]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
16d69265 | 2 | #include <linux/mm.h> |
30992c97 MM |
3 | #include <linux/slab.h> |
4 | #include <linux/string.h> | |
3b32123d | 5 | #include <linux/compiler.h> |
b95f1b31 | 6 | #include <linux/export.h> |
96840aa0 | 7 | #include <linux/err.h> |
3b8f14b4 | 8 | #include <linux/sched.h> |
6e84f315 | 9 | #include <linux/sched/mm.h> |
79eb597c | 10 | #include <linux/sched/signal.h> |
68db0cf1 | 11 | #include <linux/sched/task_stack.h> |
eb36c587 | 12 | #include <linux/security.h> |
9800339b | 13 | #include <linux/swap.h> |
33806f06 | 14 | #include <linux/swapops.h> |
00619bcc JM |
15 | #include <linux/mman.h> |
16 | #include <linux/hugetlb.h> | |
39f1f78d | 17 | #include <linux/vmalloc.h> |
897ab3e0 | 18 | #include <linux/userfaultfd_k.h> |
649775be | 19 | #include <linux/elf.h> |
67f3977f AG |
20 | #include <linux/elf-randomize.h> |
21 | #include <linux/personality.h> | |
649775be | 22 | #include <linux/random.h> |
67f3977f AG |
23 | #include <linux/processor.h> |
24 | #include <linux/sizes.h> | |
25 | #include <linux/compat.h> | |
00619bcc | 26 | |
7c0f6ba6 | 27 | #include <linux/uaccess.h> |
30992c97 | 28 | |
6038def0 | 29 | #include "internal.h" |
014bb1de | 30 | #include "swap.h" |
6038def0 | 31 | |
a4bb1e43 AH |
32 | /** |
33 | * kfree_const - conditionally free memory | |
34 | * @x: pointer to the memory | |
35 | * | |
36 | * Function calls kfree only if @x is not in .rodata section. | |
37 | */ | |
38 | void kfree_const(const void *x) | |
39 | { | |
40 | if (!is_kernel_rodata((unsigned long)x)) | |
41 | kfree(x); | |
42 | } | |
43 | EXPORT_SYMBOL(kfree_const); | |
44 | ||
30992c97 | 45 | /** |
30992c97 | 46 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
47 | * @s: the string to duplicate |
48 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
49 | * |
50 | * Return: newly allocated copy of @s or %NULL in case of error | |
30992c97 MM |
51 | */ |
52 | char *kstrdup(const char *s, gfp_t gfp) | |
53 | { | |
54 | size_t len; | |
55 | char *buf; | |
56 | ||
57 | if (!s) | |
58 | return NULL; | |
59 | ||
60 | len = strlen(s) + 1; | |
1d2c8eea | 61 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
62 | if (buf) |
63 | memcpy(buf, s, len); | |
64 | return buf; | |
65 | } | |
66 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 67 | |
a4bb1e43 AH |
68 | /** |
69 | * kstrdup_const - conditionally duplicate an existing const string | |
70 | * @s: the string to duplicate | |
71 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
72 | * | |
295a1730 BG |
73 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const and |
74 | * must not be passed to krealloc(). | |
a862f68a MR |
75 | * |
76 | * Return: source string if it is in .rodata section otherwise | |
77 | * fallback to kstrdup. | |
a4bb1e43 AH |
78 | */ |
79 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
80 | { | |
81 | if (is_kernel_rodata((unsigned long)s)) | |
82 | return s; | |
83 | ||
84 | return kstrdup(s, gfp); | |
85 | } | |
86 | EXPORT_SYMBOL(kstrdup_const); | |
87 | ||
1e66df3e JF |
88 | /** |
89 | * kstrndup - allocate space for and copy an existing string | |
90 | * @s: the string to duplicate | |
91 | * @max: read at most @max chars from @s | |
92 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
93 | * |
94 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
a862f68a MR |
95 | * |
96 | * Return: newly allocated copy of @s or %NULL in case of error | |
1e66df3e JF |
97 | */ |
98 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
99 | { | |
100 | size_t len; | |
101 | char *buf; | |
102 | ||
103 | if (!s) | |
104 | return NULL; | |
105 | ||
106 | len = strnlen(s, max); | |
107 | buf = kmalloc_track_caller(len+1, gfp); | |
108 | if (buf) { | |
109 | memcpy(buf, s, len); | |
110 | buf[len] = '\0'; | |
111 | } | |
112 | return buf; | |
113 | } | |
114 | EXPORT_SYMBOL(kstrndup); | |
115 | ||
1a2f67b4 AD |
116 | /** |
117 | * kmemdup - duplicate region of memory | |
118 | * | |
119 | * @src: memory region to duplicate | |
120 | * @len: memory region length | |
121 | * @gfp: GFP mask to use | |
a862f68a MR |
122 | * |
123 | * Return: newly allocated copy of @src or %NULL in case of error | |
1a2f67b4 AD |
124 | */ |
125 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
126 | { | |
127 | void *p; | |
128 | ||
1d2c8eea | 129 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
130 | if (p) |
131 | memcpy(p, src, len); | |
132 | return p; | |
133 | } | |
134 | EXPORT_SYMBOL(kmemdup); | |
135 | ||
f3515741 DH |
136 | /** |
137 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
138 | * @s: The data to stringify | |
139 | * @len: The size of the data | |
140 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
141 | * |
142 | * Return: newly allocated copy of @s with NUL-termination or %NULL in | |
143 | * case of error | |
f3515741 DH |
144 | */ |
145 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
146 | { | |
147 | char *buf; | |
148 | ||
149 | if (!s) | |
150 | return NULL; | |
151 | ||
152 | buf = kmalloc_track_caller(len + 1, gfp); | |
153 | if (buf) { | |
154 | memcpy(buf, s, len); | |
155 | buf[len] = '\0'; | |
156 | } | |
157 | return buf; | |
158 | } | |
159 | EXPORT_SYMBOL(kmemdup_nul); | |
160 | ||
610a77e0 LZ |
161 | /** |
162 | * memdup_user - duplicate memory region from user space | |
163 | * | |
164 | * @src: source address in user space | |
165 | * @len: number of bytes to copy | |
166 | * | |
a862f68a | 167 | * Return: an ERR_PTR() on failure. Result is physically |
50fd2f29 | 168 | * contiguous, to be freed by kfree(). |
610a77e0 LZ |
169 | */ |
170 | void *memdup_user(const void __user *src, size_t len) | |
171 | { | |
172 | void *p; | |
173 | ||
6c8fcc09 | 174 | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); |
610a77e0 LZ |
175 | if (!p) |
176 | return ERR_PTR(-ENOMEM); | |
177 | ||
178 | if (copy_from_user(p, src, len)) { | |
179 | kfree(p); | |
180 | return ERR_PTR(-EFAULT); | |
181 | } | |
182 | ||
183 | return p; | |
184 | } | |
185 | EXPORT_SYMBOL(memdup_user); | |
186 | ||
50fd2f29 AV |
187 | /** |
188 | * vmemdup_user - duplicate memory region from user space | |
189 | * | |
190 | * @src: source address in user space | |
191 | * @len: number of bytes to copy | |
192 | * | |
a862f68a | 193 | * Return: an ERR_PTR() on failure. Result may be not |
50fd2f29 AV |
194 | * physically contiguous. Use kvfree() to free. |
195 | */ | |
196 | void *vmemdup_user(const void __user *src, size_t len) | |
197 | { | |
198 | void *p; | |
199 | ||
200 | p = kvmalloc(len, GFP_USER); | |
201 | if (!p) | |
202 | return ERR_PTR(-ENOMEM); | |
203 | ||
204 | if (copy_from_user(p, src, len)) { | |
205 | kvfree(p); | |
206 | return ERR_PTR(-EFAULT); | |
207 | } | |
208 | ||
209 | return p; | |
210 | } | |
211 | EXPORT_SYMBOL(vmemdup_user); | |
212 | ||
b86181f1 | 213 | /** |
96840aa0 | 214 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
215 | * @s: The string to duplicate |
216 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
a862f68a | 217 | * |
e9145521 | 218 | * Return: newly allocated copy of @s or an ERR_PTR() in case of error |
96840aa0 DA |
219 | */ |
220 | char *strndup_user(const char __user *s, long n) | |
221 | { | |
222 | char *p; | |
223 | long length; | |
224 | ||
225 | length = strnlen_user(s, n); | |
226 | ||
227 | if (!length) | |
228 | return ERR_PTR(-EFAULT); | |
229 | ||
230 | if (length > n) | |
231 | return ERR_PTR(-EINVAL); | |
232 | ||
90d74045 | 233 | p = memdup_user(s, length); |
96840aa0 | 234 | |
90d74045 JL |
235 | if (IS_ERR(p)) |
236 | return p; | |
96840aa0 DA |
237 | |
238 | p[length - 1] = '\0'; | |
239 | ||
240 | return p; | |
241 | } | |
242 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 243 | |
e9d408e1 AV |
244 | /** |
245 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
246 | * | |
247 | * @src: source address in user space | |
248 | * @len: number of bytes to copy | |
249 | * | |
a862f68a | 250 | * Return: an ERR_PTR() on failure. |
e9d408e1 AV |
251 | */ |
252 | void *memdup_user_nul(const void __user *src, size_t len) | |
253 | { | |
254 | char *p; | |
255 | ||
256 | /* | |
257 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
258 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
259 | * or GFP_ATOMIC. | |
260 | */ | |
261 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
262 | if (!p) | |
263 | return ERR_PTR(-ENOMEM); | |
264 | ||
265 | if (copy_from_user(p, src, len)) { | |
266 | kfree(p); | |
267 | return ERR_PTR(-EFAULT); | |
268 | } | |
269 | p[len] = '\0'; | |
270 | ||
271 | return p; | |
272 | } | |
273 | EXPORT_SYMBOL(memdup_user_nul); | |
274 | ||
b7643757 | 275 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 276 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 277 | { |
d17af505 AL |
278 | struct task_struct * __maybe_unused t = current; |
279 | ||
b7643757 SP |
280 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
281 | } | |
282 | ||
295992fb CK |
283 | /* |
284 | * Change backing file, only valid to use during initial VMA setup. | |
285 | */ | |
286 | void vma_set_file(struct vm_area_struct *vma, struct file *file) | |
287 | { | |
288 | /* Changing an anonymous vma with this is illegal */ | |
289 | get_file(file); | |
290 | swap(vma->vm_file, file); | |
291 | fput(file); | |
292 | } | |
293 | EXPORT_SYMBOL(vma_set_file); | |
294 | ||
649775be AG |
295 | #ifndef STACK_RND_MASK |
296 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ | |
297 | #endif | |
298 | ||
299 | unsigned long randomize_stack_top(unsigned long stack_top) | |
300 | { | |
301 | unsigned long random_variable = 0; | |
302 | ||
303 | if (current->flags & PF_RANDOMIZE) { | |
304 | random_variable = get_random_long(); | |
305 | random_variable &= STACK_RND_MASK; | |
306 | random_variable <<= PAGE_SHIFT; | |
307 | } | |
308 | #ifdef CONFIG_STACK_GROWSUP | |
309 | return PAGE_ALIGN(stack_top) + random_variable; | |
310 | #else | |
311 | return PAGE_ALIGN(stack_top) - random_variable; | |
312 | #endif | |
313 | } | |
314 | ||
5ad7dd88 JD |
315 | /** |
316 | * randomize_page - Generate a random, page aligned address | |
317 | * @start: The smallest acceptable address the caller will take. | |
318 | * @range: The size of the area, starting at @start, within which the | |
319 | * random address must fall. | |
320 | * | |
321 | * If @start + @range would overflow, @range is capped. | |
322 | * | |
323 | * NOTE: Historical use of randomize_range, which this replaces, presumed that | |
324 | * @start was already page aligned. We now align it regardless. | |
325 | * | |
326 | * Return: A page aligned address within [start, start + range). On error, | |
327 | * @start is returned. | |
328 | */ | |
329 | unsigned long randomize_page(unsigned long start, unsigned long range) | |
330 | { | |
331 | if (!PAGE_ALIGNED(start)) { | |
332 | range -= PAGE_ALIGN(start) - start; | |
333 | start = PAGE_ALIGN(start); | |
334 | } | |
335 | ||
336 | if (start > ULONG_MAX - range) | |
337 | range = ULONG_MAX - start; | |
338 | ||
339 | range >>= PAGE_SHIFT; | |
340 | ||
341 | if (range == 0) | |
342 | return start; | |
343 | ||
344 | return start + (get_random_long() % range << PAGE_SHIFT); | |
345 | } | |
346 | ||
67f3977f | 347 | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT |
723820f3 | 348 | unsigned long __weak arch_randomize_brk(struct mm_struct *mm) |
e7142bf5 AG |
349 | { |
350 | /* Is the current task 32bit ? */ | |
351 | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) | |
352 | return randomize_page(mm->brk, SZ_32M); | |
353 | ||
354 | return randomize_page(mm->brk, SZ_1G); | |
355 | } | |
356 | ||
67f3977f AG |
357 | unsigned long arch_mmap_rnd(void) |
358 | { | |
359 | unsigned long rnd; | |
360 | ||
361 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | |
362 | if (is_compat_task()) | |
363 | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); | |
364 | else | |
365 | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ | |
366 | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); | |
367 | ||
368 | return rnd << PAGE_SHIFT; | |
369 | } | |
67f3977f AG |
370 | |
371 | static int mmap_is_legacy(struct rlimit *rlim_stack) | |
372 | { | |
373 | if (current->personality & ADDR_COMPAT_LAYOUT) | |
374 | return 1; | |
375 | ||
376 | if (rlim_stack->rlim_cur == RLIM_INFINITY) | |
377 | return 1; | |
378 | ||
379 | return sysctl_legacy_va_layout; | |
380 | } | |
381 | ||
382 | /* | |
383 | * Leave enough space between the mmap area and the stack to honour ulimit in | |
384 | * the face of randomisation. | |
385 | */ | |
386 | #define MIN_GAP (SZ_128M) | |
387 | #define MAX_GAP (STACK_TOP / 6 * 5) | |
388 | ||
389 | static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) | |
390 | { | |
391 | unsigned long gap = rlim_stack->rlim_cur; | |
392 | unsigned long pad = stack_guard_gap; | |
393 | ||
394 | /* Account for stack randomization if necessary */ | |
395 | if (current->flags & PF_RANDOMIZE) | |
396 | pad += (STACK_RND_MASK << PAGE_SHIFT); | |
397 | ||
398 | /* Values close to RLIM_INFINITY can overflow. */ | |
399 | if (gap + pad > gap) | |
400 | gap += pad; | |
401 | ||
402 | if (gap < MIN_GAP) | |
403 | gap = MIN_GAP; | |
404 | else if (gap > MAX_GAP) | |
405 | gap = MAX_GAP; | |
406 | ||
407 | return PAGE_ALIGN(STACK_TOP - gap - rnd); | |
408 | } | |
409 | ||
410 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) | |
411 | { | |
412 | unsigned long random_factor = 0UL; | |
413 | ||
414 | if (current->flags & PF_RANDOMIZE) | |
415 | random_factor = arch_mmap_rnd(); | |
416 | ||
417 | if (mmap_is_legacy(rlim_stack)) { | |
418 | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; | |
419 | mm->get_unmapped_area = arch_get_unmapped_area; | |
420 | } else { | |
421 | mm->mmap_base = mmap_base(random_factor, rlim_stack); | |
422 | mm->get_unmapped_area = arch_get_unmapped_area_topdown; | |
423 | } | |
424 | } | |
425 | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | |
8f2af155 | 426 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
427 | { |
428 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
429 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
430 | } |
431 | #endif | |
912985dc | 432 | |
79eb597c DJ |
433 | /** |
434 | * __account_locked_vm - account locked pages to an mm's locked_vm | |
435 | * @mm: mm to account against | |
436 | * @pages: number of pages to account | |
437 | * @inc: %true if @pages should be considered positive, %false if not | |
438 | * @task: task used to check RLIMIT_MEMLOCK | |
439 | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped | |
440 | * | |
441 | * Assumes @task and @mm are valid (i.e. at least one reference on each), and | |
c1e8d7c6 | 442 | * that mmap_lock is held as writer. |
79eb597c DJ |
443 | * |
444 | * Return: | |
445 | * * 0 on success | |
446 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
447 | */ | |
448 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | |
449 | struct task_struct *task, bool bypass_rlim) | |
450 | { | |
451 | unsigned long locked_vm, limit; | |
452 | int ret = 0; | |
453 | ||
42fc5414 | 454 | mmap_assert_write_locked(mm); |
79eb597c DJ |
455 | |
456 | locked_vm = mm->locked_vm; | |
457 | if (inc) { | |
458 | if (!bypass_rlim) { | |
459 | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; | |
460 | if (locked_vm + pages > limit) | |
461 | ret = -ENOMEM; | |
462 | } | |
463 | if (!ret) | |
464 | mm->locked_vm = locked_vm + pages; | |
465 | } else { | |
466 | WARN_ON_ONCE(pages > locked_vm); | |
467 | mm->locked_vm = locked_vm - pages; | |
468 | } | |
469 | ||
470 | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, | |
471 | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, | |
472 | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), | |
473 | ret ? " - exceeded" : ""); | |
474 | ||
475 | return ret; | |
476 | } | |
477 | EXPORT_SYMBOL_GPL(__account_locked_vm); | |
478 | ||
479 | /** | |
480 | * account_locked_vm - account locked pages to an mm's locked_vm | |
481 | * @mm: mm to account against, may be NULL | |
482 | * @pages: number of pages to account | |
483 | * @inc: %true if @pages should be considered positive, %false if not | |
484 | * | |
485 | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). | |
486 | * | |
487 | * Return: | |
488 | * * 0 on success, or if mm is NULL | |
489 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
490 | */ | |
491 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) | |
492 | { | |
493 | int ret; | |
494 | ||
495 | if (pages == 0 || !mm) | |
496 | return 0; | |
497 | ||
d8ed45c5 | 498 | mmap_write_lock(mm); |
79eb597c DJ |
499 | ret = __account_locked_vm(mm, pages, inc, current, |
500 | capable(CAP_IPC_LOCK)); | |
d8ed45c5 | 501 | mmap_write_unlock(mm); |
79eb597c DJ |
502 | |
503 | return ret; | |
504 | } | |
505 | EXPORT_SYMBOL_GPL(account_locked_vm); | |
506 | ||
eb36c587 AV |
507 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
508 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 509 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
510 | { |
511 | unsigned long ret; | |
512 | struct mm_struct *mm = current->mm; | |
41badc15 | 513 | unsigned long populate; |
897ab3e0 | 514 | LIST_HEAD(uf); |
eb36c587 AV |
515 | |
516 | ret = security_mmap_file(file, prot, flag); | |
517 | if (!ret) { | |
d8ed45c5 | 518 | if (mmap_write_lock_killable(mm)) |
9fbeb5ab | 519 | return -EINTR; |
45e55300 PC |
520 | ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, |
521 | &uf); | |
d8ed45c5 | 522 | mmap_write_unlock(mm); |
897ab3e0 | 523 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
524 | if (populate) |
525 | mm_populate(ret, populate); | |
eb36c587 AV |
526 | } |
527 | return ret; | |
528 | } | |
529 | ||
530 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
531 | unsigned long len, unsigned long prot, | |
532 | unsigned long flag, unsigned long offset) | |
533 | { | |
534 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
535 | return -EINVAL; | |
ea53cde0 | 536 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
537 | return -EINVAL; |
538 | ||
9fbeb5ab | 539 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
540 | } |
541 | EXPORT_SYMBOL(vm_mmap); | |
542 | ||
a7c3e901 MH |
543 | /** |
544 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
545 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
546 | * @size: size of the request. | |
547 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
548 | * @node: numa node to allocate from | |
549 | * | |
550 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
551 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
552 | * | |
a421ef30 | 553 | * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. |
cc965a29 MH |
554 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is |
555 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 556 | * |
a862f68a | 557 | * Return: pointer to the allocated memory of %NULL in case of failure |
a7c3e901 MH |
558 | */ |
559 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
560 | { | |
561 | gfp_t kmalloc_flags = flags; | |
562 | void *ret; | |
563 | ||
a7c3e901 | 564 | /* |
4f4f2ba9 MH |
565 | * We want to attempt a large physically contiguous block first because |
566 | * it is less likely to fragment multiple larger blocks and therefore | |
567 | * contribute to a long term fragmentation less than vmalloc fallback. | |
568 | * However make sure that larger requests are not too disruptive - no | |
569 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 570 | */ |
6c5ab651 MH |
571 | if (size > PAGE_SIZE) { |
572 | kmalloc_flags |= __GFP_NOWARN; | |
573 | ||
cc965a29 | 574 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 | 575 | kmalloc_flags |= __GFP_NORETRY; |
a421ef30 MH |
576 | |
577 | /* nofail semantic is implemented by the vmalloc fallback */ | |
578 | kmalloc_flags &= ~__GFP_NOFAIL; | |
6c5ab651 | 579 | } |
a7c3e901 MH |
580 | |
581 | ret = kmalloc_node(size, kmalloc_flags, node); | |
582 | ||
583 | /* | |
584 | * It doesn't really make sense to fallback to vmalloc for sub page | |
585 | * requests | |
586 | */ | |
587 | if (ret || size <= PAGE_SIZE) | |
588 | return ret; | |
589 | ||
30c19366 FW |
590 | /* non-sleeping allocations are not supported by vmalloc */ |
591 | if (!gfpflags_allow_blocking(flags)) | |
592 | return NULL; | |
593 | ||
7661809d | 594 | /* Don't even allow crazy sizes */ |
0708a0af DB |
595 | if (unlikely(size > INT_MAX)) { |
596 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); | |
7661809d | 597 | return NULL; |
0708a0af | 598 | } |
7661809d | 599 | |
9becb688 LT |
600 | /* |
601 | * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, | |
602 | * since the callers already cannot assume anything | |
603 | * about the resulting pointer, and cannot play | |
604 | * protection games. | |
605 | */ | |
606 | return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, | |
607 | flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, | |
608 | node, __builtin_return_address(0)); | |
a7c3e901 MH |
609 | } |
610 | EXPORT_SYMBOL(kvmalloc_node); | |
611 | ||
ff4dc772 | 612 | /** |
04b8e946 AM |
613 | * kvfree() - Free memory. |
614 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 615 | * |
04b8e946 AM |
616 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
617 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
618 | * that you know which one to use. | |
619 | * | |
52414d33 | 620 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 621 | */ |
39f1f78d AV |
622 | void kvfree(const void *addr) |
623 | { | |
624 | if (is_vmalloc_addr(addr)) | |
625 | vfree(addr); | |
626 | else | |
627 | kfree(addr); | |
628 | } | |
629 | EXPORT_SYMBOL(kvfree); | |
630 | ||
d4eaa283 WL |
631 | /** |
632 | * kvfree_sensitive - Free a data object containing sensitive information. | |
633 | * @addr: address of the data object to be freed. | |
634 | * @len: length of the data object. | |
635 | * | |
636 | * Use the special memzero_explicit() function to clear the content of a | |
637 | * kvmalloc'ed object containing sensitive data to make sure that the | |
638 | * compiler won't optimize out the data clearing. | |
639 | */ | |
640 | void kvfree_sensitive(const void *addr, size_t len) | |
641 | { | |
642 | if (likely(!ZERO_OR_NULL_PTR(addr))) { | |
643 | memzero_explicit((void *)addr, len); | |
644 | kvfree(addr); | |
645 | } | |
646 | } | |
647 | EXPORT_SYMBOL(kvfree_sensitive); | |
648 | ||
de2860f4 DC |
649 | void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) |
650 | { | |
651 | void *newp; | |
652 | ||
653 | if (oldsize >= newsize) | |
654 | return (void *)p; | |
655 | newp = kvmalloc(newsize, flags); | |
656 | if (!newp) | |
657 | return NULL; | |
658 | memcpy(newp, p, oldsize); | |
659 | kvfree(p); | |
660 | return newp; | |
661 | } | |
662 | EXPORT_SYMBOL(kvrealloc); | |
663 | ||
a8749a35 PB |
664 | /** |
665 | * __vmalloc_array - allocate memory for a virtually contiguous array. | |
666 | * @n: number of elements. | |
667 | * @size: element size. | |
668 | * @flags: the type of memory to allocate (see kmalloc). | |
669 | */ | |
670 | void *__vmalloc_array(size_t n, size_t size, gfp_t flags) | |
671 | { | |
672 | size_t bytes; | |
673 | ||
674 | if (unlikely(check_mul_overflow(n, size, &bytes))) | |
675 | return NULL; | |
676 | return __vmalloc(bytes, flags); | |
677 | } | |
678 | EXPORT_SYMBOL(__vmalloc_array); | |
679 | ||
680 | /** | |
681 | * vmalloc_array - allocate memory for a virtually contiguous array. | |
682 | * @n: number of elements. | |
683 | * @size: element size. | |
684 | */ | |
685 | void *vmalloc_array(size_t n, size_t size) | |
686 | { | |
687 | return __vmalloc_array(n, size, GFP_KERNEL); | |
688 | } | |
689 | EXPORT_SYMBOL(vmalloc_array); | |
690 | ||
691 | /** | |
692 | * __vcalloc - allocate and zero memory for a virtually contiguous array. | |
693 | * @n: number of elements. | |
694 | * @size: element size. | |
695 | * @flags: the type of memory to allocate (see kmalloc). | |
696 | */ | |
697 | void *__vcalloc(size_t n, size_t size, gfp_t flags) | |
698 | { | |
699 | return __vmalloc_array(n, size, flags | __GFP_ZERO); | |
700 | } | |
701 | EXPORT_SYMBOL(__vcalloc); | |
702 | ||
703 | /** | |
704 | * vcalloc - allocate and zero memory for a virtually contiguous array. | |
705 | * @n: number of elements. | |
706 | * @size: element size. | |
707 | */ | |
708 | void *vcalloc(size_t n, size_t size) | |
709 | { | |
710 | return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); | |
711 | } | |
712 | EXPORT_SYMBOL(vcalloc); | |
713 | ||
e39155ea KS |
714 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ |
715 | void *page_rmapping(struct page *page) | |
716 | { | |
64601000 | 717 | return folio_raw_mapping(page_folio(page)); |
e39155ea KS |
718 | } |
719 | ||
e05b3453 | 720 | struct anon_vma *folio_anon_vma(struct folio *folio) |
e39155ea | 721 | { |
64601000 | 722 | unsigned long mapping = (unsigned long)folio->mapping; |
e39155ea | 723 | |
e39155ea KS |
724 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
725 | return NULL; | |
64601000 | 726 | return (void *)(mapping - PAGE_MAPPING_ANON); |
e39155ea KS |
727 | } |
728 | ||
2f52578f MWO |
729 | /** |
730 | * folio_mapping - Find the mapping where this folio is stored. | |
731 | * @folio: The folio. | |
732 | * | |
733 | * For folios which are in the page cache, return the mapping that this | |
734 | * page belongs to. Folios in the swap cache return the swap mapping | |
735 | * this page is stored in (which is different from the mapping for the | |
736 | * swap file or swap device where the data is stored). | |
737 | * | |
738 | * You can call this for folios which aren't in the swap cache or page | |
739 | * cache and it will return NULL. | |
740 | */ | |
741 | struct address_space *folio_mapping(struct folio *folio) | |
9800339b | 742 | { |
1c290f64 KS |
743 | struct address_space *mapping; |
744 | ||
03e5ac2f | 745 | /* This happens if someone calls flush_dcache_page on slab page */ |
2f52578f | 746 | if (unlikely(folio_test_slab(folio))) |
03e5ac2f MP |
747 | return NULL; |
748 | ||
2f52578f MWO |
749 | if (unlikely(folio_test_swapcache(folio))) |
750 | return swap_address_space(folio_swap_entry(folio)); | |
e39155ea | 751 | |
2f52578f | 752 | mapping = folio->mapping; |
68f2736a | 753 | if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) |
e39155ea | 754 | return NULL; |
bda807d4 | 755 | |
68f2736a | 756 | return mapping; |
9800339b | 757 | } |
2f52578f | 758 | EXPORT_SYMBOL(folio_mapping); |
9800339b | 759 | |
715cbfd6 MWO |
760 | /** |
761 | * folio_copy - Copy the contents of one folio to another. | |
762 | * @dst: Folio to copy to. | |
763 | * @src: Folio to copy from. | |
764 | * | |
765 | * The bytes in the folio represented by @src are copied to @dst. | |
766 | * Assumes the caller has validated that @dst is at least as large as @src. | |
767 | * Can be called in atomic context for order-0 folios, but if the folio is | |
768 | * larger, it may sleep. | |
769 | */ | |
770 | void folio_copy(struct folio *dst, struct folio *src) | |
79789db0 | 771 | { |
715cbfd6 MWO |
772 | long i = 0; |
773 | long nr = folio_nr_pages(src); | |
79789db0 | 774 | |
715cbfd6 MWO |
775 | for (;;) { |
776 | copy_highpage(folio_page(dst, i), folio_page(src, i)); | |
777 | if (++i == nr) | |
778 | break; | |
79789db0 | 779 | cond_resched(); |
79789db0 MWO |
780 | } |
781 | } | |
782 | ||
39a1aa8e AR |
783 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
784 | int sysctl_overcommit_ratio __read_mostly = 50; | |
785 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
786 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
787 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
788 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
789 | ||
32927393 CH |
790 | int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, |
791 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
792 | { |
793 | int ret; | |
794 | ||
795 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
796 | if (ret == 0 && write) | |
797 | sysctl_overcommit_kbytes = 0; | |
798 | return ret; | |
799 | } | |
800 | ||
56f3547b FT |
801 | static void sync_overcommit_as(struct work_struct *dummy) |
802 | { | |
803 | percpu_counter_sync(&vm_committed_as); | |
804 | } | |
805 | ||
806 | int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, | |
807 | size_t *lenp, loff_t *ppos) | |
808 | { | |
809 | struct ctl_table t; | |
bcbda810 | 810 | int new_policy = -1; |
56f3547b FT |
811 | int ret; |
812 | ||
813 | /* | |
814 | * The deviation of sync_overcommit_as could be big with loose policy | |
815 | * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to | |
816 | * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply | |
31454980 | 817 | * with the strict "NEVER", and to avoid possible race condition (even |
56f3547b FT |
818 | * though user usually won't too frequently do the switching to policy |
819 | * OVERCOMMIT_NEVER), the switch is done in the following order: | |
820 | * 1. changing the batch | |
821 | * 2. sync percpu count on each CPU | |
822 | * 3. switch the policy | |
823 | */ | |
824 | if (write) { | |
825 | t = *table; | |
826 | t.data = &new_policy; | |
827 | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | |
bcbda810 | 828 | if (ret || new_policy == -1) |
56f3547b FT |
829 | return ret; |
830 | ||
831 | mm_compute_batch(new_policy); | |
832 | if (new_policy == OVERCOMMIT_NEVER) | |
833 | schedule_on_each_cpu(sync_overcommit_as); | |
834 | sysctl_overcommit_memory = new_policy; | |
835 | } else { | |
836 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | |
837 | } | |
838 | ||
839 | return ret; | |
840 | } | |
841 | ||
32927393 CH |
842 | int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, |
843 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
844 | { |
845 | int ret; | |
846 | ||
847 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
848 | if (ret == 0 && write) | |
849 | sysctl_overcommit_ratio = 0; | |
850 | return ret; | |
851 | } | |
852 | ||
00619bcc JM |
853 | /* |
854 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
855 | */ | |
856 | unsigned long vm_commit_limit(void) | |
857 | { | |
49f0ce5f JM |
858 | unsigned long allowed; |
859 | ||
860 | if (sysctl_overcommit_kbytes) | |
861 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
862 | else | |
ca79b0c2 | 863 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
864 | * sysctl_overcommit_ratio / 100); |
865 | allowed += total_swap_pages; | |
866 | ||
867 | return allowed; | |
00619bcc JM |
868 | } |
869 | ||
39a1aa8e AR |
870 | /* |
871 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
872 | * other variables. It can be updated by several CPUs frequently. | |
873 | */ | |
874 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
875 | ||
876 | /* | |
877 | * The global memory commitment made in the system can be a metric | |
878 | * that can be used to drive ballooning decisions when Linux is hosted | |
879 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
880 | * balancing memory across competing virtual machines that are hosted. | |
881 | * Several metrics drive this policy engine including the guest reported | |
882 | * memory commitment. | |
4e2ee51e FT |
883 | * |
884 | * The time cost of this is very low for small platforms, and for big | |
885 | * platform like a 2S/36C/72T Skylake server, in worst case where | |
886 | * vm_committed_as's spinlock is under severe contention, the time cost | |
887 | * could be about 30~40 microseconds. | |
39a1aa8e AR |
888 | */ |
889 | unsigned long vm_memory_committed(void) | |
890 | { | |
4e2ee51e | 891 | return percpu_counter_sum_positive(&vm_committed_as); |
39a1aa8e AR |
892 | } |
893 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
894 | ||
895 | /* | |
896 | * Check that a process has enough memory to allocate a new virtual | |
897 | * mapping. 0 means there is enough memory for the allocation to | |
898 | * succeed and -ENOMEM implies there is not. | |
899 | * | |
900 | * We currently support three overcommit policies, which are set via the | |
ee65728e | 901 | * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst |
39a1aa8e AR |
902 | * |
903 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
904 | * Additional code 2002 Jul 20 by Robert Love. | |
905 | * | |
906 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
907 | * | |
908 | * Note this is a helper function intended to be used by LSMs which | |
909 | * wish to use this logic. | |
910 | */ | |
911 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
912 | { | |
8c7829b0 | 913 | long allowed; |
39a1aa8e | 914 | |
39a1aa8e AR |
915 | vm_acct_memory(pages); |
916 | ||
917 | /* | |
918 | * Sometimes we want to use more memory than we have | |
919 | */ | |
920 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
921 | return 0; | |
922 | ||
923 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
8c7829b0 | 924 | if (pages > totalram_pages() + total_swap_pages) |
39a1aa8e | 925 | goto error; |
8c7829b0 | 926 | return 0; |
39a1aa8e AR |
927 | } |
928 | ||
929 | allowed = vm_commit_limit(); | |
930 | /* | |
931 | * Reserve some for root | |
932 | */ | |
933 | if (!cap_sys_admin) | |
934 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
935 | ||
936 | /* | |
937 | * Don't let a single process grow so big a user can't recover | |
938 | */ | |
939 | if (mm) { | |
8c7829b0 JW |
940 | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
941 | ||
39a1aa8e AR |
942 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
943 | } | |
944 | ||
945 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
946 | return 0; | |
947 | error: | |
44b414c8 KW |
948 | pr_warn_ratelimited("%s: pid: %d, comm: %s, no enough memory for the allocation\n", |
949 | __func__, current->pid, current->comm); | |
39a1aa8e AR |
950 | vm_unacct_memory(pages); |
951 | ||
952 | return -ENOMEM; | |
953 | } | |
954 | ||
a9090253 WR |
955 | /** |
956 | * get_cmdline() - copy the cmdline value to a buffer. | |
957 | * @task: the task whose cmdline value to copy. | |
958 | * @buffer: the buffer to copy to. | |
959 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
960 | * to this length. | |
a862f68a MR |
961 | * |
962 | * Return: the size of the cmdline field copied. Note that the copy does | |
a9090253 WR |
963 | * not guarantee an ending NULL byte. |
964 | */ | |
965 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
966 | { | |
967 | int res = 0; | |
968 | unsigned int len; | |
969 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 970 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
971 | if (!mm) |
972 | goto out; | |
973 | if (!mm->arg_end) | |
974 | goto out_mm; /* Shh! No looking before we're done */ | |
975 | ||
bc81426f | 976 | spin_lock(&mm->arg_lock); |
a3b609ef MG |
977 | arg_start = mm->arg_start; |
978 | arg_end = mm->arg_end; | |
979 | env_start = mm->env_start; | |
980 | env_end = mm->env_end; | |
bc81426f | 981 | spin_unlock(&mm->arg_lock); |
a3b609ef MG |
982 | |
983 | len = arg_end - arg_start; | |
a9090253 WR |
984 | |
985 | if (len > buflen) | |
986 | len = buflen; | |
987 | ||
f307ab6d | 988 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
989 | |
990 | /* | |
991 | * If the nul at the end of args has been overwritten, then | |
992 | * assume application is using setproctitle(3). | |
993 | */ | |
994 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
995 | len = strnlen(buffer, res); | |
996 | if (len < res) { | |
997 | res = len; | |
998 | } else { | |
a3b609ef | 999 | len = env_end - env_start; |
a9090253 WR |
1000 | if (len > buflen - res) |
1001 | len = buflen - res; | |
a3b609ef | 1002 | res += access_process_vm(task, env_start, |
f307ab6d LS |
1003 | buffer+res, len, |
1004 | FOLL_FORCE); | |
a9090253 WR |
1005 | res = strnlen(buffer, res); |
1006 | } | |
1007 | } | |
1008 | out_mm: | |
1009 | mmput(mm); | |
1010 | out: | |
1011 | return res; | |
1012 | } | |
010c164a | 1013 | |
4d1a8a2d | 1014 | int __weak memcmp_pages(struct page *page1, struct page *page2) |
010c164a SL |
1015 | { |
1016 | char *addr1, *addr2; | |
1017 | int ret; | |
1018 | ||
1019 | addr1 = kmap_atomic(page1); | |
1020 | addr2 = kmap_atomic(page2); | |
1021 | ret = memcmp(addr1, addr2, PAGE_SIZE); | |
1022 | kunmap_atomic(addr2); | |
1023 | kunmap_atomic(addr1); | |
1024 | return ret; | |
1025 | } | |
8e7f37f2 | 1026 | |
5bb1bb35 | 1027 | #ifdef CONFIG_PRINTK |
8e7f37f2 PM |
1028 | /** |
1029 | * mem_dump_obj - Print available provenance information | |
1030 | * @object: object for which to find provenance information. | |
1031 | * | |
1032 | * This function uses pr_cont(), so that the caller is expected to have | |
1033 | * printed out whatever preamble is appropriate. The provenance information | |
1034 | * depends on the type of object and on how much debugging is enabled. | |
1035 | * For example, for a slab-cache object, the slab name is printed, and, | |
1036 | * if available, the return address and stack trace from the allocation | |
e548eaa1 | 1037 | * and last free path of that object. |
8e7f37f2 PM |
1038 | */ |
1039 | void mem_dump_obj(void *object) | |
1040 | { | |
2521781c JP |
1041 | const char *type; |
1042 | ||
98f18083 PM |
1043 | if (kmem_valid_obj(object)) { |
1044 | kmem_dump_obj(object); | |
1045 | return; | |
1046 | } | |
2521781c | 1047 | |
98f18083 PM |
1048 | if (vmalloc_dump_obj(object)) |
1049 | return; | |
2521781c JP |
1050 | |
1051 | if (virt_addr_valid(object)) | |
1052 | type = "non-slab/vmalloc memory"; | |
1053 | else if (object == NULL) | |
1054 | type = "NULL pointer"; | |
1055 | else if (object == ZERO_SIZE_PTR) | |
1056 | type = "zero-size pointer"; | |
1057 | else | |
1058 | type = "non-paged memory"; | |
1059 | ||
1060 | pr_cont(" %s\n", type); | |
8e7f37f2 | 1061 | } |
0d3dd2c8 | 1062 | EXPORT_SYMBOL_GPL(mem_dump_obj); |
5bb1bb35 | 1063 | #endif |
82840451 DH |
1064 | |
1065 | /* | |
1066 | * A driver might set a page logically offline -- PageOffline() -- and | |
1067 | * turn the page inaccessible in the hypervisor; after that, access to page | |
1068 | * content can be fatal. | |
1069 | * | |
1070 | * Some special PFN walkers -- i.e., /proc/kcore -- read content of random | |
1071 | * pages after checking PageOffline(); however, these PFN walkers can race | |
1072 | * with drivers that set PageOffline(). | |
1073 | * | |
1074 | * page_offline_freeze()/page_offline_thaw() allows for a subsystem to | |
1075 | * synchronize with such drivers, achieving that a page cannot be set | |
1076 | * PageOffline() while frozen. | |
1077 | * | |
1078 | * page_offline_begin()/page_offline_end() is used by drivers that care about | |
1079 | * such races when setting a page PageOffline(). | |
1080 | */ | |
1081 | static DECLARE_RWSEM(page_offline_rwsem); | |
1082 | ||
1083 | void page_offline_freeze(void) | |
1084 | { | |
1085 | down_read(&page_offline_rwsem); | |
1086 | } | |
1087 | ||
1088 | void page_offline_thaw(void) | |
1089 | { | |
1090 | up_read(&page_offline_rwsem); | |
1091 | } | |
1092 | ||
1093 | void page_offline_begin(void) | |
1094 | { | |
1095 | down_write(&page_offline_rwsem); | |
1096 | } | |
1097 | EXPORT_SYMBOL(page_offline_begin); | |
1098 | ||
1099 | void page_offline_end(void) | |
1100 | { | |
1101 | up_write(&page_offline_rwsem); | |
1102 | } | |
1103 | EXPORT_SYMBOL(page_offline_end); | |
08b0b005 MWO |
1104 | |
1105 | #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO | |
1106 | void flush_dcache_folio(struct folio *folio) | |
1107 | { | |
1108 | long i, nr = folio_nr_pages(folio); | |
1109 | ||
1110 | for (i = 0; i < nr; i++) | |
1111 | flush_dcache_page(folio_page(folio, i)); | |
1112 | } | |
1113 | EXPORT_SYMBOL(flush_dcache_folio); | |
1114 | #endif |