]> Git Repo - linux.git/blame - mm/vmscan.c
mmc: sdhci-pci-o2micro: Improve card input timing at SDR104/HS200 mode
[linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
1da177e4 59
0f8053a5
NP
60#include "internal.h"
61
33906bc5
MG
62#define CREATE_TRACE_POINTS
63#include <trace/events/vmscan.h>
64
1da177e4 65struct scan_control {
22fba335
KM
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
ee814fe2
JW
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
9e3b2f8c 74
f16015fb
JW
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
66e1707b 80
7cf111bc
JW
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
b91ac374
JW
87 /* Can active pages be deactivated as part of reclaim? */
88#define DEACTIVATE_ANON 1
89#define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
1276ad68 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
d6622f63 103 /*
f56ce412
JW
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
241994ed 113
ee814fe2
JW
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
b91ac374
JW
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
53138cea
JW
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
26aa2d19
DH
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
bb451fdf
GT
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
ee814fe2
JW
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
d108c772
AR
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
e5ca8071
YS
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
1da177e4
LT
158};
159
1da177e4
LT
160#ifdef ARCH_HAS_PREFETCHW
161#define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170#else
171#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172#endif
173
174/*
c843966c 175 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
176 */
177int vm_swappiness = 60;
1da177e4 178
0a432dcb
YS
179static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181{
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189}
190
1da177e4
LT
191static LIST_HEAD(shrinker_list);
192static DECLARE_RWSEM(shrinker_rwsem);
193
0a432dcb 194#ifdef CONFIG_MEMCG
a2fb1261 195static int shrinker_nr_max;
2bfd3637 196
3c6f17e6 197/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
198static inline int shrinker_map_size(int nr_items)
199{
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201}
2bfd3637 202
3c6f17e6
YS
203static inline int shrinker_defer_size(int nr_items)
204{
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206}
207
468ab843
YS
208static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210{
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213}
214
e4262c4f 215static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
2bfd3637 218{
e4262c4f 219 struct shrinker_info *new, *old;
2bfd3637
YS
220 struct mem_cgroup_per_node *pn;
221 int nid;
3c6f17e6 222 int size = map_size + defer_size;
2bfd3637 223
2bfd3637
YS
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
468ab843 226 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
3c6f17e6
YS
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
2bfd3637 245
e4262c4f 246 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 247 kvfree_rcu(old, rcu);
2bfd3637
YS
248 }
249
250 return 0;
251}
252
e4262c4f 253void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
254{
255 struct mem_cgroup_per_node *pn;
e4262c4f 256 struct shrinker_info *info;
2bfd3637
YS
257 int nid;
258
2bfd3637
YS
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
e4262c4f
YS
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
264 }
265}
266
e4262c4f 267int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 268{
e4262c4f 269 struct shrinker_info *info;
2bfd3637 270 int nid, size, ret = 0;
3c6f17e6 271 int map_size, defer_size = 0;
2bfd3637 272
d27cf2aa 273 down_write(&shrinker_rwsem);
3c6f17e6
YS
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
2bfd3637 277 for_each_node(nid) {
e4262c4f
YS
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
2bfd3637
YS
281 ret = -ENOMEM;
282 break;
283 }
3c6f17e6
YS
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 287 }
d27cf2aa 288 up_write(&shrinker_rwsem);
2bfd3637
YS
289
290 return ret;
291}
292
3c6f17e6
YS
293static inline bool need_expand(int nr_max)
294{
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297}
298
e4262c4f 299static int expand_shrinker_info(int new_id)
2bfd3637 300{
3c6f17e6 301 int ret = 0;
a2fb1261 302 int new_nr_max = new_id + 1;
3c6f17e6
YS
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
2bfd3637
YS
305 struct mem_cgroup *memcg;
306
3c6f17e6 307 if (!need_expand(new_nr_max))
a2fb1261 308 goto out;
2bfd3637 309
2bfd3637 310 if (!root_mem_cgroup)
d27cf2aa
YS
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 314
3c6f17e6
YS
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
2bfd3637
YS
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
3c6f17e6
YS
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
2bfd3637
YS
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 326 goto out;
2bfd3637
YS
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 329out:
2bfd3637 330 if (!ret)
a2fb1261 331 shrinker_nr_max = new_nr_max;
d27cf2aa 332
2bfd3637
YS
333 return ret;
334}
335
336void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337{
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 339 struct shrinker_info *info;
2bfd3637
YS
340
341 rcu_read_lock();
e4262c4f 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
e4262c4f 345 set_bit(shrinker_id, info->map);
2bfd3637
YS
346 rcu_read_unlock();
347 }
348}
349
b4c2b231 350static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
351
352static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353{
354 int id, ret = -ENOMEM;
355
476b30a0
YS
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
b4c2b231
KT
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
362 if (id < 0)
363 goto unlock;
364
0a4465d3 365 if (id >= shrinker_nr_max) {
e4262c4f 366 if (expand_shrinker_info(id)) {
0a4465d3
KT
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
0a4465d3 370 }
b4c2b231
KT
371 shrinker->id = id;
372 ret = 0;
373unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376}
377
378static void unregister_memcg_shrinker(struct shrinker *shrinker)
379{
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
41ca668a
YS
384 lockdep_assert_held(&shrinker_rwsem);
385
b4c2b231 386 idr_remove(&shrinker_idr, id);
b4c2b231 387}
b4c2b231 388
86750830
YS
389static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391{
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396}
397
398static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400{
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405}
406
a178015c
YS
407void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408{
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429}
430
b5ead35e 431static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 432{
b5ead35e 433 return sc->target_mem_cgroup;
89b5fae5 434}
97c9341f
TH
435
436/**
b5ead35e 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
b5ead35e 449static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 450{
b5ead35e 451 if (!cgroup_reclaim(sc))
97c9341f
TH
452 return true;
453#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
455 return true;
456#endif
457 return false;
458}
91a45470 459#else
0a432dcb
YS
460static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461{
476b30a0 462 return -ENOSYS;
0a432dcb
YS
463}
464
465static void unregister_memcg_shrinker(struct shrinker *shrinker)
466{
467}
468
86750830
YS
469static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471{
472 return 0;
473}
474
475static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477{
478 return 0;
479}
480
b5ead35e 481static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 482{
b5ead35e 483 return false;
89b5fae5 484}
97c9341f 485
b5ead35e 486static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
487{
488 return true;
489}
91a45470
KH
490#endif
491
86750830
YS
492static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494{
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506}
507
508
509static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511{
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523}
524
26aa2d19
DH
525static bool can_demote(int nid, struct scan_control *sc)
526{
20b51af1
YH
527 if (!numa_demotion_enabled)
528 return false;
3a235693
DH
529 if (sc) {
530 if (sc->no_demotion)
531 return false;
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
534 return false;
535 }
26aa2d19
DH
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
537 return false;
538
20b51af1 539 return true;
26aa2d19
DH
540}
541
a2a36488
KB
542static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 int nid,
544 struct scan_control *sc)
545{
546 if (memcg == NULL) {
547 /*
548 * For non-memcg reclaim, is there
549 * space in any swap device?
550 */
551 if (get_nr_swap_pages() > 0)
552 return true;
553 } else {
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 return true;
557 }
558
559 /*
560 * The page can not be swapped.
561 *
562 * Can it be reclaimed from this node via demotion?
563 */
564 return can_demote(nid, sc);
565}
566
5a1c84b4
MG
567/*
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
571 */
572unsigned long zone_reclaimable_pages(struct zone *zone)
573{
574 unsigned long nr;
575
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581
582 return nr;
583}
584
fd538803
MH
585/**
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
588 * @lru: lru to use
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590 */
2091339d
YZ
591static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 int zone_idx)
c9f299d9 593{
de3b0150 594 unsigned long size = 0;
fd538803
MH
595 int zid;
596
de3b0150 597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 599
fd538803
MH
600 if (!managed_zone(zone))
601 continue;
602
603 if (!mem_cgroup_disabled())
de3b0150 604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 605 else
de3b0150 606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 607 }
de3b0150 608 return size;
b4536f0c
MH
609}
610
1da177e4 611/*
1d3d4437 612 * Add a shrinker callback to be called from the vm.
1da177e4 613 */
8e04944f 614int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 615{
476b30a0
YS
616 unsigned int size;
617 int err;
618
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
621 if (err != -ENOSYS)
622 return err;
1d3d4437 623
476b30a0
YS
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 }
626
627 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 size *= nr_node_ids;
630
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
633 return -ENOMEM;
b4c2b231 634
8e04944f
TH
635 return 0;
636}
637
638void free_prealloced_shrinker(struct shrinker *shrinker)
639{
41ca668a
YS
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
b4c2b231 642 unregister_memcg_shrinker(shrinker);
41ca668a 643 up_write(&shrinker_rwsem);
476b30a0 644 return;
41ca668a 645 }
b4c2b231 646
8e04944f
TH
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
649}
1d3d4437 650
8e04944f
TH
651void register_shrinker_prepared(struct shrinker *shrinker)
652{
8e1f936b
RR
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 655 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 656 up_write(&shrinker_rwsem);
8e04944f
TH
657}
658
659int register_shrinker(struct shrinker *shrinker)
660{
661 int err = prealloc_shrinker(shrinker);
662
663 if (err)
664 return err;
665 register_shrinker_prepared(shrinker);
1d3d4437 666 return 0;
1da177e4 667}
8e1f936b 668EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
669
670/*
671 * Remove one
672 */
8e1f936b 673void unregister_shrinker(struct shrinker *shrinker)
1da177e4 674{
41ca668a 675 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 676 return;
41ca668a 677
1da177e4
LT
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
41ca668a
YS
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
1da177e4 683 up_write(&shrinker_rwsem);
41ca668a 684
ae393321 685 kfree(shrinker->nr_deferred);
bb422a73 686 shrinker->nr_deferred = NULL;
1da177e4 687}
8e1f936b 688EXPORT_SYMBOL(unregister_shrinker);
1da177e4 689
880121be
CK
690/**
691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
692 *
693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
694 * but atomically and with less overhead. This is useful to guarantee that all
695 * shrinker invocations have seen an update, before freeing memory, similar to
696 * rcu.
697 */
698void synchronize_shrinkers(void)
699{
700 down_write(&shrinker_rwsem);
701 up_write(&shrinker_rwsem);
702}
703EXPORT_SYMBOL(synchronize_shrinkers);
704
1da177e4 705#define SHRINK_BATCH 128
1d3d4437 706
cb731d6c 707static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 708 struct shrinker *shrinker, int priority)
1d3d4437
GC
709{
710 unsigned long freed = 0;
711 unsigned long long delta;
712 long total_scan;
d5bc5fd3 713 long freeable;
1d3d4437
GC
714 long nr;
715 long new_nr;
1d3d4437
GC
716 long batch_size = shrinker->batch ? shrinker->batch
717 : SHRINK_BATCH;
5f33a080 718 long scanned = 0, next_deferred;
1d3d4437 719
d5bc5fd3 720 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
721 if (freeable == 0 || freeable == SHRINK_EMPTY)
722 return freeable;
1d3d4437
GC
723
724 /*
725 * copy the current shrinker scan count into a local variable
726 * and zero it so that other concurrent shrinker invocations
727 * don't also do this scanning work.
728 */
86750830 729 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 730
4b85afbd
JW
731 if (shrinker->seeks) {
732 delta = freeable >> priority;
733 delta *= 4;
734 do_div(delta, shrinker->seeks);
735 } else {
736 /*
737 * These objects don't require any IO to create. Trim
738 * them aggressively under memory pressure to keep
739 * them from causing refetches in the IO caches.
740 */
741 delta = freeable / 2;
742 }
172b06c3 743
18bb473e 744 total_scan = nr >> priority;
1d3d4437 745 total_scan += delta;
18bb473e 746 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
747
748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 749 freeable, delta, total_scan, priority);
1d3d4437 750
0b1fb40a
VD
751 /*
752 * Normally, we should not scan less than batch_size objects in one
753 * pass to avoid too frequent shrinker calls, but if the slab has less
754 * than batch_size objects in total and we are really tight on memory,
755 * we will try to reclaim all available objects, otherwise we can end
756 * up failing allocations although there are plenty of reclaimable
757 * objects spread over several slabs with usage less than the
758 * batch_size.
759 *
760 * We detect the "tight on memory" situations by looking at the total
761 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 762 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
763 * scanning at high prio and therefore should try to reclaim as much as
764 * possible.
765 */
766 while (total_scan >= batch_size ||
d5bc5fd3 767 total_scan >= freeable) {
a0b02131 768 unsigned long ret;
0b1fb40a 769 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 770
0b1fb40a 771 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 772 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
773 ret = shrinker->scan_objects(shrinker, shrinkctl);
774 if (ret == SHRINK_STOP)
775 break;
776 freed += ret;
1d3d4437 777
d460acb5
CW
778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 total_scan -= shrinkctl->nr_scanned;
780 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
781
782 cond_resched();
783 }
784
18bb473e
YS
785 /*
786 * The deferred work is increased by any new work (delta) that wasn't
787 * done, decreased by old deferred work that was done now.
788 *
789 * And it is capped to two times of the freeable items.
790 */
791 next_deferred = max_t(long, (nr + delta - scanned), 0);
792 next_deferred = min(next_deferred, (2 * freeable));
793
1d3d4437
GC
794 /*
795 * move the unused scan count back into the shrinker in a
86750830 796 * manner that handles concurrent updates.
1d3d4437 797 */
86750830 798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 799
8efb4b59 800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 801 return freed;
1495f230
YH
802}
803
0a432dcb 804#ifdef CONFIG_MEMCG
b0dedc49
KT
805static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 struct mem_cgroup *memcg, int priority)
807{
e4262c4f 808 struct shrinker_info *info;
b8e57efa
KT
809 unsigned long ret, freed = 0;
810 int i;
b0dedc49 811
0a432dcb 812 if (!mem_cgroup_online(memcg))
b0dedc49
KT
813 return 0;
814
815 if (!down_read_trylock(&shrinker_rwsem))
816 return 0;
817
468ab843 818 info = shrinker_info_protected(memcg, nid);
e4262c4f 819 if (unlikely(!info))
b0dedc49
KT
820 goto unlock;
821
e4262c4f 822 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
823 struct shrink_control sc = {
824 .gfp_mask = gfp_mask,
825 .nid = nid,
826 .memcg = memcg,
827 };
828 struct shrinker *shrinker;
829
830 shrinker = idr_find(&shrinker_idr, i);
41ca668a 831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 832 if (!shrinker)
e4262c4f 833 clear_bit(i, info->map);
b0dedc49
KT
834 continue;
835 }
836
0a432dcb
YS
837 /* Call non-slab shrinkers even though kmem is disabled */
838 if (!memcg_kmem_enabled() &&
839 !(shrinker->flags & SHRINKER_NONSLAB))
840 continue;
841
b0dedc49 842 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 843 if (ret == SHRINK_EMPTY) {
e4262c4f 844 clear_bit(i, info->map);
f90280d6
KT
845 /*
846 * After the shrinker reported that it had no objects to
847 * free, but before we cleared the corresponding bit in
848 * the memcg shrinker map, a new object might have been
849 * added. To make sure, we have the bit set in this
850 * case, we invoke the shrinker one more time and reset
851 * the bit if it reports that it is not empty anymore.
852 * The memory barrier here pairs with the barrier in
2bfd3637 853 * set_shrinker_bit():
f90280d6
KT
854 *
855 * list_lru_add() shrink_slab_memcg()
856 * list_add_tail() clear_bit()
857 * <MB> <MB>
858 * set_bit() do_shrink_slab()
859 */
860 smp_mb__after_atomic();
861 ret = do_shrink_slab(&sc, shrinker, priority);
862 if (ret == SHRINK_EMPTY)
863 ret = 0;
864 else
2bfd3637 865 set_shrinker_bit(memcg, nid, i);
f90280d6 866 }
b0dedc49
KT
867 freed += ret;
868
869 if (rwsem_is_contended(&shrinker_rwsem)) {
870 freed = freed ? : 1;
871 break;
872 }
873 }
874unlock:
875 up_read(&shrinker_rwsem);
876 return freed;
877}
0a432dcb 878#else /* CONFIG_MEMCG */
b0dedc49
KT
879static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
881{
882 return 0;
883}
0a432dcb 884#endif /* CONFIG_MEMCG */
b0dedc49 885
6b4f7799 886/**
cb731d6c 887 * shrink_slab - shrink slab caches
6b4f7799
JW
888 * @gfp_mask: allocation context
889 * @nid: node whose slab caches to target
cb731d6c 890 * @memcg: memory cgroup whose slab caches to target
9092c71b 891 * @priority: the reclaim priority
1da177e4 892 *
6b4f7799 893 * Call the shrink functions to age shrinkable caches.
1da177e4 894 *
6b4f7799
JW
895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 897 *
aeed1d32
VD
898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
899 * are called only if it is the root cgroup.
cb731d6c 900 *
9092c71b
JB
901 * @priority is sc->priority, we take the number of objects and >> by priority
902 * in order to get the scan target.
b15e0905 903 *
6b4f7799 904 * Returns the number of reclaimed slab objects.
1da177e4 905 */
cb731d6c
VD
906static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 struct mem_cgroup *memcg,
9092c71b 908 int priority)
1da177e4 909{
b8e57efa 910 unsigned long ret, freed = 0;
1da177e4
LT
911 struct shrinker *shrinker;
912
fa1e512f
YS
913 /*
914 * The root memcg might be allocated even though memcg is disabled
915 * via "cgroup_disable=memory" boot parameter. This could make
916 * mem_cgroup_is_root() return false, then just run memcg slab
917 * shrink, but skip global shrink. This may result in premature
918 * oom.
919 */
920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 922
e830c63a 923 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 924 goto out;
1da177e4
LT
925
926 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
927 struct shrink_control sc = {
928 .gfp_mask = gfp_mask,
929 .nid = nid,
cb731d6c 930 .memcg = memcg,
6b4f7799 931 };
ec97097b 932
9b996468
KT
933 ret = do_shrink_slab(&sc, shrinker, priority);
934 if (ret == SHRINK_EMPTY)
935 ret = 0;
936 freed += ret;
e496612c
MK
937 /*
938 * Bail out if someone want to register a new shrinker to
55b65a57 939 * prevent the registration from being stalled for long periods
e496612c
MK
940 * by parallel ongoing shrinking.
941 */
942 if (rwsem_is_contended(&shrinker_rwsem)) {
943 freed = freed ? : 1;
944 break;
945 }
1da177e4 946 }
6b4f7799 947
1da177e4 948 up_read(&shrinker_rwsem);
f06590bd
MK
949out:
950 cond_resched();
24f7c6b9 951 return freed;
1da177e4
LT
952}
953
cb731d6c
VD
954void drop_slab_node(int nid)
955{
956 unsigned long freed;
1399af7e 957 int shift = 0;
cb731d6c
VD
958
959 do {
960 struct mem_cgroup *memcg = NULL;
961
069c411d
CZ
962 if (fatal_signal_pending(current))
963 return;
964
cb731d6c 965 freed = 0;
aeed1d32 966 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 967 do {
9092c71b 968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 970 } while ((freed >> shift++) > 1);
cb731d6c
VD
971}
972
973void drop_slab(void)
974{
975 int nid;
976
977 for_each_online_node(nid)
978 drop_slab_node(nid);
979}
980
1da177e4
LT
981static inline int is_page_cache_freeable(struct page *page)
982{
ceddc3a5
JW
983 /*
984 * A freeable page cache page is referenced only by the caller
67891fff
MW
985 * that isolated the page, the page cache and optional buffer
986 * heads at page->private.
ceddc3a5 987 */
3efe62e4 988 int page_cache_pins = thp_nr_pages(page);
67891fff 989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
990}
991
cb16556d 992static int may_write_to_inode(struct inode *inode)
1da177e4 993{
930d9152 994 if (current->flags & PF_SWAPWRITE)
1da177e4 995 return 1;
703c2708 996 if (!inode_write_congested(inode))
1da177e4 997 return 1;
703c2708 998 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
999 return 1;
1000 return 0;
1001}
1002
1003/*
1004 * We detected a synchronous write error writing a page out. Probably
1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1006 * fsync(), msync() or close().
1007 *
1008 * The tricky part is that after writepage we cannot touch the mapping: nothing
1009 * prevents it from being freed up. But we have a ref on the page and once
1010 * that page is locked, the mapping is pinned.
1011 *
1012 * We're allowed to run sleeping lock_page() here because we know the caller has
1013 * __GFP_FS.
1014 */
1015static void handle_write_error(struct address_space *mapping,
1016 struct page *page, int error)
1017{
7eaceacc 1018 lock_page(page);
3e9f45bd
GC
1019 if (page_mapping(page) == mapping)
1020 mapping_set_error(mapping, error);
1da177e4
LT
1021 unlock_page(page);
1022}
1023
c3f4a9a2 1024void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1025{
1026 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1027 long timeout, ret;
8cd7c588
MG
1028 DEFINE_WAIT(wait);
1029
1030 /*
1031 * Do not throttle IO workers, kthreads other than kswapd or
1032 * workqueues. They may be required for reclaim to make
1033 * forward progress (e.g. journalling workqueues or kthreads).
1034 */
1035 if (!current_is_kswapd() &&
1036 current->flags & (PF_IO_WORKER|PF_KTHREAD))
1037 return;
1038
c3f4a9a2
MG
1039 /*
1040 * These figures are pulled out of thin air.
1041 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1042 * parallel reclaimers which is a short-lived event so the timeout is
1043 * short. Failing to make progress or waiting on writeback are
1044 * potentially long-lived events so use a longer timeout. This is shaky
1045 * logic as a failure to make progress could be due to anything from
1046 * writeback to a slow device to excessive references pages at the tail
1047 * of the inactive LRU.
1048 */
1049 switch(reason) {
1050 case VMSCAN_THROTTLE_WRITEBACK:
1051 timeout = HZ/10;
1052
1053 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1054 WRITE_ONCE(pgdat->nr_reclaim_start,
1055 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1056 }
1057
1058 break;
1059 case VMSCAN_THROTTLE_NOPROGRESS:
a19594ca 1060 timeout = HZ/2;
c3f4a9a2
MG
1061 break;
1062 case VMSCAN_THROTTLE_ISOLATED:
1063 timeout = HZ/50;
1064 break;
1065 default:
1066 WARN_ON_ONCE(1);
1067 timeout = HZ;
1068 break;
8cd7c588
MG
1069 }
1070
1071 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1072 ret = schedule_timeout(timeout);
1073 finish_wait(wqh, &wait);
d818fca1 1074
c3f4a9a2 1075 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1076 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1077
1078 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1079 jiffies_to_usecs(timeout - ret),
1080 reason);
1081}
1082
1083/*
1084 * Account for pages written if tasks are throttled waiting on dirty
1085 * pages to clean. If enough pages have been cleaned since throttling
1086 * started then wakeup the throttled tasks.
1087 */
512b7931 1088void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1089 int nr_throttled)
1090{
1091 unsigned long nr_written;
1092
512b7931 1093 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1094
1095 /*
1096 * This is an inaccurate read as the per-cpu deltas may not
1097 * be synchronised. However, given that the system is
1098 * writeback throttled, it is not worth taking the penalty
1099 * of getting an accurate count. At worst, the throttle
1100 * timeout guarantees forward progress.
1101 */
1102 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1103 READ_ONCE(pgdat->nr_reclaim_start);
1104
1105 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1106 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1107}
1108
04e62a29
CL
1109/* possible outcome of pageout() */
1110typedef enum {
1111 /* failed to write page out, page is locked */
1112 PAGE_KEEP,
1113 /* move page to the active list, page is locked */
1114 PAGE_ACTIVATE,
1115 /* page has been sent to the disk successfully, page is unlocked */
1116 PAGE_SUCCESS,
1117 /* page is clean and locked */
1118 PAGE_CLEAN,
1119} pageout_t;
1120
1da177e4 1121/*
1742f19f
AM
1122 * pageout is called by shrink_page_list() for each dirty page.
1123 * Calls ->writepage().
1da177e4 1124 */
cb16556d 1125static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
1126{
1127 /*
1128 * If the page is dirty, only perform writeback if that write
1129 * will be non-blocking. To prevent this allocation from being
1130 * stalled by pagecache activity. But note that there may be
1131 * stalls if we need to run get_block(). We could test
1132 * PagePrivate for that.
1133 *
8174202b 1134 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
1135 * this page's queue, we can perform writeback even if that
1136 * will block.
1137 *
1138 * If the page is swapcache, write it back even if that would
1139 * block, for some throttling. This happens by accident, because
1140 * swap_backing_dev_info is bust: it doesn't reflect the
1141 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
1142 */
1143 if (!is_page_cache_freeable(page))
1144 return PAGE_KEEP;
1145 if (!mapping) {
1146 /*
1147 * Some data journaling orphaned pages can have
1148 * page->mapping == NULL while being dirty with clean buffers.
1149 */
266cf658 1150 if (page_has_private(page)) {
1da177e4
LT
1151 if (try_to_free_buffers(page)) {
1152 ClearPageDirty(page);
b1de0d13 1153 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
1154 return PAGE_CLEAN;
1155 }
1156 }
1157 return PAGE_KEEP;
1158 }
1159 if (mapping->a_ops->writepage == NULL)
1160 return PAGE_ACTIVATE;
cb16556d 1161 if (!may_write_to_inode(mapping->host))
1da177e4
LT
1162 return PAGE_KEEP;
1163
1164 if (clear_page_dirty_for_io(page)) {
1165 int res;
1166 struct writeback_control wbc = {
1167 .sync_mode = WB_SYNC_NONE,
1168 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1169 .range_start = 0,
1170 .range_end = LLONG_MAX,
1da177e4
LT
1171 .for_reclaim = 1,
1172 };
1173
1174 SetPageReclaim(page);
1175 res = mapping->a_ops->writepage(page, &wbc);
1176 if (res < 0)
1177 handle_write_error(mapping, page, res);
994fc28c 1178 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
1179 ClearPageReclaim(page);
1180 return PAGE_ACTIVATE;
1181 }
c661b078 1182
1da177e4
LT
1183 if (!PageWriteback(page)) {
1184 /* synchronous write or broken a_ops? */
1185 ClearPageReclaim(page);
1186 }
3aa23851 1187 trace_mm_vmscan_writepage(page);
c4a25635 1188 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
1189 return PAGE_SUCCESS;
1190 }
1191
1192 return PAGE_CLEAN;
1193}
1194
a649fd92 1195/*
e286781d
NP
1196 * Same as remove_mapping, but if the page is removed from the mapping, it
1197 * gets returned with a refcount of 0.
a649fd92 1198 */
a528910e 1199static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 1200 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1201{
bd4c82c2 1202 int refcount;
aae466b0 1203 void *shadow = NULL;
c4843a75 1204
28e4d965
NP
1205 BUG_ON(!PageLocked(page));
1206 BUG_ON(mapping != page_mapping(page));
49d2e9cc 1207
51b8c1fe
JW
1208 if (!PageSwapCache(page))
1209 spin_lock(&mapping->host->i_lock);
30472509 1210 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1211 /*
0fd0e6b0
NP
1212 * The non racy check for a busy page.
1213 *
1214 * Must be careful with the order of the tests. When someone has
1215 * a ref to the page, it may be possible that they dirty it then
1216 * drop the reference. So if PageDirty is tested before page_count
1217 * here, then the following race may occur:
1218 *
1219 * get_user_pages(&page);
1220 * [user mapping goes away]
1221 * write_to(page);
1222 * !PageDirty(page) [good]
1223 * SetPageDirty(page);
1224 * put_page(page);
1225 * !page_count(page) [good, discard it]
1226 *
1227 * [oops, our write_to data is lost]
1228 *
1229 * Reversing the order of the tests ensures such a situation cannot
1230 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1231 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1232 *
1233 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1234 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1235 */
906d278d 1236 refcount = 1 + compound_nr(page);
bd4c82c2 1237 if (!page_ref_freeze(page, refcount))
49d2e9cc 1238 goto cannot_free;
1c4c3b99 1239 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 1240 if (unlikely(PageDirty(page))) {
bd4c82c2 1241 page_ref_unfreeze(page, refcount);
49d2e9cc 1242 goto cannot_free;
e286781d 1243 }
49d2e9cc
CL
1244
1245 if (PageSwapCache(page)) {
1246 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 1247 mem_cgroup_swapout(page, swap);
aae466b0
JK
1248 if (reclaimed && !mapping_exiting(mapping))
1249 shadow = workingset_eviction(page, target_memcg);
1250 __delete_from_swap_cache(page, swap, shadow);
30472509 1251 xa_unlock_irq(&mapping->i_pages);
75f6d6d2 1252 put_swap_page(page, swap);
e286781d 1253 } else {
6072d13c
LT
1254 void (*freepage)(struct page *);
1255
1256 freepage = mapping->a_ops->freepage;
a528910e
JW
1257 /*
1258 * Remember a shadow entry for reclaimed file cache in
1259 * order to detect refaults, thus thrashing, later on.
1260 *
1261 * But don't store shadows in an address space that is
238c3046 1262 * already exiting. This is not just an optimization,
a528910e
JW
1263 * inode reclaim needs to empty out the radix tree or
1264 * the nodes are lost. Don't plant shadows behind its
1265 * back.
f9fe48be
RZ
1266 *
1267 * We also don't store shadows for DAX mappings because the
1268 * only page cache pages found in these are zero pages
1269 * covering holes, and because we don't want to mix DAX
1270 * exceptional entries and shadow exceptional entries in the
b93b0163 1271 * same address_space.
a528910e 1272 */
9de4f22a 1273 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 1274 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 1275 shadow = workingset_eviction(page, target_memcg);
62cccb8c 1276 __delete_from_page_cache(page, shadow);
30472509 1277 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1278 if (mapping_shrinkable(mapping))
1279 inode_add_lru(mapping->host);
1280 spin_unlock(&mapping->host->i_lock);
6072d13c
LT
1281
1282 if (freepage != NULL)
1283 freepage(page);
49d2e9cc
CL
1284 }
1285
49d2e9cc
CL
1286 return 1;
1287
1288cannot_free:
30472509 1289 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1290 if (!PageSwapCache(page))
1291 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1292 return 0;
1293}
1294
e286781d
NP
1295/*
1296 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1297 * someone else has a ref on the page, abort and return 0. If it was
1298 * successfully detached, return 1. Assumes the caller has a single ref on
1299 * this page.
1300 */
1301int remove_mapping(struct address_space *mapping, struct page *page)
1302{
b910718a 1303 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
1304 /*
1305 * Unfreezing the refcount with 1 rather than 2 effectively
1306 * drops the pagecache ref for us without requiring another
1307 * atomic operation.
1308 */
fe896d18 1309 page_ref_unfreeze(page, 1);
e286781d
NP
1310 return 1;
1311 }
1312 return 0;
1313}
1314
894bc310
LS
1315/**
1316 * putback_lru_page - put previously isolated page onto appropriate LRU list
1317 * @page: page to be put back to appropriate lru list
1318 *
1319 * Add previously isolated @page to appropriate LRU list.
1320 * Page may still be unevictable for other reasons.
1321 *
1322 * lru_lock must not be held, interrupts must be enabled.
1323 */
894bc310
LS
1324void putback_lru_page(struct page *page)
1325{
9c4e6b1a 1326 lru_cache_add(page);
894bc310
LS
1327 put_page(page); /* drop ref from isolate */
1328}
1329
dfc8d636
JW
1330enum page_references {
1331 PAGEREF_RECLAIM,
1332 PAGEREF_RECLAIM_CLEAN,
64574746 1333 PAGEREF_KEEP,
dfc8d636
JW
1334 PAGEREF_ACTIVATE,
1335};
1336
1337static enum page_references page_check_references(struct page *page,
1338 struct scan_control *sc)
1339{
64574746 1340 int referenced_ptes, referenced_page;
dfc8d636 1341 unsigned long vm_flags;
dfc8d636 1342
c3ac9a8a
JW
1343 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1344 &vm_flags);
64574746 1345 referenced_page = TestClearPageReferenced(page);
dfc8d636 1346
dfc8d636
JW
1347 /*
1348 * Mlock lost the isolation race with us. Let try_to_unmap()
1349 * move the page to the unevictable list.
1350 */
1351 if (vm_flags & VM_LOCKED)
1352 return PAGEREF_RECLAIM;
1353
64574746 1354 if (referenced_ptes) {
64574746
JW
1355 /*
1356 * All mapped pages start out with page table
1357 * references from the instantiating fault, so we need
1358 * to look twice if a mapped file page is used more
1359 * than once.
1360 *
1361 * Mark it and spare it for another trip around the
1362 * inactive list. Another page table reference will
1363 * lead to its activation.
1364 *
1365 * Note: the mark is set for activated pages as well
1366 * so that recently deactivated but used pages are
1367 * quickly recovered.
1368 */
1369 SetPageReferenced(page);
1370
34dbc67a 1371 if (referenced_page || referenced_ptes > 1)
64574746
JW
1372 return PAGEREF_ACTIVATE;
1373
c909e993
KK
1374 /*
1375 * Activate file-backed executable pages after first usage.
1376 */
b518154e 1377 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1378 return PAGEREF_ACTIVATE;
1379
64574746
JW
1380 return PAGEREF_KEEP;
1381 }
dfc8d636
JW
1382
1383 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1384 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1385 return PAGEREF_RECLAIM_CLEAN;
1386
1387 return PAGEREF_RECLAIM;
dfc8d636
JW
1388}
1389
e2be15f6
MG
1390/* Check if a page is dirty or under writeback */
1391static void page_check_dirty_writeback(struct page *page,
1392 bool *dirty, bool *writeback)
1393{
b4597226
MG
1394 struct address_space *mapping;
1395
e2be15f6
MG
1396 /*
1397 * Anonymous pages are not handled by flushers and must be written
1398 * from reclaim context. Do not stall reclaim based on them
1399 */
9de4f22a 1400 if (!page_is_file_lru(page) ||
802a3a92 1401 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1402 *dirty = false;
1403 *writeback = false;
1404 return;
1405 }
1406
1407 /* By default assume that the page flags are accurate */
1408 *dirty = PageDirty(page);
1409 *writeback = PageWriteback(page);
b4597226
MG
1410
1411 /* Verify dirty/writeback state if the filesystem supports it */
1412 if (!page_has_private(page))
1413 return;
1414
1415 mapping = page_mapping(page);
1416 if (mapping && mapping->a_ops->is_dirty_writeback)
1417 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1418}
1419
26aa2d19
DH
1420static struct page *alloc_demote_page(struct page *page, unsigned long node)
1421{
1422 struct migration_target_control mtc = {
1423 /*
1424 * Allocate from 'node', or fail quickly and quietly.
1425 * When this happens, 'page' will likely just be discarded
1426 * instead of migrated.
1427 */
1428 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1429 __GFP_THISNODE | __GFP_NOWARN |
1430 __GFP_NOMEMALLOC | GFP_NOWAIT,
1431 .nid = node
1432 };
1433
1434 return alloc_migration_target(page, (unsigned long)&mtc);
1435}
1436
1437/*
1438 * Take pages on @demote_list and attempt to demote them to
1439 * another node. Pages which are not demoted are left on
1440 * @demote_pages.
1441 */
1442static unsigned int demote_page_list(struct list_head *demote_pages,
1443 struct pglist_data *pgdat)
1444{
1445 int target_nid = next_demotion_node(pgdat->node_id);
1446 unsigned int nr_succeeded;
26aa2d19
DH
1447
1448 if (list_empty(demote_pages))
1449 return 0;
1450
1451 if (target_nid == NUMA_NO_NODE)
1452 return 0;
1453
1454 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1455 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1456 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1457 &nr_succeeded);
1458
668e4147
YS
1459 if (current_is_kswapd())
1460 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1461 else
1462 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1463
26aa2d19
DH
1464 return nr_succeeded;
1465}
1466
1da177e4 1467/*
1742f19f 1468 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1469 */
730ec8c0
MS
1470static unsigned int shrink_page_list(struct list_head *page_list,
1471 struct pglist_data *pgdat,
1472 struct scan_control *sc,
730ec8c0
MS
1473 struct reclaim_stat *stat,
1474 bool ignore_references)
1da177e4
LT
1475{
1476 LIST_HEAD(ret_pages);
abe4c3b5 1477 LIST_HEAD(free_pages);
26aa2d19 1478 LIST_HEAD(demote_pages);
730ec8c0
MS
1479 unsigned int nr_reclaimed = 0;
1480 unsigned int pgactivate = 0;
26aa2d19 1481 bool do_demote_pass;
1da177e4 1482
060f005f 1483 memset(stat, 0, sizeof(*stat));
1da177e4 1484 cond_resched();
26aa2d19 1485 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1486
26aa2d19 1487retry:
1da177e4
LT
1488 while (!list_empty(page_list)) {
1489 struct address_space *mapping;
1490 struct page *page;
8940b34a 1491 enum page_references references = PAGEREF_RECLAIM;
4b793062 1492 bool dirty, writeback, may_enter_fs;
98879b3b 1493 unsigned int nr_pages;
1da177e4
LT
1494
1495 cond_resched();
1496
1497 page = lru_to_page(page_list);
1498 list_del(&page->lru);
1499
529ae9aa 1500 if (!trylock_page(page))
1da177e4
LT
1501 goto keep;
1502
309381fe 1503 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1504
d8c6546b 1505 nr_pages = compound_nr(page);
98879b3b
YS
1506
1507 /* Account the number of base pages even though THP */
1508 sc->nr_scanned += nr_pages;
80e43426 1509
39b5f29a 1510 if (unlikely(!page_evictable(page)))
ad6b6704 1511 goto activate_locked;
894bc310 1512
a6dc60f8 1513 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1514 goto keep_locked;
1515
c661b078
AW
1516 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1517 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1518
e2be15f6 1519 /*
894befec 1520 * The number of dirty pages determines if a node is marked
8cd7c588
MG
1521 * reclaim_congested. kswapd will stall and start writing
1522 * pages if the tail of the LRU is all dirty unqueued pages.
e2be15f6
MG
1523 */
1524 page_check_dirty_writeback(page, &dirty, &writeback);
1525 if (dirty || writeback)
060f005f 1526 stat->nr_dirty++;
e2be15f6
MG
1527
1528 if (dirty && !writeback)
060f005f 1529 stat->nr_unqueued_dirty++;
e2be15f6 1530
d04e8acd
MG
1531 /*
1532 * Treat this page as congested if the underlying BDI is or if
1533 * pages are cycling through the LRU so quickly that the
1534 * pages marked for immediate reclaim are making it to the
1535 * end of the LRU a second time.
1536 */
e2be15f6 1537 mapping = page_mapping(page);
1da58ee2 1538 if (((dirty || writeback) && mapping &&
703c2708 1539 inode_write_congested(mapping->host)) ||
d04e8acd 1540 (writeback && PageReclaim(page)))
060f005f 1541 stat->nr_congested++;
e2be15f6 1542
283aba9f
MG
1543 /*
1544 * If a page at the tail of the LRU is under writeback, there
1545 * are three cases to consider.
1546 *
1547 * 1) If reclaim is encountering an excessive number of pages
1548 * under writeback and this page is both under writeback and
1549 * PageReclaim then it indicates that pages are being queued
1550 * for IO but are being recycled through the LRU before the
1551 * IO can complete. Waiting on the page itself risks an
1552 * indefinite stall if it is impossible to writeback the
1553 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1554 * note that the LRU is being scanned too quickly and the
1555 * caller can stall after page list has been processed.
283aba9f 1556 *
97c9341f 1557 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1558 * not marked for immediate reclaim, or the caller does not
1559 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1560 * not to fs). In this case mark the page for immediate
97c9341f 1561 * reclaim and continue scanning.
283aba9f 1562 *
ecf5fc6e
MH
1563 * Require may_enter_fs because we would wait on fs, which
1564 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1565 * enter reclaim, and deadlock if it waits on a page for
1566 * which it is needed to do the write (loop masks off
1567 * __GFP_IO|__GFP_FS for this reason); but more thought
1568 * would probably show more reasons.
1569 *
7fadc820 1570 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1571 * PageReclaim. memcg does not have any dirty pages
1572 * throttling so we could easily OOM just because too many
1573 * pages are in writeback and there is nothing else to
1574 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1575 *
1576 * In cases 1) and 2) we activate the pages to get them out of
1577 * the way while we continue scanning for clean pages on the
1578 * inactive list and refilling from the active list. The
1579 * observation here is that waiting for disk writes is more
1580 * expensive than potentially causing reloads down the line.
1581 * Since they're marked for immediate reclaim, they won't put
1582 * memory pressure on the cache working set any longer than it
1583 * takes to write them to disk.
283aba9f 1584 */
c661b078 1585 if (PageWriteback(page)) {
283aba9f
MG
1586 /* Case 1 above */
1587 if (current_is_kswapd() &&
1588 PageReclaim(page) &&
599d0c95 1589 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1590 stat->nr_immediate++;
c55e8d03 1591 goto activate_locked;
283aba9f
MG
1592
1593 /* Case 2 above */
b5ead35e 1594 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1595 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1596 /*
1597 * This is slightly racy - end_page_writeback()
1598 * might have just cleared PageReclaim, then
1599 * setting PageReclaim here end up interpreted
1600 * as PageReadahead - but that does not matter
1601 * enough to care. What we do want is for this
1602 * page to have PageReclaim set next time memcg
1603 * reclaim reaches the tests above, so it will
1604 * then wait_on_page_writeback() to avoid OOM;
1605 * and it's also appropriate in global reclaim.
1606 */
1607 SetPageReclaim(page);
060f005f 1608 stat->nr_writeback++;
c55e8d03 1609 goto activate_locked;
283aba9f
MG
1610
1611 /* Case 3 above */
1612 } else {
7fadc820 1613 unlock_page(page);
283aba9f 1614 wait_on_page_writeback(page);
7fadc820
HD
1615 /* then go back and try same page again */
1616 list_add_tail(&page->lru, page_list);
1617 continue;
e62e384e 1618 }
c661b078 1619 }
1da177e4 1620
8940b34a 1621 if (!ignore_references)
02c6de8d
MK
1622 references = page_check_references(page, sc);
1623
dfc8d636
JW
1624 switch (references) {
1625 case PAGEREF_ACTIVATE:
1da177e4 1626 goto activate_locked;
64574746 1627 case PAGEREF_KEEP:
98879b3b 1628 stat->nr_ref_keep += nr_pages;
64574746 1629 goto keep_locked;
dfc8d636
JW
1630 case PAGEREF_RECLAIM:
1631 case PAGEREF_RECLAIM_CLEAN:
1632 ; /* try to reclaim the page below */
1633 }
1da177e4 1634
26aa2d19
DH
1635 /*
1636 * Before reclaiming the page, try to relocate
1637 * its contents to another node.
1638 */
1639 if (do_demote_pass &&
1640 (thp_migration_supported() || !PageTransHuge(page))) {
1641 list_add(&page->lru, &demote_pages);
1642 unlock_page(page);
1643 continue;
1644 }
1645
1da177e4
LT
1646 /*
1647 * Anonymous process memory has backing store?
1648 * Try to allocate it some swap space here.
802a3a92 1649 * Lazyfree page could be freed directly
1da177e4 1650 */
bd4c82c2
YH
1651 if (PageAnon(page) && PageSwapBacked(page)) {
1652 if (!PageSwapCache(page)) {
1653 if (!(sc->gfp_mask & __GFP_IO))
1654 goto keep_locked;
feb889fb
LT
1655 if (page_maybe_dma_pinned(page))
1656 goto keep_locked;
bd4c82c2
YH
1657 if (PageTransHuge(page)) {
1658 /* cannot split THP, skip it */
1659 if (!can_split_huge_page(page, NULL))
1660 goto activate_locked;
1661 /*
1662 * Split pages without a PMD map right
1663 * away. Chances are some or all of the
1664 * tail pages can be freed without IO.
1665 */
1666 if (!compound_mapcount(page) &&
1667 split_huge_page_to_list(page,
1668 page_list))
1669 goto activate_locked;
1670 }
1671 if (!add_to_swap(page)) {
1672 if (!PageTransHuge(page))
98879b3b 1673 goto activate_locked_split;
bd4c82c2
YH
1674 /* Fallback to swap normal pages */
1675 if (split_huge_page_to_list(page,
1676 page_list))
1677 goto activate_locked;
fe490cc0
YH
1678#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1679 count_vm_event(THP_SWPOUT_FALLBACK);
1680#endif
bd4c82c2 1681 if (!add_to_swap(page))
98879b3b 1682 goto activate_locked_split;
bd4c82c2 1683 }
0f074658 1684
4b793062 1685 may_enter_fs = true;
1da177e4 1686
bd4c82c2
YH
1687 /* Adding to swap updated mapping */
1688 mapping = page_mapping(page);
1689 }
7751b2da
KS
1690 } else if (unlikely(PageTransHuge(page))) {
1691 /* Split file THP */
1692 if (split_huge_page_to_list(page, page_list))
1693 goto keep_locked;
e2be15f6 1694 }
1da177e4 1695
98879b3b
YS
1696 /*
1697 * THP may get split above, need minus tail pages and update
1698 * nr_pages to avoid accounting tail pages twice.
1699 *
1700 * The tail pages that are added into swap cache successfully
1701 * reach here.
1702 */
1703 if ((nr_pages > 1) && !PageTransHuge(page)) {
1704 sc->nr_scanned -= (nr_pages - 1);
1705 nr_pages = 1;
1706 }
1707
1da177e4
LT
1708 /*
1709 * The page is mapped into the page tables of one or more
1710 * processes. Try to unmap it here.
1711 */
802a3a92 1712 if (page_mapped(page)) {
013339df 1713 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1714 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
YH
1715
1716 if (unlikely(PageTransHuge(page)))
1717 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1718
1fb08ac6
YS
1719 try_to_unmap(page, flags);
1720 if (page_mapped(page)) {
98879b3b 1721 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1722 if (!was_swapbacked && PageSwapBacked(page))
1723 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1724 goto activate_locked;
1da177e4
LT
1725 }
1726 }
1727
1728 if (PageDirty(page)) {
ee72886d 1729 /*
4eda4823
JW
1730 * Only kswapd can writeback filesystem pages
1731 * to avoid risk of stack overflow. But avoid
1732 * injecting inefficient single-page IO into
1733 * flusher writeback as much as possible: only
1734 * write pages when we've encountered many
1735 * dirty pages, and when we've already scanned
1736 * the rest of the LRU for clean pages and see
1737 * the same dirty pages again (PageReclaim).
ee72886d 1738 */
9de4f22a 1739 if (page_is_file_lru(page) &&
4eda4823
JW
1740 (!current_is_kswapd() || !PageReclaim(page) ||
1741 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1742 /*
1743 * Immediately reclaim when written back.
1744 * Similar in principal to deactivate_page()
1745 * except we already have the page isolated
1746 * and know it's dirty
1747 */
c4a25635 1748 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1749 SetPageReclaim(page);
1750
c55e8d03 1751 goto activate_locked;
ee72886d
MG
1752 }
1753
dfc8d636 1754 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1755 goto keep_locked;
4dd4b920 1756 if (!may_enter_fs)
1da177e4 1757 goto keep_locked;
52a8363e 1758 if (!sc->may_writepage)
1da177e4
LT
1759 goto keep_locked;
1760
d950c947
MG
1761 /*
1762 * Page is dirty. Flush the TLB if a writable entry
1763 * potentially exists to avoid CPU writes after IO
1764 * starts and then write it out here.
1765 */
1766 try_to_unmap_flush_dirty();
cb16556d 1767 switch (pageout(page, mapping)) {
1da177e4
LT
1768 case PAGE_KEEP:
1769 goto keep_locked;
1770 case PAGE_ACTIVATE:
1771 goto activate_locked;
1772 case PAGE_SUCCESS:
6c357848 1773 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1774
7d3579e8 1775 if (PageWriteback(page))
41ac1999 1776 goto keep;
7d3579e8 1777 if (PageDirty(page))
1da177e4 1778 goto keep;
7d3579e8 1779
1da177e4
LT
1780 /*
1781 * A synchronous write - probably a ramdisk. Go
1782 * ahead and try to reclaim the page.
1783 */
529ae9aa 1784 if (!trylock_page(page))
1da177e4
LT
1785 goto keep;
1786 if (PageDirty(page) || PageWriteback(page))
1787 goto keep_locked;
1788 mapping = page_mapping(page);
01359eb2 1789 fallthrough;
1da177e4
LT
1790 case PAGE_CLEAN:
1791 ; /* try to free the page below */
1792 }
1793 }
1794
1795 /*
1796 * If the page has buffers, try to free the buffer mappings
1797 * associated with this page. If we succeed we try to free
1798 * the page as well.
1799 *
1800 * We do this even if the page is PageDirty().
1801 * try_to_release_page() does not perform I/O, but it is
1802 * possible for a page to have PageDirty set, but it is actually
1803 * clean (all its buffers are clean). This happens if the
1804 * buffers were written out directly, with submit_bh(). ext3
894bc310 1805 * will do this, as well as the blockdev mapping.
1da177e4
LT
1806 * try_to_release_page() will discover that cleanness and will
1807 * drop the buffers and mark the page clean - it can be freed.
1808 *
1809 * Rarely, pages can have buffers and no ->mapping. These are
1810 * the pages which were not successfully invalidated in
d12b8951 1811 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1812 * and if that worked, and the page is no longer mapped into
1813 * process address space (page_count == 1) it can be freed.
1814 * Otherwise, leave the page on the LRU so it is swappable.
1815 */
266cf658 1816 if (page_has_private(page)) {
1da177e4
LT
1817 if (!try_to_release_page(page, sc->gfp_mask))
1818 goto activate_locked;
e286781d
NP
1819 if (!mapping && page_count(page) == 1) {
1820 unlock_page(page);
1821 if (put_page_testzero(page))
1822 goto free_it;
1823 else {
1824 /*
1825 * rare race with speculative reference.
1826 * the speculative reference will free
1827 * this page shortly, so we may
1828 * increment nr_reclaimed here (and
1829 * leave it off the LRU).
1830 */
1831 nr_reclaimed++;
1832 continue;
1833 }
1834 }
1da177e4
LT
1835 }
1836
802a3a92
SL
1837 if (PageAnon(page) && !PageSwapBacked(page)) {
1838 /* follow __remove_mapping for reference */
1839 if (!page_ref_freeze(page, 1))
1840 goto keep_locked;
d17be2d9
ML
1841 /*
1842 * The page has only one reference left, which is
1843 * from the isolation. After the caller puts the
1844 * page back on lru and drops the reference, the
1845 * page will be freed anyway. It doesn't matter
1846 * which lru it goes. So we don't bother checking
1847 * PageDirty here.
1848 */
802a3a92 1849 count_vm_event(PGLAZYFREED);
2262185c 1850 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1851 } else if (!mapping || !__remove_mapping(mapping, page, true,
1852 sc->target_mem_cgroup))
802a3a92 1853 goto keep_locked;
9a1ea439
HD
1854
1855 unlock_page(page);
e286781d 1856free_it:
98879b3b
YS
1857 /*
1858 * THP may get swapped out in a whole, need account
1859 * all base pages.
1860 */
1861 nr_reclaimed += nr_pages;
abe4c3b5
MG
1862
1863 /*
1864 * Is there need to periodically free_page_list? It would
1865 * appear not as the counts should be low
1866 */
7ae88534 1867 if (unlikely(PageTransHuge(page)))
ff45fc3c 1868 destroy_compound_page(page);
7ae88534 1869 else
bd4c82c2 1870 list_add(&page->lru, &free_pages);
1da177e4
LT
1871 continue;
1872
98879b3b
YS
1873activate_locked_split:
1874 /*
1875 * The tail pages that are failed to add into swap cache
1876 * reach here. Fixup nr_scanned and nr_pages.
1877 */
1878 if (nr_pages > 1) {
1879 sc->nr_scanned -= (nr_pages - 1);
1880 nr_pages = 1;
1881 }
1da177e4 1882activate_locked:
68a22394 1883 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1884 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1885 PageMlocked(page)))
a2c43eed 1886 try_to_free_swap(page);
309381fe 1887 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1888 if (!PageMlocked(page)) {
9de4f22a 1889 int type = page_is_file_lru(page);
ad6b6704 1890 SetPageActive(page);
98879b3b 1891 stat->nr_activate[type] += nr_pages;
2262185c 1892 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1893 }
1da177e4
LT
1894keep_locked:
1895 unlock_page(page);
1896keep:
1897 list_add(&page->lru, &ret_pages);
309381fe 1898 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1899 }
26aa2d19
DH
1900 /* 'page_list' is always empty here */
1901
1902 /* Migrate pages selected for demotion */
1903 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1904 /* Pages that could not be demoted are still in @demote_pages */
1905 if (!list_empty(&demote_pages)) {
1906 /* Pages which failed to demoted go back on @page_list for retry: */
1907 list_splice_init(&demote_pages, page_list);
1908 do_demote_pass = false;
1909 goto retry;
1910 }
abe4c3b5 1911
98879b3b
YS
1912 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1913
747db954 1914 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1915 try_to_unmap_flush();
2d4894b5 1916 free_unref_page_list(&free_pages);
abe4c3b5 1917
1da177e4 1918 list_splice(&ret_pages, page_list);
886cf190 1919 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1920
05ff5137 1921 return nr_reclaimed;
1da177e4
LT
1922}
1923
730ec8c0 1924unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1925 struct list_head *page_list)
1926{
1927 struct scan_control sc = {
1928 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1929 .may_unmap = 1,
1930 };
1f318a9b 1931 struct reclaim_stat stat;
730ec8c0 1932 unsigned int nr_reclaimed;
02c6de8d
MK
1933 struct page *page, *next;
1934 LIST_HEAD(clean_pages);
2d2b8d2b 1935 unsigned int noreclaim_flag;
02c6de8d
MK
1936
1937 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1938 if (!PageHuge(page) && page_is_file_lru(page) &&
1939 !PageDirty(page) && !__PageMovable(page) &&
1940 !PageUnevictable(page)) {
02c6de8d
MK
1941 ClearPageActive(page);
1942 list_move(&page->lru, &clean_pages);
1943 }
1944 }
1945
2d2b8d2b
YZ
1946 /*
1947 * We should be safe here since we are only dealing with file pages and
1948 * we are not kswapd and therefore cannot write dirty file pages. But
1949 * call memalloc_noreclaim_save() anyway, just in case these conditions
1950 * change in the future.
1951 */
1952 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 1953 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1954 &stat, true);
2d2b8d2b
YZ
1955 memalloc_noreclaim_restore(noreclaim_flag);
1956
02c6de8d 1957 list_splice(&clean_pages, page_list);
2da9f630
NP
1958 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1959 -(long)nr_reclaimed);
1f318a9b
JK
1960 /*
1961 * Since lazyfree pages are isolated from file LRU from the beginning,
1962 * they will rotate back to anonymous LRU in the end if it failed to
1963 * discard so isolated count will be mismatched.
1964 * Compensate the isolated count for both LRU lists.
1965 */
1966 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1967 stat.nr_lazyfree_fail);
1968 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1969 -(long)stat.nr_lazyfree_fail);
1f318a9b 1970 return nr_reclaimed;
02c6de8d
MK
1971}
1972
5ad333eb
AW
1973/*
1974 * Attempt to remove the specified page from its LRU. Only take this page
1975 * if it is of the appropriate PageActive status. Pages which are being
1976 * freed elsewhere are also ignored.
1977 *
1978 * page: page to consider
1979 * mode: one of the LRU isolation modes defined above
1980 *
c2135f7c 1981 * returns true on success, false on failure.
5ad333eb 1982 */
c2135f7c 1983bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 1984{
5ad333eb
AW
1985 /* Only take pages on the LRU. */
1986 if (!PageLRU(page))
c2135f7c 1987 return false;
5ad333eb 1988
e46a2879
MK
1989 /* Compaction should not handle unevictable pages but CMA can do so */
1990 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 1991 return false;
894bc310 1992
c8244935
MG
1993 /*
1994 * To minimise LRU disruption, the caller can indicate that it only
1995 * wants to isolate pages it will be able to operate on without
1996 * blocking - clean pages for the most part.
1997 *
c8244935
MG
1998 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1999 * that it is possible to migrate without blocking
2000 */
1276ad68 2001 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
2002 /* All the caller can do on PageWriteback is block */
2003 if (PageWriteback(page))
c2135f7c 2004 return false;
c8244935
MG
2005
2006 if (PageDirty(page)) {
2007 struct address_space *mapping;
69d763fc 2008 bool migrate_dirty;
c8244935 2009
c8244935
MG
2010 /*
2011 * Only pages without mappings or that have a
2012 * ->migratepage callback are possible to migrate
69d763fc
MG
2013 * without blocking. However, we can be racing with
2014 * truncation so it's necessary to lock the page
2015 * to stabilise the mapping as truncation holds
2016 * the page lock until after the page is removed
2017 * from the page cache.
c8244935 2018 */
69d763fc 2019 if (!trylock_page(page))
c2135f7c 2020 return false;
69d763fc 2021
c8244935 2022 mapping = page_mapping(page);
145e1a71 2023 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
2024 unlock_page(page);
2025 if (!migrate_dirty)
c2135f7c 2026 return false;
c8244935
MG
2027 }
2028 }
39deaf85 2029
f80c0673 2030 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 2031 return false;
f80c0673 2032
c2135f7c 2033 return true;
5ad333eb
AW
2034}
2035
7ee36a14
MG
2036/*
2037 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2038 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2039 */
2040static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2041 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2042{
7ee36a14
MG
2043 int zid;
2044
7ee36a14
MG
2045 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2046 if (!nr_zone_taken[zid])
2047 continue;
2048
a892cb6b 2049 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2050 }
2051
7ee36a14
MG
2052}
2053
f611fab7 2054/*
15b44736
HD
2055 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2056 *
2057 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2058 * shrink the lists perform better by taking out a batch of pages
2059 * and working on them outside the LRU lock.
2060 *
2061 * For pagecache intensive workloads, this function is the hottest
2062 * spot in the kernel (apart from copy_*_user functions).
2063 *
15b44736 2064 * Lru_lock must be held before calling this function.
1da177e4 2065 *
791b48b6 2066 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2067 * @lruvec: The LRU vector to pull pages from.
1da177e4 2068 * @dst: The temp list to put pages on to.
f626012d 2069 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2070 * @sc: The scan_control struct for this reclaim session
3cb99451 2071 * @lru: LRU list id for isolating
1da177e4
LT
2072 *
2073 * returns how many pages were moved onto *@dst.
2074 */
69e05944 2075static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2076 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2077 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2078 enum lru_list lru)
1da177e4 2079{
75b00af7 2080 struct list_head *src = &lruvec->lists[lru];
69e05944 2081 unsigned long nr_taken = 0;
599d0c95 2082 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2083 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2084 unsigned long skipped = 0;
791b48b6 2085 unsigned long scan, total_scan, nr_pages;
b2e18757 2086 LIST_HEAD(pages_skipped);
a9e7c39f 2087 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 2088
98879b3b 2089 total_scan = 0;
791b48b6 2090 scan = 0;
98879b3b 2091 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 2092 struct page *page;
5ad333eb 2093
1da177e4
LT
2094 page = lru_to_page(src);
2095 prefetchw_prev_lru_page(page, src, flags);
2096
d8c6546b 2097 nr_pages = compound_nr(page);
98879b3b
YS
2098 total_scan += nr_pages;
2099
b2e18757
MG
2100 if (page_zonenum(page) > sc->reclaim_idx) {
2101 list_move(&page->lru, &pages_skipped);
98879b3b 2102 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
2103 continue;
2104 }
2105
791b48b6
MK
2106 /*
2107 * Do not count skipped pages because that makes the function
2108 * return with no isolated pages if the LRU mostly contains
2109 * ineligible pages. This causes the VM to not reclaim any
2110 * pages, triggering a premature OOM.
98879b3b
YS
2111 *
2112 * Account all tail pages of THP. This would not cause
2113 * premature OOM since __isolate_lru_page() returns -EBUSY
2114 * only when the page is being freed somewhere else.
791b48b6 2115 */
98879b3b 2116 scan += nr_pages;
c2135f7c
AS
2117 if (!__isolate_lru_page_prepare(page, mode)) {
2118 /* It is being freed elsewhere */
2119 list_move(&page->lru, src);
2120 continue;
2121 }
2122 /*
2123 * Be careful not to clear PageLRU until after we're
2124 * sure the page is not being freed elsewhere -- the
2125 * page release code relies on it.
2126 */
2127 if (unlikely(!get_page_unless_zero(page))) {
2128 list_move(&page->lru, src);
2129 continue;
2130 }
5ad333eb 2131
c2135f7c
AS
2132 if (!TestClearPageLRU(page)) {
2133 /* Another thread is already isolating this page */
2134 put_page(page);
5ad333eb 2135 list_move(&page->lru, src);
c2135f7c 2136 continue;
5ad333eb 2137 }
c2135f7c
AS
2138
2139 nr_taken += nr_pages;
2140 nr_zone_taken[page_zonenum(page)] += nr_pages;
2141 list_move(&page->lru, dst);
1da177e4
LT
2142 }
2143
b2e18757
MG
2144 /*
2145 * Splice any skipped pages to the start of the LRU list. Note that
2146 * this disrupts the LRU order when reclaiming for lower zones but
2147 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2148 * scanning would soon rescan the same pages to skip and put the
2149 * system at risk of premature OOM.
2150 */
7cc30fcf
MG
2151 if (!list_empty(&pages_skipped)) {
2152 int zid;
2153
3db65812 2154 list_splice(&pages_skipped, src);
7cc30fcf
MG
2155 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2156 if (!nr_skipped[zid])
2157 continue;
2158
2159 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2160 skipped += nr_skipped[zid];
7cc30fcf
MG
2161 }
2162 }
791b48b6 2163 *nr_scanned = total_scan;
1265e3a6 2164 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 2165 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 2166 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2167 return nr_taken;
2168}
2169
62695a84
NP
2170/**
2171 * isolate_lru_page - tries to isolate a page from its LRU list
2172 * @page: page to isolate from its LRU list
2173 *
2174 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2175 * vmstat statistic corresponding to whatever LRU list the page was on.
2176 *
2177 * Returns 0 if the page was removed from an LRU list.
2178 * Returns -EBUSY if the page was not on an LRU list.
2179 *
2180 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
2181 * the active list, it will have PageActive set. If it was found on
2182 * the unevictable list, it will have the PageUnevictable bit set. That flag
2183 * may need to be cleared by the caller before letting the page go.
62695a84
NP
2184 *
2185 * The vmstat statistic corresponding to the list on which the page was
2186 * found will be decremented.
2187 *
2188 * Restrictions:
a5d09bed 2189 *
62695a84 2190 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 2191 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
2192 * without a stable reference).
2193 * (2) the lru_lock must not be held.
2194 * (3) interrupts must be enabled.
2195 */
2196int isolate_lru_page(struct page *page)
2197{
e809c3fe 2198 struct folio *folio = page_folio(page);
62695a84
NP
2199 int ret = -EBUSY;
2200
309381fe 2201 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 2202 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 2203
d25b5bd8 2204 if (TestClearPageLRU(page)) {
fa9add64 2205 struct lruvec *lruvec;
62695a84 2206
d25b5bd8 2207 get_page(page);
e809c3fe 2208 lruvec = folio_lruvec_lock_irq(folio);
46ae6b2c 2209 del_page_from_lru_list(page, lruvec);
6168d0da 2210 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2211 ret = 0;
62695a84 2212 }
d25b5bd8 2213
62695a84
NP
2214 return ret;
2215}
2216
35cd7815 2217/*
d37dd5dc 2218 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2219 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2220 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2221 * the LRU list will go small and be scanned faster than necessary, leading to
2222 * unnecessary swapping, thrashing and OOM.
35cd7815 2223 */
599d0c95 2224static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2225 struct scan_control *sc)
2226{
2227 unsigned long inactive, isolated;
d818fca1 2228 bool too_many;
35cd7815
RR
2229
2230 if (current_is_kswapd())
2231 return 0;
2232
b5ead35e 2233 if (!writeback_throttling_sane(sc))
35cd7815
RR
2234 return 0;
2235
2236 if (file) {
599d0c95
MG
2237 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2238 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2239 } else {
599d0c95
MG
2240 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2241 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2242 }
2243
3cf23841
FW
2244 /*
2245 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2246 * won't get blocked by normal direct-reclaimers, forming a circular
2247 * deadlock.
2248 */
d0164adc 2249 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2250 inactive >>= 3;
2251
d818fca1
MG
2252 too_many = isolated > inactive;
2253
2254 /* Wake up tasks throttled due to too_many_isolated. */
2255 if (!too_many)
2256 wake_throttle_isolated(pgdat);
2257
2258 return too_many;
35cd7815
RR
2259}
2260
a222f341 2261/*
15b44736
HD
2262 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2263 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2264 *
2265 * Returns the number of pages moved to the given lruvec.
2266 */
9ef56b78
MS
2267static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2268 struct list_head *list)
66635629 2269{
a222f341 2270 int nr_pages, nr_moved = 0;
3f79768f 2271 LIST_HEAD(pages_to_free);
a222f341 2272 struct page *page;
66635629 2273
a222f341
KT
2274 while (!list_empty(list)) {
2275 page = lru_to_page(list);
309381fe 2276 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2277 list_del(&page->lru);
39b5f29a 2278 if (unlikely(!page_evictable(page))) {
6168d0da 2279 spin_unlock_irq(&lruvec->lru_lock);
66635629 2280 putback_lru_page(page);
6168d0da 2281 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2282 continue;
2283 }
fa9add64 2284
3d06afab
AS
2285 /*
2286 * The SetPageLRU needs to be kept here for list integrity.
2287 * Otherwise:
2288 * #0 move_pages_to_lru #1 release_pages
2289 * if !put_page_testzero
2290 * if (put_page_testzero())
2291 * !PageLRU //skip lru_lock
2292 * SetPageLRU()
2293 * list_add(&page->lru,)
2294 * list_add(&page->lru,)
2295 */
7a608572 2296 SetPageLRU(page);
a222f341 2297
3d06afab 2298 if (unlikely(put_page_testzero(page))) {
87560179 2299 __clear_page_lru_flags(page);
2bcf8879
HD
2300
2301 if (unlikely(PageCompound(page))) {
6168d0da 2302 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2303 destroy_compound_page(page);
6168d0da 2304 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2305 } else
2306 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2307
2308 continue;
66635629 2309 }
3d06afab 2310
afca9157
AS
2311 /*
2312 * All pages were isolated from the same lruvec (and isolation
2313 * inhibits memcg migration).
2314 */
0de340cb 2315 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
3a9c9788 2316 add_page_to_lru_list(page, lruvec);
3d06afab 2317 nr_pages = thp_nr_pages(page);
3d06afab
AS
2318 nr_moved += nr_pages;
2319 if (PageActive(page))
2320 workingset_age_nonresident(lruvec, nr_pages);
66635629 2321 }
66635629 2322
3f79768f
HD
2323 /*
2324 * To save our caller's stack, now use input list for pages to free.
2325 */
a222f341
KT
2326 list_splice(&pages_to_free, list);
2327
2328 return nr_moved;
66635629
MG
2329}
2330
399ba0b9
N
2331/*
2332 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2333 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2334 * In that case we should only throttle if the backing device it is
2335 * writing to is congested. In other cases it is safe to throttle.
2336 */
2337static int current_may_throttle(void)
2338{
a37b0715 2339 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2340 current->backing_dev_info == NULL ||
2341 bdi_write_congested(current->backing_dev_info);
2342}
2343
1da177e4 2344/*
b2e18757 2345 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2346 * of reclaimed pages
1da177e4 2347 */
9ef56b78 2348static unsigned long
1a93be0e 2349shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2350 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2351{
2352 LIST_HEAD(page_list);
e247dbce 2353 unsigned long nr_scanned;
730ec8c0 2354 unsigned int nr_reclaimed = 0;
e247dbce 2355 unsigned long nr_taken;
060f005f 2356 struct reclaim_stat stat;
497a6c1b 2357 bool file = is_file_lru(lru);
f46b7912 2358 enum vm_event_item item;
599d0c95 2359 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2360 bool stalled = false;
78dc583d 2361
599d0c95 2362 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2363 if (stalled)
2364 return 0;
2365
2366 /* wait a bit for the reclaimer. */
db73ee0d 2367 stalled = true;
c3f4a9a2 2368 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2369
2370 /* We are about to die and free our memory. Return now. */
2371 if (fatal_signal_pending(current))
2372 return SWAP_CLUSTER_MAX;
2373 }
2374
1da177e4 2375 lru_add_drain();
f80c0673 2376
6168d0da 2377 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2378
5dc35979 2379 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2380 &nr_scanned, sc, lru);
95d918fc 2381
599d0c95 2382 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2383 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2384 if (!cgroup_reclaim(sc))
f46b7912
KT
2385 __count_vm_events(item, nr_scanned);
2386 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2387 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2388
6168d0da 2389 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2390
d563c050 2391 if (nr_taken == 0)
66635629 2392 return 0;
5ad333eb 2393
013339df 2394 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2395
6168d0da 2396 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2397 move_pages_to_lru(lruvec, &page_list);
2398
2399 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2400 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2401 if (!cgroup_reclaim(sc))
f46b7912
KT
2402 __count_vm_events(item, nr_reclaimed);
2403 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2404 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2405 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2406
75cc3c91 2407 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2408 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2409 free_unref_page_list(&page_list);
e11da5b4 2410
1c610d5f
AR
2411 /*
2412 * If dirty pages are scanned that are not queued for IO, it
2413 * implies that flushers are not doing their job. This can
2414 * happen when memory pressure pushes dirty pages to the end of
2415 * the LRU before the dirty limits are breached and the dirty
2416 * data has expired. It can also happen when the proportion of
2417 * dirty pages grows not through writes but through memory
2418 * pressure reclaiming all the clean cache. And in some cases,
2419 * the flushers simply cannot keep up with the allocation
2420 * rate. Nudge the flusher threads in case they are asleep.
2421 */
2422 if (stat.nr_unqueued_dirty == nr_taken)
2423 wakeup_flusher_threads(WB_REASON_VMSCAN);
2424
d108c772
AR
2425 sc->nr.dirty += stat.nr_dirty;
2426 sc->nr.congested += stat.nr_congested;
2427 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2428 sc->nr.writeback += stat.nr_writeback;
2429 sc->nr.immediate += stat.nr_immediate;
2430 sc->nr.taken += nr_taken;
2431 if (file)
2432 sc->nr.file_taken += nr_taken;
8e950282 2433
599d0c95 2434 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2435 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2436 return nr_reclaimed;
1da177e4
LT
2437}
2438
15b44736
HD
2439/*
2440 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2441 *
2442 * We move them the other way if the page is referenced by one or more
2443 * processes.
2444 *
2445 * If the pages are mostly unmapped, the processing is fast and it is
2446 * appropriate to hold lru_lock across the whole operation. But if
2447 * the pages are mapped, the processing is slow (page_referenced()), so
2448 * we should drop lru_lock around each page. It's impossible to balance
2449 * this, so instead we remove the pages from the LRU while processing them.
2450 * It is safe to rely on PG_active against the non-LRU pages in here because
2451 * nobody will play with that bit on a non-LRU page.
2452 *
2453 * The downside is that we have to touch page->_refcount against each page.
2454 * But we had to alter page->flags anyway.
2455 */
f626012d 2456static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2457 struct lruvec *lruvec,
f16015fb 2458 struct scan_control *sc,
9e3b2f8c 2459 enum lru_list lru)
1da177e4 2460{
44c241f1 2461 unsigned long nr_taken;
f626012d 2462 unsigned long nr_scanned;
6fe6b7e3 2463 unsigned long vm_flags;
1da177e4 2464 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2465 LIST_HEAD(l_active);
b69408e8 2466 LIST_HEAD(l_inactive);
1da177e4 2467 struct page *page;
9d998b4f
MH
2468 unsigned nr_deactivate, nr_activate;
2469 unsigned nr_rotated = 0;
3cb99451 2470 int file = is_file_lru(lru);
599d0c95 2471 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2472
2473 lru_add_drain();
f80c0673 2474
6168d0da 2475 spin_lock_irq(&lruvec->lru_lock);
925b7673 2476
5dc35979 2477 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2478 &nr_scanned, sc, lru);
89b5fae5 2479
599d0c95 2480 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2481
912c0572
SB
2482 if (!cgroup_reclaim(sc))
2483 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2484 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2485
6168d0da 2486 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2487
1da177e4
LT
2488 while (!list_empty(&l_hold)) {
2489 cond_resched();
2490 page = lru_to_page(&l_hold);
2491 list_del(&page->lru);
7e9cd484 2492
39b5f29a 2493 if (unlikely(!page_evictable(page))) {
894bc310
LS
2494 putback_lru_page(page);
2495 continue;
2496 }
2497
cc715d99
MG
2498 if (unlikely(buffer_heads_over_limit)) {
2499 if (page_has_private(page) && trylock_page(page)) {
2500 if (page_has_private(page))
2501 try_to_release_page(page, 0);
2502 unlock_page(page);
2503 }
2504 }
2505
c3ac9a8a
JW
2506 if (page_referenced(page, 0, sc->target_mem_cgroup,
2507 &vm_flags)) {
8cab4754
WF
2508 /*
2509 * Identify referenced, file-backed active pages and
2510 * give them one more trip around the active list. So
2511 * that executable code get better chances to stay in
2512 * memory under moderate memory pressure. Anon pages
2513 * are not likely to be evicted by use-once streaming
2514 * IO, plus JVM can create lots of anon VM_EXEC pages,
2515 * so we ignore them here.
2516 */
9de4f22a 2517 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2518 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2519 list_add(&page->lru, &l_active);
2520 continue;
2521 }
2522 }
7e9cd484 2523
5205e56e 2524 ClearPageActive(page); /* we are de-activating */
1899ad18 2525 SetPageWorkingset(page);
1da177e4
LT
2526 list_add(&page->lru, &l_inactive);
2527 }
2528
b555749a 2529 /*
8cab4754 2530 * Move pages back to the lru list.
b555749a 2531 */
6168d0da 2532 spin_lock_irq(&lruvec->lru_lock);
556adecb 2533
a222f341
KT
2534 nr_activate = move_pages_to_lru(lruvec, &l_active);
2535 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2536 /* Keep all free pages in l_active list */
2537 list_splice(&l_inactive, &l_active);
9851ac13
KT
2538
2539 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2540 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2541
599d0c95 2542 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2543 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2544
f372d89e
KT
2545 mem_cgroup_uncharge_list(&l_active);
2546 free_unref_page_list(&l_active);
9d998b4f
MH
2547 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2548 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2549}
2550
1a4e58cc
MK
2551unsigned long reclaim_pages(struct list_head *page_list)
2552{
f661d007 2553 int nid = NUMA_NO_NODE;
730ec8c0 2554 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2555 LIST_HEAD(node_page_list);
2556 struct reclaim_stat dummy_stat;
2557 struct page *page;
2d2b8d2b 2558 unsigned int noreclaim_flag;
1a4e58cc
MK
2559 struct scan_control sc = {
2560 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2561 .may_writepage = 1,
2562 .may_unmap = 1,
2563 .may_swap = 1,
26aa2d19 2564 .no_demotion = 1,
1a4e58cc
MK
2565 };
2566
2d2b8d2b
YZ
2567 noreclaim_flag = memalloc_noreclaim_save();
2568
1a4e58cc
MK
2569 while (!list_empty(page_list)) {
2570 page = lru_to_page(page_list);
f661d007 2571 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2572 nid = page_to_nid(page);
2573 INIT_LIST_HEAD(&node_page_list);
2574 }
2575
2576 if (nid == page_to_nid(page)) {
2577 ClearPageActive(page);
2578 list_move(&page->lru, &node_page_list);
2579 continue;
2580 }
2581
2582 nr_reclaimed += shrink_page_list(&node_page_list,
2583 NODE_DATA(nid),
013339df 2584 &sc, &dummy_stat, false);
1a4e58cc
MK
2585 while (!list_empty(&node_page_list)) {
2586 page = lru_to_page(&node_page_list);
2587 list_del(&page->lru);
2588 putback_lru_page(page);
2589 }
2590
f661d007 2591 nid = NUMA_NO_NODE;
1a4e58cc
MK
2592 }
2593
2594 if (!list_empty(&node_page_list)) {
2595 nr_reclaimed += shrink_page_list(&node_page_list,
2596 NODE_DATA(nid),
013339df 2597 &sc, &dummy_stat, false);
1a4e58cc
MK
2598 while (!list_empty(&node_page_list)) {
2599 page = lru_to_page(&node_page_list);
2600 list_del(&page->lru);
2601 putback_lru_page(page);
2602 }
2603 }
2604
2d2b8d2b
YZ
2605 memalloc_noreclaim_restore(noreclaim_flag);
2606
1a4e58cc
MK
2607 return nr_reclaimed;
2608}
2609
b91ac374
JW
2610static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2611 struct lruvec *lruvec, struct scan_control *sc)
2612{
2613 if (is_active_lru(lru)) {
2614 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2615 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2616 else
2617 sc->skipped_deactivate = 1;
2618 return 0;
2619 }
2620
2621 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2622}
2623
59dc76b0
RR
2624/*
2625 * The inactive anon list should be small enough that the VM never has
2626 * to do too much work.
14797e23 2627 *
59dc76b0
RR
2628 * The inactive file list should be small enough to leave most memory
2629 * to the established workingset on the scan-resistant active list,
2630 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2631 *
59dc76b0
RR
2632 * Both inactive lists should also be large enough that each inactive
2633 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2634 *
2a2e4885
JW
2635 * If that fails and refaulting is observed, the inactive list grows.
2636 *
59dc76b0 2637 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2638 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2639 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2640 *
59dc76b0
RR
2641 * total target max
2642 * memory ratio inactive
2643 * -------------------------------------
2644 * 10MB 1 5MB
2645 * 100MB 1 50MB
2646 * 1GB 3 250MB
2647 * 10GB 10 0.9GB
2648 * 100GB 31 3GB
2649 * 1TB 101 10GB
2650 * 10TB 320 32GB
56e49d21 2651 */
b91ac374 2652static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2653{
b91ac374 2654 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2655 unsigned long inactive, active;
2656 unsigned long inactive_ratio;
59dc76b0 2657 unsigned long gb;
e3790144 2658
b91ac374
JW
2659 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2660 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2661
b91ac374 2662 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2663 if (gb)
b91ac374
JW
2664 inactive_ratio = int_sqrt(10 * gb);
2665 else
2666 inactive_ratio = 1;
fd538803 2667
59dc76b0 2668 return inactive * inactive_ratio < active;
b39415b2
RR
2669}
2670
9a265114
JW
2671enum scan_balance {
2672 SCAN_EQUAL,
2673 SCAN_FRACT,
2674 SCAN_ANON,
2675 SCAN_FILE,
2676};
2677
4f98a2fe
RR
2678/*
2679 * Determine how aggressively the anon and file LRU lists should be
2680 * scanned. The relative value of each set of LRU lists is determined
2681 * by looking at the fraction of the pages scanned we did rotate back
2682 * onto the active list instead of evict.
2683 *
be7bd59d
WL
2684 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2685 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2686 */
afaf07a6
JW
2687static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2688 unsigned long *nr)
4f98a2fe 2689{
a2a36488 2690 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2691 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2692 unsigned long anon_cost, file_cost, total_cost;
33377678 2693 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2694 u64 fraction[ANON_AND_FILE];
9a265114 2695 u64 denominator = 0; /* gcc */
9a265114 2696 enum scan_balance scan_balance;
4f98a2fe 2697 unsigned long ap, fp;
4111304d 2698 enum lru_list lru;
76a33fc3
SL
2699
2700 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2701 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2702 scan_balance = SCAN_FILE;
76a33fc3
SL
2703 goto out;
2704 }
4f98a2fe 2705
10316b31
JW
2706 /*
2707 * Global reclaim will swap to prevent OOM even with no
2708 * swappiness, but memcg users want to use this knob to
2709 * disable swapping for individual groups completely when
2710 * using the memory controller's swap limit feature would be
2711 * too expensive.
2712 */
b5ead35e 2713 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2714 scan_balance = SCAN_FILE;
10316b31
JW
2715 goto out;
2716 }
2717
2718 /*
2719 * Do not apply any pressure balancing cleverness when the
2720 * system is close to OOM, scan both anon and file equally
2721 * (unless the swappiness setting disagrees with swapping).
2722 */
02695175 2723 if (!sc->priority && swappiness) {
9a265114 2724 scan_balance = SCAN_EQUAL;
10316b31
JW
2725 goto out;
2726 }
2727
62376251 2728 /*
53138cea 2729 * If the system is almost out of file pages, force-scan anon.
62376251 2730 */
b91ac374 2731 if (sc->file_is_tiny) {
53138cea
JW
2732 scan_balance = SCAN_ANON;
2733 goto out;
62376251
JW
2734 }
2735
7c5bd705 2736 /*
b91ac374
JW
2737 * If there is enough inactive page cache, we do not reclaim
2738 * anything from the anonymous working right now.
7c5bd705 2739 */
b91ac374 2740 if (sc->cache_trim_mode) {
9a265114 2741 scan_balance = SCAN_FILE;
7c5bd705
JW
2742 goto out;
2743 }
2744
9a265114 2745 scan_balance = SCAN_FRACT;
58c37f6e 2746 /*
314b57fb
JW
2747 * Calculate the pressure balance between anon and file pages.
2748 *
2749 * The amount of pressure we put on each LRU is inversely
2750 * proportional to the cost of reclaiming each list, as
2751 * determined by the share of pages that are refaulting, times
2752 * the relative IO cost of bringing back a swapped out
2753 * anonymous page vs reloading a filesystem page (swappiness).
2754 *
d483a5dd
JW
2755 * Although we limit that influence to ensure no list gets
2756 * left behind completely: at least a third of the pressure is
2757 * applied, before swappiness.
2758 *
314b57fb 2759 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2760 */
d483a5dd
JW
2761 total_cost = sc->anon_cost + sc->file_cost;
2762 anon_cost = total_cost + sc->anon_cost;
2763 file_cost = total_cost + sc->file_cost;
2764 total_cost = anon_cost + file_cost;
58c37f6e 2765
d483a5dd
JW
2766 ap = swappiness * (total_cost + 1);
2767 ap /= anon_cost + 1;
4f98a2fe 2768
d483a5dd
JW
2769 fp = (200 - swappiness) * (total_cost + 1);
2770 fp /= file_cost + 1;
4f98a2fe 2771
76a33fc3
SL
2772 fraction[0] = ap;
2773 fraction[1] = fp;
a4fe1631 2774 denominator = ap + fp;
76a33fc3 2775out:
688035f7
JW
2776 for_each_evictable_lru(lru) {
2777 int file = is_file_lru(lru);
9783aa99 2778 unsigned long lruvec_size;
f56ce412 2779 unsigned long low, min;
688035f7 2780 unsigned long scan;
9783aa99
CD
2781
2782 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2783 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2784 &min, &low);
9783aa99 2785
f56ce412 2786 if (min || low) {
9783aa99
CD
2787 /*
2788 * Scale a cgroup's reclaim pressure by proportioning
2789 * its current usage to its memory.low or memory.min
2790 * setting.
2791 *
2792 * This is important, as otherwise scanning aggression
2793 * becomes extremely binary -- from nothing as we
2794 * approach the memory protection threshold, to totally
2795 * nominal as we exceed it. This results in requiring
2796 * setting extremely liberal protection thresholds. It
2797 * also means we simply get no protection at all if we
2798 * set it too low, which is not ideal.
1bc63fb1
CD
2799 *
2800 * If there is any protection in place, we reduce scan
2801 * pressure by how much of the total memory used is
2802 * within protection thresholds.
9783aa99 2803 *
9de7ca46
CD
2804 * There is one special case: in the first reclaim pass,
2805 * we skip over all groups that are within their low
2806 * protection. If that fails to reclaim enough pages to
2807 * satisfy the reclaim goal, we come back and override
2808 * the best-effort low protection. However, we still
2809 * ideally want to honor how well-behaved groups are in
2810 * that case instead of simply punishing them all
2811 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2812 * memory they are using, reducing the scan pressure
2813 * again by how much of the total memory used is under
2814 * hard protection.
9783aa99 2815 */
1bc63fb1 2816 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2817 unsigned long protection;
2818
2819 /* memory.low scaling, make sure we retry before OOM */
2820 if (!sc->memcg_low_reclaim && low > min) {
2821 protection = low;
2822 sc->memcg_low_skipped = 1;
2823 } else {
2824 protection = min;
2825 }
1bc63fb1
CD
2826
2827 /* Avoid TOCTOU with earlier protection check */
2828 cgroup_size = max(cgroup_size, protection);
2829
2830 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2831 (cgroup_size + 1);
9783aa99
CD
2832
2833 /*
1bc63fb1 2834 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2835 * reclaim moving forwards, avoiding decrementing
9de7ca46 2836 * sc->priority further than desirable.
9783aa99 2837 */
1bc63fb1 2838 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2839 } else {
2840 scan = lruvec_size;
2841 }
2842
2843 scan >>= sc->priority;
6b4f7799 2844
688035f7
JW
2845 /*
2846 * If the cgroup's already been deleted, make sure to
2847 * scrape out the remaining cache.
2848 */
2849 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2850 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2851
688035f7
JW
2852 switch (scan_balance) {
2853 case SCAN_EQUAL:
2854 /* Scan lists relative to size */
2855 break;
2856 case SCAN_FRACT:
9a265114 2857 /*
688035f7
JW
2858 * Scan types proportional to swappiness and
2859 * their relative recent reclaim efficiency.
76073c64
GS
2860 * Make sure we don't miss the last page on
2861 * the offlined memory cgroups because of a
2862 * round-off error.
9a265114 2863 */
76073c64
GS
2864 scan = mem_cgroup_online(memcg) ?
2865 div64_u64(scan * fraction[file], denominator) :
2866 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2867 denominator);
688035f7
JW
2868 break;
2869 case SCAN_FILE:
2870 case SCAN_ANON:
2871 /* Scan one type exclusively */
e072bff6 2872 if ((scan_balance == SCAN_FILE) != file)
688035f7 2873 scan = 0;
688035f7
JW
2874 break;
2875 default:
2876 /* Look ma, no brain */
2877 BUG();
9a265114 2878 }
688035f7 2879
688035f7 2880 nr[lru] = scan;
76a33fc3 2881 }
6e08a369 2882}
4f98a2fe 2883
2f368a9f
DH
2884/*
2885 * Anonymous LRU management is a waste if there is
2886 * ultimately no way to reclaim the memory.
2887 */
2888static bool can_age_anon_pages(struct pglist_data *pgdat,
2889 struct scan_control *sc)
2890{
2891 /* Aging the anon LRU is valuable if swap is present: */
2892 if (total_swap_pages > 0)
2893 return true;
2894
2895 /* Also valuable if anon pages can be demoted: */
2896 return can_demote(pgdat->node_id, sc);
2897}
2898
afaf07a6 2899static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2900{
2901 unsigned long nr[NR_LRU_LISTS];
e82e0561 2902 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2903 unsigned long nr_to_scan;
2904 enum lru_list lru;
2905 unsigned long nr_reclaimed = 0;
2906 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2907 struct blk_plug plug;
1a501907 2908 bool scan_adjusted;
9b4f98cd 2909
afaf07a6 2910 get_scan_count(lruvec, sc, nr);
9b4f98cd 2911
e82e0561
MG
2912 /* Record the original scan target for proportional adjustments later */
2913 memcpy(targets, nr, sizeof(nr));
2914
1a501907
MG
2915 /*
2916 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2917 * event that can occur when there is little memory pressure e.g.
2918 * multiple streaming readers/writers. Hence, we do not abort scanning
2919 * when the requested number of pages are reclaimed when scanning at
2920 * DEF_PRIORITY on the assumption that the fact we are direct
2921 * reclaiming implies that kswapd is not keeping up and it is best to
2922 * do a batch of work at once. For memcg reclaim one check is made to
2923 * abort proportional reclaim if either the file or anon lru has already
2924 * dropped to zero at the first pass.
2925 */
b5ead35e 2926 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2927 sc->priority == DEF_PRIORITY);
2928
9b4f98cd
JW
2929 blk_start_plug(&plug);
2930 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2931 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2932 unsigned long nr_anon, nr_file, percentage;
2933 unsigned long nr_scanned;
2934
9b4f98cd
JW
2935 for_each_evictable_lru(lru) {
2936 if (nr[lru]) {
2937 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2938 nr[lru] -= nr_to_scan;
2939
2940 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2941 lruvec, sc);
9b4f98cd
JW
2942 }
2943 }
e82e0561 2944
bd041733
MH
2945 cond_resched();
2946
e82e0561
MG
2947 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2948 continue;
2949
e82e0561
MG
2950 /*
2951 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2952 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2953 * proportionally what was requested by get_scan_count(). We
2954 * stop reclaiming one LRU and reduce the amount scanning
2955 * proportional to the original scan target.
2956 */
2957 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2958 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2959
1a501907
MG
2960 /*
2961 * It's just vindictive to attack the larger once the smaller
2962 * has gone to zero. And given the way we stop scanning the
2963 * smaller below, this makes sure that we only make one nudge
2964 * towards proportionality once we've got nr_to_reclaim.
2965 */
2966 if (!nr_file || !nr_anon)
2967 break;
2968
e82e0561
MG
2969 if (nr_file > nr_anon) {
2970 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2971 targets[LRU_ACTIVE_ANON] + 1;
2972 lru = LRU_BASE;
2973 percentage = nr_anon * 100 / scan_target;
2974 } else {
2975 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2976 targets[LRU_ACTIVE_FILE] + 1;
2977 lru = LRU_FILE;
2978 percentage = nr_file * 100 / scan_target;
2979 }
2980
2981 /* Stop scanning the smaller of the LRU */
2982 nr[lru] = 0;
2983 nr[lru + LRU_ACTIVE] = 0;
2984
2985 /*
2986 * Recalculate the other LRU scan count based on its original
2987 * scan target and the percentage scanning already complete
2988 */
2989 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2990 nr_scanned = targets[lru] - nr[lru];
2991 nr[lru] = targets[lru] * (100 - percentage) / 100;
2992 nr[lru] -= min(nr[lru], nr_scanned);
2993
2994 lru += LRU_ACTIVE;
2995 nr_scanned = targets[lru] - nr[lru];
2996 nr[lru] = targets[lru] * (100 - percentage) / 100;
2997 nr[lru] -= min(nr[lru], nr_scanned);
2998
2999 scan_adjusted = true;
9b4f98cd
JW
3000 }
3001 blk_finish_plug(&plug);
3002 sc->nr_reclaimed += nr_reclaimed;
3003
3004 /*
3005 * Even if we did not try to evict anon pages at all, we want to
3006 * rebalance the anon lru active/inactive ratio.
3007 */
2f368a9f
DH
3008 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3009 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
3010 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3011 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
3012}
3013
23b9da55 3014/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 3015static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 3016{
d84da3f9 3017 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 3018 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 3019 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
3020 return true;
3021
3022 return false;
3023}
3024
3e7d3449 3025/*
23b9da55
MG
3026 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3027 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3028 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3029 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3030 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3031 */
a9dd0a83 3032static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3033 unsigned long nr_reclaimed,
3e7d3449
MG
3034 struct scan_control *sc)
3035{
3036 unsigned long pages_for_compaction;
3037 unsigned long inactive_lru_pages;
a9dd0a83 3038 int z;
3e7d3449
MG
3039
3040 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3041 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3042 return false;
3043
5ee04716
VB
3044 /*
3045 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3046 * number of pages that were scanned. This will return to the caller
3047 * with the risk reclaim/compaction and the resulting allocation attempt
3048 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3049 * allocations through requiring that the full LRU list has been scanned
3050 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3051 * scan, but that approximation was wrong, and there were corner cases
3052 * where always a non-zero amount of pages were scanned.
3053 */
3054 if (!nr_reclaimed)
3055 return false;
3e7d3449 3056
3e7d3449 3057 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3058 for (z = 0; z <= sc->reclaim_idx; z++) {
3059 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3060 if (!managed_zone(zone))
a9dd0a83
MG
3061 continue;
3062
3063 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3064 case COMPACT_SUCCESS:
a9dd0a83
MG
3065 case COMPACT_CONTINUE:
3066 return false;
3067 default:
3068 /* check next zone */
3069 ;
3070 }
3e7d3449 3071 }
1c6c1597
HD
3072
3073 /*
3074 * If we have not reclaimed enough pages for compaction and the
3075 * inactive lists are large enough, continue reclaiming
3076 */
3077 pages_for_compaction = compact_gap(sc->order);
3078 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3079 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3080 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3081
5ee04716 3082 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3083}
3084
0f6a5cff 3085static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3086{
0f6a5cff 3087 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3088 struct mem_cgroup *memcg;
1da177e4 3089
0f6a5cff 3090 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3091 do {
afaf07a6 3092 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3093 unsigned long reclaimed;
3094 unsigned long scanned;
5660048c 3095
e3336cab
XP
3096 /*
3097 * This loop can become CPU-bound when target memcgs
3098 * aren't eligible for reclaim - either because they
3099 * don't have any reclaimable pages, or because their
3100 * memory is explicitly protected. Avoid soft lockups.
3101 */
3102 cond_resched();
3103
45c7f7e1
CD
3104 mem_cgroup_calculate_protection(target_memcg, memcg);
3105
3106 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3107 /*
3108 * Hard protection.
3109 * If there is no reclaimable memory, OOM.
3110 */
3111 continue;
45c7f7e1 3112 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3113 /*
3114 * Soft protection.
3115 * Respect the protection only as long as
3116 * there is an unprotected supply
3117 * of reclaimable memory from other cgroups.
3118 */
3119 if (!sc->memcg_low_reclaim) {
3120 sc->memcg_low_skipped = 1;
bf8d5d52 3121 continue;
241994ed 3122 }
d2af3397 3123 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3124 }
241994ed 3125
d2af3397
JW
3126 reclaimed = sc->nr_reclaimed;
3127 scanned = sc->nr_scanned;
afaf07a6
JW
3128
3129 shrink_lruvec(lruvec, sc);
70ddf637 3130
d2af3397
JW
3131 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3132 sc->priority);
6b4f7799 3133
d2af3397
JW
3134 /* Record the group's reclaim efficiency */
3135 vmpressure(sc->gfp_mask, memcg, false,
3136 sc->nr_scanned - scanned,
3137 sc->nr_reclaimed - reclaimed);
70ddf637 3138
0f6a5cff
JW
3139 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3140}
3141
6c9e0907 3142static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3143{
3144 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3145 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3146 struct lruvec *target_lruvec;
0f6a5cff 3147 bool reclaimable = false;
b91ac374 3148 unsigned long file;
0f6a5cff 3149
1b05117d
JW
3150 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3151
0f6a5cff 3152again:
aa48e47e
SB
3153 /*
3154 * Flush the memory cgroup stats, so that we read accurate per-memcg
3155 * lruvec stats for heuristics.
3156 */
3157 mem_cgroup_flush_stats();
3158
0f6a5cff
JW
3159 memset(&sc->nr, 0, sizeof(sc->nr));
3160
3161 nr_reclaimed = sc->nr_reclaimed;
3162 nr_scanned = sc->nr_scanned;
3163
7cf111bc
JW
3164 /*
3165 * Determine the scan balance between anon and file LRUs.
3166 */
6168d0da 3167 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3168 sc->anon_cost = target_lruvec->anon_cost;
3169 sc->file_cost = target_lruvec->file_cost;
6168d0da 3170 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3171
b91ac374
JW
3172 /*
3173 * Target desirable inactive:active list ratios for the anon
3174 * and file LRU lists.
3175 */
3176 if (!sc->force_deactivate) {
3177 unsigned long refaults;
3178
170b04b7
JK
3179 refaults = lruvec_page_state(target_lruvec,
3180 WORKINGSET_ACTIVATE_ANON);
3181 if (refaults != target_lruvec->refaults[0] ||
3182 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3183 sc->may_deactivate |= DEACTIVATE_ANON;
3184 else
3185 sc->may_deactivate &= ~DEACTIVATE_ANON;
3186
3187 /*
3188 * When refaults are being observed, it means a new
3189 * workingset is being established. Deactivate to get
3190 * rid of any stale active pages quickly.
3191 */
3192 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3193 WORKINGSET_ACTIVATE_FILE);
3194 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3195 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3196 sc->may_deactivate |= DEACTIVATE_FILE;
3197 else
3198 sc->may_deactivate &= ~DEACTIVATE_FILE;
3199 } else
3200 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3201
3202 /*
3203 * If we have plenty of inactive file pages that aren't
3204 * thrashing, try to reclaim those first before touching
3205 * anonymous pages.
3206 */
3207 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3208 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3209 sc->cache_trim_mode = 1;
3210 else
3211 sc->cache_trim_mode = 0;
3212
53138cea
JW
3213 /*
3214 * Prevent the reclaimer from falling into the cache trap: as
3215 * cache pages start out inactive, every cache fault will tip
3216 * the scan balance towards the file LRU. And as the file LRU
3217 * shrinks, so does the window for rotation from references.
3218 * This means we have a runaway feedback loop where a tiny
3219 * thrashing file LRU becomes infinitely more attractive than
3220 * anon pages. Try to detect this based on file LRU size.
3221 */
3222 if (!cgroup_reclaim(sc)) {
53138cea 3223 unsigned long total_high_wmark = 0;
b91ac374
JW
3224 unsigned long free, anon;
3225 int z;
53138cea
JW
3226
3227 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3228 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3229 node_page_state(pgdat, NR_INACTIVE_FILE);
3230
3231 for (z = 0; z < MAX_NR_ZONES; z++) {
3232 struct zone *zone = &pgdat->node_zones[z];
3233 if (!managed_zone(zone))
3234 continue;
3235
3236 total_high_wmark += high_wmark_pages(zone);
3237 }
3238
b91ac374
JW
3239 /*
3240 * Consider anon: if that's low too, this isn't a
3241 * runaway file reclaim problem, but rather just
3242 * extreme pressure. Reclaim as per usual then.
3243 */
3244 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3245
3246 sc->file_is_tiny =
3247 file + free <= total_high_wmark &&
3248 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3249 anon >> sc->priority;
53138cea
JW
3250 }
3251
0f6a5cff 3252 shrink_node_memcgs(pgdat, sc);
2344d7e4 3253
d2af3397
JW
3254 if (reclaim_state) {
3255 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3256 reclaim_state->reclaimed_slab = 0;
3257 }
d108c772 3258
d2af3397 3259 /* Record the subtree's reclaim efficiency */
1b05117d 3260 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3261 sc->nr_scanned - nr_scanned,
3262 sc->nr_reclaimed - nr_reclaimed);
d108c772 3263
d2af3397
JW
3264 if (sc->nr_reclaimed - nr_reclaimed)
3265 reclaimable = true;
d108c772 3266
d2af3397
JW
3267 if (current_is_kswapd()) {
3268 /*
3269 * If reclaim is isolating dirty pages under writeback,
3270 * it implies that the long-lived page allocation rate
3271 * is exceeding the page laundering rate. Either the
3272 * global limits are not being effective at throttling
3273 * processes due to the page distribution throughout
3274 * zones or there is heavy usage of a slow backing
3275 * device. The only option is to throttle from reclaim
3276 * context which is not ideal as there is no guarantee
3277 * the dirtying process is throttled in the same way
3278 * balance_dirty_pages() manages.
3279 *
3280 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3281 * count the number of pages under pages flagged for
3282 * immediate reclaim and stall if any are encountered
3283 * in the nr_immediate check below.
3284 */
3285 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3286 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3287
d2af3397
JW
3288 /* Allow kswapd to start writing pages during reclaim.*/
3289 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3290 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3291
d108c772 3292 /*
1eba09c1 3293 * If kswapd scans pages marked for immediate
d2af3397
JW
3294 * reclaim and under writeback (nr_immediate), it
3295 * implies that pages are cycling through the LRU
8cd7c588
MG
3296 * faster than they are written so forcibly stall
3297 * until some pages complete writeback.
d108c772 3298 */
d2af3397 3299 if (sc->nr.immediate)
c3f4a9a2 3300 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3301 }
3302
3303 /*
8cd7c588
MG
3304 * Tag a node/memcg as congested if all the dirty pages were marked
3305 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3306 *
d2af3397 3307 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3308 * stalling in reclaim_throttle().
d2af3397 3309 */
1b05117d
JW
3310 if ((current_is_kswapd() ||
3311 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3312 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3313 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3314
3315 /*
8cd7c588
MG
3316 * Stall direct reclaim for IO completions if the lruvec is
3317 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3318 * starts encountering unqueued dirty pages or cycling through
3319 * the LRU too quickly.
3320 */
1b05117d
JW
3321 if (!current_is_kswapd() && current_may_throttle() &&
3322 !sc->hibernation_mode &&
3323 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
c3f4a9a2 3324 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d108c772 3325
d2af3397
JW
3326 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3327 sc))
3328 goto again;
2344d7e4 3329
c73322d0
JW
3330 /*
3331 * Kswapd gives up on balancing particular nodes after too
3332 * many failures to reclaim anything from them and goes to
3333 * sleep. On reclaim progress, reset the failure counter. A
3334 * successful direct reclaim run will revive a dormant kswapd.
3335 */
3336 if (reclaimable)
3337 pgdat->kswapd_failures = 0;
f16015fb
JW
3338}
3339
53853e2d 3340/*
fdd4c614
VB
3341 * Returns true if compaction should go ahead for a costly-order request, or
3342 * the allocation would already succeed without compaction. Return false if we
3343 * should reclaim first.
53853e2d 3344 */
4f588331 3345static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3346{
31483b6a 3347 unsigned long watermark;
fdd4c614 3348 enum compact_result suitable;
fe4b1b24 3349
fdd4c614
VB
3350 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3351 if (suitable == COMPACT_SUCCESS)
3352 /* Allocation should succeed already. Don't reclaim. */
3353 return true;
3354 if (suitable == COMPACT_SKIPPED)
3355 /* Compaction cannot yet proceed. Do reclaim. */
3356 return false;
fe4b1b24 3357
53853e2d 3358 /*
fdd4c614
VB
3359 * Compaction is already possible, but it takes time to run and there
3360 * are potentially other callers using the pages just freed. So proceed
3361 * with reclaim to make a buffer of free pages available to give
3362 * compaction a reasonable chance of completing and allocating the page.
3363 * Note that we won't actually reclaim the whole buffer in one attempt
3364 * as the target watermark in should_continue_reclaim() is lower. But if
3365 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3366 */
fdd4c614 3367 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3368
fdd4c614 3369 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3370}
3371
69392a40
MG
3372static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3373{
66ce520b
MG
3374 /*
3375 * If reclaim is making progress greater than 12% efficiency then
3376 * wake all the NOPROGRESS throttled tasks.
3377 */
3378 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3379 wait_queue_head_t *wqh;
3380
3381 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3382 if (waitqueue_active(wqh))
3383 wake_up(wqh);
3384
3385 return;
3386 }
3387
3388 /*
3389 * Do not throttle kswapd on NOPROGRESS as it will throttle on
3390 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under
3391 * writeback and marked for immediate reclaim at the tail of
3392 * the LRU.
3393 */
3394 if (current_is_kswapd())
3395 return;
3396
3397 /* Throttle if making no progress at high prioities. */
3398 if (sc->priority < DEF_PRIORITY - 2)
c3f4a9a2 3399 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3400}
3401
1da177e4
LT
3402/*
3403 * This is the direct reclaim path, for page-allocating processes. We only
3404 * try to reclaim pages from zones which will satisfy the caller's allocation
3405 * request.
3406 *
1da177e4
LT
3407 * If a zone is deemed to be full of pinned pages then just give it a light
3408 * scan then give up on it.
3409 */
0a0337e0 3410static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3411{
dd1a239f 3412 struct zoneref *z;
54a6eb5c 3413 struct zone *zone;
0608f43d
AM
3414 unsigned long nr_soft_reclaimed;
3415 unsigned long nr_soft_scanned;
619d0d76 3416 gfp_t orig_mask;
79dafcdc 3417 pg_data_t *last_pgdat = NULL;
1cfb419b 3418
cc715d99
MG
3419 /*
3420 * If the number of buffer_heads in the machine exceeds the maximum
3421 * allowed level, force direct reclaim to scan the highmem zone as
3422 * highmem pages could be pinning lowmem pages storing buffer_heads
3423 */
619d0d76 3424 orig_mask = sc->gfp_mask;
b2e18757 3425 if (buffer_heads_over_limit) {
cc715d99 3426 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3427 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3428 }
cc715d99 3429
d4debc66 3430 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3431 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3432 /*
3433 * Take care memory controller reclaiming has small influence
3434 * to global LRU.
3435 */
b5ead35e 3436 if (!cgroup_reclaim(sc)) {
344736f2
VD
3437 if (!cpuset_zone_allowed(zone,
3438 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3439 continue;
65ec02cb 3440
0b06496a
JW
3441 /*
3442 * If we already have plenty of memory free for
3443 * compaction in this zone, don't free any more.
3444 * Even though compaction is invoked for any
3445 * non-zero order, only frequent costly order
3446 * reclamation is disruptive enough to become a
3447 * noticeable problem, like transparent huge
3448 * page allocations.
3449 */
3450 if (IS_ENABLED(CONFIG_COMPACTION) &&
3451 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3452 compaction_ready(zone, sc)) {
0b06496a
JW
3453 sc->compaction_ready = true;
3454 continue;
e0887c19 3455 }
0b06496a 3456
79dafcdc
MG
3457 /*
3458 * Shrink each node in the zonelist once. If the
3459 * zonelist is ordered by zone (not the default) then a
3460 * node may be shrunk multiple times but in that case
3461 * the user prefers lower zones being preserved.
3462 */
3463 if (zone->zone_pgdat == last_pgdat)
3464 continue;
3465
0608f43d
AM
3466 /*
3467 * This steals pages from memory cgroups over softlimit
3468 * and returns the number of reclaimed pages and
3469 * scanned pages. This works for global memory pressure
3470 * and balancing, not for a memcg's limit.
3471 */
3472 nr_soft_scanned = 0;
ef8f2327 3473 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3474 sc->order, sc->gfp_mask,
3475 &nr_soft_scanned);
3476 sc->nr_reclaimed += nr_soft_reclaimed;
3477 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3478 /* need some check for avoid more shrink_zone() */
1cfb419b 3479 }
408d8544 3480
79dafcdc
MG
3481 /* See comment about same check for global reclaim above */
3482 if (zone->zone_pgdat == last_pgdat)
3483 continue;
3484 last_pgdat = zone->zone_pgdat;
970a39a3 3485 shrink_node(zone->zone_pgdat, sc);
69392a40 3486 consider_reclaim_throttle(zone->zone_pgdat, sc);
1da177e4 3487 }
e0c23279 3488
619d0d76
WY
3489 /*
3490 * Restore to original mask to avoid the impact on the caller if we
3491 * promoted it to __GFP_HIGHMEM.
3492 */
3493 sc->gfp_mask = orig_mask;
1da177e4 3494}
4f98a2fe 3495
b910718a 3496static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3497{
b910718a
JW
3498 struct lruvec *target_lruvec;
3499 unsigned long refaults;
2a2e4885 3500
b910718a 3501 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3502 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3503 target_lruvec->refaults[0] = refaults;
3504 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3505 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3506}
3507
1da177e4
LT
3508/*
3509 * This is the main entry point to direct page reclaim.
3510 *
3511 * If a full scan of the inactive list fails to free enough memory then we
3512 * are "out of memory" and something needs to be killed.
3513 *
3514 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3515 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3516 * caller can't do much about. We kick the writeback threads and take explicit
3517 * naps in the hope that some of these pages can be written. But if the
3518 * allocating task holds filesystem locks which prevent writeout this might not
3519 * work, and the allocation attempt will fail.
a41f24ea
NA
3520 *
3521 * returns: 0, if no pages reclaimed
3522 * else, the number of pages reclaimed
1da177e4 3523 */
dac1d27b 3524static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3525 struct scan_control *sc)
1da177e4 3526{
241994ed 3527 int initial_priority = sc->priority;
2a2e4885
JW
3528 pg_data_t *last_pgdat;
3529 struct zoneref *z;
3530 struct zone *zone;
241994ed 3531retry:
873b4771
KK
3532 delayacct_freepages_start();
3533
b5ead35e 3534 if (!cgroup_reclaim(sc))
7cc30fcf 3535 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3536
9e3b2f8c 3537 do {
70ddf637
AV
3538 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3539 sc->priority);
66e1707b 3540 sc->nr_scanned = 0;
0a0337e0 3541 shrink_zones(zonelist, sc);
c6a8a8c5 3542
bb21c7ce 3543 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3544 break;
3545
3546 if (sc->compaction_ready)
3547 break;
1da177e4 3548
0e50ce3b
MK
3549 /*
3550 * If we're getting trouble reclaiming, start doing
3551 * writepage even in laptop mode.
3552 */
3553 if (sc->priority < DEF_PRIORITY - 2)
3554 sc->may_writepage = 1;
0b06496a 3555 } while (--sc->priority >= 0);
bb21c7ce 3556
2a2e4885
JW
3557 last_pgdat = NULL;
3558 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3559 sc->nodemask) {
3560 if (zone->zone_pgdat == last_pgdat)
3561 continue;
3562 last_pgdat = zone->zone_pgdat;
1b05117d 3563
2a2e4885 3564 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3565
3566 if (cgroup_reclaim(sc)) {
3567 struct lruvec *lruvec;
3568
3569 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3570 zone->zone_pgdat);
3571 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3572 }
2a2e4885
JW
3573 }
3574
873b4771
KK
3575 delayacct_freepages_end();
3576
bb21c7ce
KM
3577 if (sc->nr_reclaimed)
3578 return sc->nr_reclaimed;
3579
0cee34fd 3580 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3581 if (sc->compaction_ready)
7335084d
MG
3582 return 1;
3583
b91ac374
JW
3584 /*
3585 * We make inactive:active ratio decisions based on the node's
3586 * composition of memory, but a restrictive reclaim_idx or a
3587 * memory.low cgroup setting can exempt large amounts of
3588 * memory from reclaim. Neither of which are very common, so
3589 * instead of doing costly eligibility calculations of the
3590 * entire cgroup subtree up front, we assume the estimates are
3591 * good, and retry with forcible deactivation if that fails.
3592 */
3593 if (sc->skipped_deactivate) {
3594 sc->priority = initial_priority;
3595 sc->force_deactivate = 1;
3596 sc->skipped_deactivate = 0;
3597 goto retry;
3598 }
3599
241994ed 3600 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3601 if (sc->memcg_low_skipped) {
241994ed 3602 sc->priority = initial_priority;
b91ac374 3603 sc->force_deactivate = 0;
d6622f63
YX
3604 sc->memcg_low_reclaim = 1;
3605 sc->memcg_low_skipped = 0;
241994ed
JW
3606 goto retry;
3607 }
3608
bb21c7ce 3609 return 0;
1da177e4
LT
3610}
3611
c73322d0 3612static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3613{
3614 struct zone *zone;
3615 unsigned long pfmemalloc_reserve = 0;
3616 unsigned long free_pages = 0;
3617 int i;
3618 bool wmark_ok;
3619
c73322d0
JW
3620 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3621 return true;
3622
5515061d
MG
3623 for (i = 0; i <= ZONE_NORMAL; i++) {
3624 zone = &pgdat->node_zones[i];
d450abd8
JW
3625 if (!managed_zone(zone))
3626 continue;
3627
3628 if (!zone_reclaimable_pages(zone))
675becce
MG
3629 continue;
3630
5515061d
MG
3631 pfmemalloc_reserve += min_wmark_pages(zone);
3632 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3633 }
3634
675becce
MG
3635 /* If there are no reserves (unexpected config) then do not throttle */
3636 if (!pfmemalloc_reserve)
3637 return true;
3638
5515061d
MG
3639 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3640
3641 /* kswapd must be awake if processes are being throttled */
3642 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3643 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3644 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3645
5515061d
MG
3646 wake_up_interruptible(&pgdat->kswapd_wait);
3647 }
3648
3649 return wmark_ok;
3650}
3651
3652/*
3653 * Throttle direct reclaimers if backing storage is backed by the network
3654 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3655 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3656 * when the low watermark is reached.
3657 *
3658 * Returns true if a fatal signal was delivered during throttling. If this
3659 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3660 */
50694c28 3661static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3662 nodemask_t *nodemask)
3663{
675becce 3664 struct zoneref *z;
5515061d 3665 struct zone *zone;
675becce 3666 pg_data_t *pgdat = NULL;
5515061d
MG
3667
3668 /*
3669 * Kernel threads should not be throttled as they may be indirectly
3670 * responsible for cleaning pages necessary for reclaim to make forward
3671 * progress. kjournald for example may enter direct reclaim while
3672 * committing a transaction where throttling it could forcing other
3673 * processes to block on log_wait_commit().
3674 */
3675 if (current->flags & PF_KTHREAD)
50694c28
MG
3676 goto out;
3677
3678 /*
3679 * If a fatal signal is pending, this process should not throttle.
3680 * It should return quickly so it can exit and free its memory
3681 */
3682 if (fatal_signal_pending(current))
3683 goto out;
5515061d 3684
675becce
MG
3685 /*
3686 * Check if the pfmemalloc reserves are ok by finding the first node
3687 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3688 * GFP_KERNEL will be required for allocating network buffers when
3689 * swapping over the network so ZONE_HIGHMEM is unusable.
3690 *
3691 * Throttling is based on the first usable node and throttled processes
3692 * wait on a queue until kswapd makes progress and wakes them. There
3693 * is an affinity then between processes waking up and where reclaim
3694 * progress has been made assuming the process wakes on the same node.
3695 * More importantly, processes running on remote nodes will not compete
3696 * for remote pfmemalloc reserves and processes on different nodes
3697 * should make reasonable progress.
3698 */
3699 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3700 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3701 if (zone_idx(zone) > ZONE_NORMAL)
3702 continue;
3703
3704 /* Throttle based on the first usable node */
3705 pgdat = zone->zone_pgdat;
c73322d0 3706 if (allow_direct_reclaim(pgdat))
675becce
MG
3707 goto out;
3708 break;
3709 }
3710
3711 /* If no zone was usable by the allocation flags then do not throttle */
3712 if (!pgdat)
50694c28 3713 goto out;
5515061d 3714
68243e76
MG
3715 /* Account for the throttling */
3716 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3717
5515061d
MG
3718 /*
3719 * If the caller cannot enter the filesystem, it's possible that it
3720 * is due to the caller holding an FS lock or performing a journal
3721 * transaction in the case of a filesystem like ext[3|4]. In this case,
3722 * it is not safe to block on pfmemalloc_wait as kswapd could be
3723 * blocked waiting on the same lock. Instead, throttle for up to a
3724 * second before continuing.
3725 */
2e786d9e 3726 if (!(gfp_mask & __GFP_FS))
5515061d 3727 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3728 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3729 else
3730 /* Throttle until kswapd wakes the process */
3731 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3732 allow_direct_reclaim(pgdat));
50694c28 3733
50694c28
MG
3734 if (fatal_signal_pending(current))
3735 return true;
3736
3737out:
3738 return false;
5515061d
MG
3739}
3740
dac1d27b 3741unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3742 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3743{
33906bc5 3744 unsigned long nr_reclaimed;
66e1707b 3745 struct scan_control sc = {
ee814fe2 3746 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3747 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3748 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3749 .order = order,
3750 .nodemask = nodemask,
3751 .priority = DEF_PRIORITY,
66e1707b 3752 .may_writepage = !laptop_mode,
a6dc60f8 3753 .may_unmap = 1,
2e2e4259 3754 .may_swap = 1,
66e1707b
BS
3755 };
3756
bb451fdf
GT
3757 /*
3758 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3759 * Confirm they are large enough for max values.
3760 */
3761 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3762 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3763 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3764
5515061d 3765 /*
50694c28
MG
3766 * Do not enter reclaim if fatal signal was delivered while throttled.
3767 * 1 is returned so that the page allocator does not OOM kill at this
3768 * point.
5515061d 3769 */
f2f43e56 3770 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3771 return 1;
3772
1732d2b0 3773 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3774 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3775
3115cd91 3776 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3777
3778 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3779 set_task_reclaim_state(current, NULL);
33906bc5
MG
3780
3781 return nr_reclaimed;
66e1707b
BS
3782}
3783
c255a458 3784#ifdef CONFIG_MEMCG
66e1707b 3785
d2e5fb92 3786/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3787unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3788 gfp_t gfp_mask, bool noswap,
ef8f2327 3789 pg_data_t *pgdat,
0ae5e89c 3790 unsigned long *nr_scanned)
4e416953 3791{
afaf07a6 3792 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3793 struct scan_control sc = {
b8f5c566 3794 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3795 .target_mem_cgroup = memcg,
4e416953
BS
3796 .may_writepage = !laptop_mode,
3797 .may_unmap = 1,
b2e18757 3798 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3799 .may_swap = !noswap,
4e416953 3800 };
0ae5e89c 3801
d2e5fb92
MH
3802 WARN_ON_ONCE(!current->reclaim_state);
3803
4e416953
BS
3804 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3805 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3806
9e3b2f8c 3807 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3808 sc.gfp_mask);
bdce6d9e 3809
4e416953
BS
3810 /*
3811 * NOTE: Although we can get the priority field, using it
3812 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3813 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3814 * will pick up pages from other mem cgroup's as well. We hack
3815 * the priority and make it zero.
3816 */
afaf07a6 3817 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3818
3819 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3820
0ae5e89c 3821 *nr_scanned = sc.nr_scanned;
0308f7cf 3822
4e416953
BS
3823 return sc.nr_reclaimed;
3824}
3825
72835c86 3826unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3827 unsigned long nr_pages,
a7885eb8 3828 gfp_t gfp_mask,
b70a2a21 3829 bool may_swap)
66e1707b 3830{
bdce6d9e 3831 unsigned long nr_reclaimed;
499118e9 3832 unsigned int noreclaim_flag;
66e1707b 3833 struct scan_control sc = {
b70a2a21 3834 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3835 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3836 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3837 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3838 .target_mem_cgroup = memcg,
3839 .priority = DEF_PRIORITY,
3840 .may_writepage = !laptop_mode,
3841 .may_unmap = 1,
b70a2a21 3842 .may_swap = may_swap,
a09ed5e0 3843 };
889976db 3844 /*
fa40d1ee
SB
3845 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3846 * equal pressure on all the nodes. This is based on the assumption that
3847 * the reclaim does not bail out early.
889976db 3848 */
fa40d1ee 3849 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3850
fa40d1ee 3851 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3852 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3853 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3854
3115cd91 3855 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3856
499118e9 3857 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3858 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3859 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3860
3861 return nr_reclaimed;
66e1707b
BS
3862}
3863#endif
3864
1d82de61 3865static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3866 struct scan_control *sc)
f16015fb 3867{
b95a2f2d 3868 struct mem_cgroup *memcg;
b91ac374 3869 struct lruvec *lruvec;
f16015fb 3870
2f368a9f 3871 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3872 return;
3873
b91ac374
JW
3874 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3875 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3876 return;
3877
b95a2f2d
JW
3878 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3879 do {
b91ac374
JW
3880 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3881 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3882 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3883 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3884 } while (memcg);
f16015fb
JW
3885}
3886
97a225e6 3887static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3888{
3889 int i;
3890 struct zone *zone;
3891
3892 /*
3893 * Check for watermark boosts top-down as the higher zones
3894 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3895 * should not be checked at the same time as reclaim would
1c30844d
MG
3896 * start prematurely when there is no boosting and a lower
3897 * zone is balanced.
3898 */
97a225e6 3899 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3900 zone = pgdat->node_zones + i;
3901 if (!managed_zone(zone))
3902 continue;
3903
3904 if (zone->watermark_boost)
3905 return true;
3906 }
3907
3908 return false;
3909}
3910
e716f2eb
MG
3911/*
3912 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3913 * and highest_zoneidx
e716f2eb 3914 */
97a225e6 3915static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3916{
e716f2eb
MG
3917 int i;
3918 unsigned long mark = -1;
3919 struct zone *zone;
60cefed4 3920
1c30844d
MG
3921 /*
3922 * Check watermarks bottom-up as lower zones are more likely to
3923 * meet watermarks.
3924 */
97a225e6 3925 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3926 zone = pgdat->node_zones + i;
6256c6b4 3927
e716f2eb
MG
3928 if (!managed_zone(zone))
3929 continue;
3930
3931 mark = high_wmark_pages(zone);
97a225e6 3932 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3933 return true;
3934 }
3935
3936 /*
97a225e6 3937 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3938 * need balancing by definition. This can happen if a zone-restricted
3939 * allocation tries to wake a remote kswapd.
3940 */
3941 if (mark == -1)
3942 return true;
3943
3944 return false;
60cefed4
JW
3945}
3946
631b6e08
MG
3947/* Clear pgdat state for congested, dirty or under writeback. */
3948static void clear_pgdat_congested(pg_data_t *pgdat)
3949{
1b05117d
JW
3950 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3951
3952 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3953 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3954 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3955}
3956
5515061d
MG
3957/*
3958 * Prepare kswapd for sleeping. This verifies that there are no processes
3959 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3960 *
3961 * Returns true if kswapd is ready to sleep
3962 */
97a225e6
JK
3963static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3964 int highest_zoneidx)
f50de2d3 3965{
5515061d 3966 /*
9e5e3661 3967 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3968 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3969 * race between when kswapd checks the watermarks and a process gets
3970 * throttled. There is also a potential race if processes get
3971 * throttled, kswapd wakes, a large process exits thereby balancing the
3972 * zones, which causes kswapd to exit balance_pgdat() before reaching
3973 * the wake up checks. If kswapd is going to sleep, no process should
3974 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3975 * the wake up is premature, processes will wake kswapd and get
3976 * throttled again. The difference from wake ups in balance_pgdat() is
3977 * that here we are under prepare_to_wait().
5515061d 3978 */
9e5e3661
VB
3979 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3980 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3981
c73322d0
JW
3982 /* Hopeless node, leave it to direct reclaim */
3983 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3984 return true;
3985
97a225e6 3986 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3987 clear_pgdat_congested(pgdat);
3988 return true;
1d82de61
MG
3989 }
3990
333b0a45 3991 return false;
f50de2d3
MG
3992}
3993
75485363 3994/*
1d82de61
MG
3995 * kswapd shrinks a node of pages that are at or below the highest usable
3996 * zone that is currently unbalanced.
b8e83b94
MG
3997 *
3998 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3999 * reclaim or if the lack of progress was due to pages under writeback.
4000 * This is used to determine if the scanning priority needs to be raised.
75485363 4001 */
1d82de61 4002static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 4003 struct scan_control *sc)
75485363 4004{
1d82de61
MG
4005 struct zone *zone;
4006 int z;
75485363 4007
1d82de61
MG
4008 /* Reclaim a number of pages proportional to the number of zones */
4009 sc->nr_to_reclaim = 0;
970a39a3 4010 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 4011 zone = pgdat->node_zones + z;
6aa303de 4012 if (!managed_zone(zone))
1d82de61 4013 continue;
7c954f6d 4014
1d82de61
MG
4015 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4016 }
7c954f6d
MG
4017
4018 /*
1d82de61
MG
4019 * Historically care was taken to put equal pressure on all zones but
4020 * now pressure is applied based on node LRU order.
7c954f6d 4021 */
970a39a3 4022 shrink_node(pgdat, sc);
283aba9f 4023
7c954f6d 4024 /*
1d82de61
MG
4025 * Fragmentation may mean that the system cannot be rebalanced for
4026 * high-order allocations. If twice the allocation size has been
4027 * reclaimed then recheck watermarks only at order-0 to prevent
4028 * excessive reclaim. Assume that a process requested a high-order
4029 * can direct reclaim/compact.
7c954f6d 4030 */
9861a62c 4031 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4032 sc->order = 0;
7c954f6d 4033
b8e83b94 4034 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4035}
4036
c49c2c47
MG
4037/* Page allocator PCP high watermark is lowered if reclaim is active. */
4038static inline void
4039update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4040{
4041 int i;
4042 struct zone *zone;
4043
4044 for (i = 0; i <= highest_zoneidx; i++) {
4045 zone = pgdat->node_zones + i;
4046
4047 if (!managed_zone(zone))
4048 continue;
4049
4050 if (active)
4051 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4052 else
4053 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4054 }
4055}
4056
4057static inline void
4058set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4059{
4060 update_reclaim_active(pgdat, highest_zoneidx, true);
4061}
4062
4063static inline void
4064clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4065{
4066 update_reclaim_active(pgdat, highest_zoneidx, false);
4067}
4068
1da177e4 4069/*
1d82de61
MG
4070 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4071 * that are eligible for use by the caller until at least one zone is
4072 * balanced.
1da177e4 4073 *
1d82de61 4074 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4075 *
4076 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4077 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4078 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4079 * or lower is eligible for reclaim until at least one usable zone is
4080 * balanced.
1da177e4 4081 */
97a225e6 4082static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4083{
1da177e4 4084 int i;
0608f43d
AM
4085 unsigned long nr_soft_reclaimed;
4086 unsigned long nr_soft_scanned;
eb414681 4087 unsigned long pflags;
1c30844d
MG
4088 unsigned long nr_boost_reclaim;
4089 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4090 bool boosted;
1d82de61 4091 struct zone *zone;
179e9639
AM
4092 struct scan_control sc = {
4093 .gfp_mask = GFP_KERNEL,
ee814fe2 4094 .order = order,
a6dc60f8 4095 .may_unmap = 1,
179e9639 4096 };
93781325 4097
1732d2b0 4098 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4099 psi_memstall_enter(&pflags);
4f3eaf45 4100 __fs_reclaim_acquire(_THIS_IP_);
93781325 4101
f8891e5e 4102 count_vm_event(PAGEOUTRUN);
1da177e4 4103
1c30844d
MG
4104 /*
4105 * Account for the reclaim boost. Note that the zone boost is left in
4106 * place so that parallel allocations that are near the watermark will
4107 * stall or direct reclaim until kswapd is finished.
4108 */
4109 nr_boost_reclaim = 0;
97a225e6 4110 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4111 zone = pgdat->node_zones + i;
4112 if (!managed_zone(zone))
4113 continue;
4114
4115 nr_boost_reclaim += zone->watermark_boost;
4116 zone_boosts[i] = zone->watermark_boost;
4117 }
4118 boosted = nr_boost_reclaim;
4119
4120restart:
c49c2c47 4121 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4122 sc.priority = DEF_PRIORITY;
9e3b2f8c 4123 do {
c73322d0 4124 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4125 bool raise_priority = true;
1c30844d 4126 bool balanced;
93781325 4127 bool ret;
b8e83b94 4128
97a225e6 4129 sc.reclaim_idx = highest_zoneidx;
1da177e4 4130
86c79f6b 4131 /*
84c7a777
MG
4132 * If the number of buffer_heads exceeds the maximum allowed
4133 * then consider reclaiming from all zones. This has a dual
4134 * purpose -- on 64-bit systems it is expected that
4135 * buffer_heads are stripped during active rotation. On 32-bit
4136 * systems, highmem pages can pin lowmem memory and shrinking
4137 * buffers can relieve lowmem pressure. Reclaim may still not
4138 * go ahead if all eligible zones for the original allocation
4139 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4140 */
4141 if (buffer_heads_over_limit) {
4142 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4143 zone = pgdat->node_zones + i;
6aa303de 4144 if (!managed_zone(zone))
86c79f6b 4145 continue;
cc715d99 4146
970a39a3 4147 sc.reclaim_idx = i;
e1dbeda6 4148 break;
1da177e4 4149 }
1da177e4 4150 }
dafcb73e 4151
86c79f6b 4152 /*
1c30844d
MG
4153 * If the pgdat is imbalanced then ignore boosting and preserve
4154 * the watermarks for a later time and restart. Note that the
4155 * zone watermarks will be still reset at the end of balancing
4156 * on the grounds that the normal reclaim should be enough to
4157 * re-evaluate if boosting is required when kswapd next wakes.
4158 */
97a225e6 4159 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4160 if (!balanced && nr_boost_reclaim) {
4161 nr_boost_reclaim = 0;
4162 goto restart;
4163 }
4164
4165 /*
4166 * If boosting is not active then only reclaim if there are no
4167 * eligible zones. Note that sc.reclaim_idx is not used as
4168 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4169 */
1c30844d 4170 if (!nr_boost_reclaim && balanced)
e716f2eb 4171 goto out;
e1dbeda6 4172
1c30844d
MG
4173 /* Limit the priority of boosting to avoid reclaim writeback */
4174 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4175 raise_priority = false;
4176
4177 /*
4178 * Do not writeback or swap pages for boosted reclaim. The
4179 * intent is to relieve pressure not issue sub-optimal IO
4180 * from reclaim context. If no pages are reclaimed, the
4181 * reclaim will be aborted.
4182 */
4183 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4184 sc.may_swap = !nr_boost_reclaim;
1c30844d 4185
1d82de61
MG
4186 /*
4187 * Do some background aging of the anon list, to give
4188 * pages a chance to be referenced before reclaiming. All
4189 * pages are rotated regardless of classzone as this is
4190 * about consistent aging.
4191 */
ef8f2327 4192 age_active_anon(pgdat, &sc);
1d82de61 4193
b7ea3c41
MG
4194 /*
4195 * If we're getting trouble reclaiming, start doing writepage
4196 * even in laptop mode.
4197 */
047d72c3 4198 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4199 sc.may_writepage = 1;
4200
1d82de61
MG
4201 /* Call soft limit reclaim before calling shrink_node. */
4202 sc.nr_scanned = 0;
4203 nr_soft_scanned = 0;
ef8f2327 4204 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4205 sc.gfp_mask, &nr_soft_scanned);
4206 sc.nr_reclaimed += nr_soft_reclaimed;
4207
1da177e4 4208 /*
1d82de61
MG
4209 * There should be no need to raise the scanning priority if
4210 * enough pages are already being scanned that that high
4211 * watermark would be met at 100% efficiency.
1da177e4 4212 */
970a39a3 4213 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4214 raise_priority = false;
5515061d
MG
4215
4216 /*
4217 * If the low watermark is met there is no need for processes
4218 * to be throttled on pfmemalloc_wait as they should not be
4219 * able to safely make forward progress. Wake them
4220 */
4221 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4222 allow_direct_reclaim(pgdat))
cfc51155 4223 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4224
b8e83b94 4225 /* Check if kswapd should be suspending */
4f3eaf45 4226 __fs_reclaim_release(_THIS_IP_);
93781325 4227 ret = try_to_freeze();
4f3eaf45 4228 __fs_reclaim_acquire(_THIS_IP_);
93781325 4229 if (ret || kthread_should_stop())
b8e83b94 4230 break;
8357376d 4231
73ce02e9 4232 /*
b8e83b94
MG
4233 * Raise priority if scanning rate is too low or there was no
4234 * progress in reclaiming pages
73ce02e9 4235 */
c73322d0 4236 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4237 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4238
4239 /*
4240 * If reclaim made no progress for a boost, stop reclaim as
4241 * IO cannot be queued and it could be an infinite loop in
4242 * extreme circumstances.
4243 */
4244 if (nr_boost_reclaim && !nr_reclaimed)
4245 break;
4246
c73322d0 4247 if (raise_priority || !nr_reclaimed)
b8e83b94 4248 sc.priority--;
1d82de61 4249 } while (sc.priority >= 1);
1da177e4 4250
c73322d0
JW
4251 if (!sc.nr_reclaimed)
4252 pgdat->kswapd_failures++;
4253
b8e83b94 4254out:
c49c2c47
MG
4255 clear_reclaim_active(pgdat, highest_zoneidx);
4256
1c30844d
MG
4257 /* If reclaim was boosted, account for the reclaim done in this pass */
4258 if (boosted) {
4259 unsigned long flags;
4260
97a225e6 4261 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4262 if (!zone_boosts[i])
4263 continue;
4264
4265 /* Increments are under the zone lock */
4266 zone = pgdat->node_zones + i;
4267 spin_lock_irqsave(&zone->lock, flags);
4268 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4269 spin_unlock_irqrestore(&zone->lock, flags);
4270 }
4271
4272 /*
4273 * As there is now likely space, wakeup kcompact to defragment
4274 * pageblocks.
4275 */
97a225e6 4276 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4277 }
4278
2a2e4885 4279 snapshot_refaults(NULL, pgdat);
4f3eaf45 4280 __fs_reclaim_release(_THIS_IP_);
eb414681 4281 psi_memstall_leave(&pflags);
1732d2b0 4282 set_task_reclaim_state(current, NULL);
e5ca8071 4283
0abdee2b 4284 /*
1d82de61
MG
4285 * Return the order kswapd stopped reclaiming at as
4286 * prepare_kswapd_sleep() takes it into account. If another caller
4287 * entered the allocator slow path while kswapd was awake, order will
4288 * remain at the higher level.
0abdee2b 4289 */
1d82de61 4290 return sc.order;
1da177e4
LT
4291}
4292
e716f2eb 4293/*
97a225e6
JK
4294 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4295 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4296 * not a valid index then either kswapd runs for first time or kswapd couldn't
4297 * sleep after previous reclaim attempt (node is still unbalanced). In that
4298 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4299 */
97a225e6
JK
4300static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4301 enum zone_type prev_highest_zoneidx)
e716f2eb 4302{
97a225e6 4303 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4304
97a225e6 4305 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4306}
4307
38087d9b 4308static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4309 unsigned int highest_zoneidx)
f0bc0a60
KM
4310{
4311 long remaining = 0;
4312 DEFINE_WAIT(wait);
4313
4314 if (freezing(current) || kthread_should_stop())
4315 return;
4316
4317 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4318
333b0a45
SG
4319 /*
4320 * Try to sleep for a short interval. Note that kcompactd will only be
4321 * woken if it is possible to sleep for a short interval. This is
4322 * deliberate on the assumption that if reclaim cannot keep an
4323 * eligible zone balanced that it's also unlikely that compaction will
4324 * succeed.
4325 */
97a225e6 4326 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4327 /*
4328 * Compaction records what page blocks it recently failed to
4329 * isolate pages from and skips them in the future scanning.
4330 * When kswapd is going to sleep, it is reasonable to assume
4331 * that pages and compaction may succeed so reset the cache.
4332 */
4333 reset_isolation_suitable(pgdat);
4334
4335 /*
4336 * We have freed the memory, now we should compact it to make
4337 * allocation of the requested order possible.
4338 */
97a225e6 4339 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4340
f0bc0a60 4341 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4342
4343 /*
97a225e6 4344 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4345 * order. The values will either be from a wakeup request or
4346 * the previous request that slept prematurely.
4347 */
4348 if (remaining) {
97a225e6
JK
4349 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4350 kswapd_highest_zoneidx(pgdat,
4351 highest_zoneidx));
5644e1fb
QC
4352
4353 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4354 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4355 }
4356
f0bc0a60
KM
4357 finish_wait(&pgdat->kswapd_wait, &wait);
4358 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4359 }
4360
4361 /*
4362 * After a short sleep, check if it was a premature sleep. If not, then
4363 * go fully to sleep until explicitly woken up.
4364 */
d9f21d42 4365 if (!remaining &&
97a225e6 4366 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4367 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4368
4369 /*
4370 * vmstat counters are not perfectly accurate and the estimated
4371 * value for counters such as NR_FREE_PAGES can deviate from the
4372 * true value by nr_online_cpus * threshold. To avoid the zone
4373 * watermarks being breached while under pressure, we reduce the
4374 * per-cpu vmstat threshold while kswapd is awake and restore
4375 * them before going back to sleep.
4376 */
4377 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4378
4379 if (!kthread_should_stop())
4380 schedule();
4381
f0bc0a60
KM
4382 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4383 } else {
4384 if (remaining)
4385 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4386 else
4387 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4388 }
4389 finish_wait(&pgdat->kswapd_wait, &wait);
4390}
4391
1da177e4
LT
4392/*
4393 * The background pageout daemon, started as a kernel thread
4f98a2fe 4394 * from the init process.
1da177e4
LT
4395 *
4396 * This basically trickles out pages so that we have _some_
4397 * free memory available even if there is no other activity
4398 * that frees anything up. This is needed for things like routing
4399 * etc, where we otherwise might have all activity going on in
4400 * asynchronous contexts that cannot page things out.
4401 *
4402 * If there are applications that are active memory-allocators
4403 * (most normal use), this basically shouldn't matter.
4404 */
4405static int kswapd(void *p)
4406{
e716f2eb 4407 unsigned int alloc_order, reclaim_order;
97a225e6 4408 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4409 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4410 struct task_struct *tsk = current;
a70f7302 4411 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4412
174596a0 4413 if (!cpumask_empty(cpumask))
c5f59f08 4414 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4415
4416 /*
4417 * Tell the memory management that we're a "memory allocator",
4418 * and that if we need more memory we should get access to it
4419 * regardless (see "__alloc_pages()"). "kswapd" should
4420 * never get caught in the normal page freeing logic.
4421 *
4422 * (Kswapd normally doesn't need memory anyway, but sometimes
4423 * you need a small amount of memory in order to be able to
4424 * page out something else, and this flag essentially protects
4425 * us from recursively trying to free more memory as we're
4426 * trying to free the first piece of memory in the first place).
4427 */
930d9152 4428 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4429 set_freezable();
1da177e4 4430
5644e1fb 4431 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4432 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4433 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4434 for ( ; ; ) {
6f6313d4 4435 bool ret;
3e1d1d28 4436
5644e1fb 4437 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4438 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4439 highest_zoneidx);
e716f2eb 4440
38087d9b
MG
4441kswapd_try_sleep:
4442 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4443 highest_zoneidx);
215ddd66 4444
97a225e6 4445 /* Read the new order and highest_zoneidx */
2b47a24c 4446 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4447 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4448 highest_zoneidx);
5644e1fb 4449 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4450 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4451
8fe23e05
DR
4452 ret = try_to_freeze();
4453 if (kthread_should_stop())
4454 break;
4455
4456 /*
4457 * We can speed up thawing tasks if we don't call balance_pgdat
4458 * after returning from the refrigerator
4459 */
38087d9b
MG
4460 if (ret)
4461 continue;
4462
4463 /*
4464 * Reclaim begins at the requested order but if a high-order
4465 * reclaim fails then kswapd falls back to reclaiming for
4466 * order-0. If that happens, kswapd will consider sleeping
4467 * for the order it finished reclaiming at (reclaim_order)
4468 * but kcompactd is woken to compact for the original
4469 * request (alloc_order).
4470 */
97a225e6 4471 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4472 alloc_order);
97a225e6
JK
4473 reclaim_order = balance_pgdat(pgdat, alloc_order,
4474 highest_zoneidx);
38087d9b
MG
4475 if (reclaim_order < alloc_order)
4476 goto kswapd_try_sleep;
1da177e4 4477 }
b0a8cc58 4478
71abdc15 4479 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4480
1da177e4
LT
4481 return 0;
4482}
4483
4484/*
5ecd9d40
DR
4485 * A zone is low on free memory or too fragmented for high-order memory. If
4486 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4487 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4488 * has failed or is not needed, still wake up kcompactd if only compaction is
4489 * needed.
1da177e4 4490 */
5ecd9d40 4491void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4492 enum zone_type highest_zoneidx)
1da177e4
LT
4493{
4494 pg_data_t *pgdat;
5644e1fb 4495 enum zone_type curr_idx;
1da177e4 4496
6aa303de 4497 if (!managed_zone(zone))
1da177e4
LT
4498 return;
4499
5ecd9d40 4500 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4501 return;
5644e1fb 4502
88f5acf8 4503 pgdat = zone->zone_pgdat;
97a225e6 4504 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4505
97a225e6
JK
4506 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4507 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4508
4509 if (READ_ONCE(pgdat->kswapd_order) < order)
4510 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4511
8d0986e2 4512 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4513 return;
e1a55637 4514
5ecd9d40
DR
4515 /* Hopeless node, leave it to direct reclaim if possible */
4516 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4517 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4518 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4519 /*
4520 * There may be plenty of free memory available, but it's too
4521 * fragmented for high-order allocations. Wake up kcompactd
4522 * and rely on compaction_suitable() to determine if it's
4523 * needed. If it fails, it will defer subsequent attempts to
4524 * ratelimit its work.
4525 */
4526 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4527 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4528 return;
5ecd9d40 4529 }
88f5acf8 4530
97a225e6 4531 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4532 gfp_flags);
8d0986e2 4533 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4534}
4535
c6f37f12 4536#ifdef CONFIG_HIBERNATION
1da177e4 4537/*
7b51755c 4538 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4539 * freed pages.
4540 *
4541 * Rather than trying to age LRUs the aim is to preserve the overall
4542 * LRU order by reclaiming preferentially
4543 * inactive > active > active referenced > active mapped
1da177e4 4544 */
7b51755c 4545unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4546{
d6277db4 4547 struct scan_control sc = {
ee814fe2 4548 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4549 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4550 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4551 .priority = DEF_PRIORITY,
d6277db4 4552 .may_writepage = 1,
ee814fe2
JW
4553 .may_unmap = 1,
4554 .may_swap = 1,
7b51755c 4555 .hibernation_mode = 1,
1da177e4 4556 };
a09ed5e0 4557 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4558 unsigned long nr_reclaimed;
499118e9 4559 unsigned int noreclaim_flag;
1da177e4 4560
d92a8cfc 4561 fs_reclaim_acquire(sc.gfp_mask);
93781325 4562 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4563 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4564
3115cd91 4565 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4566
1732d2b0 4567 set_task_reclaim_state(current, NULL);
499118e9 4568 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4569 fs_reclaim_release(sc.gfp_mask);
d6277db4 4570
7b51755c 4571 return nr_reclaimed;
1da177e4 4572}
c6f37f12 4573#endif /* CONFIG_HIBERNATION */
1da177e4 4574
3218ae14
YG
4575/*
4576 * This kswapd start function will be called by init and node-hot-add.
4577 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4578 */
b87c517a 4579void kswapd_run(int nid)
3218ae14
YG
4580{
4581 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4582
4583 if (pgdat->kswapd)
b87c517a 4584 return;
3218ae14
YG
4585
4586 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4587 if (IS_ERR(pgdat->kswapd)) {
4588 /* failure at boot is fatal */
c6202adf 4589 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4590 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4591 pgdat->kswapd = NULL;
3218ae14 4592 }
3218ae14
YG
4593}
4594
8fe23e05 4595/*
d8adde17 4596 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4597 * hold mem_hotplug_begin/end().
8fe23e05
DR
4598 */
4599void kswapd_stop(int nid)
4600{
4601 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4602
d8adde17 4603 if (kswapd) {
8fe23e05 4604 kthread_stop(kswapd);
d8adde17
JL
4605 NODE_DATA(nid)->kswapd = NULL;
4606 }
8fe23e05
DR
4607}
4608
1da177e4
LT
4609static int __init kswapd_init(void)
4610{
6b700b5b 4611 int nid;
69e05944 4612
1da177e4 4613 swap_setup();
48fb2e24 4614 for_each_node_state(nid, N_MEMORY)
3218ae14 4615 kswapd_run(nid);
1da177e4
LT
4616 return 0;
4617}
4618
4619module_init(kswapd_init)
9eeff239
CL
4620
4621#ifdef CONFIG_NUMA
4622/*
a5f5f91d 4623 * Node reclaim mode
9eeff239 4624 *
a5f5f91d 4625 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4626 * the watermarks.
9eeff239 4627 */
a5f5f91d 4628int node_reclaim_mode __read_mostly;
9eeff239 4629
a92f7126 4630/*
a5f5f91d 4631 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4632 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4633 * a zone.
4634 */
a5f5f91d 4635#define NODE_RECLAIM_PRIORITY 4
a92f7126 4636
9614634f 4637/*
a5f5f91d 4638 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4639 * occur.
4640 */
4641int sysctl_min_unmapped_ratio = 1;
4642
0ff38490
CL
4643/*
4644 * If the number of slab pages in a zone grows beyond this percentage then
4645 * slab reclaim needs to occur.
4646 */
4647int sysctl_min_slab_ratio = 5;
4648
11fb9989 4649static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4650{
11fb9989
MG
4651 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4652 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4653 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4654
4655 /*
4656 * It's possible for there to be more file mapped pages than
4657 * accounted for by the pages on the file LRU lists because
4658 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4659 */
4660 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4661}
4662
4663/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4664static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4665{
d031a157
AM
4666 unsigned long nr_pagecache_reclaimable;
4667 unsigned long delta = 0;
90afa5de
MG
4668
4669 /*
95bbc0c7 4670 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4671 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4672 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4673 * a better estimate
4674 */
a5f5f91d
MG
4675 if (node_reclaim_mode & RECLAIM_UNMAP)
4676 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4677 else
a5f5f91d 4678 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4679
4680 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4681 if (!(node_reclaim_mode & RECLAIM_WRITE))
4682 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4683
4684 /* Watch for any possible underflows due to delta */
4685 if (unlikely(delta > nr_pagecache_reclaimable))
4686 delta = nr_pagecache_reclaimable;
4687
4688 return nr_pagecache_reclaimable - delta;
4689}
4690
9eeff239 4691/*
a5f5f91d 4692 * Try to free up some pages from this node through reclaim.
9eeff239 4693 */
a5f5f91d 4694static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4695{
7fb2d46d 4696 /* Minimum pages needed in order to stay on node */
69e05944 4697 const unsigned long nr_pages = 1 << order;
9eeff239 4698 struct task_struct *p = current;
499118e9 4699 unsigned int noreclaim_flag;
179e9639 4700 struct scan_control sc = {
62b726c1 4701 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4702 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4703 .order = order,
a5f5f91d
MG
4704 .priority = NODE_RECLAIM_PRIORITY,
4705 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4706 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4707 .may_swap = 1,
f2f43e56 4708 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4709 };
57f29762 4710 unsigned long pflags;
9eeff239 4711
132bb8cf
YS
4712 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4713 sc.gfp_mask);
4714
9eeff239 4715 cond_resched();
57f29762 4716 psi_memstall_enter(&pflags);
93781325 4717 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4718 /*
95bbc0c7 4719 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4720 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4721 * and RECLAIM_UNMAP.
d4f7796e 4722 */
499118e9
VB
4723 noreclaim_flag = memalloc_noreclaim_save();
4724 p->flags |= PF_SWAPWRITE;
1732d2b0 4725 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4726
a5f5f91d 4727 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4728 /*
894befec 4729 * Free memory by calling shrink node with increasing
0ff38490
CL
4730 * priorities until we have enough memory freed.
4731 */
0ff38490 4732 do {
970a39a3 4733 shrink_node(pgdat, &sc);
9e3b2f8c 4734 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4735 }
c84db23c 4736
1732d2b0 4737 set_task_reclaim_state(p, NULL);
499118e9
VB
4738 current->flags &= ~PF_SWAPWRITE;
4739 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4740 fs_reclaim_release(sc.gfp_mask);
57f29762 4741 psi_memstall_leave(&pflags);
132bb8cf
YS
4742
4743 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4744
a79311c1 4745 return sc.nr_reclaimed >= nr_pages;
9eeff239 4746}
179e9639 4747
a5f5f91d 4748int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4749{
d773ed6b 4750 int ret;
179e9639
AM
4751
4752 /*
a5f5f91d 4753 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4754 * slab pages if we are over the defined limits.
34aa1330 4755 *
9614634f
CL
4756 * A small portion of unmapped file backed pages is needed for
4757 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4758 * thrown out if the node is overallocated. So we do not reclaim
4759 * if less than a specified percentage of the node is used by
9614634f 4760 * unmapped file backed pages.
179e9639 4761 */
a5f5f91d 4762 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4763 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4764 pgdat->min_slab_pages)
a5f5f91d 4765 return NODE_RECLAIM_FULL;
179e9639
AM
4766
4767 /*
d773ed6b 4768 * Do not scan if the allocation should not be delayed.
179e9639 4769 */
d0164adc 4770 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4771 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4772
4773 /*
a5f5f91d 4774 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4775 * have associated processors. This will favor the local processor
4776 * over remote processors and spread off node memory allocations
4777 * as wide as possible.
4778 */
a5f5f91d
MG
4779 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4780 return NODE_RECLAIM_NOSCAN;
d773ed6b 4781
a5f5f91d
MG
4782 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4783 return NODE_RECLAIM_NOSCAN;
fa5e084e 4784
a5f5f91d
MG
4785 ret = __node_reclaim(pgdat, gfp_mask, order);
4786 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4787
24cf7251
MG
4788 if (!ret)
4789 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4790
d773ed6b 4791 return ret;
179e9639 4792}
9eeff239 4793#endif
894bc310 4794
89e004ea 4795/**
64e3d12f
KHY
4796 * check_move_unevictable_pages - check pages for evictability and move to
4797 * appropriate zone lru list
4798 * @pvec: pagevec with lru pages to check
89e004ea 4799 *
64e3d12f
KHY
4800 * Checks pages for evictability, if an evictable page is in the unevictable
4801 * lru list, moves it to the appropriate evictable lru list. This function
4802 * should be only used for lru pages.
89e004ea 4803 */
64e3d12f 4804void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4805{
6168d0da 4806 struct lruvec *lruvec = NULL;
24513264
HD
4807 int pgscanned = 0;
4808 int pgrescued = 0;
4809 int i;
89e004ea 4810
64e3d12f
KHY
4811 for (i = 0; i < pvec->nr; i++) {
4812 struct page *page = pvec->pages[i];
0de340cb 4813 struct folio *folio = page_folio(page);
8d8869ca
HD
4814 int nr_pages;
4815
4816 if (PageTransTail(page))
4817 continue;
4818
4819 nr_pages = thp_nr_pages(page);
4820 pgscanned += nr_pages;
89e004ea 4821
d25b5bd8
AS
4822 /* block memcg migration during page moving between lru */
4823 if (!TestClearPageLRU(page))
4824 continue;
4825
0de340cb 4826 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4827 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4828 del_page_from_lru_list(page, lruvec);
24513264 4829 ClearPageUnevictable(page);
3a9c9788 4830 add_page_to_lru_list(page, lruvec);
8d8869ca 4831 pgrescued += nr_pages;
89e004ea 4832 }
d25b5bd8 4833 SetPageLRU(page);
24513264 4834 }
89e004ea 4835
6168d0da 4836 if (lruvec) {
24513264
HD
4837 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4838 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4839 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4840 } else if (pgscanned) {
4841 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4842 }
89e004ea 4843}
64e3d12f 4844EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
This page took 2.53576 seconds and 4 git commands to generate.