]> Git Repo - linux.git/blame - fs/dcache.c
cifs: Add a tracepoint to track credits involved in R/W requests
[linux.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
873feea0 40 * dcache->d_inode->i_lock protects:
946e51f2 41 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
f1ee6162
N
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
19156840 46 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
b7ab39f6 52 * - d_count
da502956 53 * - d_unhashed()
da549bdd
AV
54 * - d_parent and d_chilren
55 * - childrens' d_sib and d_parent
946e51f2 56 * - d_u.d_alias, d_inode
789680d1
NP
57 *
58 * Ordering:
873feea0 59 * dentry->d_inode->i_lock
b5c84bf6 60 * dentry->d_lock
19156840 61 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 62 * dcache_hash_bucket lock
f1ee6162 63 * s_roots lock
789680d1 64 *
da502956
NP
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
076515fc 72 * arbitrary, since it's serialized on rename_lock
789680d1 73 */
fa3536cc 74int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
74c3cbe3 77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 78
949854d0 79EXPORT_SYMBOL(rename_lock);
1da177e4 80
68279f9c 81static struct kmem_cache *dentry_cache __ro_after_init;
1da177e4 82
cdf01226
DH
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
80e5d1ff
AV
87const struct qstr dotdot_name = QSTR_INIT("..", 2);
88EXPORT_SYMBOL(dotdot_name);
cdf01226 89
1da177e4
LT
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
1da177e4 98
68279f9c 99static unsigned int d_hash_shift __ro_after_init;
ceb5bdc2 100
68279f9c 101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
ceb5bdc2 102
8387ff25 103static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 104{
854d3e63 105 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
106}
107
94bdd655
AV
108#define IN_LOOKUP_SHIFT 10
109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113{
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116}
117
c8c0c239
LC
118struct dentry_stat_t {
119 long nr_dentry;
120 long nr_unused;
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
1da177e4
LT
125};
126
3942c07c 127static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 128static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 129static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
c8c0c239
LC
132/* Statistics gathering. */
133static struct dentry_stat_t dentry_stat = {
134 .age_limit = 45,
135};
62d36c77
DC
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
3942c07c 149static long get_nr_dentry(void)
3e880fb5
NP
150{
151 int i;
3942c07c 152 long sum = 0;
3e880fb5
NP
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156}
157
62d36c77
DC
158static long get_nr_dentry_unused(void)
159{
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165}
166
af0c9af1
WL
167static long get_nr_dentry_negative(void)
168{
169 int i;
170 long sum = 0;
171
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
175}
176
c8c0c239
LC
177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
312d3ca8 179{
3e880fb5 180 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 181 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 182 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8 184}
c8c0c239
LC
185
186static struct ctl_table fs_dcache_sysctls[] = {
187 {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
191 .mode = 0444,
192 .proc_handler = proc_nr_dentry,
193 },
c8c0c239
LC
194};
195
196static int __init init_fs_dcache_sysctls(void)
197{
198 register_sysctl_init("fs", fs_dcache_sysctls);
199 return 0;
200}
201fs_initcall(init_fs_dcache_sysctls);
312d3ca8
CH
202#endif
203
5483f18e
LT
204/*
205 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
206 * The strings are both count bytes long, and count is non-zero.
207 */
e419b4cc
LT
208#ifdef CONFIG_DCACHE_WORD_ACCESS
209
210#include <asm/word-at-a-time.h>
211/*
212 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
213 * aligned allocation for this particular component. We don't
214 * strictly need the load_unaligned_zeropad() safety, but it
215 * doesn't hurt either.
216 *
217 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
218 * need the careful unaligned handling.
219 */
94753db5 220static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 221{
bfcfaa77 222 unsigned long a,b,mask;
bfcfaa77
LT
223
224 for (;;) {
bfe7aa6c 225 a = read_word_at_a_time(cs);
e419b4cc 226 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
227 if (tcount < sizeof(unsigned long))
228 break;
229 if (unlikely(a != b))
230 return 1;
231 cs += sizeof(unsigned long);
232 ct += sizeof(unsigned long);
233 tcount -= sizeof(unsigned long);
234 if (!tcount)
235 return 0;
236 }
a5c21dce 237 mask = bytemask_from_count(tcount);
bfcfaa77 238 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
239}
240
bfcfaa77 241#else
e419b4cc 242
94753db5 243static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 244{
5483f18e
LT
245 do {
246 if (*cs != *ct)
247 return 1;
248 cs++;
249 ct++;
250 tcount--;
251 } while (tcount);
252 return 0;
253}
254
e419b4cc
LT
255#endif
256
94753db5
LT
257static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
258{
94753db5
LT
259 /*
260 * Be careful about RCU walk racing with rename:
506458ef 261 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
262 *
263 * NOTE! Even if a rename will mean that the length
264 * was not loaded atomically, we don't care. The
265 * RCU walk will check the sequence count eventually,
266 * and catch it. And we won't overrun the buffer,
267 * because we're reading the name pointer atomically,
268 * and a dentry name is guaranteed to be properly
269 * terminated with a NUL byte.
270 *
271 * End result: even if 'len' is wrong, we'll exit
272 * early because the data cannot match (there can
273 * be no NUL in the ct/tcount data)
274 */
506458ef 275 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 276
6326c71f 277 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
278}
279
8d85b484
AV
280struct external_name {
281 union {
282 atomic_t count;
283 struct rcu_head head;
284 } u;
285 unsigned char name[];
286};
287
288static inline struct external_name *external_name(struct dentry *dentry)
289{
290 return container_of(dentry->d_name.name, struct external_name, name[0]);
291}
292
9c82ab9c 293static void __d_free(struct rcu_head *head)
1da177e4 294{
9c82ab9c
CH
295 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
296
8d85b484
AV
297 kmem_cache_free(dentry_cache, dentry);
298}
299
300static void __d_free_external(struct rcu_head *head)
301{
302 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 303 kfree(external_name(dentry));
f1782c9b 304 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
305}
306
810bb172
AV
307static inline int dname_external(const struct dentry *dentry)
308{
309 return dentry->d_name.name != dentry->d_iname;
310}
311
49d31c2f
AV
312void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
313{
314 spin_lock(&dentry->d_lock);
230c6402 315 name->name = dentry->d_name;
49d31c2f 316 if (unlikely(dname_external(dentry))) {
230c6402 317 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 318 } else {
6cd00a01
TH
319 memcpy(name->inline_name, dentry->d_iname,
320 dentry->d_name.len + 1);
230c6402 321 name->name.name = name->inline_name;
49d31c2f 322 }
230c6402 323 spin_unlock(&dentry->d_lock);
49d31c2f
AV
324}
325EXPORT_SYMBOL(take_dentry_name_snapshot);
326
327void release_dentry_name_snapshot(struct name_snapshot *name)
328{
230c6402 329 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 330 struct external_name *p;
230c6402 331 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 332 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 333 kfree_rcu(p, u.head);
49d31c2f
AV
334 }
335}
336EXPORT_SYMBOL(release_dentry_name_snapshot);
337
4bf46a27
DH
338static inline void __d_set_inode_and_type(struct dentry *dentry,
339 struct inode *inode,
340 unsigned type_flags)
341{
342 unsigned flags;
343
344 dentry->d_inode = inode;
4bf46a27 345 flags = READ_ONCE(dentry->d_flags);
8219cb58 346 flags &= ~DCACHE_ENTRY_TYPE;
4bf46a27 347 flags |= type_flags;
2fa6b1e0 348 smp_store_release(&dentry->d_flags, flags);
4bf46a27
DH
349}
350
4bf46a27
DH
351static inline void __d_clear_type_and_inode(struct dentry *dentry)
352{
353 unsigned flags = READ_ONCE(dentry->d_flags);
354
8219cb58 355 flags &= ~DCACHE_ENTRY_TYPE;
4bf46a27 356 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 357 dentry->d_inode = NULL;
aabfe57e
BF
358 /*
359 * The negative counter only tracks dentries on the LRU. Don't inc if
360 * d_lru is on another list.
361 */
362 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
af0c9af1 363 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
364}
365
b4f0354e
AV
366static void dentry_free(struct dentry *dentry)
367{
946e51f2 368 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
369 if (unlikely(dname_external(dentry))) {
370 struct external_name *p = external_name(dentry);
371 if (likely(atomic_dec_and_test(&p->u.count))) {
372 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
373 return;
374 }
375 }
b4f0354e 376 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 377 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
378 __d_free(&dentry->d_u.d_rcu);
379 else
380 call_rcu(&dentry->d_u.d_rcu, __d_free);
381}
382
1da177e4
LT
383/*
384 * Release the dentry's inode, using the filesystem
550dce01 385 * d_iput() operation if defined.
31e6b01f
NP
386 */
387static void dentry_unlink_inode(struct dentry * dentry)
388 __releases(dentry->d_lock)
873feea0 389 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
390{
391 struct inode *inode = dentry->d_inode;
a528aca7 392
4c0d7cd5 393 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 394 __d_clear_type_and_inode(dentry);
946e51f2 395 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 396 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 397 spin_unlock(&dentry->d_lock);
873feea0 398 spin_unlock(&inode->i_lock);
31e6b01f
NP
399 if (!inode->i_nlink)
400 fsnotify_inoderemove(inode);
401 if (dentry->d_op && dentry->d_op->d_iput)
402 dentry->d_op->d_iput(dentry, inode);
403 else
404 iput(inode);
405}
406
89dc77bc
LT
407/*
408 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
409 * is in use - which includes both the "real" per-superblock
410 * LRU list _and_ the DCACHE_SHRINK_LIST use.
411 *
412 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
413 * on the shrink list (ie not on the superblock LRU list).
414 *
415 * The per-cpu "nr_dentry_unused" counters are updated with
416 * the DCACHE_LRU_LIST bit.
417 *
af0c9af1
WL
418 * The per-cpu "nr_dentry_negative" counters are only updated
419 * when deleted from or added to the per-superblock LRU list, not
420 * from/to the shrink list. That is to avoid an unneeded dec/inc
421 * pair when moving from LRU to shrink list in select_collect().
422 *
89dc77bc
LT
423 * These helper functions make sure we always follow the
424 * rules. d_lock must be held by the caller.
425 */
426#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
427static void d_lru_add(struct dentry *dentry)
428{
429 D_FLAG_VERIFY(dentry, 0);
430 dentry->d_flags |= DCACHE_LRU_LIST;
431 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
432 if (d_is_negative(dentry))
433 this_cpu_inc(nr_dentry_negative);
0a97c01c
NP
434 WARN_ON_ONCE(!list_lru_add_obj(
435 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
436}
437
438static void d_lru_del(struct dentry *dentry)
439{
440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 dentry->d_flags &= ~DCACHE_LRU_LIST;
442 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
443 if (d_is_negative(dentry))
444 this_cpu_dec(nr_dentry_negative);
0a97c01c
NP
445 WARN_ON_ONCE(!list_lru_del_obj(
446 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
447}
448
449static void d_shrink_del(struct dentry *dentry)
450{
451 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
452 list_del_init(&dentry->d_lru);
453 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
454 this_cpu_dec(nr_dentry_unused);
455}
456
457static void d_shrink_add(struct dentry *dentry, struct list_head *list)
458{
459 D_FLAG_VERIFY(dentry, 0);
460 list_add(&dentry->d_lru, list);
461 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
462 this_cpu_inc(nr_dentry_unused);
463}
464
465/*
466 * These can only be called under the global LRU lock, ie during the
467 * callback for freeing the LRU list. "isolate" removes it from the
468 * LRU lists entirely, while shrink_move moves it to the indicated
469 * private list.
470 */
3f97b163 471static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
472{
473 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
474 dentry->d_flags &= ~DCACHE_LRU_LIST;
475 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
476 if (d_is_negative(dentry))
477 this_cpu_dec(nr_dentry_negative);
3f97b163 478 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
479}
480
3f97b163
VD
481static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
482 struct list_head *list)
89dc77bc
LT
483{
484 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
485 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
486 if (d_is_negative(dentry))
487 this_cpu_dec(nr_dentry_negative);
3f97b163 488 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
489}
490
61647823 491static void ___d_drop(struct dentry *dentry)
789680d1 492{
0632a9ac
AV
493 struct hlist_bl_head *b;
494 /*
495 * Hashed dentries are normally on the dentry hashtable,
496 * with the exception of those newly allocated by
497 * d_obtain_root, which are always IS_ROOT:
498 */
499 if (unlikely(IS_ROOT(dentry)))
500 b = &dentry->d_sb->s_roots;
501 else
502 b = d_hash(dentry->d_name.hash);
b61625d2 503
0632a9ac
AV
504 hlist_bl_lock(b);
505 __hlist_bl_del(&dentry->d_hash);
506 hlist_bl_unlock(b);
789680d1 507}
61647823
N
508
509void __d_drop(struct dentry *dentry)
510{
0632a9ac
AV
511 if (!d_unhashed(dentry)) {
512 ___d_drop(dentry);
513 dentry->d_hash.pprev = NULL;
514 write_seqcount_invalidate(&dentry->d_seq);
515 }
61647823 516}
789680d1
NP
517EXPORT_SYMBOL(__d_drop);
518
961f3c89
MCC
519/**
520 * d_drop - drop a dentry
521 * @dentry: dentry to drop
522 *
523 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
524 * be found through a VFS lookup any more. Note that this is different from
525 * deleting the dentry - d_delete will try to mark the dentry negative if
526 * possible, giving a successful _negative_ lookup, while d_drop will
527 * just make the cache lookup fail.
528 *
529 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
530 * reason (NFS timeouts or autofs deletes).
531 *
532 * __d_drop requires dentry->d_lock
533 *
534 * ___d_drop doesn't mark dentry as "unhashed"
535 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
536 */
789680d1
NP
537void d_drop(struct dentry *dentry)
538{
789680d1
NP
539 spin_lock(&dentry->d_lock);
540 __d_drop(dentry);
541 spin_unlock(&dentry->d_lock);
789680d1
NP
542}
543EXPORT_SYMBOL(d_drop);
544
da549bdd 545static inline void dentry_unlist(struct dentry *dentry)
ba65dc5e
AV
546{
547 struct dentry *next;
548 /*
549 * Inform d_walk() and shrink_dentry_list() that we are no longer
550 * attached to the dentry tree
551 */
552 dentry->d_flags |= DCACHE_DENTRY_KILLED;
da549bdd 553 if (unlikely(hlist_unhashed(&dentry->d_sib)))
ba65dc5e 554 return;
da549bdd 555 __hlist_del(&dentry->d_sib);
ba65dc5e
AV
556 /*
557 * Cursors can move around the list of children. While we'd been
da549bdd 558 * a normal list member, it didn't matter - ->d_sib.next would've
ba65dc5e
AV
559 * been updated. However, from now on it won't be and for the
560 * things like d_walk() it might end up with a nasty surprise.
561 * Normally d_walk() doesn't care about cursors moving around -
562 * ->d_lock on parent prevents that and since a cursor has no children
563 * of its own, we get through it without ever unlocking the parent.
564 * There is one exception, though - if we ascend from a child that
565 * gets killed as soon as we unlock it, the next sibling is found
da549bdd 566 * using the value left in its ->d_sib.next. And if _that_
ba65dc5e
AV
567 * pointed to a cursor, and cursor got moved (e.g. by lseek())
568 * before d_walk() regains parent->d_lock, we'll end up skipping
569 * everything the cursor had been moved past.
570 *
da549bdd 571 * Solution: make sure that the pointer left behind in ->d_sib.next
ba65dc5e
AV
572 * points to something that won't be moving around. I.e. skip the
573 * cursors.
574 */
da549bdd
AV
575 while (dentry->d_sib.next) {
576 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
ba65dc5e
AV
577 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
578 break;
da549bdd 579 dentry->d_sib.next = next->d_sib.next;
ba65dc5e
AV
580 }
581}
582
1c18edd1 583static struct dentry *__dentry_kill(struct dentry *dentry)
77812a1e 584{
41edf278
AV
585 struct dentry *parent = NULL;
586 bool can_free = true;
31e6b01f 587
0d98439e
LT
588 /*
589 * The dentry is now unrecoverably dead to the world.
590 */
591 lockref_mark_dead(&dentry->d_lockref);
592
f0023bc6 593 /*
f0023bc6
SW
594 * inform the fs via d_prune that this dentry is about to be
595 * unhashed and destroyed.
596 */
29266201 597 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
598 dentry->d_op->d_prune(dentry);
599
01b60351
AV
600 if (dentry->d_flags & DCACHE_LRU_LIST) {
601 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
602 d_lru_del(dentry);
01b60351 603 }
77812a1e
NP
604 /* if it was on the hash then remove it */
605 __d_drop(dentry);
550dce01
AV
606 if (dentry->d_inode)
607 dentry_unlink_inode(dentry);
608 else
609 spin_unlock(&dentry->d_lock);
03b3b889
AV
610 this_cpu_dec(nr_dentry);
611 if (dentry->d_op && dentry->d_op->d_release)
612 dentry->d_op->d_release(dentry);
613
1c18edd1
AV
614 cond_resched();
615 /* now that it's negative, ->d_parent is stable */
616 if (!IS_ROOT(dentry)) {
617 parent = dentry->d_parent;
618 spin_lock(&parent->d_lock);
41edf278 619 }
1c18edd1
AV
620 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
621 dentry_unlist(dentry);
1b327b5a 622 if (dentry->d_flags & DCACHE_SHRINK_LIST)
41edf278 623 can_free = false;
41edf278 624 spin_unlock(&dentry->d_lock);
41edf278
AV
625 if (likely(can_free))
626 dentry_free(dentry);
1c18edd1 627 if (parent && --parent->d_lockref.count) {
046b961b 628 spin_unlock(&parent->d_lock);
1c18edd1 629 return NULL;
046b961b 630 }
046b961b
AV
631 return parent;
632}
633
339e9e13
AV
634/*
635 * Lock a dentry for feeding it to __dentry_kill().
636 * Called under rcu_read_lock() and dentry->d_lock; the former
637 * guarantees that nothing we access will be freed under us.
638 * Note that dentry is *not* protected from concurrent dentry_kill(),
639 * d_delete(), etc.
640 *
641 * Return false if dentry is busy. Otherwise, return true and have
1c18edd1 642 * that dentry's inode locked.
339e9e13
AV
643 */
644
645static bool lock_for_kill(struct dentry *dentry)
8b987a46 646{
339e9e13 647 struct inode *inode = dentry->d_inode;
339e9e13
AV
648
649 if (unlikely(dentry->d_lockref.count))
650 return false;
651
1c18edd1 652 if (!inode || likely(spin_trylock(&inode->i_lock)))
339e9e13
AV
653 return true;
654
1c18edd1
AV
655 do {
656 spin_unlock(&dentry->d_lock);
657 spin_lock(&inode->i_lock);
658 spin_lock(&dentry->d_lock);
339e9e13
AV
659 if (likely(inode == dentry->d_inode))
660 break;
1c18edd1 661 spin_unlock(&inode->i_lock);
339e9e13 662 inode = dentry->d_inode;
1c18edd1 663 } while (inode);
339e9e13
AV
664 if (likely(!dentry->d_lockref.count))
665 return true;
666 if (inode)
667 spin_unlock(&inode->i_lock);
339e9e13 668 return false;
8b987a46
AV
669}
670
6367b491
AV
671/*
672 * Decide if dentry is worth retaining. Usually this is called with dentry
673 * locked; if not locked, we are more limited and might not be able to tell
674 * without a lock. False in this case means "punt to locked path and recheck".
675 *
676 * In case we aren't locked, these predicates are not "stable". However, it is
677 * sufficient that at some point after we dropped the reference the dentry was
678 * hashed and the flags had the proper value. Other dentry users may have
679 * re-gotten a reference to the dentry and change that, but our work is done -
680 * we can leave the dentry around with a zero refcount.
681 */
682static inline bool retain_dentry(struct dentry *dentry, bool locked)
a338579f 683{
6367b491 684 unsigned int d_flags;
a338579f 685
6367b491
AV
686 smp_rmb();
687 d_flags = READ_ONCE(dentry->d_flags);
a338579f 688
6367b491 689 // Unreachable? Nobody would be able to look it up, no point retaining
a338579f
AV
690 if (unlikely(d_unhashed(dentry)))
691 return false;
692
6367b491
AV
693 // Same if it's disconnected
694 if (unlikely(d_flags & DCACHE_DISCONNECTED))
a338579f
AV
695 return false;
696
6367b491
AV
697 // ->d_delete() might tell us not to bother, but that requires
698 // ->d_lock; can't decide without it
699 if (unlikely(d_flags & DCACHE_OP_DELETE)) {
700 if (!locked || dentry->d_op->d_delete(dentry))
a338579f
AV
701 return false;
702 }
2c567af4 703
6367b491
AV
704 // Explicitly told not to bother
705 if (unlikely(d_flags & DCACHE_DONTCACHE))
2c567af4
IW
706 return false;
707
6367b491
AV
708 // At this point it looks like we ought to keep it. We also might
709 // need to do something - put it on LRU if it wasn't there already
710 // and mark it referenced if it was on LRU, but not marked yet.
711 // Unfortunately, both actions require ->d_lock, so in lockless
712 // case we'd have to punt rather than doing those.
713 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
714 if (!locked)
715 return false;
62d9956c 716 d_lru_add(dentry);
6367b491
AV
717 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
718 if (!locked)
719 return false;
62d9956c 720 dentry->d_flags |= DCACHE_REFERENCED;
6367b491 721 }
a338579f
AV
722 return true;
723}
724
2c567af4
IW
725void d_mark_dontcache(struct inode *inode)
726{
727 struct dentry *de;
728
729 spin_lock(&inode->i_lock);
730 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
731 spin_lock(&de->d_lock);
732 de->d_flags |= DCACHE_DONTCACHE;
733 spin_unlock(&de->d_lock);
734 }
735 inode->i_state |= I_DONTCACHE;
736 spin_unlock(&inode->i_lock);
737}
738EXPORT_SYMBOL(d_mark_dontcache);
739
360f5479
LT
740/*
741 * Try to do a lockless dput(), and return whether that was successful.
742 *
743 * If unsuccessful, we return false, having already taken the dentry lock.
f05441c7
AV
744 * In that case refcount is guaranteed to be zero and we have already
745 * decided that it's not worth keeping around.
360f5479
LT
746 *
747 * The caller needs to hold the RCU read lock, so that the dentry is
748 * guaranteed to stay around even if the refcount goes down to zero!
749 */
750static inline bool fast_dput(struct dentry *dentry)
751{
752 int ret;
360f5479
LT
753
754 /*
15220fbf 755 * try to decrement the lockref optimistically.
360f5479
LT
756 */
757 ret = lockref_put_return(&dentry->d_lockref);
758
759 /*
760 * If the lockref_put_return() failed due to the lock being held
761 * by somebody else, the fast path has failed. We will need to
762 * get the lock, and then check the count again.
763 */
764 if (unlikely(ret < 0)) {
765 spin_lock(&dentry->d_lock);
504e08ce 766 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
360f5479 767 spin_unlock(&dentry->d_lock);
7964410f 768 return true;
360f5479 769 }
504e08ce
AV
770 dentry->d_lockref.count--;
771 goto locked;
360f5479
LT
772 }
773
774 /*
775 * If we weren't the last ref, we're done.
776 */
777 if (ret)
7964410f 778 return true;
360f5479
LT
779
780 /*
6367b491
AV
781 * Can we decide that decrement of refcount is all we needed without
782 * taking the lock? There's a very common case when it's all we need -
783 * dentry looks like it ought to be retained and there's nothing else
784 * to do.
360f5479 785 */
6367b491 786 if (retain_dentry(dentry, false))
7964410f 787 return true;
360f5479
LT
788
789 /*
6367b491
AV
790 * Either not worth retaining or we can't tell without the lock.
791 * Get the lock, then. We've already decremented the refcount to 0,
792 * but we'll need to re-check the situation after getting the lock.
360f5479
LT
793 */
794 spin_lock(&dentry->d_lock);
795
796 /*
797 * Did somebody else grab a reference to it in the meantime, and
798 * we're no longer the last user after all? Alternatively, somebody
799 * else could have killed it and marked it dead. Either way, we
800 * don't need to do anything else.
801 */
504e08ce 802locked:
6367b491 803 if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
360f5479 804 spin_unlock(&dentry->d_lock);
7964410f 805 return true;
360f5479 806 }
7964410f 807 return false;
360f5479
LT
808}
809
810
1da177e4
LT
811/*
812 * This is dput
813 *
814 * This is complicated by the fact that we do not want to put
815 * dentries that are no longer on any hash chain on the unused
816 * list: we'd much rather just get rid of them immediately.
817 *
818 * However, that implies that we have to traverse the dentry
819 * tree upwards to the parents which might _also_ now be
820 * scheduled for deletion (it may have been only waiting for
821 * its last child to go away).
822 *
823 * This tail recursion is done by hand as we don't want to depend
824 * on the compiler to always get this right (gcc generally doesn't).
825 * Real recursion would eat up our stack space.
826 */
827
828/*
829 * dput - release a dentry
830 * @dentry: dentry to release
831 *
832 * Release a dentry. This will drop the usage count and if appropriate
833 * call the dentry unlink method as well as removing it from the queues and
834 * releasing its resources. If the parent dentries were scheduled for release
835 * they too may now get deleted.
1da177e4 836 */
1da177e4
LT
837void dput(struct dentry *dentry)
838{
1c18edd1
AV
839 if (!dentry)
840 return;
841 might_sleep();
842 rcu_read_lock();
843 if (likely(fast_dput(dentry))) {
360f5479 844 rcu_read_unlock();
1c18edd1
AV
845 return;
846 }
847 while (lock_for_kill(dentry)) {
848 rcu_read_unlock();
849 dentry = __dentry_kill(dentry);
850 if (!dentry)
1088a640 851 return;
6367b491 852 if (retain_dentry(dentry, true)) {
1088a640
AV
853 spin_unlock(&dentry->d_lock);
854 return;
855 }
1c18edd1 856 rcu_read_lock();
47be6184 857 }
1c18edd1
AV
858 rcu_read_unlock();
859 spin_unlock(&dentry->d_lock);
1da177e4 860}
ec4f8605 861EXPORT_SYMBOL(dput);
1da177e4 862
6511f6be 863static void to_shrink_list(struct dentry *dentry, struct list_head *list)
9bdebc2b
AV
864__must_hold(&dentry->d_lock)
865{
6511f6be 866 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
9bdebc2b
AV
867 if (dentry->d_flags & DCACHE_LRU_LIST)
868 d_lru_del(dentry);
c2e5e29f 869 d_shrink_add(dentry, list);
9bdebc2b
AV
870 }
871}
872
873void dput_to_list(struct dentry *dentry, struct list_head *list)
874{
875 rcu_read_lock();
876 if (likely(fast_dput(dentry))) {
877 rcu_read_unlock();
878 return;
879 }
880 rcu_read_unlock();
f05441c7 881 to_shrink_list(dentry, list);
9bdebc2b
AV
882 spin_unlock(&dentry->d_lock);
883}
1da177e4 884
b7ab39f6
NP
885struct dentry *dget_parent(struct dentry *dentry)
886{
df3d0bbc 887 int gotref;
b7ab39f6 888 struct dentry *ret;
e8400933 889 unsigned seq;
b7ab39f6 890
df3d0bbc
WL
891 /*
892 * Do optimistic parent lookup without any
893 * locking.
894 */
895 rcu_read_lock();
e8400933 896 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 897 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
898 gotref = lockref_get_not_zero(&ret->d_lockref);
899 rcu_read_unlock();
900 if (likely(gotref)) {
e8400933 901 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
902 return ret;
903 dput(ret);
904 }
905
b7ab39f6 906repeat:
a734eb45
NP
907 /*
908 * Don't need rcu_dereference because we re-check it was correct under
909 * the lock.
910 */
911 rcu_read_lock();
b7ab39f6 912 ret = dentry->d_parent;
a734eb45
NP
913 spin_lock(&ret->d_lock);
914 if (unlikely(ret != dentry->d_parent)) {
915 spin_unlock(&ret->d_lock);
916 rcu_read_unlock();
b7ab39f6
NP
917 goto repeat;
918 }
a734eb45 919 rcu_read_unlock();
98474236
WL
920 BUG_ON(!ret->d_lockref.count);
921 ret->d_lockref.count++;
b7ab39f6 922 spin_unlock(&ret->d_lock);
b7ab39f6
NP
923 return ret;
924}
925EXPORT_SYMBOL(dget_parent);
926
61fec493
AV
927static struct dentry * __d_find_any_alias(struct inode *inode)
928{
929 struct dentry *alias;
930
931 if (hlist_empty(&inode->i_dentry))
932 return NULL;
933 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
6d73c9ce 934 lockref_get(&alias->d_lockref);
61fec493
AV
935 return alias;
936}
937
938/**
939 * d_find_any_alias - find any alias for a given inode
940 * @inode: inode to find an alias for
941 *
942 * If any aliases exist for the given inode, take and return a
943 * reference for one of them. If no aliases exist, return %NULL.
944 */
945struct dentry *d_find_any_alias(struct inode *inode)
946{
947 struct dentry *de;
948
949 spin_lock(&inode->i_lock);
950 de = __d_find_any_alias(inode);
951 spin_unlock(&inode->i_lock);
952 return de;
953}
954EXPORT_SYMBOL(d_find_any_alias);
955
52ed46f0 956static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 957{
61fec493
AV
958 struct dentry *alias;
959
960 if (S_ISDIR(inode->i_mode))
961 return __d_find_any_alias(inode);
1da177e4 962
946e51f2 963 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 964 spin_lock(&alias->d_lock);
61fec493 965 if (!d_unhashed(alias)) {
1b6ae9f6 966 dget_dlock(alias);
8d80d7da
BF
967 spin_unlock(&alias->d_lock);
968 return alias;
1da177e4 969 }
da502956 970 spin_unlock(&alias->d_lock);
1da177e4 971 }
da502956 972 return NULL;
1da177e4
LT
973}
974
961f3c89
MCC
975/**
976 * d_find_alias - grab a hashed alias of inode
977 * @inode: inode in question
978 *
979 * If inode has a hashed alias, or is a directory and has any alias,
980 * acquire the reference to alias and return it. Otherwise return NULL.
981 * Notice that if inode is a directory there can be only one alias and
982 * it can be unhashed only if it has no children, or if it is the root
983 * of a filesystem, or if the directory was renamed and d_revalidate
984 * was the first vfs operation to notice.
985 *
986 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
987 * any other hashed alias over that one.
988 */
da502956 989struct dentry *d_find_alias(struct inode *inode)
1da177e4 990{
214fda1f
DH
991 struct dentry *de = NULL;
992
b3d9b7a3 993 if (!hlist_empty(&inode->i_dentry)) {
873feea0 994 spin_lock(&inode->i_lock);
52ed46f0 995 de = __d_find_alias(inode);
873feea0 996 spin_unlock(&inode->i_lock);
214fda1f 997 }
1da177e4
LT
998 return de;
999}
ec4f8605 1000EXPORT_SYMBOL(d_find_alias);
1da177e4 1001
bca585d2
AV
1002/*
1003 * Caller MUST be holding rcu_read_lock() and be guaranteed
1004 * that inode won't get freed until rcu_read_unlock().
1005 */
1006struct dentry *d_find_alias_rcu(struct inode *inode)
1007{
1008 struct hlist_head *l = &inode->i_dentry;
1009 struct dentry *de = NULL;
1010
1011 spin_lock(&inode->i_lock);
1012 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1013 // used without having I_FREEING set, which means no aliases left
1014 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1015 if (S_ISDIR(inode->i_mode)) {
1016 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1017 } else {
1018 hlist_for_each_entry(de, l, d_u.d_alias)
1019 if (!d_unhashed(de))
1020 break;
1021 }
1022 }
1023 spin_unlock(&inode->i_lock);
1024 return de;
1025}
1026
1da177e4
LT
1027/*
1028 * Try to kill dentries associated with this inode.
1029 * WARNING: you must own a reference to inode.
1030 */
1031void d_prune_aliases(struct inode *inode)
1032{
b4cc0734 1033 LIST_HEAD(dispose);
0cdca3f9 1034 struct dentry *dentry;
b4cc0734 1035
873feea0 1036 spin_lock(&inode->i_lock);
946e51f2 1037 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1038 spin_lock(&dentry->d_lock);
b4cc0734
AV
1039 if (!dentry->d_lockref.count)
1040 to_shrink_list(dentry, &dispose);
1da177e4
LT
1041 spin_unlock(&dentry->d_lock);
1042 }
873feea0 1043 spin_unlock(&inode->i_lock);
b4cc0734 1044 shrink_dentry_list(&dispose);
1da177e4 1045}
ec4f8605 1046EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1047
1c18edd1 1048static inline void shrink_kill(struct dentry *victim)
1da177e4 1049{
1c18edd1
AV
1050 do {
1051 rcu_read_unlock();
1052 victim = __dentry_kill(victim);
1053 rcu_read_lock();
1054 } while (victim && lock_for_kill(victim));
1055 rcu_read_unlock();
1056 if (victim)
1057 spin_unlock(&victim->d_lock);
3b3f09f4 1058}
77812a1e 1059
9bdebc2b 1060void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1061{
1062 while (!list_empty(list)) {
3fcf5356 1063 struct dentry *dentry;
64fd72e0 1064
3b3f09f4
AV
1065 dentry = list_entry(list->prev, struct dentry, d_lru);
1066 spin_lock(&dentry->d_lock);
8f04da2a 1067 rcu_read_lock();
339e9e13 1068 if (!lock_for_kill(dentry)) {
cd9f84f3 1069 bool can_free;
8f04da2a 1070 rcu_read_unlock();
3b3f09f4 1071 d_shrink_del(dentry);
1b327b5a 1072 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
64fd72e0
AV
1073 spin_unlock(&dentry->d_lock);
1074 if (can_free)
1075 dentry_free(dentry);
1076 continue;
1077 }
3b3f09f4 1078 d_shrink_del(dentry);
1c18edd1 1079 shrink_kill(dentry);
da3bbdd4 1080 }
3049cfe2
CH
1081}
1082
3f97b163
VD
1083static enum lru_status dentry_lru_isolate(struct list_head *item,
1084 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1085{
1086 struct list_head *freeable = arg;
1087 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1088
1089
1090 /*
1091 * we are inverting the lru lock/dentry->d_lock here,
1092 * so use a trylock. If we fail to get the lock, just skip
1093 * it
1094 */
1095 if (!spin_trylock(&dentry->d_lock))
1096 return LRU_SKIP;
1097
1098 /*
1099 * Referenced dentries are still in use. If they have active
1100 * counts, just remove them from the LRU. Otherwise give them
1101 * another pass through the LRU.
1102 */
1103 if (dentry->d_lockref.count) {
3f97b163 1104 d_lru_isolate(lru, dentry);
f6041567
DC
1105 spin_unlock(&dentry->d_lock);
1106 return LRU_REMOVED;
1107 }
1108
1109 if (dentry->d_flags & DCACHE_REFERENCED) {
1110 dentry->d_flags &= ~DCACHE_REFERENCED;
1111 spin_unlock(&dentry->d_lock);
1112
1113 /*
1114 * The list move itself will be made by the common LRU code. At
1115 * this point, we've dropped the dentry->d_lock but keep the
1116 * lru lock. This is safe to do, since every list movement is
1117 * protected by the lru lock even if both locks are held.
1118 *
1119 * This is guaranteed by the fact that all LRU management
1120 * functions are intermediated by the LRU API calls like
0a97c01c 1121 * list_lru_add_obj and list_lru_del_obj. List movement in this file
f6041567
DC
1122 * only ever occur through this functions or through callbacks
1123 * like this one, that are called from the LRU API.
1124 *
1125 * The only exceptions to this are functions like
1126 * shrink_dentry_list, and code that first checks for the
1127 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1128 * operating only with stack provided lists after they are
1129 * properly isolated from the main list. It is thus, always a
1130 * local access.
1131 */
1132 return LRU_ROTATE;
1133 }
1134
3f97b163 1135 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1136 spin_unlock(&dentry->d_lock);
1137
1138 return LRU_REMOVED;
1139}
1140
3049cfe2 1141/**
b48f03b3
DC
1142 * prune_dcache_sb - shrink the dcache
1143 * @sb: superblock
503c358c 1144 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1145 *
503c358c
VD
1146 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1147 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1148 * function.
3049cfe2 1149 *
b48f03b3
DC
1150 * This function may fail to free any resources if all the dentries are in
1151 * use.
3049cfe2 1152 */
503c358c 1153long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1154{
f6041567
DC
1155 LIST_HEAD(dispose);
1156 long freed;
3049cfe2 1157
503c358c
VD
1158 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1159 dentry_lru_isolate, &dispose);
f6041567 1160 shrink_dentry_list(&dispose);
0a234c6d 1161 return freed;
da3bbdd4 1162}
23044507 1163
4e717f5c 1164static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1165 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1166{
4e717f5c
GC
1167 struct list_head *freeable = arg;
1168 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1169
4e717f5c
GC
1170 /*
1171 * we are inverting the lru lock/dentry->d_lock here,
1172 * so use a trylock. If we fail to get the lock, just skip
1173 * it
1174 */
1175 if (!spin_trylock(&dentry->d_lock))
1176 return LRU_SKIP;
1177
3f97b163 1178 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1179 spin_unlock(&dentry->d_lock);
ec33679d 1180
4e717f5c 1181 return LRU_REMOVED;
da3bbdd4
KM
1182}
1183
4e717f5c 1184
1da177e4
LT
1185/**
1186 * shrink_dcache_sb - shrink dcache for a superblock
1187 * @sb: superblock
1188 *
3049cfe2
CH
1189 * Shrink the dcache for the specified super block. This is used to free
1190 * the dcache before unmounting a file system.
1da177e4 1191 */
3049cfe2 1192void shrink_dcache_sb(struct super_block *sb)
1da177e4 1193{
4e717f5c
GC
1194 do {
1195 LIST_HEAD(dispose);
1196
1dbd449c 1197 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1198 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1199 shrink_dentry_list(&dispose);
b17c070f 1200 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1201}
ec4f8605 1202EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1203
db14fc3a
MS
1204/**
1205 * enum d_walk_ret - action to talke during tree walk
1206 * @D_WALK_CONTINUE: contrinue walk
1207 * @D_WALK_QUIT: quit walk
1208 * @D_WALK_NORETRY: quit when retry is needed
1209 * @D_WALK_SKIP: skip this dentry and its children
1210 */
1211enum d_walk_ret {
1212 D_WALK_CONTINUE,
1213 D_WALK_QUIT,
1214 D_WALK_NORETRY,
1215 D_WALK_SKIP,
1216};
c826cb7d 1217
1da177e4 1218/**
db14fc3a
MS
1219 * d_walk - walk the dentry tree
1220 * @parent: start of walk
1221 * @data: data passed to @enter() and @finish()
1222 * @enter: callback when first entering the dentry
1da177e4 1223 *
3a8e3611 1224 * The @enter() callbacks are called with d_lock held.
1da177e4 1225 */
db14fc3a 1226static void d_walk(struct dentry *parent, void *data,
3a8e3611 1227 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1228{
da549bdd 1229 struct dentry *this_parent, *dentry;
48f5ec21 1230 unsigned seq = 0;
db14fc3a
MS
1231 enum d_walk_ret ret;
1232 bool retry = true;
949854d0 1233
58db63d0 1234again:
48f5ec21 1235 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1236 this_parent = parent;
2fd6b7f5 1237 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1238
1239 ret = enter(data, this_parent);
1240 switch (ret) {
1241 case D_WALK_CONTINUE:
1242 break;
1243 case D_WALK_QUIT:
1244 case D_WALK_SKIP:
1245 goto out_unlock;
1246 case D_WALK_NORETRY:
1247 retry = false;
1248 break;
1249 }
1da177e4 1250repeat:
da549bdd 1251 dentry = d_first_child(this_parent);
1da177e4 1252resume:
da549bdd 1253 hlist_for_each_entry_from(dentry, d_sib) {
ba65dc5e
AV
1254 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1255 continue;
1256
2fd6b7f5 1257 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1258
1259 ret = enter(data, dentry);
1260 switch (ret) {
1261 case D_WALK_CONTINUE:
1262 break;
1263 case D_WALK_QUIT:
2fd6b7f5 1264 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1265 goto out_unlock;
1266 case D_WALK_NORETRY:
1267 retry = false;
1268 break;
1269 case D_WALK_SKIP:
1270 spin_unlock(&dentry->d_lock);
1271 continue;
2fd6b7f5 1272 }
db14fc3a 1273
da549bdd 1274 if (!hlist_empty(&dentry->d_children)) {
2fd6b7f5 1275 spin_unlock(&this_parent->d_lock);
5facae4f 1276 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1da177e4 1277 this_parent = dentry;
2fd6b7f5 1278 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1279 goto repeat;
1280 }
2fd6b7f5 1281 spin_unlock(&dentry->d_lock);
1da177e4
LT
1282 }
1283 /*
1284 * All done at this level ... ascend and resume the search.
1285 */
ca5358ef
AV
1286 rcu_read_lock();
1287ascend:
1da177e4 1288 if (this_parent != parent) {
da549bdd
AV
1289 dentry = this_parent;
1290 this_parent = dentry->d_parent;
31dec132 1291
da549bdd 1292 spin_unlock(&dentry->d_lock);
31dec132
AV
1293 spin_lock(&this_parent->d_lock);
1294
ca5358ef
AV
1295 /* might go back up the wrong parent if we have had a rename. */
1296 if (need_seqretry(&rename_lock, seq))
949854d0 1297 goto rename_retry;
2159184e 1298 /* go into the first sibling still alive */
da549bdd
AV
1299 hlist_for_each_entry_continue(dentry, d_sib) {
1300 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1301 rcu_read_unlock();
1302 goto resume;
1303 }
1304 }
1305 goto ascend;
1da177e4 1306 }
ca5358ef 1307 if (need_seqretry(&rename_lock, seq))
949854d0 1308 goto rename_retry;
ca5358ef 1309 rcu_read_unlock();
db14fc3a
MS
1310
1311out_unlock:
1312 spin_unlock(&this_parent->d_lock);
48f5ec21 1313 done_seqretry(&rename_lock, seq);
db14fc3a 1314 return;
58db63d0
NP
1315
1316rename_retry:
ca5358ef
AV
1317 spin_unlock(&this_parent->d_lock);
1318 rcu_read_unlock();
1319 BUG_ON(seq & 1);
db14fc3a
MS
1320 if (!retry)
1321 return;
48f5ec21 1322 seq = 1;
58db63d0 1323 goto again;
1da177e4 1324}
db14fc3a 1325
01619491
IK
1326struct check_mount {
1327 struct vfsmount *mnt;
1328 unsigned int mounted;
1329};
1330
1331static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1332{
1333 struct check_mount *info = data;
1334 struct path path = { .mnt = info->mnt, .dentry = dentry };
1335
1336 if (likely(!d_mountpoint(dentry)))
1337 return D_WALK_CONTINUE;
1338 if (__path_is_mountpoint(&path)) {
1339 info->mounted = 1;
1340 return D_WALK_QUIT;
1341 }
1342 return D_WALK_CONTINUE;
1343}
1344
1345/**
1346 * path_has_submounts - check for mounts over a dentry in the
1347 * current namespace.
1348 * @parent: path to check.
1349 *
1350 * Return true if the parent or its subdirectories contain
1351 * a mount point in the current namespace.
1352 */
1353int path_has_submounts(const struct path *parent)
1354{
1355 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1356
1357 read_seqlock_excl(&mount_lock);
3a8e3611 1358 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1359 read_sequnlock_excl(&mount_lock);
1360
1361 return data.mounted;
1362}
1363EXPORT_SYMBOL(path_has_submounts);
1364
eed81007
MS
1365/*
1366 * Called by mount code to set a mountpoint and check if the mountpoint is
1367 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1368 * subtree can become unreachable).
1369 *
1ffe46d1 1370 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1371 * this reason take rename_lock and d_lock on dentry and ancestors.
1372 */
1373int d_set_mounted(struct dentry *dentry)
1374{
1375 struct dentry *p;
1376 int ret = -ENOENT;
1377 write_seqlock(&rename_lock);
1378 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1379 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1380 spin_lock(&p->d_lock);
1381 if (unlikely(d_unhashed(p))) {
1382 spin_unlock(&p->d_lock);
1383 goto out;
1384 }
1385 spin_unlock(&p->d_lock);
1386 }
1387 spin_lock(&dentry->d_lock);
1388 if (!d_unlinked(dentry)) {
3895dbf8
EB
1389 ret = -EBUSY;
1390 if (!d_mountpoint(dentry)) {
1391 dentry->d_flags |= DCACHE_MOUNTED;
1392 ret = 0;
1393 }
eed81007
MS
1394 }
1395 spin_unlock(&dentry->d_lock);
1396out:
1397 write_sequnlock(&rename_lock);
1398 return ret;
1399}
1400
1da177e4 1401/*
fd517909 1402 * Search the dentry child list of the specified parent,
1da177e4
LT
1403 * and move any unused dentries to the end of the unused
1404 * list for prune_dcache(). We descend to the next level
da549bdd 1405 * whenever the d_children list is non-empty and continue
1da177e4
LT
1406 * searching.
1407 *
1408 * It returns zero iff there are no unused children,
1409 * otherwise it returns the number of children moved to
1410 * the end of the unused list. This may not be the total
1411 * number of unused children, because select_parent can
1412 * drop the lock and return early due to latency
1413 * constraints.
1414 */
1da177e4 1415
db14fc3a
MS
1416struct select_data {
1417 struct dentry *start;
9bdebc2b
AV
1418 union {
1419 long found;
1420 struct dentry *victim;
1421 };
db14fc3a 1422 struct list_head dispose;
db14fc3a 1423};
23044507 1424
db14fc3a
MS
1425static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1426{
1427 struct select_data *data = _data;
1428 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1429
db14fc3a
MS
1430 if (data->start == dentry)
1431 goto out;
2fd6b7f5 1432
fe91522a 1433 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1434 data->found++;
f5c8a8a4
AV
1435 } else if (!dentry->d_lockref.count) {
1436 to_shrink_list(dentry, &data->dispose);
1437 data->found++;
1c18edd1
AV
1438 } else if (dentry->d_lockref.count < 0) {
1439 data->found++;
1da177e4 1440 }
db14fc3a
MS
1441 /*
1442 * We can return to the caller if we have found some (this
1443 * ensures forward progress). We'll be coming back to find
1444 * the rest.
1445 */
fe91522a
AV
1446 if (!list_empty(&data->dispose))
1447 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1448out:
db14fc3a 1449 return ret;
1da177e4
LT
1450}
1451
9bdebc2b
AV
1452static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1453{
1454 struct select_data *data = _data;
1455 enum d_walk_ret ret = D_WALK_CONTINUE;
1456
1457 if (data->start == dentry)
1458 goto out;
1459
f5c8a8a4
AV
1460 if (!dentry->d_lockref.count) {
1461 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
9bdebc2b
AV
1462 rcu_read_lock();
1463 data->victim = dentry;
1464 return D_WALK_QUIT;
1465 }
f5c8a8a4 1466 to_shrink_list(dentry, &data->dispose);
9bdebc2b
AV
1467 }
1468 /*
1469 * We can return to the caller if we have found some (this
1470 * ensures forward progress). We'll be coming back to find
1471 * the rest.
1472 */
1473 if (!list_empty(&data->dispose))
1474 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1475out:
1476 return ret;
1477}
1478
1da177e4
LT
1479/**
1480 * shrink_dcache_parent - prune dcache
1481 * @parent: parent of entries to prune
1482 *
1483 * Prune the dcache to remove unused children of the parent dentry.
1484 */
db14fc3a 1485void shrink_dcache_parent(struct dentry *parent)
1da177e4 1486{
db14fc3a 1487 for (;;) {
9bdebc2b 1488 struct select_data data = {.start = parent};
1da177e4 1489
db14fc3a 1490 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1491 d_walk(parent, &data, select_collect);
4fb48871
AV
1492
1493 if (!list_empty(&data.dispose)) {
1494 shrink_dentry_list(&data.dispose);
1495 continue;
1496 }
1497
1498 cond_resched();
db14fc3a
MS
1499 if (!data.found)
1500 break;
9bdebc2b
AV
1501 data.victim = NULL;
1502 d_walk(parent, &data, select_collect2);
1503 if (data.victim) {
9bdebc2b 1504 spin_lock(&data.victim->d_lock);
339e9e13 1505 if (!lock_for_kill(data.victim)) {
9bdebc2b
AV
1506 spin_unlock(&data.victim->d_lock);
1507 rcu_read_unlock();
1508 } else {
1c18edd1 1509 shrink_kill(data.victim);
9bdebc2b
AV
1510 }
1511 }
1512 if (!list_empty(&data.dispose))
1513 shrink_dentry_list(&data.dispose);
421348f1 1514 }
1da177e4 1515}
ec4f8605 1516EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1517
9c8c10e2 1518static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1519{
9c8c10e2 1520 /* it has busy descendents; complain about those instead */
da549bdd 1521 if (!hlist_empty(&dentry->d_children))
9c8c10e2 1522 return D_WALK_CONTINUE;
42c32608 1523
9c8c10e2
AV
1524 /* root with refcount 1 is fine */
1525 if (dentry == _data && dentry->d_lockref.count == 1)
1526 return D_WALK_CONTINUE;
1527
8c8e7dba 1528 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
9c8c10e2 1529 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1530 dentry,
1531 dentry->d_inode ?
1532 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1533 dentry,
42c32608
AV
1534 dentry->d_lockref.count,
1535 dentry->d_sb->s_type->name,
1536 dentry->d_sb->s_id);
9c8c10e2
AV
1537 return D_WALK_CONTINUE;
1538}
1539
1540static void do_one_tree(struct dentry *dentry)
1541{
1542 shrink_dcache_parent(dentry);
3a8e3611 1543 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1544 d_drop(dentry);
1545 dput(dentry);
42c32608
AV
1546}
1547
1548/*
1549 * destroy the dentries attached to a superblock on unmounting
1550 */
1551void shrink_dcache_for_umount(struct super_block *sb)
1552{
1553 struct dentry *dentry;
1554
9c8c10e2 1555 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1556
1557 dentry = sb->s_root;
1558 sb->s_root = NULL;
9c8c10e2 1559 do_one_tree(dentry);
42c32608 1560
f1ee6162
N
1561 while (!hlist_bl_empty(&sb->s_roots)) {
1562 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1563 do_one_tree(dentry);
42c32608
AV
1564 }
1565}
1566
ff17fa56 1567static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1568{
ff17fa56 1569 struct dentry **victim = _data;
848ac114 1570 if (d_mountpoint(dentry)) {
1b6ae9f6 1571 *victim = dget_dlock(dentry);
848ac114
MS
1572 return D_WALK_QUIT;
1573 }
ff17fa56 1574 return D_WALK_CONTINUE;
848ac114
MS
1575}
1576
1577/**
1ffe46d1
EB
1578 * d_invalidate - detach submounts, prune dcache, and drop
1579 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1580 */
5542aa2f 1581void d_invalidate(struct dentry *dentry)
848ac114 1582{
ff17fa56 1583 bool had_submounts = false;
1ffe46d1
EB
1584 spin_lock(&dentry->d_lock);
1585 if (d_unhashed(dentry)) {
1586 spin_unlock(&dentry->d_lock);
5542aa2f 1587 return;
1ffe46d1 1588 }
ff17fa56 1589 __d_drop(dentry);
1ffe46d1
EB
1590 spin_unlock(&dentry->d_lock);
1591
848ac114 1592 /* Negative dentries can be dropped without further checks */
ff17fa56 1593 if (!dentry->d_inode)
5542aa2f 1594 return;
848ac114 1595
ff17fa56 1596 shrink_dcache_parent(dentry);
848ac114 1597 for (;;) {
ff17fa56 1598 struct dentry *victim = NULL;
3a8e3611 1599 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1600 if (!victim) {
1601 if (had_submounts)
1602 shrink_dcache_parent(dentry);
81be24d2 1603 return;
8ed936b5 1604 }
ff17fa56
AV
1605 had_submounts = true;
1606 detach_mounts(victim);
1607 dput(victim);
848ac114 1608 }
848ac114 1609}
1ffe46d1 1610EXPORT_SYMBOL(d_invalidate);
848ac114 1611
1da177e4 1612/**
a4464dbc
AV
1613 * __d_alloc - allocate a dcache entry
1614 * @sb: filesystem it will belong to
1da177e4
LT
1615 * @name: qstr of the name
1616 *
1617 * Allocates a dentry. It returns %NULL if there is insufficient memory
1618 * available. On a success the dentry is returned. The name passed in is
1619 * copied and the copy passed in may be reused after this call.
1620 */
1621
5c8b0dfc 1622static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1623{
1624 struct dentry *dentry;
1625 char *dname;
285b102d 1626 int err;
1da177e4 1627
f53bf711
MS
1628 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1629 GFP_KERNEL);
1da177e4
LT
1630 if (!dentry)
1631 return NULL;
1632
6326c71f
LT
1633 /*
1634 * We guarantee that the inline name is always NUL-terminated.
1635 * This way the memcpy() done by the name switching in rename
1636 * will still always have a NUL at the end, even if we might
1637 * be overwriting an internal NUL character
1638 */
1639 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1640 if (unlikely(!name)) {
cdf01226 1641 name = &slash_name;
798434bd
AV
1642 dname = dentry->d_iname;
1643 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1644 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1645 struct external_name *p = kmalloc(size + name->len,
1646 GFP_KERNEL_ACCOUNT |
1647 __GFP_RECLAIMABLE);
1648 if (!p) {
1da177e4
LT
1649 kmem_cache_free(dentry_cache, dentry);
1650 return NULL;
1651 }
2e03b4bc
VB
1652 atomic_set(&p->u.count, 1);
1653 dname = p->name;
1da177e4
LT
1654 } else {
1655 dname = dentry->d_iname;
1656 }
1da177e4
LT
1657
1658 dentry->d_name.len = name->len;
1659 dentry->d_name.hash = name->hash;
1660 memcpy(dname, name->name, name->len);
1661 dname[name->len] = 0;
1662
6326c71f 1663 /* Make sure we always see the terminating NUL character */
7088efa9 1664 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1665
98474236 1666 dentry->d_lockref.count = 1;
dea3667b 1667 dentry->d_flags = 0;
1da177e4 1668 spin_lock_init(&dentry->d_lock);
26475371 1669 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1da177e4 1670 dentry->d_inode = NULL;
a4464dbc
AV
1671 dentry->d_parent = dentry;
1672 dentry->d_sb = sb;
1da177e4
LT
1673 dentry->d_op = NULL;
1674 dentry->d_fsdata = NULL;
ceb5bdc2 1675 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4 1676 INIT_LIST_HEAD(&dentry->d_lru);
da549bdd 1677 INIT_HLIST_HEAD(&dentry->d_children);
946e51f2 1678 INIT_HLIST_NODE(&dentry->d_u.d_alias);
da549bdd 1679 INIT_HLIST_NODE(&dentry->d_sib);
a4464dbc 1680 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1681
285b102d
MS
1682 if (dentry->d_op && dentry->d_op->d_init) {
1683 err = dentry->d_op->d_init(dentry);
1684 if (err) {
1685 if (dname_external(dentry))
1686 kfree(external_name(dentry));
1687 kmem_cache_free(dentry_cache, dentry);
1688 return NULL;
1689 }
1690 }
1691
3e880fb5 1692 this_cpu_inc(nr_dentry);
312d3ca8 1693
1da177e4
LT
1694 return dentry;
1695}
a4464dbc
AV
1696
1697/**
1698 * d_alloc - allocate a dcache entry
1699 * @parent: parent of entry to allocate
1700 * @name: qstr of the name
1701 *
1702 * Allocates a dentry. It returns %NULL if there is insufficient memory
1703 * available. On a success the dentry is returned. The name passed in is
1704 * copied and the copy passed in may be reused after this call.
1705 */
1706struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1707{
1708 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1709 if (!dentry)
1710 return NULL;
a4464dbc
AV
1711 spin_lock(&parent->d_lock);
1712 /*
1713 * don't need child lock because it is not subject
1714 * to concurrency here
1715 */
1b6ae9f6 1716 dentry->d_parent = dget_dlock(parent);
da549bdd 1717 hlist_add_head(&dentry->d_sib, &parent->d_children);
a4464dbc
AV
1718 spin_unlock(&parent->d_lock);
1719
1720 return dentry;
1721}
ec4f8605 1722EXPORT_SYMBOL(d_alloc);
1da177e4 1723
f9c34674
MS
1724struct dentry *d_alloc_anon(struct super_block *sb)
1725{
1726 return __d_alloc(sb, NULL);
1727}
1728EXPORT_SYMBOL(d_alloc_anon);
1729
ba65dc5e
AV
1730struct dentry *d_alloc_cursor(struct dentry * parent)
1731{
f9c34674 1732 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1733 if (dentry) {
5467a68c 1734 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1735 dentry->d_parent = dget(parent);
1736 }
1737 return dentry;
1738}
1739
e1a24bb0
BF
1740/**
1741 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1742 * @sb: the superblock
1743 * @name: qstr of the name
1744 *
1745 * For a filesystem that just pins its dentries in memory and never
1746 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1747 * This is used for pipes, sockets et.al. - the stuff that should
1748 * never be anyone's children or parents. Unlike all other
1749 * dentries, these will not have RCU delay between dropping the
1750 * last reference and freeing them.
ab1152dd
AV
1751 *
1752 * The only user is alloc_file_pseudo() and that's what should
1753 * be considered a public interface. Don't use directly.
e1a24bb0 1754 */
4b936885
NP
1755struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1756{
9024b4c9
AV
1757 static const struct dentry_operations anon_ops = {
1758 .d_dname = simple_dname
1759 };
5467a68c 1760 struct dentry *dentry = __d_alloc(sb, name);
9024b4c9 1761 if (likely(dentry)) {
5467a68c 1762 dentry->d_flags |= DCACHE_NORCU;
9024b4c9
AV
1763 if (!sb->s_d_op)
1764 d_set_d_op(dentry, &anon_ops);
1765 }
5467a68c 1766 return dentry;
4b936885 1767}
4b936885 1768
1da177e4
LT
1769struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1770{
1771 struct qstr q;
1772
1773 q.name = name;
8387ff25 1774 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1775 return d_alloc(parent, &q);
1776}
ef26ca97 1777EXPORT_SYMBOL(d_alloc_name);
1da177e4 1778
fb045adb
NP
1779void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1780{
6f7f7caa
LT
1781 WARN_ON_ONCE(dentry->d_op);
1782 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1783 DCACHE_OP_COMPARE |
1784 DCACHE_OP_REVALIDATE |
ecf3d1f1 1785 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1786 DCACHE_OP_DELETE |
d101a125 1787 DCACHE_OP_REAL));
fb045adb
NP
1788 dentry->d_op = op;
1789 if (!op)
1790 return;
1791 if (op->d_hash)
1792 dentry->d_flags |= DCACHE_OP_HASH;
1793 if (op->d_compare)
1794 dentry->d_flags |= DCACHE_OP_COMPARE;
1795 if (op->d_revalidate)
1796 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1797 if (op->d_weak_revalidate)
1798 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1799 if (op->d_delete)
1800 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1801 if (op->d_prune)
1802 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1803 if (op->d_real)
1804 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1805
1806}
1807EXPORT_SYMBOL(d_set_d_op);
1808
b18825a7
DH
1809static unsigned d_flags_for_inode(struct inode *inode)
1810{
44bdb5e5 1811 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1812
1813 if (!inode)
1814 return DCACHE_MISS_TYPE;
1815
1816 if (S_ISDIR(inode->i_mode)) {
1817 add_flags = DCACHE_DIRECTORY_TYPE;
1818 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1819 if (unlikely(!inode->i_op->lookup))
1820 add_flags = DCACHE_AUTODIR_TYPE;
1821 else
1822 inode->i_opflags |= IOP_LOOKUP;
1823 }
44bdb5e5
DH
1824 goto type_determined;
1825 }
1826
1827 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1828 if (unlikely(inode->i_op->get_link)) {
b18825a7 1829 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1830 goto type_determined;
1831 }
1832 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1833 }
1834
44bdb5e5
DH
1835 if (unlikely(!S_ISREG(inode->i_mode)))
1836 add_flags = DCACHE_SPECIAL_TYPE;
1837
1838type_determined:
b18825a7
DH
1839 if (unlikely(IS_AUTOMOUNT(inode)))
1840 add_flags |= DCACHE_NEED_AUTOMOUNT;
1841 return add_flags;
1842}
1843
360da900
OH
1844static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1845{
b18825a7 1846 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1847 WARN_ON(d_in_lookup(dentry));
b18825a7 1848
b23fb0a6 1849 spin_lock(&dentry->d_lock);
af0c9af1 1850 /*
aabfe57e
BF
1851 * The negative counter only tracks dentries on the LRU. Don't dec if
1852 * d_lru is on another list.
af0c9af1 1853 */
aabfe57e
BF
1854 if ((dentry->d_flags &
1855 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
af0c9af1 1856 this_cpu_dec(nr_dentry_negative);
de689f5e 1857 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1858 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1859 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1860 raw_write_seqcount_end(&dentry->d_seq);
affda484 1861 fsnotify_update_flags(dentry);
b23fb0a6 1862 spin_unlock(&dentry->d_lock);
360da900
OH
1863}
1864
1da177e4
LT
1865/**
1866 * d_instantiate - fill in inode information for a dentry
1867 * @entry: dentry to complete
1868 * @inode: inode to attach to this dentry
1869 *
1870 * Fill in inode information in the entry.
1871 *
1872 * This turns negative dentries into productive full members
1873 * of society.
1874 *
1875 * NOTE! This assumes that the inode count has been incremented
1876 * (or otherwise set) by the caller to indicate that it is now
1877 * in use by the dcache.
1878 */
1879
1880void d_instantiate(struct dentry *entry, struct inode * inode)
1881{
946e51f2 1882 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1883 if (inode) {
b9680917 1884 security_d_instantiate(entry, inode);
873feea0 1885 spin_lock(&inode->i_lock);
de689f5e 1886 __d_instantiate(entry, inode);
873feea0 1887 spin_unlock(&inode->i_lock);
de689f5e 1888 }
1da177e4 1889}
ec4f8605 1890EXPORT_SYMBOL(d_instantiate);
1da177e4 1891
1e2e547a
AV
1892/*
1893 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1894 * with lockdep-related part of unlock_new_inode() done before
1895 * anything else. Use that instead of open-coding d_instantiate()/
1896 * unlock_new_inode() combinations.
1897 */
1898void d_instantiate_new(struct dentry *entry, struct inode *inode)
1899{
1900 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1901 BUG_ON(!inode);
1902 lockdep_annotate_inode_mutex_key(inode);
1903 security_d_instantiate(entry, inode);
1904 spin_lock(&inode->i_lock);
1905 __d_instantiate(entry, inode);
1906 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 1907 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
1908 smp_mb();
1909 wake_up_bit(&inode->i_state, __I_NEW);
1910 spin_unlock(&inode->i_lock);
1911}
1912EXPORT_SYMBOL(d_instantiate_new);
1913
adc0e91a
AV
1914struct dentry *d_make_root(struct inode *root_inode)
1915{
1916 struct dentry *res = NULL;
1917
1918 if (root_inode) {
f9c34674 1919 res = d_alloc_anon(root_inode->i_sb);
5467a68c 1920 if (res)
adc0e91a 1921 d_instantiate(res, root_inode);
5467a68c 1922 else
adc0e91a
AV
1923 iput(root_inode);
1924 }
1925 return res;
1926}
1927EXPORT_SYMBOL(d_make_root);
1928
f9c34674
MS
1929static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1930{
f2824db1
AV
1931 struct super_block *sb;
1932 struct dentry *new, *res;
f9c34674
MS
1933
1934 if (!inode)
1935 return ERR_PTR(-ESTALE);
1936 if (IS_ERR(inode))
1937 return ERR_CAST(inode);
1938
f2824db1
AV
1939 sb = inode->i_sb;
1940
1941 res = d_find_any_alias(inode); /* existing alias? */
f9c34674 1942 if (res)
f2824db1 1943 goto out;
f9c34674 1944
f2824db1
AV
1945 new = d_alloc_anon(sb);
1946 if (!new) {
f9c34674 1947 res = ERR_PTR(-ENOMEM);
f2824db1 1948 goto out;
f9c34674
MS
1949 }
1950
f2824db1
AV
1951 security_d_instantiate(new, inode);
1952 spin_lock(&inode->i_lock);
1953 res = __d_find_any_alias(inode); /* recheck under lock */
1954 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1955 unsigned add_flags = d_flags_for_inode(inode);
1956
1957 if (disconnected)
1958 add_flags |= DCACHE_DISCONNECTED;
f9c34674 1959
f2824db1
AV
1960 spin_lock(&new->d_lock);
1961 __d_set_inode_and_type(new, inode, add_flags);
1962 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1963 if (!disconnected) {
1964 hlist_bl_lock(&sb->s_roots);
1965 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1966 hlist_bl_unlock(&sb->s_roots);
1967 }
1968 spin_unlock(&new->d_lock);
1969 spin_unlock(&inode->i_lock);
1970 inode = NULL; /* consumed by new->d_inode */
1971 res = new;
1972 } else {
1973 spin_unlock(&inode->i_lock);
1974 dput(new);
1975 }
f9c34674 1976
f2824db1 1977 out:
f9c34674
MS
1978 iput(inode);
1979 return res;
1980}
1981
1a0a397e
BF
1982/**
1983 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1984 * @inode: inode to allocate the dentry for
1985 *
1986 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1987 * similar open by handle operations. The returned dentry may be anonymous,
1988 * or may have a full name (if the inode was already in the cache).
1989 *
1990 * When called on a directory inode, we must ensure that the inode only ever
1991 * has one dentry. If a dentry is found, that is returned instead of
1992 * allocating a new one.
1993 *
1994 * On successful return, the reference to the inode has been transferred
1995 * to the dentry. In case of an error the reference on the inode is released.
1996 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1997 * be passed in and the error will be propagated to the return value,
1998 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1999 */
2000struct dentry *d_obtain_alias(struct inode *inode)
2001{
f9c34674 2002 return __d_obtain_alias(inode, true);
1a0a397e 2003}
adc48720 2004EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2005
1a0a397e
BF
2006/**
2007 * d_obtain_root - find or allocate a dentry for a given inode
2008 * @inode: inode to allocate the dentry for
2009 *
2010 * Obtain an IS_ROOT dentry for the root of a filesystem.
2011 *
2012 * We must ensure that directory inodes only ever have one dentry. If a
2013 * dentry is found, that is returned instead of allocating a new one.
2014 *
2015 * On successful return, the reference to the inode has been transferred
2016 * to the dentry. In case of an error the reference on the inode is
2017 * released. A %NULL or IS_ERR inode may be passed in and will be the
2018 * error will be propagate to the return value, with a %NULL @inode
2019 * replaced by ERR_PTR(-ESTALE).
2020 */
2021struct dentry *d_obtain_root(struct inode *inode)
2022{
f9c34674 2023 return __d_obtain_alias(inode, false);
1a0a397e
BF
2024}
2025EXPORT_SYMBOL(d_obtain_root);
2026
9403540c
BN
2027/**
2028 * d_add_ci - lookup or allocate new dentry with case-exact name
2029 * @inode: the inode case-insensitive lookup has found
2030 * @dentry: the negative dentry that was passed to the parent's lookup func
2031 * @name: the case-exact name to be associated with the returned dentry
2032 *
2033 * This is to avoid filling the dcache with case-insensitive names to the
2034 * same inode, only the actual correct case is stored in the dcache for
2035 * case-insensitive filesystems.
2036 *
3d742d4b
RD
2037 * For a case-insensitive lookup match and if the case-exact dentry
2038 * already exists in the dcache, use it and return it.
9403540c
BN
2039 *
2040 * If no entry exists with the exact case name, allocate new dentry with
2041 * the exact case, and return the spliced entry.
2042 */
e45b590b 2043struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2044 struct qstr *name)
2045{
d9171b93 2046 struct dentry *found, *res;
9403540c 2047
b6520c81
CH
2048 /*
2049 * First check if a dentry matching the name already exists,
2050 * if not go ahead and create it now.
2051 */
9403540c 2052 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2053 if (found) {
2054 iput(inode);
2055 return found;
2056 }
2057 if (d_in_lookup(dentry)) {
2058 found = d_alloc_parallel(dentry->d_parent, name,
2059 dentry->d_wait);
2060 if (IS_ERR(found) || !d_in_lookup(found)) {
2061 iput(inode);
2062 return found;
9403540c 2063 }
d9171b93
AV
2064 } else {
2065 found = d_alloc(dentry->d_parent, name);
2066 if (!found) {
2067 iput(inode);
2068 return ERR_PTR(-ENOMEM);
2069 }
2070 }
2071 res = d_splice_alias(inode, found);
2072 if (res) {
40a3cb0d 2073 d_lookup_done(found);
d9171b93
AV
2074 dput(found);
2075 return res;
9403540c 2076 }
4f522a24 2077 return found;
9403540c 2078}
ec4f8605 2079EXPORT_SYMBOL(d_add_ci);
1da177e4 2080
4f48d5da
XL
2081/**
2082 * d_same_name - compare dentry name with case-exact name
2083 * @parent: parent dentry
2084 * @dentry: the negative dentry that was passed to the parent's lookup func
2085 * @name: the case-exact name to be associated with the returned dentry
2086 *
2087 * Return: true if names are same, or false
2088 */
2089bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2090 const struct qstr *name)
12f8ad4b 2091{
d4c91a8f
AV
2092 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2093 if (dentry->d_name.len != name->len)
2094 return false;
2095 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2096 }
6fa67e70 2097 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2098 dentry->d_name.len, dentry->d_name.name,
2099 name) == 0;
12f8ad4b 2100}
4f48d5da 2101EXPORT_SYMBOL_GPL(d_same_name);
12f8ad4b 2102
ae2a8236
LT
2103/*
2104 * This is __d_lookup_rcu() when the parent dentry has
2105 * DCACHE_OP_COMPARE, which makes things much nastier.
2106 */
2107static noinline struct dentry *__d_lookup_rcu_op_compare(
2108 const struct dentry *parent,
2109 const struct qstr *name,
2110 unsigned *seqp)
2111{
2112 u64 hashlen = name->hash_len;
2113 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2114 struct hlist_bl_node *node;
2115 struct dentry *dentry;
2116
2117 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2118 int tlen;
2119 const char *tname;
2120 unsigned seq;
2121
2122seqretry:
2123 seq = raw_seqcount_begin(&dentry->d_seq);
2124 if (dentry->d_parent != parent)
2125 continue;
2126 if (d_unhashed(dentry))
2127 continue;
2128 if (dentry->d_name.hash != hashlen_hash(hashlen))
2129 continue;
2130 tlen = dentry->d_name.len;
2131 tname = dentry->d_name.name;
2132 /* we want a consistent (name,len) pair */
2133 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2134 cpu_relax();
2135 goto seqretry;
2136 }
2137 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2138 continue;
2139 *seqp = seq;
2140 return dentry;
2141 }
2142 return NULL;
2143}
2144
31e6b01f
NP
2145/**
2146 * __d_lookup_rcu - search for a dentry (racy, store-free)
2147 * @parent: parent dentry
2148 * @name: qstr of name we wish to find
1f1e6e52 2149 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2150 * Returns: dentry, or NULL
2151 *
2152 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2153 * resolution (store-free path walking) design described in
2154 * Documentation/filesystems/path-lookup.txt.
2155 *
2156 * This is not to be used outside core vfs.
2157 *
2158 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2159 * held, and rcu_read_lock held. The returned dentry must not be stored into
2160 * without taking d_lock and checking d_seq sequence count against @seq
2161 * returned here.
2162 *
15570086 2163 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2164 * function.
2165 *
2166 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2167 * the returned dentry, so long as its parent's seqlock is checked after the
2168 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2169 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2170 *
2171 * NOTE! The caller *has* to check the resulting dentry against the sequence
2172 * number we've returned before using any of the resulting dentry state!
31e6b01f 2173 */
8966be90
LT
2174struct dentry *__d_lookup_rcu(const struct dentry *parent,
2175 const struct qstr *name,
da53be12 2176 unsigned *seqp)
31e6b01f 2177{
26fe5750 2178 u64 hashlen = name->hash_len;
31e6b01f 2179 const unsigned char *str = name->name;
8387ff25 2180 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2181 struct hlist_bl_node *node;
31e6b01f
NP
2182 struct dentry *dentry;
2183
2184 /*
2185 * Note: There is significant duplication with __d_lookup_rcu which is
2186 * required to prevent single threaded performance regressions
2187 * especially on architectures where smp_rmb (in seqcounts) are costly.
2188 * Keep the two functions in sync.
2189 */
2190
ae2a8236
LT
2191 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2192 return __d_lookup_rcu_op_compare(parent, name, seqp);
2193
31e6b01f
NP
2194 /*
2195 * The hash list is protected using RCU.
2196 *
2197 * Carefully use d_seq when comparing a candidate dentry, to avoid
2198 * races with d_move().
2199 *
2200 * It is possible that concurrent renames can mess up our list
2201 * walk here and result in missing our dentry, resulting in the
2202 * false-negative result. d_lookup() protects against concurrent
2203 * renames using rename_lock seqlock.
2204 *
b0a4bb83 2205 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2206 */
b07ad996 2207 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2208 unsigned seq;
31e6b01f 2209
12f8ad4b
LT
2210 /*
2211 * The dentry sequence count protects us from concurrent
da53be12 2212 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2213 *
2214 * The caller must perform a seqcount check in order
da53be12 2215 * to do anything useful with the returned dentry.
12f8ad4b
LT
2216 *
2217 * NOTE! We do a "raw" seqcount_begin here. That means that
2218 * we don't wait for the sequence count to stabilize if it
2219 * is in the middle of a sequence change. If we do the slow
2220 * dentry compare, we will do seqretries until it is stable,
2221 * and if we end up with a successful lookup, we actually
2222 * want to exit RCU lookup anyway.
d4c91a8f
AV
2223 *
2224 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2225 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2226 */
2227 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2228 if (dentry->d_parent != parent)
2229 continue;
2e321806
LT
2230 if (d_unhashed(dentry))
2231 continue;
ae2a8236
LT
2232 if (dentry->d_name.hash_len != hashlen)
2233 continue;
2234 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2235 continue;
da53be12 2236 *seqp = seq;
d4c91a8f 2237 return dentry;
31e6b01f
NP
2238 }
2239 return NULL;
2240}
2241
1da177e4
LT
2242/**
2243 * d_lookup - search for a dentry
2244 * @parent: parent dentry
2245 * @name: qstr of name we wish to find
b04f784e 2246 * Returns: dentry, or NULL
1da177e4 2247 *
b04f784e
NP
2248 * d_lookup searches the children of the parent dentry for the name in
2249 * question. If the dentry is found its reference count is incremented and the
2250 * dentry is returned. The caller must use dput to free the entry when it has
2251 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2252 */
da2d8455 2253struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2254{
31e6b01f 2255 struct dentry *dentry;
949854d0 2256 unsigned seq;
1da177e4 2257
b8314f93
DY
2258 do {
2259 seq = read_seqbegin(&rename_lock);
2260 dentry = __d_lookup(parent, name);
2261 if (dentry)
1da177e4
LT
2262 break;
2263 } while (read_seqretry(&rename_lock, seq));
2264 return dentry;
2265}
ec4f8605 2266EXPORT_SYMBOL(d_lookup);
1da177e4 2267
31e6b01f 2268/**
b04f784e
NP
2269 * __d_lookup - search for a dentry (racy)
2270 * @parent: parent dentry
2271 * @name: qstr of name we wish to find
2272 * Returns: dentry, or NULL
2273 *
2274 * __d_lookup is like d_lookup, however it may (rarely) return a
2275 * false-negative result due to unrelated rename activity.
2276 *
2277 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2278 * however it must be used carefully, eg. with a following d_lookup in
2279 * the case of failure.
2280 *
2281 * __d_lookup callers must be commented.
2282 */
a713ca2a 2283struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2284{
1da177e4 2285 unsigned int hash = name->hash;
8387ff25 2286 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2287 struct hlist_bl_node *node;
31e6b01f 2288 struct dentry *found = NULL;
665a7583 2289 struct dentry *dentry;
1da177e4 2290
31e6b01f
NP
2291 /*
2292 * Note: There is significant duplication with __d_lookup_rcu which is
2293 * required to prevent single threaded performance regressions
2294 * especially on architectures where smp_rmb (in seqcounts) are costly.
2295 * Keep the two functions in sync.
2296 */
2297
b04f784e
NP
2298 /*
2299 * The hash list is protected using RCU.
2300 *
2301 * Take d_lock when comparing a candidate dentry, to avoid races
2302 * with d_move().
2303 *
2304 * It is possible that concurrent renames can mess up our list
2305 * walk here and result in missing our dentry, resulting in the
2306 * false-negative result. d_lookup() protects against concurrent
2307 * renames using rename_lock seqlock.
2308 *
b0a4bb83 2309 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2310 */
1da177e4
LT
2311 rcu_read_lock();
2312
b07ad996 2313 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2314
1da177e4
LT
2315 if (dentry->d_name.hash != hash)
2316 continue;
1da177e4
LT
2317
2318 spin_lock(&dentry->d_lock);
1da177e4
LT
2319 if (dentry->d_parent != parent)
2320 goto next;
d0185c08
LT
2321 if (d_unhashed(dentry))
2322 goto next;
2323
d4c91a8f
AV
2324 if (!d_same_name(dentry, parent, name))
2325 goto next;
1da177e4 2326
98474236 2327 dentry->d_lockref.count++;
d0185c08 2328 found = dentry;
1da177e4
LT
2329 spin_unlock(&dentry->d_lock);
2330 break;
2331next:
2332 spin_unlock(&dentry->d_lock);
2333 }
2334 rcu_read_unlock();
2335
2336 return found;
2337}
2338
3e7e241f
EB
2339/**
2340 * d_hash_and_lookup - hash the qstr then search for a dentry
2341 * @dir: Directory to search in
2342 * @name: qstr of name we wish to find
2343 *
4f522a24 2344 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2345 */
2346struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2347{
3e7e241f
EB
2348 /*
2349 * Check for a fs-specific hash function. Note that we must
2350 * calculate the standard hash first, as the d_op->d_hash()
2351 * routine may choose to leave the hash value unchanged.
2352 */
8387ff25 2353 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2354 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2355 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2356 if (unlikely(err < 0))
2357 return ERR_PTR(err);
3e7e241f 2358 }
4f522a24 2359 return d_lookup(dir, name);
3e7e241f 2360}
4f522a24 2361EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2362
1da177e4
LT
2363/*
2364 * When a file is deleted, we have two options:
2365 * - turn this dentry into a negative dentry
2366 * - unhash this dentry and free it.
2367 *
2368 * Usually, we want to just turn this into
4a4be1ad
LT
2369 * a negative dentry, but if anybody else is
2370 * currently using the dentry or the inode
2371 * we can't do that and we fall back on removing
2372 * it from the hash queues and waiting for
2373 * it to be deleted later when it has no users
1da177e4
LT
2374 */
2375
2376/**
2377 * d_delete - delete a dentry
2378 * @dentry: The dentry to delete
2379 *
4a4be1ad
LT
2380 * Turn the dentry into a negative dentry if possible, otherwise
2381 * remove it from the hash queues so it can be deleted later
1da177e4
LT
2382 */
2383
2384void d_delete(struct dentry * dentry)
2385{
c19457f0 2386 struct inode *inode = dentry->d_inode;
c19457f0
AV
2387
2388 spin_lock(&inode->i_lock);
2389 spin_lock(&dentry->d_lock);
1da177e4
LT
2390 /*
2391 * Are we the only user?
2392 */
98474236 2393 if (dentry->d_lockref.count == 1) {
13e3c5e5 2394 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2395 dentry_unlink_inode(dentry);
c19457f0 2396 } else {
4a4be1ad 2397 __d_drop(dentry);
c19457f0
AV
2398 spin_unlock(&dentry->d_lock);
2399 spin_unlock(&inode->i_lock);
2400 }
1da177e4 2401}
ec4f8605 2402EXPORT_SYMBOL(d_delete);
1da177e4 2403
15d3c589 2404static void __d_rehash(struct dentry *entry)
1da177e4 2405{
15d3c589 2406 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2407
1879fd6a 2408 hlist_bl_lock(b);
b07ad996 2409 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2410 hlist_bl_unlock(b);
1da177e4
LT
2411}
2412
2413/**
2414 * d_rehash - add an entry back to the hash
2415 * @entry: dentry to add to the hash
2416 *
2417 * Adds a dentry to the hash according to its name.
2418 */
2419
2420void d_rehash(struct dentry * entry)
2421{
1da177e4 2422 spin_lock(&entry->d_lock);
15d3c589 2423 __d_rehash(entry);
1da177e4 2424 spin_unlock(&entry->d_lock);
1da177e4 2425}
ec4f8605 2426EXPORT_SYMBOL(d_rehash);
1da177e4 2427
84e710da
AV
2428static inline unsigned start_dir_add(struct inode *dir)
2429{
93f6d4e1 2430 preempt_disable_nested();
84e710da
AV
2431 for (;;) {
2432 unsigned n = dir->i_dir_seq;
2433 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2434 return n;
2435 cpu_relax();
2436 }
2437}
2438
50417d22
SAS
2439static inline void end_dir_add(struct inode *dir, unsigned int n,
2440 wait_queue_head_t *d_wait)
84e710da
AV
2441{
2442 smp_store_release(&dir->i_dir_seq, n + 2);
93f6d4e1 2443 preempt_enable_nested();
50417d22 2444 wake_up_all(d_wait);
84e710da
AV
2445}
2446
d9171b93
AV
2447static void d_wait_lookup(struct dentry *dentry)
2448{
2449 if (d_in_lookup(dentry)) {
2450 DECLARE_WAITQUEUE(wait, current);
2451 add_wait_queue(dentry->d_wait, &wait);
2452 do {
2453 set_current_state(TASK_UNINTERRUPTIBLE);
2454 spin_unlock(&dentry->d_lock);
2455 schedule();
2456 spin_lock(&dentry->d_lock);
2457 } while (d_in_lookup(dentry));
2458 }
2459}
2460
94bdd655 2461struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2462 const struct qstr *name,
2463 wait_queue_head_t *wq)
94bdd655 2464{
94bdd655 2465 unsigned int hash = name->hash;
94bdd655
AV
2466 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2467 struct hlist_bl_node *node;
2468 struct dentry *new = d_alloc(parent, name);
2469 struct dentry *dentry;
2470 unsigned seq, r_seq, d_seq;
2471
2472 if (unlikely(!new))
2473 return ERR_PTR(-ENOMEM);
2474
2475retry:
2476 rcu_read_lock();
015555fd 2477 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2478 r_seq = read_seqbegin(&rename_lock);
2479 dentry = __d_lookup_rcu(parent, name, &d_seq);
2480 if (unlikely(dentry)) {
2481 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2482 rcu_read_unlock();
2483 goto retry;
2484 }
2485 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2486 rcu_read_unlock();
2487 dput(dentry);
2488 goto retry;
2489 }
2490 rcu_read_unlock();
2491 dput(new);
2492 return dentry;
2493 }
2494 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2495 rcu_read_unlock();
2496 goto retry;
2497 }
015555fd
WD
2498
2499 if (unlikely(seq & 1)) {
2500 rcu_read_unlock();
2501 goto retry;
2502 }
2503
94bdd655 2504 hlist_bl_lock(b);
8cc07c80 2505 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2506 hlist_bl_unlock(b);
2507 rcu_read_unlock();
2508 goto retry;
2509 }
94bdd655
AV
2510 /*
2511 * No changes for the parent since the beginning of d_lookup().
2512 * Since all removals from the chain happen with hlist_bl_lock(),
2513 * any potential in-lookup matches are going to stay here until
2514 * we unlock the chain. All fields are stable in everything
2515 * we encounter.
2516 */
2517 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2518 if (dentry->d_name.hash != hash)
2519 continue;
2520 if (dentry->d_parent != parent)
2521 continue;
d4c91a8f
AV
2522 if (!d_same_name(dentry, parent, name))
2523 continue;
94bdd655 2524 hlist_bl_unlock(b);
e7d6ef97
AV
2525 /* now we can try to grab a reference */
2526 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2527 rcu_read_unlock();
2528 goto retry;
2529 }
2530
2531 rcu_read_unlock();
2532 /*
2533 * somebody is likely to be still doing lookup for it;
2534 * wait for them to finish
2535 */
d9171b93
AV
2536 spin_lock(&dentry->d_lock);
2537 d_wait_lookup(dentry);
2538 /*
2539 * it's not in-lookup anymore; in principle we should repeat
2540 * everything from dcache lookup, but it's likely to be what
2541 * d_lookup() would've found anyway. If it is, just return it;
2542 * otherwise we really have to repeat the whole thing.
2543 */
2544 if (unlikely(dentry->d_name.hash != hash))
2545 goto mismatch;
2546 if (unlikely(dentry->d_parent != parent))
2547 goto mismatch;
2548 if (unlikely(d_unhashed(dentry)))
2549 goto mismatch;
d4c91a8f
AV
2550 if (unlikely(!d_same_name(dentry, parent, name)))
2551 goto mismatch;
d9171b93
AV
2552 /* OK, it *is* a hashed match; return it */
2553 spin_unlock(&dentry->d_lock);
94bdd655
AV
2554 dput(new);
2555 return dentry;
2556 }
e7d6ef97 2557 rcu_read_unlock();
94bdd655
AV
2558 /* we can't take ->d_lock here; it's OK, though. */
2559 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2560 new->d_wait = wq;
f9f677c5 2561 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
94bdd655
AV
2562 hlist_bl_unlock(b);
2563 return new;
d9171b93
AV
2564mismatch:
2565 spin_unlock(&dentry->d_lock);
2566 dput(dentry);
2567 goto retry;
94bdd655
AV
2568}
2569EXPORT_SYMBOL(d_alloc_parallel);
2570
45f78b0a
SAS
2571/*
2572 * - Unhash the dentry
2573 * - Retrieve and clear the waitqueue head in dentry
2574 * - Return the waitqueue head
2575 */
2576static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
85c7f810 2577{
45f78b0a
SAS
2578 wait_queue_head_t *d_wait;
2579 struct hlist_bl_head *b;
2580
2581 lockdep_assert_held(&dentry->d_lock);
2582
2583 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
94bdd655 2584 hlist_bl_lock(b);
85c7f810 2585 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2586 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
45f78b0a 2587 d_wait = dentry->d_wait;
d9171b93 2588 dentry->d_wait = NULL;
94bdd655
AV
2589 hlist_bl_unlock(b);
2590 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2591 INIT_LIST_HEAD(&dentry->d_lru);
45f78b0a
SAS
2592 return d_wait;
2593}
2594
2595void __d_lookup_unhash_wake(struct dentry *dentry)
2596{
2597 spin_lock(&dentry->d_lock);
2598 wake_up_all(__d_lookup_unhash(dentry));
2599 spin_unlock(&dentry->d_lock);
85c7f810 2600}
45f78b0a 2601EXPORT_SYMBOL(__d_lookup_unhash_wake);
ed782b5a
AV
2602
2603/* inode->i_lock held if inode is non-NULL */
2604
2605static inline void __d_add(struct dentry *dentry, struct inode *inode)
2606{
45f78b0a 2607 wait_queue_head_t *d_wait;
84e710da
AV
2608 struct inode *dir = NULL;
2609 unsigned n;
0568d705 2610 spin_lock(&dentry->d_lock);
84e710da
AV
2611 if (unlikely(d_in_lookup(dentry))) {
2612 dir = dentry->d_parent->d_inode;
2613 n = start_dir_add(dir);
45f78b0a 2614 d_wait = __d_lookup_unhash(dentry);
84e710da 2615 }
ed782b5a 2616 if (inode) {
0568d705
AV
2617 unsigned add_flags = d_flags_for_inode(inode);
2618 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2619 raw_write_seqcount_begin(&dentry->d_seq);
2620 __d_set_inode_and_type(dentry, inode, add_flags);
2621 raw_write_seqcount_end(&dentry->d_seq);
affda484 2622 fsnotify_update_flags(dentry);
ed782b5a 2623 }
15d3c589 2624 __d_rehash(dentry);
84e710da 2625 if (dir)
50417d22 2626 end_dir_add(dir, n, d_wait);
0568d705
AV
2627 spin_unlock(&dentry->d_lock);
2628 if (inode)
2629 spin_unlock(&inode->i_lock);
ed782b5a
AV
2630}
2631
34d0d19d
AV
2632/**
2633 * d_add - add dentry to hash queues
2634 * @entry: dentry to add
2635 * @inode: The inode to attach to this dentry
2636 *
2637 * This adds the entry to the hash queues and initializes @inode.
2638 * The entry was actually filled in earlier during d_alloc().
2639 */
2640
2641void d_add(struct dentry *entry, struct inode *inode)
2642{
b9680917
AV
2643 if (inode) {
2644 security_d_instantiate(entry, inode);
ed782b5a 2645 spin_lock(&inode->i_lock);
b9680917 2646 }
ed782b5a 2647 __d_add(entry, inode);
34d0d19d
AV
2648}
2649EXPORT_SYMBOL(d_add);
2650
668d0cd5
AV
2651/**
2652 * d_exact_alias - find and hash an exact unhashed alias
2653 * @entry: dentry to add
2654 * @inode: The inode to go with this dentry
2655 *
2656 * If an unhashed dentry with the same name/parent and desired
2657 * inode already exists, hash and return it. Otherwise, return
2658 * NULL.
2659 *
2660 * Parent directory should be locked.
2661 */
2662struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2663{
2664 struct dentry *alias;
668d0cd5
AV
2665 unsigned int hash = entry->d_name.hash;
2666
2667 spin_lock(&inode->i_lock);
2668 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2669 /*
2670 * Don't need alias->d_lock here, because aliases with
2671 * d_parent == entry->d_parent are not subject to name or
2672 * parent changes, because the parent inode i_mutex is held.
2673 */
2674 if (alias->d_name.hash != hash)
2675 continue;
2676 if (alias->d_parent != entry->d_parent)
2677 continue;
d4c91a8f 2678 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2679 continue;
2680 spin_lock(&alias->d_lock);
2681 if (!d_unhashed(alias)) {
2682 spin_unlock(&alias->d_lock);
2683 alias = NULL;
2684 } else {
1b6ae9f6 2685 dget_dlock(alias);
15d3c589 2686 __d_rehash(alias);
668d0cd5
AV
2687 spin_unlock(&alias->d_lock);
2688 }
2689 spin_unlock(&inode->i_lock);
2690 return alias;
2691 }
2692 spin_unlock(&inode->i_lock);
2693 return NULL;
2694}
2695EXPORT_SYMBOL(d_exact_alias);
2696
8d85b484 2697static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2698{
8d85b484
AV
2699 if (unlikely(dname_external(target))) {
2700 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2701 /*
2702 * Both external: swap the pointers
2703 */
9a8d5bb4 2704 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2705 } else {
2706 /*
2707 * dentry:internal, target:external. Steal target's
2708 * storage and make target internal.
2709 */
321bcf92
BF
2710 memcpy(target->d_iname, dentry->d_name.name,
2711 dentry->d_name.len + 1);
1da177e4
LT
2712 dentry->d_name.name = target->d_name.name;
2713 target->d_name.name = target->d_iname;
2714 }
2715 } else {
8d85b484 2716 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2717 /*
2718 * dentry:external, target:internal. Give dentry's
2719 * storage to target and make dentry internal
2720 */
2721 memcpy(dentry->d_iname, target->d_name.name,
2722 target->d_name.len + 1);
2723 target->d_name.name = dentry->d_name.name;
2724 dentry->d_name.name = dentry->d_iname;
2725 } else {
2726 /*
da1ce067 2727 * Both are internal.
1da177e4 2728 */
da1ce067
MS
2729 unsigned int i;
2730 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2731 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2732 swap(((long *) &dentry->d_iname)[i],
2733 ((long *) &target->d_iname)[i]);
2734 }
1da177e4
LT
2735 }
2736 }
a28ddb87 2737 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2738}
2739
8d85b484
AV
2740static void copy_name(struct dentry *dentry, struct dentry *target)
2741{
2742 struct external_name *old_name = NULL;
2743 if (unlikely(dname_external(dentry)))
2744 old_name = external_name(dentry);
2745 if (unlikely(dname_external(target))) {
2746 atomic_inc(&external_name(target)->u.count);
2747 dentry->d_name = target->d_name;
2748 } else {
2749 memcpy(dentry->d_iname, target->d_name.name,
2750 target->d_name.len + 1);
2751 dentry->d_name.name = dentry->d_iname;
2752 dentry->d_name.hash_len = target->d_name.hash_len;
2753 }
2754 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2755 kfree_rcu(old_name, u.head);
8d85b484
AV
2756}
2757
9eaef27b 2758/*
18367501 2759 * __d_move - move a dentry
1da177e4
LT
2760 * @dentry: entry to move
2761 * @target: new dentry
da1ce067 2762 * @exchange: exchange the two dentries
1da177e4
LT
2763 *
2764 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2765 * dcache entries should not be moved in this way. Caller must hold
2766 * rename_lock, the i_mutex of the source and target directories,
2767 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2768 */
da1ce067
MS
2769static void __d_move(struct dentry *dentry, struct dentry *target,
2770 bool exchange)
1da177e4 2771{
42177007 2772 struct dentry *old_parent, *p;
45f78b0a 2773 wait_queue_head_t *d_wait;
84e710da
AV
2774 struct inode *dir = NULL;
2775 unsigned n;
1da177e4 2776
42177007
AV
2777 WARN_ON(!dentry->d_inode);
2778 if (WARN_ON(dentry == target))
2779 return;
2780
2fd6b7f5 2781 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2782 old_parent = dentry->d_parent;
2783 p = d_ancestor(old_parent, target);
2784 if (IS_ROOT(dentry)) {
2785 BUG_ON(p);
2786 spin_lock(&target->d_parent->d_lock);
2787 } else if (!p) {
2788 /* target is not a descendent of dentry->d_parent */
2789 spin_lock(&target->d_parent->d_lock);
2790 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2791 } else {
2792 BUG_ON(p == dentry);
2793 spin_lock(&old_parent->d_lock);
2794 if (p != target)
2795 spin_lock_nested(&target->d_parent->d_lock,
2796 DENTRY_D_LOCK_NESTED);
2797 }
2798 spin_lock_nested(&dentry->d_lock, 2);
2799 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2800
84e710da
AV
2801 if (unlikely(d_in_lookup(target))) {
2802 dir = target->d_parent->d_inode;
2803 n = start_dir_add(dir);
45f78b0a 2804 d_wait = __d_lookup_unhash(target);
84e710da 2805 }
1da177e4 2806
31e6b01f 2807 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2808 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2809
15d3c589 2810 /* unhash both */
0632a9ac
AV
2811 if (!d_unhashed(dentry))
2812 ___d_drop(dentry);
2813 if (!d_unhashed(target))
2814 ___d_drop(target);
1da177e4 2815
076515fc
AV
2816 /* ... and switch them in the tree */
2817 dentry->d_parent = target->d_parent;
2818 if (!exchange) {
8d85b484 2819 copy_name(dentry, target);
61647823 2820 target->d_hash.pprev = NULL;
076515fc 2821 dentry->d_parent->d_lockref.count++;
5467a68c 2822 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2823 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2824 } else {
076515fc
AV
2825 target->d_parent = old_parent;
2826 swap_names(dentry, target);
da549bdd
AV
2827 if (!hlist_unhashed(&target->d_sib))
2828 __hlist_del(&target->d_sib);
2829 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
076515fc
AV
2830 __d_rehash(target);
2831 fsnotify_update_flags(target);
1da177e4 2832 }
da549bdd
AV
2833 if (!hlist_unhashed(&dentry->d_sib))
2834 __hlist_del(&dentry->d_sib);
2835 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
076515fc
AV
2836 __d_rehash(dentry);
2837 fsnotify_update_flags(dentry);
0bf3d5c1 2838 fscrypt_handle_d_move(dentry);
1da177e4 2839
31e6b01f
NP
2840 write_seqcount_end(&target->d_seq);
2841 write_seqcount_end(&dentry->d_seq);
2842
84e710da 2843 if (dir)
50417d22 2844 end_dir_add(dir, n, d_wait);
076515fc
AV
2845
2846 if (dentry->d_parent != old_parent)
2847 spin_unlock(&dentry->d_parent->d_lock);
2848 if (dentry != old_parent)
2849 spin_unlock(&old_parent->d_lock);
2850 spin_unlock(&target->d_lock);
2851 spin_unlock(&dentry->d_lock);
18367501
AV
2852}
2853
2854/*
2855 * d_move - move a dentry
2856 * @dentry: entry to move
2857 * @target: new dentry
2858 *
2859 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2860 * dcache entries should not be moved in this way. See the locking
2861 * requirements for __d_move.
18367501
AV
2862 */
2863void d_move(struct dentry *dentry, struct dentry *target)
2864{
2865 write_seqlock(&rename_lock);
da1ce067 2866 __d_move(dentry, target, false);
1da177e4 2867 write_sequnlock(&rename_lock);
9eaef27b 2868}
ec4f8605 2869EXPORT_SYMBOL(d_move);
1da177e4 2870
da1ce067
MS
2871/*
2872 * d_exchange - exchange two dentries
2873 * @dentry1: first dentry
2874 * @dentry2: second dentry
2875 */
2876void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2877{
2878 write_seqlock(&rename_lock);
2879
2880 WARN_ON(!dentry1->d_inode);
2881 WARN_ON(!dentry2->d_inode);
2882 WARN_ON(IS_ROOT(dentry1));
2883 WARN_ON(IS_ROOT(dentry2));
2884
2885 __d_move(dentry1, dentry2, true);
2886
2887 write_sequnlock(&rename_lock);
2888}
2889
e2761a11
OH
2890/**
2891 * d_ancestor - search for an ancestor
2892 * @p1: ancestor dentry
2893 * @p2: child dentry
2894 *
2895 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2896 * an ancestor of p2, else NULL.
9eaef27b 2897 */
e2761a11 2898struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2899{
2900 struct dentry *p;
2901
871c0067 2902 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2903 if (p->d_parent == p1)
e2761a11 2904 return p;
9eaef27b 2905 }
e2761a11 2906 return NULL;
9eaef27b
TM
2907}
2908
2909/*
2910 * This helper attempts to cope with remotely renamed directories
2911 *
2912 * It assumes that the caller is already holding
a03e283b 2913 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2914 *
2915 * Note: If ever the locking in lock_rename() changes, then please
2916 * remember to update this too...
9eaef27b 2917 */
ef69f050 2918static int __d_unalias(struct dentry *dentry, struct dentry *alias)
9eaef27b 2919{
9902af79
AV
2920 struct mutex *m1 = NULL;
2921 struct rw_semaphore *m2 = NULL;
3d330dc1 2922 int ret = -ESTALE;
9eaef27b
TM
2923
2924 /* If alias and dentry share a parent, then no extra locks required */
2925 if (alias->d_parent == dentry->d_parent)
2926 goto out_unalias;
2927
9eaef27b 2928 /* See lock_rename() */
9eaef27b
TM
2929 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2930 goto out_err;
2931 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2932 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2933 goto out_err;
9902af79 2934 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2935out_unalias:
8ed936b5 2936 __d_move(alias, dentry, false);
b5ae6b15 2937 ret = 0;
9eaef27b 2938out_err:
9eaef27b 2939 if (m2)
9902af79 2940 up_read(m2);
9eaef27b
TM
2941 if (m1)
2942 mutex_unlock(m1);
2943 return ret;
2944}
2945
3f70bd51
BF
2946/**
2947 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2948 * @inode: the inode which may have a disconnected dentry
2949 * @dentry: a negative dentry which we want to point to the inode.
2950 *
da093a9b
BF
2951 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2952 * place of the given dentry and return it, else simply d_add the inode
2953 * to the dentry and return NULL.
3f70bd51 2954 *
908790fa
BF
2955 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2956 * we should error out: directories can't have multiple aliases.
2957 *
3f70bd51
BF
2958 * This is needed in the lookup routine of any filesystem that is exportable
2959 * (via knfsd) so that we can build dcache paths to directories effectively.
2960 *
2961 * If a dentry was found and moved, then it is returned. Otherwise NULL
2962 * is returned. This matches the expected return value of ->lookup.
2963 *
2964 * Cluster filesystems may call this function with a negative, hashed dentry.
2965 * In that case, we know that the inode will be a regular file, and also this
2966 * will only occur during atomic_open. So we need to check for the dentry
2967 * being already hashed only in the final case.
2968 */
2969struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2970{
3f70bd51
BF
2971 if (IS_ERR(inode))
2972 return ERR_CAST(inode);
2973
770bfad8
DH
2974 BUG_ON(!d_unhashed(dentry));
2975
de689f5e 2976 if (!inode)
b5ae6b15 2977 goto out;
de689f5e 2978
b9680917 2979 security_d_instantiate(dentry, inode);
873feea0 2980 spin_lock(&inode->i_lock);
9eaef27b 2981 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2982 struct dentry *new = __d_find_any_alias(inode);
2983 if (unlikely(new)) {
a03e283b
EB
2984 /* The reference to new ensures it remains an alias */
2985 spin_unlock(&inode->i_lock);
18367501 2986 write_seqlock(&rename_lock);
b5ae6b15
AV
2987 if (unlikely(d_ancestor(new, dentry))) {
2988 write_sequnlock(&rename_lock);
b5ae6b15
AV
2989 dput(new);
2990 new = ERR_PTR(-ELOOP);
2991 pr_warn_ratelimited(
2992 "VFS: Lookup of '%s' in %s %s"
2993 " would have caused loop\n",
2994 dentry->d_name.name,
2995 inode->i_sb->s_type->name,
2996 inode->i_sb->s_id);
2997 } else if (!IS_ROOT(new)) {
076515fc 2998 struct dentry *old_parent = dget(new->d_parent);
ef69f050 2999 int err = __d_unalias(dentry, new);
18367501 3000 write_sequnlock(&rename_lock);
b5ae6b15
AV
3001 if (err) {
3002 dput(new);
3003 new = ERR_PTR(err);
3004 }
076515fc 3005 dput(old_parent);
18367501 3006 } else {
b5ae6b15
AV
3007 __d_move(new, dentry, false);
3008 write_sequnlock(&rename_lock);
dd179946 3009 }
b5ae6b15
AV
3010 iput(inode);
3011 return new;
9eaef27b 3012 }
770bfad8 3013 }
b5ae6b15 3014out:
ed782b5a 3015 __d_add(dentry, inode);
b5ae6b15 3016 return NULL;
770bfad8 3017}
b5ae6b15 3018EXPORT_SYMBOL(d_splice_alias);
770bfad8 3019
1da177e4
LT
3020/*
3021 * Test whether new_dentry is a subdirectory of old_dentry.
3022 *
3023 * Trivially implemented using the dcache structure
3024 */
3025
3026/**
3027 * is_subdir - is new dentry a subdirectory of old_dentry
3028 * @new_dentry: new dentry
3029 * @old_dentry: old dentry
3030 *
a6e5787f
YB
3031 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3032 * Returns false otherwise.
1da177e4
LT
3033 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3034 */
3035
a6e5787f 3036bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3037{
391b59b0 3038 bool subdir;
949854d0 3039 unsigned seq;
1da177e4 3040
e2761a11 3041 if (new_dentry == old_dentry)
a6e5787f 3042 return true;
e2761a11 3043
391b59b0
CB
3044 /* Access d_parent under rcu as d_move() may change it. */
3045 rcu_read_lock();
3046 seq = read_seqbegin(&rename_lock);
3047 subdir = d_ancestor(old_dentry, new_dentry);
3048 /* Try lockless once... */
3049 if (read_seqretry(&rename_lock, seq)) {
3050 /* ...else acquire lock for progress even on deep chains. */
3051 read_seqlock_excl(&rename_lock);
3052 subdir = d_ancestor(old_dentry, new_dentry);
3053 read_sequnlock_excl(&rename_lock);
3054 }
3055 rcu_read_unlock();
3056 return subdir;
1da177e4 3057}
e8f9e5b7 3058EXPORT_SYMBOL(is_subdir);
1da177e4 3059
db14fc3a 3060static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3061{
db14fc3a
MS
3062 struct dentry *root = data;
3063 if (dentry != root) {
3064 if (d_unhashed(dentry) || !dentry->d_inode)
3065 return D_WALK_SKIP;
1da177e4 3066
7e4a205f
AV
3067 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3068 dentry->d_flags |= DCACHE_GENOCIDE;
3069 dentry->d_lockref.count--;
3070 }
1da177e4 3071 }
db14fc3a
MS
3072 return D_WALK_CONTINUE;
3073}
58db63d0 3074
db14fc3a
MS
3075void d_genocide(struct dentry *parent)
3076{
3a8e3611 3077 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3078}
3079
771eb4fe 3080void d_mark_tmpfile(struct file *file, struct inode *inode)
1da177e4 3081{
863f144f
MS
3082 struct dentry *dentry = file->f_path.dentry;
3083
60545d0d 3084 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3085 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3086 !d_unlinked(dentry));
3087 spin_lock(&dentry->d_parent->d_lock);
3088 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3089 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3090 (unsigned long long)inode->i_ino);
3091 spin_unlock(&dentry->d_lock);
3092 spin_unlock(&dentry->d_parent->d_lock);
771eb4fe
KO
3093}
3094EXPORT_SYMBOL(d_mark_tmpfile);
3095
3096void d_tmpfile(struct file *file, struct inode *inode)
3097{
3098 struct dentry *dentry = file->f_path.dentry;
3099
3100 inode_dec_link_count(inode);
3101 d_mark_tmpfile(file, inode);
60545d0d 3102 d_instantiate(dentry, inode);
1da177e4 3103}
60545d0d 3104EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3105
3106static __initdata unsigned long dhash_entries;
3107static int __init set_dhash_entries(char *str)
3108{
3109 if (!str)
3110 return 0;
3111 dhash_entries = simple_strtoul(str, &str, 0);
3112 return 1;
3113}
3114__setup("dhash_entries=", set_dhash_entries);
3115
3116static void __init dcache_init_early(void)
3117{
1da177e4
LT
3118 /* If hashes are distributed across NUMA nodes, defer
3119 * hash allocation until vmalloc space is available.
3120 */
3121 if (hashdist)
3122 return;
3123
3124 dentry_hashtable =
3125 alloc_large_system_hash("Dentry cache",
b07ad996 3126 sizeof(struct hlist_bl_head),
1da177e4
LT
3127 dhash_entries,
3128 13,
3d375d78 3129 HASH_EARLY | HASH_ZERO,
1da177e4 3130 &d_hash_shift,
b35d786b 3131 NULL,
31fe62b9 3132 0,
1da177e4 3133 0);
854d3e63 3134 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3135}
3136
74bf17cf 3137static void __init dcache_init(void)
1da177e4 3138{
3d375d78 3139 /*
1da177e4
LT
3140 * A constructor could be added for stable state like the lists,
3141 * but it is probably not worth it because of the cache nature
3d375d78 3142 * of the dcache.
1da177e4 3143 */
80344266 3144 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
c997d683 3145 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
80344266 3146 d_iname);
1da177e4
LT
3147
3148 /* Hash may have been set up in dcache_init_early */
3149 if (!hashdist)
3150 return;
3151
3152 dentry_hashtable =
3153 alloc_large_system_hash("Dentry cache",
b07ad996 3154 sizeof(struct hlist_bl_head),
1da177e4
LT
3155 dhash_entries,
3156 13,
3d375d78 3157 HASH_ZERO,
1da177e4 3158 &d_hash_shift,
b35d786b 3159 NULL,
31fe62b9 3160 0,
1da177e4 3161 0);
854d3e63 3162 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3163}
3164
3165/* SLAB cache for __getname() consumers */
68279f9c 3166struct kmem_cache *names_cachep __ro_after_init;
ec4f8605 3167EXPORT_SYMBOL(names_cachep);
1da177e4 3168
1da177e4
LT
3169void __init vfs_caches_init_early(void)
3170{
6916363f
SAS
3171 int i;
3172
3173 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3174 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3175
1da177e4
LT
3176 dcache_init_early();
3177 inode_init_early();
3178}
3179
4248b0da 3180void __init vfs_caches_init(void)
1da177e4 3181{
6a9b8820
DW
3182 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3183 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3184
74bf17cf
DC
3185 dcache_init();
3186 inode_init();
4248b0da
MG
3187 files_init();
3188 files_maxfiles_init();
74bf17cf 3189 mnt_init();
1da177e4
LT
3190 bdev_cache_init();
3191 chrdev_init();
3192}
This page took 2.011362 seconds and 4 git commands to generate.