]>
Commit | Line | Data |
---|---|---|
b60503ba MW |
1 | /* |
2 | * NVM Express device driver | |
3 | * Copyright (c) 2011, Intel Corporation. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify it | |
6 | * under the terms and conditions of the GNU General Public License, | |
7 | * version 2, as published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope it will be useful, but WITHOUT | |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
12 | * more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License along with | |
15 | * this program; if not, write to the Free Software Foundation, Inc., | |
16 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | |
17 | */ | |
18 | ||
19 | #include <linux/nvme.h> | |
20 | #include <linux/bio.h> | |
8de05535 | 21 | #include <linux/bitops.h> |
b60503ba | 22 | #include <linux/blkdev.h> |
fd63e9ce | 23 | #include <linux/delay.h> |
b60503ba MW |
24 | #include <linux/errno.h> |
25 | #include <linux/fs.h> | |
26 | #include <linux/genhd.h> | |
5aff9382 | 27 | #include <linux/idr.h> |
b60503ba MW |
28 | #include <linux/init.h> |
29 | #include <linux/interrupt.h> | |
30 | #include <linux/io.h> | |
31 | #include <linux/kdev_t.h> | |
1fa6aead | 32 | #include <linux/kthread.h> |
b60503ba MW |
33 | #include <linux/kernel.h> |
34 | #include <linux/mm.h> | |
35 | #include <linux/module.h> | |
36 | #include <linux/moduleparam.h> | |
37 | #include <linux/pci.h> | |
be7b6275 | 38 | #include <linux/poison.h> |
b60503ba MW |
39 | #include <linux/sched.h> |
40 | #include <linux/slab.h> | |
41 | #include <linux/types.h> | |
b60503ba | 42 | |
797a796a HM |
43 | #include <asm-generic/io-64-nonatomic-lo-hi.h> |
44 | ||
b60503ba MW |
45 | #define NVME_Q_DEPTH 1024 |
46 | #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) | |
47 | #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) | |
48 | #define NVME_MINORS 64 | |
ff976d72 | 49 | #define NVME_IO_TIMEOUT (5 * HZ) |
e85248e5 | 50 | #define ADMIN_TIMEOUT (60 * HZ) |
b60503ba MW |
51 | |
52 | static int nvme_major; | |
53 | module_param(nvme_major, int, 0); | |
54 | ||
58ffacb5 MW |
55 | static int use_threaded_interrupts; |
56 | module_param(use_threaded_interrupts, int, 0); | |
57 | ||
1fa6aead MW |
58 | static DEFINE_SPINLOCK(dev_list_lock); |
59 | static LIST_HEAD(dev_list); | |
60 | static struct task_struct *nvme_thread; | |
61 | ||
b60503ba MW |
62 | /* |
63 | * Represents an NVM Express device. Each nvme_dev is a PCI function. | |
64 | */ | |
65 | struct nvme_dev { | |
1fa6aead | 66 | struct list_head node; |
b60503ba MW |
67 | struct nvme_queue **queues; |
68 | u32 __iomem *dbs; | |
69 | struct pci_dev *pci_dev; | |
091b6092 | 70 | struct dma_pool *prp_page_pool; |
99802a7a | 71 | struct dma_pool *prp_small_pool; |
b60503ba MW |
72 | int instance; |
73 | int queue_count; | |
f1938f6e | 74 | int db_stride; |
b60503ba MW |
75 | u32 ctrl_config; |
76 | struct msix_entry *entry; | |
77 | struct nvme_bar __iomem *bar; | |
78 | struct list_head namespaces; | |
51814232 MW |
79 | char serial[20]; |
80 | char model[40]; | |
81 | char firmware_rev[8]; | |
b60503ba MW |
82 | }; |
83 | ||
84 | /* | |
85 | * An NVM Express namespace is equivalent to a SCSI LUN | |
86 | */ | |
87 | struct nvme_ns { | |
88 | struct list_head list; | |
89 | ||
90 | struct nvme_dev *dev; | |
91 | struct request_queue *queue; | |
92 | struct gendisk *disk; | |
93 | ||
94 | int ns_id; | |
95 | int lba_shift; | |
96 | }; | |
97 | ||
98 | /* | |
99 | * An NVM Express queue. Each device has at least two (one for admin | |
100 | * commands and one for I/O commands). | |
101 | */ | |
102 | struct nvme_queue { | |
103 | struct device *q_dmadev; | |
091b6092 | 104 | struct nvme_dev *dev; |
b60503ba MW |
105 | spinlock_t q_lock; |
106 | struct nvme_command *sq_cmds; | |
107 | volatile struct nvme_completion *cqes; | |
108 | dma_addr_t sq_dma_addr; | |
109 | dma_addr_t cq_dma_addr; | |
110 | wait_queue_head_t sq_full; | |
1fa6aead | 111 | wait_queue_t sq_cong_wait; |
b60503ba MW |
112 | struct bio_list sq_cong; |
113 | u32 __iomem *q_db; | |
114 | u16 q_depth; | |
115 | u16 cq_vector; | |
116 | u16 sq_head; | |
117 | u16 sq_tail; | |
118 | u16 cq_head; | |
82123460 | 119 | u16 cq_phase; |
b60503ba MW |
120 | unsigned long cmdid_data[]; |
121 | }; | |
122 | ||
123 | /* | |
124 | * Check we didin't inadvertently grow the command struct | |
125 | */ | |
126 | static inline void _nvme_check_size(void) | |
127 | { | |
128 | BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); | |
129 | BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); | |
130 | BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); | |
131 | BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); | |
132 | BUILD_BUG_ON(sizeof(struct nvme_features) != 64); | |
133 | BUILD_BUG_ON(sizeof(struct nvme_command) != 64); | |
134 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); | |
135 | BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); | |
136 | BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); | |
137 | } | |
138 | ||
5c1281a3 | 139 | typedef void (*nvme_completion_fn)(struct nvme_dev *, void *, |
c2f5b650 MW |
140 | struct nvme_completion *); |
141 | ||
e85248e5 | 142 | struct nvme_cmd_info { |
c2f5b650 MW |
143 | nvme_completion_fn fn; |
144 | void *ctx; | |
e85248e5 MW |
145 | unsigned long timeout; |
146 | }; | |
147 | ||
148 | static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq) | |
149 | { | |
150 | return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)]; | |
151 | } | |
152 | ||
b60503ba | 153 | /** |
714a7a22 MW |
154 | * alloc_cmdid() - Allocate a Command ID |
155 | * @nvmeq: The queue that will be used for this command | |
156 | * @ctx: A pointer that will be passed to the handler | |
c2f5b650 | 157 | * @handler: The function to call on completion |
b60503ba MW |
158 | * |
159 | * Allocate a Command ID for a queue. The data passed in will | |
160 | * be passed to the completion handler. This is implemented by using | |
161 | * the bottom two bits of the ctx pointer to store the handler ID. | |
162 | * Passing in a pointer that's not 4-byte aligned will cause a BUG. | |
163 | * We can change this if it becomes a problem. | |
184d2944 MW |
164 | * |
165 | * May be called with local interrupts disabled and the q_lock held, | |
166 | * or with interrupts enabled and no locks held. | |
b60503ba | 167 | */ |
c2f5b650 MW |
168 | static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, |
169 | nvme_completion_fn handler, unsigned timeout) | |
b60503ba | 170 | { |
e6d15f79 | 171 | int depth = nvmeq->q_depth - 1; |
e85248e5 | 172 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
b60503ba MW |
173 | int cmdid; |
174 | ||
b60503ba MW |
175 | do { |
176 | cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth); | |
177 | if (cmdid >= depth) | |
178 | return -EBUSY; | |
179 | } while (test_and_set_bit(cmdid, nvmeq->cmdid_data)); | |
180 | ||
c2f5b650 MW |
181 | info[cmdid].fn = handler; |
182 | info[cmdid].ctx = ctx; | |
e85248e5 | 183 | info[cmdid].timeout = jiffies + timeout; |
b60503ba MW |
184 | return cmdid; |
185 | } | |
186 | ||
187 | static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, | |
c2f5b650 | 188 | nvme_completion_fn handler, unsigned timeout) |
b60503ba MW |
189 | { |
190 | int cmdid; | |
191 | wait_event_killable(nvmeq->sq_full, | |
e85248e5 | 192 | (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0); |
b60503ba MW |
193 | return (cmdid < 0) ? -EINTR : cmdid; |
194 | } | |
195 | ||
c2f5b650 MW |
196 | /* Special values must be less than 0x1000 */ |
197 | #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA) | |
d2d87034 MW |
198 | #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) |
199 | #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) | |
200 | #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) | |
00df5cb4 | 201 | #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE) |
be7b6275 | 202 | |
5c1281a3 | 203 | static void special_completion(struct nvme_dev *dev, void *ctx, |
c2f5b650 MW |
204 | struct nvme_completion *cqe) |
205 | { | |
206 | if (ctx == CMD_CTX_CANCELLED) | |
207 | return; | |
208 | if (ctx == CMD_CTX_FLUSH) | |
209 | return; | |
210 | if (ctx == CMD_CTX_COMPLETED) { | |
5c1281a3 | 211 | dev_warn(&dev->pci_dev->dev, |
c2f5b650 MW |
212 | "completed id %d twice on queue %d\n", |
213 | cqe->command_id, le16_to_cpup(&cqe->sq_id)); | |
214 | return; | |
215 | } | |
216 | if (ctx == CMD_CTX_INVALID) { | |
5c1281a3 | 217 | dev_warn(&dev->pci_dev->dev, |
c2f5b650 MW |
218 | "invalid id %d completed on queue %d\n", |
219 | cqe->command_id, le16_to_cpup(&cqe->sq_id)); | |
220 | return; | |
221 | } | |
222 | ||
5c1281a3 | 223 | dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx); |
c2f5b650 MW |
224 | } |
225 | ||
184d2944 MW |
226 | /* |
227 | * Called with local interrupts disabled and the q_lock held. May not sleep. | |
228 | */ | |
c2f5b650 MW |
229 | static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid, |
230 | nvme_completion_fn *fn) | |
b60503ba | 231 | { |
c2f5b650 | 232 | void *ctx; |
e85248e5 | 233 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
b60503ba | 234 | |
c2f5b650 MW |
235 | if (cmdid >= nvmeq->q_depth) { |
236 | *fn = special_completion; | |
48e3d398 | 237 | return CMD_CTX_INVALID; |
c2f5b650 MW |
238 | } |
239 | *fn = info[cmdid].fn; | |
240 | ctx = info[cmdid].ctx; | |
241 | info[cmdid].fn = special_completion; | |
e85248e5 | 242 | info[cmdid].ctx = CMD_CTX_COMPLETED; |
b60503ba MW |
243 | clear_bit(cmdid, nvmeq->cmdid_data); |
244 | wake_up(&nvmeq->sq_full); | |
c2f5b650 | 245 | return ctx; |
b60503ba MW |
246 | } |
247 | ||
c2f5b650 MW |
248 | static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid, |
249 | nvme_completion_fn *fn) | |
3c0cf138 | 250 | { |
c2f5b650 | 251 | void *ctx; |
e85248e5 | 252 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
c2f5b650 MW |
253 | if (fn) |
254 | *fn = info[cmdid].fn; | |
255 | ctx = info[cmdid].ctx; | |
256 | info[cmdid].fn = special_completion; | |
e85248e5 | 257 | info[cmdid].ctx = CMD_CTX_CANCELLED; |
c2f5b650 | 258 | return ctx; |
3c0cf138 MW |
259 | } |
260 | ||
040a93b5 | 261 | static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) |
b60503ba | 262 | { |
040a93b5 | 263 | return dev->queues[get_cpu() + 1]; |
b60503ba MW |
264 | } |
265 | ||
266 | static void put_nvmeq(struct nvme_queue *nvmeq) | |
267 | { | |
1b23484b | 268 | put_cpu(); |
b60503ba MW |
269 | } |
270 | ||
271 | /** | |
714a7a22 | 272 | * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell |
b60503ba MW |
273 | * @nvmeq: The queue to use |
274 | * @cmd: The command to send | |
275 | * | |
276 | * Safe to use from interrupt context | |
277 | */ | |
278 | static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) | |
279 | { | |
280 | unsigned long flags; | |
281 | u16 tail; | |
b60503ba MW |
282 | spin_lock_irqsave(&nvmeq->q_lock, flags); |
283 | tail = nvmeq->sq_tail; | |
284 | memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); | |
b60503ba MW |
285 | if (++tail == nvmeq->q_depth) |
286 | tail = 0; | |
7547881d | 287 | writel(tail, nvmeq->q_db); |
b60503ba MW |
288 | nvmeq->sq_tail = tail; |
289 | spin_unlock_irqrestore(&nvmeq->q_lock, flags); | |
290 | ||
291 | return 0; | |
292 | } | |
293 | ||
eca18b23 MW |
294 | /* |
295 | * The nvme_iod describes the data in an I/O, including the list of PRP | |
296 | * entries. You can't see it in this data structure because C doesn't let | |
297 | * me express that. Use nvme_alloc_iod to ensure there's enough space | |
298 | * allocated to store the PRP list. | |
299 | */ | |
300 | struct nvme_iod { | |
301 | void *private; /* For the use of the submitter of the I/O */ | |
302 | int npages; /* In the PRP list. 0 means small pool in use */ | |
303 | int offset; /* Of PRP list */ | |
304 | int nents; /* Used in scatterlist */ | |
305 | int length; /* Of data, in bytes */ | |
e025344c | 306 | dma_addr_t first_dma; |
eca18b23 | 307 | struct scatterlist sg[0]; |
e025344c SMM |
308 | }; |
309 | ||
eca18b23 | 310 | static __le64 **iod_list(struct nvme_iod *iod) |
e025344c | 311 | { |
eca18b23 | 312 | return ((void *)iod) + iod->offset; |
e025344c SMM |
313 | } |
314 | ||
eca18b23 MW |
315 | /* |
316 | * Will slightly overestimate the number of pages needed. This is OK | |
317 | * as it only leads to a small amount of wasted memory for the lifetime of | |
318 | * the I/O. | |
319 | */ | |
320 | static int nvme_npages(unsigned size) | |
321 | { | |
322 | unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE); | |
323 | return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); | |
324 | } | |
b60503ba | 325 | |
eca18b23 MW |
326 | static struct nvme_iod * |
327 | nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp) | |
b60503ba | 328 | { |
eca18b23 MW |
329 | struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) + |
330 | sizeof(__le64 *) * nvme_npages(nbytes) + | |
331 | sizeof(struct scatterlist) * nseg, gfp); | |
332 | ||
333 | if (iod) { | |
334 | iod->offset = offsetof(struct nvme_iod, sg[nseg]); | |
335 | iod->npages = -1; | |
336 | iod->length = nbytes; | |
337 | } | |
338 | ||
339 | return iod; | |
b60503ba MW |
340 | } |
341 | ||
eca18b23 | 342 | static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) |
b60503ba | 343 | { |
eca18b23 MW |
344 | const int last_prp = PAGE_SIZE / 8 - 1; |
345 | int i; | |
346 | __le64 **list = iod_list(iod); | |
347 | dma_addr_t prp_dma = iod->first_dma; | |
348 | ||
349 | if (iod->npages == 0) | |
350 | dma_pool_free(dev->prp_small_pool, list[0], prp_dma); | |
351 | for (i = 0; i < iod->npages; i++) { | |
352 | __le64 *prp_list = list[i]; | |
353 | dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); | |
354 | dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); | |
355 | prp_dma = next_prp_dma; | |
356 | } | |
357 | kfree(iod); | |
b60503ba MW |
358 | } |
359 | ||
5c1281a3 MW |
360 | static void requeue_bio(struct nvme_dev *dev, struct bio *bio) |
361 | { | |
362 | struct nvme_queue *nvmeq = get_nvmeq(dev); | |
363 | if (bio_list_empty(&nvmeq->sq_cong)) | |
364 | add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); | |
365 | bio_list_add(&nvmeq->sq_cong, bio); | |
366 | put_nvmeq(nvmeq); | |
367 | wake_up_process(nvme_thread); | |
368 | } | |
369 | ||
370 | static void bio_completion(struct nvme_dev *dev, void *ctx, | |
b60503ba MW |
371 | struct nvme_completion *cqe) |
372 | { | |
eca18b23 MW |
373 | struct nvme_iod *iod = ctx; |
374 | struct bio *bio = iod->private; | |
b60503ba MW |
375 | u16 status = le16_to_cpup(&cqe->status) >> 1; |
376 | ||
eca18b23 | 377 | dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, |
b60503ba | 378 | bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
eca18b23 | 379 | nvme_free_iod(dev, iod); |
09a58f53 | 380 | if (status) { |
1ad2f893 | 381 | bio_endio(bio, -EIO); |
09a58f53 | 382 | } else if (bio->bi_vcnt > bio->bi_idx) { |
5c1281a3 | 383 | requeue_bio(dev, bio); |
1ad2f893 MW |
384 | } else { |
385 | bio_endio(bio, 0); | |
386 | } | |
b60503ba MW |
387 | } |
388 | ||
184d2944 | 389 | /* length is in bytes. gfp flags indicates whether we may sleep. */ |
eca18b23 MW |
390 | static int nvme_setup_prps(struct nvme_dev *dev, |
391 | struct nvme_common_command *cmd, struct nvme_iod *iod, | |
392 | int total_len, gfp_t gfp) | |
ff22b54f | 393 | { |
99802a7a | 394 | struct dma_pool *pool; |
eca18b23 MW |
395 | int length = total_len; |
396 | struct scatterlist *sg = iod->sg; | |
ff22b54f MW |
397 | int dma_len = sg_dma_len(sg); |
398 | u64 dma_addr = sg_dma_address(sg); | |
399 | int offset = offset_in_page(dma_addr); | |
e025344c | 400 | __le64 *prp_list; |
eca18b23 | 401 | __le64 **list = iod_list(iod); |
e025344c | 402 | dma_addr_t prp_dma; |
eca18b23 | 403 | int nprps, i; |
ff22b54f MW |
404 | |
405 | cmd->prp1 = cpu_to_le64(dma_addr); | |
406 | length -= (PAGE_SIZE - offset); | |
407 | if (length <= 0) | |
eca18b23 | 408 | return total_len; |
ff22b54f MW |
409 | |
410 | dma_len -= (PAGE_SIZE - offset); | |
411 | if (dma_len) { | |
412 | dma_addr += (PAGE_SIZE - offset); | |
413 | } else { | |
414 | sg = sg_next(sg); | |
415 | dma_addr = sg_dma_address(sg); | |
416 | dma_len = sg_dma_len(sg); | |
417 | } | |
418 | ||
419 | if (length <= PAGE_SIZE) { | |
420 | cmd->prp2 = cpu_to_le64(dma_addr); | |
eca18b23 | 421 | return total_len; |
e025344c SMM |
422 | } |
423 | ||
424 | nprps = DIV_ROUND_UP(length, PAGE_SIZE); | |
99802a7a MW |
425 | if (nprps <= (256 / 8)) { |
426 | pool = dev->prp_small_pool; | |
eca18b23 | 427 | iod->npages = 0; |
99802a7a MW |
428 | } else { |
429 | pool = dev->prp_page_pool; | |
eca18b23 | 430 | iod->npages = 1; |
99802a7a MW |
431 | } |
432 | ||
b77954cb MW |
433 | prp_list = dma_pool_alloc(pool, gfp, &prp_dma); |
434 | if (!prp_list) { | |
435 | cmd->prp2 = cpu_to_le64(dma_addr); | |
eca18b23 MW |
436 | iod->npages = -1; |
437 | return (total_len - length) + PAGE_SIZE; | |
b77954cb | 438 | } |
eca18b23 MW |
439 | list[0] = prp_list; |
440 | iod->first_dma = prp_dma; | |
e025344c SMM |
441 | cmd->prp2 = cpu_to_le64(prp_dma); |
442 | i = 0; | |
443 | for (;;) { | |
7523d834 | 444 | if (i == PAGE_SIZE / 8) { |
e025344c | 445 | __le64 *old_prp_list = prp_list; |
b77954cb | 446 | prp_list = dma_pool_alloc(pool, gfp, &prp_dma); |
eca18b23 MW |
447 | if (!prp_list) |
448 | return total_len - length; | |
449 | list[iod->npages++] = prp_list; | |
7523d834 MW |
450 | prp_list[0] = old_prp_list[i - 1]; |
451 | old_prp_list[i - 1] = cpu_to_le64(prp_dma); | |
452 | i = 1; | |
e025344c SMM |
453 | } |
454 | prp_list[i++] = cpu_to_le64(dma_addr); | |
455 | dma_len -= PAGE_SIZE; | |
456 | dma_addr += PAGE_SIZE; | |
457 | length -= PAGE_SIZE; | |
458 | if (length <= 0) | |
459 | break; | |
460 | if (dma_len > 0) | |
461 | continue; | |
462 | BUG_ON(dma_len < 0); | |
463 | sg = sg_next(sg); | |
464 | dma_addr = sg_dma_address(sg); | |
465 | dma_len = sg_dma_len(sg); | |
ff22b54f MW |
466 | } |
467 | ||
eca18b23 | 468 | return total_len; |
ff22b54f MW |
469 | } |
470 | ||
1ad2f893 MW |
471 | /* NVMe scatterlists require no holes in the virtual address */ |
472 | #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \ | |
473 | (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE)) | |
474 | ||
eca18b23 | 475 | static int nvme_map_bio(struct device *dev, struct nvme_iod *iod, |
b60503ba MW |
476 | struct bio *bio, enum dma_data_direction dma_dir, int psegs) |
477 | { | |
76830840 MW |
478 | struct bio_vec *bvec, *bvprv = NULL; |
479 | struct scatterlist *sg = NULL; | |
1ad2f893 | 480 | int i, old_idx, length = 0, nsegs = 0; |
b60503ba | 481 | |
eca18b23 | 482 | sg_init_table(iod->sg, psegs); |
1ad2f893 | 483 | old_idx = bio->bi_idx; |
b60503ba | 484 | bio_for_each_segment(bvec, bio, i) { |
76830840 MW |
485 | if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) { |
486 | sg->length += bvec->bv_len; | |
487 | } else { | |
1ad2f893 MW |
488 | if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec)) |
489 | break; | |
eca18b23 | 490 | sg = sg ? sg + 1 : iod->sg; |
76830840 MW |
491 | sg_set_page(sg, bvec->bv_page, bvec->bv_len, |
492 | bvec->bv_offset); | |
493 | nsegs++; | |
494 | } | |
1ad2f893 | 495 | length += bvec->bv_len; |
76830840 | 496 | bvprv = bvec; |
b60503ba | 497 | } |
1ad2f893 | 498 | bio->bi_idx = i; |
eca18b23 | 499 | iod->nents = nsegs; |
76830840 | 500 | sg_mark_end(sg); |
eca18b23 | 501 | if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) { |
1ad2f893 MW |
502 | bio->bi_idx = old_idx; |
503 | return -ENOMEM; | |
504 | } | |
505 | return length; | |
b60503ba MW |
506 | } |
507 | ||
00df5cb4 MW |
508 | static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns, |
509 | int cmdid) | |
510 | { | |
511 | struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; | |
512 | ||
513 | memset(cmnd, 0, sizeof(*cmnd)); | |
514 | cmnd->common.opcode = nvme_cmd_flush; | |
515 | cmnd->common.command_id = cmdid; | |
516 | cmnd->common.nsid = cpu_to_le32(ns->ns_id); | |
517 | ||
518 | if (++nvmeq->sq_tail == nvmeq->q_depth) | |
519 | nvmeq->sq_tail = 0; | |
520 | writel(nvmeq->sq_tail, nvmeq->q_db); | |
521 | ||
522 | return 0; | |
523 | } | |
524 | ||
525 | static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns) | |
526 | { | |
527 | int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH, | |
ff976d72 | 528 | special_completion, NVME_IO_TIMEOUT); |
00df5cb4 MW |
529 | if (unlikely(cmdid < 0)) |
530 | return cmdid; | |
531 | ||
532 | return nvme_submit_flush(nvmeq, ns, cmdid); | |
533 | } | |
534 | ||
184d2944 MW |
535 | /* |
536 | * Called with local interrupts disabled and the q_lock held. May not sleep. | |
537 | */ | |
b60503ba MW |
538 | static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, |
539 | struct bio *bio) | |
540 | { | |
ff22b54f | 541 | struct nvme_command *cmnd; |
eca18b23 | 542 | struct nvme_iod *iod; |
b60503ba | 543 | enum dma_data_direction dma_dir; |
1ad2f893 | 544 | int cmdid, length, result = -ENOMEM; |
b60503ba MW |
545 | u16 control; |
546 | u32 dsmgmt; | |
b60503ba MW |
547 | int psegs = bio_phys_segments(ns->queue, bio); |
548 | ||
00df5cb4 MW |
549 | if ((bio->bi_rw & REQ_FLUSH) && psegs) { |
550 | result = nvme_submit_flush_data(nvmeq, ns); | |
551 | if (result) | |
552 | return result; | |
553 | } | |
554 | ||
eca18b23 MW |
555 | iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC); |
556 | if (!iod) | |
eeee3226 | 557 | goto nomem; |
eca18b23 | 558 | iod->private = bio; |
b60503ba | 559 | |
eeee3226 | 560 | result = -EBUSY; |
ff976d72 | 561 | cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT); |
b60503ba | 562 | if (unlikely(cmdid < 0)) |
eca18b23 | 563 | goto free_iod; |
b60503ba | 564 | |
00df5cb4 MW |
565 | if ((bio->bi_rw & REQ_FLUSH) && !psegs) |
566 | return nvme_submit_flush(nvmeq, ns, cmdid); | |
567 | ||
b60503ba MW |
568 | control = 0; |
569 | if (bio->bi_rw & REQ_FUA) | |
570 | control |= NVME_RW_FUA; | |
571 | if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD)) | |
572 | control |= NVME_RW_LR; | |
573 | ||
574 | dsmgmt = 0; | |
575 | if (bio->bi_rw & REQ_RAHEAD) | |
576 | dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; | |
577 | ||
ff22b54f | 578 | cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; |
b60503ba | 579 | |
b8deb62c | 580 | memset(cmnd, 0, sizeof(*cmnd)); |
b60503ba | 581 | if (bio_data_dir(bio)) { |
ff22b54f | 582 | cmnd->rw.opcode = nvme_cmd_write; |
b60503ba MW |
583 | dma_dir = DMA_TO_DEVICE; |
584 | } else { | |
ff22b54f | 585 | cmnd->rw.opcode = nvme_cmd_read; |
b60503ba MW |
586 | dma_dir = DMA_FROM_DEVICE; |
587 | } | |
588 | ||
eca18b23 | 589 | result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs); |
1ad2f893 | 590 | if (result < 0) |
eca18b23 | 591 | goto free_iod; |
1ad2f893 | 592 | length = result; |
b60503ba | 593 | |
ff22b54f MW |
594 | cmnd->rw.command_id = cmdid; |
595 | cmnd->rw.nsid = cpu_to_le32(ns->ns_id); | |
eca18b23 MW |
596 | length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length, |
597 | GFP_ATOMIC); | |
ff22b54f | 598 | cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9)); |
1ad2f893 | 599 | cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1); |
ff22b54f MW |
600 | cmnd->rw.control = cpu_to_le16(control); |
601 | cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); | |
b60503ba | 602 | |
d8ee9d69 MW |
603 | bio->bi_sector += length >> 9; |
604 | ||
b60503ba MW |
605 | if (++nvmeq->sq_tail == nvmeq->q_depth) |
606 | nvmeq->sq_tail = 0; | |
7547881d | 607 | writel(nvmeq->sq_tail, nvmeq->q_db); |
b60503ba | 608 | |
1974b1ae MW |
609 | return 0; |
610 | ||
eca18b23 MW |
611 | free_iod: |
612 | nvme_free_iod(nvmeq->dev, iod); | |
eeee3226 MW |
613 | nomem: |
614 | return result; | |
b60503ba MW |
615 | } |
616 | ||
93c3d65b | 617 | static void nvme_make_request(struct request_queue *q, struct bio *bio) |
b60503ba MW |
618 | { |
619 | struct nvme_ns *ns = q->queuedata; | |
040a93b5 | 620 | struct nvme_queue *nvmeq = get_nvmeq(ns->dev); |
eeee3226 MW |
621 | int result = -EBUSY; |
622 | ||
623 | spin_lock_irq(&nvmeq->q_lock); | |
624 | if (bio_list_empty(&nvmeq->sq_cong)) | |
625 | result = nvme_submit_bio_queue(nvmeq, ns, bio); | |
626 | if (unlikely(result)) { | |
627 | if (bio_list_empty(&nvmeq->sq_cong)) | |
628 | add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); | |
b60503ba MW |
629 | bio_list_add(&nvmeq->sq_cong, bio); |
630 | } | |
eeee3226 MW |
631 | |
632 | spin_unlock_irq(&nvmeq->q_lock); | |
b60503ba | 633 | put_nvmeq(nvmeq); |
b60503ba MW |
634 | } |
635 | ||
b60503ba MW |
636 | static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq) |
637 | { | |
82123460 | 638 | u16 head, phase; |
b60503ba | 639 | |
b60503ba | 640 | head = nvmeq->cq_head; |
82123460 | 641 | phase = nvmeq->cq_phase; |
b60503ba MW |
642 | |
643 | for (;;) { | |
c2f5b650 MW |
644 | void *ctx; |
645 | nvme_completion_fn fn; | |
b60503ba | 646 | struct nvme_completion cqe = nvmeq->cqes[head]; |
82123460 | 647 | if ((le16_to_cpu(cqe.status) & 1) != phase) |
b60503ba MW |
648 | break; |
649 | nvmeq->sq_head = le16_to_cpu(cqe.sq_head); | |
650 | if (++head == nvmeq->q_depth) { | |
651 | head = 0; | |
82123460 | 652 | phase = !phase; |
b60503ba MW |
653 | } |
654 | ||
c2f5b650 | 655 | ctx = free_cmdid(nvmeq, cqe.command_id, &fn); |
5c1281a3 | 656 | fn(nvmeq->dev, ctx, &cqe); |
b60503ba MW |
657 | } |
658 | ||
659 | /* If the controller ignores the cq head doorbell and continuously | |
660 | * writes to the queue, it is theoretically possible to wrap around | |
661 | * the queue twice and mistakenly return IRQ_NONE. Linux only | |
662 | * requires that 0.1% of your interrupts are handled, so this isn't | |
663 | * a big problem. | |
664 | */ | |
82123460 | 665 | if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) |
b60503ba MW |
666 | return IRQ_NONE; |
667 | ||
f1938f6e | 668 | writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride)); |
b60503ba | 669 | nvmeq->cq_head = head; |
82123460 | 670 | nvmeq->cq_phase = phase; |
b60503ba MW |
671 | |
672 | return IRQ_HANDLED; | |
673 | } | |
674 | ||
675 | static irqreturn_t nvme_irq(int irq, void *data) | |
58ffacb5 MW |
676 | { |
677 | irqreturn_t result; | |
678 | struct nvme_queue *nvmeq = data; | |
679 | spin_lock(&nvmeq->q_lock); | |
680 | result = nvme_process_cq(nvmeq); | |
681 | spin_unlock(&nvmeq->q_lock); | |
682 | return result; | |
683 | } | |
684 | ||
685 | static irqreturn_t nvme_irq_check(int irq, void *data) | |
686 | { | |
687 | struct nvme_queue *nvmeq = data; | |
688 | struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; | |
689 | if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) | |
690 | return IRQ_NONE; | |
691 | return IRQ_WAKE_THREAD; | |
692 | } | |
693 | ||
3c0cf138 MW |
694 | static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid) |
695 | { | |
696 | spin_lock_irq(&nvmeq->q_lock); | |
c2f5b650 | 697 | cancel_cmdid(nvmeq, cmdid, NULL); |
3c0cf138 MW |
698 | spin_unlock_irq(&nvmeq->q_lock); |
699 | } | |
700 | ||
c2f5b650 MW |
701 | struct sync_cmd_info { |
702 | struct task_struct *task; | |
703 | u32 result; | |
704 | int status; | |
705 | }; | |
706 | ||
5c1281a3 | 707 | static void sync_completion(struct nvme_dev *dev, void *ctx, |
c2f5b650 MW |
708 | struct nvme_completion *cqe) |
709 | { | |
710 | struct sync_cmd_info *cmdinfo = ctx; | |
711 | cmdinfo->result = le32_to_cpup(&cqe->result); | |
712 | cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; | |
713 | wake_up_process(cmdinfo->task); | |
714 | } | |
715 | ||
b60503ba MW |
716 | /* |
717 | * Returns 0 on success. If the result is negative, it's a Linux error code; | |
718 | * if the result is positive, it's an NVM Express status code | |
719 | */ | |
3c0cf138 | 720 | static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, |
e85248e5 | 721 | struct nvme_command *cmd, u32 *result, unsigned timeout) |
b60503ba MW |
722 | { |
723 | int cmdid; | |
724 | struct sync_cmd_info cmdinfo; | |
725 | ||
726 | cmdinfo.task = current; | |
727 | cmdinfo.status = -EINTR; | |
728 | ||
c2f5b650 | 729 | cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion, |
e85248e5 | 730 | timeout); |
b60503ba MW |
731 | if (cmdid < 0) |
732 | return cmdid; | |
733 | cmd->common.command_id = cmdid; | |
734 | ||
3c0cf138 MW |
735 | set_current_state(TASK_KILLABLE); |
736 | nvme_submit_cmd(nvmeq, cmd); | |
b60503ba MW |
737 | schedule(); |
738 | ||
3c0cf138 MW |
739 | if (cmdinfo.status == -EINTR) { |
740 | nvme_abort_command(nvmeq, cmdid); | |
741 | return -EINTR; | |
742 | } | |
743 | ||
b60503ba MW |
744 | if (result) |
745 | *result = cmdinfo.result; | |
746 | ||
747 | return cmdinfo.status; | |
748 | } | |
749 | ||
750 | static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, | |
751 | u32 *result) | |
752 | { | |
e85248e5 | 753 | return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); |
b60503ba MW |
754 | } |
755 | ||
756 | static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) | |
757 | { | |
758 | int status; | |
759 | struct nvme_command c; | |
760 | ||
761 | memset(&c, 0, sizeof(c)); | |
762 | c.delete_queue.opcode = opcode; | |
763 | c.delete_queue.qid = cpu_to_le16(id); | |
764 | ||
765 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
766 | if (status) | |
767 | return -EIO; | |
768 | return 0; | |
769 | } | |
770 | ||
771 | static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, | |
772 | struct nvme_queue *nvmeq) | |
773 | { | |
774 | int status; | |
775 | struct nvme_command c; | |
776 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; | |
777 | ||
778 | memset(&c, 0, sizeof(c)); | |
779 | c.create_cq.opcode = nvme_admin_create_cq; | |
780 | c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); | |
781 | c.create_cq.cqid = cpu_to_le16(qid); | |
782 | c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | |
783 | c.create_cq.cq_flags = cpu_to_le16(flags); | |
784 | c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); | |
785 | ||
786 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
787 | if (status) | |
788 | return -EIO; | |
789 | return 0; | |
790 | } | |
791 | ||
792 | static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, | |
793 | struct nvme_queue *nvmeq) | |
794 | { | |
795 | int status; | |
796 | struct nvme_command c; | |
797 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; | |
798 | ||
799 | memset(&c, 0, sizeof(c)); | |
800 | c.create_sq.opcode = nvme_admin_create_sq; | |
801 | c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); | |
802 | c.create_sq.sqid = cpu_to_le16(qid); | |
803 | c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | |
804 | c.create_sq.sq_flags = cpu_to_le16(flags); | |
805 | c.create_sq.cqid = cpu_to_le16(qid); | |
806 | ||
807 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
808 | if (status) | |
809 | return -EIO; | |
810 | return 0; | |
811 | } | |
812 | ||
813 | static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) | |
814 | { | |
815 | return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); | |
816 | } | |
817 | ||
818 | static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) | |
819 | { | |
820 | return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); | |
821 | } | |
822 | ||
bc5fc7e4 MW |
823 | static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns, |
824 | dma_addr_t dma_addr) | |
825 | { | |
826 | struct nvme_command c; | |
827 | ||
828 | memset(&c, 0, sizeof(c)); | |
829 | c.identify.opcode = nvme_admin_identify; | |
830 | c.identify.nsid = cpu_to_le32(nsid); | |
831 | c.identify.prp1 = cpu_to_le64(dma_addr); | |
832 | c.identify.cns = cpu_to_le32(cns); | |
833 | ||
834 | return nvme_submit_admin_cmd(dev, &c, NULL); | |
835 | } | |
836 | ||
837 | static int nvme_get_features(struct nvme_dev *dev, unsigned fid, | |
df348139 | 838 | unsigned dword11, dma_addr_t dma_addr) |
bc5fc7e4 MW |
839 | { |
840 | struct nvme_command c; | |
841 | ||
842 | memset(&c, 0, sizeof(c)); | |
843 | c.features.opcode = nvme_admin_get_features; | |
844 | c.features.prp1 = cpu_to_le64(dma_addr); | |
845 | c.features.fid = cpu_to_le32(fid); | |
846 | c.features.dword11 = cpu_to_le32(dword11); | |
847 | ||
df348139 MW |
848 | return nvme_submit_admin_cmd(dev, &c, NULL); |
849 | } | |
850 | ||
851 | static int nvme_set_features(struct nvme_dev *dev, unsigned fid, | |
852 | unsigned dword11, dma_addr_t dma_addr, u32 *result) | |
853 | { | |
854 | struct nvme_command c; | |
855 | ||
856 | memset(&c, 0, sizeof(c)); | |
857 | c.features.opcode = nvme_admin_set_features; | |
858 | c.features.prp1 = cpu_to_le64(dma_addr); | |
859 | c.features.fid = cpu_to_le32(fid); | |
860 | c.features.dword11 = cpu_to_le32(dword11); | |
861 | ||
bc5fc7e4 MW |
862 | return nvme_submit_admin_cmd(dev, &c, result); |
863 | } | |
864 | ||
b60503ba MW |
865 | static void nvme_free_queue(struct nvme_dev *dev, int qid) |
866 | { | |
867 | struct nvme_queue *nvmeq = dev->queues[qid]; | |
aba2080f | 868 | int vector = dev->entry[nvmeq->cq_vector].vector; |
b60503ba | 869 | |
aba2080f MW |
870 | irq_set_affinity_hint(vector, NULL); |
871 | free_irq(vector, nvmeq); | |
b60503ba MW |
872 | |
873 | /* Don't tell the adapter to delete the admin queue */ | |
874 | if (qid) { | |
875 | adapter_delete_sq(dev, qid); | |
876 | adapter_delete_cq(dev, qid); | |
877 | } | |
878 | ||
879 | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | |
880 | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | |
881 | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | |
882 | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | |
883 | kfree(nvmeq); | |
884 | } | |
885 | ||
886 | static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, | |
887 | int depth, int vector) | |
888 | { | |
889 | struct device *dmadev = &dev->pci_dev->dev; | |
e85248e5 | 890 | unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info)); |
b60503ba MW |
891 | struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL); |
892 | if (!nvmeq) | |
893 | return NULL; | |
894 | ||
895 | nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth), | |
896 | &nvmeq->cq_dma_addr, GFP_KERNEL); | |
897 | if (!nvmeq->cqes) | |
898 | goto free_nvmeq; | |
899 | memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth)); | |
900 | ||
901 | nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth), | |
902 | &nvmeq->sq_dma_addr, GFP_KERNEL); | |
903 | if (!nvmeq->sq_cmds) | |
904 | goto free_cqdma; | |
905 | ||
906 | nvmeq->q_dmadev = dmadev; | |
091b6092 | 907 | nvmeq->dev = dev; |
b60503ba MW |
908 | spin_lock_init(&nvmeq->q_lock); |
909 | nvmeq->cq_head = 0; | |
82123460 | 910 | nvmeq->cq_phase = 1; |
b60503ba | 911 | init_waitqueue_head(&nvmeq->sq_full); |
1fa6aead | 912 | init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread); |
b60503ba | 913 | bio_list_init(&nvmeq->sq_cong); |
f1938f6e | 914 | nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)]; |
b60503ba MW |
915 | nvmeq->q_depth = depth; |
916 | nvmeq->cq_vector = vector; | |
917 | ||
918 | return nvmeq; | |
919 | ||
920 | free_cqdma: | |
921 | dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, | |
922 | nvmeq->cq_dma_addr); | |
923 | free_nvmeq: | |
924 | kfree(nvmeq); | |
925 | return NULL; | |
926 | } | |
927 | ||
3001082c MW |
928 | static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
929 | const char *name) | |
930 | { | |
58ffacb5 MW |
931 | if (use_threaded_interrupts) |
932 | return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, | |
ec6ce618 | 933 | nvme_irq_check, nvme_irq, |
58ffacb5 MW |
934 | IRQF_DISABLED | IRQF_SHARED, |
935 | name, nvmeq); | |
3001082c MW |
936 | return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, |
937 | IRQF_DISABLED | IRQF_SHARED, name, nvmeq); | |
938 | } | |
939 | ||
b60503ba MW |
940 | static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, |
941 | int qid, int cq_size, int vector) | |
942 | { | |
943 | int result; | |
944 | struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector); | |
945 | ||
3f85d50b | 946 | if (!nvmeq) |
6f0f5449 | 947 | return ERR_PTR(-ENOMEM); |
3f85d50b | 948 | |
b60503ba MW |
949 | result = adapter_alloc_cq(dev, qid, nvmeq); |
950 | if (result < 0) | |
951 | goto free_nvmeq; | |
952 | ||
953 | result = adapter_alloc_sq(dev, qid, nvmeq); | |
954 | if (result < 0) | |
955 | goto release_cq; | |
956 | ||
3001082c | 957 | result = queue_request_irq(dev, nvmeq, "nvme"); |
b60503ba MW |
958 | if (result < 0) |
959 | goto release_sq; | |
960 | ||
961 | return nvmeq; | |
962 | ||
963 | release_sq: | |
964 | adapter_delete_sq(dev, qid); | |
965 | release_cq: | |
966 | adapter_delete_cq(dev, qid); | |
967 | free_nvmeq: | |
968 | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | |
969 | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | |
970 | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | |
971 | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | |
972 | kfree(nvmeq); | |
6f0f5449 | 973 | return ERR_PTR(result); |
b60503ba MW |
974 | } |
975 | ||
976 | static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev) | |
977 | { | |
978 | int result; | |
979 | u32 aqa; | |
22605f96 MW |
980 | u64 cap; |
981 | unsigned long timeout; | |
b60503ba MW |
982 | struct nvme_queue *nvmeq; |
983 | ||
984 | dev->dbs = ((void __iomem *)dev->bar) + 4096; | |
985 | ||
986 | nvmeq = nvme_alloc_queue(dev, 0, 64, 0); | |
3f85d50b MW |
987 | if (!nvmeq) |
988 | return -ENOMEM; | |
b60503ba MW |
989 | |
990 | aqa = nvmeq->q_depth - 1; | |
991 | aqa |= aqa << 16; | |
992 | ||
993 | dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM; | |
994 | dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; | |
995 | dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; | |
7f53f9d2 | 996 | dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
b60503ba | 997 | |
5911f200 | 998 | writel(0, &dev->bar->cc); |
b60503ba MW |
999 | writel(aqa, &dev->bar->aqa); |
1000 | writeq(nvmeq->sq_dma_addr, &dev->bar->asq); | |
1001 | writeq(nvmeq->cq_dma_addr, &dev->bar->acq); | |
1002 | writel(dev->ctrl_config, &dev->bar->cc); | |
1003 | ||
22605f96 MW |
1004 | cap = readq(&dev->bar->cap); |
1005 | timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; | |
f1938f6e | 1006 | dev->db_stride = NVME_CAP_STRIDE(cap); |
22605f96 | 1007 | |
b60503ba MW |
1008 | while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) { |
1009 | msleep(100); | |
1010 | if (fatal_signal_pending(current)) | |
1011 | return -EINTR; | |
22605f96 MW |
1012 | if (time_after(jiffies, timeout)) { |
1013 | dev_err(&dev->pci_dev->dev, | |
1014 | "Device not ready; aborting initialisation\n"); | |
1015 | return -ENODEV; | |
1016 | } | |
b60503ba MW |
1017 | } |
1018 | ||
3001082c | 1019 | result = queue_request_irq(dev, nvmeq, "nvme admin"); |
b60503ba MW |
1020 | dev->queues[0] = nvmeq; |
1021 | return result; | |
1022 | } | |
1023 | ||
eca18b23 MW |
1024 | static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write, |
1025 | unsigned long addr, unsigned length) | |
b60503ba | 1026 | { |
36c14ed9 | 1027 | int i, err, count, nents, offset; |
7fc3cdab MW |
1028 | struct scatterlist *sg; |
1029 | struct page **pages; | |
eca18b23 | 1030 | struct nvme_iod *iod; |
36c14ed9 MW |
1031 | |
1032 | if (addr & 3) | |
eca18b23 | 1033 | return ERR_PTR(-EINVAL); |
7fc3cdab | 1034 | if (!length) |
eca18b23 | 1035 | return ERR_PTR(-EINVAL); |
7fc3cdab | 1036 | |
36c14ed9 | 1037 | offset = offset_in_page(addr); |
7fc3cdab MW |
1038 | count = DIV_ROUND_UP(offset + length, PAGE_SIZE); |
1039 | pages = kcalloc(count, sizeof(*pages), GFP_KERNEL); | |
36c14ed9 MW |
1040 | |
1041 | err = get_user_pages_fast(addr, count, 1, pages); | |
1042 | if (err < count) { | |
1043 | count = err; | |
1044 | err = -EFAULT; | |
1045 | goto put_pages; | |
1046 | } | |
7fc3cdab | 1047 | |
eca18b23 MW |
1048 | iod = nvme_alloc_iod(count, length, GFP_KERNEL); |
1049 | sg = iod->sg; | |
36c14ed9 | 1050 | sg_init_table(sg, count); |
d0ba1e49 MW |
1051 | for (i = 0; i < count; i++) { |
1052 | sg_set_page(&sg[i], pages[i], | |
1053 | min_t(int, length, PAGE_SIZE - offset), offset); | |
1054 | length -= (PAGE_SIZE - offset); | |
1055 | offset = 0; | |
7fc3cdab | 1056 | } |
fe304c43 | 1057 | sg_mark_end(&sg[i - 1]); |
1c2ad9fa | 1058 | iod->nents = count; |
7fc3cdab MW |
1059 | |
1060 | err = -ENOMEM; | |
1061 | nents = dma_map_sg(&dev->pci_dev->dev, sg, count, | |
1062 | write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | |
36c14ed9 | 1063 | if (!nents) |
eca18b23 | 1064 | goto free_iod; |
b60503ba | 1065 | |
7fc3cdab | 1066 | kfree(pages); |
eca18b23 | 1067 | return iod; |
b60503ba | 1068 | |
eca18b23 MW |
1069 | free_iod: |
1070 | kfree(iod); | |
7fc3cdab MW |
1071 | put_pages: |
1072 | for (i = 0; i < count; i++) | |
1073 | put_page(pages[i]); | |
1074 | kfree(pages); | |
eca18b23 | 1075 | return ERR_PTR(err); |
7fc3cdab | 1076 | } |
b60503ba | 1077 | |
7fc3cdab | 1078 | static void nvme_unmap_user_pages(struct nvme_dev *dev, int write, |
1c2ad9fa | 1079 | struct nvme_iod *iod) |
7fc3cdab | 1080 | { |
1c2ad9fa | 1081 | int i; |
b60503ba | 1082 | |
1c2ad9fa MW |
1083 | dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents, |
1084 | write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | |
7fc3cdab | 1085 | |
1c2ad9fa MW |
1086 | for (i = 0; i < iod->nents; i++) |
1087 | put_page(sg_page(&iod->sg[i])); | |
7fc3cdab | 1088 | } |
b60503ba | 1089 | |
a53295b6 MW |
1090 | static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) |
1091 | { | |
1092 | struct nvme_dev *dev = ns->dev; | |
1093 | struct nvme_queue *nvmeq; | |
1094 | struct nvme_user_io io; | |
1095 | struct nvme_command c; | |
1096 | unsigned length; | |
eca18b23 MW |
1097 | int status; |
1098 | struct nvme_iod *iod; | |
a53295b6 MW |
1099 | |
1100 | if (copy_from_user(&io, uio, sizeof(io))) | |
1101 | return -EFAULT; | |
6c7d4945 MW |
1102 | length = (io.nblocks + 1) << ns->lba_shift; |
1103 | ||
1104 | switch (io.opcode) { | |
1105 | case nvme_cmd_write: | |
1106 | case nvme_cmd_read: | |
6bbf1acd | 1107 | case nvme_cmd_compare: |
eca18b23 | 1108 | iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length); |
6413214c | 1109 | break; |
6c7d4945 | 1110 | default: |
6bbf1acd | 1111 | return -EINVAL; |
6c7d4945 MW |
1112 | } |
1113 | ||
eca18b23 MW |
1114 | if (IS_ERR(iod)) |
1115 | return PTR_ERR(iod); | |
a53295b6 MW |
1116 | |
1117 | memset(&c, 0, sizeof(c)); | |
1118 | c.rw.opcode = io.opcode; | |
1119 | c.rw.flags = io.flags; | |
6c7d4945 | 1120 | c.rw.nsid = cpu_to_le32(ns->ns_id); |
a53295b6 | 1121 | c.rw.slba = cpu_to_le64(io.slba); |
6c7d4945 | 1122 | c.rw.length = cpu_to_le16(io.nblocks); |
a53295b6 MW |
1123 | c.rw.control = cpu_to_le16(io.control); |
1124 | c.rw.dsmgmt = cpu_to_le16(io.dsmgmt); | |
6c7d4945 MW |
1125 | c.rw.reftag = io.reftag; |
1126 | c.rw.apptag = io.apptag; | |
1127 | c.rw.appmask = io.appmask; | |
a53295b6 | 1128 | /* XXX: metadata */ |
eca18b23 | 1129 | length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL); |
a53295b6 | 1130 | |
040a93b5 | 1131 | nvmeq = get_nvmeq(dev); |
fa922821 MW |
1132 | /* |
1133 | * Since nvme_submit_sync_cmd sleeps, we can't keep preemption | |
b1ad37ef MW |
1134 | * disabled. We may be preempted at any point, and be rescheduled |
1135 | * to a different CPU. That will cause cacheline bouncing, but no | |
1136 | * additional races since q_lock already protects against other CPUs. | |
1137 | */ | |
a53295b6 | 1138 | put_nvmeq(nvmeq); |
b77954cb MW |
1139 | if (length != (io.nblocks + 1) << ns->lba_shift) |
1140 | status = -ENOMEM; | |
1141 | else | |
ff976d72 | 1142 | status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT); |
a53295b6 | 1143 | |
1c2ad9fa | 1144 | nvme_unmap_user_pages(dev, io.opcode & 1, iod); |
eca18b23 | 1145 | nvme_free_iod(dev, iod); |
a53295b6 MW |
1146 | return status; |
1147 | } | |
1148 | ||
6bbf1acd MW |
1149 | static int nvme_user_admin_cmd(struct nvme_ns *ns, |
1150 | struct nvme_admin_cmd __user *ucmd) | |
6ee44cdc MW |
1151 | { |
1152 | struct nvme_dev *dev = ns->dev; | |
6bbf1acd | 1153 | struct nvme_admin_cmd cmd; |
6ee44cdc | 1154 | struct nvme_command c; |
eca18b23 MW |
1155 | int status, length; |
1156 | struct nvme_iod *iod; | |
6ee44cdc | 1157 | |
6bbf1acd MW |
1158 | if (!capable(CAP_SYS_ADMIN)) |
1159 | return -EACCES; | |
1160 | if (copy_from_user(&cmd, ucmd, sizeof(cmd))) | |
6ee44cdc | 1161 | return -EFAULT; |
6ee44cdc MW |
1162 | |
1163 | memset(&c, 0, sizeof(c)); | |
6bbf1acd MW |
1164 | c.common.opcode = cmd.opcode; |
1165 | c.common.flags = cmd.flags; | |
1166 | c.common.nsid = cpu_to_le32(cmd.nsid); | |
1167 | c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); | |
1168 | c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); | |
1169 | c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); | |
1170 | c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); | |
1171 | c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); | |
1172 | c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); | |
1173 | c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); | |
1174 | c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); | |
1175 | ||
1176 | length = cmd.data_len; | |
1177 | if (cmd.data_len) { | |
49742188 MW |
1178 | iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr, |
1179 | length); | |
eca18b23 MW |
1180 | if (IS_ERR(iod)) |
1181 | return PTR_ERR(iod); | |
1182 | length = nvme_setup_prps(dev, &c.common, iod, length, | |
1183 | GFP_KERNEL); | |
6bbf1acd MW |
1184 | } |
1185 | ||
1186 | if (length != cmd.data_len) | |
b77954cb MW |
1187 | status = -ENOMEM; |
1188 | else | |
1189 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
eca18b23 | 1190 | |
6bbf1acd | 1191 | if (cmd.data_len) { |
1c2ad9fa | 1192 | nvme_unmap_user_pages(dev, cmd.opcode & 1, iod); |
eca18b23 | 1193 | nvme_free_iod(dev, iod); |
6bbf1acd | 1194 | } |
6ee44cdc MW |
1195 | return status; |
1196 | } | |
1197 | ||
b60503ba MW |
1198 | static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, |
1199 | unsigned long arg) | |
1200 | { | |
1201 | struct nvme_ns *ns = bdev->bd_disk->private_data; | |
1202 | ||
1203 | switch (cmd) { | |
6bbf1acd MW |
1204 | case NVME_IOCTL_ID: |
1205 | return ns->ns_id; | |
1206 | case NVME_IOCTL_ADMIN_CMD: | |
1207 | return nvme_user_admin_cmd(ns, (void __user *)arg); | |
a53295b6 MW |
1208 | case NVME_IOCTL_SUBMIT_IO: |
1209 | return nvme_submit_io(ns, (void __user *)arg); | |
b60503ba MW |
1210 | default: |
1211 | return -ENOTTY; | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | static const struct block_device_operations nvme_fops = { | |
1216 | .owner = THIS_MODULE, | |
1217 | .ioctl = nvme_ioctl, | |
49481682 | 1218 | .compat_ioctl = nvme_ioctl, |
b60503ba MW |
1219 | }; |
1220 | ||
8de05535 MW |
1221 | static void nvme_timeout_ios(struct nvme_queue *nvmeq) |
1222 | { | |
1223 | int depth = nvmeq->q_depth - 1; | |
1224 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | |
1225 | unsigned long now = jiffies; | |
1226 | int cmdid; | |
1227 | ||
1228 | for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) { | |
c2f5b650 MW |
1229 | void *ctx; |
1230 | nvme_completion_fn fn; | |
8de05535 MW |
1231 | static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, }; |
1232 | ||
1233 | if (!time_after(now, info[cmdid].timeout)) | |
1234 | continue; | |
1235 | dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid); | |
c2f5b650 | 1236 | ctx = cancel_cmdid(nvmeq, cmdid, &fn); |
5c1281a3 | 1237 | fn(nvmeq->dev, ctx, &cqe); |
8de05535 MW |
1238 | } |
1239 | } | |
1240 | ||
1fa6aead MW |
1241 | static void nvme_resubmit_bios(struct nvme_queue *nvmeq) |
1242 | { | |
1243 | while (bio_list_peek(&nvmeq->sq_cong)) { | |
1244 | struct bio *bio = bio_list_pop(&nvmeq->sq_cong); | |
1245 | struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; | |
1246 | if (nvme_submit_bio_queue(nvmeq, ns, bio)) { | |
1247 | bio_list_add_head(&nvmeq->sq_cong, bio); | |
1248 | break; | |
1249 | } | |
3cb967c0 MW |
1250 | if (bio_list_empty(&nvmeq->sq_cong)) |
1251 | remove_wait_queue(&nvmeq->sq_full, | |
1252 | &nvmeq->sq_cong_wait); | |
1fa6aead MW |
1253 | } |
1254 | } | |
1255 | ||
1256 | static int nvme_kthread(void *data) | |
1257 | { | |
1258 | struct nvme_dev *dev; | |
1259 | ||
1260 | while (!kthread_should_stop()) { | |
1261 | __set_current_state(TASK_RUNNING); | |
1262 | spin_lock(&dev_list_lock); | |
1263 | list_for_each_entry(dev, &dev_list, node) { | |
1264 | int i; | |
1265 | for (i = 0; i < dev->queue_count; i++) { | |
1266 | struct nvme_queue *nvmeq = dev->queues[i]; | |
740216fc MW |
1267 | if (!nvmeq) |
1268 | continue; | |
1fa6aead MW |
1269 | spin_lock_irq(&nvmeq->q_lock); |
1270 | if (nvme_process_cq(nvmeq)) | |
1271 | printk("process_cq did something\n"); | |
8de05535 | 1272 | nvme_timeout_ios(nvmeq); |
1fa6aead MW |
1273 | nvme_resubmit_bios(nvmeq); |
1274 | spin_unlock_irq(&nvmeq->q_lock); | |
1275 | } | |
1276 | } | |
1277 | spin_unlock(&dev_list_lock); | |
1278 | set_current_state(TASK_INTERRUPTIBLE); | |
1279 | schedule_timeout(HZ); | |
1280 | } | |
1281 | return 0; | |
1282 | } | |
1283 | ||
5aff9382 MW |
1284 | static DEFINE_IDA(nvme_index_ida); |
1285 | ||
1286 | static int nvme_get_ns_idx(void) | |
1287 | { | |
1288 | int index, error; | |
1289 | ||
1290 | do { | |
1291 | if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL)) | |
1292 | return -1; | |
1293 | ||
1294 | spin_lock(&dev_list_lock); | |
1295 | error = ida_get_new(&nvme_index_ida, &index); | |
1296 | spin_unlock(&dev_list_lock); | |
1297 | } while (error == -EAGAIN); | |
1298 | ||
1299 | if (error) | |
1300 | index = -1; | |
1301 | return index; | |
1302 | } | |
1303 | ||
1304 | static void nvme_put_ns_idx(int index) | |
1305 | { | |
1306 | spin_lock(&dev_list_lock); | |
1307 | ida_remove(&nvme_index_ida, index); | |
1308 | spin_unlock(&dev_list_lock); | |
1309 | } | |
1310 | ||
1311 | static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid, | |
b60503ba MW |
1312 | struct nvme_id_ns *id, struct nvme_lba_range_type *rt) |
1313 | { | |
1314 | struct nvme_ns *ns; | |
1315 | struct gendisk *disk; | |
1316 | int lbaf; | |
1317 | ||
1318 | if (rt->attributes & NVME_LBART_ATTRIB_HIDE) | |
1319 | return NULL; | |
1320 | ||
1321 | ns = kzalloc(sizeof(*ns), GFP_KERNEL); | |
1322 | if (!ns) | |
1323 | return NULL; | |
1324 | ns->queue = blk_alloc_queue(GFP_KERNEL); | |
1325 | if (!ns->queue) | |
1326 | goto out_free_ns; | |
4eeb9215 MW |
1327 | ns->queue->queue_flags = QUEUE_FLAG_DEFAULT; |
1328 | queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); | |
1329 | queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); | |
1330 | /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */ | |
b60503ba MW |
1331 | blk_queue_make_request(ns->queue, nvme_make_request); |
1332 | ns->dev = dev; | |
1333 | ns->queue->queuedata = ns; | |
1334 | ||
1335 | disk = alloc_disk(NVME_MINORS); | |
1336 | if (!disk) | |
1337 | goto out_free_queue; | |
5aff9382 | 1338 | ns->ns_id = nsid; |
b60503ba MW |
1339 | ns->disk = disk; |
1340 | lbaf = id->flbas & 0xf; | |
1341 | ns->lba_shift = id->lbaf[lbaf].ds; | |
1342 | ||
1343 | disk->major = nvme_major; | |
1344 | disk->minors = NVME_MINORS; | |
5aff9382 | 1345 | disk->first_minor = NVME_MINORS * nvme_get_ns_idx(); |
b60503ba MW |
1346 | disk->fops = &nvme_fops; |
1347 | disk->private_data = ns; | |
1348 | disk->queue = ns->queue; | |
388f037f | 1349 | disk->driverfs_dev = &dev->pci_dev->dev; |
5aff9382 | 1350 | sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid); |
b60503ba MW |
1351 | set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); |
1352 | ||
1353 | return ns; | |
1354 | ||
1355 | out_free_queue: | |
1356 | blk_cleanup_queue(ns->queue); | |
1357 | out_free_ns: | |
1358 | kfree(ns); | |
1359 | return NULL; | |
1360 | } | |
1361 | ||
1362 | static void nvme_ns_free(struct nvme_ns *ns) | |
1363 | { | |
5aff9382 | 1364 | int index = ns->disk->first_minor / NVME_MINORS; |
b60503ba | 1365 | put_disk(ns->disk); |
5aff9382 | 1366 | nvme_put_ns_idx(index); |
b60503ba MW |
1367 | blk_cleanup_queue(ns->queue); |
1368 | kfree(ns); | |
1369 | } | |
1370 | ||
b3b06812 | 1371 | static int set_queue_count(struct nvme_dev *dev, int count) |
b60503ba MW |
1372 | { |
1373 | int status; | |
1374 | u32 result; | |
b3b06812 | 1375 | u32 q_count = (count - 1) | ((count - 1) << 16); |
b60503ba | 1376 | |
df348139 | 1377 | status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0, |
bc5fc7e4 | 1378 | &result); |
b60503ba MW |
1379 | if (status) |
1380 | return -EIO; | |
1381 | return min(result & 0xffff, result >> 16) + 1; | |
1382 | } | |
1383 | ||
b60503ba MW |
1384 | static int __devinit nvme_setup_io_queues(struct nvme_dev *dev) |
1385 | { | |
f1938f6e | 1386 | int result, cpu, i, nr_io_queues, db_bar_size; |
b60503ba | 1387 | |
b348b7d5 MW |
1388 | nr_io_queues = num_online_cpus(); |
1389 | result = set_queue_count(dev, nr_io_queues); | |
1b23484b MW |
1390 | if (result < 0) |
1391 | return result; | |
b348b7d5 MW |
1392 | if (result < nr_io_queues) |
1393 | nr_io_queues = result; | |
b60503ba | 1394 | |
1b23484b MW |
1395 | /* Deregister the admin queue's interrupt */ |
1396 | free_irq(dev->entry[0].vector, dev->queues[0]); | |
1397 | ||
f1938f6e MW |
1398 | db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3)); |
1399 | if (db_bar_size > 8192) { | |
1400 | iounmap(dev->bar); | |
1401 | dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0), | |
1402 | db_bar_size); | |
1403 | dev->dbs = ((void __iomem *)dev->bar) + 4096; | |
1404 | dev->queues[0]->q_db = dev->dbs; | |
1405 | } | |
1406 | ||
b348b7d5 | 1407 | for (i = 0; i < nr_io_queues; i++) |
1b23484b MW |
1408 | dev->entry[i].entry = i; |
1409 | for (;;) { | |
b348b7d5 MW |
1410 | result = pci_enable_msix(dev->pci_dev, dev->entry, |
1411 | nr_io_queues); | |
1b23484b MW |
1412 | if (result == 0) { |
1413 | break; | |
1414 | } else if (result > 0) { | |
b348b7d5 | 1415 | nr_io_queues = result; |
1b23484b MW |
1416 | continue; |
1417 | } else { | |
b348b7d5 | 1418 | nr_io_queues = 1; |
1b23484b MW |
1419 | break; |
1420 | } | |
1421 | } | |
1422 | ||
1423 | result = queue_request_irq(dev, dev->queues[0], "nvme admin"); | |
1424 | /* XXX: handle failure here */ | |
1425 | ||
1426 | cpu = cpumask_first(cpu_online_mask); | |
b348b7d5 | 1427 | for (i = 0; i < nr_io_queues; i++) { |
1b23484b MW |
1428 | irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu)); |
1429 | cpu = cpumask_next(cpu, cpu_online_mask); | |
1430 | } | |
1431 | ||
b348b7d5 | 1432 | for (i = 0; i < nr_io_queues; i++) { |
1b23484b MW |
1433 | dev->queues[i + 1] = nvme_create_queue(dev, i + 1, |
1434 | NVME_Q_DEPTH, i); | |
6f0f5449 MW |
1435 | if (IS_ERR(dev->queues[i + 1])) |
1436 | return PTR_ERR(dev->queues[i + 1]); | |
1b23484b MW |
1437 | dev->queue_count++; |
1438 | } | |
b60503ba | 1439 | |
9ecdc946 MW |
1440 | for (; i < num_possible_cpus(); i++) { |
1441 | int target = i % rounddown_pow_of_two(dev->queue_count - 1); | |
1442 | dev->queues[i + 1] = dev->queues[target + 1]; | |
1443 | } | |
1444 | ||
b60503ba MW |
1445 | return 0; |
1446 | } | |
1447 | ||
1448 | static void nvme_free_queues(struct nvme_dev *dev) | |
1449 | { | |
1450 | int i; | |
1451 | ||
1452 | for (i = dev->queue_count - 1; i >= 0; i--) | |
1453 | nvme_free_queue(dev, i); | |
1454 | } | |
1455 | ||
1456 | static int __devinit nvme_dev_add(struct nvme_dev *dev) | |
1457 | { | |
1458 | int res, nn, i; | |
1459 | struct nvme_ns *ns, *next; | |
51814232 | 1460 | struct nvme_id_ctrl *ctrl; |
bc5fc7e4 MW |
1461 | struct nvme_id_ns *id_ns; |
1462 | void *mem; | |
b60503ba | 1463 | dma_addr_t dma_addr; |
b60503ba MW |
1464 | |
1465 | res = nvme_setup_io_queues(dev); | |
1466 | if (res) | |
1467 | return res; | |
1468 | ||
bc5fc7e4 | 1469 | mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr, |
b60503ba MW |
1470 | GFP_KERNEL); |
1471 | ||
bc5fc7e4 | 1472 | res = nvme_identify(dev, 0, 1, dma_addr); |
b60503ba MW |
1473 | if (res) { |
1474 | res = -EIO; | |
1475 | goto out_free; | |
1476 | } | |
1477 | ||
bc5fc7e4 | 1478 | ctrl = mem; |
51814232 MW |
1479 | nn = le32_to_cpup(&ctrl->nn); |
1480 | memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); | |
1481 | memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); | |
1482 | memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); | |
b60503ba | 1483 | |
bc5fc7e4 | 1484 | id_ns = mem; |
2b2c1896 | 1485 | for (i = 1; i <= nn; i++) { |
bc5fc7e4 | 1486 | res = nvme_identify(dev, i, 0, dma_addr); |
b60503ba MW |
1487 | if (res) |
1488 | continue; | |
1489 | ||
bc5fc7e4 | 1490 | if (id_ns->ncap == 0) |
b60503ba MW |
1491 | continue; |
1492 | ||
bc5fc7e4 | 1493 | res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i, |
df348139 | 1494 | dma_addr + 4096); |
b60503ba MW |
1495 | if (res) |
1496 | continue; | |
1497 | ||
bc5fc7e4 | 1498 | ns = nvme_alloc_ns(dev, i, mem, mem + 4096); |
b60503ba MW |
1499 | if (ns) |
1500 | list_add_tail(&ns->list, &dev->namespaces); | |
1501 | } | |
1502 | list_for_each_entry(ns, &dev->namespaces, list) | |
1503 | add_disk(ns->disk); | |
1504 | ||
bc5fc7e4 | 1505 | goto out; |
b60503ba MW |
1506 | |
1507 | out_free: | |
1508 | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | |
1509 | list_del(&ns->list); | |
1510 | nvme_ns_free(ns); | |
1511 | } | |
1512 | ||
bc5fc7e4 | 1513 | out: |
684f5c20 | 1514 | dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr); |
b60503ba MW |
1515 | return res; |
1516 | } | |
1517 | ||
1518 | static int nvme_dev_remove(struct nvme_dev *dev) | |
1519 | { | |
1520 | struct nvme_ns *ns, *next; | |
1521 | ||
1fa6aead MW |
1522 | spin_lock(&dev_list_lock); |
1523 | list_del(&dev->node); | |
1524 | spin_unlock(&dev_list_lock); | |
1525 | ||
b60503ba MW |
1526 | /* TODO: wait all I/O finished or cancel them */ |
1527 | ||
1528 | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | |
1529 | list_del(&ns->list); | |
1530 | del_gendisk(ns->disk); | |
1531 | nvme_ns_free(ns); | |
1532 | } | |
1533 | ||
1534 | nvme_free_queues(dev); | |
1535 | ||
1536 | return 0; | |
1537 | } | |
1538 | ||
091b6092 MW |
1539 | static int nvme_setup_prp_pools(struct nvme_dev *dev) |
1540 | { | |
1541 | struct device *dmadev = &dev->pci_dev->dev; | |
1542 | dev->prp_page_pool = dma_pool_create("prp list page", dmadev, | |
1543 | PAGE_SIZE, PAGE_SIZE, 0); | |
1544 | if (!dev->prp_page_pool) | |
1545 | return -ENOMEM; | |
1546 | ||
99802a7a MW |
1547 | /* Optimisation for I/Os between 4k and 128k */ |
1548 | dev->prp_small_pool = dma_pool_create("prp list 256", dmadev, | |
1549 | 256, 256, 0); | |
1550 | if (!dev->prp_small_pool) { | |
1551 | dma_pool_destroy(dev->prp_page_pool); | |
1552 | return -ENOMEM; | |
1553 | } | |
091b6092 MW |
1554 | return 0; |
1555 | } | |
1556 | ||
1557 | static void nvme_release_prp_pools(struct nvme_dev *dev) | |
1558 | { | |
1559 | dma_pool_destroy(dev->prp_page_pool); | |
99802a7a | 1560 | dma_pool_destroy(dev->prp_small_pool); |
091b6092 MW |
1561 | } |
1562 | ||
b60503ba MW |
1563 | /* XXX: Use an ida or something to let remove / add work correctly */ |
1564 | static void nvme_set_instance(struct nvme_dev *dev) | |
1565 | { | |
1566 | static int instance; | |
1567 | dev->instance = instance++; | |
1568 | } | |
1569 | ||
1570 | static void nvme_release_instance(struct nvme_dev *dev) | |
1571 | { | |
1572 | } | |
1573 | ||
1574 | static int __devinit nvme_probe(struct pci_dev *pdev, | |
1575 | const struct pci_device_id *id) | |
1576 | { | |
574e8b95 | 1577 | int bars, result = -ENOMEM; |
b60503ba MW |
1578 | struct nvme_dev *dev; |
1579 | ||
1580 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | |
1581 | if (!dev) | |
1582 | return -ENOMEM; | |
1583 | dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry), | |
1584 | GFP_KERNEL); | |
1585 | if (!dev->entry) | |
1586 | goto free; | |
1b23484b MW |
1587 | dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *), |
1588 | GFP_KERNEL); | |
b60503ba MW |
1589 | if (!dev->queues) |
1590 | goto free; | |
1591 | ||
0ee5a7d7 SMM |
1592 | if (pci_enable_device_mem(pdev)) |
1593 | goto free; | |
f64d3365 | 1594 | pci_set_master(pdev); |
574e8b95 MW |
1595 | bars = pci_select_bars(pdev, IORESOURCE_MEM); |
1596 | if (pci_request_selected_regions(pdev, bars, "nvme")) | |
1597 | goto disable; | |
0ee5a7d7 | 1598 | |
b60503ba MW |
1599 | INIT_LIST_HEAD(&dev->namespaces); |
1600 | dev->pci_dev = pdev; | |
1601 | pci_set_drvdata(pdev, dev); | |
2930353f MW |
1602 | dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); |
1603 | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | |
b60503ba | 1604 | nvme_set_instance(dev); |
53c9577e | 1605 | dev->entry[0].vector = pdev->irq; |
b60503ba | 1606 | |
091b6092 MW |
1607 | result = nvme_setup_prp_pools(dev); |
1608 | if (result) | |
1609 | goto disable_msix; | |
1610 | ||
b60503ba MW |
1611 | dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); |
1612 | if (!dev->bar) { | |
1613 | result = -ENOMEM; | |
574e8b95 | 1614 | goto disable_msix; |
b60503ba MW |
1615 | } |
1616 | ||
1617 | result = nvme_configure_admin_queue(dev); | |
1618 | if (result) | |
1619 | goto unmap; | |
1620 | dev->queue_count++; | |
1621 | ||
1fa6aead MW |
1622 | spin_lock(&dev_list_lock); |
1623 | list_add(&dev->node, &dev_list); | |
1624 | spin_unlock(&dev_list_lock); | |
1625 | ||
740216fc MW |
1626 | result = nvme_dev_add(dev); |
1627 | if (result) | |
1628 | goto delete; | |
1629 | ||
b60503ba MW |
1630 | return 0; |
1631 | ||
1632 | delete: | |
740216fc MW |
1633 | spin_lock(&dev_list_lock); |
1634 | list_del(&dev->node); | |
1635 | spin_unlock(&dev_list_lock); | |
1636 | ||
b60503ba MW |
1637 | nvme_free_queues(dev); |
1638 | unmap: | |
1639 | iounmap(dev->bar); | |
574e8b95 | 1640 | disable_msix: |
b60503ba MW |
1641 | pci_disable_msix(pdev); |
1642 | nvme_release_instance(dev); | |
091b6092 | 1643 | nvme_release_prp_pools(dev); |
574e8b95 | 1644 | disable: |
0ee5a7d7 | 1645 | pci_disable_device(pdev); |
574e8b95 | 1646 | pci_release_regions(pdev); |
b60503ba MW |
1647 | free: |
1648 | kfree(dev->queues); | |
1649 | kfree(dev->entry); | |
1650 | kfree(dev); | |
1651 | return result; | |
1652 | } | |
1653 | ||
1654 | static void __devexit nvme_remove(struct pci_dev *pdev) | |
1655 | { | |
1656 | struct nvme_dev *dev = pci_get_drvdata(pdev); | |
1657 | nvme_dev_remove(dev); | |
1658 | pci_disable_msix(pdev); | |
1659 | iounmap(dev->bar); | |
1660 | nvme_release_instance(dev); | |
091b6092 | 1661 | nvme_release_prp_pools(dev); |
0ee5a7d7 | 1662 | pci_disable_device(pdev); |
574e8b95 | 1663 | pci_release_regions(pdev); |
b60503ba MW |
1664 | kfree(dev->queues); |
1665 | kfree(dev->entry); | |
1666 | kfree(dev); | |
1667 | } | |
1668 | ||
1669 | /* These functions are yet to be implemented */ | |
1670 | #define nvme_error_detected NULL | |
1671 | #define nvme_dump_registers NULL | |
1672 | #define nvme_link_reset NULL | |
1673 | #define nvme_slot_reset NULL | |
1674 | #define nvme_error_resume NULL | |
1675 | #define nvme_suspend NULL | |
1676 | #define nvme_resume NULL | |
1677 | ||
1678 | static struct pci_error_handlers nvme_err_handler = { | |
1679 | .error_detected = nvme_error_detected, | |
1680 | .mmio_enabled = nvme_dump_registers, | |
1681 | .link_reset = nvme_link_reset, | |
1682 | .slot_reset = nvme_slot_reset, | |
1683 | .resume = nvme_error_resume, | |
1684 | }; | |
1685 | ||
1686 | /* Move to pci_ids.h later */ | |
1687 | #define PCI_CLASS_STORAGE_EXPRESS 0x010802 | |
1688 | ||
1689 | static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = { | |
1690 | { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, | |
1691 | { 0, } | |
1692 | }; | |
1693 | MODULE_DEVICE_TABLE(pci, nvme_id_table); | |
1694 | ||
1695 | static struct pci_driver nvme_driver = { | |
1696 | .name = "nvme", | |
1697 | .id_table = nvme_id_table, | |
1698 | .probe = nvme_probe, | |
1699 | .remove = __devexit_p(nvme_remove), | |
1700 | .suspend = nvme_suspend, | |
1701 | .resume = nvme_resume, | |
1702 | .err_handler = &nvme_err_handler, | |
1703 | }; | |
1704 | ||
1705 | static int __init nvme_init(void) | |
1706 | { | |
1fa6aead MW |
1707 | int result = -EBUSY; |
1708 | ||
1709 | nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); | |
1710 | if (IS_ERR(nvme_thread)) | |
1711 | return PTR_ERR(nvme_thread); | |
b60503ba MW |
1712 | |
1713 | nvme_major = register_blkdev(nvme_major, "nvme"); | |
1714 | if (nvme_major <= 0) | |
1fa6aead | 1715 | goto kill_kthread; |
b60503ba MW |
1716 | |
1717 | result = pci_register_driver(&nvme_driver); | |
1fa6aead MW |
1718 | if (result) |
1719 | goto unregister_blkdev; | |
1720 | return 0; | |
b60503ba | 1721 | |
1fa6aead | 1722 | unregister_blkdev: |
b60503ba | 1723 | unregister_blkdev(nvme_major, "nvme"); |
1fa6aead MW |
1724 | kill_kthread: |
1725 | kthread_stop(nvme_thread); | |
b60503ba MW |
1726 | return result; |
1727 | } | |
1728 | ||
1729 | static void __exit nvme_exit(void) | |
1730 | { | |
1731 | pci_unregister_driver(&nvme_driver); | |
1732 | unregister_blkdev(nvme_major, "nvme"); | |
1fa6aead | 1733 | kthread_stop(nvme_thread); |
b60503ba MW |
1734 | } |
1735 | ||
1736 | MODULE_AUTHOR("Matthew Wilcox <[email protected]>"); | |
1737 | MODULE_LICENSE("GPL"); | |
366e8217 | 1738 | MODULE_VERSION("0.8"); |
b60503ba MW |
1739 | module_init(nvme_init); |
1740 | module_exit(nvme_exit); |