(p); | |
739 | if (buffer_locked(bh)) { | |
740 | get_bh(bh); | |
741 | spin_unlock(lock); | |
742 | wait_on_buffer(bh); | |
743 | if (!buffer_uptodate(bh)) | |
744 | err = -EIO; | |
745 | brelse(bh); | |
746 | spin_lock(lock); | |
747 | goto repeat; | |
748 | } | |
749 | } | |
750 | spin_unlock(lock); | |
751 | return err; | |
752 | } | |
753 | ||
754 | /** | |
755 | * sync_mapping_buffers - write out and wait upon a mapping's "associated" | |
756 | * buffers | |
67be2dd1 | 757 | * @mapping: the mapping which wants those buffers written |
1da177e4 LT |
758 | * |
759 | * Starts I/O against the buffers at mapping->private_list, and waits upon | |
760 | * that I/O. | |
761 | * | |
67be2dd1 MW |
762 | * Basically, this is a convenience function for fsync(). |
763 | * @mapping is a file or directory which needs those buffers to be written for | |
764 | * a successful fsync(). | |
1da177e4 LT |
765 | */ |
766 | int sync_mapping_buffers(struct address_space *mapping) | |
767 | { | |
768 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
769 | ||
770 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | |
771 | return 0; | |
772 | ||
773 | return fsync_buffers_list(&buffer_mapping->private_lock, | |
774 | &mapping->private_list); | |
775 | } | |
776 | EXPORT_SYMBOL(sync_mapping_buffers); | |
777 | ||
778 | /* | |
779 | * Called when we've recently written block `bblock', and it is known that | |
780 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | |
781 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | |
782 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | |
783 | */ | |
784 | void write_boundary_block(struct block_device *bdev, | |
785 | sector_t bblock, unsigned blocksize) | |
786 | { | |
787 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | |
788 | if (bh) { | |
789 | if (buffer_dirty(bh)) | |
790 | ll_rw_block(WRITE, 1, &bh); | |
791 | put_bh(bh); | |
792 | } | |
793 | } | |
794 | ||
795 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | |
796 | { | |
797 | struct address_space *mapping = inode->i_mapping; | |
798 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
799 | ||
800 | mark_buffer_dirty(bh); | |
801 | if (!mapping->assoc_mapping) { | |
802 | mapping->assoc_mapping = buffer_mapping; | |
803 | } else { | |
804 | if (mapping->assoc_mapping != buffer_mapping) | |
805 | BUG(); | |
806 | } | |
807 | if (list_empty(&bh->b_assoc_buffers)) { | |
808 | spin_lock(&buffer_mapping->private_lock); | |
809 | list_move_tail(&bh->b_assoc_buffers, | |
810 | &mapping->private_list); | |
811 | spin_unlock(&buffer_mapping->private_lock); | |
812 | } | |
813 | } | |
814 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | |
815 | ||
816 | /* | |
817 | * Add a page to the dirty page list. | |
818 | * | |
819 | * It is a sad fact of life that this function is called from several places | |
820 | * deeply under spinlocking. It may not sleep. | |
821 | * | |
822 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | |
823 | * dirty-state coherency between the page and the buffers. It the page does | |
824 | * not have buffers then when they are later attached they will all be set | |
825 | * dirty. | |
826 | * | |
827 | * The buffers are dirtied before the page is dirtied. There's a small race | |
828 | * window in which a writepage caller may see the page cleanness but not the | |
829 | * buffer dirtiness. That's fine. If this code were to set the page dirty | |
830 | * before the buffers, a concurrent writepage caller could clear the page dirty | |
831 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | |
832 | * page on the dirty page list. | |
833 | * | |
834 | * We use private_lock to lock against try_to_free_buffers while using the | |
835 | * page's buffer list. Also use this to protect against clean buffers being | |
836 | * added to the page after it was set dirty. | |
837 | * | |
838 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | |
839 | * address_space though. | |
840 | */ | |
841 | int __set_page_dirty_buffers(struct page *page) | |
842 | { | |
843 | struct address_space * const mapping = page->mapping; | |
844 | ||
845 | spin_lock(&mapping->private_lock); | |
846 | if (page_has_buffers(page)) { | |
847 | struct buffer_head *head = page_buffers(page); | |
848 | struct buffer_head *bh = head; | |
849 | ||
850 | do { | |
851 | set_buffer_dirty(bh); | |
852 | bh = bh->b_this_page; | |
853 | } while (bh != head); | |
854 | } | |
855 | spin_unlock(&mapping->private_lock); | |
856 | ||
857 | if (!TestSetPageDirty(page)) { | |
858 | write_lock_irq(&mapping->tree_lock); | |
859 | if (page->mapping) { /* Race with truncate? */ | |
860 | if (mapping_cap_account_dirty(mapping)) | |
861 | inc_page_state(nr_dirty); | |
862 | radix_tree_tag_set(&mapping->page_tree, | |
863 | page_index(page), | |
864 | PAGECACHE_TAG_DIRTY); | |
865 | } | |
866 | write_unlock_irq(&mapping->tree_lock); | |
867 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
868 | } | |
869 | ||
870 | return 0; | |
871 | } | |
872 | EXPORT_SYMBOL(__set_page_dirty_buffers); | |
873 | ||
874 | /* | |
875 | * Write out and wait upon a list of buffers. | |
876 | * | |
877 | * We have conflicting pressures: we want to make sure that all | |
878 | * initially dirty buffers get waited on, but that any subsequently | |
879 | * dirtied buffers don't. After all, we don't want fsync to last | |
880 | * forever if somebody is actively writing to the file. | |
881 | * | |
882 | * Do this in two main stages: first we copy dirty buffers to a | |
883 | * temporary inode list, queueing the writes as we go. Then we clean | |
884 | * up, waiting for those writes to complete. | |
885 | * | |
886 | * During this second stage, any subsequent updates to the file may end | |
887 | * up refiling the buffer on the original inode's dirty list again, so | |
888 | * there is a chance we will end up with a buffer queued for write but | |
889 | * not yet completed on that list. So, as a final cleanup we go through | |
890 | * the osync code to catch these locked, dirty buffers without requeuing | |
891 | * any newly dirty buffers for write. | |
892 | */ | |
893 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | |
894 | { | |
895 | struct buffer_head *bh; | |
896 | struct list_head tmp; | |
897 | int err = 0, err2; | |
898 | ||
899 | INIT_LIST_HEAD(&tmp); | |
900 | ||
901 | spin_lock(lock); | |
902 | while (!list_empty(list)) { | |
903 | bh = BH_ENTRY(list->next); | |
904 | list_del_init(&bh->b_assoc_buffers); | |
905 | if (buffer_dirty(bh) || buffer_locked(bh)) { | |
906 | list_add(&bh->b_assoc_buffers, &tmp); | |
907 | if (buffer_dirty(bh)) { | |
908 | get_bh(bh); | |
909 | spin_unlock(lock); | |
910 | /* | |
911 | * Ensure any pending I/O completes so that | |
912 | * ll_rw_block() actually writes the current | |
913 | * contents - it is a noop if I/O is still in | |
914 | * flight on potentially older contents. | |
915 | */ | |
a7662236 | 916 | ll_rw_block(SWRITE, 1, &bh); |
1da177e4 LT |
917 | brelse(bh); |
918 | spin_lock(lock); | |
919 | } | |
920 | } | |
921 | } | |
922 | ||
923 | while (!list_empty(&tmp)) { | |
924 | bh = BH_ENTRY(tmp.prev); | |
925 | __remove_assoc_queue(bh); | |
926 | get_bh(bh); | |
927 | spin_unlock(lock); | |
928 | wait_on_buffer(bh); | |
929 | if (!buffer_uptodate(bh)) | |
930 | err = -EIO; | |
931 | brelse(bh); | |
932 | spin_lock(lock); | |
933 | } | |
934 | ||
935 | spin_unlock(lock); | |
936 | err2 = osync_buffers_list(lock, list); | |
937 | if (err) | |
938 | return err; | |
939 | else | |
940 | return err2; | |
941 | } | |
942 | ||
943 | /* | |
944 | * Invalidate any and all dirty buffers on a given inode. We are | |
945 | * probably unmounting the fs, but that doesn't mean we have already | |
946 | * done a sync(). Just drop the buffers from the inode list. | |
947 | * | |
948 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | |
949 | * assumes that all the buffers are against the blockdev. Not true | |
950 | * for reiserfs. | |
951 | */ | |
952 | void invalidate_inode_buffers(struct inode *inode) | |
953 | { | |
954 | if (inode_has_buffers(inode)) { | |
955 | struct address_space *mapping = &inode->i_data; | |
956 | struct list_head *list = &mapping->private_list; | |
957 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
958 | ||
959 | spin_lock(&buffer_mapping->private_lock); | |
960 | while (!list_empty(list)) | |
961 | __remove_assoc_queue(BH_ENTRY(list->next)); | |
962 | spin_unlock(&buffer_mapping->private_lock); | |
963 | } | |
964 | } | |
965 | ||
966 | /* | |
967 | * Remove any clean buffers from the inode's buffer list. This is called | |
968 | * when we're trying to free the inode itself. Those buffers can pin it. | |
969 | * | |
970 | * Returns true if all buffers were removed. | |
971 | */ | |
972 | int remove_inode_buffers(struct inode *inode) | |
973 | { | |
974 | int ret = 1; | |
975 | ||
976 | if (inode_has_buffers(inode)) { | |
977 | struct address_space *mapping = &inode->i_data; | |
978 | struct list_head *list = &mapping->private_list; | |
979 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
980 | ||
981 | spin_lock(&buffer_mapping->private_lock); | |
982 | while (!list_empty(list)) { | |
983 | struct buffer_head *bh = BH_ENTRY(list->next); | |
984 | if (buffer_dirty(bh)) { | |
985 | ret = 0; | |
986 | break; | |
987 | } | |
988 | __remove_assoc_queue(bh); | |
989 | } | |
990 | spin_unlock(&buffer_mapping->private_lock); | |
991 | } | |
992 | return ret; | |
993 | } | |
994 | ||
995 | /* | |
996 | * Create the appropriate buffers when given a page for data area and | |
997 | * the size of each buffer.. Use the bh->b_this_page linked list to | |
998 | * follow the buffers created. Return NULL if unable to create more | |
999 | * buffers. | |
1000 | * | |
1001 | * The retry flag is used to differentiate async IO (paging, swapping) | |
1002 | * which may not fail from ordinary buffer allocations. | |
1003 | */ | |
1004 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | |
1005 | int retry) | |
1006 | { | |
1007 | struct buffer_head *bh, *head; | |
1008 | long offset; | |
1009 | ||
1010 | try_again: | |
1011 | head = NULL; | |
1012 | offset = PAGE_SIZE; | |
1013 | while ((offset -= size) >= 0) { | |
1014 | bh = alloc_buffer_head(GFP_NOFS); | |
1015 | if (!bh) | |
1016 | goto no_grow; | |
1017 | ||
1018 | bh->b_bdev = NULL; | |
1019 | bh->b_this_page = head; | |
1020 | bh->b_blocknr = -1; | |
1021 | head = bh; | |
1022 | ||
1023 | bh->b_state = 0; | |
1024 | atomic_set(&bh->b_count, 0); | |
1025 | bh->b_size = size; | |
1026 | ||
1027 | /* Link the buffer to its page */ | |
1028 | set_bh_page(bh, page, offset); | |
1029 | ||
01ffe339 | 1030 | init_buffer(bh, NULL, NULL); |
1da177e4 LT |
1031 | } |
1032 | return head; | |
1033 | /* | |
1034 | * In case anything failed, we just free everything we got. | |
1035 | */ | |
1036 | no_grow: | |
1037 | if (head) { | |
1038 | do { | |
1039 | bh = head; | |
1040 | head = head->b_this_page; | |
1041 | free_buffer_head(bh); | |
1042 | } while (head); | |
1043 | } | |
1044 | ||
1045 | /* | |
1046 | * Return failure for non-async IO requests. Async IO requests | |
1047 | * are not allowed to fail, so we have to wait until buffer heads | |
1048 | * become available. But we don't want tasks sleeping with | |
1049 | * partially complete buffers, so all were released above. | |
1050 | */ | |
1051 | if (!retry) | |
1052 | return NULL; | |
1053 | ||
1054 | /* We're _really_ low on memory. Now we just | |
1055 | * wait for old buffer heads to become free due to | |
1056 | * finishing IO. Since this is an async request and | |
1057 | * the reserve list is empty, we're sure there are | |
1058 | * async buffer heads in use. | |
1059 | */ | |
1060 | free_more_memory(); | |
1061 | goto try_again; | |
1062 | } | |
1063 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | |
1064 | ||
1065 | static inline void | |
1066 | link_dev_buffers(struct page *page, struct buffer_head *head) | |
1067 | { | |
1068 | struct buffer_head *bh, *tail; | |
1069 | ||
1070 | bh = head; | |
1071 | do { | |
1072 | tail = bh; | |
1073 | bh = bh->b_this_page; | |
1074 | } while (bh); | |
1075 | tail->b_this_page = head; | |
1076 | attach_page_buffers(page, head); | |
1077 | } | |
1078 | ||
1079 | /* | |
1080 | * Initialise the state of a blockdev page's buffers. | |
1081 | */ | |
1082 | static void | |
1083 | init_page_buffers(struct page *page, struct block_device *bdev, | |
1084 | sector_t block, int size) | |
1085 | { | |
1086 | struct buffer_head *head = page_buffers(page); | |
1087 | struct buffer_head *bh = head; | |
1088 | int uptodate = PageUptodate(page); | |
1089 | ||
1090 | do { | |
1091 | if (!buffer_mapped(bh)) { | |
1092 | init_buffer(bh, NULL, NULL); | |
1093 | bh->b_bdev = bdev; | |
1094 | bh->b_blocknr = block; | |
1095 | if (uptodate) | |
1096 | set_buffer_uptodate(bh); | |
1097 | set_buffer_mapped(bh); | |
1098 | } | |
1099 | block++; | |
1100 | bh = bh->b_this_page; | |
1101 | } while (bh != head); | |
1102 | } | |
1103 | ||
1104 | /* | |
1105 | * Create the page-cache page that contains the requested block. | |
1106 | * | |
1107 | * This is user purely for blockdev mappings. | |
1108 | */ | |
1109 | static struct page * | |
1110 | grow_dev_page(struct block_device *bdev, sector_t block, | |
1111 | pgoff_t index, int size) | |
1112 | { | |
1113 | struct inode *inode = bdev->bd_inode; | |
1114 | struct page *page; | |
1115 | struct buffer_head *bh; | |
1116 | ||
1117 | page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | |
1118 | if (!page) | |
1119 | return NULL; | |
1120 | ||
1121 | if (!PageLocked(page)) | |
1122 | BUG(); | |
1123 | ||
1124 | if (page_has_buffers(page)) { | |
1125 | bh = page_buffers(page); | |
1126 | if (bh->b_size == size) { | |
1127 | init_page_buffers(page, bdev, block, size); | |
1128 | return page; | |
1129 | } | |
1130 | if (!try_to_free_buffers(page)) | |
1131 | goto failed; | |
1132 | } | |
1133 | ||
1134 | /* | |
1135 | * Allocate some buffers for this page | |
1136 | */ | |
1137 | bh = alloc_page_buffers(page, size, 0); | |
1138 | if (!bh) | |
1139 | goto failed; | |
1140 | ||
1141 | /* | |
1142 | * Link the page to the buffers and initialise them. Take the | |
1143 | * lock to be atomic wrt __find_get_block(), which does not | |
1144 | * run under the page lock. | |
1145 | */ | |
1146 | spin_lock(&inode->i_mapping->private_lock); | |
1147 | link_dev_buffers(page, bh); | |
1148 | init_page_buffers(page, bdev, block, size); | |
1149 | spin_unlock(&inode->i_mapping->private_lock); | |
1150 | return page; | |
1151 | ||
1152 | failed: | |
1153 | BUG(); | |
1154 | unlock_page(page); | |
1155 | page_cache_release(page); | |
1156 | return NULL; | |
1157 | } | |
1158 | ||
1159 | /* | |
1160 | * Create buffers for the specified block device block's page. If | |
1161 | * that page was dirty, the buffers are set dirty also. | |
1162 | * | |
1163 | * Except that's a bug. Attaching dirty buffers to a dirty | |
1164 | * blockdev's page can result in filesystem corruption, because | |
1165 | * some of those buffers may be aliases of filesystem data. | |
1166 | * grow_dev_page() will go BUG() if this happens. | |
1167 | */ | |
858119e1 | 1168 | static int |
1da177e4 LT |
1169 | grow_buffers(struct block_device *bdev, sector_t block, int size) |
1170 | { | |
1171 | struct page *page; | |
1172 | pgoff_t index; | |
1173 | int sizebits; | |
1174 | ||
1175 | sizebits = -1; | |
1176 | do { | |
1177 | sizebits++; | |
1178 | } while ((size << sizebits) < PAGE_SIZE); | |
1179 | ||
1180 | index = block >> sizebits; | |
1181 | block = index << sizebits; | |
1182 | ||
1183 | /* Create a page with the proper size buffers.. */ | |
1184 | page = grow_dev_page(bdev, block, index, size); | |
1185 | if (!page) | |
1186 | return 0; | |
1187 | unlock_page(page); | |
1188 | page_cache_release(page); | |
1189 | return 1; | |
1190 | } | |
1191 | ||
75c96f85 | 1192 | static struct buffer_head * |
1da177e4 LT |
1193 | __getblk_slow(struct block_device *bdev, sector_t block, int size) |
1194 | { | |
1195 | /* Size must be multiple of hard sectorsize */ | |
1196 | if (unlikely(size & (bdev_hardsect_size(bdev)-1) || | |
1197 | (size < 512 || size > PAGE_SIZE))) { | |
1198 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | |
1199 | size); | |
1200 | printk(KERN_ERR "hardsect size: %d\n", | |
1201 | bdev_hardsect_size(bdev)); | |
1202 | ||
1203 | dump_stack(); | |
1204 | return NULL; | |
1205 | } | |
1206 | ||
1207 | for (;;) { | |
1208 | struct buffer_head * bh; | |
1209 | ||
1210 | bh = __find_get_block(bdev, block, size); | |
1211 | if (bh) | |
1212 | return bh; | |
1213 | ||
1214 | if (!grow_buffers(bdev, block, size)) | |
1215 | free_more_memory(); | |
1216 | } | |
1217 | } | |
1218 | ||
1219 | /* | |
1220 | * The relationship between dirty buffers and dirty pages: | |
1221 | * | |
1222 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | |
1223 | * the page is tagged dirty in its radix tree. | |
1224 | * | |
1225 | * At all times, the dirtiness of the buffers represents the dirtiness of | |
1226 | * subsections of the page. If the page has buffers, the page dirty bit is | |
1227 | * merely a hint about the true dirty state. | |
1228 | * | |
1229 | * When a page is set dirty in its entirety, all its buffers are marked dirty | |
1230 | * (if the page has buffers). | |
1231 | * | |
1232 | * When a buffer is marked dirty, its page is dirtied, but the page's other | |
1233 | * buffers are not. | |
1234 | * | |
1235 | * Also. When blockdev buffers are explicitly read with bread(), they | |
1236 | * individually become uptodate. But their backing page remains not | |
1237 | * uptodate - even if all of its buffers are uptodate. A subsequent | |
1238 | * block_read_full_page() against that page will discover all the uptodate | |
1239 | * buffers, will set the page uptodate and will perform no I/O. | |
1240 | */ | |
1241 | ||
1242 | /** | |
1243 | * mark_buffer_dirty - mark a buffer_head as needing writeout | |
67be2dd1 | 1244 | * @bh: the buffer_head to mark dirty |
1da177e4 LT |
1245 | * |
1246 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set its | |
1247 | * backing page dirty, then tag the page as dirty in its address_space's radix | |
1248 | * tree and then attach the address_space's inode to its superblock's dirty | |
1249 | * inode list. | |
1250 | * | |
1251 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | |
1252 | * mapping->tree_lock and the global inode_lock. | |
1253 | */ | |
1254 | void fastcall mark_buffer_dirty(struct buffer_head *bh) | |
1255 | { | |
1256 | if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) | |
1257 | __set_page_dirty_nobuffers(bh->b_page); | |
1258 | } | |
1259 | ||
1260 | /* | |
1261 | * Decrement a buffer_head's reference count. If all buffers against a page | |
1262 | * have zero reference count, are clean and unlocked, and if the page is clean | |
1263 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | |
1264 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | |
1265 | * a page but it ends up not being freed, and buffers may later be reattached). | |
1266 | */ | |
1267 | void __brelse(struct buffer_head * buf) | |
1268 | { | |
1269 | if (atomic_read(&buf->b_count)) { | |
1270 | put_bh(buf); | |
1271 | return; | |
1272 | } | |
1273 | printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); | |
1274 | WARN_ON(1); | |
1275 | } | |
1276 | ||
1277 | /* | |
1278 | * bforget() is like brelse(), except it discards any | |
1279 | * potentially dirty data. | |
1280 | */ | |
1281 | void __bforget(struct buffer_head *bh) | |
1282 | { | |
1283 | clear_buffer_dirty(bh); | |
1284 | if (!list_empty(&bh->b_assoc_buffers)) { | |
1285 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
1286 | ||
1287 | spin_lock(&buffer_mapping->private_lock); | |
1288 | list_del_init(&bh->b_assoc_buffers); | |
1289 | spin_unlock(&buffer_mapping->private_lock); | |
1290 | } | |
1291 | __brelse(bh); | |
1292 | } | |
1293 | ||
1294 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | |
1295 | { | |
1296 | lock_buffer(bh); | |
1297 | if (buffer_uptodate(bh)) { | |
1298 | unlock_buffer(bh); | |
1299 | return bh; | |
1300 | } else { | |
1301 | get_bh(bh); | |
1302 | bh->b_end_io = end_buffer_read_sync; | |
1303 | submit_bh(READ, bh); | |
1304 | wait_on_buffer(bh); | |
1305 | if (buffer_uptodate(bh)) | |
1306 | return bh; | |
1307 | } | |
1308 | brelse(bh); | |
1309 | return NULL; | |
1310 | } | |
1311 | ||
1312 | /* | |
1313 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | |
1314 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | |
1315 | * refcount elevated by one when they're in an LRU. A buffer can only appear | |
1316 | * once in a particular CPU's LRU. A single buffer can be present in multiple | |
1317 | * CPU's LRUs at the same time. | |
1318 | * | |
1319 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | |
1320 | * sb_find_get_block(). | |
1321 | * | |
1322 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | |
1323 | * a local interrupt disable for that. | |
1324 | */ | |
1325 | ||
1326 | #define BH_LRU_SIZE 8 | |
1327 | ||
1328 | struct bh_lru { | |
1329 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1330 | }; | |
1331 | ||
1332 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | |
1333 | ||
1334 | #ifdef CONFIG_SMP | |
1335 | #define bh_lru_lock() local_irq_disable() | |
1336 | #define bh_lru_unlock() local_irq_enable() | |
1337 | #else | |
1338 | #define bh_lru_lock() preempt_disable() | |
1339 | #define bh_lru_unlock() preempt_enable() | |
1340 | #endif | |
1341 | ||
1342 | static inline void check_irqs_on(void) | |
1343 | { | |
1344 | #ifdef irqs_disabled | |
1345 | BUG_ON(irqs_disabled()); | |
1346 | #endif | |
1347 | } | |
1348 | ||
1349 | /* | |
1350 | * The LRU management algorithm is dopey-but-simple. Sorry. | |
1351 | */ | |
1352 | static void bh_lru_install(struct buffer_head *bh) | |
1353 | { | |
1354 | struct buffer_head *evictee = NULL; | |
1355 | struct bh_lru *lru; | |
1356 | ||
1357 | check_irqs_on(); | |
1358 | bh_lru_lock(); | |
1359 | lru = &__get_cpu_var(bh_lrus); | |
1360 | if (lru->bhs[0] != bh) { | |
1361 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1362 | int in; | |
1363 | int out = 0; | |
1364 | ||
1365 | get_bh(bh); | |
1366 | bhs[out++] = bh; | |
1367 | for (in = 0; in < BH_LRU_SIZE; in++) { | |
1368 | struct buffer_head *bh2 = lru->bhs[in]; | |
1369 | ||
1370 | if (bh2 == bh) { | |
1371 | __brelse(bh2); | |
1372 | } else { | |
1373 | if (out >= BH_LRU_SIZE) { | |
1374 | BUG_ON(evictee != NULL); | |
1375 | evictee = bh2; | |
1376 | } else { | |
1377 | bhs[out++] = bh2; | |
1378 | } | |
1379 | } | |
1380 | } | |
1381 | while (out < BH_LRU_SIZE) | |
1382 | bhs[out++] = NULL; | |
1383 | memcpy(lru->bhs, bhs, sizeof(bhs)); | |
1384 | } | |
1385 | bh_lru_unlock(); | |
1386 | ||
1387 | if (evictee) | |
1388 | __brelse(evictee); | |
1389 | } | |
1390 | ||
1391 | /* | |
1392 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | |
1393 | */ | |
858119e1 | 1394 | static struct buffer_head * |
1da177e4 LT |
1395 | lookup_bh_lru(struct block_device *bdev, sector_t block, int size) |
1396 | { | |
1397 | struct buffer_head *ret = NULL; | |
1398 | struct bh_lru *lru; | |
1399 | int i; | |
1400 | ||
1401 | check_irqs_on(); | |
1402 | bh_lru_lock(); | |
1403 | lru = &__get_cpu_var(bh_lrus); | |
1404 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1405 | struct buffer_head *bh = lru->bhs[i]; | |
1406 | ||
1407 | if (bh && bh->b_bdev == bdev && | |
1408 | bh->b_blocknr == block && bh->b_size == size) { | |
1409 | if (i) { | |
1410 | while (i) { | |
1411 | lru->bhs[i] = lru->bhs[i - 1]; | |
1412 | i--; | |
1413 | } | |
1414 | lru->bhs[0] = bh; | |
1415 | } | |
1416 | get_bh(bh); | |
1417 | ret = bh; | |
1418 | break; | |
1419 | } | |
1420 | } | |
1421 | bh_lru_unlock(); | |
1422 | return ret; | |
1423 | } | |
1424 | ||
1425 | /* | |
1426 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | |
1427 | * it in the LRU and mark it as accessed. If it is not present then return | |
1428 | * NULL | |
1429 | */ | |
1430 | struct buffer_head * | |
1431 | __find_get_block(struct block_device *bdev, sector_t block, int size) | |
1432 | { | |
1433 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | |
1434 | ||
1435 | if (bh == NULL) { | |
385fd4c5 | 1436 | bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1437 | if (bh) |
1438 | bh_lru_install(bh); | |
1439 | } | |
1440 | if (bh) | |
1441 | touch_buffer(bh); | |
1442 | return bh; | |
1443 | } | |
1444 | EXPORT_SYMBOL(__find_get_block); | |
1445 | ||
1446 | /* | |
1447 | * __getblk will locate (and, if necessary, create) the buffer_head | |
1448 | * which corresponds to the passed block_device, block and size. The | |
1449 | * returned buffer has its reference count incremented. | |
1450 | * | |
1451 | * __getblk() cannot fail - it just keeps trying. If you pass it an | |
1452 | * illegal block number, __getblk() will happily return a buffer_head | |
1453 | * which represents the non-existent block. Very weird. | |
1454 | * | |
1455 | * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() | |
1456 | * attempt is failing. FIXME, perhaps? | |
1457 | */ | |
1458 | struct buffer_head * | |
1459 | __getblk(struct block_device *bdev, sector_t block, int size) | |
1460 | { | |
1461 | struct buffer_head *bh = __find_get_block(bdev, block, size); | |
1462 | ||
1463 | might_sleep(); | |
1464 | if (bh == NULL) | |
1465 | bh = __getblk_slow(bdev, block, size); | |
1466 | return bh; | |
1467 | } | |
1468 | EXPORT_SYMBOL(__getblk); | |
1469 | ||
1470 | /* | |
1471 | * Do async read-ahead on a buffer.. | |
1472 | */ | |
1473 | void __breadahead(struct block_device *bdev, sector_t block, int size) | |
1474 | { | |
1475 | struct buffer_head *bh = __getblk(bdev, block, size); | |
a3e713b5 AM |
1476 | if (likely(bh)) { |
1477 | ll_rw_block(READA, 1, &bh); | |
1478 | brelse(bh); | |
1479 | } | |
1da177e4 LT |
1480 | } |
1481 | EXPORT_SYMBOL(__breadahead); | |
1482 | ||
1483 | /** | |
1484 | * __bread() - reads a specified block and returns the bh | |
67be2dd1 | 1485 | * @bdev: the block_device to read from |
1da177e4 LT |
1486 | * @block: number of block |
1487 | * @size: size (in bytes) to read | |
1488 | * | |
1489 | * Reads a specified block, and returns buffer head that contains it. | |
1490 | * It returns NULL if the block was unreadable. | |
1491 | */ | |
1492 | struct buffer_head * | |
1493 | __bread(struct block_device *bdev, sector_t block, int size) | |
1494 | { | |
1495 | struct buffer_head *bh = __getblk(bdev, block, size); | |
1496 | ||
a3e713b5 | 1497 | if (likely(bh) && !buffer_uptodate(bh)) |
1da177e4 LT |
1498 | bh = __bread_slow(bh); |
1499 | return bh; | |
1500 | } | |
1501 | EXPORT_SYMBOL(__bread); | |
1502 | ||
1503 | /* | |
1504 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | |
1505 | * This doesn't race because it runs in each cpu either in irq | |
1506 | * or with preempt disabled. | |
1507 | */ | |
1508 | static void invalidate_bh_lru(void *arg) | |
1509 | { | |
1510 | struct bh_lru *b = &get_cpu_var(bh_lrus); | |
1511 | int i; | |
1512 | ||
1513 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1514 | brelse(b->bhs[i]); | |
1515 | b->bhs[i] = NULL; | |
1516 | } | |
1517 | put_cpu_var(bh_lrus); | |
1518 | } | |
1519 | ||
1520 | static void invalidate_bh_lrus(void) | |
1521 | { | |
1522 | on_each_cpu(invalidate_bh_lru, NULL, 1, 1); | |
1523 | } | |
1524 | ||
1525 | void set_bh_page(struct buffer_head *bh, | |
1526 | struct page *page, unsigned long offset) | |
1527 | { | |
1528 | bh->b_page = page; | |
1529 | if (offset >= PAGE_SIZE) | |
1530 | BUG(); | |
1531 | if (PageHighMem(page)) | |
1532 | /* | |
1533 | * This catches illegal uses and preserves the offset: | |
1534 | */ | |
1535 | bh->b_data = (char *)(0 + offset); | |
1536 | else | |
1537 | bh->b_data = page_address(page) + offset; | |
1538 | } | |
1539 | EXPORT_SYMBOL(set_bh_page); | |
1540 | ||
1541 | /* | |
1542 | * Called when truncating a buffer on a page completely. | |
1543 | */ | |
858119e1 | 1544 | static void discard_buffer(struct buffer_head * bh) |
1da177e4 LT |
1545 | { |
1546 | lock_buffer(bh); | |
1547 | clear_buffer_dirty(bh); | |
1548 | bh->b_bdev = NULL; | |
1549 | clear_buffer_mapped(bh); | |
1550 | clear_buffer_req(bh); | |
1551 | clear_buffer_new(bh); | |
1552 | clear_buffer_delay(bh); | |
1553 | unlock_buffer(bh); | |
1554 | } | |
1555 | ||
1556 | /** | |
1557 | * try_to_release_page() - release old fs-specific metadata on a page | |
1558 | * | |
1559 | * @page: the page which the kernel is trying to free | |
1560 | * @gfp_mask: memory allocation flags (and I/O mode) | |
1561 | * | |
1562 | * The address_space is to try to release any data against the page | |
1563 | * (presumably at page->private). If the release was successful, return `1'. | |
1564 | * Otherwise return zero. | |
1565 | * | |
1566 | * The @gfp_mask argument specifies whether I/O may be performed to release | |
1567 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). | |
1568 | * | |
1569 | * NOTE: @gfp_mask may go away, and this function may become non-blocking. | |
1570 | */ | |
27496a8c | 1571 | int try_to_release_page(struct page *page, gfp_t gfp_mask) |
1da177e4 LT |
1572 | { |
1573 | struct address_space * const mapping = page->mapping; | |
1574 | ||
1575 | BUG_ON(!PageLocked(page)); | |
1576 | if (PageWriteback(page)) | |
1577 | return 0; | |
1578 | ||
1579 | if (mapping && mapping->a_ops->releasepage) | |
1580 | return mapping->a_ops->releasepage(page, gfp_mask); | |
1581 | return try_to_free_buffers(page); | |
1582 | } | |
1583 | EXPORT_SYMBOL(try_to_release_page); | |
1584 | ||
1585 | /** | |
1586 | * block_invalidatepage - invalidate part of all of a buffer-backed page | |
1587 | * | |
1588 | * @page: the page which is affected | |
1589 | * @offset: the index of the truncation point | |
1590 | * | |
1591 | * block_invalidatepage() is called when all or part of the page has become | |
1592 | * invalidatedby a truncate operation. | |
1593 | * | |
1594 | * block_invalidatepage() does not have to release all buffers, but it must | |
1595 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
1596 | * is underway against any of the blocks which are outside the truncation | |
1597 | * point. Because the caller is about to free (and possibly reuse) those | |
1598 | * blocks on-disk. | |
1599 | */ | |
1600 | int block_invalidatepage(struct page *page, unsigned long offset) | |
1601 | { | |
1602 | struct buffer_head *head, *bh, *next; | |
1603 | unsigned int curr_off = 0; | |
1604 | int ret = 1; | |
1605 | ||
1606 | BUG_ON(!PageLocked(page)); | |
1607 | if (!page_has_buffers(page)) | |
1608 | goto out; | |
1609 | ||
1610 | head = page_buffers(page); | |
1611 | bh = head; | |
1612 | do { | |
1613 | unsigned int next_off = curr_off + bh->b_size; | |
1614 | next = bh->b_this_page; | |
1615 | ||
1616 | /* | |
1617 | * is this block fully invalidated? | |
1618 | */ | |
1619 | if (offset <= curr_off) | |
1620 | discard_buffer(bh); | |
1621 | curr_off = next_off; | |
1622 | bh = next; | |
1623 | } while (bh != head); | |
1624 | ||
1625 | /* | |
1626 | * We release buffers only if the entire page is being invalidated. | |
1627 | * The get_block cached value has been unconditionally invalidated, | |
1628 | * so real IO is not possible anymore. | |
1629 | */ | |
1630 | if (offset == 0) | |
1631 | ret = try_to_release_page(page, 0); | |
1632 | out: | |
1633 | return ret; | |
1634 | } | |
1635 | EXPORT_SYMBOL(block_invalidatepage); | |
1636 | ||
aaa4059b JK |
1637 | int do_invalidatepage(struct page *page, unsigned long offset) |
1638 | { | |
1639 | int (*invalidatepage)(struct page *, unsigned long); | |
1640 | invalidatepage = page->mapping->a_ops->invalidatepage; | |
1641 | if (invalidatepage == NULL) | |
1642 | invalidatepage = block_invalidatepage; | |
1643 | return (*invalidatepage)(page, offset); | |
1644 | } | |
1645 | ||
1da177e4 LT |
1646 | /* |
1647 | * We attach and possibly dirty the buffers atomically wrt | |
1648 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | |
1649 | * is already excluded via the page lock. | |
1650 | */ | |
1651 | void create_empty_buffers(struct page *page, | |
1652 | unsigned long blocksize, unsigned long b_state) | |
1653 | { | |
1654 | struct buffer_head *bh, *head, *tail; | |
1655 | ||
1656 | head = alloc_page_buffers(page, blocksize, 1); | |
1657 | bh = head; | |
1658 | do { | |
1659 | bh->b_state |= b_state; | |
1660 | tail = bh; | |
1661 | bh = bh->b_this_page; | |
1662 | } while (bh); | |
1663 | tail->b_this_page = head; | |
1664 | ||
1665 | spin_lock(&page->mapping->private_lock); | |
1666 | if (PageUptodate(page) || PageDirty(page)) { | |
1667 | bh = head; | |
1668 | do { | |
1669 | if (PageDirty(page)) | |
1670 | set_buffer_dirty(bh); | |
1671 | if (PageUptodate(page)) | |
1672 | set_buffer_uptodate(bh); | |
1673 | bh = bh->b_this_page; | |
1674 | } while (bh != head); | |
1675 | } | |
1676 | attach_page_buffers(page, head); | |
1677 | spin_unlock(&page->mapping->private_lock); | |
1678 | } | |
1679 | EXPORT_SYMBOL(create_empty_buffers); | |
1680 | ||
1681 | /* | |
1682 | * We are taking a block for data and we don't want any output from any | |
1683 | * buffer-cache aliases starting from return from that function and | |
1684 | * until the moment when something will explicitly mark the buffer | |
1685 | * dirty (hopefully that will not happen until we will free that block ;-) | |
1686 | * We don't even need to mark it not-uptodate - nobody can expect | |
1687 | * anything from a newly allocated buffer anyway. We used to used | |
1688 | * unmap_buffer() for such invalidation, but that was wrong. We definitely | |
1689 | * don't want to mark the alias unmapped, for example - it would confuse | |
1690 | * anyone who might pick it with bread() afterwards... | |
1691 | * | |
1692 | * Also.. Note that bforget() doesn't lock the buffer. So there can | |
1693 | * be writeout I/O going on against recently-freed buffers. We don't | |
1694 | * wait on that I/O in bforget() - it's more efficient to wait on the I/O | |
1695 | * only if we really need to. That happens here. | |
1696 | */ | |
1697 | void unmap_underlying_metadata(struct block_device *bdev, sector_t block) | |
1698 | { | |
1699 | struct buffer_head *old_bh; | |
1700 | ||
1701 | might_sleep(); | |
1702 | ||
385fd4c5 | 1703 | old_bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1704 | if (old_bh) { |
1705 | clear_buffer_dirty(old_bh); | |
1706 | wait_on_buffer(old_bh); | |
1707 | clear_buffer_req(old_bh); | |
1708 | __brelse(old_bh); | |
1709 | } | |
1710 | } | |
1711 | EXPORT_SYMBOL(unmap_underlying_metadata); | |
1712 | ||
1713 | /* | |
1714 | * NOTE! All mapped/uptodate combinations are valid: | |
1715 | * | |
1716 | * Mapped Uptodate Meaning | |
1717 | * | |
1718 | * No No "unknown" - must do get_block() | |
1719 | * No Yes "hole" - zero-filled | |
1720 | * Yes No "allocated" - allocated on disk, not read in | |
1721 | * Yes Yes "valid" - allocated and up-to-date in memory. | |
1722 | * | |
1723 | * "Dirty" is valid only with the last case (mapped+uptodate). | |
1724 | */ | |
1725 | ||
1726 | /* | |
1727 | * While block_write_full_page is writing back the dirty buffers under | |
1728 | * the page lock, whoever dirtied the buffers may decide to clean them | |
1729 | * again at any time. We handle that by only looking at the buffer | |
1730 | * state inside lock_buffer(). | |
1731 | * | |
1732 | * If block_write_full_page() is called for regular writeback | |
1733 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | |
1734 | * locked buffer. This only can happen if someone has written the buffer | |
1735 | * directly, with submit_bh(). At the address_space level PageWriteback | |
1736 | * prevents this contention from occurring. | |
1737 | */ | |
1738 | static int __block_write_full_page(struct inode *inode, struct page *page, | |
1739 | get_block_t *get_block, struct writeback_control *wbc) | |
1740 | { | |
1741 | int err; | |
1742 | sector_t block; | |
1743 | sector_t last_block; | |
f0fbd5fc | 1744 | struct buffer_head *bh, *head; |
1da177e4 LT |
1745 | int nr_underway = 0; |
1746 | ||
1747 | BUG_ON(!PageLocked(page)); | |
1748 | ||
1749 | last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; | |
1750 | ||
1751 | if (!page_has_buffers(page)) { | |
1752 | create_empty_buffers(page, 1 << inode->i_blkbits, | |
1753 | (1 << BH_Dirty)|(1 << BH_Uptodate)); | |
1754 | } | |
1755 | ||
1756 | /* | |
1757 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | |
1758 | * here, and the (potentially unmapped) buffers may become dirty at | |
1759 | * any time. If a buffer becomes dirty here after we've inspected it | |
1760 | * then we just miss that fact, and the page stays dirty. | |
1761 | * | |
1762 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | |
1763 | * handle that here by just cleaning them. | |
1764 | */ | |
1765 | ||
54b21a79 | 1766 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
1767 | head = page_buffers(page); |
1768 | bh = head; | |
1769 | ||
1770 | /* | |
1771 | * Get all the dirty buffers mapped to disk addresses and | |
1772 | * handle any aliases from the underlying blockdev's mapping. | |
1773 | */ | |
1774 | do { | |
1775 | if (block > last_block) { | |
1776 | /* | |
1777 | * mapped buffers outside i_size will occur, because | |
1778 | * this page can be outside i_size when there is a | |
1779 | * truncate in progress. | |
1780 | */ | |
1781 | /* | |
1782 | * The buffer was zeroed by block_write_full_page() | |
1783 | */ | |
1784 | clear_buffer_dirty(bh); | |
1785 | set_buffer_uptodate(bh); | |
1786 | } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { | |
1787 | err = get_block(inode, block, bh, 1); | |
1788 | if (err) | |
1789 | goto recover; | |
1790 | if (buffer_new(bh)) { | |
1791 | /* blockdev mappings never come here */ | |
1792 | clear_buffer_new(bh); | |
1793 | unmap_underlying_metadata(bh->b_bdev, | |
1794 | bh->b_blocknr); | |
1795 | } | |
1796 | } | |
1797 | bh = bh->b_this_page; | |
1798 | block++; | |
1799 | } while (bh != head); | |
1800 | ||
1801 | do { | |
1da177e4 LT |
1802 | if (!buffer_mapped(bh)) |
1803 | continue; | |
1804 | /* | |
1805 | * If it's a fully non-blocking write attempt and we cannot | |
1806 | * lock the buffer then redirty the page. Note that this can | |
1807 | * potentially cause a busy-wait loop from pdflush and kswapd | |
1808 | * activity, but those code paths have their own higher-level | |
1809 | * throttling. | |
1810 | */ | |
1811 | if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { | |
1812 | lock_buffer(bh); | |
1813 | } else if (test_set_buffer_locked(bh)) { | |
1814 | redirty_page_for_writepage(wbc, page); | |
1815 | continue; | |
1816 | } | |
1817 | if (test_clear_buffer_dirty(bh)) { | |
1818 | mark_buffer_async_write(bh); | |
1819 | } else { | |
1820 | unlock_buffer(bh); | |
1821 | } | |
1822 | } while ((bh = bh->b_this_page) != head); | |
1823 | ||
1824 | /* | |
1825 | * The page and its buffers are protected by PageWriteback(), so we can | |
1826 | * drop the bh refcounts early. | |
1827 | */ | |
1828 | BUG_ON(PageWriteback(page)); | |
1829 | set_page_writeback(page); | |
1da177e4 LT |
1830 | |
1831 | do { | |
1832 | struct buffer_head *next = bh->b_this_page; | |
1833 | if (buffer_async_write(bh)) { | |
1834 | submit_bh(WRITE, bh); | |
1835 | nr_underway++; | |
1836 | } | |
1da177e4 LT |
1837 | bh = next; |
1838 | } while (bh != head); | |
05937baa | 1839 | unlock_page(page); |
1da177e4 LT |
1840 | |
1841 | err = 0; | |
1842 | done: | |
1843 | if (nr_underway == 0) { | |
1844 | /* | |
1845 | * The page was marked dirty, but the buffers were | |
1846 | * clean. Someone wrote them back by hand with | |
1847 | * ll_rw_block/submit_bh. A rare case. | |
1848 | */ | |
1849 | int uptodate = 1; | |
1850 | do { | |
1851 | if (!buffer_uptodate(bh)) { | |
1852 | uptodate = 0; | |
1853 | break; | |
1854 | } | |
1855 | bh = bh->b_this_page; | |
1856 | } while (bh != head); | |
1857 | if (uptodate) | |
1858 | SetPageUptodate(page); | |
1859 | end_page_writeback(page); | |
1860 | /* | |
1861 | * The page and buffer_heads can be released at any time from | |
1862 | * here on. | |
1863 | */ | |
1864 | wbc->pages_skipped++; /* We didn't write this page */ | |
1865 | } | |
1866 | return err; | |
1867 | ||
1868 | recover: | |
1869 | /* | |
1870 | * ENOSPC, or some other error. We may already have added some | |
1871 | * blocks to the file, so we need to write these out to avoid | |
1872 | * exposing stale data. | |
1873 | * The page is currently locked and not marked for writeback | |
1874 | */ | |
1875 | bh = head; | |
1876 | /* Recovery: lock and submit the mapped buffers */ | |
1877 | do { | |
1da177e4 LT |
1878 | if (buffer_mapped(bh) && buffer_dirty(bh)) { |
1879 | lock_buffer(bh); | |
1880 | mark_buffer_async_write(bh); | |
1881 | } else { | |
1882 | /* | |
1883 | * The buffer may have been set dirty during | |
1884 | * attachment to a dirty page. | |
1885 | */ | |
1886 | clear_buffer_dirty(bh); | |
1887 | } | |
1888 | } while ((bh = bh->b_this_page) != head); | |
1889 | SetPageError(page); | |
1890 | BUG_ON(PageWriteback(page)); | |
1891 | set_page_writeback(page); | |
1892 | unlock_page(page); | |
1893 | do { | |
1894 | struct buffer_head *next = bh->b_this_page; | |
1895 | if (buffer_async_write(bh)) { | |
1896 | clear_buffer_dirty(bh); | |
1897 | submit_bh(WRITE, bh); | |
1898 | nr_underway++; | |
1899 | } | |
1da177e4 LT |
1900 | bh = next; |
1901 | } while (bh != head); | |
1902 | goto done; | |
1903 | } | |
1904 | ||
1905 | static int __block_prepare_write(struct inode *inode, struct page *page, | |
1906 | unsigned from, unsigned to, get_block_t *get_block) | |
1907 | { | |
1908 | unsigned block_start, block_end; | |
1909 | sector_t block; | |
1910 | int err = 0; | |
1911 | unsigned blocksize, bbits; | |
1912 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | |
1913 | ||
1914 | BUG_ON(!PageLocked(page)); | |
1915 | BUG_ON(from > PAGE_CACHE_SIZE); | |
1916 | BUG_ON(to > PAGE_CACHE_SIZE); | |
1917 | BUG_ON(from > to); | |
1918 | ||
1919 | blocksize = 1 << inode->i_blkbits; | |
1920 | if (!page_has_buffers(page)) | |
1921 | create_empty_buffers(page, blocksize, 0); | |
1922 | head = page_buffers(page); | |
1923 | ||
1924 | bbits = inode->i_blkbits; | |
1925 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); | |
1926 | ||
1927 | for(bh = head, block_start = 0; bh != head || !block_start; | |
1928 | block++, block_start=block_end, bh = bh->b_this_page) { | |
1929 | block_end = block_start + blocksize; | |
1930 | if (block_end <= from || block_start >= to) { | |
1931 | if (PageUptodate(page)) { | |
1932 | if (!buffer_uptodate(bh)) | |
1933 | set_buffer_uptodate(bh); | |
1934 | } | |
1935 | continue; | |
1936 | } | |
1937 | if (buffer_new(bh)) | |
1938 | clear_buffer_new(bh); | |
1939 | if (!buffer_mapped(bh)) { | |
1940 | err = get_block(inode, block, bh, 1); | |
1941 | if (err) | |
f3ddbdc6 | 1942 | break; |
1da177e4 | 1943 | if (buffer_new(bh)) { |
1da177e4 LT |
1944 | unmap_underlying_metadata(bh->b_bdev, |
1945 | bh->b_blocknr); | |
1946 | if (PageUptodate(page)) { | |
1947 | set_buffer_uptodate(bh); | |
1948 | continue; | |
1949 | } | |
1950 | if (block_end > to || block_start < from) { | |
1951 | void *kaddr; | |
1952 | ||
1953 | kaddr = kmap_atomic(page, KM_USER0); | |
1954 | if (block_end > to) | |
1955 | memset(kaddr+to, 0, | |
1956 | block_end-to); | |
1957 | if (block_start < from) | |
1958 | memset(kaddr+block_start, | |
1959 | 0, from-block_start); | |
1960 | flush_dcache_page(page); | |
1961 | kunmap_atomic(kaddr, KM_USER0); | |
1962 | } | |
1963 | continue; | |
1964 | } | |
1965 | } | |
1966 | if (PageUptodate(page)) { | |
1967 | if (!buffer_uptodate(bh)) | |
1968 | set_buffer_uptodate(bh); | |
1969 | continue; | |
1970 | } | |
1971 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
1972 | (block_start < from || block_end > to)) { | |
1973 | ll_rw_block(READ, 1, &bh); | |
1974 | *wait_bh++=bh; | |
1975 | } | |
1976 | } | |
1977 | /* | |
1978 | * If we issued read requests - let them complete. | |
1979 | */ | |
1980 | while(wait_bh > wait) { | |
1981 | wait_on_buffer(*--wait_bh); | |
1982 | if (!buffer_uptodate(*wait_bh)) | |
f3ddbdc6 | 1983 | err = -EIO; |
1da177e4 | 1984 | } |
152becd2 AA |
1985 | if (!err) { |
1986 | bh = head; | |
1987 | do { | |
1988 | if (buffer_new(bh)) | |
1989 | clear_buffer_new(bh); | |
1990 | } while ((bh = bh->b_this_page) != head); | |
1991 | return 0; | |
1992 | } | |
f3ddbdc6 | 1993 | /* Error case: */ |
1da177e4 LT |
1994 | /* |
1995 | * Zero out any newly allocated blocks to avoid exposing stale | |
1996 | * data. If BH_New is set, we know that the block was newly | |
1997 | * allocated in the above loop. | |
1998 | */ | |
1999 | bh = head; | |
2000 | block_start = 0; | |
2001 | do { | |
2002 | block_end = block_start+blocksize; | |
2003 | if (block_end <= from) | |
2004 | goto next_bh; | |
2005 | if (block_start >= to) | |
2006 | break; | |
2007 | if (buffer_new(bh)) { | |
2008 | void *kaddr; | |
2009 | ||
2010 | clear_buffer_new(bh); | |
2011 | kaddr = kmap_atomic(page, KM_USER0); | |
2012 | memset(kaddr+block_start, 0, bh->b_size); | |
2013 | kunmap_atomic(kaddr, KM_USER0); | |
2014 | set_buffer_uptodate(bh); | |
2015 | mark_buffer_dirty(bh); | |
2016 | } | |
2017 | next_bh: | |
2018 | block_start = block_end; | |
2019 | bh = bh->b_this_page; | |
2020 | } while (bh != head); | |
2021 | return err; | |
2022 | } | |
2023 | ||
2024 | static int __block_commit_write(struct inode *inode, struct page *page, | |
2025 | unsigned from, unsigned to) | |
2026 | { | |
2027 | unsigned block_start, block_end; | |
2028 | int partial = 0; | |
2029 | unsigned blocksize; | |
2030 | struct buffer_head *bh, *head; | |
2031 | ||
2032 | blocksize = 1 << inode->i_blkbits; | |
2033 | ||
2034 | for(bh = head = page_buffers(page), block_start = 0; | |
2035 | bh != head || !block_start; | |
2036 | block_start=block_end, bh = bh->b_this_page) { | |
2037 | block_end = block_start + blocksize; | |
2038 | if (block_end <= from || block_start >= to) { | |
2039 | if (!buffer_uptodate(bh)) | |
2040 | partial = 1; | |
2041 | } else { | |
2042 | set_buffer_uptodate(bh); | |
2043 | mark_buffer_dirty(bh); | |
2044 | } | |
2045 | } | |
2046 | ||
2047 | /* | |
2048 | * If this is a partial write which happened to make all buffers | |
2049 | * uptodate then we can optimize away a bogus readpage() for | |
2050 | * the next read(). Here we 'discover' whether the page went | |
2051 | * uptodate as a result of this (potentially partial) write. | |
2052 | */ | |
2053 | if (!partial) | |
2054 | SetPageUptodate(page); | |
2055 | return 0; | |
2056 | } | |
2057 | ||
2058 | /* | |
2059 | * Generic "read page" function for block devices that have the normal | |
2060 | * get_block functionality. This is most of the block device filesystems. | |
2061 | * Reads the page asynchronously --- the unlock_buffer() and | |
2062 | * set/clear_buffer_uptodate() functions propagate buffer state into the | |
2063 | * page struct once IO has completed. | |
2064 | */ | |
2065 | int block_read_full_page(struct page *page, get_block_t *get_block) | |
2066 | { | |
2067 | struct inode *inode = page->mapping->host; | |
2068 | sector_t iblock, lblock; | |
2069 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | |
2070 | unsigned int blocksize; | |
2071 | int nr, i; | |
2072 | int fully_mapped = 1; | |
2073 | ||
cd7619d6 | 2074 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
2075 | blocksize = 1 << inode->i_blkbits; |
2076 | if (!page_has_buffers(page)) | |
2077 | create_empty_buffers(page, blocksize, 0); | |
2078 | head = page_buffers(page); | |
2079 | ||
2080 | iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
2081 | lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; | |
2082 | bh = head; | |
2083 | nr = 0; | |
2084 | i = 0; | |
2085 | ||
2086 | do { | |
2087 | if (buffer_uptodate(bh)) | |
2088 | continue; | |
2089 | ||
2090 | if (!buffer_mapped(bh)) { | |
c64610ba AM |
2091 | int err = 0; |
2092 | ||
1da177e4 LT |
2093 | fully_mapped = 0; |
2094 | if (iblock < lblock) { | |
c64610ba AM |
2095 | err = get_block(inode, iblock, bh, 0); |
2096 | if (err) | |
1da177e4 LT |
2097 | SetPageError(page); |
2098 | } | |
2099 | if (!buffer_mapped(bh)) { | |
2100 | void *kaddr = kmap_atomic(page, KM_USER0); | |
2101 | memset(kaddr + i * blocksize, 0, blocksize); | |
2102 | flush_dcache_page(page); | |
2103 | kunmap_atomic(kaddr, KM_USER0); | |
c64610ba AM |
2104 | if (!err) |
2105 | set_buffer_uptodate(bh); | |
1da177e4 LT |
2106 | continue; |
2107 | } | |
2108 | /* | |
2109 | * get_block() might have updated the buffer | |
2110 | * synchronously | |
2111 | */ | |
2112 | if (buffer_uptodate(bh)) | |
2113 | continue; | |
2114 | } | |
2115 | arr[nr++] = bh; | |
2116 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | |
2117 | ||
2118 | if (fully_mapped) | |
2119 | SetPageMappedToDisk(page); | |
2120 | ||
2121 | if (!nr) { | |
2122 | /* | |
2123 | * All buffers are uptodate - we can set the page uptodate | |
2124 | * as well. But not if get_block() returned an error. | |
2125 | */ | |
2126 | if (!PageError(page)) | |
2127 | SetPageUptodate(page); | |
2128 | unlock_page(page); | |
2129 | return 0; | |
2130 | } | |
2131 | ||
2132 | /* Stage two: lock the buffers */ | |
2133 | for (i = 0; i < nr; i++) { | |
2134 | bh = arr[i]; | |
2135 | lock_buffer(bh); | |
2136 | mark_buffer_async_read(bh); | |
2137 | } | |
2138 | ||
2139 | /* | |
2140 | * Stage 3: start the IO. Check for uptodateness | |
2141 | * inside the buffer lock in case another process reading | |
2142 | * the underlying blockdev brought it uptodate (the sct fix). | |
2143 | */ | |
2144 | for (i = 0; i < nr; i++) { | |
2145 | bh = arr[i]; | |
2146 | if (buffer_uptodate(bh)) | |
2147 | end_buffer_async_read(bh, 1); | |
2148 | else | |
2149 | submit_bh(READ, bh); | |
2150 | } | |
2151 | return 0; | |
2152 | } | |
2153 | ||
2154 | /* utility function for filesystems that need to do work on expanding | |
2155 | * truncates. Uses prepare/commit_write to allow the filesystem to | |
2156 | * deal with the hole. | |
2157 | */ | |
05eb0b51 OH |
2158 | static int __generic_cont_expand(struct inode *inode, loff_t size, |
2159 | pgoff_t index, unsigned int offset) | |
1da177e4 LT |
2160 | { |
2161 | struct address_space *mapping = inode->i_mapping; | |
2162 | struct page *page; | |
05eb0b51 | 2163 | unsigned long limit; |
1da177e4 LT |
2164 | int err; |
2165 | ||
2166 | err = -EFBIG; | |
2167 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
2168 | if (limit != RLIM_INFINITY && size > (loff_t)limit) { | |
2169 | send_sig(SIGXFSZ, current, 0); | |
2170 | goto out; | |
2171 | } | |
2172 | if (size > inode->i_sb->s_maxbytes) | |
2173 | goto out; | |
2174 | ||
1da177e4 LT |
2175 | err = -ENOMEM; |
2176 | page = grab_cache_page(mapping, index); | |
2177 | if (!page) | |
2178 | goto out; | |
2179 | err = mapping->a_ops->prepare_write(NULL, page, offset, offset); | |
05eb0b51 OH |
2180 | if (err) { |
2181 | /* | |
2182 | * ->prepare_write() may have instantiated a few blocks | |
2183 | * outside i_size. Trim these off again. | |
2184 | */ | |
2185 | unlock_page(page); | |
2186 | page_cache_release(page); | |
2187 | vmtruncate(inode, inode->i_size); | |
2188 | goto out; | |
1da177e4 | 2189 | } |
05eb0b51 OH |
2190 | |
2191 | err = mapping->a_ops->commit_write(NULL, page, offset, offset); | |
2192 | ||
1da177e4 LT |
2193 | unlock_page(page); |
2194 | page_cache_release(page); | |
2195 | if (err > 0) | |
2196 | err = 0; | |
2197 | out: | |
2198 | return err; | |
2199 | } | |
2200 | ||
05eb0b51 OH |
2201 | int generic_cont_expand(struct inode *inode, loff_t size) |
2202 | { | |
2203 | pgoff_t index; | |
2204 | unsigned int offset; | |
2205 | ||
2206 | offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ | |
2207 | ||
2208 | /* ugh. in prepare/commit_write, if from==to==start of block, we | |
2209 | ** skip the prepare. make sure we never send an offset for the start | |
2210 | ** of a block | |
2211 | */ | |
2212 | if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { | |
2213 | /* caller must handle this extra byte. */ | |
2214 | offset++; | |
2215 | } | |
2216 | index = size >> PAGE_CACHE_SHIFT; | |
2217 | ||
2218 | return __generic_cont_expand(inode, size, index, offset); | |
2219 | } | |
2220 | ||
2221 | int generic_cont_expand_simple(struct inode *inode, loff_t size) | |
2222 | { | |
2223 | loff_t pos = size - 1; | |
2224 | pgoff_t index = pos >> PAGE_CACHE_SHIFT; | |
2225 | unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; | |
2226 | ||
2227 | /* prepare/commit_write can handle even if from==to==start of block. */ | |
2228 | return __generic_cont_expand(inode, size, index, offset); | |
2229 | } | |
2230 | ||
1da177e4 LT |
2231 | /* |
2232 | * For moronic filesystems that do not allow holes in file. | |
2233 | * We may have to extend the file. | |
2234 | */ | |
2235 | ||
2236 | int cont_prepare_write(struct page *page, unsigned offset, | |
2237 | unsigned to, get_block_t *get_block, loff_t *bytes) | |
2238 | { | |
2239 | struct address_space *mapping = page->mapping; | |
2240 | struct inode *inode = mapping->host; | |
2241 | struct page *new_page; | |
2242 | pgoff_t pgpos; | |
2243 | long status; | |
2244 | unsigned zerofrom; | |
2245 | unsigned blocksize = 1 << inode->i_blkbits; | |
2246 | void *kaddr; | |
2247 | ||
2248 | while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { | |
2249 | status = -ENOMEM; | |
2250 | new_page = grab_cache_page(mapping, pgpos); | |
2251 | if (!new_page) | |
2252 | goto out; | |
2253 | /* we might sleep */ | |
2254 | if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { | |
2255 | unlock_page(new_page); | |
2256 | page_cache_release(new_page); | |
2257 | continue; | |
2258 | } | |
2259 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | |
2260 | if (zerofrom & (blocksize-1)) { | |
2261 | *bytes |= (blocksize-1); | |
2262 | (*bytes)++; | |
2263 | } | |
2264 | status = __block_prepare_write(inode, new_page, zerofrom, | |
2265 | PAGE_CACHE_SIZE, get_block); | |
2266 | if (status) | |
2267 | goto out_unmap; | |
2268 | kaddr = kmap_atomic(new_page, KM_USER0); | |
2269 | memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); | |
2270 | flush_dcache_page(new_page); | |
2271 | kunmap_atomic(kaddr, KM_USER0); | |
2272 | generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); | |
2273 | unlock_page(new_page); | |
2274 | page_cache_release(new_page); | |
2275 | } | |
2276 | ||
2277 | if (page->index < pgpos) { | |
2278 | /* completely inside the area */ | |
2279 | zerofrom = offset; | |
2280 | } else { | |
2281 | /* page covers the boundary, find the boundary offset */ | |
2282 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | |
2283 | ||
2284 | /* if we will expand the thing last block will be filled */ | |
2285 | if (to > zerofrom && (zerofrom & (blocksize-1))) { | |
2286 | *bytes |= (blocksize-1); | |
2287 | (*bytes)++; | |
2288 | } | |
2289 | ||
2290 | /* starting below the boundary? Nothing to zero out */ | |
2291 | if (offset <= zerofrom) | |
2292 | zerofrom = offset; | |
2293 | } | |
2294 | status = __block_prepare_write(inode, page, zerofrom, to, get_block); | |
2295 | if (status) | |
2296 | goto out1; | |
2297 | if (zerofrom < offset) { | |
2298 | kaddr = kmap_atomic(page, KM_USER0); | |
2299 | memset(kaddr+zerofrom, 0, offset-zerofrom); | |
2300 | flush_dcache_page(page); | |
2301 | kunmap_atomic(kaddr, KM_USER0); | |
2302 | __block_commit_write(inode, page, zerofrom, offset); | |
2303 | } | |
2304 | return 0; | |
2305 | out1: | |
2306 | ClearPageUptodate(page); | |
2307 | return status; | |
2308 | ||
2309 | out_unmap: | |
2310 | ClearPageUptodate(new_page); | |
2311 | unlock_page(new_page); | |
2312 | page_cache_release(new_page); | |
2313 | out: | |
2314 | return status; | |
2315 | } | |
2316 | ||
2317 | int block_prepare_write(struct page *page, unsigned from, unsigned to, | |
2318 | get_block_t *get_block) | |
2319 | { | |
2320 | struct inode *inode = page->mapping->host; | |
2321 | int err = __block_prepare_write(inode, page, from, to, get_block); | |
2322 | if (err) | |
2323 | ClearPageUptodate(page); | |
2324 | return err; | |
2325 | } | |
2326 | ||
2327 | int block_commit_write(struct page *page, unsigned from, unsigned to) | |
2328 | { | |
2329 | struct inode *inode = page->mapping->host; | |
2330 | __block_commit_write(inode,page,from,to); | |
2331 | return 0; | |
2332 | } | |
2333 | ||
2334 | int generic_commit_write(struct file *file, struct page *page, | |
2335 | unsigned from, unsigned to) | |
2336 | { | |
2337 | struct inode *inode = page->mapping->host; | |
2338 | loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | |
2339 | __block_commit_write(inode,page,from,to); | |
2340 | /* | |
2341 | * No need to use i_size_read() here, the i_size | |
1b1dcc1b | 2342 | * cannot change under us because we hold i_mutex. |
1da177e4 LT |
2343 | */ |
2344 | if (pos > inode->i_size) { | |
2345 | i_size_write(inode, pos); | |
2346 | mark_inode_dirty(inode); | |
2347 | } | |
2348 | return 0; | |
2349 | } | |
2350 | ||
2351 | ||
2352 | /* | |
2353 | * nobh_prepare_write()'s prereads are special: the buffer_heads are freed | |
2354 | * immediately, while under the page lock. So it needs a special end_io | |
2355 | * handler which does not touch the bh after unlocking it. | |
2356 | * | |
2357 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | |
2358 | * a race there is benign: unlock_buffer() only use the bh's address for | |
2359 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | |
2360 | * itself. | |
2361 | */ | |
2362 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | |
2363 | { | |
2364 | if (uptodate) { | |
2365 | set_buffer_uptodate(bh); | |
2366 | } else { | |
2367 | /* This happens, due to failed READA attempts. */ | |
2368 | clear_buffer_uptodate(bh); | |
2369 | } | |
2370 | unlock_buffer(bh); | |
2371 | } | |
2372 | ||
2373 | /* | |
2374 | * On entry, the page is fully not uptodate. | |
2375 | * On exit the page is fully uptodate in the areas outside (from,to) | |
2376 | */ | |
2377 | int nobh_prepare_write(struct page *page, unsigned from, unsigned to, | |
2378 | get_block_t *get_block) | |
2379 | { | |
2380 | struct inode *inode = page->mapping->host; | |
2381 | const unsigned blkbits = inode->i_blkbits; | |
2382 | const unsigned blocksize = 1 << blkbits; | |
2383 | struct buffer_head map_bh; | |
2384 | struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; | |
2385 | unsigned block_in_page; | |
2386 | unsigned block_start; | |
2387 | sector_t block_in_file; | |
2388 | char *kaddr; | |
2389 | int nr_reads = 0; | |
2390 | int i; | |
2391 | int ret = 0; | |
2392 | int is_mapped_to_disk = 1; | |
2393 | int dirtied_it = 0; | |
2394 | ||
2395 | if (PageMappedToDisk(page)) | |
2396 | return 0; | |
2397 | ||
2398 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); | |
2399 | map_bh.b_page = page; | |
2400 | ||
2401 | /* | |
2402 | * We loop across all blocks in the page, whether or not they are | |
2403 | * part of the affected region. This is so we can discover if the | |
2404 | * page is fully mapped-to-disk. | |
2405 | */ | |
2406 | for (block_start = 0, block_in_page = 0; | |
2407 | block_start < PAGE_CACHE_SIZE; | |
2408 | block_in_page++, block_start += blocksize) { | |
2409 | unsigned block_end = block_start + blocksize; | |
2410 | int create; | |
2411 | ||
2412 | map_bh.b_state = 0; | |
2413 | create = 1; | |
2414 | if (block_start >= to) | |
2415 | create = 0; | |
2416 | ret = get_block(inode, block_in_file + block_in_page, | |
2417 | &map_bh, create); | |
2418 | if (ret) | |
2419 | goto failed; | |
2420 | if (!buffer_mapped(&map_bh)) | |
2421 | is_mapped_to_disk = 0; | |
2422 | if (buffer_new(&map_bh)) | |
2423 | unmap_underlying_metadata(map_bh.b_bdev, | |
2424 | map_bh.b_blocknr); | |
2425 | if (PageUptodate(page)) | |
2426 | continue; | |
2427 | if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { | |
2428 | kaddr = kmap_atomic(page, KM_USER0); | |
2429 | if (block_start < from) { | |
2430 | memset(kaddr+block_start, 0, from-block_start); | |
2431 | dirtied_it = 1; | |
2432 | } | |
2433 | if (block_end > to) { | |
2434 | memset(kaddr + to, 0, block_end - to); | |
2435 | dirtied_it = 1; | |
2436 | } | |
2437 | flush_dcache_page(page); | |
2438 | kunmap_atomic(kaddr, KM_USER0); | |
2439 | continue; | |
2440 | } | |
2441 | if (buffer_uptodate(&map_bh)) | |
2442 | continue; /* reiserfs does this */ | |
2443 | if (block_start < from || block_end > to) { | |
2444 | struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); | |
2445 | ||
2446 | if (!bh) { | |
2447 | ret = -ENOMEM; | |
2448 | goto failed; | |
2449 | } | |
2450 | bh->b_state = map_bh.b_state; | |
2451 | atomic_set(&bh->b_count, 0); | |
2452 | bh->b_this_page = NULL; | |
2453 | bh->b_page = page; | |
2454 | bh->b_blocknr = map_bh.b_blocknr; | |
2455 | bh->b_size = blocksize; | |
2456 | bh->b_data = (char *)(long)block_start; | |
2457 | bh->b_bdev = map_bh.b_bdev; | |
2458 | bh->b_private = NULL; | |
2459 | read_bh[nr_reads++] = bh; | |
2460 | } | |
2461 | } | |
2462 | ||
2463 | if (nr_reads) { | |
2464 | struct buffer_head *bh; | |
2465 | ||
2466 | /* | |
2467 | * The page is locked, so these buffers are protected from | |
2468 | * any VM or truncate activity. Hence we don't need to care | |
2469 | * for the buffer_head refcounts. | |
2470 | */ | |
2471 | for (i = 0; i < nr_reads; i++) { | |
2472 | bh = read_bh[i]; | |
2473 | lock_buffer(bh); | |
2474 | bh->b_end_io = end_buffer_read_nobh; | |
2475 | submit_bh(READ, bh); | |
2476 | } | |
2477 | for (i = 0; i < nr_reads; i++) { | |
2478 | bh = read_bh[i]; | |
2479 | wait_on_buffer(bh); | |
2480 | if (!buffer_uptodate(bh)) | |
2481 | ret = -EIO; | |
2482 | free_buffer_head(bh); | |
2483 | read_bh[i] = NULL; | |
2484 | } | |
2485 | if (ret) | |
2486 | goto failed; | |
2487 | } | |
2488 | ||
2489 | if (is_mapped_to_disk) | |
2490 | SetPageMappedToDisk(page); | |
2491 | SetPageUptodate(page); | |
2492 | ||
2493 | /* | |
2494 | * Setting the page dirty here isn't necessary for the prepare_write | |
2495 | * function - commit_write will do that. But if/when this function is | |
2496 | * used within the pagefault handler to ensure that all mmapped pages | |
2497 | * have backing space in the filesystem, we will need to dirty the page | |
2498 | * if its contents were altered. | |
2499 | */ | |
2500 | if (dirtied_it) | |
2501 | set_page_dirty(page); | |
2502 | ||
2503 | return 0; | |
2504 | ||
2505 | failed: | |
2506 | for (i = 0; i < nr_reads; i++) { | |
2507 | if (read_bh[i]) | |
2508 | free_buffer_head(read_bh[i]); | |
2509 | } | |
2510 | ||
2511 | /* | |
2512 | * Error recovery is pretty slack. Clear the page and mark it dirty | |
2513 | * so we'll later zero out any blocks which _were_ allocated. | |
2514 | */ | |
2515 | kaddr = kmap_atomic(page, KM_USER0); | |
2516 | memset(kaddr, 0, PAGE_CACHE_SIZE); | |
2517 | kunmap_atomic(kaddr, KM_USER0); | |
2518 | SetPageUptodate(page); | |
2519 | set_page_dirty(page); | |
2520 | return ret; | |
2521 | } | |
2522 | EXPORT_SYMBOL(nobh_prepare_write); | |
2523 | ||
2524 | int nobh_commit_write(struct file *file, struct page *page, | |
2525 | unsigned from, unsigned to) | |
2526 | { | |
2527 | struct inode *inode = page->mapping->host; | |
2528 | loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | |
2529 | ||
2530 | set_page_dirty(page); | |
2531 | if (pos > inode->i_size) { | |
2532 | i_size_write(inode, pos); | |
2533 | mark_inode_dirty(inode); | |
2534 | } | |
2535 | return 0; | |
2536 | } | |
2537 | EXPORT_SYMBOL(nobh_commit_write); | |
2538 | ||
2539 | /* | |
2540 | * nobh_writepage() - based on block_full_write_page() except | |
2541 | * that it tries to operate without attaching bufferheads to | |
2542 | * the page. | |
2543 | */ | |
2544 | int nobh_writepage(struct page *page, get_block_t *get_block, | |
2545 | struct writeback_control *wbc) | |
2546 | { | |
2547 | struct inode * const inode = page->mapping->host; | |
2548 | loff_t i_size = i_size_read(inode); | |
2549 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2550 | unsigned offset; | |
2551 | void *kaddr; | |
2552 | int ret; | |
2553 | ||
2554 | /* Is the page fully inside i_size? */ | |
2555 | if (page->index < end_index) | |
2556 | goto out; | |
2557 | ||
2558 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2559 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2560 | if (page->index >= end_index+1 || !offset) { | |
2561 | /* | |
2562 | * The page may have dirty, unmapped buffers. For example, | |
2563 | * they may have been added in ext3_writepage(). Make them | |
2564 | * freeable here, so the page does not leak. | |
2565 | */ | |
2566 | #if 0 | |
2567 | /* Not really sure about this - do we need this ? */ | |
2568 | if (page->mapping->a_ops->invalidatepage) | |
2569 | page->mapping->a_ops->invalidatepage(page, offset); | |
2570 | #endif | |
2571 | unlock_page(page); | |
2572 | return 0; /* don't care */ | |
2573 | } | |
2574 | ||
2575 | /* | |
2576 | * The page straddles i_size. It must be zeroed out on each and every | |
2577 | * writepage invocation because it may be mmapped. "A file is mapped | |
2578 | * in multiples of the page size. For a file that is not a multiple of | |
2579 | * the page size, the remaining memory is zeroed when mapped, and | |
2580 | * writes to that region are not written out to the file." | |
2581 | */ | |
2582 | kaddr = kmap_atomic(page, KM_USER0); | |
2583 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | |
2584 | flush_dcache_page(page); | |
2585 | kunmap_atomic(kaddr, KM_USER0); | |
2586 | out: | |
2587 | ret = mpage_writepage(page, get_block, wbc); | |
2588 | if (ret == -EAGAIN) | |
2589 | ret = __block_write_full_page(inode, page, get_block, wbc); | |
2590 | return ret; | |
2591 | } | |
2592 | EXPORT_SYMBOL(nobh_writepage); | |
2593 | ||
2594 | /* | |
2595 | * This function assumes that ->prepare_write() uses nobh_prepare_write(). | |
2596 | */ | |
2597 | int nobh_truncate_page(struct address_space *mapping, loff_t from) | |
2598 | { | |
2599 | struct inode *inode = mapping->host; | |
2600 | unsigned blocksize = 1 << inode->i_blkbits; | |
2601 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | |
2602 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
2603 | unsigned to; | |
2604 | struct page *page; | |
2605 | struct address_space_operations *a_ops = mapping->a_ops; | |
2606 | char *kaddr; | |
2607 | int ret = 0; | |
2608 | ||
2609 | if ((offset & (blocksize - 1)) == 0) | |
2610 | goto out; | |
2611 | ||
2612 | ret = -ENOMEM; | |
2613 | page = grab_cache_page(mapping, index); | |
2614 | if (!page) | |
2615 | goto out; | |
2616 | ||
2617 | to = (offset + blocksize) & ~(blocksize - 1); | |
2618 | ret = a_ops->prepare_write(NULL, page, offset, to); | |
2619 | if (ret == 0) { | |
2620 | kaddr = kmap_atomic(page, KM_USER0); | |
2621 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | |
2622 | flush_dcache_page(page); | |
2623 | kunmap_atomic(kaddr, KM_USER0); | |
2624 | set_page_dirty(page); | |
2625 | } | |
2626 | unlock_page(page); | |
2627 | page_cache_release(page); | |
2628 | out: | |
2629 | return ret; | |
2630 | } | |
2631 | EXPORT_SYMBOL(nobh_truncate_page); | |
2632 | ||
2633 | int block_truncate_page(struct address_space *mapping, | |
2634 | loff_t from, get_block_t *get_block) | |
2635 | { | |
2636 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | |
2637 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
2638 | unsigned blocksize; | |
54b21a79 | 2639 | sector_t iblock; |
1da177e4 LT |
2640 | unsigned length, pos; |
2641 | struct inode *inode = mapping->host; | |
2642 | struct page *page; | |
2643 | struct buffer_head *bh; | |
2644 | void *kaddr; | |
2645 | int err; | |
2646 | ||
2647 | blocksize = 1 << inode->i_blkbits; | |
2648 | length = offset & (blocksize - 1); | |
2649 | ||
2650 | /* Block boundary? Nothing to do */ | |
2651 | if (!length) | |
2652 | return 0; | |
2653 | ||
2654 | length = blocksize - length; | |
54b21a79 | 2655 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
2656 | |
2657 | page = grab_cache_page(mapping, index); | |
2658 | err = -ENOMEM; | |
2659 | if (!page) | |
2660 | goto out; | |
2661 | ||
2662 | if (!page_has_buffers(page)) | |
2663 | create_empty_buffers(page, blocksize, 0); | |
2664 | ||
2665 | /* Find the buffer that contains "offset" */ | |
2666 | bh = page_buffers(page); | |
2667 | pos = blocksize; | |
2668 | while (offset >= pos) { | |
2669 | bh = bh->b_this_page; | |
2670 | iblock++; | |
2671 | pos += blocksize; | |
2672 | } | |
2673 | ||
2674 | err = 0; | |
2675 | if (!buffer_mapped(bh)) { | |
2676 | err = get_block(inode, iblock, bh, 0); | |
2677 | if (err) | |
2678 | goto unlock; | |
2679 | /* unmapped? It's a hole - nothing to do */ | |
2680 | if (!buffer_mapped(bh)) | |
2681 | goto unlock; | |
2682 | } | |
2683 | ||
2684 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2685 | if (PageUptodate(page)) | |
2686 | set_buffer_uptodate(bh); | |
2687 | ||
2688 | if (!buffer_uptodate(bh) && !buffer_delay(bh)) { | |
2689 | err = -EIO; | |
2690 | ll_rw_block(READ, 1, &bh); | |
2691 | wait_on_buffer(bh); | |
2692 | /* Uhhuh. Read error. Complain and punt. */ | |
2693 | if (!buffer_uptodate(bh)) | |
2694 | goto unlock; | |
2695 | } | |
2696 | ||
2697 | kaddr = kmap_atomic(page, KM_USER0); | |
2698 | memset(kaddr + offset, 0, length); | |
2699 | flush_dcache_page(page); | |
2700 | kunmap_atomic(kaddr, KM_USER0); | |
2701 | ||
2702 | mark_buffer_dirty(bh); | |
2703 | err = 0; | |
2704 | ||
2705 | unlock: | |
2706 | unlock_page(page); | |
2707 | page_cache_release(page); | |
2708 | out: | |
2709 | return err; | |
2710 | } | |
2711 | ||
2712 | /* | |
2713 | * The generic ->writepage function for buffer-backed address_spaces | |
2714 | */ | |
2715 | int block_write_full_page(struct page *page, get_block_t *get_block, | |
2716 | struct writeback_control *wbc) | |
2717 | { | |
2718 | struct inode * const inode = page->mapping->host; | |
2719 | loff_t i_size = i_size_read(inode); | |
2720 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2721 | unsigned offset; | |
2722 | void *kaddr; | |
2723 | ||
2724 | /* Is the page fully inside i_size? */ | |
2725 | if (page->index < end_index) | |
2726 | return __block_write_full_page(inode, page, get_block, wbc); | |
2727 | ||
2728 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2729 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2730 | if (page->index >= end_index+1 || !offset) { | |
2731 | /* | |
2732 | * The page may have dirty, unmapped buffers. For example, | |
2733 | * they may have been added in ext3_writepage(). Make them | |
2734 | * freeable here, so the page does not leak. | |
2735 | */ | |
aaa4059b | 2736 | do_invalidatepage(page, 0); |
1da177e4 LT |
2737 | unlock_page(page); |
2738 | return 0; /* don't care */ | |
2739 | } | |
2740 | ||
2741 | /* | |
2742 | * The page straddles i_size. It must be zeroed out on each and every | |
2743 | * writepage invokation because it may be mmapped. "A file is mapped | |
2744 | * in multiples of the page size. For a file that is not a multiple of | |
2745 | * the page size, the remaining memory is zeroed when mapped, and | |
2746 | * writes to that region are not written out to the file." | |
2747 | */ | |
2748 | kaddr = kmap_atomic(page, KM_USER0); | |
2749 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | |
2750 | flush_dcache_page(page); | |
2751 | kunmap_atomic(kaddr, KM_USER0); | |
2752 | return __block_write_full_page(inode, page, get_block, wbc); | |
2753 | } | |
2754 | ||
2755 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, | |
2756 | get_block_t *get_block) | |
2757 | { | |
2758 | struct buffer_head tmp; | |
2759 | struct inode *inode = mapping->host; | |
2760 | tmp.b_state = 0; | |
2761 | tmp.b_blocknr = 0; | |
2762 | get_block(inode, block, &tmp, 0); | |
2763 | return tmp.b_blocknr; | |
2764 | } | |
2765 | ||
2766 | static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) | |
2767 | { | |
2768 | struct buffer_head *bh = bio->bi_private; | |
2769 | ||
2770 | if (bio->bi_size) | |
2771 | return 1; | |
2772 | ||
2773 | if (err == -EOPNOTSUPP) { | |
2774 | set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); | |
2775 | set_bit(BH_Eopnotsupp, &bh->b_state); | |
2776 | } | |
2777 | ||
2778 | bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); | |
2779 | bio_put(bio); | |
2780 | return 0; | |
2781 | } | |
2782 | ||
2783 | int submit_bh(int rw, struct buffer_head * bh) | |
2784 | { | |
2785 | struct bio *bio; | |
2786 | int ret = 0; | |
2787 | ||
2788 | BUG_ON(!buffer_locked(bh)); | |
2789 | BUG_ON(!buffer_mapped(bh)); | |
2790 | BUG_ON(!bh->b_end_io); | |
2791 | ||
2792 | if (buffer_ordered(bh) && (rw == WRITE)) | |
2793 | rw = WRITE_BARRIER; | |
2794 | ||
2795 | /* | |
2796 | * Only clear out a write error when rewriting, should this | |
2797 | * include WRITE_SYNC as well? | |
2798 | */ | |
2799 | if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) | |
2800 | clear_buffer_write_io_error(bh); | |
2801 | ||
2802 | /* | |
2803 | * from here on down, it's all bio -- do the initial mapping, | |
2804 | * submit_bio -> generic_make_request may further map this bio around | |
2805 | */ | |
2806 | bio = bio_alloc(GFP_NOIO, 1); | |
2807 | ||
2808 | bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); | |
2809 | bio->bi_bdev = bh->b_bdev; | |
2810 | bio->bi_io_vec[0].bv_page = bh->b_page; | |
2811 | bio->bi_io_vec[0].bv_len = bh->b_size; | |
2812 | bio->bi_io_vec[0].bv_offset = bh_offset(bh); | |
2813 | ||
2814 | bio->bi_vcnt = 1; | |
2815 | bio->bi_idx = 0; | |
2816 | bio->bi_size = bh->b_size; | |
2817 | ||
2818 | bio->bi_end_io = end_bio_bh_io_sync; | |
2819 | bio->bi_private = bh; | |
2820 | ||
2821 | bio_get(bio); | |
2822 | submit_bio(rw, bio); | |
2823 | ||
2824 | if (bio_flagged(bio, BIO_EOPNOTSUPP)) | |
2825 | ret = -EOPNOTSUPP; | |
2826 | ||
2827 | bio_put(bio); | |
2828 | return ret; | |
2829 | } | |
2830 | ||
2831 | /** | |
2832 | * ll_rw_block: low-level access to block devices (DEPRECATED) | |
a7662236 | 2833 | * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) |
1da177e4 LT |
2834 | * @nr: number of &struct buffer_heads in the array |
2835 | * @bhs: array of pointers to &struct buffer_head | |
2836 | * | |
a7662236 JK |
2837 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
2838 | * requests an I/O operation on them, either a %READ or a %WRITE. The third | |
2839 | * %SWRITE is like %WRITE only we make sure that the *current* data in buffers | |
2840 | * are sent to disk. The fourth %READA option is described in the documentation | |
2841 | * for generic_make_request() which ll_rw_block() calls. | |
1da177e4 LT |
2842 | * |
2843 | * This function drops any buffer that it cannot get a lock on (with the | |
a7662236 JK |
2844 | * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be |
2845 | * clean when doing a write request, and any buffer that appears to be | |
2846 | * up-to-date when doing read request. Further it marks as clean buffers that | |
2847 | * are processed for writing (the buffer cache won't assume that they are | |
2848 | * actually clean until the buffer gets unlocked). | |
1da177e4 LT |
2849 | * |
2850 | * ll_rw_block sets b_end_io to simple completion handler that marks | |
2851 | * the buffer up-to-date (if approriate), unlocks the buffer and wakes | |
2852 | * any waiters. | |
2853 | * | |
2854 | * All of the buffers must be for the same device, and must also be a | |
2855 | * multiple of the current approved size for the device. | |
2856 | */ | |
2857 | void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) | |
2858 | { | |
2859 | int i; | |
2860 | ||
2861 | for (i = 0; i < nr; i++) { | |
2862 | struct buffer_head *bh = bhs[i]; | |
2863 | ||
a7662236 JK |
2864 | if (rw == SWRITE) |
2865 | lock_buffer(bh); | |
2866 | else if (test_set_buffer_locked(bh)) | |
1da177e4 LT |
2867 | continue; |
2868 | ||
2869 | get_bh(bh); | |
a7662236 | 2870 | if (rw == WRITE || rw == SWRITE) { |
1da177e4 | 2871 | if (test_clear_buffer_dirty(bh)) { |
76c3073a | 2872 | bh->b_end_io = end_buffer_write_sync; |
1da177e4 LT |
2873 | submit_bh(WRITE, bh); |
2874 | continue; | |
2875 | } | |
2876 | } else { | |
1da177e4 | 2877 | if (!buffer_uptodate(bh)) { |
76c3073a | 2878 | bh->b_end_io = end_buffer_read_sync; |
1da177e4 LT |
2879 | submit_bh(rw, bh); |
2880 | continue; | |
2881 | } | |
2882 | } | |
2883 | unlock_buffer(bh); | |
2884 | put_bh(bh); | |
2885 | } | |
2886 | } | |
2887 | ||
2888 | /* | |
2889 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | |
2890 | * and then start new I/O and then wait upon it. The caller must have a ref on | |
2891 | * the buffer_head. | |
2892 | */ | |
2893 | int sync_dirty_buffer(struct buffer_head *bh) | |
2894 | { | |
2895 | int ret = 0; | |
2896 | ||
2897 | WARN_ON(atomic_read(&bh->b_count) < 1); | |
2898 | lock_buffer(bh); | |
2899 | if (test_clear_buffer_dirty(bh)) { | |
2900 | get_bh(bh); | |
2901 | bh->b_end_io = end_buffer_write_sync; | |
2902 | ret = submit_bh(WRITE, bh); | |
2903 | wait_on_buffer(bh); | |
2904 | if (buffer_eopnotsupp(bh)) { | |
2905 | clear_buffer_eopnotsupp(bh); | |
2906 | ret = -EOPNOTSUPP; | |
2907 | } | |
2908 | if (!ret && !buffer_uptodate(bh)) | |
2909 | ret = -EIO; | |
2910 | } else { | |
2911 | unlock_buffer(bh); | |
2912 | } | |
2913 | return ret; | |
2914 | } | |
2915 | ||
2916 | /* | |
2917 | * try_to_free_buffers() checks if all the buffers on this particular page | |
2918 | * are unused, and releases them if so. | |
2919 | * | |
2920 | * Exclusion against try_to_free_buffers may be obtained by either | |
2921 | * locking the page or by holding its mapping's private_lock. | |
2922 | * | |
2923 | * If the page is dirty but all the buffers are clean then we need to | |
2924 | * be sure to mark the page clean as well. This is because the page | |
2925 | * may be against a block device, and a later reattachment of buffers | |
2926 | * to a dirty page will set *all* buffers dirty. Which would corrupt | |
2927 | * filesystem data on the same device. | |
2928 | * | |
2929 | * The same applies to regular filesystem pages: if all the buffers are | |
2930 | * clean then we set the page clean and proceed. To do that, we require | |
2931 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | |
2932 | * private_lock. | |
2933 | * | |
2934 | * try_to_free_buffers() is non-blocking. | |
2935 | */ | |
2936 | static inline int buffer_busy(struct buffer_head *bh) | |
2937 | { | |
2938 | return atomic_read(&bh->b_count) | | |
2939 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | |
2940 | } | |
2941 | ||
2942 | static int | |
2943 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | |
2944 | { | |
2945 | struct buffer_head *head = page_buffers(page); | |
2946 | struct buffer_head *bh; | |
2947 | ||
2948 | bh = head; | |
2949 | do { | |
de7d5a3b | 2950 | if (buffer_write_io_error(bh) && page->mapping) |
1da177e4 LT |
2951 | set_bit(AS_EIO, &page->mapping->flags); |
2952 | if (buffer_busy(bh)) | |
2953 | goto failed; | |
2954 | bh = bh->b_this_page; | |
2955 | } while (bh != head); | |
2956 | ||
2957 | do { | |
2958 | struct buffer_head *next = bh->b_this_page; | |
2959 | ||
2960 | if (!list_empty(&bh->b_assoc_buffers)) | |
2961 | __remove_assoc_queue(bh); | |
2962 | bh = next; | |
2963 | } while (bh != head); | |
2964 | *buffers_to_free = head; | |
2965 | __clear_page_buffers(page); | |
2966 | return 1; | |
2967 | failed: | |
2968 | return 0; | |
2969 | } | |
2970 | ||
2971 | int try_to_free_buffers(struct page *page) | |
2972 | { | |
2973 | struct address_space * const mapping = page->mapping; | |
2974 | struct buffer_head *buffers_to_free = NULL; | |
2975 | int ret = 0; | |
2976 | ||
2977 | BUG_ON(!PageLocked(page)); | |
2978 | if (PageWriteback(page)) | |
2979 | return 0; | |
2980 | ||
2981 | if (mapping == NULL) { /* can this still happen? */ | |
2982 | ret = drop_buffers(page, &buffers_to_free); | |
2983 | goto out; | |
2984 | } | |
2985 | ||
2986 | spin_lock(&mapping->private_lock); | |
2987 | ret = drop_buffers(page, &buffers_to_free); | |
2988 | if (ret) { | |
2989 | /* | |
2990 | * If the filesystem writes its buffers by hand (eg ext3) | |
2991 | * then we can have clean buffers against a dirty page. We | |
2992 | * clean the page here; otherwise later reattachment of buffers | |
2993 | * could encounter a non-uptodate page, which is unresolvable. | |
2994 | * This only applies in the rare case where try_to_free_buffers | |
2995 | * succeeds but the page is not freed. | |
2996 | */ | |
2997 | clear_page_dirty(page); | |
2998 | } | |
2999 | spin_unlock(&mapping->private_lock); | |
3000 | out: | |
3001 | if (buffers_to_free) { | |
3002 | struct buffer_head *bh = buffers_to_free; | |
3003 | ||
3004 | do { | |
3005 | struct buffer_head *next = bh->b_this_page; | |
3006 | free_buffer_head(bh); | |
3007 | bh = next; | |
3008 | } while (bh != buffers_to_free); | |
3009 | } | |
3010 | return ret; | |
3011 | } | |
3012 | EXPORT_SYMBOL(try_to_free_buffers); | |
3013 | ||
3014 | int block_sync_page(struct page *page) | |
3015 | { | |
3016 | struct address_space *mapping; | |
3017 | ||
3018 | smp_mb(); | |
3019 | mapping = page_mapping(page); | |
3020 | if (mapping) | |
3021 | blk_run_backing_dev(mapping->backing_dev_info, page); | |
3022 | return 0; | |
3023 | } | |
3024 | ||
3025 | /* | |
3026 | * There are no bdflush tunables left. But distributions are | |
3027 | * still running obsolete flush daemons, so we terminate them here. | |
3028 | * | |
3029 | * Use of bdflush() is deprecated and will be removed in a future kernel. | |
3030 | * The `pdflush' kernel threads fully replace bdflush daemons and this call. | |
3031 | */ | |
3032 | asmlinkage long sys_bdflush(int func, long data) | |
3033 | { | |
3034 | static int msg_count; | |
3035 | ||
3036 | if (!capable(CAP_SYS_ADMIN)) | |
3037 | return -EPERM; | |
3038 | ||
3039 | if (msg_count < 5) { | |
3040 | msg_count++; | |
3041 | printk(KERN_INFO | |
3042 | "warning: process `%s' used the obsolete bdflush" | |
3043 | " system call\n", current->comm); | |
3044 | printk(KERN_INFO "Fix your initscripts?\n"); | |
3045 | } | |
3046 | ||
3047 | if (func == 1) | |
3048 | do_exit(0); | |
3049 | return 0; | |
3050 | } | |
3051 | ||
e965f963 CL |
3052 | /* |
3053 | * Migration function for pages with buffers. This function can only be used | |
3054 | * if the underlying filesystem guarantees that no other references to "page" | |
3055 | * exist. | |
3056 | */ | |
3057 | #ifdef CONFIG_MIGRATION | |
3058 | int buffer_migrate_page(struct page *newpage, struct page *page) | |
3059 | { | |
3060 | struct address_space *mapping = page->mapping; | |
3061 | struct buffer_head *bh, *head; | |
3062 | ||
3063 | if (!mapping) | |
3064 | return -EAGAIN; | |
3065 | ||
3066 | if (!page_has_buffers(page)) | |
3067 | return migrate_page(newpage, page); | |
3068 | ||
3069 | head = page_buffers(page); | |
3070 | ||
3071 | if (migrate_page_remove_references(newpage, page, 3)) | |
3072 | return -EAGAIN; | |
3073 | ||
3074 | bh = head; | |
3075 | do { | |
3076 | get_bh(bh); | |
3077 | lock_buffer(bh); | |
3078 | bh = bh->b_this_page; | |
3079 | ||
3080 | } while (bh != head); | |
3081 | ||
3082 | ClearPagePrivate(page); | |
3083 | set_page_private(newpage, page_private(page)); | |
3084 | set_page_private(page, 0); | |
3085 | put_page(page); | |
3086 | get_page(newpage); | |
3087 | ||
3088 | bh = head; | |
3089 | do { | |
3090 | set_bh_page(bh, newpage, bh_offset(bh)); | |
3091 | bh = bh->b_this_page; | |
3092 | ||
3093 | } while (bh != head); | |
3094 | ||
3095 | SetPagePrivate(newpage); | |
3096 | ||
3097 | migrate_page_copy(newpage, page); | |
3098 | ||
3099 | bh = head; | |
3100 | do { | |
3101 | unlock_buffer(bh); | |
3102 | put_bh(bh); | |
3103 | bh = bh->b_this_page; | |
3104 | ||
3105 | } while (bh != head); | |
3106 | ||
3107 | return 0; | |
3108 | } | |
3109 | EXPORT_SYMBOL(buffer_migrate_page); | |
3110 | #endif | |
3111 | ||
1da177e4 LT |
3112 | /* |
3113 | * Buffer-head allocation | |
3114 | */ | |
3115 | static kmem_cache_t *bh_cachep; | |
3116 | ||
3117 | /* | |
3118 | * Once the number of bh's in the machine exceeds this level, we start | |
3119 | * stripping them in writeback. | |
3120 | */ | |
3121 | static int max_buffer_heads; | |
3122 | ||
3123 | int buffer_heads_over_limit; | |
3124 | ||
3125 | struct bh_accounting { | |
3126 | int nr; /* Number of live bh's */ | |
3127 | int ratelimit; /* Limit cacheline bouncing */ | |
3128 | }; | |
3129 | ||
3130 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | |
3131 | ||
3132 | static void recalc_bh_state(void) | |
3133 | { | |
3134 | int i; | |
3135 | int tot = 0; | |
3136 | ||
3137 | if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) | |
3138 | return; | |
3139 | __get_cpu_var(bh_accounting).ratelimit = 0; | |
3140 | for_each_cpu(i) | |
3141 | tot += per_cpu(bh_accounting, i).nr; | |
3142 | buffer_heads_over_limit = (tot > max_buffer_heads); | |
3143 | } | |
3144 | ||
dd0fc66f | 3145 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
1da177e4 LT |
3146 | { |
3147 | struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); | |
3148 | if (ret) { | |
736c7b80 | 3149 | get_cpu_var(bh_accounting).nr++; |
1da177e4 | 3150 | recalc_bh_state(); |
736c7b80 | 3151 | put_cpu_var(bh_accounting); |
1da177e4 LT |
3152 | } |
3153 | return ret; | |
3154 | } | |
3155 | EXPORT_SYMBOL(alloc_buffer_head); | |
3156 | ||
3157 | void free_buffer_head(struct buffer_head *bh) | |
3158 | { | |
3159 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | |
3160 | kmem_cache_free(bh_cachep, bh); | |
736c7b80 | 3161 | get_cpu_var(bh_accounting).nr--; |
1da177e4 | 3162 | recalc_bh_state(); |
736c7b80 | 3163 | put_cpu_var(bh_accounting); |
1da177e4 LT |
3164 | } |
3165 | EXPORT_SYMBOL(free_buffer_head); | |
3166 | ||
3167 | static void | |
3168 | init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags) | |
3169 | { | |
3170 | if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == | |
3171 | SLAB_CTOR_CONSTRUCTOR) { | |
3172 | struct buffer_head * bh = (struct buffer_head *)data; | |
3173 | ||
3174 | memset(bh, 0, sizeof(*bh)); | |
3175 | INIT_LIST_HEAD(&bh->b_assoc_buffers); | |
3176 | } | |
3177 | } | |
3178 | ||
3179 | #ifdef CONFIG_HOTPLUG_CPU | |
3180 | static void buffer_exit_cpu(int cpu) | |
3181 | { | |
3182 | int i; | |
3183 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | |
3184 | ||
3185 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
3186 | brelse(b->bhs[i]); | |
3187 | b->bhs[i] = NULL; | |
3188 | } | |
3189 | } | |
3190 | ||
3191 | static int buffer_cpu_notify(struct notifier_block *self, | |
3192 | unsigned long action, void *hcpu) | |
3193 | { | |
3194 | if (action == CPU_DEAD) | |
3195 | buffer_exit_cpu((unsigned long)hcpu); | |
3196 | return NOTIFY_OK; | |
3197 | } | |
3198 | #endif /* CONFIG_HOTPLUG_CPU */ | |
3199 | ||
3200 | void __init buffer_init(void) | |
3201 | { | |
3202 | int nrpages; | |
3203 | ||
3204 | bh_cachep = kmem_cache_create("buffer_head", | |
3205 | sizeof(struct buffer_head), 0, | |
e422fd2c | 3206 | SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL); |
1da177e4 LT |
3207 | |
3208 | /* | |
3209 | * Limit the bh occupancy to 10% of ZONE_NORMAL | |
3210 | */ | |
3211 | nrpages = (nr_free_buffer_pages() * 10) / 100; | |
3212 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | |
3213 | hotcpu_notifier(buffer_cpu_notify, 0); | |
3214 | } | |
3215 | ||
3216 | EXPORT_SYMBOL(__bforget); | |
3217 | EXPORT_SYMBOL(__brelse); | |
3218 | EXPORT_SYMBOL(__wait_on_buffer); | |
3219 | EXPORT_SYMBOL(block_commit_write); | |
3220 | EXPORT_SYMBOL(block_prepare_write); | |
3221 | EXPORT_SYMBOL(block_read_full_page); | |
3222 | EXPORT_SYMBOL(block_sync_page); | |
3223 | EXPORT_SYMBOL(block_truncate_page); | |
3224 | EXPORT_SYMBOL(block_write_full_page); | |
3225 | EXPORT_SYMBOL(cont_prepare_write); | |
3226 | EXPORT_SYMBOL(end_buffer_async_write); | |
3227 | EXPORT_SYMBOL(end_buffer_read_sync); | |
3228 | EXPORT_SYMBOL(end_buffer_write_sync); | |
3229 | EXPORT_SYMBOL(file_fsync); | |
3230 | EXPORT_SYMBOL(fsync_bdev); | |
3231 | EXPORT_SYMBOL(generic_block_bmap); | |
3232 | EXPORT_SYMBOL(generic_commit_write); | |
3233 | EXPORT_SYMBOL(generic_cont_expand); | |
05eb0b51 | 3234 | EXPORT_SYMBOL(generic_cont_expand_simple); |
1da177e4 LT |
3235 | EXPORT_SYMBOL(init_buffer); |
3236 | EXPORT_SYMBOL(invalidate_bdev); | |
3237 | EXPORT_SYMBOL(ll_rw_block); | |
3238 | EXPORT_SYMBOL(mark_buffer_dirty); | |
3239 | EXPORT_SYMBOL(submit_bh); | |
3240 | EXPORT_SYMBOL(sync_dirty_buffer); | |
3241 | EXPORT_SYMBOL(unlock_buffer); |