]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/kernel/profile.c | |
4 | * Simple profiling. Manages a direct-mapped profile hit count buffer, | |
5 | * with configurable resolution, support for restricting the cpus on | |
6 | * which profiling is done, and switching between cpu time and | |
7 | * schedule() calls via kernel command line parameters passed at boot. | |
8 | * | |
9 | * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | |
10 | * Red Hat, July 2004 | |
11 | * Consolidation of architecture support code for profiling, | |
6d49e352 | 12 | * Nadia Yvette Chambers, Oracle, July 2004 |
1da177e4 | 13 | * Amortized hit count accounting via per-cpu open-addressed hashtables |
6d49e352 NYC |
14 | * to resolve timer interrupt livelocks, Nadia Yvette Chambers, |
15 | * Oracle, 2004 | |
1da177e4 LT |
16 | */ |
17 | ||
9984de1a | 18 | #include <linux/export.h> |
1da177e4 | 19 | #include <linux/profile.h> |
57c8a661 | 20 | #include <linux/memblock.h> |
1da177e4 LT |
21 | #include <linux/notifier.h> |
22 | #include <linux/mm.h> | |
23 | #include <linux/cpumask.h> | |
24 | #include <linux/cpu.h> | |
1da177e4 | 25 | #include <linux/highmem.h> |
97d1f15b | 26 | #include <linux/mutex.h> |
22b8ce94 DH |
27 | #include <linux/slab.h> |
28 | #include <linux/vmalloc.h> | |
3905f9ad IM |
29 | #include <linux/sched/stat.h> |
30 | ||
1da177e4 | 31 | #include <asm/sections.h> |
7d12e780 | 32 | #include <asm/irq_regs.h> |
e8edc6e0 | 33 | #include <asm/ptrace.h> |
1da177e4 LT |
34 | |
35 | struct profile_hit { | |
36 | u32 pc, hits; | |
37 | }; | |
38 | #define PROFILE_GRPSHIFT 3 | |
39 | #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) | |
40 | #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) | |
41 | #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) | |
42 | ||
1da177e4 | 43 | static atomic_t *prof_buffer; |
2d186afd PS |
44 | static unsigned long prof_len; |
45 | static unsigned short int prof_shift; | |
07031e14 | 46 | |
ece8a684 | 47 | int prof_on __read_mostly; |
07031e14 IM |
48 | EXPORT_SYMBOL_GPL(prof_on); |
49 | ||
c309b917 | 50 | static cpumask_var_t prof_cpu_mask; |
ade356b9 | 51 | #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) |
1da177e4 LT |
52 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); |
53 | static DEFINE_PER_CPU(int, cpu_profile_flip); | |
97d1f15b | 54 | static DEFINE_MUTEX(profile_flip_mutex); |
1da177e4 LT |
55 | #endif /* CONFIG_SMP */ |
56 | ||
22b8ce94 | 57 | int profile_setup(char *str) |
1da177e4 | 58 | { |
f3da64d1 FF |
59 | static const char schedstr[] = "schedule"; |
60 | static const char sleepstr[] = "sleep"; | |
61 | static const char kvmstr[] = "kvm"; | |
35783ccb | 62 | const char *select = NULL; |
1da177e4 LT |
63 | int par; |
64 | ||
ece8a684 | 65 | if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
b3da2a73 | 66 | #ifdef CONFIG_SCHEDSTATS |
cb251765 | 67 | force_schedstat_enabled(); |
ece8a684 | 68 | prof_on = SLEEP_PROFILING; |
35783ccb | 69 | select = sleepstr; |
b3da2a73 | 70 | #else |
aba871f1 | 71 | pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); |
b3da2a73 | 72 | #endif /* CONFIG_SCHEDSTATS */ |
a75acf85 | 73 | } else if (!strncmp(str, schedstr, strlen(schedstr))) { |
1da177e4 | 74 | prof_on = SCHED_PROFILING; |
35783ccb | 75 | select = schedstr; |
07031e14 IM |
76 | } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { |
77 | prof_on = KVM_PROFILING; | |
35783ccb | 78 | select = kvmstr; |
dfaa9c94 | 79 | } else if (get_option(&str, &par)) { |
2d186afd | 80 | prof_shift = clamp(par, 0, BITS_PER_LONG - 1); |
1da177e4 | 81 | prof_on = CPU_PROFILING; |
2d186afd | 82 | pr_info("kernel profiling enabled (shift: %u)\n", |
1da177e4 LT |
83 | prof_shift); |
84 | } | |
35783ccb | 85 | |
86 | if (select) { | |
87 | if (str[strlen(select)] == ',') | |
88 | str += strlen(select) + 1; | |
89 | if (get_option(&str, &par)) | |
90 | prof_shift = clamp(par, 0, BITS_PER_LONG - 1); | |
91 | pr_info("kernel %s profiling enabled (shift: %u)\n", | |
92 | select, prof_shift); | |
93 | } | |
94 | ||
1da177e4 LT |
95 | return 1; |
96 | } | |
97 | __setup("profile=", profile_setup); | |
98 | ||
99 | ||
ce05fcc3 | 100 | int __ref profile_init(void) |
1da177e4 | 101 | { |
22b8ce94 | 102 | int buffer_bytes; |
1ad82fd5 | 103 | if (!prof_on) |
22b8ce94 | 104 | return 0; |
1ad82fd5 | 105 | |
1da177e4 LT |
106 | /* only text is profiled */ |
107 | prof_len = (_etext - _stext) >> prof_shift; | |
0fe6ee8f CZ |
108 | |
109 | if (!prof_len) { | |
110 | pr_warn("profiling shift: %u too large\n", prof_shift); | |
111 | prof_on = 0; | |
112 | return -EINVAL; | |
113 | } | |
114 | ||
22b8ce94 | 115 | buffer_bytes = prof_len*sizeof(atomic_t); |
22b8ce94 | 116 | |
c309b917 RR |
117 | if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) |
118 | return -ENOMEM; | |
119 | ||
acd89579 HD |
120 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
121 | ||
b62f495d | 122 | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); |
22b8ce94 DH |
123 | if (prof_buffer) |
124 | return 0; | |
125 | ||
b62f495d MG |
126 | prof_buffer = alloc_pages_exact(buffer_bytes, |
127 | GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); | |
22b8ce94 DH |
128 | if (prof_buffer) |
129 | return 0; | |
130 | ||
559fa6e7 JJ |
131 | prof_buffer = vzalloc(buffer_bytes); |
132 | if (prof_buffer) | |
22b8ce94 DH |
133 | return 0; |
134 | ||
c309b917 | 135 | free_cpumask_var(prof_cpu_mask); |
22b8ce94 | 136 | return -ENOMEM; |
1da177e4 LT |
137 | } |
138 | ||
ade356b9 | 139 | #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) |
1da177e4 LT |
140 | /* |
141 | * Each cpu has a pair of open-addressed hashtables for pending | |
142 | * profile hits. read_profile() IPI's all cpus to request them | |
143 | * to flip buffers and flushes their contents to prof_buffer itself. | |
144 | * Flip requests are serialized by the profile_flip_mutex. The sole | |
145 | * use of having a second hashtable is for avoiding cacheline | |
146 | * contention that would otherwise happen during flushes of pending | |
147 | * profile hits required for the accuracy of reported profile hits | |
148 | * and so resurrect the interrupt livelock issue. | |
149 | * | |
150 | * The open-addressed hashtables are indexed by profile buffer slot | |
151 | * and hold the number of pending hits to that profile buffer slot on | |
152 | * a cpu in an entry. When the hashtable overflows, all pending hits | |
153 | * are accounted to their corresponding profile buffer slots with | |
154 | * atomic_add() and the hashtable emptied. As numerous pending hits | |
155 | * may be accounted to a profile buffer slot in a hashtable entry, | |
156 | * this amortizes a number of atomic profile buffer increments likely | |
157 | * to be far larger than the number of entries in the hashtable, | |
158 | * particularly given that the number of distinct profile buffer | |
159 | * positions to which hits are accounted during short intervals (e.g. | |
160 | * several seconds) is usually very small. Exclusion from buffer | |
161 | * flipping is provided by interrupt disablement (note that for | |
ece8a684 IM |
162 | * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from |
163 | * process context). | |
1da177e4 LT |
164 | * The hash function is meant to be lightweight as opposed to strong, |
165 | * and was vaguely inspired by ppc64 firmware-supported inverted | |
166 | * pagetable hash functions, but uses a full hashtable full of finite | |
167 | * collision chains, not just pairs of them. | |
168 | * | |
6d49e352 | 169 | * -- nyc |
1da177e4 LT |
170 | */ |
171 | static void __profile_flip_buffers(void *unused) | |
172 | { | |
173 | int cpu = smp_processor_id(); | |
174 | ||
175 | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | |
176 | } | |
177 | ||
178 | static void profile_flip_buffers(void) | |
179 | { | |
180 | int i, j, cpu; | |
181 | ||
97d1f15b | 182 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
183 | j = per_cpu(cpu_profile_flip, get_cpu()); |
184 | put_cpu(); | |
15c8b6c1 | 185 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
186 | for_each_online_cpu(cpu) { |
187 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | |
188 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | |
189 | if (!hits[i].hits) { | |
190 | if (hits[i].pc) | |
191 | hits[i].pc = 0; | |
192 | continue; | |
193 | } | |
194 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
195 | hits[i].hits = hits[i].pc = 0; | |
196 | } | |
197 | } | |
97d1f15b | 198 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
199 | } |
200 | ||
201 | static void profile_discard_flip_buffers(void) | |
202 | { | |
203 | int i, cpu; | |
204 | ||
97d1f15b | 205 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
206 | i = per_cpu(cpu_profile_flip, get_cpu()); |
207 | put_cpu(); | |
15c8b6c1 | 208 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
209 | for_each_online_cpu(cpu) { |
210 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | |
211 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | |
212 | } | |
97d1f15b | 213 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
214 | } |
215 | ||
6f7bd76f | 216 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
217 | { |
218 | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | |
219 | int i, j, cpu; | |
220 | struct profile_hit *hits; | |
221 | ||
1da177e4 LT |
222 | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); |
223 | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
224 | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
225 | cpu = get_cpu(); | |
226 | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | |
227 | if (!hits) { | |
228 | put_cpu(); | |
229 | return; | |
230 | } | |
ece8a684 IM |
231 | /* |
232 | * We buffer the global profiler buffer into a per-CPU | |
233 | * queue and thus reduce the number of global (and possibly | |
234 | * NUMA-alien) accesses. The write-queue is self-coalescing: | |
235 | */ | |
1da177e4 LT |
236 | local_irq_save(flags); |
237 | do { | |
238 | for (j = 0; j < PROFILE_GRPSZ; ++j) { | |
239 | if (hits[i + j].pc == pc) { | |
ece8a684 | 240 | hits[i + j].hits += nr_hits; |
1da177e4 LT |
241 | goto out; |
242 | } else if (!hits[i + j].hits) { | |
243 | hits[i + j].pc = pc; | |
ece8a684 | 244 | hits[i + j].hits = nr_hits; |
1da177e4 LT |
245 | goto out; |
246 | } | |
247 | } | |
248 | i = (i + secondary) & (NR_PROFILE_HIT - 1); | |
249 | } while (i != primary); | |
ece8a684 IM |
250 | |
251 | /* | |
252 | * Add the current hit(s) and flush the write-queue out | |
253 | * to the global buffer: | |
254 | */ | |
255 | atomic_add(nr_hits, &prof_buffer[pc]); | |
1da177e4 LT |
256 | for (i = 0; i < NR_PROFILE_HIT; ++i) { |
257 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
258 | hits[i].pc = hits[i].hits = 0; | |
259 | } | |
260 | out: | |
261 | local_irq_restore(flags); | |
262 | put_cpu(); | |
263 | } | |
264 | ||
e722d8da | 265 | static int profile_dead_cpu(unsigned int cpu) |
1da177e4 | 266 | { |
1da177e4 | 267 | struct page *page; |
e722d8da | 268 | int i; |
1da177e4 | 269 | |
ef70eff9 | 270 | if (cpumask_available(prof_cpu_mask)) |
e722d8da SAS |
271 | cpumask_clear_cpu(cpu, prof_cpu_mask); |
272 | ||
273 | for (i = 0; i < 2; i++) { | |
274 | if (per_cpu(cpu_profile_hits, cpu)[i]) { | |
275 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); | |
276 | per_cpu(cpu_profile_hits, cpu)[i] = NULL; | |
1da177e4 LT |
277 | __free_page(page); |
278 | } | |
e722d8da SAS |
279 | } |
280 | return 0; | |
281 | } | |
282 | ||
283 | static int profile_prepare_cpu(unsigned int cpu) | |
284 | { | |
285 | int i, node = cpu_to_mem(cpu); | |
286 | struct page *page; | |
287 | ||
288 | per_cpu(cpu_profile_flip, cpu) = 0; | |
289 | ||
290 | for (i = 0; i < 2; i++) { | |
291 | if (per_cpu(cpu_profile_hits, cpu)[i]) | |
292 | continue; | |
293 | ||
294 | page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | |
295 | if (!page) { | |
296 | profile_dead_cpu(cpu); | |
297 | return -ENOMEM; | |
1da177e4 | 298 | } |
e722d8da SAS |
299 | per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); |
300 | ||
1da177e4 | 301 | } |
e722d8da SAS |
302 | return 0; |
303 | } | |
304 | ||
305 | static int profile_online_cpu(unsigned int cpu) | |
306 | { | |
ef70eff9 | 307 | if (cpumask_available(prof_cpu_mask)) |
e722d8da SAS |
308 | cpumask_set_cpu(cpu, prof_cpu_mask); |
309 | ||
310 | return 0; | |
1da177e4 | 311 | } |
e722d8da | 312 | |
1da177e4 LT |
313 | #else /* !CONFIG_SMP */ |
314 | #define profile_flip_buffers() do { } while (0) | |
315 | #define profile_discard_flip_buffers() do { } while (0) | |
316 | ||
6f7bd76f | 317 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
318 | { |
319 | unsigned long pc; | |
1da177e4 | 320 | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; |
ece8a684 | 321 | atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
1da177e4 LT |
322 | } |
323 | #endif /* !CONFIG_SMP */ | |
6f7bd76f RM |
324 | |
325 | void profile_hits(int type, void *__pc, unsigned int nr_hits) | |
326 | { | |
327 | if (prof_on != type || !prof_buffer) | |
328 | return; | |
329 | do_profile_hits(type, __pc, nr_hits); | |
330 | } | |
bbe1a59b AM |
331 | EXPORT_SYMBOL_GPL(profile_hits); |
332 | ||
7d12e780 | 333 | void profile_tick(int type) |
1da177e4 | 334 | { |
7d12e780 DH |
335 | struct pt_regs *regs = get_irq_regs(); |
336 | ||
ef70eff9 | 337 | if (!user_mode(regs) && cpumask_available(prof_cpu_mask) && |
c309b917 | 338 | cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) |
1da177e4 LT |
339 | profile_hit(type, (void *)profile_pc(regs)); |
340 | } | |
341 | ||
342 | #ifdef CONFIG_PROC_FS | |
343 | #include <linux/proc_fs.h> | |
583a22e7 | 344 | #include <linux/seq_file.h> |
7c0f6ba6 | 345 | #include <linux/uaccess.h> |
1da177e4 | 346 | |
583a22e7 | 347 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
1da177e4 | 348 | { |
ccbd59c1 | 349 | seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); |
583a22e7 AD |
350 | return 0; |
351 | } | |
352 | ||
353 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) | |
354 | { | |
355 | return single_open(file, prof_cpu_mask_proc_show, NULL); | |
1da177e4 LT |
356 | } |
357 | ||
583a22e7 AD |
358 | static ssize_t prof_cpu_mask_proc_write(struct file *file, |
359 | const char __user *buffer, size_t count, loff_t *pos) | |
1da177e4 | 360 | { |
c309b917 | 361 | cpumask_var_t new_value; |
583a22e7 | 362 | int err; |
1da177e4 | 363 | |
c5e3a411 | 364 | if (!zalloc_cpumask_var(&new_value, GFP_KERNEL)) |
c309b917 | 365 | return -ENOMEM; |
1da177e4 | 366 | |
c309b917 RR |
367 | err = cpumask_parse_user(buffer, count, new_value); |
368 | if (!err) { | |
583a22e7 AD |
369 | cpumask_copy(prof_cpu_mask, new_value); |
370 | err = count; | |
c309b917 RR |
371 | } |
372 | free_cpumask_var(new_value); | |
373 | return err; | |
1da177e4 LT |
374 | } |
375 | ||
97a32539 AD |
376 | static const struct proc_ops prof_cpu_mask_proc_ops = { |
377 | .proc_open = prof_cpu_mask_proc_open, | |
378 | .proc_read = seq_read, | |
379 | .proc_lseek = seq_lseek, | |
380 | .proc_release = single_release, | |
381 | .proc_write = prof_cpu_mask_proc_write, | |
583a22e7 AD |
382 | }; |
383 | ||
fbd387ae | 384 | void create_prof_cpu_mask(void) |
1da177e4 | 385 | { |
1da177e4 | 386 | /* create /proc/irq/prof_cpu_mask */ |
97a32539 | 387 | proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops); |
1da177e4 LT |
388 | } |
389 | ||
390 | /* | |
391 | * This function accesses profiling information. The returned data is | |
392 | * binary: the sampling step and the actual contents of the profile | |
393 | * buffer. Use of the program readprofile is recommended in order to | |
394 | * get meaningful info out of these data. | |
395 | */ | |
396 | static ssize_t | |
397 | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | |
398 | { | |
399 | unsigned long p = *ppos; | |
400 | ssize_t read; | |
1ad82fd5 | 401 | char *pnt; |
2d186afd | 402 | unsigned long sample_step = 1UL << prof_shift; |
1da177e4 LT |
403 | |
404 | profile_flip_buffers(); | |
405 | if (p >= (prof_len+1)*sizeof(unsigned int)) | |
406 | return 0; | |
407 | if (count > (prof_len+1)*sizeof(unsigned int) - p) | |
408 | count = (prof_len+1)*sizeof(unsigned int) - p; | |
409 | read = 0; | |
410 | ||
411 | while (p < sizeof(unsigned int) && count > 0) { | |
1ad82fd5 | 412 | if (put_user(*((char *)(&sample_step)+p), buf)) |
064b022c | 413 | return -EFAULT; |
1da177e4 LT |
414 | buf++; p++; count--; read++; |
415 | } | |
416 | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | |
1ad82fd5 | 417 | if (copy_to_user(buf, (void *)pnt, count)) |
1da177e4 LT |
418 | return -EFAULT; |
419 | read += count; | |
420 | *ppos += read; | |
421 | return read; | |
422 | } | |
423 | ||
787dbea1 BD |
424 | /* default is to not implement this call */ |
425 | int __weak setup_profiling_timer(unsigned mult) | |
426 | { | |
427 | return -EINVAL; | |
428 | } | |
429 | ||
1da177e4 LT |
430 | /* |
431 | * Writing to /proc/profile resets the counters | |
432 | * | |
433 | * Writing a 'profiling multiplier' value into it also re-sets the profiling | |
434 | * interrupt frequency, on architectures that support this. | |
435 | */ | |
436 | static ssize_t write_profile(struct file *file, const char __user *buf, | |
437 | size_t count, loff_t *ppos) | |
438 | { | |
439 | #ifdef CONFIG_SMP | |
1da177e4 LT |
440 | if (count == sizeof(int)) { |
441 | unsigned int multiplier; | |
442 | ||
443 | if (copy_from_user(&multiplier, buf, sizeof(int))) | |
444 | return -EFAULT; | |
445 | ||
446 | if (setup_profiling_timer(multiplier)) | |
447 | return -EINVAL; | |
448 | } | |
449 | #endif | |
450 | profile_discard_flip_buffers(); | |
451 | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | |
452 | return count; | |
453 | } | |
454 | ||
97a32539 AD |
455 | static const struct proc_ops profile_proc_ops = { |
456 | .proc_read = read_profile, | |
457 | .proc_write = write_profile, | |
458 | .proc_lseek = default_llseek, | |
1da177e4 LT |
459 | }; |
460 | ||
e722d8da | 461 | int __ref create_proc_profile(void) |
1da177e4 | 462 | { |
e722d8da SAS |
463 | struct proc_dir_entry *entry; |
464 | #ifdef CONFIG_SMP | |
465 | enum cpuhp_state online_state; | |
1da177e4 LT |
466 | #endif |
467 | ||
c270a817 | 468 | int err = 0; |
1da177e4 LT |
469 | |
470 | if (!prof_on) | |
471 | return 0; | |
e722d8da SAS |
472 | #ifdef CONFIG_SMP |
473 | err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", | |
474 | profile_prepare_cpu, profile_dead_cpu); | |
475 | if (err) | |
476 | return err; | |
477 | ||
478 | err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", | |
479 | profile_online_cpu, NULL); | |
480 | if (err < 0) | |
481 | goto err_state_prep; | |
482 | online_state = err; | |
483 | err = 0; | |
484 | #endif | |
c33fff0a | 485 | entry = proc_create("profile", S_IWUSR | S_IRUGO, |
97a32539 | 486 | NULL, &profile_proc_ops); |
1ad82fd5 | 487 | if (!entry) |
e722d8da | 488 | goto err_state_onl; |
271a15ea | 489 | proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); |
c270a817 | 490 | |
e722d8da SAS |
491 | return err; |
492 | err_state_onl: | |
493 | #ifdef CONFIG_SMP | |
494 | cpuhp_remove_state(online_state); | |
495 | err_state_prep: | |
496 | cpuhp_remove_state(CPUHP_PROFILE_PREPARE); | |
497 | #endif | |
c270a817 | 498 | return err; |
1da177e4 | 499 | } |
c96d6660 | 500 | subsys_initcall(create_proc_profile); |
1da177e4 | 501 | #endif /* CONFIG_PROC_FS */ |