]>
Commit | Line | Data |
---|---|---|
cf4a7207 CW |
1 | #define pr_fmt(fmt) "prime numbers: " fmt "\n" |
2 | ||
3 | #include <linux/module.h> | |
4 | #include <linux/mutex.h> | |
5 | #include <linux/prime_numbers.h> | |
6 | #include <linux/slab.h> | |
7 | ||
8 | #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) | |
9 | ||
10 | struct primes { | |
11 | struct rcu_head rcu; | |
12 | unsigned long last, sz; | |
13 | unsigned long primes[]; | |
14 | }; | |
15 | ||
16 | #if BITS_PER_LONG == 64 | |
17 | static const struct primes small_primes = { | |
18 | .last = 61, | |
19 | .sz = 64, | |
20 | .primes = { | |
21 | BIT(2) | | |
22 | BIT(3) | | |
23 | BIT(5) | | |
24 | BIT(7) | | |
25 | BIT(11) | | |
26 | BIT(13) | | |
27 | BIT(17) | | |
28 | BIT(19) | | |
29 | BIT(23) | | |
30 | BIT(29) | | |
31 | BIT(31) | | |
32 | BIT(37) | | |
33 | BIT(41) | | |
34 | BIT(43) | | |
35 | BIT(47) | | |
36 | BIT(53) | | |
37 | BIT(59) | | |
38 | BIT(61) | |
39 | } | |
40 | }; | |
41 | #elif BITS_PER_LONG == 32 | |
42 | static const struct primes small_primes = { | |
43 | .last = 31, | |
44 | .sz = 32, | |
45 | .primes = { | |
46 | BIT(2) | | |
47 | BIT(3) | | |
48 | BIT(5) | | |
49 | BIT(7) | | |
50 | BIT(11) | | |
51 | BIT(13) | | |
52 | BIT(17) | | |
53 | BIT(19) | | |
54 | BIT(23) | | |
55 | BIT(29) | | |
56 | BIT(31) | |
57 | } | |
58 | }; | |
59 | #else | |
60 | #error "unhandled BITS_PER_LONG" | |
61 | #endif | |
62 | ||
63 | static DEFINE_MUTEX(lock); | |
64 | static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); | |
65 | ||
66 | static unsigned long selftest_max; | |
67 | ||
68 | static bool slow_is_prime_number(unsigned long x) | |
69 | { | |
70 | unsigned long y = int_sqrt(x); | |
71 | ||
72 | while (y > 1) { | |
73 | if ((x % y) == 0) | |
74 | break; | |
75 | y--; | |
76 | } | |
77 | ||
78 | return y == 1; | |
79 | } | |
80 | ||
81 | static unsigned long slow_next_prime_number(unsigned long x) | |
82 | { | |
83 | while (x < ULONG_MAX && !slow_is_prime_number(++x)) | |
84 | ; | |
85 | ||
86 | return x; | |
87 | } | |
88 | ||
89 | static unsigned long clear_multiples(unsigned long x, | |
90 | unsigned long *p, | |
91 | unsigned long start, | |
92 | unsigned long end) | |
93 | { | |
94 | unsigned long m; | |
95 | ||
96 | m = 2 * x; | |
97 | if (m < start) | |
98 | m = roundup(start, x); | |
99 | ||
100 | while (m < end) { | |
101 | __clear_bit(m, p); | |
102 | m += x; | |
103 | } | |
104 | ||
105 | return x; | |
106 | } | |
107 | ||
108 | static bool expand_to_next_prime(unsigned long x) | |
109 | { | |
110 | const struct primes *p; | |
111 | struct primes *new; | |
112 | unsigned long sz, y; | |
113 | ||
114 | /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, | |
115 | * there is always at least one prime p between n and 2n - 2. | |
116 | * Equivalently, if n > 1, then there is always at least one prime p | |
117 | * such that n < p < 2n. | |
118 | * | |
119 | * http://mathworld.wolfram.com/BertrandsPostulate.html | |
120 | * https://en.wikipedia.org/wiki/Bertrand's_postulate | |
121 | */ | |
122 | sz = 2 * x; | |
123 | if (sz < x) | |
124 | return false; | |
125 | ||
126 | sz = round_up(sz, BITS_PER_LONG); | |
717c8ae7 CW |
127 | new = kmalloc(sizeof(*new) + bitmap_size(sz), |
128 | GFP_KERNEL | __GFP_NOWARN); | |
cf4a7207 CW |
129 | if (!new) |
130 | return false; | |
131 | ||
132 | mutex_lock(&lock); | |
133 | p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | |
134 | if (x < p->last) { | |
135 | kfree(new); | |
136 | goto unlock; | |
137 | } | |
138 | ||
139 | /* Where memory permits, track the primes using the | |
140 | * Sieve of Eratosthenes. The sieve is to remove all multiples of known | |
141 | * primes from the set, what remains in the set is therefore prime. | |
142 | */ | |
143 | bitmap_fill(new->primes, sz); | |
144 | bitmap_copy(new->primes, p->primes, p->sz); | |
145 | for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) | |
146 | new->last = clear_multiples(y, new->primes, p->sz, sz); | |
147 | new->sz = sz; | |
148 | ||
149 | BUG_ON(new->last <= x); | |
150 | ||
151 | rcu_assign_pointer(primes, new); | |
152 | if (p != &small_primes) | |
153 | kfree_rcu((struct primes *)p, rcu); | |
154 | ||
155 | unlock: | |
156 | mutex_unlock(&lock); | |
157 | return true; | |
158 | } | |
159 | ||
160 | static void free_primes(void) | |
161 | { | |
162 | const struct primes *p; | |
163 | ||
164 | mutex_lock(&lock); | |
165 | p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | |
166 | if (p != &small_primes) { | |
167 | rcu_assign_pointer(primes, &small_primes); | |
168 | kfree_rcu((struct primes *)p, rcu); | |
169 | } | |
170 | mutex_unlock(&lock); | |
171 | } | |
172 | ||
173 | /** | |
174 | * next_prime_number - return the next prime number | |
175 | * @x: the starting point for searching to test | |
176 | * | |
177 | * A prime number is an integer greater than 1 that is only divisible by | |
178 | * itself and 1. The set of prime numbers is computed using the Sieve of | |
179 | * Eratoshenes (on finding a prime, all multiples of that prime are removed | |
180 | * from the set) enabling a fast lookup of the next prime number larger than | |
181 | * @x. If the sieve fails (memory limitation), the search falls back to using | |
182 | * slow trial-divison, up to the value of ULONG_MAX (which is reported as the | |
183 | * final prime as a sentinel). | |
184 | * | |
185 | * Returns: the next prime number larger than @x | |
186 | */ | |
187 | unsigned long next_prime_number(unsigned long x) | |
188 | { | |
189 | const struct primes *p; | |
190 | ||
191 | rcu_read_lock(); | |
192 | p = rcu_dereference(primes); | |
193 | while (x >= p->last) { | |
194 | rcu_read_unlock(); | |
195 | ||
196 | if (!expand_to_next_prime(x)) | |
197 | return slow_next_prime_number(x); | |
198 | ||
199 | rcu_read_lock(); | |
200 | p = rcu_dereference(primes); | |
201 | } | |
202 | x = find_next_bit(p->primes, p->last, x + 1); | |
203 | rcu_read_unlock(); | |
204 | ||
205 | return x; | |
206 | } | |
207 | EXPORT_SYMBOL(next_prime_number); | |
208 | ||
209 | /** | |
210 | * is_prime_number - test whether the given number is prime | |
211 | * @x: the number to test | |
212 | * | |
213 | * A prime number is an integer greater than 1 that is only divisible by | |
214 | * itself and 1. Internally a cache of prime numbers is kept (to speed up | |
215 | * searching for sequential primes, see next_prime_number()), but if the number | |
216 | * falls outside of that cache, its primality is tested using trial-divison. | |
217 | * | |
218 | * Returns: true if @x is prime, false for composite numbers. | |
219 | */ | |
220 | bool is_prime_number(unsigned long x) | |
221 | { | |
222 | const struct primes *p; | |
223 | bool result; | |
224 | ||
225 | rcu_read_lock(); | |
226 | p = rcu_dereference(primes); | |
227 | while (x >= p->sz) { | |
228 | rcu_read_unlock(); | |
229 | ||
230 | if (!expand_to_next_prime(x)) | |
231 | return slow_is_prime_number(x); | |
232 | ||
233 | rcu_read_lock(); | |
234 | p = rcu_dereference(primes); | |
235 | } | |
236 | result = test_bit(x, p->primes); | |
237 | rcu_read_unlock(); | |
238 | ||
239 | return result; | |
240 | } | |
241 | EXPORT_SYMBOL(is_prime_number); | |
242 | ||
243 | static void dump_primes(void) | |
244 | { | |
245 | const struct primes *p; | |
246 | char *buf; | |
247 | ||
248 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | |
249 | ||
250 | rcu_read_lock(); | |
251 | p = rcu_dereference(primes); | |
252 | ||
253 | if (buf) | |
254 | bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); | |
255 | pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", | |
256 | p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); | |
257 | ||
258 | rcu_read_unlock(); | |
259 | ||
260 | kfree(buf); | |
261 | } | |
262 | ||
263 | static int selftest(unsigned long max) | |
264 | { | |
265 | unsigned long x, last; | |
266 | ||
267 | if (!max) | |
268 | return 0; | |
269 | ||
270 | for (last = 0, x = 2; x < max; x++) { | |
271 | bool slow = slow_is_prime_number(x); | |
272 | bool fast = is_prime_number(x); | |
273 | ||
274 | if (slow != fast) { | |
275 | pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", | |
276 | x, slow ? "yes" : "no", fast ? "yes" : "no"); | |
277 | goto err; | |
278 | } | |
279 | ||
280 | if (!slow) | |
281 | continue; | |
282 | ||
283 | if (next_prime_number(last) != x) { | |
284 | pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", | |
285 | last, x, next_prime_number(last)); | |
286 | goto err; | |
287 | } | |
288 | last = x; | |
289 | } | |
290 | ||
291 | pr_info("selftest(%lu) passed, last prime was %lu", x, last); | |
292 | return 0; | |
293 | ||
294 | err: | |
295 | dump_primes(); | |
296 | return -EINVAL; | |
297 | } | |
298 | ||
299 | static int __init primes_init(void) | |
300 | { | |
301 | return selftest(selftest_max); | |
302 | } | |
303 | ||
304 | static void __exit primes_exit(void) | |
305 | { | |
306 | free_primes(); | |
307 | } | |
308 | ||
309 | module_init(primes_init); | |
310 | module_exit(primes_exit); | |
311 | ||
312 | module_param_named(selftest, selftest_max, ulong, 0400); | |
313 | ||
314 | MODULE_AUTHOR("Intel Corporation"); | |
315 | MODULE_LICENSE("GPL"); |