]>
Commit | Line | Data |
---|---|---|
b60503ba MW |
1 | /* |
2 | * NVM Express device driver | |
3 | * Copyright (c) 2011, Intel Corporation. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify it | |
6 | * under the terms and conditions of the GNU General Public License, | |
7 | * version 2, as published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope it will be useful, but WITHOUT | |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
12 | * more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License along with | |
15 | * this program; if not, write to the Free Software Foundation, Inc., | |
16 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | |
17 | */ | |
18 | ||
19 | #include <linux/nvme.h> | |
20 | #include <linux/bio.h> | |
8de05535 | 21 | #include <linux/bitops.h> |
b60503ba | 22 | #include <linux/blkdev.h> |
fd63e9ce | 23 | #include <linux/delay.h> |
b60503ba MW |
24 | #include <linux/errno.h> |
25 | #include <linux/fs.h> | |
26 | #include <linux/genhd.h> | |
5aff9382 | 27 | #include <linux/idr.h> |
b60503ba MW |
28 | #include <linux/init.h> |
29 | #include <linux/interrupt.h> | |
30 | #include <linux/io.h> | |
31 | #include <linux/kdev_t.h> | |
1fa6aead | 32 | #include <linux/kthread.h> |
b60503ba MW |
33 | #include <linux/kernel.h> |
34 | #include <linux/mm.h> | |
35 | #include <linux/module.h> | |
36 | #include <linux/moduleparam.h> | |
37 | #include <linux/pci.h> | |
be7b6275 | 38 | #include <linux/poison.h> |
b60503ba MW |
39 | #include <linux/sched.h> |
40 | #include <linux/slab.h> | |
41 | #include <linux/types.h> | |
42 | #include <linux/version.h> | |
43 | ||
44 | #define NVME_Q_DEPTH 1024 | |
45 | #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) | |
46 | #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) | |
47 | #define NVME_MINORS 64 | |
e85248e5 MW |
48 | #define IO_TIMEOUT (5 * HZ) |
49 | #define ADMIN_TIMEOUT (60 * HZ) | |
b60503ba MW |
50 | |
51 | static int nvme_major; | |
52 | module_param(nvme_major, int, 0); | |
53 | ||
58ffacb5 MW |
54 | static int use_threaded_interrupts; |
55 | module_param(use_threaded_interrupts, int, 0); | |
56 | ||
1fa6aead MW |
57 | static DEFINE_SPINLOCK(dev_list_lock); |
58 | static LIST_HEAD(dev_list); | |
59 | static struct task_struct *nvme_thread; | |
60 | ||
b60503ba MW |
61 | /* |
62 | * Represents an NVM Express device. Each nvme_dev is a PCI function. | |
63 | */ | |
64 | struct nvme_dev { | |
1fa6aead | 65 | struct list_head node; |
b60503ba MW |
66 | struct nvme_queue **queues; |
67 | u32 __iomem *dbs; | |
68 | struct pci_dev *pci_dev; | |
091b6092 | 69 | struct dma_pool *prp_page_pool; |
99802a7a | 70 | struct dma_pool *prp_small_pool; |
b60503ba MW |
71 | int instance; |
72 | int queue_count; | |
73 | u32 ctrl_config; | |
74 | struct msix_entry *entry; | |
75 | struct nvme_bar __iomem *bar; | |
76 | struct list_head namespaces; | |
51814232 MW |
77 | char serial[20]; |
78 | char model[40]; | |
79 | char firmware_rev[8]; | |
b60503ba MW |
80 | }; |
81 | ||
82 | /* | |
83 | * An NVM Express namespace is equivalent to a SCSI LUN | |
84 | */ | |
85 | struct nvme_ns { | |
86 | struct list_head list; | |
87 | ||
88 | struct nvme_dev *dev; | |
89 | struct request_queue *queue; | |
90 | struct gendisk *disk; | |
91 | ||
92 | int ns_id; | |
93 | int lba_shift; | |
94 | }; | |
95 | ||
96 | /* | |
97 | * An NVM Express queue. Each device has at least two (one for admin | |
98 | * commands and one for I/O commands). | |
99 | */ | |
100 | struct nvme_queue { | |
101 | struct device *q_dmadev; | |
091b6092 | 102 | struct nvme_dev *dev; |
b60503ba MW |
103 | spinlock_t q_lock; |
104 | struct nvme_command *sq_cmds; | |
105 | volatile struct nvme_completion *cqes; | |
106 | dma_addr_t sq_dma_addr; | |
107 | dma_addr_t cq_dma_addr; | |
108 | wait_queue_head_t sq_full; | |
1fa6aead | 109 | wait_queue_t sq_cong_wait; |
b60503ba MW |
110 | struct bio_list sq_cong; |
111 | u32 __iomem *q_db; | |
112 | u16 q_depth; | |
113 | u16 cq_vector; | |
114 | u16 sq_head; | |
115 | u16 sq_tail; | |
116 | u16 cq_head; | |
82123460 | 117 | u16 cq_phase; |
b60503ba MW |
118 | unsigned long cmdid_data[]; |
119 | }; | |
120 | ||
121 | /* | |
122 | * Check we didin't inadvertently grow the command struct | |
123 | */ | |
124 | static inline void _nvme_check_size(void) | |
125 | { | |
126 | BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); | |
127 | BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); | |
128 | BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); | |
129 | BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); | |
130 | BUILD_BUG_ON(sizeof(struct nvme_features) != 64); | |
131 | BUILD_BUG_ON(sizeof(struct nvme_command) != 64); | |
132 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); | |
133 | BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); | |
134 | BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); | |
135 | } | |
136 | ||
e85248e5 MW |
137 | struct nvme_cmd_info { |
138 | unsigned long ctx; | |
139 | unsigned long timeout; | |
140 | }; | |
141 | ||
142 | static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq) | |
143 | { | |
144 | return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)]; | |
145 | } | |
146 | ||
b60503ba | 147 | /** |
714a7a22 MW |
148 | * alloc_cmdid() - Allocate a Command ID |
149 | * @nvmeq: The queue that will be used for this command | |
150 | * @ctx: A pointer that will be passed to the handler | |
151 | * @handler: The ID of the handler to call | |
b60503ba MW |
152 | * |
153 | * Allocate a Command ID for a queue. The data passed in will | |
154 | * be passed to the completion handler. This is implemented by using | |
155 | * the bottom two bits of the ctx pointer to store the handler ID. | |
156 | * Passing in a pointer that's not 4-byte aligned will cause a BUG. | |
157 | * We can change this if it becomes a problem. | |
158 | */ | |
e85248e5 MW |
159 | static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler, |
160 | unsigned timeout) | |
b60503ba | 161 | { |
e6d15f79 | 162 | int depth = nvmeq->q_depth - 1; |
e85248e5 | 163 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
b60503ba MW |
164 | int cmdid; |
165 | ||
166 | BUG_ON((unsigned long)ctx & 3); | |
167 | ||
168 | do { | |
169 | cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth); | |
170 | if (cmdid >= depth) | |
171 | return -EBUSY; | |
172 | } while (test_and_set_bit(cmdid, nvmeq->cmdid_data)); | |
173 | ||
e85248e5 MW |
174 | info[cmdid].ctx = (unsigned long)ctx | handler; |
175 | info[cmdid].timeout = jiffies + timeout; | |
b60503ba MW |
176 | return cmdid; |
177 | } | |
178 | ||
179 | static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx, | |
e85248e5 | 180 | int handler, unsigned timeout) |
b60503ba MW |
181 | { |
182 | int cmdid; | |
183 | wait_event_killable(nvmeq->sq_full, | |
e85248e5 | 184 | (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0); |
b60503ba MW |
185 | return (cmdid < 0) ? -EINTR : cmdid; |
186 | } | |
187 | ||
fa922821 MW |
188 | /* |
189 | * If you need more than four handlers, you'll need to change how | |
be7b6275 MW |
190 | * alloc_cmdid and nvme_process_cq work. Consider using a special |
191 | * CMD_CTX value instead, if that works for your situation. | |
b60503ba MW |
192 | */ |
193 | enum { | |
194 | sync_completion_id = 0, | |
195 | bio_completion_id, | |
196 | }; | |
197 | ||
00df5cb4 | 198 | /* Special values must be a multiple of 4, and less than 0x1000 */ |
be7b6275 | 199 | #define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id) |
d2d87034 MW |
200 | #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) |
201 | #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) | |
202 | #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) | |
00df5cb4 | 203 | #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE) |
be7b6275 | 204 | |
b60503ba MW |
205 | static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid) |
206 | { | |
207 | unsigned long data; | |
e85248e5 | 208 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
b60503ba | 209 | |
e85248e5 | 210 | if (cmdid >= nvmeq->q_depth) |
48e3d398 | 211 | return CMD_CTX_INVALID; |
e85248e5 MW |
212 | data = info[cmdid].ctx; |
213 | info[cmdid].ctx = CMD_CTX_COMPLETED; | |
b60503ba MW |
214 | clear_bit(cmdid, nvmeq->cmdid_data); |
215 | wake_up(&nvmeq->sq_full); | |
216 | return data; | |
217 | } | |
218 | ||
21075bde | 219 | static unsigned long cancel_cmdid(struct nvme_queue *nvmeq, int cmdid) |
3c0cf138 | 220 | { |
21075bde | 221 | unsigned long data; |
e85248e5 | 222 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); |
21075bde | 223 | data = info[cmdid].ctx; |
e85248e5 | 224 | info[cmdid].ctx = CMD_CTX_CANCELLED; |
21075bde | 225 | return data; |
3c0cf138 MW |
226 | } |
227 | ||
b60503ba MW |
228 | static struct nvme_queue *get_nvmeq(struct nvme_ns *ns) |
229 | { | |
9ecdc946 | 230 | return ns->dev->queues[get_cpu() + 1]; |
b60503ba MW |
231 | } |
232 | ||
233 | static void put_nvmeq(struct nvme_queue *nvmeq) | |
234 | { | |
1b23484b | 235 | put_cpu(); |
b60503ba MW |
236 | } |
237 | ||
238 | /** | |
714a7a22 | 239 | * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell |
b60503ba MW |
240 | * @nvmeq: The queue to use |
241 | * @cmd: The command to send | |
242 | * | |
243 | * Safe to use from interrupt context | |
244 | */ | |
245 | static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) | |
246 | { | |
247 | unsigned long flags; | |
248 | u16 tail; | |
b60503ba MW |
249 | spin_lock_irqsave(&nvmeq->q_lock, flags); |
250 | tail = nvmeq->sq_tail; | |
251 | memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); | |
b60503ba MW |
252 | if (++tail == nvmeq->q_depth) |
253 | tail = 0; | |
7547881d | 254 | writel(tail, nvmeq->q_db); |
b60503ba MW |
255 | nvmeq->sq_tail = tail; |
256 | spin_unlock_irqrestore(&nvmeq->q_lock, flags); | |
257 | ||
258 | return 0; | |
259 | } | |
260 | ||
e025344c SMM |
261 | struct nvme_prps { |
262 | int npages; | |
263 | dma_addr_t first_dma; | |
264 | __le64 *list[0]; | |
265 | }; | |
266 | ||
d567760c | 267 | static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps) |
e025344c SMM |
268 | { |
269 | const int last_prp = PAGE_SIZE / 8 - 1; | |
270 | int i; | |
271 | dma_addr_t prp_dma; | |
272 | ||
273 | if (!prps) | |
274 | return; | |
275 | ||
276 | prp_dma = prps->first_dma; | |
99802a7a MW |
277 | |
278 | if (prps->npages == 0) | |
279 | dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma); | |
e025344c SMM |
280 | for (i = 0; i < prps->npages; i++) { |
281 | __le64 *prp_list = prps->list[i]; | |
282 | dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); | |
091b6092 | 283 | dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); |
e025344c SMM |
284 | prp_dma = next_prp_dma; |
285 | } | |
286 | kfree(prps); | |
287 | } | |
288 | ||
d534df3c | 289 | struct nvme_bio { |
b60503ba MW |
290 | struct bio *bio; |
291 | int nents; | |
e025344c | 292 | struct nvme_prps *prps; |
b60503ba MW |
293 | struct scatterlist sg[0]; |
294 | }; | |
295 | ||
296 | /* XXX: use a mempool */ | |
d534df3c | 297 | static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp) |
b60503ba | 298 | { |
d534df3c | 299 | return kzalloc(sizeof(struct nvme_bio) + |
b60503ba MW |
300 | sizeof(struct scatterlist) * nseg, gfp); |
301 | } | |
302 | ||
d534df3c | 303 | static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio) |
b60503ba | 304 | { |
d567760c | 305 | nvme_free_prps(nvmeq->dev, nbio->prps); |
d534df3c | 306 | kfree(nbio); |
b60503ba MW |
307 | } |
308 | ||
309 | static void bio_completion(struct nvme_queue *nvmeq, void *ctx, | |
310 | struct nvme_completion *cqe) | |
311 | { | |
d534df3c MW |
312 | struct nvme_bio *nbio = ctx; |
313 | struct bio *bio = nbio->bio; | |
b60503ba MW |
314 | u16 status = le16_to_cpup(&cqe->status) >> 1; |
315 | ||
d534df3c | 316 | dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents, |
b60503ba | 317 | bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
d534df3c | 318 | free_nbio(nvmeq, nbio); |
09a58f53 | 319 | if (status) { |
1ad2f893 | 320 | bio_endio(bio, -EIO); |
09a58f53 | 321 | } else if (bio->bi_vcnt > bio->bi_idx) { |
1ad2f893 MW |
322 | bio_list_add(&nvmeq->sq_cong, bio); |
323 | wake_up_process(nvme_thread); | |
324 | } else { | |
325 | bio_endio(bio, 0); | |
326 | } | |
b60503ba MW |
327 | } |
328 | ||
ff22b54f | 329 | /* length is in bytes */ |
d567760c | 330 | static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev, |
e025344c | 331 | struct nvme_common_command *cmd, |
ff22b54f MW |
332 | struct scatterlist *sg, int length) |
333 | { | |
99802a7a | 334 | struct dma_pool *pool; |
ff22b54f MW |
335 | int dma_len = sg_dma_len(sg); |
336 | u64 dma_addr = sg_dma_address(sg); | |
337 | int offset = offset_in_page(dma_addr); | |
e025344c SMM |
338 | __le64 *prp_list; |
339 | dma_addr_t prp_dma; | |
340 | int nprps, npages, i, prp_page; | |
341 | struct nvme_prps *prps = NULL; | |
ff22b54f MW |
342 | |
343 | cmd->prp1 = cpu_to_le64(dma_addr); | |
344 | length -= (PAGE_SIZE - offset); | |
345 | if (length <= 0) | |
e025344c | 346 | return prps; |
ff22b54f MW |
347 | |
348 | dma_len -= (PAGE_SIZE - offset); | |
349 | if (dma_len) { | |
350 | dma_addr += (PAGE_SIZE - offset); | |
351 | } else { | |
352 | sg = sg_next(sg); | |
353 | dma_addr = sg_dma_address(sg); | |
354 | dma_len = sg_dma_len(sg); | |
355 | } | |
356 | ||
357 | if (length <= PAGE_SIZE) { | |
358 | cmd->prp2 = cpu_to_le64(dma_addr); | |
e025344c SMM |
359 | return prps; |
360 | } | |
361 | ||
362 | nprps = DIV_ROUND_UP(length, PAGE_SIZE); | |
363 | npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE); | |
364 | prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC); | |
e025344c | 365 | prp_page = 0; |
99802a7a MW |
366 | if (nprps <= (256 / 8)) { |
367 | pool = dev->prp_small_pool; | |
368 | prps->npages = 0; | |
369 | } else { | |
370 | pool = dev->prp_page_pool; | |
371 | prps->npages = npages; | |
372 | } | |
373 | ||
374 | prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); | |
e025344c SMM |
375 | prps->list[prp_page++] = prp_list; |
376 | prps->first_dma = prp_dma; | |
377 | cmd->prp2 = cpu_to_le64(prp_dma); | |
378 | i = 0; | |
379 | for (;;) { | |
7523d834 | 380 | if (i == PAGE_SIZE / 8) { |
e025344c | 381 | __le64 *old_prp_list = prp_list; |
99802a7a | 382 | prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); |
e025344c | 383 | prps->list[prp_page++] = prp_list; |
7523d834 MW |
384 | prp_list[0] = old_prp_list[i - 1]; |
385 | old_prp_list[i - 1] = cpu_to_le64(prp_dma); | |
386 | i = 1; | |
e025344c SMM |
387 | } |
388 | prp_list[i++] = cpu_to_le64(dma_addr); | |
389 | dma_len -= PAGE_SIZE; | |
390 | dma_addr += PAGE_SIZE; | |
391 | length -= PAGE_SIZE; | |
392 | if (length <= 0) | |
393 | break; | |
394 | if (dma_len > 0) | |
395 | continue; | |
396 | BUG_ON(dma_len < 0); | |
397 | sg = sg_next(sg); | |
398 | dma_addr = sg_dma_address(sg); | |
399 | dma_len = sg_dma_len(sg); | |
ff22b54f MW |
400 | } |
401 | ||
e025344c | 402 | return prps; |
ff22b54f MW |
403 | } |
404 | ||
1ad2f893 MW |
405 | /* NVMe scatterlists require no holes in the virtual address */ |
406 | #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \ | |
407 | (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE)) | |
408 | ||
d534df3c | 409 | static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio, |
b60503ba MW |
410 | struct bio *bio, enum dma_data_direction dma_dir, int psegs) |
411 | { | |
76830840 MW |
412 | struct bio_vec *bvec, *bvprv = NULL; |
413 | struct scatterlist *sg = NULL; | |
1ad2f893 | 414 | int i, old_idx, length = 0, nsegs = 0; |
b60503ba | 415 | |
76830840 | 416 | sg_init_table(nbio->sg, psegs); |
1ad2f893 | 417 | old_idx = bio->bi_idx; |
b60503ba | 418 | bio_for_each_segment(bvec, bio, i) { |
76830840 MW |
419 | if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) { |
420 | sg->length += bvec->bv_len; | |
421 | } else { | |
1ad2f893 MW |
422 | if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec)) |
423 | break; | |
76830840 MW |
424 | sg = sg ? sg + 1 : nbio->sg; |
425 | sg_set_page(sg, bvec->bv_page, bvec->bv_len, | |
426 | bvec->bv_offset); | |
427 | nsegs++; | |
428 | } | |
1ad2f893 | 429 | length += bvec->bv_len; |
76830840 | 430 | bvprv = bvec; |
b60503ba | 431 | } |
1ad2f893 | 432 | bio->bi_idx = i; |
d534df3c | 433 | nbio->nents = nsegs; |
76830840 | 434 | sg_mark_end(sg); |
1ad2f893 MW |
435 | if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) { |
436 | bio->bi_idx = old_idx; | |
437 | return -ENOMEM; | |
438 | } | |
439 | return length; | |
b60503ba MW |
440 | } |
441 | ||
00df5cb4 MW |
442 | static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns, |
443 | int cmdid) | |
444 | { | |
445 | struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; | |
446 | ||
447 | memset(cmnd, 0, sizeof(*cmnd)); | |
448 | cmnd->common.opcode = nvme_cmd_flush; | |
449 | cmnd->common.command_id = cmdid; | |
450 | cmnd->common.nsid = cpu_to_le32(ns->ns_id); | |
451 | ||
452 | if (++nvmeq->sq_tail == nvmeq->q_depth) | |
453 | nvmeq->sq_tail = 0; | |
454 | writel(nvmeq->sq_tail, nvmeq->q_db); | |
455 | ||
456 | return 0; | |
457 | } | |
458 | ||
459 | static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns) | |
460 | { | |
461 | int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH, | |
462 | sync_completion_id, IO_TIMEOUT); | |
463 | if (unlikely(cmdid < 0)) | |
464 | return cmdid; | |
465 | ||
466 | return nvme_submit_flush(nvmeq, ns, cmdid); | |
467 | } | |
468 | ||
b60503ba MW |
469 | static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns, |
470 | struct bio *bio) | |
471 | { | |
ff22b54f | 472 | struct nvme_command *cmnd; |
d534df3c | 473 | struct nvme_bio *nbio; |
b60503ba | 474 | enum dma_data_direction dma_dir; |
1ad2f893 | 475 | int cmdid, length, result = -ENOMEM; |
b60503ba MW |
476 | u16 control; |
477 | u32 dsmgmt; | |
b60503ba MW |
478 | int psegs = bio_phys_segments(ns->queue, bio); |
479 | ||
00df5cb4 MW |
480 | if ((bio->bi_rw & REQ_FLUSH) && psegs) { |
481 | result = nvme_submit_flush_data(nvmeq, ns); | |
482 | if (result) | |
483 | return result; | |
484 | } | |
485 | ||
eeee3226 | 486 | nbio = alloc_nbio(psegs, GFP_ATOMIC); |
d534df3c | 487 | if (!nbio) |
eeee3226 | 488 | goto nomem; |
d534df3c | 489 | nbio->bio = bio; |
b60503ba | 490 | |
eeee3226 | 491 | result = -EBUSY; |
d534df3c | 492 | cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT); |
b60503ba | 493 | if (unlikely(cmdid < 0)) |
d534df3c | 494 | goto free_nbio; |
b60503ba | 495 | |
00df5cb4 MW |
496 | if ((bio->bi_rw & REQ_FLUSH) && !psegs) |
497 | return nvme_submit_flush(nvmeq, ns, cmdid); | |
498 | ||
b60503ba MW |
499 | control = 0; |
500 | if (bio->bi_rw & REQ_FUA) | |
501 | control |= NVME_RW_FUA; | |
502 | if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD)) | |
503 | control |= NVME_RW_LR; | |
504 | ||
505 | dsmgmt = 0; | |
506 | if (bio->bi_rw & REQ_RAHEAD) | |
507 | dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; | |
508 | ||
ff22b54f | 509 | cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail]; |
b60503ba | 510 | |
b8deb62c | 511 | memset(cmnd, 0, sizeof(*cmnd)); |
b60503ba | 512 | if (bio_data_dir(bio)) { |
ff22b54f | 513 | cmnd->rw.opcode = nvme_cmd_write; |
b60503ba MW |
514 | dma_dir = DMA_TO_DEVICE; |
515 | } else { | |
ff22b54f | 516 | cmnd->rw.opcode = nvme_cmd_read; |
b60503ba MW |
517 | dma_dir = DMA_FROM_DEVICE; |
518 | } | |
519 | ||
1ad2f893 MW |
520 | result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs); |
521 | if (result < 0) | |
eeee3226 | 522 | goto free_nbio; |
1ad2f893 | 523 | length = result; |
b60503ba | 524 | |
ff22b54f MW |
525 | cmnd->rw.command_id = cmdid; |
526 | cmnd->rw.nsid = cpu_to_le32(ns->ns_id); | |
d567760c | 527 | nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg, |
1ad2f893 | 528 | length); |
ff22b54f | 529 | cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9)); |
1ad2f893 | 530 | cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1); |
ff22b54f MW |
531 | cmnd->rw.control = cpu_to_le16(control); |
532 | cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); | |
b60503ba | 533 | |
d8ee9d69 MW |
534 | bio->bi_sector += length >> 9; |
535 | ||
b60503ba MW |
536 | if (++nvmeq->sq_tail == nvmeq->q_depth) |
537 | nvmeq->sq_tail = 0; | |
7547881d | 538 | writel(nvmeq->sq_tail, nvmeq->q_db); |
b60503ba | 539 | |
1974b1ae MW |
540 | return 0; |
541 | ||
d534df3c MW |
542 | free_nbio: |
543 | free_nbio(nvmeq, nbio); | |
eeee3226 MW |
544 | nomem: |
545 | return result; | |
b60503ba MW |
546 | } |
547 | ||
548 | /* | |
549 | * NB: return value of non-zero would mean that we were a stacking driver. | |
550 | * make_request must always succeed. | |
551 | */ | |
552 | static int nvme_make_request(struct request_queue *q, struct bio *bio) | |
553 | { | |
554 | struct nvme_ns *ns = q->queuedata; | |
555 | struct nvme_queue *nvmeq = get_nvmeq(ns); | |
eeee3226 MW |
556 | int result = -EBUSY; |
557 | ||
558 | spin_lock_irq(&nvmeq->q_lock); | |
559 | if (bio_list_empty(&nvmeq->sq_cong)) | |
560 | result = nvme_submit_bio_queue(nvmeq, ns, bio); | |
561 | if (unlikely(result)) { | |
562 | if (bio_list_empty(&nvmeq->sq_cong)) | |
563 | add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait); | |
b60503ba MW |
564 | bio_list_add(&nvmeq->sq_cong, bio); |
565 | } | |
eeee3226 MW |
566 | |
567 | spin_unlock_irq(&nvmeq->q_lock); | |
b60503ba MW |
568 | put_nvmeq(nvmeq); |
569 | ||
570 | return 0; | |
571 | } | |
572 | ||
573 | struct sync_cmd_info { | |
574 | struct task_struct *task; | |
575 | u32 result; | |
576 | int status; | |
577 | }; | |
578 | ||
579 | static void sync_completion(struct nvme_queue *nvmeq, void *ctx, | |
580 | struct nvme_completion *cqe) | |
581 | { | |
582 | struct sync_cmd_info *cmdinfo = ctx; | |
c4270559 | 583 | if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED)) |
be7b6275 | 584 | return; |
00df5cb4 MW |
585 | if ((unsigned long)cmdinfo == CMD_CTX_FLUSH) |
586 | return; | |
b36235df MW |
587 | if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) { |
588 | dev_warn(nvmeq->q_dmadev, | |
589 | "completed id %d twice on queue %d\n", | |
590 | cqe->command_id, le16_to_cpup(&cqe->sq_id)); | |
591 | return; | |
592 | } | |
48e3d398 MW |
593 | if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) { |
594 | dev_warn(nvmeq->q_dmadev, | |
595 | "invalid id %d completed on queue %d\n", | |
596 | cqe->command_id, le16_to_cpup(&cqe->sq_id)); | |
597 | return; | |
598 | } | |
b60503ba MW |
599 | cmdinfo->result = le32_to_cpup(&cqe->result); |
600 | cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; | |
601 | wake_up_process(cmdinfo->task); | |
602 | } | |
603 | ||
604 | typedef void (*completion_fn)(struct nvme_queue *, void *, | |
605 | struct nvme_completion *); | |
606 | ||
8de05535 MW |
607 | static const completion_fn nvme_completions[4] = { |
608 | [sync_completion_id] = sync_completion, | |
609 | [bio_completion_id] = bio_completion, | |
610 | }; | |
611 | ||
b60503ba MW |
612 | static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq) |
613 | { | |
82123460 | 614 | u16 head, phase; |
b60503ba | 615 | |
b60503ba | 616 | head = nvmeq->cq_head; |
82123460 | 617 | phase = nvmeq->cq_phase; |
b60503ba MW |
618 | |
619 | for (;;) { | |
620 | unsigned long data; | |
621 | void *ptr; | |
622 | unsigned char handler; | |
623 | struct nvme_completion cqe = nvmeq->cqes[head]; | |
82123460 | 624 | if ((le16_to_cpu(cqe.status) & 1) != phase) |
b60503ba MW |
625 | break; |
626 | nvmeq->sq_head = le16_to_cpu(cqe.sq_head); | |
627 | if (++head == nvmeq->q_depth) { | |
628 | head = 0; | |
82123460 | 629 | phase = !phase; |
b60503ba MW |
630 | } |
631 | ||
632 | data = free_cmdid(nvmeq, cqe.command_id); | |
633 | handler = data & 3; | |
634 | ptr = (void *)(data & ~3UL); | |
8de05535 | 635 | nvme_completions[handler](nvmeq, ptr, &cqe); |
b60503ba MW |
636 | } |
637 | ||
638 | /* If the controller ignores the cq head doorbell and continuously | |
639 | * writes to the queue, it is theoretically possible to wrap around | |
640 | * the queue twice and mistakenly return IRQ_NONE. Linux only | |
641 | * requires that 0.1% of your interrupts are handled, so this isn't | |
642 | * a big problem. | |
643 | */ | |
82123460 | 644 | if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) |
b60503ba MW |
645 | return IRQ_NONE; |
646 | ||
647 | writel(head, nvmeq->q_db + 1); | |
648 | nvmeq->cq_head = head; | |
82123460 | 649 | nvmeq->cq_phase = phase; |
b60503ba MW |
650 | |
651 | return IRQ_HANDLED; | |
652 | } | |
653 | ||
654 | static irqreturn_t nvme_irq(int irq, void *data) | |
58ffacb5 MW |
655 | { |
656 | irqreturn_t result; | |
657 | struct nvme_queue *nvmeq = data; | |
658 | spin_lock(&nvmeq->q_lock); | |
659 | result = nvme_process_cq(nvmeq); | |
660 | spin_unlock(&nvmeq->q_lock); | |
661 | return result; | |
662 | } | |
663 | ||
664 | static irqreturn_t nvme_irq_check(int irq, void *data) | |
665 | { | |
666 | struct nvme_queue *nvmeq = data; | |
667 | struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; | |
668 | if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) | |
669 | return IRQ_NONE; | |
670 | return IRQ_WAKE_THREAD; | |
671 | } | |
672 | ||
3c0cf138 MW |
673 | static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid) |
674 | { | |
675 | spin_lock_irq(&nvmeq->q_lock); | |
21075bde | 676 | cancel_cmdid(nvmeq, cmdid); |
3c0cf138 MW |
677 | spin_unlock_irq(&nvmeq->q_lock); |
678 | } | |
679 | ||
b60503ba MW |
680 | /* |
681 | * Returns 0 on success. If the result is negative, it's a Linux error code; | |
682 | * if the result is positive, it's an NVM Express status code | |
683 | */ | |
3c0cf138 | 684 | static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, |
e85248e5 | 685 | struct nvme_command *cmd, u32 *result, unsigned timeout) |
b60503ba MW |
686 | { |
687 | int cmdid; | |
688 | struct sync_cmd_info cmdinfo; | |
689 | ||
690 | cmdinfo.task = current; | |
691 | cmdinfo.status = -EINTR; | |
692 | ||
e85248e5 MW |
693 | cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id, |
694 | timeout); | |
b60503ba MW |
695 | if (cmdid < 0) |
696 | return cmdid; | |
697 | cmd->common.command_id = cmdid; | |
698 | ||
3c0cf138 MW |
699 | set_current_state(TASK_KILLABLE); |
700 | nvme_submit_cmd(nvmeq, cmd); | |
b60503ba MW |
701 | schedule(); |
702 | ||
3c0cf138 MW |
703 | if (cmdinfo.status == -EINTR) { |
704 | nvme_abort_command(nvmeq, cmdid); | |
705 | return -EINTR; | |
706 | } | |
707 | ||
b60503ba MW |
708 | if (result) |
709 | *result = cmdinfo.result; | |
710 | ||
711 | return cmdinfo.status; | |
712 | } | |
713 | ||
714 | static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, | |
715 | u32 *result) | |
716 | { | |
e85248e5 | 717 | return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); |
b60503ba MW |
718 | } |
719 | ||
720 | static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) | |
721 | { | |
722 | int status; | |
723 | struct nvme_command c; | |
724 | ||
725 | memset(&c, 0, sizeof(c)); | |
726 | c.delete_queue.opcode = opcode; | |
727 | c.delete_queue.qid = cpu_to_le16(id); | |
728 | ||
729 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
730 | if (status) | |
731 | return -EIO; | |
732 | return 0; | |
733 | } | |
734 | ||
735 | static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, | |
736 | struct nvme_queue *nvmeq) | |
737 | { | |
738 | int status; | |
739 | struct nvme_command c; | |
740 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; | |
741 | ||
742 | memset(&c, 0, sizeof(c)); | |
743 | c.create_cq.opcode = nvme_admin_create_cq; | |
744 | c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); | |
745 | c.create_cq.cqid = cpu_to_le16(qid); | |
746 | c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | |
747 | c.create_cq.cq_flags = cpu_to_le16(flags); | |
748 | c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); | |
749 | ||
750 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
751 | if (status) | |
752 | return -EIO; | |
753 | return 0; | |
754 | } | |
755 | ||
756 | static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, | |
757 | struct nvme_queue *nvmeq) | |
758 | { | |
759 | int status; | |
760 | struct nvme_command c; | |
761 | int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; | |
762 | ||
763 | memset(&c, 0, sizeof(c)); | |
764 | c.create_sq.opcode = nvme_admin_create_sq; | |
765 | c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); | |
766 | c.create_sq.sqid = cpu_to_le16(qid); | |
767 | c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | |
768 | c.create_sq.sq_flags = cpu_to_le16(flags); | |
769 | c.create_sq.cqid = cpu_to_le16(qid); | |
770 | ||
771 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
772 | if (status) | |
773 | return -EIO; | |
774 | return 0; | |
775 | } | |
776 | ||
777 | static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) | |
778 | { | |
779 | return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); | |
780 | } | |
781 | ||
782 | static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) | |
783 | { | |
784 | return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); | |
785 | } | |
786 | ||
787 | static void nvme_free_queue(struct nvme_dev *dev, int qid) | |
788 | { | |
789 | struct nvme_queue *nvmeq = dev->queues[qid]; | |
aba2080f | 790 | int vector = dev->entry[nvmeq->cq_vector].vector; |
b60503ba | 791 | |
aba2080f MW |
792 | irq_set_affinity_hint(vector, NULL); |
793 | free_irq(vector, nvmeq); | |
b60503ba MW |
794 | |
795 | /* Don't tell the adapter to delete the admin queue */ | |
796 | if (qid) { | |
797 | adapter_delete_sq(dev, qid); | |
798 | adapter_delete_cq(dev, qid); | |
799 | } | |
800 | ||
801 | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | |
802 | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | |
803 | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | |
804 | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | |
805 | kfree(nvmeq); | |
806 | } | |
807 | ||
808 | static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, | |
809 | int depth, int vector) | |
810 | { | |
811 | struct device *dmadev = &dev->pci_dev->dev; | |
e85248e5 | 812 | unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info)); |
b60503ba MW |
813 | struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL); |
814 | if (!nvmeq) | |
815 | return NULL; | |
816 | ||
817 | nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth), | |
818 | &nvmeq->cq_dma_addr, GFP_KERNEL); | |
819 | if (!nvmeq->cqes) | |
820 | goto free_nvmeq; | |
821 | memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth)); | |
822 | ||
823 | nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth), | |
824 | &nvmeq->sq_dma_addr, GFP_KERNEL); | |
825 | if (!nvmeq->sq_cmds) | |
826 | goto free_cqdma; | |
827 | ||
828 | nvmeq->q_dmadev = dmadev; | |
091b6092 | 829 | nvmeq->dev = dev; |
b60503ba MW |
830 | spin_lock_init(&nvmeq->q_lock); |
831 | nvmeq->cq_head = 0; | |
82123460 | 832 | nvmeq->cq_phase = 1; |
b60503ba | 833 | init_waitqueue_head(&nvmeq->sq_full); |
1fa6aead | 834 | init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread); |
b60503ba MW |
835 | bio_list_init(&nvmeq->sq_cong); |
836 | nvmeq->q_db = &dev->dbs[qid * 2]; | |
837 | nvmeq->q_depth = depth; | |
838 | nvmeq->cq_vector = vector; | |
839 | ||
840 | return nvmeq; | |
841 | ||
842 | free_cqdma: | |
843 | dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes, | |
844 | nvmeq->cq_dma_addr); | |
845 | free_nvmeq: | |
846 | kfree(nvmeq); | |
847 | return NULL; | |
848 | } | |
849 | ||
3001082c MW |
850 | static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
851 | const char *name) | |
852 | { | |
58ffacb5 MW |
853 | if (use_threaded_interrupts) |
854 | return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, | |
ec6ce618 | 855 | nvme_irq_check, nvme_irq, |
58ffacb5 MW |
856 | IRQF_DISABLED | IRQF_SHARED, |
857 | name, nvmeq); | |
3001082c MW |
858 | return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, |
859 | IRQF_DISABLED | IRQF_SHARED, name, nvmeq); | |
860 | } | |
861 | ||
b60503ba MW |
862 | static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, |
863 | int qid, int cq_size, int vector) | |
864 | { | |
865 | int result; | |
866 | struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector); | |
867 | ||
3f85d50b MW |
868 | if (!nvmeq) |
869 | return NULL; | |
870 | ||
b60503ba MW |
871 | result = adapter_alloc_cq(dev, qid, nvmeq); |
872 | if (result < 0) | |
873 | goto free_nvmeq; | |
874 | ||
875 | result = adapter_alloc_sq(dev, qid, nvmeq); | |
876 | if (result < 0) | |
877 | goto release_cq; | |
878 | ||
3001082c | 879 | result = queue_request_irq(dev, nvmeq, "nvme"); |
b60503ba MW |
880 | if (result < 0) |
881 | goto release_sq; | |
882 | ||
883 | return nvmeq; | |
884 | ||
885 | release_sq: | |
886 | adapter_delete_sq(dev, qid); | |
887 | release_cq: | |
888 | adapter_delete_cq(dev, qid); | |
889 | free_nvmeq: | |
890 | dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | |
891 | (void *)nvmeq->cqes, nvmeq->cq_dma_addr); | |
892 | dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | |
893 | nvmeq->sq_cmds, nvmeq->sq_dma_addr); | |
894 | kfree(nvmeq); | |
895 | return NULL; | |
896 | } | |
897 | ||
898 | static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev) | |
899 | { | |
900 | int result; | |
901 | u32 aqa; | |
22605f96 MW |
902 | u64 cap; |
903 | unsigned long timeout; | |
b60503ba MW |
904 | struct nvme_queue *nvmeq; |
905 | ||
906 | dev->dbs = ((void __iomem *)dev->bar) + 4096; | |
907 | ||
908 | nvmeq = nvme_alloc_queue(dev, 0, 64, 0); | |
3f85d50b MW |
909 | if (!nvmeq) |
910 | return -ENOMEM; | |
b60503ba MW |
911 | |
912 | aqa = nvmeq->q_depth - 1; | |
913 | aqa |= aqa << 16; | |
914 | ||
915 | dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM; | |
916 | dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; | |
917 | dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; | |
7f53f9d2 | 918 | dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
b60503ba | 919 | |
5911f200 | 920 | writel(0, &dev->bar->cc); |
b60503ba MW |
921 | writel(aqa, &dev->bar->aqa); |
922 | writeq(nvmeq->sq_dma_addr, &dev->bar->asq); | |
923 | writeq(nvmeq->cq_dma_addr, &dev->bar->acq); | |
924 | writel(dev->ctrl_config, &dev->bar->cc); | |
925 | ||
22605f96 MW |
926 | cap = readq(&dev->bar->cap); |
927 | timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; | |
928 | ||
b60503ba MW |
929 | while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) { |
930 | msleep(100); | |
931 | if (fatal_signal_pending(current)) | |
932 | return -EINTR; | |
22605f96 MW |
933 | if (time_after(jiffies, timeout)) { |
934 | dev_err(&dev->pci_dev->dev, | |
935 | "Device not ready; aborting initialisation\n"); | |
936 | return -ENODEV; | |
937 | } | |
b60503ba MW |
938 | } |
939 | ||
3001082c | 940 | result = queue_request_irq(dev, nvmeq, "nvme admin"); |
b60503ba MW |
941 | dev->queues[0] = nvmeq; |
942 | return result; | |
943 | } | |
944 | ||
7fc3cdab MW |
945 | static int nvme_map_user_pages(struct nvme_dev *dev, int write, |
946 | unsigned long addr, unsigned length, | |
947 | struct scatterlist **sgp) | |
b60503ba | 948 | { |
36c14ed9 | 949 | int i, err, count, nents, offset; |
7fc3cdab MW |
950 | struct scatterlist *sg; |
951 | struct page **pages; | |
36c14ed9 MW |
952 | |
953 | if (addr & 3) | |
954 | return -EINVAL; | |
7fc3cdab MW |
955 | if (!length) |
956 | return -EINVAL; | |
957 | ||
36c14ed9 | 958 | offset = offset_in_page(addr); |
7fc3cdab MW |
959 | count = DIV_ROUND_UP(offset + length, PAGE_SIZE); |
960 | pages = kcalloc(count, sizeof(*pages), GFP_KERNEL); | |
36c14ed9 MW |
961 | |
962 | err = get_user_pages_fast(addr, count, 1, pages); | |
963 | if (err < count) { | |
964 | count = err; | |
965 | err = -EFAULT; | |
966 | goto put_pages; | |
967 | } | |
7fc3cdab MW |
968 | |
969 | sg = kcalloc(count, sizeof(*sg), GFP_KERNEL); | |
36c14ed9 | 970 | sg_init_table(sg, count); |
ff22b54f | 971 | sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset); |
7fc3cdab MW |
972 | length -= (PAGE_SIZE - offset); |
973 | for (i = 1; i < count; i++) { | |
974 | sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0); | |
975 | length -= PAGE_SIZE; | |
976 | } | |
977 | ||
978 | err = -ENOMEM; | |
979 | nents = dma_map_sg(&dev->pci_dev->dev, sg, count, | |
980 | write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | |
36c14ed9 MW |
981 | if (!nents) |
982 | goto put_pages; | |
b60503ba | 983 | |
7fc3cdab MW |
984 | kfree(pages); |
985 | *sgp = sg; | |
986 | return nents; | |
b60503ba | 987 | |
7fc3cdab MW |
988 | put_pages: |
989 | for (i = 0; i < count; i++) | |
990 | put_page(pages[i]); | |
991 | kfree(pages); | |
992 | return err; | |
993 | } | |
b60503ba | 994 | |
7fc3cdab MW |
995 | static void nvme_unmap_user_pages(struct nvme_dev *dev, int write, |
996 | unsigned long addr, int length, | |
997 | struct scatterlist *sg, int nents) | |
998 | { | |
999 | int i, count; | |
b60503ba | 1000 | |
7fc3cdab | 1001 | count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE); |
36c14ed9 | 1002 | dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE); |
7fc3cdab | 1003 | |
36c14ed9 | 1004 | for (i = 0; i < count; i++) |
7fc3cdab MW |
1005 | put_page(sg_page(&sg[i])); |
1006 | } | |
b60503ba | 1007 | |
7fc3cdab MW |
1008 | static int nvme_submit_user_admin_command(struct nvme_dev *dev, |
1009 | unsigned long addr, unsigned length, | |
1010 | struct nvme_command *cmd) | |
1011 | { | |
1012 | int err, nents; | |
1013 | struct scatterlist *sg; | |
e025344c | 1014 | struct nvme_prps *prps; |
7fc3cdab MW |
1015 | |
1016 | nents = nvme_map_user_pages(dev, 0, addr, length, &sg); | |
1017 | if (nents < 0) | |
1018 | return nents; | |
d567760c | 1019 | prps = nvme_setup_prps(dev, &cmd->common, sg, length); |
7fc3cdab MW |
1020 | err = nvme_submit_admin_cmd(dev, cmd, NULL); |
1021 | nvme_unmap_user_pages(dev, 0, addr, length, sg, nents); | |
d567760c | 1022 | nvme_free_prps(dev, prps); |
7fc3cdab | 1023 | return err ? -EIO : 0; |
b60503ba MW |
1024 | } |
1025 | ||
bd38c555 | 1026 | static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns) |
b60503ba | 1027 | { |
b60503ba | 1028 | struct nvme_command c; |
b60503ba | 1029 | |
bd38c555 MW |
1030 | memset(&c, 0, sizeof(c)); |
1031 | c.identify.opcode = nvme_admin_identify; | |
1032 | c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id); | |
1033 | c.identify.cns = cpu_to_le32(cns); | |
1034 | ||
1035 | return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c); | |
1036 | } | |
1037 | ||
1038 | static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr) | |
1039 | { | |
1040 | struct nvme_command c; | |
b60503ba MW |
1041 | |
1042 | memset(&c, 0, sizeof(c)); | |
1043 | c.features.opcode = nvme_admin_get_features; | |
1044 | c.features.nsid = cpu_to_le32(ns->ns_id); | |
b60503ba MW |
1045 | c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE); |
1046 | ||
bd38c555 | 1047 | return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c); |
b60503ba MW |
1048 | } |
1049 | ||
a53295b6 MW |
1050 | static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) |
1051 | { | |
1052 | struct nvme_dev *dev = ns->dev; | |
1053 | struct nvme_queue *nvmeq; | |
1054 | struct nvme_user_io io; | |
1055 | struct nvme_command c; | |
1056 | unsigned length; | |
a53295b6 MW |
1057 | int nents, status; |
1058 | struct scatterlist *sg; | |
e025344c | 1059 | struct nvme_prps *prps; |
a53295b6 MW |
1060 | |
1061 | if (copy_from_user(&io, uio, sizeof(io))) | |
1062 | return -EFAULT; | |
6c7d4945 MW |
1063 | length = (io.nblocks + 1) << ns->lba_shift; |
1064 | ||
1065 | switch (io.opcode) { | |
1066 | case nvme_cmd_write: | |
1067 | case nvme_cmd_read: | |
1068 | nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, | |
1069 | length, &sg); | |
1070 | default: | |
1071 | return -EFAULT; | |
1072 | } | |
1073 | ||
a53295b6 MW |
1074 | if (nents < 0) |
1075 | return nents; | |
1076 | ||
1077 | memset(&c, 0, sizeof(c)); | |
1078 | c.rw.opcode = io.opcode; | |
1079 | c.rw.flags = io.flags; | |
6c7d4945 | 1080 | c.rw.nsid = cpu_to_le32(ns->ns_id); |
a53295b6 | 1081 | c.rw.slba = cpu_to_le64(io.slba); |
6c7d4945 | 1082 | c.rw.length = cpu_to_le16(io.nblocks); |
a53295b6 MW |
1083 | c.rw.control = cpu_to_le16(io.control); |
1084 | c.rw.dsmgmt = cpu_to_le16(io.dsmgmt); | |
6c7d4945 MW |
1085 | c.rw.reftag = io.reftag; |
1086 | c.rw.apptag = io.apptag; | |
1087 | c.rw.appmask = io.appmask; | |
a53295b6 | 1088 | /* XXX: metadata */ |
d567760c | 1089 | prps = nvme_setup_prps(dev, &c.common, sg, length); |
a53295b6 | 1090 | |
d567760c | 1091 | nvmeq = get_nvmeq(ns); |
fa922821 MW |
1092 | /* |
1093 | * Since nvme_submit_sync_cmd sleeps, we can't keep preemption | |
b1ad37ef MW |
1094 | * disabled. We may be preempted at any point, and be rescheduled |
1095 | * to a different CPU. That will cause cacheline bouncing, but no | |
1096 | * additional races since q_lock already protects against other CPUs. | |
1097 | */ | |
a53295b6 | 1098 | put_nvmeq(nvmeq); |
6c7d4945 | 1099 | status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT); |
a53295b6 MW |
1100 | |
1101 | nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents); | |
d567760c | 1102 | nvme_free_prps(dev, prps); |
a53295b6 MW |
1103 | return status; |
1104 | } | |
1105 | ||
6ee44cdc MW |
1106 | static int nvme_download_firmware(struct nvme_ns *ns, |
1107 | struct nvme_dlfw __user *udlfw) | |
1108 | { | |
1109 | struct nvme_dev *dev = ns->dev; | |
1110 | struct nvme_dlfw dlfw; | |
1111 | struct nvme_command c; | |
1112 | int nents, status; | |
1113 | struct scatterlist *sg; | |
e025344c | 1114 | struct nvme_prps *prps; |
6ee44cdc MW |
1115 | |
1116 | if (copy_from_user(&dlfw, udlfw, sizeof(dlfw))) | |
1117 | return -EFAULT; | |
1118 | if (dlfw.length >= (1 << 30)) | |
1119 | return -EINVAL; | |
1120 | ||
1121 | nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg); | |
1122 | if (nents < 0) | |
1123 | return nents; | |
1124 | ||
1125 | memset(&c, 0, sizeof(c)); | |
1126 | c.dlfw.opcode = nvme_admin_download_fw; | |
1127 | c.dlfw.numd = cpu_to_le32(dlfw.length); | |
1128 | c.dlfw.offset = cpu_to_le32(dlfw.offset); | |
d567760c | 1129 | prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4); |
6ee44cdc MW |
1130 | |
1131 | status = nvme_submit_admin_cmd(dev, &c, NULL); | |
1132 | nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents); | |
d567760c | 1133 | nvme_free_prps(dev, prps); |
6ee44cdc MW |
1134 | return status; |
1135 | } | |
1136 | ||
1137 | static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg) | |
1138 | { | |
1139 | struct nvme_dev *dev = ns->dev; | |
1140 | struct nvme_command c; | |
1141 | ||
1142 | memset(&c, 0, sizeof(c)); | |
1143 | c.common.opcode = nvme_admin_activate_fw; | |
1144 | c.common.rsvd10[0] = cpu_to_le32(arg); | |
1145 | ||
1146 | return nvme_submit_admin_cmd(dev, &c, NULL); | |
1147 | } | |
1148 | ||
b60503ba MW |
1149 | static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, |
1150 | unsigned long arg) | |
1151 | { | |
1152 | struct nvme_ns *ns = bdev->bd_disk->private_data; | |
1153 | ||
1154 | switch (cmd) { | |
1155 | case NVME_IOCTL_IDENTIFY_NS: | |
36c14ed9 | 1156 | return nvme_identify(ns, arg, 0); |
b60503ba | 1157 | case NVME_IOCTL_IDENTIFY_CTRL: |
36c14ed9 | 1158 | return nvme_identify(ns, arg, 1); |
b60503ba | 1159 | case NVME_IOCTL_GET_RANGE_TYPE: |
bd38c555 | 1160 | return nvme_get_range_type(ns, arg); |
a53295b6 MW |
1161 | case NVME_IOCTL_SUBMIT_IO: |
1162 | return nvme_submit_io(ns, (void __user *)arg); | |
6ee44cdc MW |
1163 | case NVME_IOCTL_DOWNLOAD_FW: |
1164 | return nvme_download_firmware(ns, (void __user *)arg); | |
1165 | case NVME_IOCTL_ACTIVATE_FW: | |
1166 | return nvme_activate_firmware(ns, arg); | |
b60503ba MW |
1167 | default: |
1168 | return -ENOTTY; | |
1169 | } | |
1170 | } | |
1171 | ||
1172 | static const struct block_device_operations nvme_fops = { | |
1173 | .owner = THIS_MODULE, | |
1174 | .ioctl = nvme_ioctl, | |
49481682 | 1175 | .compat_ioctl = nvme_ioctl, |
b60503ba MW |
1176 | }; |
1177 | ||
8de05535 MW |
1178 | static void nvme_timeout_ios(struct nvme_queue *nvmeq) |
1179 | { | |
1180 | int depth = nvmeq->q_depth - 1; | |
1181 | struct nvme_cmd_info *info = nvme_cmd_info(nvmeq); | |
1182 | unsigned long now = jiffies; | |
1183 | int cmdid; | |
1184 | ||
1185 | for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) { | |
1186 | unsigned long data; | |
1187 | void *ptr; | |
1188 | unsigned char handler; | |
1189 | static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, }; | |
1190 | ||
1191 | if (!time_after(now, info[cmdid].timeout)) | |
1192 | continue; | |
1193 | dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid); | |
1194 | data = cancel_cmdid(nvmeq, cmdid); | |
1195 | handler = data & 3; | |
1196 | ptr = (void *)(data & ~3UL); | |
1197 | nvme_completions[handler](nvmeq, ptr, &cqe); | |
1198 | } | |
1199 | } | |
1200 | ||
1fa6aead MW |
1201 | static void nvme_resubmit_bios(struct nvme_queue *nvmeq) |
1202 | { | |
1203 | while (bio_list_peek(&nvmeq->sq_cong)) { | |
1204 | struct bio *bio = bio_list_pop(&nvmeq->sq_cong); | |
1205 | struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data; | |
1206 | if (nvme_submit_bio_queue(nvmeq, ns, bio)) { | |
1207 | bio_list_add_head(&nvmeq->sq_cong, bio); | |
1208 | break; | |
1209 | } | |
3cb967c0 MW |
1210 | if (bio_list_empty(&nvmeq->sq_cong)) |
1211 | remove_wait_queue(&nvmeq->sq_full, | |
1212 | &nvmeq->sq_cong_wait); | |
1fa6aead MW |
1213 | } |
1214 | } | |
1215 | ||
1216 | static int nvme_kthread(void *data) | |
1217 | { | |
1218 | struct nvme_dev *dev; | |
1219 | ||
1220 | while (!kthread_should_stop()) { | |
1221 | __set_current_state(TASK_RUNNING); | |
1222 | spin_lock(&dev_list_lock); | |
1223 | list_for_each_entry(dev, &dev_list, node) { | |
1224 | int i; | |
1225 | for (i = 0; i < dev->queue_count; i++) { | |
1226 | struct nvme_queue *nvmeq = dev->queues[i]; | |
740216fc MW |
1227 | if (!nvmeq) |
1228 | continue; | |
1fa6aead MW |
1229 | spin_lock_irq(&nvmeq->q_lock); |
1230 | if (nvme_process_cq(nvmeq)) | |
1231 | printk("process_cq did something\n"); | |
8de05535 | 1232 | nvme_timeout_ios(nvmeq); |
1fa6aead MW |
1233 | nvme_resubmit_bios(nvmeq); |
1234 | spin_unlock_irq(&nvmeq->q_lock); | |
1235 | } | |
1236 | } | |
1237 | spin_unlock(&dev_list_lock); | |
1238 | set_current_state(TASK_INTERRUPTIBLE); | |
1239 | schedule_timeout(HZ); | |
1240 | } | |
1241 | return 0; | |
1242 | } | |
1243 | ||
5aff9382 MW |
1244 | static DEFINE_IDA(nvme_index_ida); |
1245 | ||
1246 | static int nvme_get_ns_idx(void) | |
1247 | { | |
1248 | int index, error; | |
1249 | ||
1250 | do { | |
1251 | if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL)) | |
1252 | return -1; | |
1253 | ||
1254 | spin_lock(&dev_list_lock); | |
1255 | error = ida_get_new(&nvme_index_ida, &index); | |
1256 | spin_unlock(&dev_list_lock); | |
1257 | } while (error == -EAGAIN); | |
1258 | ||
1259 | if (error) | |
1260 | index = -1; | |
1261 | return index; | |
1262 | } | |
1263 | ||
1264 | static void nvme_put_ns_idx(int index) | |
1265 | { | |
1266 | spin_lock(&dev_list_lock); | |
1267 | ida_remove(&nvme_index_ida, index); | |
1268 | spin_unlock(&dev_list_lock); | |
1269 | } | |
1270 | ||
1271 | static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid, | |
b60503ba MW |
1272 | struct nvme_id_ns *id, struct nvme_lba_range_type *rt) |
1273 | { | |
1274 | struct nvme_ns *ns; | |
1275 | struct gendisk *disk; | |
1276 | int lbaf; | |
1277 | ||
1278 | if (rt->attributes & NVME_LBART_ATTRIB_HIDE) | |
1279 | return NULL; | |
1280 | ||
1281 | ns = kzalloc(sizeof(*ns), GFP_KERNEL); | |
1282 | if (!ns) | |
1283 | return NULL; | |
1284 | ns->queue = blk_alloc_queue(GFP_KERNEL); | |
1285 | if (!ns->queue) | |
1286 | goto out_free_ns; | |
1287 | ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES | | |
1288 | QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD; | |
1289 | blk_queue_make_request(ns->queue, nvme_make_request); | |
1290 | ns->dev = dev; | |
1291 | ns->queue->queuedata = ns; | |
1292 | ||
1293 | disk = alloc_disk(NVME_MINORS); | |
1294 | if (!disk) | |
1295 | goto out_free_queue; | |
5aff9382 | 1296 | ns->ns_id = nsid; |
b60503ba MW |
1297 | ns->disk = disk; |
1298 | lbaf = id->flbas & 0xf; | |
1299 | ns->lba_shift = id->lbaf[lbaf].ds; | |
1300 | ||
1301 | disk->major = nvme_major; | |
1302 | disk->minors = NVME_MINORS; | |
5aff9382 | 1303 | disk->first_minor = NVME_MINORS * nvme_get_ns_idx(); |
b60503ba MW |
1304 | disk->fops = &nvme_fops; |
1305 | disk->private_data = ns; | |
1306 | disk->queue = ns->queue; | |
388f037f | 1307 | disk->driverfs_dev = &dev->pci_dev->dev; |
5aff9382 | 1308 | sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid); |
b60503ba MW |
1309 | set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); |
1310 | ||
1311 | return ns; | |
1312 | ||
1313 | out_free_queue: | |
1314 | blk_cleanup_queue(ns->queue); | |
1315 | out_free_ns: | |
1316 | kfree(ns); | |
1317 | return NULL; | |
1318 | } | |
1319 | ||
1320 | static void nvme_ns_free(struct nvme_ns *ns) | |
1321 | { | |
5aff9382 | 1322 | int index = ns->disk->first_minor / NVME_MINORS; |
b60503ba | 1323 | put_disk(ns->disk); |
5aff9382 | 1324 | nvme_put_ns_idx(index); |
b60503ba MW |
1325 | blk_cleanup_queue(ns->queue); |
1326 | kfree(ns); | |
1327 | } | |
1328 | ||
b3b06812 | 1329 | static int set_queue_count(struct nvme_dev *dev, int count) |
b60503ba MW |
1330 | { |
1331 | int status; | |
1332 | u32 result; | |
1333 | struct nvme_command c; | |
b3b06812 | 1334 | u32 q_count = (count - 1) | ((count - 1) << 16); |
b60503ba MW |
1335 | |
1336 | memset(&c, 0, sizeof(c)); | |
1337 | c.features.opcode = nvme_admin_get_features; | |
1338 | c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES); | |
1339 | c.features.dword11 = cpu_to_le32(q_count); | |
1340 | ||
1341 | status = nvme_submit_admin_cmd(dev, &c, &result); | |
1342 | if (status) | |
1343 | return -EIO; | |
1344 | return min(result & 0xffff, result >> 16) + 1; | |
1345 | } | |
1346 | ||
b60503ba MW |
1347 | static int __devinit nvme_setup_io_queues(struct nvme_dev *dev) |
1348 | { | |
b348b7d5 | 1349 | int result, cpu, i, nr_io_queues; |
b60503ba | 1350 | |
b348b7d5 MW |
1351 | nr_io_queues = num_online_cpus(); |
1352 | result = set_queue_count(dev, nr_io_queues); | |
1b23484b MW |
1353 | if (result < 0) |
1354 | return result; | |
b348b7d5 MW |
1355 | if (result < nr_io_queues) |
1356 | nr_io_queues = result; | |
b60503ba | 1357 | |
1b23484b MW |
1358 | /* Deregister the admin queue's interrupt */ |
1359 | free_irq(dev->entry[0].vector, dev->queues[0]); | |
1360 | ||
b348b7d5 | 1361 | for (i = 0; i < nr_io_queues; i++) |
1b23484b MW |
1362 | dev->entry[i].entry = i; |
1363 | for (;;) { | |
b348b7d5 MW |
1364 | result = pci_enable_msix(dev->pci_dev, dev->entry, |
1365 | nr_io_queues); | |
1b23484b MW |
1366 | if (result == 0) { |
1367 | break; | |
1368 | } else if (result > 0) { | |
b348b7d5 | 1369 | nr_io_queues = result; |
1b23484b MW |
1370 | continue; |
1371 | } else { | |
b348b7d5 | 1372 | nr_io_queues = 1; |
1b23484b MW |
1373 | break; |
1374 | } | |
1375 | } | |
1376 | ||
1377 | result = queue_request_irq(dev, dev->queues[0], "nvme admin"); | |
1378 | /* XXX: handle failure here */ | |
1379 | ||
1380 | cpu = cpumask_first(cpu_online_mask); | |
b348b7d5 | 1381 | for (i = 0; i < nr_io_queues; i++) { |
1b23484b MW |
1382 | irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu)); |
1383 | cpu = cpumask_next(cpu, cpu_online_mask); | |
1384 | } | |
1385 | ||
b348b7d5 | 1386 | for (i = 0; i < nr_io_queues; i++) { |
1b23484b MW |
1387 | dev->queues[i + 1] = nvme_create_queue(dev, i + 1, |
1388 | NVME_Q_DEPTH, i); | |
1389 | if (!dev->queues[i + 1]) | |
1390 | return -ENOMEM; | |
1391 | dev->queue_count++; | |
1392 | } | |
b60503ba | 1393 | |
9ecdc946 MW |
1394 | for (; i < num_possible_cpus(); i++) { |
1395 | int target = i % rounddown_pow_of_two(dev->queue_count - 1); | |
1396 | dev->queues[i + 1] = dev->queues[target + 1]; | |
1397 | } | |
1398 | ||
b60503ba MW |
1399 | return 0; |
1400 | } | |
1401 | ||
1402 | static void nvme_free_queues(struct nvme_dev *dev) | |
1403 | { | |
1404 | int i; | |
1405 | ||
1406 | for (i = dev->queue_count - 1; i >= 0; i--) | |
1407 | nvme_free_queue(dev, i); | |
1408 | } | |
1409 | ||
1410 | static int __devinit nvme_dev_add(struct nvme_dev *dev) | |
1411 | { | |
1412 | int res, nn, i; | |
1413 | struct nvme_ns *ns, *next; | |
51814232 | 1414 | struct nvme_id_ctrl *ctrl; |
b60503ba MW |
1415 | void *id; |
1416 | dma_addr_t dma_addr; | |
1417 | struct nvme_command cid, crt; | |
1418 | ||
1419 | res = nvme_setup_io_queues(dev); | |
1420 | if (res) | |
1421 | return res; | |
1422 | ||
1423 | /* XXX: Switch to a SG list once prp2 works */ | |
1424 | id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr, | |
1425 | GFP_KERNEL); | |
1426 | ||
1427 | memset(&cid, 0, sizeof(cid)); | |
1428 | cid.identify.opcode = nvme_admin_identify; | |
1429 | cid.identify.nsid = 0; | |
1430 | cid.identify.prp1 = cpu_to_le64(dma_addr); | |
1431 | cid.identify.cns = cpu_to_le32(1); | |
1432 | ||
1433 | res = nvme_submit_admin_cmd(dev, &cid, NULL); | |
1434 | if (res) { | |
1435 | res = -EIO; | |
1436 | goto out_free; | |
1437 | } | |
1438 | ||
51814232 MW |
1439 | ctrl = id; |
1440 | nn = le32_to_cpup(&ctrl->nn); | |
1441 | memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); | |
1442 | memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); | |
1443 | memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); | |
b60503ba MW |
1444 | |
1445 | cid.identify.cns = 0; | |
1446 | memset(&crt, 0, sizeof(crt)); | |
1447 | crt.features.opcode = nvme_admin_get_features; | |
1448 | crt.features.prp1 = cpu_to_le64(dma_addr + 4096); | |
1449 | crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE); | |
1450 | ||
ac88c36a | 1451 | for (i = 0; i <= nn; i++) { |
b60503ba MW |
1452 | cid.identify.nsid = cpu_to_le32(i); |
1453 | res = nvme_submit_admin_cmd(dev, &cid, NULL); | |
1454 | if (res) | |
1455 | continue; | |
1456 | ||
1457 | if (((struct nvme_id_ns *)id)->ncap == 0) | |
1458 | continue; | |
1459 | ||
1460 | crt.features.nsid = cpu_to_le32(i); | |
1461 | res = nvme_submit_admin_cmd(dev, &crt, NULL); | |
1462 | if (res) | |
1463 | continue; | |
1464 | ||
1465 | ns = nvme_alloc_ns(dev, i, id, id + 4096); | |
1466 | if (ns) | |
1467 | list_add_tail(&ns->list, &dev->namespaces); | |
1468 | } | |
1469 | list_for_each_entry(ns, &dev->namespaces, list) | |
1470 | add_disk(ns->disk); | |
1471 | ||
1472 | dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr); | |
1473 | return 0; | |
1474 | ||
1475 | out_free: | |
1476 | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | |
1477 | list_del(&ns->list); | |
1478 | nvme_ns_free(ns); | |
1479 | } | |
1480 | ||
1481 | dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr); | |
1482 | return res; | |
1483 | } | |
1484 | ||
1485 | static int nvme_dev_remove(struct nvme_dev *dev) | |
1486 | { | |
1487 | struct nvme_ns *ns, *next; | |
1488 | ||
1fa6aead MW |
1489 | spin_lock(&dev_list_lock); |
1490 | list_del(&dev->node); | |
1491 | spin_unlock(&dev_list_lock); | |
1492 | ||
b60503ba MW |
1493 | /* TODO: wait all I/O finished or cancel them */ |
1494 | ||
1495 | list_for_each_entry_safe(ns, next, &dev->namespaces, list) { | |
1496 | list_del(&ns->list); | |
1497 | del_gendisk(ns->disk); | |
1498 | nvme_ns_free(ns); | |
1499 | } | |
1500 | ||
1501 | nvme_free_queues(dev); | |
1502 | ||
1503 | return 0; | |
1504 | } | |
1505 | ||
091b6092 MW |
1506 | static int nvme_setup_prp_pools(struct nvme_dev *dev) |
1507 | { | |
1508 | struct device *dmadev = &dev->pci_dev->dev; | |
1509 | dev->prp_page_pool = dma_pool_create("prp list page", dmadev, | |
1510 | PAGE_SIZE, PAGE_SIZE, 0); | |
1511 | if (!dev->prp_page_pool) | |
1512 | return -ENOMEM; | |
1513 | ||
99802a7a MW |
1514 | /* Optimisation for I/Os between 4k and 128k */ |
1515 | dev->prp_small_pool = dma_pool_create("prp list 256", dmadev, | |
1516 | 256, 256, 0); | |
1517 | if (!dev->prp_small_pool) { | |
1518 | dma_pool_destroy(dev->prp_page_pool); | |
1519 | return -ENOMEM; | |
1520 | } | |
091b6092 MW |
1521 | return 0; |
1522 | } | |
1523 | ||
1524 | static void nvme_release_prp_pools(struct nvme_dev *dev) | |
1525 | { | |
1526 | dma_pool_destroy(dev->prp_page_pool); | |
99802a7a | 1527 | dma_pool_destroy(dev->prp_small_pool); |
091b6092 MW |
1528 | } |
1529 | ||
b60503ba MW |
1530 | /* XXX: Use an ida or something to let remove / add work correctly */ |
1531 | static void nvme_set_instance(struct nvme_dev *dev) | |
1532 | { | |
1533 | static int instance; | |
1534 | dev->instance = instance++; | |
1535 | } | |
1536 | ||
1537 | static void nvme_release_instance(struct nvme_dev *dev) | |
1538 | { | |
1539 | } | |
1540 | ||
1541 | static int __devinit nvme_probe(struct pci_dev *pdev, | |
1542 | const struct pci_device_id *id) | |
1543 | { | |
574e8b95 | 1544 | int bars, result = -ENOMEM; |
b60503ba MW |
1545 | struct nvme_dev *dev; |
1546 | ||
1547 | dev = kzalloc(sizeof(*dev), GFP_KERNEL); | |
1548 | if (!dev) | |
1549 | return -ENOMEM; | |
1550 | dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry), | |
1551 | GFP_KERNEL); | |
1552 | if (!dev->entry) | |
1553 | goto free; | |
1b23484b MW |
1554 | dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *), |
1555 | GFP_KERNEL); | |
b60503ba MW |
1556 | if (!dev->queues) |
1557 | goto free; | |
1558 | ||
0ee5a7d7 SMM |
1559 | if (pci_enable_device_mem(pdev)) |
1560 | goto free; | |
f64d3365 | 1561 | pci_set_master(pdev); |
574e8b95 MW |
1562 | bars = pci_select_bars(pdev, IORESOURCE_MEM); |
1563 | if (pci_request_selected_regions(pdev, bars, "nvme")) | |
1564 | goto disable; | |
0ee5a7d7 | 1565 | |
b60503ba MW |
1566 | INIT_LIST_HEAD(&dev->namespaces); |
1567 | dev->pci_dev = pdev; | |
1568 | pci_set_drvdata(pdev, dev); | |
2930353f MW |
1569 | dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); |
1570 | dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); | |
b60503ba | 1571 | nvme_set_instance(dev); |
53c9577e | 1572 | dev->entry[0].vector = pdev->irq; |
b60503ba | 1573 | |
091b6092 MW |
1574 | result = nvme_setup_prp_pools(dev); |
1575 | if (result) | |
1576 | goto disable_msix; | |
1577 | ||
b60503ba MW |
1578 | dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); |
1579 | if (!dev->bar) { | |
1580 | result = -ENOMEM; | |
574e8b95 | 1581 | goto disable_msix; |
b60503ba MW |
1582 | } |
1583 | ||
1584 | result = nvme_configure_admin_queue(dev); | |
1585 | if (result) | |
1586 | goto unmap; | |
1587 | dev->queue_count++; | |
1588 | ||
1fa6aead MW |
1589 | spin_lock(&dev_list_lock); |
1590 | list_add(&dev->node, &dev_list); | |
1591 | spin_unlock(&dev_list_lock); | |
1592 | ||
740216fc MW |
1593 | result = nvme_dev_add(dev); |
1594 | if (result) | |
1595 | goto delete; | |
1596 | ||
b60503ba MW |
1597 | return 0; |
1598 | ||
1599 | delete: | |
740216fc MW |
1600 | spin_lock(&dev_list_lock); |
1601 | list_del(&dev->node); | |
1602 | spin_unlock(&dev_list_lock); | |
1603 | ||
b60503ba MW |
1604 | nvme_free_queues(dev); |
1605 | unmap: | |
1606 | iounmap(dev->bar); | |
574e8b95 | 1607 | disable_msix: |
b60503ba MW |
1608 | pci_disable_msix(pdev); |
1609 | nvme_release_instance(dev); | |
091b6092 | 1610 | nvme_release_prp_pools(dev); |
574e8b95 | 1611 | disable: |
0ee5a7d7 | 1612 | pci_disable_device(pdev); |
574e8b95 | 1613 | pci_release_regions(pdev); |
b60503ba MW |
1614 | free: |
1615 | kfree(dev->queues); | |
1616 | kfree(dev->entry); | |
1617 | kfree(dev); | |
1618 | return result; | |
1619 | } | |
1620 | ||
1621 | static void __devexit nvme_remove(struct pci_dev *pdev) | |
1622 | { | |
1623 | struct nvme_dev *dev = pci_get_drvdata(pdev); | |
1624 | nvme_dev_remove(dev); | |
1625 | pci_disable_msix(pdev); | |
1626 | iounmap(dev->bar); | |
1627 | nvme_release_instance(dev); | |
091b6092 | 1628 | nvme_release_prp_pools(dev); |
0ee5a7d7 | 1629 | pci_disable_device(pdev); |
574e8b95 | 1630 | pci_release_regions(pdev); |
b60503ba MW |
1631 | kfree(dev->queues); |
1632 | kfree(dev->entry); | |
1633 | kfree(dev); | |
1634 | } | |
1635 | ||
1636 | /* These functions are yet to be implemented */ | |
1637 | #define nvme_error_detected NULL | |
1638 | #define nvme_dump_registers NULL | |
1639 | #define nvme_link_reset NULL | |
1640 | #define nvme_slot_reset NULL | |
1641 | #define nvme_error_resume NULL | |
1642 | #define nvme_suspend NULL | |
1643 | #define nvme_resume NULL | |
1644 | ||
1645 | static struct pci_error_handlers nvme_err_handler = { | |
1646 | .error_detected = nvme_error_detected, | |
1647 | .mmio_enabled = nvme_dump_registers, | |
1648 | .link_reset = nvme_link_reset, | |
1649 | .slot_reset = nvme_slot_reset, | |
1650 | .resume = nvme_error_resume, | |
1651 | }; | |
1652 | ||
1653 | /* Move to pci_ids.h later */ | |
1654 | #define PCI_CLASS_STORAGE_EXPRESS 0x010802 | |
1655 | ||
1656 | static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = { | |
1657 | { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, | |
1658 | { 0, } | |
1659 | }; | |
1660 | MODULE_DEVICE_TABLE(pci, nvme_id_table); | |
1661 | ||
1662 | static struct pci_driver nvme_driver = { | |
1663 | .name = "nvme", | |
1664 | .id_table = nvme_id_table, | |
1665 | .probe = nvme_probe, | |
1666 | .remove = __devexit_p(nvme_remove), | |
1667 | .suspend = nvme_suspend, | |
1668 | .resume = nvme_resume, | |
1669 | .err_handler = &nvme_err_handler, | |
1670 | }; | |
1671 | ||
1672 | static int __init nvme_init(void) | |
1673 | { | |
1fa6aead MW |
1674 | int result = -EBUSY; |
1675 | ||
1676 | nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); | |
1677 | if (IS_ERR(nvme_thread)) | |
1678 | return PTR_ERR(nvme_thread); | |
b60503ba MW |
1679 | |
1680 | nvme_major = register_blkdev(nvme_major, "nvme"); | |
1681 | if (nvme_major <= 0) | |
1fa6aead | 1682 | goto kill_kthread; |
b60503ba MW |
1683 | |
1684 | result = pci_register_driver(&nvme_driver); | |
1fa6aead MW |
1685 | if (result) |
1686 | goto unregister_blkdev; | |
1687 | return 0; | |
b60503ba | 1688 | |
1fa6aead | 1689 | unregister_blkdev: |
b60503ba | 1690 | unregister_blkdev(nvme_major, "nvme"); |
1fa6aead MW |
1691 | kill_kthread: |
1692 | kthread_stop(nvme_thread); | |
b60503ba MW |
1693 | return result; |
1694 | } | |
1695 | ||
1696 | static void __exit nvme_exit(void) | |
1697 | { | |
1698 | pci_unregister_driver(&nvme_driver); | |
1699 | unregister_blkdev(nvme_major, "nvme"); | |
1fa6aead | 1700 | kthread_stop(nvme_thread); |
b60503ba MW |
1701 | } |
1702 | ||
1703 | MODULE_AUTHOR("Matthew Wilcox <[email protected]>"); | |
1704 | MODULE_LICENSE("GPL"); | |
8ef70067 | 1705 | MODULE_VERSION("0.5"); |
b60503ba MW |
1706 | module_init(nvme_init); |
1707 | module_exit(nvme_exit); |