]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/partitions/acorn.c | |
3 | * | |
4 | * Copyright (c) 1996-2000 Russell King. | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify | |
7 | * it under the terms of the GNU General Public License version 2 as | |
8 | * published by the Free Software Foundation. | |
9 | * | |
10 | * Scan ADFS partitions on hard disk drives. Unfortunately, there | |
11 | * isn't a standard for partitioning drives on Acorn machines, so | |
12 | * every single manufacturer of SCSI and IDE cards created their own | |
13 | * method. | |
14 | */ | |
1da177e4 LT |
15 | #include <linux/buffer_head.h> |
16 | #include <linux/adfs_fs.h> | |
17 | ||
18 | #include "check.h" | |
19 | #include "acorn.h" | |
20 | ||
21 | /* | |
22 | * Partition types. (Oh for reusability) | |
23 | */ | |
24 | #define PARTITION_RISCIX_MFM 1 | |
25 | #define PARTITION_RISCIX_SCSI 2 | |
26 | #define PARTITION_LINUX 9 | |
27 | ||
d05e96fe DG |
28 | #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ |
29 | defined(CONFIG_ACORN_PARTITION_ADFS) | |
1da177e4 LT |
30 | static struct adfs_discrecord * |
31 | adfs_partition(struct parsed_partitions *state, char *name, char *data, | |
32 | unsigned long first_sector, int slot) | |
33 | { | |
34 | struct adfs_discrecord *dr; | |
35 | unsigned int nr_sects; | |
36 | ||
37 | if (adfs_checkbblk(data)) | |
38 | return NULL; | |
39 | ||
40 | dr = (struct adfs_discrecord *)(data + 0x1c0); | |
41 | ||
42 | if (dr->disc_size == 0 && dr->disc_size_high == 0) | |
43 | return NULL; | |
44 | ||
45 | nr_sects = (le32_to_cpu(dr->disc_size_high) << 23) | | |
46 | (le32_to_cpu(dr->disc_size) >> 9); | |
47 | ||
48 | if (name) | |
49 | printk(" [%s]", name); | |
50 | put_partition(state, slot, first_sector, nr_sects); | |
51 | return dr; | |
52 | } | |
d05e96fe | 53 | #endif |
1da177e4 LT |
54 | |
55 | #ifdef CONFIG_ACORN_PARTITION_RISCIX | |
56 | ||
57 | struct riscix_part { | |
58 | __le32 start; | |
59 | __le32 length; | |
60 | __le32 one; | |
61 | char name[16]; | |
62 | }; | |
63 | ||
64 | struct riscix_record { | |
65 | __le32 magic; | |
66 | #define RISCIX_MAGIC cpu_to_le32(0x4a657320) | |
67 | __le32 date; | |
68 | struct riscix_part part[8]; | |
69 | }; | |
70 | ||
d05e96fe DG |
71 | #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ |
72 | defined(CONFIG_ACORN_PARTITION_ADFS) | |
1da177e4 LT |
73 | static int |
74 | riscix_partition(struct parsed_partitions *state, struct block_device *bdev, | |
75 | unsigned long first_sect, int slot, unsigned long nr_sects) | |
76 | { | |
77 | Sector sect; | |
78 | struct riscix_record *rr; | |
79 | ||
80 | rr = (struct riscix_record *)read_dev_sector(bdev, first_sect, §); | |
81 | if (!rr) | |
82 | return -1; | |
83 | ||
84 | printk(" [RISCiX]"); | |
85 | ||
86 | ||
87 | if (rr->magic == RISCIX_MAGIC) { | |
88 | unsigned long size = nr_sects > 2 ? 2 : nr_sects; | |
89 | int part; | |
90 | ||
91 | printk(" <"); | |
92 | ||
93 | put_partition(state, slot++, first_sect, size); | |
94 | for (part = 0; part < 8; part++) { | |
95 | if (rr->part[part].one && | |
96 | memcmp(rr->part[part].name, "All\0", 4)) { | |
97 | put_partition(state, slot++, | |
98 | le32_to_cpu(rr->part[part].start), | |
99 | le32_to_cpu(rr->part[part].length)); | |
100 | printk("(%s)", rr->part[part].name); | |
101 | } | |
102 | } | |
103 | ||
104 | printk(" >\n"); | |
105 | } else { | |
106 | put_partition(state, slot++, first_sect, nr_sects); | |
107 | } | |
108 | ||
109 | put_dev_sector(sect); | |
110 | return slot; | |
111 | } | |
112 | #endif | |
d05e96fe | 113 | #endif |
1da177e4 LT |
114 | |
115 | #define LINUX_NATIVE_MAGIC 0xdeafa1de | |
116 | #define LINUX_SWAP_MAGIC 0xdeafab1e | |
117 | ||
118 | struct linux_part { | |
119 | __le32 magic; | |
120 | __le32 start_sect; | |
121 | __le32 nr_sects; | |
122 | }; | |
123 | ||
d05e96fe DG |
124 | #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ |
125 | defined(CONFIG_ACORN_PARTITION_ADFS) | |
1da177e4 LT |
126 | static int |
127 | linux_partition(struct parsed_partitions *state, struct block_device *bdev, | |
128 | unsigned long first_sect, int slot, unsigned long nr_sects) | |
129 | { | |
130 | Sector sect; | |
131 | struct linux_part *linuxp; | |
132 | unsigned long size = nr_sects > 2 ? 2 : nr_sects; | |
133 | ||
134 | printk(" [Linux]"); | |
135 | ||
136 | put_partition(state, slot++, first_sect, size); | |
137 | ||
138 | linuxp = (struct linux_part *)read_dev_sector(bdev, first_sect, §); | |
139 | if (!linuxp) | |
140 | return -1; | |
141 | ||
142 | printk(" <"); | |
143 | while (linuxp->magic == cpu_to_le32(LINUX_NATIVE_MAGIC) || | |
144 | linuxp->magic == cpu_to_le32(LINUX_SWAP_MAGIC)) { | |
145 | if (slot == state->limit) | |
146 | break; | |
147 | put_partition(state, slot++, first_sect + | |
148 | le32_to_cpu(linuxp->start_sect), | |
149 | le32_to_cpu(linuxp->nr_sects)); | |
150 | linuxp ++; | |
151 | } | |
152 | printk(" >"); | |
153 | ||
154 | put_dev_sector(sect); | |
155 | return slot; | |
156 | } | |
d05e96fe | 157 | #endif |
1da177e4 LT |
158 | |
159 | #ifdef CONFIG_ACORN_PARTITION_CUMANA | |
160 | int | |
161 | adfspart_check_CUMANA(struct parsed_partitions *state, struct block_device *bdev) | |
162 | { | |
163 | unsigned long first_sector = 0; | |
164 | unsigned int start_blk = 0; | |
165 | Sector sect; | |
166 | unsigned char *data; | |
167 | char *name = "CUMANA/ADFS"; | |
168 | int first = 1; | |
169 | int slot = 1; | |
170 | ||
171 | /* | |
172 | * Try Cumana style partitions - sector 6 contains ADFS boot block | |
173 | * with pointer to next 'drive'. | |
174 | * | |
175 | * There are unknowns in this code - is the 'cylinder number' of the | |
176 | * next partition relative to the start of this one - I'm assuming | |
177 | * it is. | |
178 | * | |
179 | * Also, which ID did Cumana use? | |
180 | * | |
181 | * This is totally unfinished, and will require more work to get it | |
182 | * going. Hence it is totally untested. | |
183 | */ | |
184 | do { | |
185 | struct adfs_discrecord *dr; | |
186 | unsigned int nr_sects; | |
187 | ||
188 | data = read_dev_sector(bdev, start_blk * 2 + 6, §); | |
189 | if (!data) | |
190 | return -1; | |
191 | ||
192 | if (slot == state->limit) | |
193 | break; | |
194 | ||
195 | dr = adfs_partition(state, name, data, first_sector, slot++); | |
196 | if (!dr) | |
197 | break; | |
198 | ||
199 | name = NULL; | |
200 | ||
201 | nr_sects = (data[0x1fd] + (data[0x1fe] << 8)) * | |
202 | (dr->heads + (dr->lowsector & 0x40 ? 1 : 0)) * | |
203 | dr->secspertrack; | |
204 | ||
205 | if (!nr_sects) | |
206 | break; | |
207 | ||
208 | first = 0; | |
209 | first_sector += nr_sects; | |
210 | start_blk += nr_sects >> (BLOCK_SIZE_BITS - 9); | |
211 | nr_sects = 0; /* hmm - should be partition size */ | |
212 | ||
213 | switch (data[0x1fc] & 15) { | |
214 | case 0: /* No partition / ADFS? */ | |
215 | break; | |
216 | ||
217 | #ifdef CONFIG_ACORN_PARTITION_RISCIX | |
218 | case PARTITION_RISCIX_SCSI: | |
219 | /* RISCiX - we don't know how to find the next one. */ | |
220 | slot = riscix_partition(state, bdev, first_sector, | |
221 | slot, nr_sects); | |
222 | break; | |
223 | #endif | |
224 | ||
225 | case PARTITION_LINUX: | |
226 | slot = linux_partition(state, bdev, first_sector, | |
227 | slot, nr_sects); | |
228 | break; | |
229 | } | |
230 | put_dev_sector(sect); | |
231 | if (slot == -1) | |
232 | return -1; | |
233 | } while (1); | |
234 | put_dev_sector(sect); | |
235 | return first ? 0 : 1; | |
236 | } | |
237 | #endif | |
238 | ||
239 | #ifdef CONFIG_ACORN_PARTITION_ADFS | |
240 | /* | |
241 | * Purpose: allocate ADFS partitions. | |
242 | * | |
243 | * Params : hd - pointer to gendisk structure to store partition info. | |
244 | * dev - device number to access. | |
245 | * | |
246 | * Returns: -1 on error, 0 for no ADFS boot sector, 1 for ok. | |
247 | * | |
248 | * Alloc : hda = whole drive | |
249 | * hda1 = ADFS partition on first drive. | |
250 | * hda2 = non-ADFS partition. | |
251 | */ | |
252 | int | |
253 | adfspart_check_ADFS(struct parsed_partitions *state, struct block_device *bdev) | |
254 | { | |
255 | unsigned long start_sect, nr_sects, sectscyl, heads; | |
256 | Sector sect; | |
257 | unsigned char *data; | |
258 | struct adfs_discrecord *dr; | |
259 | unsigned char id; | |
260 | int slot = 1; | |
261 | ||
262 | data = read_dev_sector(bdev, 6, §); | |
263 | if (!data) | |
264 | return -1; | |
265 | ||
266 | dr = adfs_partition(state, "ADFS", data, 0, slot++); | |
267 | if (!dr) { | |
268 | put_dev_sector(sect); | |
269 | return 0; | |
270 | } | |
271 | ||
272 | heads = dr->heads + ((dr->lowsector >> 6) & 1); | |
273 | sectscyl = dr->secspertrack * heads; | |
274 | start_sect = ((data[0x1fe] << 8) + data[0x1fd]) * sectscyl; | |
275 | id = data[0x1fc] & 15; | |
276 | put_dev_sector(sect); | |
277 | ||
278 | #ifdef CONFIG_BLK_DEV_MFM | |
279 | if (MAJOR(bdev->bd_dev) == MFM_ACORN_MAJOR) { | |
280 | extern void xd_set_geometry(struct block_device *, | |
281 | unsigned char, unsigned char, unsigned int); | |
282 | xd_set_geometry(bdev, dr->secspertrack, heads, 1); | |
96018fda | 283 | invalidate_bh_lrus(); |
1da177e4 LT |
284 | truncate_inode_pages(bdev->bd_inode->i_mapping, 0); |
285 | } | |
286 | #endif | |
287 | ||
288 | /* | |
289 | * Work out start of non-adfs partition. | |
290 | */ | |
291 | nr_sects = (bdev->bd_inode->i_size >> 9) - start_sect; | |
292 | ||
293 | if (start_sect) { | |
294 | switch (id) { | |
295 | #ifdef CONFIG_ACORN_PARTITION_RISCIX | |
296 | case PARTITION_RISCIX_SCSI: | |
297 | case PARTITION_RISCIX_MFM: | |
298 | slot = riscix_partition(state, bdev, start_sect, | |
299 | slot, nr_sects); | |
300 | break; | |
301 | #endif | |
302 | ||
303 | case PARTITION_LINUX: | |
304 | slot = linux_partition(state, bdev, start_sect, | |
305 | slot, nr_sects); | |
306 | break; | |
307 | } | |
308 | } | |
309 | printk("\n"); | |
310 | return 1; | |
311 | } | |
312 | #endif | |
313 | ||
314 | #ifdef CONFIG_ACORN_PARTITION_ICS | |
315 | ||
316 | struct ics_part { | |
317 | __le32 start; | |
318 | __le32 size; | |
319 | }; | |
320 | ||
321 | static int adfspart_check_ICSLinux(struct block_device *bdev, unsigned long block) | |
322 | { | |
323 | Sector sect; | |
324 | unsigned char *data = read_dev_sector(bdev, block, §); | |
325 | int result = 0; | |
326 | ||
327 | if (data) { | |
328 | if (memcmp(data, "LinuxPart", 9) == 0) | |
329 | result = 1; | |
330 | put_dev_sector(sect); | |
331 | } | |
332 | ||
333 | return result; | |
334 | } | |
335 | ||
336 | /* | |
337 | * Check for a valid ICS partition using the checksum. | |
338 | */ | |
339 | static inline int valid_ics_sector(const unsigned char *data) | |
340 | { | |
341 | unsigned long sum; | |
342 | int i; | |
343 | ||
344 | for (i = 0, sum = 0x50617274; i < 508; i++) | |
345 | sum += data[i]; | |
346 | ||
347 | sum -= le32_to_cpu(*(__le32 *)(&data[508])); | |
348 | ||
349 | return sum == 0; | |
350 | } | |
351 | ||
352 | /* | |
353 | * Purpose: allocate ICS partitions. | |
354 | * Params : hd - pointer to gendisk structure to store partition info. | |
355 | * dev - device number to access. | |
356 | * Returns: -1 on error, 0 for no ICS table, 1 for partitions ok. | |
357 | * Alloc : hda = whole drive | |
358 | * hda1 = ADFS partition 0 on first drive. | |
359 | * hda2 = ADFS partition 1 on first drive. | |
360 | * ..etc.. | |
361 | */ | |
362 | int | |
363 | adfspart_check_ICS(struct parsed_partitions *state, struct block_device *bdev) | |
364 | { | |
365 | const unsigned char *data; | |
366 | const struct ics_part *p; | |
367 | int slot; | |
368 | Sector sect; | |
369 | ||
370 | /* | |
371 | * Try ICS style partitions - sector 0 contains partition info. | |
372 | */ | |
373 | data = read_dev_sector(bdev, 0, §); | |
374 | if (!data) | |
375 | return -1; | |
376 | ||
377 | if (!valid_ics_sector(data)) { | |
378 | put_dev_sector(sect); | |
379 | return 0; | |
380 | } | |
381 | ||
382 | printk(" [ICS]"); | |
383 | ||
384 | for (slot = 1, p = (const struct ics_part *)data; p->size; p++) { | |
385 | u32 start = le32_to_cpu(p->start); | |
386 | s32 size = le32_to_cpu(p->size); /* yes, it's signed. */ | |
387 | ||
388 | if (slot == state->limit) | |
389 | break; | |
390 | ||
391 | /* | |
392 | * Negative sizes tell the RISC OS ICS driver to ignore | |
393 | * this partition - in effect it says that this does not | |
394 | * contain an ADFS filesystem. | |
395 | */ | |
396 | if (size < 0) { | |
397 | size = -size; | |
398 | ||
399 | /* | |
400 | * Our own extension - We use the first sector | |
401 | * of the partition to identify what type this | |
402 | * partition is. We must not make this visible | |
403 | * to the filesystem. | |
404 | */ | |
405 | if (size > 1 && adfspart_check_ICSLinux(bdev, start)) { | |
406 | start += 1; | |
407 | size -= 1; | |
408 | } | |
409 | } | |
410 | ||
411 | if (size) | |
412 | put_partition(state, slot++, start, size); | |
413 | } | |
414 | ||
415 | put_dev_sector(sect); | |
416 | printk("\n"); | |
417 | return 1; | |
418 | } | |
419 | #endif | |
420 | ||
421 | #ifdef CONFIG_ACORN_PARTITION_POWERTEC | |
422 | struct ptec_part { | |
423 | __le32 unused1; | |
424 | __le32 unused2; | |
425 | __le32 start; | |
426 | __le32 size; | |
427 | __le32 unused5; | |
428 | char type[8]; | |
429 | }; | |
430 | ||
431 | static inline int valid_ptec_sector(const unsigned char *data) | |
432 | { | |
433 | unsigned char checksum = 0x2a; | |
434 | int i; | |
435 | ||
436 | /* | |
437 | * If it looks like a PC/BIOS partition, then it | |
438 | * probably isn't PowerTec. | |
439 | */ | |
440 | if (data[510] == 0x55 && data[511] == 0xaa) | |
441 | return 0; | |
442 | ||
443 | for (i = 0; i < 511; i++) | |
444 | checksum += data[i]; | |
445 | ||
446 | return checksum == data[511]; | |
447 | } | |
448 | ||
449 | /* | |
450 | * Purpose: allocate ICS partitions. | |
451 | * Params : hd - pointer to gendisk structure to store partition info. | |
452 | * dev - device number to access. | |
453 | * Returns: -1 on error, 0 for no ICS table, 1 for partitions ok. | |
454 | * Alloc : hda = whole drive | |
455 | * hda1 = ADFS partition 0 on first drive. | |
456 | * hda2 = ADFS partition 1 on first drive. | |
457 | * ..etc.. | |
458 | */ | |
459 | int | |
460 | adfspart_check_POWERTEC(struct parsed_partitions *state, struct block_device *bdev) | |
461 | { | |
462 | Sector sect; | |
463 | const unsigned char *data; | |
464 | const struct ptec_part *p; | |
465 | int slot = 1; | |
466 | int i; | |
467 | ||
468 | data = read_dev_sector(bdev, 0, §); | |
469 | if (!data) | |
470 | return -1; | |
471 | ||
472 | if (!valid_ptec_sector(data)) { | |
473 | put_dev_sector(sect); | |
474 | return 0; | |
475 | } | |
476 | ||
477 | printk(" [POWERTEC]"); | |
478 | ||
479 | for (i = 0, p = (const struct ptec_part *)data; i < 12; i++, p++) { | |
480 | u32 start = le32_to_cpu(p->start); | |
481 | u32 size = le32_to_cpu(p->size); | |
482 | ||
483 | if (size) | |
484 | put_partition(state, slot++, start, size); | |
485 | } | |
486 | ||
487 | put_dev_sector(sect); | |
488 | printk("\n"); | |
489 | return 1; | |
490 | } | |
491 | #endif | |
492 | ||
493 | #ifdef CONFIG_ACORN_PARTITION_EESOX | |
494 | struct eesox_part { | |
495 | char magic[6]; | |
496 | char name[10]; | |
497 | __le32 start; | |
498 | __le32 unused6; | |
499 | __le32 unused7; | |
500 | __le32 unused8; | |
501 | }; | |
502 | ||
503 | /* | |
504 | * Guess who created this format? | |
505 | */ | |
506 | static const char eesox_name[] = { | |
507 | 'N', 'e', 'i', 'l', ' ', | |
508 | 'C', 'r', 'i', 't', 'c', 'h', 'e', 'l', 'l', ' ', ' ' | |
509 | }; | |
510 | ||
511 | /* | |
512 | * EESOX SCSI partition format. | |
513 | * | |
514 | * This is a goddamned awful partition format. We don't seem to store | |
515 | * the size of the partition in this table, only the start addresses. | |
516 | * | |
517 | * There are two possibilities where the size comes from: | |
518 | * 1. The individual ADFS boot block entries that are placed on the disk. | |
519 | * 2. The start address of the next entry. | |
520 | */ | |
521 | int | |
522 | adfspart_check_EESOX(struct parsed_partitions *state, struct block_device *bdev) | |
523 | { | |
524 | Sector sect; | |
525 | const unsigned char *data; | |
526 | unsigned char buffer[256]; | |
527 | struct eesox_part *p; | |
528 | sector_t start = 0; | |
529 | int i, slot = 1; | |
530 | ||
531 | data = read_dev_sector(bdev, 7, §); | |
532 | if (!data) | |
533 | return -1; | |
534 | ||
535 | /* | |
536 | * "Decrypt" the partition table. God knows why... | |
537 | */ | |
538 | for (i = 0; i < 256; i++) | |
539 | buffer[i] = data[i] ^ eesox_name[i & 15]; | |
540 | ||
541 | put_dev_sector(sect); | |
542 | ||
543 | for (i = 0, p = (struct eesox_part *)buffer; i < 8; i++, p++) { | |
544 | sector_t next; | |
545 | ||
546 | if (memcmp(p->magic, "Eesox", 6)) | |
547 | break; | |
548 | ||
549 | next = le32_to_cpu(p->start); | |
550 | if (i) | |
551 | put_partition(state, slot++, start, next - start); | |
552 | start = next; | |
553 | } | |
554 | ||
555 | if (i != 0) { | |
556 | sector_t size; | |
557 | ||
558 | size = get_capacity(bdev->bd_disk); | |
559 | put_partition(state, slot++, start, size - start); | |
560 | printk("\n"); | |
561 | } | |
562 | ||
563 | return i ? 1 : 0; | |
564 | } | |
565 | #endif |