]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Dynamic DMA mapping support. | |
3 | * | |
563aaf06 | 4 | * This implementation is a fallback for platforms that do not support |
1da177e4 LT |
5 | * I/O TLBs (aka DMA address translation hardware). |
6 | * Copyright (C) 2000 Asit Mallick <[email protected]> | |
7 | * Copyright (C) 2000 Goutham Rao <[email protected]> | |
8 | * Copyright (C) 2000, 2003 Hewlett-Packard Co | |
9 | * David Mosberger-Tang <[email protected]> | |
10 | * | |
11 | * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. | |
12 | * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid | |
13 | * unnecessary i-cache flushing. | |
569c8bf5 JL |
14 | * 04/07/.. ak Better overflow handling. Assorted fixes. |
15 | * 05/09/10 linville Add support for syncing ranges, support syncing for | |
16 | * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | |
fb05a379 | 17 | * 08/12/11 beckyb Add highmem support |
1da177e4 LT |
18 | */ |
19 | ||
20 | #include <linux/cache.h> | |
17e5ad6c | 21 | #include <linux/dma-mapping.h> |
1da177e4 LT |
22 | #include <linux/mm.h> |
23 | #include <linux/module.h> | |
1da177e4 LT |
24 | #include <linux/spinlock.h> |
25 | #include <linux/string.h> | |
0016fdee | 26 | #include <linux/swiotlb.h> |
fb05a379 | 27 | #include <linux/pfn.h> |
1da177e4 LT |
28 | #include <linux/types.h> |
29 | #include <linux/ctype.h> | |
ef9b1893 | 30 | #include <linux/highmem.h> |
1da177e4 LT |
31 | |
32 | #include <asm/io.h> | |
1da177e4 | 33 | #include <asm/dma.h> |
17e5ad6c | 34 | #include <asm/scatterlist.h> |
1da177e4 LT |
35 | |
36 | #include <linux/init.h> | |
37 | #include <linux/bootmem.h> | |
a8522509 | 38 | #include <linux/iommu-helper.h> |
1da177e4 LT |
39 | |
40 | #define OFFSET(val,align) ((unsigned long) \ | |
41 | ( (val) & ( (align) - 1))) | |
42 | ||
0b9afede AW |
43 | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) |
44 | ||
45 | /* | |
46 | * Minimum IO TLB size to bother booting with. Systems with mainly | |
47 | * 64bit capable cards will only lightly use the swiotlb. If we can't | |
48 | * allocate a contiguous 1MB, we're probably in trouble anyway. | |
49 | */ | |
50 | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | |
51 | ||
de69e0f0 JL |
52 | /* |
53 | * Enumeration for sync targets | |
54 | */ | |
55 | enum dma_sync_target { | |
56 | SYNC_FOR_CPU = 0, | |
57 | SYNC_FOR_DEVICE = 1, | |
58 | }; | |
59 | ||
1da177e4 LT |
60 | int swiotlb_force; |
61 | ||
62 | /* | |
ceb5ac32 BB |
63 | * Used to do a quick range check in unmap_single and |
64 | * sync_single_*, to see if the memory was in fact allocated by this | |
1da177e4 LT |
65 | * API. |
66 | */ | |
67 | static char *io_tlb_start, *io_tlb_end; | |
68 | ||
69 | /* | |
70 | * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and | |
71 | * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. | |
72 | */ | |
73 | static unsigned long io_tlb_nslabs; | |
74 | ||
75 | /* | |
76 | * When the IOMMU overflows we return a fallback buffer. This sets the size. | |
77 | */ | |
78 | static unsigned long io_tlb_overflow = 32*1024; | |
79 | ||
80 | void *io_tlb_overflow_buffer; | |
81 | ||
82 | /* | |
83 | * This is a free list describing the number of free entries available from | |
84 | * each index | |
85 | */ | |
86 | static unsigned int *io_tlb_list; | |
87 | static unsigned int io_tlb_index; | |
88 | ||
89 | /* | |
90 | * We need to save away the original address corresponding to a mapped entry | |
91 | * for the sync operations. | |
92 | */ | |
bc40ac66 | 93 | static phys_addr_t *io_tlb_orig_addr; |
1da177e4 LT |
94 | |
95 | /* | |
96 | * Protect the above data structures in the map and unmap calls | |
97 | */ | |
98 | static DEFINE_SPINLOCK(io_tlb_lock); | |
99 | ||
100 | static int __init | |
101 | setup_io_tlb_npages(char *str) | |
102 | { | |
103 | if (isdigit(*str)) { | |
e8579e72 | 104 | io_tlb_nslabs = simple_strtoul(str, &str, 0); |
1da177e4 LT |
105 | /* avoid tail segment of size < IO_TLB_SEGSIZE */ |
106 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
107 | } | |
108 | if (*str == ',') | |
109 | ++str; | |
110 | if (!strcmp(str, "force")) | |
111 | swiotlb_force = 1; | |
112 | return 1; | |
113 | } | |
114 | __setup("swiotlb=", setup_io_tlb_npages); | |
115 | /* make io_tlb_overflow tunable too? */ | |
116 | ||
79ff56eb | 117 | void * __weak __init swiotlb_alloc_boot(size_t size, unsigned long nslabs) |
8c5df16b JF |
118 | { |
119 | return alloc_bootmem_low_pages(size); | |
120 | } | |
121 | ||
122 | void * __weak swiotlb_alloc(unsigned order, unsigned long nslabs) | |
123 | { | |
124 | return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order); | |
125 | } | |
126 | ||
70a7d3cc | 127 | dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr) |
e08e1f7a IC |
128 | { |
129 | return paddr; | |
130 | } | |
131 | ||
42d7c5e3 | 132 | phys_addr_t __weak swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr) |
e08e1f7a IC |
133 | { |
134 | return baddr; | |
135 | } | |
136 | ||
70a7d3cc JF |
137 | static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev, |
138 | volatile void *address) | |
e08e1f7a | 139 | { |
70a7d3cc | 140 | return swiotlb_phys_to_bus(hwdev, virt_to_phys(address)); |
e08e1f7a IC |
141 | } |
142 | ||
42d7c5e3 | 143 | void * __weak swiotlb_bus_to_virt(struct device *hwdev, dma_addr_t address) |
e08e1f7a | 144 | { |
42d7c5e3 | 145 | return phys_to_virt(swiotlb_bus_to_phys(hwdev, address)); |
e08e1f7a IC |
146 | } |
147 | ||
ef5722f6 BB |
148 | int __weak swiotlb_arch_address_needs_mapping(struct device *hwdev, |
149 | dma_addr_t addr, size_t size) | |
150 | { | |
151 | return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size); | |
152 | } | |
153 | ||
0b8698ab | 154 | int __weak swiotlb_arch_range_needs_mapping(phys_addr_t paddr, size_t size) |
b81ea27b IC |
155 | { |
156 | return 0; | |
157 | } | |
158 | ||
2e5b2b86 IC |
159 | static void swiotlb_print_info(unsigned long bytes) |
160 | { | |
161 | phys_addr_t pstart, pend; | |
2e5b2b86 IC |
162 | |
163 | pstart = virt_to_phys(io_tlb_start); | |
164 | pend = virt_to_phys(io_tlb_end); | |
165 | ||
2e5b2b86 IC |
166 | printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n", |
167 | bytes >> 20, io_tlb_start, io_tlb_end); | |
70a7d3cc JF |
168 | printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n", |
169 | (unsigned long long)pstart, | |
170 | (unsigned long long)pend); | |
2e5b2b86 IC |
171 | } |
172 | ||
1da177e4 LT |
173 | /* |
174 | * Statically reserve bounce buffer space and initialize bounce buffer data | |
17e5ad6c | 175 | * structures for the software IO TLB used to implement the DMA API. |
1da177e4 | 176 | */ |
563aaf06 JB |
177 | void __init |
178 | swiotlb_init_with_default_size(size_t default_size) | |
1da177e4 | 179 | { |
563aaf06 | 180 | unsigned long i, bytes; |
1da177e4 LT |
181 | |
182 | if (!io_tlb_nslabs) { | |
e8579e72 | 183 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); |
1da177e4 LT |
184 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); |
185 | } | |
186 | ||
563aaf06 JB |
187 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
188 | ||
1da177e4 LT |
189 | /* |
190 | * Get IO TLB memory from the low pages | |
191 | */ | |
8c5df16b | 192 | io_tlb_start = swiotlb_alloc_boot(bytes, io_tlb_nslabs); |
1da177e4 LT |
193 | if (!io_tlb_start) |
194 | panic("Cannot allocate SWIOTLB buffer"); | |
563aaf06 | 195 | io_tlb_end = io_tlb_start + bytes; |
1da177e4 LT |
196 | |
197 | /* | |
198 | * Allocate and initialize the free list array. This array is used | |
199 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
200 | * between io_tlb_start and io_tlb_end. | |
201 | */ | |
202 | io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int)); | |
25667d67 | 203 | for (i = 0; i < io_tlb_nslabs; i++) |
1da177e4 LT |
204 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); |
205 | io_tlb_index = 0; | |
bc40ac66 | 206 | io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t)); |
1da177e4 LT |
207 | |
208 | /* | |
209 | * Get the overflow emergency buffer | |
210 | */ | |
211 | io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow); | |
563aaf06 JB |
212 | if (!io_tlb_overflow_buffer) |
213 | panic("Cannot allocate SWIOTLB overflow buffer!\n"); | |
214 | ||
2e5b2b86 | 215 | swiotlb_print_info(bytes); |
1da177e4 LT |
216 | } |
217 | ||
563aaf06 JB |
218 | void __init |
219 | swiotlb_init(void) | |
1da177e4 | 220 | { |
25667d67 | 221 | swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */ |
1da177e4 LT |
222 | } |
223 | ||
0b9afede AW |
224 | /* |
225 | * Systems with larger DMA zones (those that don't support ISA) can | |
226 | * initialize the swiotlb later using the slab allocator if needed. | |
227 | * This should be just like above, but with some error catching. | |
228 | */ | |
229 | int | |
563aaf06 | 230 | swiotlb_late_init_with_default_size(size_t default_size) |
0b9afede | 231 | { |
563aaf06 | 232 | unsigned long i, bytes, req_nslabs = io_tlb_nslabs; |
0b9afede AW |
233 | unsigned int order; |
234 | ||
235 | if (!io_tlb_nslabs) { | |
236 | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | |
237 | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | |
238 | } | |
239 | ||
240 | /* | |
241 | * Get IO TLB memory from the low pages | |
242 | */ | |
563aaf06 | 243 | order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); |
0b9afede | 244 | io_tlb_nslabs = SLABS_PER_PAGE << order; |
563aaf06 | 245 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
0b9afede AW |
246 | |
247 | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | |
8c5df16b | 248 | io_tlb_start = swiotlb_alloc(order, io_tlb_nslabs); |
0b9afede AW |
249 | if (io_tlb_start) |
250 | break; | |
251 | order--; | |
252 | } | |
253 | ||
254 | if (!io_tlb_start) | |
255 | goto cleanup1; | |
256 | ||
563aaf06 | 257 | if (order != get_order(bytes)) { |
0b9afede AW |
258 | printk(KERN_WARNING "Warning: only able to allocate %ld MB " |
259 | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | |
260 | io_tlb_nslabs = SLABS_PER_PAGE << order; | |
563aaf06 | 261 | bytes = io_tlb_nslabs << IO_TLB_SHIFT; |
0b9afede | 262 | } |
563aaf06 JB |
263 | io_tlb_end = io_tlb_start + bytes; |
264 | memset(io_tlb_start, 0, bytes); | |
0b9afede AW |
265 | |
266 | /* | |
267 | * Allocate and initialize the free list array. This array is used | |
268 | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | |
269 | * between io_tlb_start and io_tlb_end. | |
270 | */ | |
271 | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | |
272 | get_order(io_tlb_nslabs * sizeof(int))); | |
273 | if (!io_tlb_list) | |
274 | goto cleanup2; | |
275 | ||
276 | for (i = 0; i < io_tlb_nslabs; i++) | |
277 | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | |
278 | io_tlb_index = 0; | |
279 | ||
bc40ac66 BB |
280 | io_tlb_orig_addr = (phys_addr_t *) |
281 | __get_free_pages(GFP_KERNEL, | |
282 | get_order(io_tlb_nslabs * | |
283 | sizeof(phys_addr_t))); | |
0b9afede AW |
284 | if (!io_tlb_orig_addr) |
285 | goto cleanup3; | |
286 | ||
bc40ac66 | 287 | memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t)); |
0b9afede AW |
288 | |
289 | /* | |
290 | * Get the overflow emergency buffer | |
291 | */ | |
292 | io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | |
293 | get_order(io_tlb_overflow)); | |
294 | if (!io_tlb_overflow_buffer) | |
295 | goto cleanup4; | |
296 | ||
2e5b2b86 | 297 | swiotlb_print_info(bytes); |
0b9afede AW |
298 | |
299 | return 0; | |
300 | ||
301 | cleanup4: | |
bc40ac66 BB |
302 | free_pages((unsigned long)io_tlb_orig_addr, |
303 | get_order(io_tlb_nslabs * sizeof(phys_addr_t))); | |
0b9afede AW |
304 | io_tlb_orig_addr = NULL; |
305 | cleanup3: | |
25667d67 TL |
306 | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * |
307 | sizeof(int))); | |
0b9afede | 308 | io_tlb_list = NULL; |
0b9afede | 309 | cleanup2: |
563aaf06 | 310 | io_tlb_end = NULL; |
0b9afede AW |
311 | free_pages((unsigned long)io_tlb_start, order); |
312 | io_tlb_start = NULL; | |
313 | cleanup1: | |
314 | io_tlb_nslabs = req_nslabs; | |
315 | return -ENOMEM; | |
316 | } | |
317 | ||
ef5722f6 | 318 | static inline int |
2797982e | 319 | address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size) |
1da177e4 | 320 | { |
ef5722f6 | 321 | return swiotlb_arch_address_needs_mapping(hwdev, addr, size); |
1da177e4 LT |
322 | } |
323 | ||
0b8698ab | 324 | static inline int range_needs_mapping(phys_addr_t paddr, size_t size) |
b81ea27b | 325 | { |
0b8698ab | 326 | return swiotlb_force || swiotlb_arch_range_needs_mapping(paddr, size); |
b81ea27b IC |
327 | } |
328 | ||
640aebfe FT |
329 | static int is_swiotlb_buffer(char *addr) |
330 | { | |
331 | return addr >= io_tlb_start && addr < io_tlb_end; | |
332 | } | |
333 | ||
fb05a379 BB |
334 | /* |
335 | * Bounce: copy the swiotlb buffer back to the original dma location | |
336 | */ | |
337 | static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size, | |
338 | enum dma_data_direction dir) | |
339 | { | |
340 | unsigned long pfn = PFN_DOWN(phys); | |
341 | ||
342 | if (PageHighMem(pfn_to_page(pfn))) { | |
343 | /* The buffer does not have a mapping. Map it in and copy */ | |
344 | unsigned int offset = phys & ~PAGE_MASK; | |
345 | char *buffer; | |
346 | unsigned int sz = 0; | |
347 | unsigned long flags; | |
348 | ||
349 | while (size) { | |
67131ad0 | 350 | sz = min_t(size_t, PAGE_SIZE - offset, size); |
fb05a379 BB |
351 | |
352 | local_irq_save(flags); | |
353 | buffer = kmap_atomic(pfn_to_page(pfn), | |
354 | KM_BOUNCE_READ); | |
355 | if (dir == DMA_TO_DEVICE) | |
356 | memcpy(dma_addr, buffer + offset, sz); | |
ef9b1893 | 357 | else |
fb05a379 BB |
358 | memcpy(buffer + offset, dma_addr, sz); |
359 | kunmap_atomic(buffer, KM_BOUNCE_READ); | |
ef9b1893 | 360 | local_irq_restore(flags); |
fb05a379 BB |
361 | |
362 | size -= sz; | |
363 | pfn++; | |
364 | dma_addr += sz; | |
365 | offset = 0; | |
ef9b1893 JF |
366 | } |
367 | } else { | |
ef9b1893 | 368 | if (dir == DMA_TO_DEVICE) |
fb05a379 | 369 | memcpy(dma_addr, phys_to_virt(phys), size); |
ef9b1893 | 370 | else |
fb05a379 | 371 | memcpy(phys_to_virt(phys), dma_addr, size); |
ef9b1893 | 372 | } |
1b548f66 JF |
373 | } |
374 | ||
1da177e4 LT |
375 | /* |
376 | * Allocates bounce buffer and returns its kernel virtual address. | |
377 | */ | |
378 | static void * | |
bc40ac66 | 379 | map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir) |
1da177e4 LT |
380 | { |
381 | unsigned long flags; | |
382 | char *dma_addr; | |
383 | unsigned int nslots, stride, index, wrap; | |
384 | int i; | |
681cc5cd FT |
385 | unsigned long start_dma_addr; |
386 | unsigned long mask; | |
387 | unsigned long offset_slots; | |
388 | unsigned long max_slots; | |
389 | ||
390 | mask = dma_get_seg_boundary(hwdev); | |
70a7d3cc | 391 | start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask; |
681cc5cd FT |
392 | |
393 | offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
a5ddde4a IC |
394 | |
395 | /* | |
396 | * Carefully handle integer overflow which can occur when mask == ~0UL. | |
397 | */ | |
b15a3891 JB |
398 | max_slots = mask + 1 |
399 | ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT | |
400 | : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); | |
1da177e4 LT |
401 | |
402 | /* | |
403 | * For mappings greater than a page, we limit the stride (and | |
404 | * hence alignment) to a page size. | |
405 | */ | |
406 | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
407 | if (size > PAGE_SIZE) | |
408 | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | |
409 | else | |
410 | stride = 1; | |
411 | ||
34814545 | 412 | BUG_ON(!nslots); |
1da177e4 LT |
413 | |
414 | /* | |
415 | * Find suitable number of IO TLB entries size that will fit this | |
416 | * request and allocate a buffer from that IO TLB pool. | |
417 | */ | |
418 | spin_lock_irqsave(&io_tlb_lock, flags); | |
a7133a15 AM |
419 | index = ALIGN(io_tlb_index, stride); |
420 | if (index >= io_tlb_nslabs) | |
421 | index = 0; | |
422 | wrap = index; | |
423 | ||
424 | do { | |
a8522509 FT |
425 | while (iommu_is_span_boundary(index, nslots, offset_slots, |
426 | max_slots)) { | |
b15a3891 JB |
427 | index += stride; |
428 | if (index >= io_tlb_nslabs) | |
429 | index = 0; | |
a7133a15 AM |
430 | if (index == wrap) |
431 | goto not_found; | |
432 | } | |
433 | ||
434 | /* | |
435 | * If we find a slot that indicates we have 'nslots' number of | |
436 | * contiguous buffers, we allocate the buffers from that slot | |
437 | * and mark the entries as '0' indicating unavailable. | |
438 | */ | |
439 | if (io_tlb_list[index] >= nslots) { | |
440 | int count = 0; | |
441 | ||
442 | for (i = index; i < (int) (index + nslots); i++) | |
443 | io_tlb_list[i] = 0; | |
444 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) | |
445 | io_tlb_list[i] = ++count; | |
446 | dma_addr = io_tlb_start + (index << IO_TLB_SHIFT); | |
1da177e4 | 447 | |
a7133a15 AM |
448 | /* |
449 | * Update the indices to avoid searching in the next | |
450 | * round. | |
451 | */ | |
452 | io_tlb_index = ((index + nslots) < io_tlb_nslabs | |
453 | ? (index + nslots) : 0); | |
454 | ||
455 | goto found; | |
456 | } | |
457 | index += stride; | |
458 | if (index >= io_tlb_nslabs) | |
459 | index = 0; | |
460 | } while (index != wrap); | |
461 | ||
462 | not_found: | |
463 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
464 | return NULL; | |
465 | found: | |
1da177e4 LT |
466 | spin_unlock_irqrestore(&io_tlb_lock, flags); |
467 | ||
468 | /* | |
469 | * Save away the mapping from the original address to the DMA address. | |
470 | * This is needed when we sync the memory. Then we sync the buffer if | |
471 | * needed. | |
472 | */ | |
bc40ac66 BB |
473 | for (i = 0; i < nslots; i++) |
474 | io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT); | |
1da177e4 | 475 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) |
fb05a379 | 476 | swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE); |
1da177e4 LT |
477 | |
478 | return dma_addr; | |
479 | } | |
480 | ||
481 | /* | |
482 | * dma_addr is the kernel virtual address of the bounce buffer to unmap. | |
483 | */ | |
484 | static void | |
7fcebbd2 | 485 | do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir) |
1da177e4 LT |
486 | { |
487 | unsigned long flags; | |
488 | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | |
489 | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | |
bc40ac66 | 490 | phys_addr_t phys = io_tlb_orig_addr[index]; |
1da177e4 LT |
491 | |
492 | /* | |
493 | * First, sync the memory before unmapping the entry | |
494 | */ | |
bc40ac66 | 495 | if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) |
fb05a379 | 496 | swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE); |
1da177e4 LT |
497 | |
498 | /* | |
499 | * Return the buffer to the free list by setting the corresponding | |
500 | * entries to indicate the number of contigous entries available. | |
501 | * While returning the entries to the free list, we merge the entries | |
502 | * with slots below and above the pool being returned. | |
503 | */ | |
504 | spin_lock_irqsave(&io_tlb_lock, flags); | |
505 | { | |
506 | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | |
507 | io_tlb_list[index + nslots] : 0); | |
508 | /* | |
509 | * Step 1: return the slots to the free list, merging the | |
510 | * slots with superceeding slots | |
511 | */ | |
512 | for (i = index + nslots - 1; i >= index; i--) | |
513 | io_tlb_list[i] = ++count; | |
514 | /* | |
515 | * Step 2: merge the returned slots with the preceding slots, | |
516 | * if available (non zero) | |
517 | */ | |
518 | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | |
519 | io_tlb_list[i] = ++count; | |
520 | } | |
521 | spin_unlock_irqrestore(&io_tlb_lock, flags); | |
522 | } | |
523 | ||
524 | static void | |
de69e0f0 JL |
525 | sync_single(struct device *hwdev, char *dma_addr, size_t size, |
526 | int dir, int target) | |
1da177e4 | 527 | { |
bc40ac66 BB |
528 | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; |
529 | phys_addr_t phys = io_tlb_orig_addr[index]; | |
530 | ||
531 | phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1)); | |
df336d1c | 532 | |
de69e0f0 JL |
533 | switch (target) { |
534 | case SYNC_FOR_CPU: | |
535 | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
fb05a379 | 536 | swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE); |
34814545 ES |
537 | else |
538 | BUG_ON(dir != DMA_TO_DEVICE); | |
de69e0f0 JL |
539 | break; |
540 | case SYNC_FOR_DEVICE: | |
541 | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | |
fb05a379 | 542 | swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE); |
34814545 ES |
543 | else |
544 | BUG_ON(dir != DMA_FROM_DEVICE); | |
de69e0f0 JL |
545 | break; |
546 | default: | |
1da177e4 | 547 | BUG(); |
de69e0f0 | 548 | } |
1da177e4 LT |
549 | } |
550 | ||
551 | void * | |
552 | swiotlb_alloc_coherent(struct device *hwdev, size_t size, | |
06a54497 | 553 | dma_addr_t *dma_handle, gfp_t flags) |
1da177e4 | 554 | { |
563aaf06 | 555 | dma_addr_t dev_addr; |
1da177e4 LT |
556 | void *ret; |
557 | int order = get_order(size); | |
284901a9 | 558 | u64 dma_mask = DMA_BIT_MASK(32); |
1e74f300 FT |
559 | |
560 | if (hwdev && hwdev->coherent_dma_mask) | |
561 | dma_mask = hwdev->coherent_dma_mask; | |
1da177e4 | 562 | |
25667d67 | 563 | ret = (void *)__get_free_pages(flags, order); |
70a7d3cc JF |
564 | if (ret && |
565 | !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret), | |
566 | size)) { | |
1da177e4 LT |
567 | /* |
568 | * The allocated memory isn't reachable by the device. | |
1da177e4 LT |
569 | */ |
570 | free_pages((unsigned long) ret, order); | |
571 | ret = NULL; | |
572 | } | |
573 | if (!ret) { | |
574 | /* | |
575 | * We are either out of memory or the device can't DMA | |
ceb5ac32 BB |
576 | * to GFP_DMA memory; fall back on map_single(), which |
577 | * will grab memory from the lowest available address range. | |
1da177e4 | 578 | */ |
bc40ac66 | 579 | ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE); |
9dfda12b | 580 | if (!ret) |
1da177e4 | 581 | return NULL; |
1da177e4 LT |
582 | } |
583 | ||
584 | memset(ret, 0, size); | |
70a7d3cc | 585 | dev_addr = swiotlb_virt_to_bus(hwdev, ret); |
1da177e4 LT |
586 | |
587 | /* Confirm address can be DMA'd by device */ | |
1e74f300 | 588 | if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) { |
563aaf06 | 589 | printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", |
1e74f300 | 590 | (unsigned long long)dma_mask, |
563aaf06 | 591 | (unsigned long long)dev_addr); |
a2b89b59 FT |
592 | |
593 | /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ | |
7fcebbd2 | 594 | do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE); |
a2b89b59 | 595 | return NULL; |
1da177e4 LT |
596 | } |
597 | *dma_handle = dev_addr; | |
598 | return ret; | |
599 | } | |
874d6a95 | 600 | EXPORT_SYMBOL(swiotlb_alloc_coherent); |
1da177e4 LT |
601 | |
602 | void | |
603 | swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | |
604 | dma_addr_t dma_handle) | |
605 | { | |
aa24886e | 606 | WARN_ON(irqs_disabled()); |
640aebfe | 607 | if (!is_swiotlb_buffer(vaddr)) |
1da177e4 LT |
608 | free_pages((unsigned long) vaddr, get_order(size)); |
609 | else | |
610 | /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ | |
7fcebbd2 | 611 | do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE); |
1da177e4 | 612 | } |
874d6a95 | 613 | EXPORT_SYMBOL(swiotlb_free_coherent); |
1da177e4 LT |
614 | |
615 | static void | |
616 | swiotlb_full(struct device *dev, size_t size, int dir, int do_panic) | |
617 | { | |
618 | /* | |
619 | * Ran out of IOMMU space for this operation. This is very bad. | |
620 | * Unfortunately the drivers cannot handle this operation properly. | |
17e5ad6c | 621 | * unless they check for dma_mapping_error (most don't) |
1da177e4 LT |
622 | * When the mapping is small enough return a static buffer to limit |
623 | * the damage, or panic when the transfer is too big. | |
624 | */ | |
563aaf06 | 625 | printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at " |
94b32486 | 626 | "device %s\n", size, dev ? dev_name(dev) : "?"); |
1da177e4 LT |
627 | |
628 | if (size > io_tlb_overflow && do_panic) { | |
17e5ad6c TL |
629 | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) |
630 | panic("DMA: Memory would be corrupted\n"); | |
631 | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) | |
632 | panic("DMA: Random memory would be DMAed\n"); | |
1da177e4 LT |
633 | } |
634 | } | |
635 | ||
636 | /* | |
637 | * Map a single buffer of the indicated size for DMA in streaming mode. The | |
17e5ad6c | 638 | * physical address to use is returned. |
1da177e4 LT |
639 | * |
640 | * Once the device is given the dma address, the device owns this memory until | |
ceb5ac32 | 641 | * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. |
1da177e4 | 642 | */ |
f98eee8e FT |
643 | dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, |
644 | unsigned long offset, size_t size, | |
645 | enum dma_data_direction dir, | |
646 | struct dma_attrs *attrs) | |
1da177e4 | 647 | { |
f98eee8e | 648 | phys_addr_t phys = page_to_phys(page) + offset; |
f98eee8e | 649 | dma_addr_t dev_addr = swiotlb_phys_to_bus(dev, phys); |
1da177e4 LT |
650 | void *map; |
651 | ||
34814545 | 652 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 653 | /* |
ceb5ac32 | 654 | * If the address happens to be in the device's DMA window, |
1da177e4 LT |
655 | * we can safely return the device addr and not worry about bounce |
656 | * buffering it. | |
657 | */ | |
f98eee8e | 658 | if (!address_needs_mapping(dev, dev_addr, size) && |
dd6b02fe | 659 | !range_needs_mapping(phys, size)) |
1da177e4 LT |
660 | return dev_addr; |
661 | ||
662 | /* | |
663 | * Oh well, have to allocate and map a bounce buffer. | |
664 | */ | |
f98eee8e | 665 | map = map_single(dev, phys, size, dir); |
1da177e4 | 666 | if (!map) { |
f98eee8e | 667 | swiotlb_full(dev, size, dir, 1); |
1da177e4 LT |
668 | map = io_tlb_overflow_buffer; |
669 | } | |
670 | ||
f98eee8e | 671 | dev_addr = swiotlb_virt_to_bus(dev, map); |
1da177e4 LT |
672 | |
673 | /* | |
674 | * Ensure that the address returned is DMA'ble | |
675 | */ | |
f98eee8e | 676 | if (address_needs_mapping(dev, dev_addr, size)) |
1da177e4 LT |
677 | panic("map_single: bounce buffer is not DMA'ble"); |
678 | ||
679 | return dev_addr; | |
680 | } | |
f98eee8e | 681 | EXPORT_SYMBOL_GPL(swiotlb_map_page); |
1da177e4 | 682 | |
1da177e4 LT |
683 | /* |
684 | * Unmap a single streaming mode DMA translation. The dma_addr and size must | |
ceb5ac32 | 685 | * match what was provided for in a previous swiotlb_map_page call. All |
1da177e4 LT |
686 | * other usages are undefined. |
687 | * | |
688 | * After this call, reads by the cpu to the buffer are guaranteed to see | |
689 | * whatever the device wrote there. | |
690 | */ | |
7fcebbd2 BB |
691 | static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, |
692 | size_t size, int dir) | |
1da177e4 | 693 | { |
42d7c5e3 | 694 | char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr); |
1da177e4 | 695 | |
34814545 | 696 | BUG_ON(dir == DMA_NONE); |
7fcebbd2 BB |
697 | |
698 | if (is_swiotlb_buffer(dma_addr)) { | |
699 | do_unmap_single(hwdev, dma_addr, size, dir); | |
700 | return; | |
701 | } | |
702 | ||
703 | if (dir != DMA_FROM_DEVICE) | |
704 | return; | |
705 | ||
706 | dma_mark_clean(dma_addr, size); | |
707 | } | |
708 | ||
709 | void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, | |
710 | size_t size, enum dma_data_direction dir, | |
711 | struct dma_attrs *attrs) | |
712 | { | |
713 | unmap_single(hwdev, dev_addr, size, dir); | |
1da177e4 | 714 | } |
f98eee8e | 715 | EXPORT_SYMBOL_GPL(swiotlb_unmap_page); |
874d6a95 | 716 | |
1da177e4 LT |
717 | /* |
718 | * Make physical memory consistent for a single streaming mode DMA translation | |
719 | * after a transfer. | |
720 | * | |
ceb5ac32 | 721 | * If you perform a swiotlb_map_page() but wish to interrogate the buffer |
17e5ad6c TL |
722 | * using the cpu, yet do not wish to teardown the dma mapping, you must |
723 | * call this function before doing so. At the next point you give the dma | |
1da177e4 LT |
724 | * address back to the card, you must first perform a |
725 | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | |
726 | */ | |
be6b0267 | 727 | static void |
8270f3f1 | 728 | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, |
de69e0f0 | 729 | size_t size, int dir, int target) |
1da177e4 | 730 | { |
42d7c5e3 | 731 | char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr); |
1da177e4 | 732 | |
34814545 | 733 | BUG_ON(dir == DMA_NONE); |
380d6878 BB |
734 | |
735 | if (is_swiotlb_buffer(dma_addr)) { | |
de69e0f0 | 736 | sync_single(hwdev, dma_addr, size, dir, target); |
380d6878 BB |
737 | return; |
738 | } | |
739 | ||
740 | if (dir != DMA_FROM_DEVICE) | |
741 | return; | |
742 | ||
743 | dma_mark_clean(dma_addr, size); | |
1da177e4 LT |
744 | } |
745 | ||
8270f3f1 JL |
746 | void |
747 | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 748 | size_t size, enum dma_data_direction dir) |
8270f3f1 | 749 | { |
de69e0f0 | 750 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); |
8270f3f1 | 751 | } |
874d6a95 | 752 | EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); |
8270f3f1 | 753 | |
1da177e4 LT |
754 | void |
755 | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e | 756 | size_t size, enum dma_data_direction dir) |
1da177e4 | 757 | { |
de69e0f0 | 758 | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); |
1da177e4 | 759 | } |
874d6a95 | 760 | EXPORT_SYMBOL(swiotlb_sync_single_for_device); |
1da177e4 | 761 | |
878a97cf JL |
762 | /* |
763 | * Same as above, but for a sub-range of the mapping. | |
764 | */ | |
be6b0267 | 765 | static void |
878a97cf | 766 | swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr, |
de69e0f0 JL |
767 | unsigned long offset, size_t size, |
768 | int dir, int target) | |
878a97cf | 769 | { |
380d6878 | 770 | swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target); |
878a97cf JL |
771 | } |
772 | ||
773 | void | |
774 | swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e FT |
775 | unsigned long offset, size_t size, |
776 | enum dma_data_direction dir) | |
878a97cf | 777 | { |
de69e0f0 JL |
778 | swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, |
779 | SYNC_FOR_CPU); | |
878a97cf | 780 | } |
874d6a95 | 781 | EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu); |
878a97cf JL |
782 | |
783 | void | |
784 | swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr, | |
160c1d8e FT |
785 | unsigned long offset, size_t size, |
786 | enum dma_data_direction dir) | |
878a97cf | 787 | { |
de69e0f0 JL |
788 | swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, |
789 | SYNC_FOR_DEVICE); | |
878a97cf | 790 | } |
874d6a95 | 791 | EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device); |
878a97cf | 792 | |
1da177e4 LT |
793 | /* |
794 | * Map a set of buffers described by scatterlist in streaming mode for DMA. | |
ceb5ac32 | 795 | * This is the scatter-gather version of the above swiotlb_map_page |
1da177e4 LT |
796 | * interface. Here the scatter gather list elements are each tagged with the |
797 | * appropriate dma address and length. They are obtained via | |
798 | * sg_dma_{address,length}(SG). | |
799 | * | |
800 | * NOTE: An implementation may be able to use a smaller number of | |
801 | * DMA address/length pairs than there are SG table elements. | |
802 | * (for example via virtual mapping capabilities) | |
803 | * The routine returns the number of addr/length pairs actually | |
804 | * used, at most nents. | |
805 | * | |
ceb5ac32 | 806 | * Device ownership issues as mentioned above for swiotlb_map_page are the |
1da177e4 LT |
807 | * same here. |
808 | */ | |
809 | int | |
309df0c5 | 810 | swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, |
160c1d8e | 811 | enum dma_data_direction dir, struct dma_attrs *attrs) |
1da177e4 | 812 | { |
dbfd49fe | 813 | struct scatterlist *sg; |
1da177e4 LT |
814 | int i; |
815 | ||
34814545 | 816 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 817 | |
dbfd49fe | 818 | for_each_sg(sgl, sg, nelems, i) { |
961d7d0e IC |
819 | phys_addr_t paddr = sg_phys(sg); |
820 | dma_addr_t dev_addr = swiotlb_phys_to_bus(hwdev, paddr); | |
bc40ac66 | 821 | |
961d7d0e | 822 | if (range_needs_mapping(paddr, sg->length) || |
2797982e | 823 | address_needs_mapping(hwdev, dev_addr, sg->length)) { |
bc40ac66 BB |
824 | void *map = map_single(hwdev, sg_phys(sg), |
825 | sg->length, dir); | |
7e870233 | 826 | if (!map) { |
1da177e4 LT |
827 | /* Don't panic here, we expect map_sg users |
828 | to do proper error handling. */ | |
829 | swiotlb_full(hwdev, sg->length, dir, 0); | |
309df0c5 AK |
830 | swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, |
831 | attrs); | |
dbfd49fe | 832 | sgl[0].dma_length = 0; |
1da177e4 LT |
833 | return 0; |
834 | } | |
70a7d3cc | 835 | sg->dma_address = swiotlb_virt_to_bus(hwdev, map); |
1da177e4 LT |
836 | } else |
837 | sg->dma_address = dev_addr; | |
838 | sg->dma_length = sg->length; | |
839 | } | |
840 | return nelems; | |
841 | } | |
309df0c5 AK |
842 | EXPORT_SYMBOL(swiotlb_map_sg_attrs); |
843 | ||
844 | int | |
845 | swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | |
846 | int dir) | |
847 | { | |
848 | return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL); | |
849 | } | |
874d6a95 | 850 | EXPORT_SYMBOL(swiotlb_map_sg); |
1da177e4 LT |
851 | |
852 | /* | |
853 | * Unmap a set of streaming mode DMA translations. Again, cpu read rules | |
ceb5ac32 | 854 | * concerning calls here are the same as for swiotlb_unmap_page() above. |
1da177e4 LT |
855 | */ |
856 | void | |
309df0c5 | 857 | swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, |
160c1d8e | 858 | int nelems, enum dma_data_direction dir, struct dma_attrs *attrs) |
1da177e4 | 859 | { |
dbfd49fe | 860 | struct scatterlist *sg; |
1da177e4 LT |
861 | int i; |
862 | ||
34814545 | 863 | BUG_ON(dir == DMA_NONE); |
1da177e4 | 864 | |
7fcebbd2 BB |
865 | for_each_sg(sgl, sg, nelems, i) |
866 | unmap_single(hwdev, sg->dma_address, sg->dma_length, dir); | |
867 | ||
1da177e4 | 868 | } |
309df0c5 AK |
869 | EXPORT_SYMBOL(swiotlb_unmap_sg_attrs); |
870 | ||
871 | void | |
872 | swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems, | |
873 | int dir) | |
874 | { | |
875 | return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL); | |
876 | } | |
874d6a95 | 877 | EXPORT_SYMBOL(swiotlb_unmap_sg); |
1da177e4 LT |
878 | |
879 | /* | |
880 | * Make physical memory consistent for a set of streaming mode DMA translations | |
881 | * after a transfer. | |
882 | * | |
883 | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | |
884 | * and usage. | |
885 | */ | |
be6b0267 | 886 | static void |
dbfd49fe | 887 | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, |
de69e0f0 | 888 | int nelems, int dir, int target) |
1da177e4 | 889 | { |
dbfd49fe | 890 | struct scatterlist *sg; |
1da177e4 LT |
891 | int i; |
892 | ||
380d6878 BB |
893 | for_each_sg(sgl, sg, nelems, i) |
894 | swiotlb_sync_single(hwdev, sg->dma_address, | |
de69e0f0 | 895 | sg->dma_length, dir, target); |
1da177e4 LT |
896 | } |
897 | ||
8270f3f1 JL |
898 | void |
899 | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 900 | int nelems, enum dma_data_direction dir) |
8270f3f1 | 901 | { |
de69e0f0 | 902 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); |
8270f3f1 | 903 | } |
874d6a95 | 904 | EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); |
8270f3f1 | 905 | |
1da177e4 LT |
906 | void |
907 | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | |
160c1d8e | 908 | int nelems, enum dma_data_direction dir) |
1da177e4 | 909 | { |
de69e0f0 | 910 | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); |
1da177e4 | 911 | } |
874d6a95 | 912 | EXPORT_SYMBOL(swiotlb_sync_sg_for_device); |
1da177e4 LT |
913 | |
914 | int | |
8d8bb39b | 915 | swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) |
1da177e4 | 916 | { |
70a7d3cc | 917 | return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer)); |
1da177e4 | 918 | } |
874d6a95 | 919 | EXPORT_SYMBOL(swiotlb_dma_mapping_error); |
1da177e4 LT |
920 | |
921 | /* | |
17e5ad6c | 922 | * Return whether the given device DMA address mask can be supported |
1da177e4 | 923 | * properly. For example, if your device can only drive the low 24-bits |
17e5ad6c | 924 | * during bus mastering, then you would pass 0x00ffffff as the mask to |
1da177e4 LT |
925 | * this function. |
926 | */ | |
927 | int | |
563aaf06 | 928 | swiotlb_dma_supported(struct device *hwdev, u64 mask) |
1da177e4 | 929 | { |
70a7d3cc | 930 | return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask; |
1da177e4 | 931 | } |
1da177e4 | 932 | EXPORT_SYMBOL(swiotlb_dma_supported); |