]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/kernel/profile.c | |
4 | * Simple profiling. Manages a direct-mapped profile hit count buffer, | |
5 | * with configurable resolution, support for restricting the cpus on | |
6 | * which profiling is done, and switching between cpu time and | |
7 | * schedule() calls via kernel command line parameters passed at boot. | |
8 | * | |
9 | * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | |
10 | * Red Hat, July 2004 | |
11 | * Consolidation of architecture support code for profiling, | |
6d49e352 | 12 | * Nadia Yvette Chambers, Oracle, July 2004 |
1da177e4 | 13 | * Amortized hit count accounting via per-cpu open-addressed hashtables |
6d49e352 NYC |
14 | * to resolve timer interrupt livelocks, Nadia Yvette Chambers, |
15 | * Oracle, 2004 | |
1da177e4 LT |
16 | */ |
17 | ||
9984de1a | 18 | #include <linux/export.h> |
1da177e4 | 19 | #include <linux/profile.h> |
57c8a661 | 20 | #include <linux/memblock.h> |
1da177e4 LT |
21 | #include <linux/notifier.h> |
22 | #include <linux/mm.h> | |
23 | #include <linux/cpumask.h> | |
24 | #include <linux/cpu.h> | |
1da177e4 | 25 | #include <linux/highmem.h> |
97d1f15b | 26 | #include <linux/mutex.h> |
22b8ce94 DH |
27 | #include <linux/slab.h> |
28 | #include <linux/vmalloc.h> | |
3905f9ad IM |
29 | #include <linux/sched/stat.h> |
30 | ||
1da177e4 | 31 | #include <asm/sections.h> |
7d12e780 | 32 | #include <asm/irq_regs.h> |
e8edc6e0 | 33 | #include <asm/ptrace.h> |
1da177e4 LT |
34 | |
35 | struct profile_hit { | |
36 | u32 pc, hits; | |
37 | }; | |
38 | #define PROFILE_GRPSHIFT 3 | |
39 | #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) | |
40 | #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) | |
41 | #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) | |
42 | ||
1da177e4 LT |
43 | static atomic_t *prof_buffer; |
44 | static unsigned long prof_len, prof_shift; | |
07031e14 | 45 | |
ece8a684 | 46 | int prof_on __read_mostly; |
07031e14 IM |
47 | EXPORT_SYMBOL_GPL(prof_on); |
48 | ||
c309b917 | 49 | static cpumask_var_t prof_cpu_mask; |
ade356b9 | 50 | #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) |
1da177e4 LT |
51 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); |
52 | static DEFINE_PER_CPU(int, cpu_profile_flip); | |
97d1f15b | 53 | static DEFINE_MUTEX(profile_flip_mutex); |
1da177e4 LT |
54 | #endif /* CONFIG_SMP */ |
55 | ||
22b8ce94 | 56 | int profile_setup(char *str) |
1da177e4 | 57 | { |
f3da64d1 FF |
58 | static const char schedstr[] = "schedule"; |
59 | static const char sleepstr[] = "sleep"; | |
60 | static const char kvmstr[] = "kvm"; | |
1da177e4 LT |
61 | int par; |
62 | ||
ece8a684 | 63 | if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
b3da2a73 | 64 | #ifdef CONFIG_SCHEDSTATS |
cb251765 | 65 | force_schedstat_enabled(); |
ece8a684 IM |
66 | prof_on = SLEEP_PROFILING; |
67 | if (str[strlen(sleepstr)] == ',') | |
68 | str += strlen(sleepstr) + 1; | |
69 | if (get_option(&str, &par)) | |
70 | prof_shift = par; | |
aba871f1 | 71 | pr_info("kernel sleep profiling enabled (shift: %ld)\n", |
ece8a684 | 72 | prof_shift); |
b3da2a73 | 73 | #else |
aba871f1 | 74 | pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); |
b3da2a73 | 75 | #endif /* CONFIG_SCHEDSTATS */ |
a75acf85 | 76 | } else if (!strncmp(str, schedstr, strlen(schedstr))) { |
1da177e4 | 77 | prof_on = SCHED_PROFILING; |
dfaa9c94 NYC |
78 | if (str[strlen(schedstr)] == ',') |
79 | str += strlen(schedstr) + 1; | |
80 | if (get_option(&str, &par)) | |
81 | prof_shift = par; | |
aba871f1 | 82 | pr_info("kernel schedule profiling enabled (shift: %ld)\n", |
dfaa9c94 | 83 | prof_shift); |
07031e14 IM |
84 | } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { |
85 | prof_on = KVM_PROFILING; | |
86 | if (str[strlen(kvmstr)] == ',') | |
87 | str += strlen(kvmstr) + 1; | |
88 | if (get_option(&str, &par)) | |
89 | prof_shift = par; | |
aba871f1 | 90 | pr_info("kernel KVM profiling enabled (shift: %ld)\n", |
07031e14 | 91 | prof_shift); |
dfaa9c94 | 92 | } else if (get_option(&str, &par)) { |
1da177e4 LT |
93 | prof_shift = par; |
94 | prof_on = CPU_PROFILING; | |
aba871f1 | 95 | pr_info("kernel profiling enabled (shift: %ld)\n", |
1da177e4 LT |
96 | prof_shift); |
97 | } | |
98 | return 1; | |
99 | } | |
100 | __setup("profile=", profile_setup); | |
101 | ||
102 | ||
ce05fcc3 | 103 | int __ref profile_init(void) |
1da177e4 | 104 | { |
22b8ce94 | 105 | int buffer_bytes; |
1ad82fd5 | 106 | if (!prof_on) |
22b8ce94 | 107 | return 0; |
1ad82fd5 | 108 | |
1da177e4 LT |
109 | /* only text is profiled */ |
110 | prof_len = (_etext - _stext) >> prof_shift; | |
22b8ce94 | 111 | buffer_bytes = prof_len*sizeof(atomic_t); |
22b8ce94 | 112 | |
c309b917 RR |
113 | if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) |
114 | return -ENOMEM; | |
115 | ||
acd89579 HD |
116 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
117 | ||
b62f495d | 118 | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); |
22b8ce94 DH |
119 | if (prof_buffer) |
120 | return 0; | |
121 | ||
b62f495d MG |
122 | prof_buffer = alloc_pages_exact(buffer_bytes, |
123 | GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); | |
22b8ce94 DH |
124 | if (prof_buffer) |
125 | return 0; | |
126 | ||
559fa6e7 JJ |
127 | prof_buffer = vzalloc(buffer_bytes); |
128 | if (prof_buffer) | |
22b8ce94 DH |
129 | return 0; |
130 | ||
c309b917 | 131 | free_cpumask_var(prof_cpu_mask); |
22b8ce94 | 132 | return -ENOMEM; |
1da177e4 LT |
133 | } |
134 | ||
135 | /* Profile event notifications */ | |
1ad82fd5 | 136 | |
e041c683 AS |
137 | static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); |
138 | static ATOMIC_NOTIFIER_HEAD(task_free_notifier); | |
139 | static BLOCKING_NOTIFIER_HEAD(munmap_notifier); | |
1ad82fd5 PC |
140 | |
141 | void profile_task_exit(struct task_struct *task) | |
1da177e4 | 142 | { |
e041c683 | 143 | blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
1da177e4 | 144 | } |
1ad82fd5 PC |
145 | |
146 | int profile_handoff_task(struct task_struct *task) | |
1da177e4 LT |
147 | { |
148 | int ret; | |
e041c683 | 149 | ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
1da177e4 LT |
150 | return (ret == NOTIFY_OK) ? 1 : 0; |
151 | } | |
152 | ||
153 | void profile_munmap(unsigned long addr) | |
154 | { | |
e041c683 | 155 | blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
1da177e4 LT |
156 | } |
157 | ||
1ad82fd5 | 158 | int task_handoff_register(struct notifier_block *n) |
1da177e4 | 159 | { |
e041c683 | 160 | return atomic_notifier_chain_register(&task_free_notifier, n); |
1da177e4 | 161 | } |
1ad82fd5 | 162 | EXPORT_SYMBOL_GPL(task_handoff_register); |
1da177e4 | 163 | |
1ad82fd5 | 164 | int task_handoff_unregister(struct notifier_block *n) |
1da177e4 | 165 | { |
e041c683 | 166 | return atomic_notifier_chain_unregister(&task_free_notifier, n); |
1da177e4 | 167 | } |
1ad82fd5 | 168 | EXPORT_SYMBOL_GPL(task_handoff_unregister); |
1da177e4 | 169 | |
1ad82fd5 | 170 | int profile_event_register(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
171 | { |
172 | int err = -EINVAL; | |
1ad82fd5 | 173 | |
1da177e4 | 174 | switch (type) { |
1ad82fd5 PC |
175 | case PROFILE_TASK_EXIT: |
176 | err = blocking_notifier_chain_register( | |
177 | &task_exit_notifier, n); | |
178 | break; | |
179 | case PROFILE_MUNMAP: | |
180 | err = blocking_notifier_chain_register( | |
181 | &munmap_notifier, n); | |
182 | break; | |
1da177e4 | 183 | } |
1ad82fd5 | 184 | |
1da177e4 LT |
185 | return err; |
186 | } | |
1ad82fd5 | 187 | EXPORT_SYMBOL_GPL(profile_event_register); |
1da177e4 | 188 | |
1ad82fd5 | 189 | int profile_event_unregister(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
190 | { |
191 | int err = -EINVAL; | |
1ad82fd5 | 192 | |
1da177e4 | 193 | switch (type) { |
1ad82fd5 PC |
194 | case PROFILE_TASK_EXIT: |
195 | err = blocking_notifier_chain_unregister( | |
196 | &task_exit_notifier, n); | |
197 | break; | |
198 | case PROFILE_MUNMAP: | |
199 | err = blocking_notifier_chain_unregister( | |
200 | &munmap_notifier, n); | |
201 | break; | |
1da177e4 LT |
202 | } |
203 | ||
1da177e4 LT |
204 | return err; |
205 | } | |
1ad82fd5 | 206 | EXPORT_SYMBOL_GPL(profile_event_unregister); |
1da177e4 | 207 | |
ade356b9 | 208 | #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) |
1da177e4 LT |
209 | /* |
210 | * Each cpu has a pair of open-addressed hashtables for pending | |
211 | * profile hits. read_profile() IPI's all cpus to request them | |
212 | * to flip buffers and flushes their contents to prof_buffer itself. | |
213 | * Flip requests are serialized by the profile_flip_mutex. The sole | |
214 | * use of having a second hashtable is for avoiding cacheline | |
215 | * contention that would otherwise happen during flushes of pending | |
216 | * profile hits required for the accuracy of reported profile hits | |
217 | * and so resurrect the interrupt livelock issue. | |
218 | * | |
219 | * The open-addressed hashtables are indexed by profile buffer slot | |
220 | * and hold the number of pending hits to that profile buffer slot on | |
221 | * a cpu in an entry. When the hashtable overflows, all pending hits | |
222 | * are accounted to their corresponding profile buffer slots with | |
223 | * atomic_add() and the hashtable emptied. As numerous pending hits | |
224 | * may be accounted to a profile buffer slot in a hashtable entry, | |
225 | * this amortizes a number of atomic profile buffer increments likely | |
226 | * to be far larger than the number of entries in the hashtable, | |
227 | * particularly given that the number of distinct profile buffer | |
228 | * positions to which hits are accounted during short intervals (e.g. | |
229 | * several seconds) is usually very small. Exclusion from buffer | |
230 | * flipping is provided by interrupt disablement (note that for | |
ece8a684 IM |
231 | * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from |
232 | * process context). | |
1da177e4 LT |
233 | * The hash function is meant to be lightweight as opposed to strong, |
234 | * and was vaguely inspired by ppc64 firmware-supported inverted | |
235 | * pagetable hash functions, but uses a full hashtable full of finite | |
236 | * collision chains, not just pairs of them. | |
237 | * | |
6d49e352 | 238 | * -- nyc |
1da177e4 LT |
239 | */ |
240 | static void __profile_flip_buffers(void *unused) | |
241 | { | |
242 | int cpu = smp_processor_id(); | |
243 | ||
244 | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | |
245 | } | |
246 | ||
247 | static void profile_flip_buffers(void) | |
248 | { | |
249 | int i, j, cpu; | |
250 | ||
97d1f15b | 251 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
252 | j = per_cpu(cpu_profile_flip, get_cpu()); |
253 | put_cpu(); | |
15c8b6c1 | 254 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
255 | for_each_online_cpu(cpu) { |
256 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | |
257 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | |
258 | if (!hits[i].hits) { | |
259 | if (hits[i].pc) | |
260 | hits[i].pc = 0; | |
261 | continue; | |
262 | } | |
263 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
264 | hits[i].hits = hits[i].pc = 0; | |
265 | } | |
266 | } | |
97d1f15b | 267 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
268 | } |
269 | ||
270 | static void profile_discard_flip_buffers(void) | |
271 | { | |
272 | int i, cpu; | |
273 | ||
97d1f15b | 274 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
275 | i = per_cpu(cpu_profile_flip, get_cpu()); |
276 | put_cpu(); | |
15c8b6c1 | 277 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
278 | for_each_online_cpu(cpu) { |
279 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | |
280 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | |
281 | } | |
97d1f15b | 282 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
283 | } |
284 | ||
6f7bd76f | 285 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
286 | { |
287 | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | |
288 | int i, j, cpu; | |
289 | struct profile_hit *hits; | |
290 | ||
1da177e4 LT |
291 | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); |
292 | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
293 | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
294 | cpu = get_cpu(); | |
295 | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | |
296 | if (!hits) { | |
297 | put_cpu(); | |
298 | return; | |
299 | } | |
ece8a684 IM |
300 | /* |
301 | * We buffer the global profiler buffer into a per-CPU | |
302 | * queue and thus reduce the number of global (and possibly | |
303 | * NUMA-alien) accesses. The write-queue is self-coalescing: | |
304 | */ | |
1da177e4 LT |
305 | local_irq_save(flags); |
306 | do { | |
307 | for (j = 0; j < PROFILE_GRPSZ; ++j) { | |
308 | if (hits[i + j].pc == pc) { | |
ece8a684 | 309 | hits[i + j].hits += nr_hits; |
1da177e4 LT |
310 | goto out; |
311 | } else if (!hits[i + j].hits) { | |
312 | hits[i + j].pc = pc; | |
ece8a684 | 313 | hits[i + j].hits = nr_hits; |
1da177e4 LT |
314 | goto out; |
315 | } | |
316 | } | |
317 | i = (i + secondary) & (NR_PROFILE_HIT - 1); | |
318 | } while (i != primary); | |
ece8a684 IM |
319 | |
320 | /* | |
321 | * Add the current hit(s) and flush the write-queue out | |
322 | * to the global buffer: | |
323 | */ | |
324 | atomic_add(nr_hits, &prof_buffer[pc]); | |
1da177e4 LT |
325 | for (i = 0; i < NR_PROFILE_HIT; ++i) { |
326 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
327 | hits[i].pc = hits[i].hits = 0; | |
328 | } | |
329 | out: | |
330 | local_irq_restore(flags); | |
331 | put_cpu(); | |
332 | } | |
333 | ||
e722d8da | 334 | static int profile_dead_cpu(unsigned int cpu) |
1da177e4 | 335 | { |
1da177e4 | 336 | struct page *page; |
e722d8da | 337 | int i; |
1da177e4 | 338 | |
ef70eff9 | 339 | if (cpumask_available(prof_cpu_mask)) |
e722d8da SAS |
340 | cpumask_clear_cpu(cpu, prof_cpu_mask); |
341 | ||
342 | for (i = 0; i < 2; i++) { | |
343 | if (per_cpu(cpu_profile_hits, cpu)[i]) { | |
344 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); | |
345 | per_cpu(cpu_profile_hits, cpu)[i] = NULL; | |
1da177e4 LT |
346 | __free_page(page); |
347 | } | |
e722d8da SAS |
348 | } |
349 | return 0; | |
350 | } | |
351 | ||
352 | static int profile_prepare_cpu(unsigned int cpu) | |
353 | { | |
354 | int i, node = cpu_to_mem(cpu); | |
355 | struct page *page; | |
356 | ||
357 | per_cpu(cpu_profile_flip, cpu) = 0; | |
358 | ||
359 | for (i = 0; i < 2; i++) { | |
360 | if (per_cpu(cpu_profile_hits, cpu)[i]) | |
361 | continue; | |
362 | ||
363 | page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | |
364 | if (!page) { | |
365 | profile_dead_cpu(cpu); | |
366 | return -ENOMEM; | |
1da177e4 | 367 | } |
e722d8da SAS |
368 | per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); |
369 | ||
1da177e4 | 370 | } |
e722d8da SAS |
371 | return 0; |
372 | } | |
373 | ||
374 | static int profile_online_cpu(unsigned int cpu) | |
375 | { | |
ef70eff9 | 376 | if (cpumask_available(prof_cpu_mask)) |
e722d8da SAS |
377 | cpumask_set_cpu(cpu, prof_cpu_mask); |
378 | ||
379 | return 0; | |
1da177e4 | 380 | } |
e722d8da | 381 | |
1da177e4 LT |
382 | #else /* !CONFIG_SMP */ |
383 | #define profile_flip_buffers() do { } while (0) | |
384 | #define profile_discard_flip_buffers() do { } while (0) | |
385 | ||
6f7bd76f | 386 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
387 | { |
388 | unsigned long pc; | |
1da177e4 | 389 | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; |
ece8a684 | 390 | atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
1da177e4 LT |
391 | } |
392 | #endif /* !CONFIG_SMP */ | |
6f7bd76f RM |
393 | |
394 | void profile_hits(int type, void *__pc, unsigned int nr_hits) | |
395 | { | |
396 | if (prof_on != type || !prof_buffer) | |
397 | return; | |
398 | do_profile_hits(type, __pc, nr_hits); | |
399 | } | |
bbe1a59b AM |
400 | EXPORT_SYMBOL_GPL(profile_hits); |
401 | ||
7d12e780 | 402 | void profile_tick(int type) |
1da177e4 | 403 | { |
7d12e780 DH |
404 | struct pt_regs *regs = get_irq_regs(); |
405 | ||
ef70eff9 | 406 | if (!user_mode(regs) && cpumask_available(prof_cpu_mask) && |
c309b917 | 407 | cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) |
1da177e4 LT |
408 | profile_hit(type, (void *)profile_pc(regs)); |
409 | } | |
410 | ||
411 | #ifdef CONFIG_PROC_FS | |
412 | #include <linux/proc_fs.h> | |
583a22e7 | 413 | #include <linux/seq_file.h> |
7c0f6ba6 | 414 | #include <linux/uaccess.h> |
1da177e4 | 415 | |
583a22e7 | 416 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
1da177e4 | 417 | { |
ccbd59c1 | 418 | seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); |
583a22e7 AD |
419 | return 0; |
420 | } | |
421 | ||
422 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) | |
423 | { | |
424 | return single_open(file, prof_cpu_mask_proc_show, NULL); | |
1da177e4 LT |
425 | } |
426 | ||
583a22e7 AD |
427 | static ssize_t prof_cpu_mask_proc_write(struct file *file, |
428 | const char __user *buffer, size_t count, loff_t *pos) | |
1da177e4 | 429 | { |
c309b917 | 430 | cpumask_var_t new_value; |
583a22e7 | 431 | int err; |
1da177e4 | 432 | |
c309b917 RR |
433 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
434 | return -ENOMEM; | |
1da177e4 | 435 | |
c309b917 RR |
436 | err = cpumask_parse_user(buffer, count, new_value); |
437 | if (!err) { | |
583a22e7 AD |
438 | cpumask_copy(prof_cpu_mask, new_value); |
439 | err = count; | |
c309b917 RR |
440 | } |
441 | free_cpumask_var(new_value); | |
442 | return err; | |
1da177e4 LT |
443 | } |
444 | ||
97a32539 AD |
445 | static const struct proc_ops prof_cpu_mask_proc_ops = { |
446 | .proc_open = prof_cpu_mask_proc_open, | |
447 | .proc_read = seq_read, | |
448 | .proc_lseek = seq_lseek, | |
449 | .proc_release = single_release, | |
450 | .proc_write = prof_cpu_mask_proc_write, | |
583a22e7 AD |
451 | }; |
452 | ||
fbd387ae | 453 | void create_prof_cpu_mask(void) |
1da177e4 | 454 | { |
1da177e4 | 455 | /* create /proc/irq/prof_cpu_mask */ |
97a32539 | 456 | proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops); |
1da177e4 LT |
457 | } |
458 | ||
459 | /* | |
460 | * This function accesses profiling information. The returned data is | |
461 | * binary: the sampling step and the actual contents of the profile | |
462 | * buffer. Use of the program readprofile is recommended in order to | |
463 | * get meaningful info out of these data. | |
464 | */ | |
465 | static ssize_t | |
466 | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | |
467 | { | |
468 | unsigned long p = *ppos; | |
469 | ssize_t read; | |
1ad82fd5 | 470 | char *pnt; |
1da177e4 LT |
471 | unsigned int sample_step = 1 << prof_shift; |
472 | ||
473 | profile_flip_buffers(); | |
474 | if (p >= (prof_len+1)*sizeof(unsigned int)) | |
475 | return 0; | |
476 | if (count > (prof_len+1)*sizeof(unsigned int) - p) | |
477 | count = (prof_len+1)*sizeof(unsigned int) - p; | |
478 | read = 0; | |
479 | ||
480 | while (p < sizeof(unsigned int) && count > 0) { | |
1ad82fd5 | 481 | if (put_user(*((char *)(&sample_step)+p), buf)) |
064b022c | 482 | return -EFAULT; |
1da177e4 LT |
483 | buf++; p++; count--; read++; |
484 | } | |
485 | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | |
1ad82fd5 | 486 | if (copy_to_user(buf, (void *)pnt, count)) |
1da177e4 LT |
487 | return -EFAULT; |
488 | read += count; | |
489 | *ppos += read; | |
490 | return read; | |
491 | } | |
492 | ||
493 | /* | |
494 | * Writing to /proc/profile resets the counters | |
495 | * | |
496 | * Writing a 'profiling multiplier' value into it also re-sets the profiling | |
497 | * interrupt frequency, on architectures that support this. | |
498 | */ | |
499 | static ssize_t write_profile(struct file *file, const char __user *buf, | |
500 | size_t count, loff_t *ppos) | |
501 | { | |
502 | #ifdef CONFIG_SMP | |
1ad82fd5 | 503 | extern int setup_profiling_timer(unsigned int multiplier); |
1da177e4 LT |
504 | |
505 | if (count == sizeof(int)) { | |
506 | unsigned int multiplier; | |
507 | ||
508 | if (copy_from_user(&multiplier, buf, sizeof(int))) | |
509 | return -EFAULT; | |
510 | ||
511 | if (setup_profiling_timer(multiplier)) | |
512 | return -EINVAL; | |
513 | } | |
514 | #endif | |
515 | profile_discard_flip_buffers(); | |
516 | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | |
517 | return count; | |
518 | } | |
519 | ||
97a32539 AD |
520 | static const struct proc_ops profile_proc_ops = { |
521 | .proc_read = read_profile, | |
522 | .proc_write = write_profile, | |
523 | .proc_lseek = default_llseek, | |
1da177e4 LT |
524 | }; |
525 | ||
e722d8da | 526 | int __ref create_proc_profile(void) |
1da177e4 | 527 | { |
e722d8da SAS |
528 | struct proc_dir_entry *entry; |
529 | #ifdef CONFIG_SMP | |
530 | enum cpuhp_state online_state; | |
1da177e4 LT |
531 | #endif |
532 | ||
c270a817 | 533 | int err = 0; |
1da177e4 LT |
534 | |
535 | if (!prof_on) | |
536 | return 0; | |
e722d8da SAS |
537 | #ifdef CONFIG_SMP |
538 | err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", | |
539 | profile_prepare_cpu, profile_dead_cpu); | |
540 | if (err) | |
541 | return err; | |
542 | ||
543 | err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", | |
544 | profile_online_cpu, NULL); | |
545 | if (err < 0) | |
546 | goto err_state_prep; | |
547 | online_state = err; | |
548 | err = 0; | |
549 | #endif | |
c33fff0a | 550 | entry = proc_create("profile", S_IWUSR | S_IRUGO, |
97a32539 | 551 | NULL, &profile_proc_ops); |
1ad82fd5 | 552 | if (!entry) |
e722d8da | 553 | goto err_state_onl; |
271a15ea | 554 | proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); |
c270a817 | 555 | |
e722d8da SAS |
556 | return err; |
557 | err_state_onl: | |
558 | #ifdef CONFIG_SMP | |
559 | cpuhp_remove_state(online_state); | |
560 | err_state_prep: | |
561 | cpuhp_remove_state(CPUHP_PROFILE_PREPARE); | |
562 | #endif | |
c270a817 | 563 | return err; |
1da177e4 | 564 | } |
c96d6660 | 565 | subsys_initcall(create_proc_profile); |
1da177e4 | 566 | #endif /* CONFIG_PROC_FS */ |