]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
14 | #include <linux/mm.h> | |
15 | #include <linux/module.h> | |
5a0e3ad6 | 16 | #include <linux/gfp.h> |
1da177e4 LT |
17 | #include <linux/kernel_stat.h> |
18 | #include <linux/swap.h> | |
19 | #include <linux/pagemap.h> | |
20 | #include <linux/init.h> | |
21 | #include <linux/highmem.h> | |
70ddf637 | 22 | #include <linux/vmpressure.h> |
e129b5c2 | 23 | #include <linux/vmstat.h> |
1da177e4 LT |
24 | #include <linux/file.h> |
25 | #include <linux/writeback.h> | |
26 | #include <linux/blkdev.h> | |
27 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
28 | buffer_heads_over_limit */ | |
29 | #include <linux/mm_inline.h> | |
1da177e4 LT |
30 | #include <linux/backing-dev.h> |
31 | #include <linux/rmap.h> | |
32 | #include <linux/topology.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
3e7d3449 | 35 | #include <linux/compaction.h> |
1da177e4 LT |
36 | #include <linux/notifier.h> |
37 | #include <linux/rwsem.h> | |
248a0301 | 38 | #include <linux/delay.h> |
3218ae14 | 39 | #include <linux/kthread.h> |
7dfb7103 | 40 | #include <linux/freezer.h> |
66e1707b | 41 | #include <linux/memcontrol.h> |
873b4771 | 42 | #include <linux/delayacct.h> |
af936a16 | 43 | #include <linux/sysctl.h> |
929bea7c | 44 | #include <linux/oom.h> |
268bb0ce | 45 | #include <linux/prefetch.h> |
1da177e4 LT |
46 | |
47 | #include <asm/tlbflush.h> | |
48 | #include <asm/div64.h> | |
49 | ||
50 | #include <linux/swapops.h> | |
51 | ||
0f8053a5 NP |
52 | #include "internal.h" |
53 | ||
33906bc5 MG |
54 | #define CREATE_TRACE_POINTS |
55 | #include <trace/events/vmscan.h> | |
56 | ||
1da177e4 | 57 | struct scan_control { |
1da177e4 LT |
58 | /* Incremented by the number of inactive pages that were scanned */ |
59 | unsigned long nr_scanned; | |
60 | ||
a79311c1 RR |
61 | /* Number of pages freed so far during a call to shrink_zones() */ |
62 | unsigned long nr_reclaimed; | |
63 | ||
22fba335 KM |
64 | /* How many pages shrink_list() should reclaim */ |
65 | unsigned long nr_to_reclaim; | |
66 | ||
7b51755c KM |
67 | unsigned long hibernation_mode; |
68 | ||
1da177e4 | 69 | /* This context's GFP mask */ |
6daa0e28 | 70 | gfp_t gfp_mask; |
1da177e4 LT |
71 | |
72 | int may_writepage; | |
73 | ||
a6dc60f8 JW |
74 | /* Can mapped pages be reclaimed? */ |
75 | int may_unmap; | |
f1fd1067 | 76 | |
2e2e4259 KM |
77 | /* Can pages be swapped as part of reclaim? */ |
78 | int may_swap; | |
79 | ||
5ad333eb | 80 | int order; |
66e1707b | 81 | |
9e3b2f8c KK |
82 | /* Scan (total_size >> priority) pages at once */ |
83 | int priority; | |
84 | ||
f16015fb JW |
85 | /* |
86 | * The memory cgroup that hit its limit and as a result is the | |
87 | * primary target of this reclaim invocation. | |
88 | */ | |
89 | struct mem_cgroup *target_mem_cgroup; | |
66e1707b | 90 | |
327c0e96 KH |
91 | /* |
92 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
93 | * are scanned. | |
94 | */ | |
95 | nodemask_t *nodemask; | |
1da177e4 LT |
96 | }; |
97 | ||
1da177e4 LT |
98 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
99 | ||
100 | #ifdef ARCH_HAS_PREFETCH | |
101 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
102 | do { \ | |
103 | if ((_page)->lru.prev != _base) { \ | |
104 | struct page *prev; \ | |
105 | \ | |
106 | prev = lru_to_page(&(_page->lru)); \ | |
107 | prefetch(&prev->_field); \ | |
108 | } \ | |
109 | } while (0) | |
110 | #else | |
111 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
112 | #endif | |
113 | ||
114 | #ifdef ARCH_HAS_PREFETCHW | |
115 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
116 | do { \ | |
117 | if ((_page)->lru.prev != _base) { \ | |
118 | struct page *prev; \ | |
119 | \ | |
120 | prev = lru_to_page(&(_page->lru)); \ | |
121 | prefetchw(&prev->_field); \ | |
122 | } \ | |
123 | } while (0) | |
124 | #else | |
125 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
126 | #endif | |
127 | ||
128 | /* | |
129 | * From 0 .. 100. Higher means more swappy. | |
130 | */ | |
131 | int vm_swappiness = 60; | |
b21e0b90 | 132 | unsigned long vm_total_pages; /* The total number of pages which the VM controls */ |
1da177e4 LT |
133 | |
134 | static LIST_HEAD(shrinker_list); | |
135 | static DECLARE_RWSEM(shrinker_rwsem); | |
136 | ||
c255a458 | 137 | #ifdef CONFIG_MEMCG |
89b5fae5 JW |
138 | static bool global_reclaim(struct scan_control *sc) |
139 | { | |
f16015fb | 140 | return !sc->target_mem_cgroup; |
89b5fae5 | 141 | } |
91a45470 | 142 | #else |
89b5fae5 JW |
143 | static bool global_reclaim(struct scan_control *sc) |
144 | { | |
145 | return true; | |
146 | } | |
91a45470 KH |
147 | #endif |
148 | ||
4d7dcca2 | 149 | static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
c9f299d9 | 150 | { |
c3c787e8 | 151 | if (!mem_cgroup_disabled()) |
4d7dcca2 | 152 | return mem_cgroup_get_lru_size(lruvec, lru); |
a3d8e054 | 153 | |
074291fe | 154 | return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); |
c9f299d9 KM |
155 | } |
156 | ||
1da177e4 LT |
157 | /* |
158 | * Add a shrinker callback to be called from the vm | |
159 | */ | |
8e1f936b | 160 | void register_shrinker(struct shrinker *shrinker) |
1da177e4 | 161 | { |
83aeeada | 162 | atomic_long_set(&shrinker->nr_in_batch, 0); |
8e1f936b RR |
163 | down_write(&shrinker_rwsem); |
164 | list_add_tail(&shrinker->list, &shrinker_list); | |
165 | up_write(&shrinker_rwsem); | |
1da177e4 | 166 | } |
8e1f936b | 167 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
168 | |
169 | /* | |
170 | * Remove one | |
171 | */ | |
8e1f936b | 172 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 LT |
173 | { |
174 | down_write(&shrinker_rwsem); | |
175 | list_del(&shrinker->list); | |
176 | up_write(&shrinker_rwsem); | |
1da177e4 | 177 | } |
8e1f936b | 178 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 | 179 | |
1495f230 YH |
180 | static inline int do_shrinker_shrink(struct shrinker *shrinker, |
181 | struct shrink_control *sc, | |
182 | unsigned long nr_to_scan) | |
183 | { | |
184 | sc->nr_to_scan = nr_to_scan; | |
185 | return (*shrinker->shrink)(shrinker, sc); | |
186 | } | |
187 | ||
1da177e4 LT |
188 | #define SHRINK_BATCH 128 |
189 | /* | |
190 | * Call the shrink functions to age shrinkable caches | |
191 | * | |
192 | * Here we assume it costs one seek to replace a lru page and that it also | |
193 | * takes a seek to recreate a cache object. With this in mind we age equal | |
194 | * percentages of the lru and ageable caches. This should balance the seeks | |
195 | * generated by these structures. | |
196 | * | |
183ff22b | 197 | * If the vm encountered mapped pages on the LRU it increase the pressure on |
1da177e4 LT |
198 | * slab to avoid swapping. |
199 | * | |
200 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | |
201 | * | |
202 | * `lru_pages' represents the number of on-LRU pages in all the zones which | |
203 | * are eligible for the caller's allocation attempt. It is used for balancing | |
204 | * slab reclaim versus page reclaim. | |
b15e0905 | 205 | * |
206 | * Returns the number of slab objects which we shrunk. | |
1da177e4 | 207 | */ |
a09ed5e0 | 208 | unsigned long shrink_slab(struct shrink_control *shrink, |
1495f230 | 209 | unsigned long nr_pages_scanned, |
a09ed5e0 | 210 | unsigned long lru_pages) |
1da177e4 LT |
211 | { |
212 | struct shrinker *shrinker; | |
69e05944 | 213 | unsigned long ret = 0; |
1da177e4 | 214 | |
1495f230 YH |
215 | if (nr_pages_scanned == 0) |
216 | nr_pages_scanned = SWAP_CLUSTER_MAX; | |
1da177e4 | 217 | |
f06590bd MK |
218 | if (!down_read_trylock(&shrinker_rwsem)) { |
219 | /* Assume we'll be able to shrink next time */ | |
220 | ret = 1; | |
221 | goto out; | |
222 | } | |
1da177e4 LT |
223 | |
224 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
225 | unsigned long long delta; | |
635697c6 KK |
226 | long total_scan; |
227 | long max_pass; | |
09576073 | 228 | int shrink_ret = 0; |
acf92b48 DC |
229 | long nr; |
230 | long new_nr; | |
e9299f50 DC |
231 | long batch_size = shrinker->batch ? shrinker->batch |
232 | : SHRINK_BATCH; | |
1da177e4 | 233 | |
635697c6 KK |
234 | max_pass = do_shrinker_shrink(shrinker, shrink, 0); |
235 | if (max_pass <= 0) | |
236 | continue; | |
237 | ||
acf92b48 DC |
238 | /* |
239 | * copy the current shrinker scan count into a local variable | |
240 | * and zero it so that other concurrent shrinker invocations | |
241 | * don't also do this scanning work. | |
242 | */ | |
83aeeada | 243 | nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); |
acf92b48 DC |
244 | |
245 | total_scan = nr; | |
1495f230 | 246 | delta = (4 * nr_pages_scanned) / shrinker->seeks; |
ea164d73 | 247 | delta *= max_pass; |
1da177e4 | 248 | do_div(delta, lru_pages + 1); |
acf92b48 DC |
249 | total_scan += delta; |
250 | if (total_scan < 0) { | |
88c3bd70 DR |
251 | printk(KERN_ERR "shrink_slab: %pF negative objects to " |
252 | "delete nr=%ld\n", | |
acf92b48 DC |
253 | shrinker->shrink, total_scan); |
254 | total_scan = max_pass; | |
ea164d73 AA |
255 | } |
256 | ||
3567b59a DC |
257 | /* |
258 | * We need to avoid excessive windup on filesystem shrinkers | |
259 | * due to large numbers of GFP_NOFS allocations causing the | |
260 | * shrinkers to return -1 all the time. This results in a large | |
261 | * nr being built up so when a shrink that can do some work | |
262 | * comes along it empties the entire cache due to nr >>> | |
263 | * max_pass. This is bad for sustaining a working set in | |
264 | * memory. | |
265 | * | |
266 | * Hence only allow the shrinker to scan the entire cache when | |
267 | * a large delta change is calculated directly. | |
268 | */ | |
269 | if (delta < max_pass / 4) | |
270 | total_scan = min(total_scan, max_pass / 2); | |
271 | ||
ea164d73 AA |
272 | /* |
273 | * Avoid risking looping forever due to too large nr value: | |
274 | * never try to free more than twice the estimate number of | |
275 | * freeable entries. | |
276 | */ | |
acf92b48 DC |
277 | if (total_scan > max_pass * 2) |
278 | total_scan = max_pass * 2; | |
1da177e4 | 279 | |
acf92b48 | 280 | trace_mm_shrink_slab_start(shrinker, shrink, nr, |
09576073 DC |
281 | nr_pages_scanned, lru_pages, |
282 | max_pass, delta, total_scan); | |
283 | ||
e9299f50 | 284 | while (total_scan >= batch_size) { |
b15e0905 | 285 | int nr_before; |
1da177e4 | 286 | |
1495f230 YH |
287 | nr_before = do_shrinker_shrink(shrinker, shrink, 0); |
288 | shrink_ret = do_shrinker_shrink(shrinker, shrink, | |
e9299f50 | 289 | batch_size); |
1da177e4 LT |
290 | if (shrink_ret == -1) |
291 | break; | |
b15e0905 | 292 | if (shrink_ret < nr_before) |
293 | ret += nr_before - shrink_ret; | |
e9299f50 DC |
294 | count_vm_events(SLABS_SCANNED, batch_size); |
295 | total_scan -= batch_size; | |
1da177e4 LT |
296 | |
297 | cond_resched(); | |
298 | } | |
299 | ||
acf92b48 DC |
300 | /* |
301 | * move the unused scan count back into the shrinker in a | |
302 | * manner that handles concurrent updates. If we exhausted the | |
303 | * scan, there is no need to do an update. | |
304 | */ | |
83aeeada KK |
305 | if (total_scan > 0) |
306 | new_nr = atomic_long_add_return(total_scan, | |
307 | &shrinker->nr_in_batch); | |
308 | else | |
309 | new_nr = atomic_long_read(&shrinker->nr_in_batch); | |
acf92b48 DC |
310 | |
311 | trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); | |
1da177e4 LT |
312 | } |
313 | up_read(&shrinker_rwsem); | |
f06590bd MK |
314 | out: |
315 | cond_resched(); | |
b15e0905 | 316 | return ret; |
1da177e4 LT |
317 | } |
318 | ||
1da177e4 LT |
319 | static inline int is_page_cache_freeable(struct page *page) |
320 | { | |
ceddc3a5 JW |
321 | /* |
322 | * A freeable page cache page is referenced only by the caller | |
323 | * that isolated the page, the page cache radix tree and | |
324 | * optional buffer heads at page->private. | |
325 | */ | |
edcf4748 | 326 | return page_count(page) - page_has_private(page) == 2; |
1da177e4 LT |
327 | } |
328 | ||
7d3579e8 KM |
329 | static int may_write_to_queue(struct backing_dev_info *bdi, |
330 | struct scan_control *sc) | |
1da177e4 | 331 | { |
930d9152 | 332 | if (current->flags & PF_SWAPWRITE) |
1da177e4 LT |
333 | return 1; |
334 | if (!bdi_write_congested(bdi)) | |
335 | return 1; | |
336 | if (bdi == current->backing_dev_info) | |
337 | return 1; | |
338 | return 0; | |
339 | } | |
340 | ||
341 | /* | |
342 | * We detected a synchronous write error writing a page out. Probably | |
343 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
344 | * fsync(), msync() or close(). | |
345 | * | |
346 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
347 | * prevents it from being freed up. But we have a ref on the page and once | |
348 | * that page is locked, the mapping is pinned. | |
349 | * | |
350 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
351 | * __GFP_FS. | |
352 | */ | |
353 | static void handle_write_error(struct address_space *mapping, | |
354 | struct page *page, int error) | |
355 | { | |
7eaceacc | 356 | lock_page(page); |
3e9f45bd GC |
357 | if (page_mapping(page) == mapping) |
358 | mapping_set_error(mapping, error); | |
1da177e4 LT |
359 | unlock_page(page); |
360 | } | |
361 | ||
04e62a29 CL |
362 | /* possible outcome of pageout() */ |
363 | typedef enum { | |
364 | /* failed to write page out, page is locked */ | |
365 | PAGE_KEEP, | |
366 | /* move page to the active list, page is locked */ | |
367 | PAGE_ACTIVATE, | |
368 | /* page has been sent to the disk successfully, page is unlocked */ | |
369 | PAGE_SUCCESS, | |
370 | /* page is clean and locked */ | |
371 | PAGE_CLEAN, | |
372 | } pageout_t; | |
373 | ||
1da177e4 | 374 | /* |
1742f19f AM |
375 | * pageout is called by shrink_page_list() for each dirty page. |
376 | * Calls ->writepage(). | |
1da177e4 | 377 | */ |
c661b078 | 378 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
7d3579e8 | 379 | struct scan_control *sc) |
1da177e4 LT |
380 | { |
381 | /* | |
382 | * If the page is dirty, only perform writeback if that write | |
383 | * will be non-blocking. To prevent this allocation from being | |
384 | * stalled by pagecache activity. But note that there may be | |
385 | * stalls if we need to run get_block(). We could test | |
386 | * PagePrivate for that. | |
387 | * | |
6aceb53b | 388 | * If this process is currently in __generic_file_aio_write() against |
1da177e4 LT |
389 | * this page's queue, we can perform writeback even if that |
390 | * will block. | |
391 | * | |
392 | * If the page is swapcache, write it back even if that would | |
393 | * block, for some throttling. This happens by accident, because | |
394 | * swap_backing_dev_info is bust: it doesn't reflect the | |
395 | * congestion state of the swapdevs. Easy to fix, if needed. | |
1da177e4 LT |
396 | */ |
397 | if (!is_page_cache_freeable(page)) | |
398 | return PAGE_KEEP; | |
399 | if (!mapping) { | |
400 | /* | |
401 | * Some data journaling orphaned pages can have | |
402 | * page->mapping == NULL while being dirty with clean buffers. | |
403 | */ | |
266cf658 | 404 | if (page_has_private(page)) { |
1da177e4 LT |
405 | if (try_to_free_buffers(page)) { |
406 | ClearPageDirty(page); | |
d40cee24 | 407 | printk("%s: orphaned page\n", __func__); |
1da177e4 LT |
408 | return PAGE_CLEAN; |
409 | } | |
410 | } | |
411 | return PAGE_KEEP; | |
412 | } | |
413 | if (mapping->a_ops->writepage == NULL) | |
414 | return PAGE_ACTIVATE; | |
0e093d99 | 415 | if (!may_write_to_queue(mapping->backing_dev_info, sc)) |
1da177e4 LT |
416 | return PAGE_KEEP; |
417 | ||
418 | if (clear_page_dirty_for_io(page)) { | |
419 | int res; | |
420 | struct writeback_control wbc = { | |
421 | .sync_mode = WB_SYNC_NONE, | |
422 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
423 | .range_start = 0, |
424 | .range_end = LLONG_MAX, | |
1da177e4 LT |
425 | .for_reclaim = 1, |
426 | }; | |
427 | ||
428 | SetPageReclaim(page); | |
429 | res = mapping->a_ops->writepage(page, &wbc); | |
430 | if (res < 0) | |
431 | handle_write_error(mapping, page, res); | |
994fc28c | 432 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
433 | ClearPageReclaim(page); |
434 | return PAGE_ACTIVATE; | |
435 | } | |
c661b078 | 436 | |
1da177e4 LT |
437 | if (!PageWriteback(page)) { |
438 | /* synchronous write or broken a_ops? */ | |
439 | ClearPageReclaim(page); | |
440 | } | |
23b9da55 | 441 | trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); |
e129b5c2 | 442 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
443 | return PAGE_SUCCESS; |
444 | } | |
445 | ||
446 | return PAGE_CLEAN; | |
447 | } | |
448 | ||
a649fd92 | 449 | /* |
e286781d NP |
450 | * Same as remove_mapping, but if the page is removed from the mapping, it |
451 | * gets returned with a refcount of 0. | |
a649fd92 | 452 | */ |
e286781d | 453 | static int __remove_mapping(struct address_space *mapping, struct page *page) |
49d2e9cc | 454 | { |
28e4d965 NP |
455 | BUG_ON(!PageLocked(page)); |
456 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc | 457 | |
19fd6231 | 458 | spin_lock_irq(&mapping->tree_lock); |
49d2e9cc | 459 | /* |
0fd0e6b0 NP |
460 | * The non racy check for a busy page. |
461 | * | |
462 | * Must be careful with the order of the tests. When someone has | |
463 | * a ref to the page, it may be possible that they dirty it then | |
464 | * drop the reference. So if PageDirty is tested before page_count | |
465 | * here, then the following race may occur: | |
466 | * | |
467 | * get_user_pages(&page); | |
468 | * [user mapping goes away] | |
469 | * write_to(page); | |
470 | * !PageDirty(page) [good] | |
471 | * SetPageDirty(page); | |
472 | * put_page(page); | |
473 | * !page_count(page) [good, discard it] | |
474 | * | |
475 | * [oops, our write_to data is lost] | |
476 | * | |
477 | * Reversing the order of the tests ensures such a situation cannot | |
478 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
479 | * load is not satisfied before that of page->_count. | |
480 | * | |
481 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
482 | * and thus under tree_lock, then this ordering is not required. | |
49d2e9cc | 483 | */ |
e286781d | 484 | if (!page_freeze_refs(page, 2)) |
49d2e9cc | 485 | goto cannot_free; |
e286781d NP |
486 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
487 | if (unlikely(PageDirty(page))) { | |
488 | page_unfreeze_refs(page, 2); | |
49d2e9cc | 489 | goto cannot_free; |
e286781d | 490 | } |
49d2e9cc CL |
491 | |
492 | if (PageSwapCache(page)) { | |
493 | swp_entry_t swap = { .val = page_private(page) }; | |
494 | __delete_from_swap_cache(page); | |
19fd6231 | 495 | spin_unlock_irq(&mapping->tree_lock); |
cb4b86ba | 496 | swapcache_free(swap, page); |
e286781d | 497 | } else { |
6072d13c LT |
498 | void (*freepage)(struct page *); |
499 | ||
500 | freepage = mapping->a_ops->freepage; | |
501 | ||
e64a782f | 502 | __delete_from_page_cache(page); |
19fd6231 | 503 | spin_unlock_irq(&mapping->tree_lock); |
e767e056 | 504 | mem_cgroup_uncharge_cache_page(page); |
6072d13c LT |
505 | |
506 | if (freepage != NULL) | |
507 | freepage(page); | |
49d2e9cc CL |
508 | } |
509 | ||
49d2e9cc CL |
510 | return 1; |
511 | ||
512 | cannot_free: | |
19fd6231 | 513 | spin_unlock_irq(&mapping->tree_lock); |
49d2e9cc CL |
514 | return 0; |
515 | } | |
516 | ||
e286781d NP |
517 | /* |
518 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
519 | * someone else has a ref on the page, abort and return 0. If it was | |
520 | * successfully detached, return 1. Assumes the caller has a single ref on | |
521 | * this page. | |
522 | */ | |
523 | int remove_mapping(struct address_space *mapping, struct page *page) | |
524 | { | |
525 | if (__remove_mapping(mapping, page)) { | |
526 | /* | |
527 | * Unfreezing the refcount with 1 rather than 2 effectively | |
528 | * drops the pagecache ref for us without requiring another | |
529 | * atomic operation. | |
530 | */ | |
531 | page_unfreeze_refs(page, 1); | |
532 | return 1; | |
533 | } | |
534 | return 0; | |
535 | } | |
536 | ||
894bc310 LS |
537 | /** |
538 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
539 | * @page: page to be put back to appropriate lru list | |
540 | * | |
541 | * Add previously isolated @page to appropriate LRU list. | |
542 | * Page may still be unevictable for other reasons. | |
543 | * | |
544 | * lru_lock must not be held, interrupts must be enabled. | |
545 | */ | |
894bc310 LS |
546 | void putback_lru_page(struct page *page) |
547 | { | |
548 | int lru; | |
549 | int active = !!TestClearPageActive(page); | |
bbfd28ee | 550 | int was_unevictable = PageUnevictable(page); |
894bc310 LS |
551 | |
552 | VM_BUG_ON(PageLRU(page)); | |
553 | ||
554 | redo: | |
555 | ClearPageUnevictable(page); | |
556 | ||
39b5f29a | 557 | if (page_evictable(page)) { |
894bc310 LS |
558 | /* |
559 | * For evictable pages, we can use the cache. | |
560 | * In event of a race, worst case is we end up with an | |
561 | * unevictable page on [in]active list. | |
562 | * We know how to handle that. | |
563 | */ | |
401a8e1c | 564 | lru = active + page_lru_base_type(page); |
894bc310 LS |
565 | lru_cache_add_lru(page, lru); |
566 | } else { | |
567 | /* | |
568 | * Put unevictable pages directly on zone's unevictable | |
569 | * list. | |
570 | */ | |
571 | lru = LRU_UNEVICTABLE; | |
572 | add_page_to_unevictable_list(page); | |
6a7b9548 | 573 | /* |
21ee9f39 MK |
574 | * When racing with an mlock or AS_UNEVICTABLE clearing |
575 | * (page is unlocked) make sure that if the other thread | |
576 | * does not observe our setting of PG_lru and fails | |
24513264 | 577 | * isolation/check_move_unevictable_pages, |
21ee9f39 | 578 | * we see PG_mlocked/AS_UNEVICTABLE cleared below and move |
6a7b9548 JW |
579 | * the page back to the evictable list. |
580 | * | |
21ee9f39 | 581 | * The other side is TestClearPageMlocked() or shmem_lock(). |
6a7b9548 JW |
582 | */ |
583 | smp_mb(); | |
894bc310 | 584 | } |
894bc310 LS |
585 | |
586 | /* | |
587 | * page's status can change while we move it among lru. If an evictable | |
588 | * page is on unevictable list, it never be freed. To avoid that, | |
589 | * check after we added it to the list, again. | |
590 | */ | |
39b5f29a | 591 | if (lru == LRU_UNEVICTABLE && page_evictable(page)) { |
894bc310 LS |
592 | if (!isolate_lru_page(page)) { |
593 | put_page(page); | |
594 | goto redo; | |
595 | } | |
596 | /* This means someone else dropped this page from LRU | |
597 | * So, it will be freed or putback to LRU again. There is | |
598 | * nothing to do here. | |
599 | */ | |
600 | } | |
601 | ||
bbfd28ee LS |
602 | if (was_unevictable && lru != LRU_UNEVICTABLE) |
603 | count_vm_event(UNEVICTABLE_PGRESCUED); | |
604 | else if (!was_unevictable && lru == LRU_UNEVICTABLE) | |
605 | count_vm_event(UNEVICTABLE_PGCULLED); | |
606 | ||
894bc310 LS |
607 | put_page(page); /* drop ref from isolate */ |
608 | } | |
609 | ||
dfc8d636 JW |
610 | enum page_references { |
611 | PAGEREF_RECLAIM, | |
612 | PAGEREF_RECLAIM_CLEAN, | |
64574746 | 613 | PAGEREF_KEEP, |
dfc8d636 JW |
614 | PAGEREF_ACTIVATE, |
615 | }; | |
616 | ||
617 | static enum page_references page_check_references(struct page *page, | |
618 | struct scan_control *sc) | |
619 | { | |
64574746 | 620 | int referenced_ptes, referenced_page; |
dfc8d636 | 621 | unsigned long vm_flags; |
dfc8d636 | 622 | |
c3ac9a8a JW |
623 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
624 | &vm_flags); | |
64574746 | 625 | referenced_page = TestClearPageReferenced(page); |
dfc8d636 | 626 | |
dfc8d636 JW |
627 | /* |
628 | * Mlock lost the isolation race with us. Let try_to_unmap() | |
629 | * move the page to the unevictable list. | |
630 | */ | |
631 | if (vm_flags & VM_LOCKED) | |
632 | return PAGEREF_RECLAIM; | |
633 | ||
64574746 | 634 | if (referenced_ptes) { |
e4898273 | 635 | if (PageSwapBacked(page)) |
64574746 JW |
636 | return PAGEREF_ACTIVATE; |
637 | /* | |
638 | * All mapped pages start out with page table | |
639 | * references from the instantiating fault, so we need | |
640 | * to look twice if a mapped file page is used more | |
641 | * than once. | |
642 | * | |
643 | * Mark it and spare it for another trip around the | |
644 | * inactive list. Another page table reference will | |
645 | * lead to its activation. | |
646 | * | |
647 | * Note: the mark is set for activated pages as well | |
648 | * so that recently deactivated but used pages are | |
649 | * quickly recovered. | |
650 | */ | |
651 | SetPageReferenced(page); | |
652 | ||
34dbc67a | 653 | if (referenced_page || referenced_ptes > 1) |
64574746 JW |
654 | return PAGEREF_ACTIVATE; |
655 | ||
c909e993 KK |
656 | /* |
657 | * Activate file-backed executable pages after first usage. | |
658 | */ | |
659 | if (vm_flags & VM_EXEC) | |
660 | return PAGEREF_ACTIVATE; | |
661 | ||
64574746 JW |
662 | return PAGEREF_KEEP; |
663 | } | |
dfc8d636 JW |
664 | |
665 | /* Reclaim if clean, defer dirty pages to writeback */ | |
2e30244a | 666 | if (referenced_page && !PageSwapBacked(page)) |
64574746 JW |
667 | return PAGEREF_RECLAIM_CLEAN; |
668 | ||
669 | return PAGEREF_RECLAIM; | |
dfc8d636 JW |
670 | } |
671 | ||
1da177e4 | 672 | /* |
1742f19f | 673 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 674 | */ |
1742f19f | 675 | static unsigned long shrink_page_list(struct list_head *page_list, |
6a18adb3 | 676 | struct zone *zone, |
f84f6e2b | 677 | struct scan_control *sc, |
02c6de8d | 678 | enum ttu_flags ttu_flags, |
92df3a72 | 679 | unsigned long *ret_nr_dirty, |
02c6de8d MK |
680 | unsigned long *ret_nr_writeback, |
681 | bool force_reclaim) | |
1da177e4 LT |
682 | { |
683 | LIST_HEAD(ret_pages); | |
abe4c3b5 | 684 | LIST_HEAD(free_pages); |
1da177e4 | 685 | int pgactivate = 0; |
0e093d99 MG |
686 | unsigned long nr_dirty = 0; |
687 | unsigned long nr_congested = 0; | |
05ff5137 | 688 | unsigned long nr_reclaimed = 0; |
92df3a72 | 689 | unsigned long nr_writeback = 0; |
1da177e4 LT |
690 | |
691 | cond_resched(); | |
692 | ||
69980e31 | 693 | mem_cgroup_uncharge_start(); |
1da177e4 LT |
694 | while (!list_empty(page_list)) { |
695 | struct address_space *mapping; | |
696 | struct page *page; | |
697 | int may_enter_fs; | |
02c6de8d | 698 | enum page_references references = PAGEREF_RECLAIM_CLEAN; |
1da177e4 LT |
699 | |
700 | cond_resched(); | |
701 | ||
702 | page = lru_to_page(page_list); | |
703 | list_del(&page->lru); | |
704 | ||
529ae9aa | 705 | if (!trylock_page(page)) |
1da177e4 LT |
706 | goto keep; |
707 | ||
725d704e | 708 | VM_BUG_ON(PageActive(page)); |
6a18adb3 | 709 | VM_BUG_ON(page_zone(page) != zone); |
1da177e4 LT |
710 | |
711 | sc->nr_scanned++; | |
80e43426 | 712 | |
39b5f29a | 713 | if (unlikely(!page_evictable(page))) |
b291f000 | 714 | goto cull_mlocked; |
894bc310 | 715 | |
a6dc60f8 | 716 | if (!sc->may_unmap && page_mapped(page)) |
80e43426 CL |
717 | goto keep_locked; |
718 | ||
1da177e4 LT |
719 | /* Double the slab pressure for mapped and swapcache pages */ |
720 | if (page_mapped(page) || PageSwapCache(page)) | |
721 | sc->nr_scanned++; | |
722 | ||
c661b078 AW |
723 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
724 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
725 | ||
726 | if (PageWriteback(page)) { | |
e62e384e MH |
727 | /* |
728 | * memcg doesn't have any dirty pages throttling so we | |
729 | * could easily OOM just because too many pages are in | |
c3b94f44 | 730 | * writeback and there is nothing else to reclaim. |
e62e384e | 731 | * |
c3b94f44 | 732 | * Check __GFP_IO, certainly because a loop driver |
e62e384e MH |
733 | * thread might enter reclaim, and deadlock if it waits |
734 | * on a page for which it is needed to do the write | |
735 | * (loop masks off __GFP_IO|__GFP_FS for this reason); | |
736 | * but more thought would probably show more reasons. | |
c3b94f44 HD |
737 | * |
738 | * Don't require __GFP_FS, since we're not going into | |
739 | * the FS, just waiting on its writeback completion. | |
740 | * Worryingly, ext4 gfs2 and xfs allocate pages with | |
741 | * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so | |
742 | * testing may_enter_fs here is liable to OOM on them. | |
e62e384e | 743 | */ |
c3b94f44 HD |
744 | if (global_reclaim(sc) || |
745 | !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { | |
746 | /* | |
747 | * This is slightly racy - end_page_writeback() | |
748 | * might have just cleared PageReclaim, then | |
749 | * setting PageReclaim here end up interpreted | |
750 | * as PageReadahead - but that does not matter | |
751 | * enough to care. What we do want is for this | |
752 | * page to have PageReclaim set next time memcg | |
753 | * reclaim reaches the tests above, so it will | |
754 | * then wait_on_page_writeback() to avoid OOM; | |
755 | * and it's also appropriate in global reclaim. | |
756 | */ | |
757 | SetPageReclaim(page); | |
e62e384e | 758 | nr_writeback++; |
c3b94f44 | 759 | goto keep_locked; |
e62e384e | 760 | } |
c3b94f44 | 761 | wait_on_page_writeback(page); |
c661b078 | 762 | } |
1da177e4 | 763 | |
02c6de8d MK |
764 | if (!force_reclaim) |
765 | references = page_check_references(page, sc); | |
766 | ||
dfc8d636 JW |
767 | switch (references) { |
768 | case PAGEREF_ACTIVATE: | |
1da177e4 | 769 | goto activate_locked; |
64574746 JW |
770 | case PAGEREF_KEEP: |
771 | goto keep_locked; | |
dfc8d636 JW |
772 | case PAGEREF_RECLAIM: |
773 | case PAGEREF_RECLAIM_CLEAN: | |
774 | ; /* try to reclaim the page below */ | |
775 | } | |
1da177e4 | 776 | |
1da177e4 LT |
777 | /* |
778 | * Anonymous process memory has backing store? | |
779 | * Try to allocate it some swap space here. | |
780 | */ | |
b291f000 | 781 | if (PageAnon(page) && !PageSwapCache(page)) { |
63eb6b93 HD |
782 | if (!(sc->gfp_mask & __GFP_IO)) |
783 | goto keep_locked; | |
5bc7b8ac | 784 | if (!add_to_swap(page, page_list)) |
1da177e4 | 785 | goto activate_locked; |
63eb6b93 | 786 | may_enter_fs = 1; |
b291f000 | 787 | } |
1da177e4 LT |
788 | |
789 | mapping = page_mapping(page); | |
1da177e4 LT |
790 | |
791 | /* | |
792 | * The page is mapped into the page tables of one or more | |
793 | * processes. Try to unmap it here. | |
794 | */ | |
795 | if (page_mapped(page) && mapping) { | |
02c6de8d | 796 | switch (try_to_unmap(page, ttu_flags)) { |
1da177e4 LT |
797 | case SWAP_FAIL: |
798 | goto activate_locked; | |
799 | case SWAP_AGAIN: | |
800 | goto keep_locked; | |
b291f000 NP |
801 | case SWAP_MLOCK: |
802 | goto cull_mlocked; | |
1da177e4 LT |
803 | case SWAP_SUCCESS: |
804 | ; /* try to free the page below */ | |
805 | } | |
806 | } | |
807 | ||
808 | if (PageDirty(page)) { | |
0e093d99 MG |
809 | nr_dirty++; |
810 | ||
ee72886d MG |
811 | /* |
812 | * Only kswapd can writeback filesystem pages to | |
f84f6e2b MG |
813 | * avoid risk of stack overflow but do not writeback |
814 | * unless under significant pressure. | |
ee72886d | 815 | */ |
f84f6e2b | 816 | if (page_is_file_cache(page) && |
9e3b2f8c KK |
817 | (!current_is_kswapd() || |
818 | sc->priority >= DEF_PRIORITY - 2)) { | |
49ea7eb6 MG |
819 | /* |
820 | * Immediately reclaim when written back. | |
821 | * Similar in principal to deactivate_page() | |
822 | * except we already have the page isolated | |
823 | * and know it's dirty | |
824 | */ | |
825 | inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); | |
826 | SetPageReclaim(page); | |
827 | ||
ee72886d MG |
828 | goto keep_locked; |
829 | } | |
830 | ||
dfc8d636 | 831 | if (references == PAGEREF_RECLAIM_CLEAN) |
1da177e4 | 832 | goto keep_locked; |
4dd4b920 | 833 | if (!may_enter_fs) |
1da177e4 | 834 | goto keep_locked; |
52a8363e | 835 | if (!sc->may_writepage) |
1da177e4 LT |
836 | goto keep_locked; |
837 | ||
838 | /* Page is dirty, try to write it out here */ | |
7d3579e8 | 839 | switch (pageout(page, mapping, sc)) { |
1da177e4 | 840 | case PAGE_KEEP: |
0e093d99 | 841 | nr_congested++; |
1da177e4 LT |
842 | goto keep_locked; |
843 | case PAGE_ACTIVATE: | |
844 | goto activate_locked; | |
845 | case PAGE_SUCCESS: | |
7d3579e8 | 846 | if (PageWriteback(page)) |
41ac1999 | 847 | goto keep; |
7d3579e8 | 848 | if (PageDirty(page)) |
1da177e4 | 849 | goto keep; |
7d3579e8 | 850 | |
1da177e4 LT |
851 | /* |
852 | * A synchronous write - probably a ramdisk. Go | |
853 | * ahead and try to reclaim the page. | |
854 | */ | |
529ae9aa | 855 | if (!trylock_page(page)) |
1da177e4 LT |
856 | goto keep; |
857 | if (PageDirty(page) || PageWriteback(page)) | |
858 | goto keep_locked; | |
859 | mapping = page_mapping(page); | |
860 | case PAGE_CLEAN: | |
861 | ; /* try to free the page below */ | |
862 | } | |
863 | } | |
864 | ||
865 | /* | |
866 | * If the page has buffers, try to free the buffer mappings | |
867 | * associated with this page. If we succeed we try to free | |
868 | * the page as well. | |
869 | * | |
870 | * We do this even if the page is PageDirty(). | |
871 | * try_to_release_page() does not perform I/O, but it is | |
872 | * possible for a page to have PageDirty set, but it is actually | |
873 | * clean (all its buffers are clean). This happens if the | |
874 | * buffers were written out directly, with submit_bh(). ext3 | |
894bc310 | 875 | * will do this, as well as the blockdev mapping. |
1da177e4 LT |
876 | * try_to_release_page() will discover that cleanness and will |
877 | * drop the buffers and mark the page clean - it can be freed. | |
878 | * | |
879 | * Rarely, pages can have buffers and no ->mapping. These are | |
880 | * the pages which were not successfully invalidated in | |
881 | * truncate_complete_page(). We try to drop those buffers here | |
882 | * and if that worked, and the page is no longer mapped into | |
883 | * process address space (page_count == 1) it can be freed. | |
884 | * Otherwise, leave the page on the LRU so it is swappable. | |
885 | */ | |
266cf658 | 886 | if (page_has_private(page)) { |
1da177e4 LT |
887 | if (!try_to_release_page(page, sc->gfp_mask)) |
888 | goto activate_locked; | |
e286781d NP |
889 | if (!mapping && page_count(page) == 1) { |
890 | unlock_page(page); | |
891 | if (put_page_testzero(page)) | |
892 | goto free_it; | |
893 | else { | |
894 | /* | |
895 | * rare race with speculative reference. | |
896 | * the speculative reference will free | |
897 | * this page shortly, so we may | |
898 | * increment nr_reclaimed here (and | |
899 | * leave it off the LRU). | |
900 | */ | |
901 | nr_reclaimed++; | |
902 | continue; | |
903 | } | |
904 | } | |
1da177e4 LT |
905 | } |
906 | ||
e286781d | 907 | if (!mapping || !__remove_mapping(mapping, page)) |
49d2e9cc | 908 | goto keep_locked; |
1da177e4 | 909 | |
a978d6f5 NP |
910 | /* |
911 | * At this point, we have no other references and there is | |
912 | * no way to pick any more up (removed from LRU, removed | |
913 | * from pagecache). Can use non-atomic bitops now (and | |
914 | * we obviously don't have to worry about waking up a process | |
915 | * waiting on the page lock, because there are no references. | |
916 | */ | |
917 | __clear_page_locked(page); | |
e286781d | 918 | free_it: |
05ff5137 | 919 | nr_reclaimed++; |
abe4c3b5 MG |
920 | |
921 | /* | |
922 | * Is there need to periodically free_page_list? It would | |
923 | * appear not as the counts should be low | |
924 | */ | |
925 | list_add(&page->lru, &free_pages); | |
1da177e4 LT |
926 | continue; |
927 | ||
b291f000 | 928 | cull_mlocked: |
63d6c5ad HD |
929 | if (PageSwapCache(page)) |
930 | try_to_free_swap(page); | |
b291f000 NP |
931 | unlock_page(page); |
932 | putback_lru_page(page); | |
933 | continue; | |
934 | ||
1da177e4 | 935 | activate_locked: |
68a22394 RR |
936 | /* Not a candidate for swapping, so reclaim swap space. */ |
937 | if (PageSwapCache(page) && vm_swap_full()) | |
a2c43eed | 938 | try_to_free_swap(page); |
894bc310 | 939 | VM_BUG_ON(PageActive(page)); |
1da177e4 LT |
940 | SetPageActive(page); |
941 | pgactivate++; | |
942 | keep_locked: | |
943 | unlock_page(page); | |
944 | keep: | |
945 | list_add(&page->lru, &ret_pages); | |
b291f000 | 946 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
1da177e4 | 947 | } |
abe4c3b5 | 948 | |
0e093d99 MG |
949 | /* |
950 | * Tag a zone as congested if all the dirty pages encountered were | |
951 | * backed by a congested BDI. In this case, reclaimers should just | |
952 | * back off and wait for congestion to clear because further reclaim | |
953 | * will encounter the same problem | |
954 | */ | |
89b5fae5 | 955 | if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc)) |
6a18adb3 | 956 | zone_set_flag(zone, ZONE_CONGESTED); |
0e093d99 | 957 | |
cc59850e | 958 | free_hot_cold_page_list(&free_pages, 1); |
abe4c3b5 | 959 | |
1da177e4 | 960 | list_splice(&ret_pages, page_list); |
f8891e5e | 961 | count_vm_events(PGACTIVATE, pgactivate); |
69980e31 | 962 | mem_cgroup_uncharge_end(); |
92df3a72 MG |
963 | *ret_nr_dirty += nr_dirty; |
964 | *ret_nr_writeback += nr_writeback; | |
05ff5137 | 965 | return nr_reclaimed; |
1da177e4 LT |
966 | } |
967 | ||
02c6de8d MK |
968 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, |
969 | struct list_head *page_list) | |
970 | { | |
971 | struct scan_control sc = { | |
972 | .gfp_mask = GFP_KERNEL, | |
973 | .priority = DEF_PRIORITY, | |
974 | .may_unmap = 1, | |
975 | }; | |
976 | unsigned long ret, dummy1, dummy2; | |
977 | struct page *page, *next; | |
978 | LIST_HEAD(clean_pages); | |
979 | ||
980 | list_for_each_entry_safe(page, next, page_list, lru) { | |
981 | if (page_is_file_cache(page) && !PageDirty(page)) { | |
982 | ClearPageActive(page); | |
983 | list_move(&page->lru, &clean_pages); | |
984 | } | |
985 | } | |
986 | ||
987 | ret = shrink_page_list(&clean_pages, zone, &sc, | |
988 | TTU_UNMAP|TTU_IGNORE_ACCESS, | |
989 | &dummy1, &dummy2, true); | |
990 | list_splice(&clean_pages, page_list); | |
991 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); | |
992 | return ret; | |
993 | } | |
994 | ||
5ad333eb AW |
995 | /* |
996 | * Attempt to remove the specified page from its LRU. Only take this page | |
997 | * if it is of the appropriate PageActive status. Pages which are being | |
998 | * freed elsewhere are also ignored. | |
999 | * | |
1000 | * page: page to consider | |
1001 | * mode: one of the LRU isolation modes defined above | |
1002 | * | |
1003 | * returns 0 on success, -ve errno on failure. | |
1004 | */ | |
f3fd4a61 | 1005 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
5ad333eb AW |
1006 | { |
1007 | int ret = -EINVAL; | |
1008 | ||
1009 | /* Only take pages on the LRU. */ | |
1010 | if (!PageLRU(page)) | |
1011 | return ret; | |
1012 | ||
e46a2879 MK |
1013 | /* Compaction should not handle unevictable pages but CMA can do so */ |
1014 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) | |
894bc310 LS |
1015 | return ret; |
1016 | ||
5ad333eb | 1017 | ret = -EBUSY; |
08e552c6 | 1018 | |
c8244935 MG |
1019 | /* |
1020 | * To minimise LRU disruption, the caller can indicate that it only | |
1021 | * wants to isolate pages it will be able to operate on without | |
1022 | * blocking - clean pages for the most part. | |
1023 | * | |
1024 | * ISOLATE_CLEAN means that only clean pages should be isolated. This | |
1025 | * is used by reclaim when it is cannot write to backing storage | |
1026 | * | |
1027 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages | |
1028 | * that it is possible to migrate without blocking | |
1029 | */ | |
1030 | if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { | |
1031 | /* All the caller can do on PageWriteback is block */ | |
1032 | if (PageWriteback(page)) | |
1033 | return ret; | |
1034 | ||
1035 | if (PageDirty(page)) { | |
1036 | struct address_space *mapping; | |
1037 | ||
1038 | /* ISOLATE_CLEAN means only clean pages */ | |
1039 | if (mode & ISOLATE_CLEAN) | |
1040 | return ret; | |
1041 | ||
1042 | /* | |
1043 | * Only pages without mappings or that have a | |
1044 | * ->migratepage callback are possible to migrate | |
1045 | * without blocking | |
1046 | */ | |
1047 | mapping = page_mapping(page); | |
1048 | if (mapping && !mapping->a_ops->migratepage) | |
1049 | return ret; | |
1050 | } | |
1051 | } | |
39deaf85 | 1052 | |
f80c0673 MK |
1053 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
1054 | return ret; | |
1055 | ||
5ad333eb AW |
1056 | if (likely(get_page_unless_zero(page))) { |
1057 | /* | |
1058 | * Be careful not to clear PageLRU until after we're | |
1059 | * sure the page is not being freed elsewhere -- the | |
1060 | * page release code relies on it. | |
1061 | */ | |
1062 | ClearPageLRU(page); | |
1063 | ret = 0; | |
1064 | } | |
1065 | ||
1066 | return ret; | |
1067 | } | |
1068 | ||
1da177e4 LT |
1069 | /* |
1070 | * zone->lru_lock is heavily contended. Some of the functions that | |
1071 | * shrink the lists perform better by taking out a batch of pages | |
1072 | * and working on them outside the LRU lock. | |
1073 | * | |
1074 | * For pagecache intensive workloads, this function is the hottest | |
1075 | * spot in the kernel (apart from copy_*_user functions). | |
1076 | * | |
1077 | * Appropriate locks must be held before calling this function. | |
1078 | * | |
1079 | * @nr_to_scan: The number of pages to look through on the list. | |
5dc35979 | 1080 | * @lruvec: The LRU vector to pull pages from. |
1da177e4 | 1081 | * @dst: The temp list to put pages on to. |
f626012d | 1082 | * @nr_scanned: The number of pages that were scanned. |
fe2c2a10 | 1083 | * @sc: The scan_control struct for this reclaim session |
5ad333eb | 1084 | * @mode: One of the LRU isolation modes |
3cb99451 | 1085 | * @lru: LRU list id for isolating |
1da177e4 LT |
1086 | * |
1087 | * returns how many pages were moved onto *@dst. | |
1088 | */ | |
69e05944 | 1089 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
5dc35979 | 1090 | struct lruvec *lruvec, struct list_head *dst, |
fe2c2a10 | 1091 | unsigned long *nr_scanned, struct scan_control *sc, |
3cb99451 | 1092 | isolate_mode_t mode, enum lru_list lru) |
1da177e4 | 1093 | { |
75b00af7 | 1094 | struct list_head *src = &lruvec->lists[lru]; |
69e05944 | 1095 | unsigned long nr_taken = 0; |
c9b02d97 | 1096 | unsigned long scan; |
1da177e4 | 1097 | |
c9b02d97 | 1098 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
5ad333eb | 1099 | struct page *page; |
fa9add64 | 1100 | int nr_pages; |
5ad333eb | 1101 | |
1da177e4 LT |
1102 | page = lru_to_page(src); |
1103 | prefetchw_prev_lru_page(page, src, flags); | |
1104 | ||
725d704e | 1105 | VM_BUG_ON(!PageLRU(page)); |
8d438f96 | 1106 | |
f3fd4a61 | 1107 | switch (__isolate_lru_page(page, mode)) { |
5ad333eb | 1108 | case 0: |
fa9add64 HD |
1109 | nr_pages = hpage_nr_pages(page); |
1110 | mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); | |
5ad333eb | 1111 | list_move(&page->lru, dst); |
fa9add64 | 1112 | nr_taken += nr_pages; |
5ad333eb AW |
1113 | break; |
1114 | ||
1115 | case -EBUSY: | |
1116 | /* else it is being freed elsewhere */ | |
1117 | list_move(&page->lru, src); | |
1118 | continue; | |
46453a6e | 1119 | |
5ad333eb AW |
1120 | default: |
1121 | BUG(); | |
1122 | } | |
1da177e4 LT |
1123 | } |
1124 | ||
f626012d | 1125 | *nr_scanned = scan; |
75b00af7 HD |
1126 | trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, |
1127 | nr_taken, mode, is_file_lru(lru)); | |
1da177e4 LT |
1128 | return nr_taken; |
1129 | } | |
1130 | ||
62695a84 NP |
1131 | /** |
1132 | * isolate_lru_page - tries to isolate a page from its LRU list | |
1133 | * @page: page to isolate from its LRU list | |
1134 | * | |
1135 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
1136 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
1137 | * | |
1138 | * Returns 0 if the page was removed from an LRU list. | |
1139 | * Returns -EBUSY if the page was not on an LRU list. | |
1140 | * | |
1141 | * The returned page will have PageLRU() cleared. If it was found on | |
894bc310 LS |
1142 | * the active list, it will have PageActive set. If it was found on |
1143 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
1144 | * may need to be cleared by the caller before letting the page go. | |
62695a84 NP |
1145 | * |
1146 | * The vmstat statistic corresponding to the list on which the page was | |
1147 | * found will be decremented. | |
1148 | * | |
1149 | * Restrictions: | |
1150 | * (1) Must be called with an elevated refcount on the page. This is a | |
1151 | * fundamentnal difference from isolate_lru_pages (which is called | |
1152 | * without a stable reference). | |
1153 | * (2) the lru_lock must not be held. | |
1154 | * (3) interrupts must be enabled. | |
1155 | */ | |
1156 | int isolate_lru_page(struct page *page) | |
1157 | { | |
1158 | int ret = -EBUSY; | |
1159 | ||
0c917313 KK |
1160 | VM_BUG_ON(!page_count(page)); |
1161 | ||
62695a84 NP |
1162 | if (PageLRU(page)) { |
1163 | struct zone *zone = page_zone(page); | |
fa9add64 | 1164 | struct lruvec *lruvec; |
62695a84 NP |
1165 | |
1166 | spin_lock_irq(&zone->lru_lock); | |
fa9add64 | 1167 | lruvec = mem_cgroup_page_lruvec(page, zone); |
0c917313 | 1168 | if (PageLRU(page)) { |
894bc310 | 1169 | int lru = page_lru(page); |
0c917313 | 1170 | get_page(page); |
62695a84 | 1171 | ClearPageLRU(page); |
fa9add64 HD |
1172 | del_page_from_lru_list(page, lruvec, lru); |
1173 | ret = 0; | |
62695a84 NP |
1174 | } |
1175 | spin_unlock_irq(&zone->lru_lock); | |
1176 | } | |
1177 | return ret; | |
1178 | } | |
1179 | ||
35cd7815 | 1180 | /* |
d37dd5dc FW |
1181 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
1182 | * then get resheduled. When there are massive number of tasks doing page | |
1183 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | |
1184 | * the LRU list will go small and be scanned faster than necessary, leading to | |
1185 | * unnecessary swapping, thrashing and OOM. | |
35cd7815 RR |
1186 | */ |
1187 | static int too_many_isolated(struct zone *zone, int file, | |
1188 | struct scan_control *sc) | |
1189 | { | |
1190 | unsigned long inactive, isolated; | |
1191 | ||
1192 | if (current_is_kswapd()) | |
1193 | return 0; | |
1194 | ||
89b5fae5 | 1195 | if (!global_reclaim(sc)) |
35cd7815 RR |
1196 | return 0; |
1197 | ||
1198 | if (file) { | |
1199 | inactive = zone_page_state(zone, NR_INACTIVE_FILE); | |
1200 | isolated = zone_page_state(zone, NR_ISOLATED_FILE); | |
1201 | } else { | |
1202 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | |
1203 | isolated = zone_page_state(zone, NR_ISOLATED_ANON); | |
1204 | } | |
1205 | ||
3cf23841 FW |
1206 | /* |
1207 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
1208 | * won't get blocked by normal direct-reclaimers, forming a circular | |
1209 | * deadlock. | |
1210 | */ | |
1211 | if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) | |
1212 | inactive >>= 3; | |
1213 | ||
35cd7815 RR |
1214 | return isolated > inactive; |
1215 | } | |
1216 | ||
66635629 | 1217 | static noinline_for_stack void |
75b00af7 | 1218 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
66635629 | 1219 | { |
27ac81d8 KK |
1220 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1221 | struct zone *zone = lruvec_zone(lruvec); | |
3f79768f | 1222 | LIST_HEAD(pages_to_free); |
66635629 | 1223 | |
66635629 MG |
1224 | /* |
1225 | * Put back any unfreeable pages. | |
1226 | */ | |
66635629 | 1227 | while (!list_empty(page_list)) { |
3f79768f | 1228 | struct page *page = lru_to_page(page_list); |
66635629 | 1229 | int lru; |
3f79768f | 1230 | |
66635629 MG |
1231 | VM_BUG_ON(PageLRU(page)); |
1232 | list_del(&page->lru); | |
39b5f29a | 1233 | if (unlikely(!page_evictable(page))) { |
66635629 MG |
1234 | spin_unlock_irq(&zone->lru_lock); |
1235 | putback_lru_page(page); | |
1236 | spin_lock_irq(&zone->lru_lock); | |
1237 | continue; | |
1238 | } | |
fa9add64 HD |
1239 | |
1240 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
1241 | ||
7a608572 | 1242 | SetPageLRU(page); |
66635629 | 1243 | lru = page_lru(page); |
fa9add64 HD |
1244 | add_page_to_lru_list(page, lruvec, lru); |
1245 | ||
66635629 MG |
1246 | if (is_active_lru(lru)) { |
1247 | int file = is_file_lru(lru); | |
9992af10 RR |
1248 | int numpages = hpage_nr_pages(page); |
1249 | reclaim_stat->recent_rotated[file] += numpages; | |
66635629 | 1250 | } |
2bcf8879 HD |
1251 | if (put_page_testzero(page)) { |
1252 | __ClearPageLRU(page); | |
1253 | __ClearPageActive(page); | |
fa9add64 | 1254 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1255 | |
1256 | if (unlikely(PageCompound(page))) { | |
1257 | spin_unlock_irq(&zone->lru_lock); | |
1258 | (*get_compound_page_dtor(page))(page); | |
1259 | spin_lock_irq(&zone->lru_lock); | |
1260 | } else | |
1261 | list_add(&page->lru, &pages_to_free); | |
66635629 MG |
1262 | } |
1263 | } | |
66635629 | 1264 | |
3f79768f HD |
1265 | /* |
1266 | * To save our caller's stack, now use input list for pages to free. | |
1267 | */ | |
1268 | list_splice(&pages_to_free, page_list); | |
66635629 MG |
1269 | } |
1270 | ||
1da177e4 | 1271 | /* |
1742f19f AM |
1272 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
1273 | * of reclaimed pages | |
1da177e4 | 1274 | */ |
66635629 | 1275 | static noinline_for_stack unsigned long |
1a93be0e | 1276 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
9e3b2f8c | 1277 | struct scan_control *sc, enum lru_list lru) |
1da177e4 LT |
1278 | { |
1279 | LIST_HEAD(page_list); | |
e247dbce | 1280 | unsigned long nr_scanned; |
05ff5137 | 1281 | unsigned long nr_reclaimed = 0; |
e247dbce | 1282 | unsigned long nr_taken; |
92df3a72 MG |
1283 | unsigned long nr_dirty = 0; |
1284 | unsigned long nr_writeback = 0; | |
f3fd4a61 | 1285 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1286 | int file = is_file_lru(lru); |
1a93be0e KK |
1287 | struct zone *zone = lruvec_zone(lruvec); |
1288 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | |
78dc583d | 1289 | |
35cd7815 | 1290 | while (unlikely(too_many_isolated(zone, file, sc))) { |
58355c78 | 1291 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
35cd7815 RR |
1292 | |
1293 | /* We are about to die and free our memory. Return now. */ | |
1294 | if (fatal_signal_pending(current)) | |
1295 | return SWAP_CLUSTER_MAX; | |
1296 | } | |
1297 | ||
1da177e4 | 1298 | lru_add_drain(); |
f80c0673 MK |
1299 | |
1300 | if (!sc->may_unmap) | |
61317289 | 1301 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1302 | if (!sc->may_writepage) |
61317289 | 1303 | isolate_mode |= ISOLATE_CLEAN; |
f80c0673 | 1304 | |
1da177e4 | 1305 | spin_lock_irq(&zone->lru_lock); |
b35ea17b | 1306 | |
5dc35979 KK |
1307 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
1308 | &nr_scanned, sc, isolate_mode, lru); | |
95d918fc KK |
1309 | |
1310 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); | |
1311 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); | |
1312 | ||
89b5fae5 | 1313 | if (global_reclaim(sc)) { |
e247dbce KM |
1314 | zone->pages_scanned += nr_scanned; |
1315 | if (current_is_kswapd()) | |
75b00af7 | 1316 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); |
e247dbce | 1317 | else |
75b00af7 | 1318 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); |
e247dbce | 1319 | } |
d563c050 | 1320 | spin_unlock_irq(&zone->lru_lock); |
b35ea17b | 1321 | |
d563c050 | 1322 | if (nr_taken == 0) |
66635629 | 1323 | return 0; |
5ad333eb | 1324 | |
02c6de8d MK |
1325 | nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, |
1326 | &nr_dirty, &nr_writeback, false); | |
c661b078 | 1327 | |
3f79768f HD |
1328 | spin_lock_irq(&zone->lru_lock); |
1329 | ||
95d918fc | 1330 | reclaim_stat->recent_scanned[file] += nr_taken; |
d563c050 | 1331 | |
904249aa YH |
1332 | if (global_reclaim(sc)) { |
1333 | if (current_is_kswapd()) | |
1334 | __count_zone_vm_events(PGSTEAL_KSWAPD, zone, | |
1335 | nr_reclaimed); | |
1336 | else | |
1337 | __count_zone_vm_events(PGSTEAL_DIRECT, zone, | |
1338 | nr_reclaimed); | |
1339 | } | |
a74609fa | 1340 | |
27ac81d8 | 1341 | putback_inactive_pages(lruvec, &page_list); |
3f79768f | 1342 | |
95d918fc | 1343 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
3f79768f HD |
1344 | |
1345 | spin_unlock_irq(&zone->lru_lock); | |
1346 | ||
1347 | free_hot_cold_page_list(&page_list, 1); | |
e11da5b4 | 1348 | |
92df3a72 MG |
1349 | /* |
1350 | * If reclaim is isolating dirty pages under writeback, it implies | |
1351 | * that the long-lived page allocation rate is exceeding the page | |
1352 | * laundering rate. Either the global limits are not being effective | |
1353 | * at throttling processes due to the page distribution throughout | |
1354 | * zones or there is heavy usage of a slow backing device. The | |
1355 | * only option is to throttle from reclaim context which is not ideal | |
1356 | * as there is no guarantee the dirtying process is throttled in the | |
1357 | * same way balance_dirty_pages() manages. | |
1358 | * | |
1359 | * This scales the number of dirty pages that must be under writeback | |
1360 | * before throttling depending on priority. It is a simple backoff | |
1361 | * function that has the most effect in the range DEF_PRIORITY to | |
1362 | * DEF_PRIORITY-2 which is the priority reclaim is considered to be | |
1363 | * in trouble and reclaim is considered to be in trouble. | |
1364 | * | |
1365 | * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle | |
1366 | * DEF_PRIORITY-1 50% must be PageWriteback | |
1367 | * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble | |
1368 | * ... | |
1369 | * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any | |
1370 | * isolated page is PageWriteback | |
1371 | */ | |
9e3b2f8c KK |
1372 | if (nr_writeback && nr_writeback >= |
1373 | (nr_taken >> (DEF_PRIORITY - sc->priority))) | |
92df3a72 MG |
1374 | wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); |
1375 | ||
e11da5b4 MG |
1376 | trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, |
1377 | zone_idx(zone), | |
1378 | nr_scanned, nr_reclaimed, | |
9e3b2f8c | 1379 | sc->priority, |
23b9da55 | 1380 | trace_shrink_flags(file)); |
05ff5137 | 1381 | return nr_reclaimed; |
1da177e4 LT |
1382 | } |
1383 | ||
1384 | /* | |
1385 | * This moves pages from the active list to the inactive list. | |
1386 | * | |
1387 | * We move them the other way if the page is referenced by one or more | |
1388 | * processes, from rmap. | |
1389 | * | |
1390 | * If the pages are mostly unmapped, the processing is fast and it is | |
1391 | * appropriate to hold zone->lru_lock across the whole operation. But if | |
1392 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
1393 | * should drop zone->lru_lock around each page. It's impossible to balance | |
1394 | * this, so instead we remove the pages from the LRU while processing them. | |
1395 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1396 | * nobody will play with that bit on a non-LRU page. | |
1397 | * | |
1398 | * The downside is that we have to touch page->_count against each page. | |
1399 | * But we had to alter page->flags anyway. | |
1400 | */ | |
1cfb419b | 1401 | |
fa9add64 | 1402 | static void move_active_pages_to_lru(struct lruvec *lruvec, |
3eb4140f | 1403 | struct list_head *list, |
2bcf8879 | 1404 | struct list_head *pages_to_free, |
3eb4140f WF |
1405 | enum lru_list lru) |
1406 | { | |
fa9add64 | 1407 | struct zone *zone = lruvec_zone(lruvec); |
3eb4140f | 1408 | unsigned long pgmoved = 0; |
3eb4140f | 1409 | struct page *page; |
fa9add64 | 1410 | int nr_pages; |
3eb4140f | 1411 | |
3eb4140f WF |
1412 | while (!list_empty(list)) { |
1413 | page = lru_to_page(list); | |
fa9add64 | 1414 | lruvec = mem_cgroup_page_lruvec(page, zone); |
3eb4140f WF |
1415 | |
1416 | VM_BUG_ON(PageLRU(page)); | |
1417 | SetPageLRU(page); | |
1418 | ||
fa9add64 HD |
1419 | nr_pages = hpage_nr_pages(page); |
1420 | mem_cgroup_update_lru_size(lruvec, lru, nr_pages); | |
925b7673 | 1421 | list_move(&page->lru, &lruvec->lists[lru]); |
fa9add64 | 1422 | pgmoved += nr_pages; |
3eb4140f | 1423 | |
2bcf8879 HD |
1424 | if (put_page_testzero(page)) { |
1425 | __ClearPageLRU(page); | |
1426 | __ClearPageActive(page); | |
fa9add64 | 1427 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1428 | |
1429 | if (unlikely(PageCompound(page))) { | |
1430 | spin_unlock_irq(&zone->lru_lock); | |
1431 | (*get_compound_page_dtor(page))(page); | |
1432 | spin_lock_irq(&zone->lru_lock); | |
1433 | } else | |
1434 | list_add(&page->lru, pages_to_free); | |
3eb4140f WF |
1435 | } |
1436 | } | |
1437 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); | |
1438 | if (!is_active_lru(lru)) | |
1439 | __count_vm_events(PGDEACTIVATE, pgmoved); | |
1440 | } | |
1cfb419b | 1441 | |
f626012d | 1442 | static void shrink_active_list(unsigned long nr_to_scan, |
1a93be0e | 1443 | struct lruvec *lruvec, |
f16015fb | 1444 | struct scan_control *sc, |
9e3b2f8c | 1445 | enum lru_list lru) |
1da177e4 | 1446 | { |
44c241f1 | 1447 | unsigned long nr_taken; |
f626012d | 1448 | unsigned long nr_scanned; |
6fe6b7e3 | 1449 | unsigned long vm_flags; |
1da177e4 | 1450 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
8cab4754 | 1451 | LIST_HEAD(l_active); |
b69408e8 | 1452 | LIST_HEAD(l_inactive); |
1da177e4 | 1453 | struct page *page; |
1a93be0e | 1454 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
44c241f1 | 1455 | unsigned long nr_rotated = 0; |
f3fd4a61 | 1456 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1457 | int file = is_file_lru(lru); |
1a93be0e | 1458 | struct zone *zone = lruvec_zone(lruvec); |
1da177e4 LT |
1459 | |
1460 | lru_add_drain(); | |
f80c0673 MK |
1461 | |
1462 | if (!sc->may_unmap) | |
61317289 | 1463 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1464 | if (!sc->may_writepage) |
61317289 | 1465 | isolate_mode |= ISOLATE_CLEAN; |
f80c0673 | 1466 | |
1da177e4 | 1467 | spin_lock_irq(&zone->lru_lock); |
925b7673 | 1468 | |
5dc35979 KK |
1469 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
1470 | &nr_scanned, sc, isolate_mode, lru); | |
89b5fae5 | 1471 | if (global_reclaim(sc)) |
f626012d | 1472 | zone->pages_scanned += nr_scanned; |
89b5fae5 | 1473 | |
b7c46d15 | 1474 | reclaim_stat->recent_scanned[file] += nr_taken; |
1cfb419b | 1475 | |
f626012d | 1476 | __count_zone_vm_events(PGREFILL, zone, nr_scanned); |
3cb99451 | 1477 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); |
a731286d | 1478 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); |
1da177e4 LT |
1479 | spin_unlock_irq(&zone->lru_lock); |
1480 | ||
1da177e4 LT |
1481 | while (!list_empty(&l_hold)) { |
1482 | cond_resched(); | |
1483 | page = lru_to_page(&l_hold); | |
1484 | list_del(&page->lru); | |
7e9cd484 | 1485 | |
39b5f29a | 1486 | if (unlikely(!page_evictable(page))) { |
894bc310 LS |
1487 | putback_lru_page(page); |
1488 | continue; | |
1489 | } | |
1490 | ||
cc715d99 MG |
1491 | if (unlikely(buffer_heads_over_limit)) { |
1492 | if (page_has_private(page) && trylock_page(page)) { | |
1493 | if (page_has_private(page)) | |
1494 | try_to_release_page(page, 0); | |
1495 | unlock_page(page); | |
1496 | } | |
1497 | } | |
1498 | ||
c3ac9a8a JW |
1499 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
1500 | &vm_flags)) { | |
9992af10 | 1501 | nr_rotated += hpage_nr_pages(page); |
8cab4754 WF |
1502 | /* |
1503 | * Identify referenced, file-backed active pages and | |
1504 | * give them one more trip around the active list. So | |
1505 | * that executable code get better chances to stay in | |
1506 | * memory under moderate memory pressure. Anon pages | |
1507 | * are not likely to be evicted by use-once streaming | |
1508 | * IO, plus JVM can create lots of anon VM_EXEC pages, | |
1509 | * so we ignore them here. | |
1510 | */ | |
41e20983 | 1511 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
8cab4754 WF |
1512 | list_add(&page->lru, &l_active); |
1513 | continue; | |
1514 | } | |
1515 | } | |
7e9cd484 | 1516 | |
5205e56e | 1517 | ClearPageActive(page); /* we are de-activating */ |
1da177e4 LT |
1518 | list_add(&page->lru, &l_inactive); |
1519 | } | |
1520 | ||
b555749a | 1521 | /* |
8cab4754 | 1522 | * Move pages back to the lru list. |
b555749a | 1523 | */ |
2a1dc509 | 1524 | spin_lock_irq(&zone->lru_lock); |
556adecb | 1525 | /* |
8cab4754 WF |
1526 | * Count referenced pages from currently used mappings as rotated, |
1527 | * even though only some of them are actually re-activated. This | |
1528 | * helps balance scan pressure between file and anonymous pages in | |
1529 | * get_scan_ratio. | |
7e9cd484 | 1530 | */ |
b7c46d15 | 1531 | reclaim_stat->recent_rotated[file] += nr_rotated; |
556adecb | 1532 | |
fa9add64 HD |
1533 | move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
1534 | move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); | |
a731286d | 1535 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
f8891e5e | 1536 | spin_unlock_irq(&zone->lru_lock); |
2bcf8879 HD |
1537 | |
1538 | free_hot_cold_page_list(&l_hold, 1); | |
1da177e4 LT |
1539 | } |
1540 | ||
74e3f3c3 | 1541 | #ifdef CONFIG_SWAP |
14797e23 | 1542 | static int inactive_anon_is_low_global(struct zone *zone) |
f89eb90e KM |
1543 | { |
1544 | unsigned long active, inactive; | |
1545 | ||
1546 | active = zone_page_state(zone, NR_ACTIVE_ANON); | |
1547 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | |
1548 | ||
1549 | if (inactive * zone->inactive_ratio < active) | |
1550 | return 1; | |
1551 | ||
1552 | return 0; | |
1553 | } | |
1554 | ||
14797e23 KM |
1555 | /** |
1556 | * inactive_anon_is_low - check if anonymous pages need to be deactivated | |
c56d5c7d | 1557 | * @lruvec: LRU vector to check |
14797e23 KM |
1558 | * |
1559 | * Returns true if the zone does not have enough inactive anon pages, | |
1560 | * meaning some active anon pages need to be deactivated. | |
1561 | */ | |
c56d5c7d | 1562 | static int inactive_anon_is_low(struct lruvec *lruvec) |
14797e23 | 1563 | { |
74e3f3c3 MK |
1564 | /* |
1565 | * If we don't have swap space, anonymous page deactivation | |
1566 | * is pointless. | |
1567 | */ | |
1568 | if (!total_swap_pages) | |
1569 | return 0; | |
1570 | ||
c3c787e8 | 1571 | if (!mem_cgroup_disabled()) |
c56d5c7d | 1572 | return mem_cgroup_inactive_anon_is_low(lruvec); |
f16015fb | 1573 | |
c56d5c7d | 1574 | return inactive_anon_is_low_global(lruvec_zone(lruvec)); |
14797e23 | 1575 | } |
74e3f3c3 | 1576 | #else |
c56d5c7d | 1577 | static inline int inactive_anon_is_low(struct lruvec *lruvec) |
74e3f3c3 MK |
1578 | { |
1579 | return 0; | |
1580 | } | |
1581 | #endif | |
14797e23 | 1582 | |
56e49d21 RR |
1583 | /** |
1584 | * inactive_file_is_low - check if file pages need to be deactivated | |
c56d5c7d | 1585 | * @lruvec: LRU vector to check |
56e49d21 RR |
1586 | * |
1587 | * When the system is doing streaming IO, memory pressure here | |
1588 | * ensures that active file pages get deactivated, until more | |
1589 | * than half of the file pages are on the inactive list. | |
1590 | * | |
1591 | * Once we get to that situation, protect the system's working | |
1592 | * set from being evicted by disabling active file page aging. | |
1593 | * | |
1594 | * This uses a different ratio than the anonymous pages, because | |
1595 | * the page cache uses a use-once replacement algorithm. | |
1596 | */ | |
c56d5c7d | 1597 | static int inactive_file_is_low(struct lruvec *lruvec) |
56e49d21 | 1598 | { |
e3790144 JW |
1599 | unsigned long inactive; |
1600 | unsigned long active; | |
1601 | ||
1602 | inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); | |
1603 | active = get_lru_size(lruvec, LRU_ACTIVE_FILE); | |
56e49d21 | 1604 | |
e3790144 | 1605 | return active > inactive; |
56e49d21 RR |
1606 | } |
1607 | ||
75b00af7 | 1608 | static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) |
b39415b2 | 1609 | { |
75b00af7 | 1610 | if (is_file_lru(lru)) |
c56d5c7d | 1611 | return inactive_file_is_low(lruvec); |
b39415b2 | 1612 | else |
c56d5c7d | 1613 | return inactive_anon_is_low(lruvec); |
b39415b2 RR |
1614 | } |
1615 | ||
4f98a2fe | 1616 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
1a93be0e | 1617 | struct lruvec *lruvec, struct scan_control *sc) |
b69408e8 | 1618 | { |
b39415b2 | 1619 | if (is_active_lru(lru)) { |
75b00af7 | 1620 | if (inactive_list_is_low(lruvec, lru)) |
1a93be0e | 1621 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
556adecb RR |
1622 | return 0; |
1623 | } | |
1624 | ||
1a93be0e | 1625 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
4f98a2fe RR |
1626 | } |
1627 | ||
3d58ab5c | 1628 | static int vmscan_swappiness(struct scan_control *sc) |
1f4c025b | 1629 | { |
89b5fae5 | 1630 | if (global_reclaim(sc)) |
1f4c025b | 1631 | return vm_swappiness; |
3d58ab5c | 1632 | return mem_cgroup_swappiness(sc->target_mem_cgroup); |
1f4c025b KH |
1633 | } |
1634 | ||
9a265114 JW |
1635 | enum scan_balance { |
1636 | SCAN_EQUAL, | |
1637 | SCAN_FRACT, | |
1638 | SCAN_ANON, | |
1639 | SCAN_FILE, | |
1640 | }; | |
1641 | ||
4f98a2fe RR |
1642 | /* |
1643 | * Determine how aggressively the anon and file LRU lists should be | |
1644 | * scanned. The relative value of each set of LRU lists is determined | |
1645 | * by looking at the fraction of the pages scanned we did rotate back | |
1646 | * onto the active list instead of evict. | |
1647 | * | |
be7bd59d WL |
1648 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
1649 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
4f98a2fe | 1650 | */ |
90126375 | 1651 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, |
9e3b2f8c | 1652 | unsigned long *nr) |
4f98a2fe | 1653 | { |
9a265114 JW |
1654 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1655 | u64 fraction[2]; | |
1656 | u64 denominator = 0; /* gcc */ | |
1657 | struct zone *zone = lruvec_zone(lruvec); | |
4f98a2fe | 1658 | unsigned long anon_prio, file_prio; |
9a265114 JW |
1659 | enum scan_balance scan_balance; |
1660 | unsigned long anon, file, free; | |
1661 | bool force_scan = false; | |
4f98a2fe | 1662 | unsigned long ap, fp; |
4111304d | 1663 | enum lru_list lru; |
246e87a9 | 1664 | |
f11c0ca5 JW |
1665 | /* |
1666 | * If the zone or memcg is small, nr[l] can be 0. This | |
1667 | * results in no scanning on this priority and a potential | |
1668 | * priority drop. Global direct reclaim can go to the next | |
1669 | * zone and tends to have no problems. Global kswapd is for | |
1670 | * zone balancing and it needs to scan a minimum amount. When | |
1671 | * reclaiming for a memcg, a priority drop can cause high | |
1672 | * latencies, so it's better to scan a minimum amount there as | |
1673 | * well. | |
1674 | */ | |
90126375 | 1675 | if (current_is_kswapd() && zone->all_unreclaimable) |
a4d3e9e7 | 1676 | force_scan = true; |
89b5fae5 | 1677 | if (!global_reclaim(sc)) |
a4d3e9e7 | 1678 | force_scan = true; |
76a33fc3 SL |
1679 | |
1680 | /* If we have no swap space, do not bother scanning anon pages. */ | |
ec8acf20 | 1681 | if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { |
9a265114 | 1682 | scan_balance = SCAN_FILE; |
76a33fc3 SL |
1683 | goto out; |
1684 | } | |
4f98a2fe | 1685 | |
10316b31 JW |
1686 | /* |
1687 | * Global reclaim will swap to prevent OOM even with no | |
1688 | * swappiness, but memcg users want to use this knob to | |
1689 | * disable swapping for individual groups completely when | |
1690 | * using the memory controller's swap limit feature would be | |
1691 | * too expensive. | |
1692 | */ | |
1693 | if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { | |
9a265114 | 1694 | scan_balance = SCAN_FILE; |
10316b31 JW |
1695 | goto out; |
1696 | } | |
1697 | ||
1698 | /* | |
1699 | * Do not apply any pressure balancing cleverness when the | |
1700 | * system is close to OOM, scan both anon and file equally | |
1701 | * (unless the swappiness setting disagrees with swapping). | |
1702 | */ | |
1703 | if (!sc->priority && vmscan_swappiness(sc)) { | |
9a265114 | 1704 | scan_balance = SCAN_EQUAL; |
10316b31 JW |
1705 | goto out; |
1706 | } | |
1707 | ||
4d7dcca2 HD |
1708 | anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + |
1709 | get_lru_size(lruvec, LRU_INACTIVE_ANON); | |
1710 | file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + | |
1711 | get_lru_size(lruvec, LRU_INACTIVE_FILE); | |
a4d3e9e7 | 1712 | |
11d16c25 JW |
1713 | /* |
1714 | * If it's foreseeable that reclaiming the file cache won't be | |
1715 | * enough to get the zone back into a desirable shape, we have | |
1716 | * to swap. Better start now and leave the - probably heavily | |
1717 | * thrashing - remaining file pages alone. | |
1718 | */ | |
89b5fae5 | 1719 | if (global_reclaim(sc)) { |
11d16c25 | 1720 | free = zone_page_state(zone, NR_FREE_PAGES); |
90126375 | 1721 | if (unlikely(file + free <= high_wmark_pages(zone))) { |
9a265114 | 1722 | scan_balance = SCAN_ANON; |
76a33fc3 | 1723 | goto out; |
eeee9a8c | 1724 | } |
4f98a2fe RR |
1725 | } |
1726 | ||
7c5bd705 JW |
1727 | /* |
1728 | * There is enough inactive page cache, do not reclaim | |
1729 | * anything from the anonymous working set right now. | |
1730 | */ | |
1731 | if (!inactive_file_is_low(lruvec)) { | |
9a265114 | 1732 | scan_balance = SCAN_FILE; |
7c5bd705 JW |
1733 | goto out; |
1734 | } | |
1735 | ||
9a265114 JW |
1736 | scan_balance = SCAN_FRACT; |
1737 | ||
58c37f6e KM |
1738 | /* |
1739 | * With swappiness at 100, anonymous and file have the same priority. | |
1740 | * This scanning priority is essentially the inverse of IO cost. | |
1741 | */ | |
3d58ab5c | 1742 | anon_prio = vmscan_swappiness(sc); |
75b00af7 | 1743 | file_prio = 200 - anon_prio; |
58c37f6e | 1744 | |
4f98a2fe RR |
1745 | /* |
1746 | * OK, so we have swap space and a fair amount of page cache | |
1747 | * pages. We use the recently rotated / recently scanned | |
1748 | * ratios to determine how valuable each cache is. | |
1749 | * | |
1750 | * Because workloads change over time (and to avoid overflow) | |
1751 | * we keep these statistics as a floating average, which ends | |
1752 | * up weighing recent references more than old ones. | |
1753 | * | |
1754 | * anon in [0], file in [1] | |
1755 | */ | |
90126375 | 1756 | spin_lock_irq(&zone->lru_lock); |
6e901571 | 1757 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
6e901571 KM |
1758 | reclaim_stat->recent_scanned[0] /= 2; |
1759 | reclaim_stat->recent_rotated[0] /= 2; | |
4f98a2fe RR |
1760 | } |
1761 | ||
6e901571 | 1762 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
6e901571 KM |
1763 | reclaim_stat->recent_scanned[1] /= 2; |
1764 | reclaim_stat->recent_rotated[1] /= 2; | |
4f98a2fe RR |
1765 | } |
1766 | ||
4f98a2fe | 1767 | /* |
00d8089c RR |
1768 | * The amount of pressure on anon vs file pages is inversely |
1769 | * proportional to the fraction of recently scanned pages on | |
1770 | * each list that were recently referenced and in active use. | |
4f98a2fe | 1771 | */ |
fe35004f | 1772 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
6e901571 | 1773 | ap /= reclaim_stat->recent_rotated[0] + 1; |
4f98a2fe | 1774 | |
fe35004f | 1775 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
6e901571 | 1776 | fp /= reclaim_stat->recent_rotated[1] + 1; |
90126375 | 1777 | spin_unlock_irq(&zone->lru_lock); |
4f98a2fe | 1778 | |
76a33fc3 SL |
1779 | fraction[0] = ap; |
1780 | fraction[1] = fp; | |
1781 | denominator = ap + fp + 1; | |
1782 | out: | |
4111304d HD |
1783 | for_each_evictable_lru(lru) { |
1784 | int file = is_file_lru(lru); | |
d778df51 | 1785 | unsigned long size; |
76a33fc3 | 1786 | unsigned long scan; |
6e08a369 | 1787 | |
d778df51 | 1788 | size = get_lru_size(lruvec, lru); |
10316b31 | 1789 | scan = size >> sc->priority; |
9a265114 | 1790 | |
10316b31 JW |
1791 | if (!scan && force_scan) |
1792 | scan = min(size, SWAP_CLUSTER_MAX); | |
9a265114 JW |
1793 | |
1794 | switch (scan_balance) { | |
1795 | case SCAN_EQUAL: | |
1796 | /* Scan lists relative to size */ | |
1797 | break; | |
1798 | case SCAN_FRACT: | |
1799 | /* | |
1800 | * Scan types proportional to swappiness and | |
1801 | * their relative recent reclaim efficiency. | |
1802 | */ | |
1803 | scan = div64_u64(scan * fraction[file], denominator); | |
1804 | break; | |
1805 | case SCAN_FILE: | |
1806 | case SCAN_ANON: | |
1807 | /* Scan one type exclusively */ | |
1808 | if ((scan_balance == SCAN_FILE) != file) | |
1809 | scan = 0; | |
1810 | break; | |
1811 | default: | |
1812 | /* Look ma, no brain */ | |
1813 | BUG(); | |
1814 | } | |
4111304d | 1815 | nr[lru] = scan; |
76a33fc3 | 1816 | } |
6e08a369 | 1817 | } |
4f98a2fe | 1818 | |
9b4f98cd JW |
1819 | /* |
1820 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | |
1821 | */ | |
1822 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | |
1823 | { | |
1824 | unsigned long nr[NR_LRU_LISTS]; | |
1825 | unsigned long nr_to_scan; | |
1826 | enum lru_list lru; | |
1827 | unsigned long nr_reclaimed = 0; | |
1828 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
1829 | struct blk_plug plug; | |
1830 | ||
1831 | get_scan_count(lruvec, sc, nr); | |
1832 | ||
1833 | blk_start_plug(&plug); | |
1834 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
1835 | nr[LRU_INACTIVE_FILE]) { | |
1836 | for_each_evictable_lru(lru) { | |
1837 | if (nr[lru]) { | |
1838 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
1839 | nr[lru] -= nr_to_scan; | |
1840 | ||
1841 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
1842 | lruvec, sc); | |
1843 | } | |
1844 | } | |
1845 | /* | |
1846 | * On large memory systems, scan >> priority can become | |
1847 | * really large. This is fine for the starting priority; | |
1848 | * we want to put equal scanning pressure on each zone. | |
1849 | * However, if the VM has a harder time of freeing pages, | |
1850 | * with multiple processes reclaiming pages, the total | |
1851 | * freeing target can get unreasonably large. | |
1852 | */ | |
1853 | if (nr_reclaimed >= nr_to_reclaim && | |
1854 | sc->priority < DEF_PRIORITY) | |
1855 | break; | |
1856 | } | |
1857 | blk_finish_plug(&plug); | |
1858 | sc->nr_reclaimed += nr_reclaimed; | |
1859 | ||
1860 | /* | |
1861 | * Even if we did not try to evict anon pages at all, we want to | |
1862 | * rebalance the anon lru active/inactive ratio. | |
1863 | */ | |
1864 | if (inactive_anon_is_low(lruvec)) | |
1865 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
1866 | sc, LRU_ACTIVE_ANON); | |
1867 | ||
1868 | throttle_vm_writeout(sc->gfp_mask); | |
1869 | } | |
1870 | ||
23b9da55 | 1871 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
9e3b2f8c | 1872 | static bool in_reclaim_compaction(struct scan_control *sc) |
23b9da55 | 1873 | { |
d84da3f9 | 1874 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
23b9da55 | 1875 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
9e3b2f8c | 1876 | sc->priority < DEF_PRIORITY - 2)) |
23b9da55 MG |
1877 | return true; |
1878 | ||
1879 | return false; | |
1880 | } | |
1881 | ||
3e7d3449 | 1882 | /* |
23b9da55 MG |
1883 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
1884 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
1885 | * true if more pages should be reclaimed such that when the page allocator | |
1886 | * calls try_to_compact_zone() that it will have enough free pages to succeed. | |
1887 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
3e7d3449 | 1888 | */ |
9b4f98cd | 1889 | static inline bool should_continue_reclaim(struct zone *zone, |
3e7d3449 MG |
1890 | unsigned long nr_reclaimed, |
1891 | unsigned long nr_scanned, | |
1892 | struct scan_control *sc) | |
1893 | { | |
1894 | unsigned long pages_for_compaction; | |
1895 | unsigned long inactive_lru_pages; | |
1896 | ||
1897 | /* If not in reclaim/compaction mode, stop */ | |
9e3b2f8c | 1898 | if (!in_reclaim_compaction(sc)) |
3e7d3449 MG |
1899 | return false; |
1900 | ||
2876592f MG |
1901 | /* Consider stopping depending on scan and reclaim activity */ |
1902 | if (sc->gfp_mask & __GFP_REPEAT) { | |
1903 | /* | |
1904 | * For __GFP_REPEAT allocations, stop reclaiming if the | |
1905 | * full LRU list has been scanned and we are still failing | |
1906 | * to reclaim pages. This full LRU scan is potentially | |
1907 | * expensive but a __GFP_REPEAT caller really wants to succeed | |
1908 | */ | |
1909 | if (!nr_reclaimed && !nr_scanned) | |
1910 | return false; | |
1911 | } else { | |
1912 | /* | |
1913 | * For non-__GFP_REPEAT allocations which can presumably | |
1914 | * fail without consequence, stop if we failed to reclaim | |
1915 | * any pages from the last SWAP_CLUSTER_MAX number of | |
1916 | * pages that were scanned. This will return to the | |
1917 | * caller faster at the risk reclaim/compaction and | |
1918 | * the resulting allocation attempt fails | |
1919 | */ | |
1920 | if (!nr_reclaimed) | |
1921 | return false; | |
1922 | } | |
3e7d3449 MG |
1923 | |
1924 | /* | |
1925 | * If we have not reclaimed enough pages for compaction and the | |
1926 | * inactive lists are large enough, continue reclaiming | |
1927 | */ | |
1928 | pages_for_compaction = (2UL << sc->order); | |
9b4f98cd | 1929 | inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); |
ec8acf20 | 1930 | if (get_nr_swap_pages() > 0) |
9b4f98cd | 1931 | inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); |
3e7d3449 MG |
1932 | if (sc->nr_reclaimed < pages_for_compaction && |
1933 | inactive_lru_pages > pages_for_compaction) | |
1934 | return true; | |
1935 | ||
1936 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
9b4f98cd | 1937 | switch (compaction_suitable(zone, sc->order)) { |
3e7d3449 MG |
1938 | case COMPACT_PARTIAL: |
1939 | case COMPACT_CONTINUE: | |
1940 | return false; | |
1941 | default: | |
1942 | return true; | |
1943 | } | |
1944 | } | |
1945 | ||
9b4f98cd | 1946 | static void shrink_zone(struct zone *zone, struct scan_control *sc) |
1da177e4 | 1947 | { |
f0fdc5e8 | 1948 | unsigned long nr_reclaimed, nr_scanned; |
1da177e4 | 1949 | |
9b4f98cd JW |
1950 | do { |
1951 | struct mem_cgroup *root = sc->target_mem_cgroup; | |
1952 | struct mem_cgroup_reclaim_cookie reclaim = { | |
1953 | .zone = zone, | |
1954 | .priority = sc->priority, | |
1955 | }; | |
1956 | struct mem_cgroup *memcg; | |
3e7d3449 | 1957 | |
9b4f98cd JW |
1958 | nr_reclaimed = sc->nr_reclaimed; |
1959 | nr_scanned = sc->nr_scanned; | |
1da177e4 | 1960 | |
9b4f98cd JW |
1961 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
1962 | do { | |
1963 | struct lruvec *lruvec; | |
5660048c | 1964 | |
9b4f98cd | 1965 | lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
f9be23d6 | 1966 | |
9b4f98cd | 1967 | shrink_lruvec(lruvec, sc); |
f16015fb | 1968 | |
9b4f98cd | 1969 | /* |
a394cb8e MH |
1970 | * Direct reclaim and kswapd have to scan all memory |
1971 | * cgroups to fulfill the overall scan target for the | |
9b4f98cd | 1972 | * zone. |
a394cb8e MH |
1973 | * |
1974 | * Limit reclaim, on the other hand, only cares about | |
1975 | * nr_to_reclaim pages to be reclaimed and it will | |
1976 | * retry with decreasing priority if one round over the | |
1977 | * whole hierarchy is not sufficient. | |
9b4f98cd | 1978 | */ |
a394cb8e MH |
1979 | if (!global_reclaim(sc) && |
1980 | sc->nr_reclaimed >= sc->nr_to_reclaim) { | |
9b4f98cd JW |
1981 | mem_cgroup_iter_break(root, memcg); |
1982 | break; | |
1983 | } | |
1984 | memcg = mem_cgroup_iter(root, memcg, &reclaim); | |
1985 | } while (memcg); | |
70ddf637 AV |
1986 | |
1987 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, | |
1988 | sc->nr_scanned - nr_scanned, | |
1989 | sc->nr_reclaimed - nr_reclaimed); | |
1990 | ||
9b4f98cd JW |
1991 | } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, |
1992 | sc->nr_scanned - nr_scanned, sc)); | |
f16015fb JW |
1993 | } |
1994 | ||
fe4b1b24 MG |
1995 | /* Returns true if compaction should go ahead for a high-order request */ |
1996 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) | |
1997 | { | |
1998 | unsigned long balance_gap, watermark; | |
1999 | bool watermark_ok; | |
2000 | ||
2001 | /* Do not consider compaction for orders reclaim is meant to satisfy */ | |
2002 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) | |
2003 | return false; | |
2004 | ||
2005 | /* | |
2006 | * Compaction takes time to run and there are potentially other | |
2007 | * callers using the pages just freed. Continue reclaiming until | |
2008 | * there is a buffer of free pages available to give compaction | |
2009 | * a reasonable chance of completing and allocating the page | |
2010 | */ | |
2011 | balance_gap = min(low_wmark_pages(zone), | |
b40da049 | 2012 | (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / |
fe4b1b24 MG |
2013 | KSWAPD_ZONE_BALANCE_GAP_RATIO); |
2014 | watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); | |
2015 | watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); | |
2016 | ||
2017 | /* | |
2018 | * If compaction is deferred, reclaim up to a point where | |
2019 | * compaction will have a chance of success when re-enabled | |
2020 | */ | |
aff62249 | 2021 | if (compaction_deferred(zone, sc->order)) |
fe4b1b24 MG |
2022 | return watermark_ok; |
2023 | ||
2024 | /* If compaction is not ready to start, keep reclaiming */ | |
2025 | if (!compaction_suitable(zone, sc->order)) | |
2026 | return false; | |
2027 | ||
2028 | return watermark_ok; | |
2029 | } | |
2030 | ||
1da177e4 LT |
2031 | /* |
2032 | * This is the direct reclaim path, for page-allocating processes. We only | |
2033 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
2034 | * request. | |
2035 | * | |
41858966 MG |
2036 | * We reclaim from a zone even if that zone is over high_wmark_pages(zone). |
2037 | * Because: | |
1da177e4 LT |
2038 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order |
2039 | * allocation or | |
41858966 MG |
2040 | * b) The target zone may be at high_wmark_pages(zone) but the lower zones |
2041 | * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' | |
2042 | * zone defense algorithm. | |
1da177e4 | 2043 | * |
1da177e4 LT |
2044 | * If a zone is deemed to be full of pinned pages then just give it a light |
2045 | * scan then give up on it. | |
e0c23279 MG |
2046 | * |
2047 | * This function returns true if a zone is being reclaimed for a costly | |
fe4b1b24 | 2048 | * high-order allocation and compaction is ready to begin. This indicates to |
0cee34fd MG |
2049 | * the caller that it should consider retrying the allocation instead of |
2050 | * further reclaim. | |
1da177e4 | 2051 | */ |
9e3b2f8c | 2052 | static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
1da177e4 | 2053 | { |
dd1a239f | 2054 | struct zoneref *z; |
54a6eb5c | 2055 | struct zone *zone; |
d149e3b2 YH |
2056 | unsigned long nr_soft_reclaimed; |
2057 | unsigned long nr_soft_scanned; | |
0cee34fd | 2058 | bool aborted_reclaim = false; |
1cfb419b | 2059 | |
cc715d99 MG |
2060 | /* |
2061 | * If the number of buffer_heads in the machine exceeds the maximum | |
2062 | * allowed level, force direct reclaim to scan the highmem zone as | |
2063 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
2064 | */ | |
2065 | if (buffer_heads_over_limit) | |
2066 | sc->gfp_mask |= __GFP_HIGHMEM; | |
2067 | ||
d4debc66 MG |
2068 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
2069 | gfp_zone(sc->gfp_mask), sc->nodemask) { | |
f3fe6512 | 2070 | if (!populated_zone(zone)) |
1da177e4 | 2071 | continue; |
1cfb419b KH |
2072 | /* |
2073 | * Take care memory controller reclaiming has small influence | |
2074 | * to global LRU. | |
2075 | */ | |
89b5fae5 | 2076 | if (global_reclaim(sc)) { |
1cfb419b KH |
2077 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2078 | continue; | |
9e3b2f8c KK |
2079 | if (zone->all_unreclaimable && |
2080 | sc->priority != DEF_PRIORITY) | |
1cfb419b | 2081 | continue; /* Let kswapd poll it */ |
d84da3f9 | 2082 | if (IS_ENABLED(CONFIG_COMPACTION)) { |
e0887c19 | 2083 | /* |
e0c23279 MG |
2084 | * If we already have plenty of memory free for |
2085 | * compaction in this zone, don't free any more. | |
2086 | * Even though compaction is invoked for any | |
2087 | * non-zero order, only frequent costly order | |
2088 | * reclamation is disruptive enough to become a | |
c7cfa37b CA |
2089 | * noticeable problem, like transparent huge |
2090 | * page allocations. | |
e0887c19 | 2091 | */ |
fe4b1b24 | 2092 | if (compaction_ready(zone, sc)) { |
0cee34fd | 2093 | aborted_reclaim = true; |
e0887c19 | 2094 | continue; |
e0c23279 | 2095 | } |
e0887c19 | 2096 | } |
ac34a1a3 KH |
2097 | /* |
2098 | * This steals pages from memory cgroups over softlimit | |
2099 | * and returns the number of reclaimed pages and | |
2100 | * scanned pages. This works for global memory pressure | |
2101 | * and balancing, not for a memcg's limit. | |
2102 | */ | |
2103 | nr_soft_scanned = 0; | |
2104 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, | |
2105 | sc->order, sc->gfp_mask, | |
2106 | &nr_soft_scanned); | |
2107 | sc->nr_reclaimed += nr_soft_reclaimed; | |
2108 | sc->nr_scanned += nr_soft_scanned; | |
2109 | /* need some check for avoid more shrink_zone() */ | |
1cfb419b | 2110 | } |
408d8544 | 2111 | |
9e3b2f8c | 2112 | shrink_zone(zone, sc); |
1da177e4 | 2113 | } |
e0c23279 | 2114 | |
0cee34fd | 2115 | return aborted_reclaim; |
d1908362 MK |
2116 | } |
2117 | ||
2118 | static bool zone_reclaimable(struct zone *zone) | |
2119 | { | |
2120 | return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; | |
2121 | } | |
2122 | ||
929bea7c | 2123 | /* All zones in zonelist are unreclaimable? */ |
d1908362 MK |
2124 | static bool all_unreclaimable(struct zonelist *zonelist, |
2125 | struct scan_control *sc) | |
2126 | { | |
2127 | struct zoneref *z; | |
2128 | struct zone *zone; | |
d1908362 MK |
2129 | |
2130 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
2131 | gfp_zone(sc->gfp_mask), sc->nodemask) { | |
2132 | if (!populated_zone(zone)) | |
2133 | continue; | |
2134 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | |
2135 | continue; | |
929bea7c KM |
2136 | if (!zone->all_unreclaimable) |
2137 | return false; | |
d1908362 MK |
2138 | } |
2139 | ||
929bea7c | 2140 | return true; |
1da177e4 | 2141 | } |
4f98a2fe | 2142 | |
1da177e4 LT |
2143 | /* |
2144 | * This is the main entry point to direct page reclaim. | |
2145 | * | |
2146 | * If a full scan of the inactive list fails to free enough memory then we | |
2147 | * are "out of memory" and something needs to be killed. | |
2148 | * | |
2149 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
2150 | * high - the zone may be full of dirty or under-writeback pages, which this | |
5b0830cb JA |
2151 | * caller can't do much about. We kick the writeback threads and take explicit |
2152 | * naps in the hope that some of these pages can be written. But if the | |
2153 | * allocating task holds filesystem locks which prevent writeout this might not | |
2154 | * work, and the allocation attempt will fail. | |
a41f24ea NA |
2155 | * |
2156 | * returns: 0, if no pages reclaimed | |
2157 | * else, the number of pages reclaimed | |
1da177e4 | 2158 | */ |
dac1d27b | 2159 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
a09ed5e0 YH |
2160 | struct scan_control *sc, |
2161 | struct shrink_control *shrink) | |
1da177e4 | 2162 | { |
69e05944 | 2163 | unsigned long total_scanned = 0; |
1da177e4 | 2164 | struct reclaim_state *reclaim_state = current->reclaim_state; |
dd1a239f | 2165 | struct zoneref *z; |
54a6eb5c | 2166 | struct zone *zone; |
22fba335 | 2167 | unsigned long writeback_threshold; |
0cee34fd | 2168 | bool aborted_reclaim; |
1da177e4 | 2169 | |
873b4771 KK |
2170 | delayacct_freepages_start(); |
2171 | ||
89b5fae5 | 2172 | if (global_reclaim(sc)) |
1cfb419b | 2173 | count_vm_event(ALLOCSTALL); |
1da177e4 | 2174 | |
9e3b2f8c | 2175 | do { |
70ddf637 AV |
2176 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, |
2177 | sc->priority); | |
66e1707b | 2178 | sc->nr_scanned = 0; |
9e3b2f8c | 2179 | aborted_reclaim = shrink_zones(zonelist, sc); |
e0c23279 | 2180 | |
66e1707b BS |
2181 | /* |
2182 | * Don't shrink slabs when reclaiming memory from | |
2183 | * over limit cgroups | |
2184 | */ | |
89b5fae5 | 2185 | if (global_reclaim(sc)) { |
c6a8a8c5 | 2186 | unsigned long lru_pages = 0; |
d4debc66 MG |
2187 | for_each_zone_zonelist(zone, z, zonelist, |
2188 | gfp_zone(sc->gfp_mask)) { | |
c6a8a8c5 KM |
2189 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2190 | continue; | |
2191 | ||
2192 | lru_pages += zone_reclaimable_pages(zone); | |
2193 | } | |
2194 | ||
1495f230 | 2195 | shrink_slab(shrink, sc->nr_scanned, lru_pages); |
91a45470 | 2196 | if (reclaim_state) { |
a79311c1 | 2197 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
91a45470 KH |
2198 | reclaim_state->reclaimed_slab = 0; |
2199 | } | |
1da177e4 | 2200 | } |
66e1707b | 2201 | total_scanned += sc->nr_scanned; |
bb21c7ce | 2202 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
1da177e4 | 2203 | goto out; |
1da177e4 | 2204 | |
0e50ce3b MK |
2205 | /* |
2206 | * If we're getting trouble reclaiming, start doing | |
2207 | * writepage even in laptop mode. | |
2208 | */ | |
2209 | if (sc->priority < DEF_PRIORITY - 2) | |
2210 | sc->may_writepage = 1; | |
2211 | ||
1da177e4 LT |
2212 | /* |
2213 | * Try to write back as many pages as we just scanned. This | |
2214 | * tends to cause slow streaming writers to write data to the | |
2215 | * disk smoothly, at the dirtying rate, which is nice. But | |
2216 | * that's undesirable in laptop mode, where we *want* lumpy | |
2217 | * writeout. So in laptop mode, write out the whole world. | |
2218 | */ | |
22fba335 KM |
2219 | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; |
2220 | if (total_scanned > writeback_threshold) { | |
0e175a18 CW |
2221 | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, |
2222 | WB_REASON_TRY_TO_FREE_PAGES); | |
66e1707b | 2223 | sc->may_writepage = 1; |
1da177e4 LT |
2224 | } |
2225 | ||
2226 | /* Take a nap, wait for some writeback to complete */ | |
7b51755c | 2227 | if (!sc->hibernation_mode && sc->nr_scanned && |
9e3b2f8c | 2228 | sc->priority < DEF_PRIORITY - 2) { |
0e093d99 MG |
2229 | struct zone *preferred_zone; |
2230 | ||
2231 | first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), | |
f33261d7 DR |
2232 | &cpuset_current_mems_allowed, |
2233 | &preferred_zone); | |
0e093d99 MG |
2234 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); |
2235 | } | |
9e3b2f8c | 2236 | } while (--sc->priority >= 0); |
bb21c7ce | 2237 | |
1da177e4 | 2238 | out: |
873b4771 KK |
2239 | delayacct_freepages_end(); |
2240 | ||
bb21c7ce KM |
2241 | if (sc->nr_reclaimed) |
2242 | return sc->nr_reclaimed; | |
2243 | ||
929bea7c KM |
2244 | /* |
2245 | * As hibernation is going on, kswapd is freezed so that it can't mark | |
2246 | * the zone into all_unreclaimable. Thus bypassing all_unreclaimable | |
2247 | * check. | |
2248 | */ | |
2249 | if (oom_killer_disabled) | |
2250 | return 0; | |
2251 | ||
0cee34fd MG |
2252 | /* Aborted reclaim to try compaction? don't OOM, then */ |
2253 | if (aborted_reclaim) | |
7335084d MG |
2254 | return 1; |
2255 | ||
bb21c7ce | 2256 | /* top priority shrink_zones still had more to do? don't OOM, then */ |
89b5fae5 | 2257 | if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) |
bb21c7ce KM |
2258 | return 1; |
2259 | ||
2260 | return 0; | |
1da177e4 LT |
2261 | } |
2262 | ||
5515061d MG |
2263 | static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) |
2264 | { | |
2265 | struct zone *zone; | |
2266 | unsigned long pfmemalloc_reserve = 0; | |
2267 | unsigned long free_pages = 0; | |
2268 | int i; | |
2269 | bool wmark_ok; | |
2270 | ||
2271 | for (i = 0; i <= ZONE_NORMAL; i++) { | |
2272 | zone = &pgdat->node_zones[i]; | |
2273 | pfmemalloc_reserve += min_wmark_pages(zone); | |
2274 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
2275 | } | |
2276 | ||
2277 | wmark_ok = free_pages > pfmemalloc_reserve / 2; | |
2278 | ||
2279 | /* kswapd must be awake if processes are being throttled */ | |
2280 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
2281 | pgdat->classzone_idx = min(pgdat->classzone_idx, | |
2282 | (enum zone_type)ZONE_NORMAL); | |
2283 | wake_up_interruptible(&pgdat->kswapd_wait); | |
2284 | } | |
2285 | ||
2286 | return wmark_ok; | |
2287 | } | |
2288 | ||
2289 | /* | |
2290 | * Throttle direct reclaimers if backing storage is backed by the network | |
2291 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
2292 | * depleted. kswapd will continue to make progress and wake the processes | |
50694c28 MG |
2293 | * when the low watermark is reached. |
2294 | * | |
2295 | * Returns true if a fatal signal was delivered during throttling. If this | |
2296 | * happens, the page allocator should not consider triggering the OOM killer. | |
5515061d | 2297 | */ |
50694c28 | 2298 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
5515061d MG |
2299 | nodemask_t *nodemask) |
2300 | { | |
2301 | struct zone *zone; | |
2302 | int high_zoneidx = gfp_zone(gfp_mask); | |
2303 | pg_data_t *pgdat; | |
2304 | ||
2305 | /* | |
2306 | * Kernel threads should not be throttled as they may be indirectly | |
2307 | * responsible for cleaning pages necessary for reclaim to make forward | |
2308 | * progress. kjournald for example may enter direct reclaim while | |
2309 | * committing a transaction where throttling it could forcing other | |
2310 | * processes to block on log_wait_commit(). | |
2311 | */ | |
2312 | if (current->flags & PF_KTHREAD) | |
50694c28 MG |
2313 | goto out; |
2314 | ||
2315 | /* | |
2316 | * If a fatal signal is pending, this process should not throttle. | |
2317 | * It should return quickly so it can exit and free its memory | |
2318 | */ | |
2319 | if (fatal_signal_pending(current)) | |
2320 | goto out; | |
5515061d MG |
2321 | |
2322 | /* Check if the pfmemalloc reserves are ok */ | |
2323 | first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); | |
2324 | pgdat = zone->zone_pgdat; | |
2325 | if (pfmemalloc_watermark_ok(pgdat)) | |
50694c28 | 2326 | goto out; |
5515061d | 2327 | |
68243e76 MG |
2328 | /* Account for the throttling */ |
2329 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
2330 | ||
5515061d MG |
2331 | /* |
2332 | * If the caller cannot enter the filesystem, it's possible that it | |
2333 | * is due to the caller holding an FS lock or performing a journal | |
2334 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
2335 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
2336 | * blocked waiting on the same lock. Instead, throttle for up to a | |
2337 | * second before continuing. | |
2338 | */ | |
2339 | if (!(gfp_mask & __GFP_FS)) { | |
2340 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
2341 | pfmemalloc_watermark_ok(pgdat), HZ); | |
50694c28 MG |
2342 | |
2343 | goto check_pending; | |
5515061d MG |
2344 | } |
2345 | ||
2346 | /* Throttle until kswapd wakes the process */ | |
2347 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
2348 | pfmemalloc_watermark_ok(pgdat)); | |
50694c28 MG |
2349 | |
2350 | check_pending: | |
2351 | if (fatal_signal_pending(current)) | |
2352 | return true; | |
2353 | ||
2354 | out: | |
2355 | return false; | |
5515061d MG |
2356 | } |
2357 | ||
dac1d27b | 2358 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
327c0e96 | 2359 | gfp_t gfp_mask, nodemask_t *nodemask) |
66e1707b | 2360 | { |
33906bc5 | 2361 | unsigned long nr_reclaimed; |
66e1707b | 2362 | struct scan_control sc = { |
21caf2fc | 2363 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), |
66e1707b | 2364 | .may_writepage = !laptop_mode, |
22fba335 | 2365 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
a6dc60f8 | 2366 | .may_unmap = 1, |
2e2e4259 | 2367 | .may_swap = 1, |
66e1707b | 2368 | .order = order, |
9e3b2f8c | 2369 | .priority = DEF_PRIORITY, |
f16015fb | 2370 | .target_mem_cgroup = NULL, |
327c0e96 | 2371 | .nodemask = nodemask, |
66e1707b | 2372 | }; |
a09ed5e0 YH |
2373 | struct shrink_control shrink = { |
2374 | .gfp_mask = sc.gfp_mask, | |
2375 | }; | |
66e1707b | 2376 | |
5515061d | 2377 | /* |
50694c28 MG |
2378 | * Do not enter reclaim if fatal signal was delivered while throttled. |
2379 | * 1 is returned so that the page allocator does not OOM kill at this | |
2380 | * point. | |
5515061d | 2381 | */ |
50694c28 | 2382 | if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) |
5515061d MG |
2383 | return 1; |
2384 | ||
33906bc5 MG |
2385 | trace_mm_vmscan_direct_reclaim_begin(order, |
2386 | sc.may_writepage, | |
2387 | gfp_mask); | |
2388 | ||
a09ed5e0 | 2389 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
33906bc5 MG |
2390 | |
2391 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
2392 | ||
2393 | return nr_reclaimed; | |
66e1707b BS |
2394 | } |
2395 | ||
c255a458 | 2396 | #ifdef CONFIG_MEMCG |
66e1707b | 2397 | |
72835c86 | 2398 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, |
4e416953 | 2399 | gfp_t gfp_mask, bool noswap, |
0ae5e89c YH |
2400 | struct zone *zone, |
2401 | unsigned long *nr_scanned) | |
4e416953 BS |
2402 | { |
2403 | struct scan_control sc = { | |
0ae5e89c | 2404 | .nr_scanned = 0, |
b8f5c566 | 2405 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
4e416953 BS |
2406 | .may_writepage = !laptop_mode, |
2407 | .may_unmap = 1, | |
2408 | .may_swap = !noswap, | |
4e416953 | 2409 | .order = 0, |
9e3b2f8c | 2410 | .priority = 0, |
72835c86 | 2411 | .target_mem_cgroup = memcg, |
4e416953 | 2412 | }; |
f9be23d6 | 2413 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
0ae5e89c | 2414 | |
4e416953 BS |
2415 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2416 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
bdce6d9e | 2417 | |
9e3b2f8c | 2418 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
bdce6d9e KM |
2419 | sc.may_writepage, |
2420 | sc.gfp_mask); | |
2421 | ||
4e416953 BS |
2422 | /* |
2423 | * NOTE: Although we can get the priority field, using it | |
2424 | * here is not a good idea, since it limits the pages we can scan. | |
2425 | * if we don't reclaim here, the shrink_zone from balance_pgdat | |
2426 | * will pick up pages from other mem cgroup's as well. We hack | |
2427 | * the priority and make it zero. | |
2428 | */ | |
f9be23d6 | 2429 | shrink_lruvec(lruvec, &sc); |
bdce6d9e KM |
2430 | |
2431 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
2432 | ||
0ae5e89c | 2433 | *nr_scanned = sc.nr_scanned; |
4e416953 BS |
2434 | return sc.nr_reclaimed; |
2435 | } | |
2436 | ||
72835c86 | 2437 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
a7885eb8 | 2438 | gfp_t gfp_mask, |
185efc0f | 2439 | bool noswap) |
66e1707b | 2440 | { |
4e416953 | 2441 | struct zonelist *zonelist; |
bdce6d9e | 2442 | unsigned long nr_reclaimed; |
889976db | 2443 | int nid; |
66e1707b | 2444 | struct scan_control sc = { |
66e1707b | 2445 | .may_writepage = !laptop_mode, |
a6dc60f8 | 2446 | .may_unmap = 1, |
2e2e4259 | 2447 | .may_swap = !noswap, |
22fba335 | 2448 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
66e1707b | 2449 | .order = 0, |
9e3b2f8c | 2450 | .priority = DEF_PRIORITY, |
72835c86 | 2451 | .target_mem_cgroup = memcg, |
327c0e96 | 2452 | .nodemask = NULL, /* we don't care the placement */ |
a09ed5e0 YH |
2453 | .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2454 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | |
2455 | }; | |
2456 | struct shrink_control shrink = { | |
2457 | .gfp_mask = sc.gfp_mask, | |
66e1707b | 2458 | }; |
66e1707b | 2459 | |
889976db YH |
2460 | /* |
2461 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't | |
2462 | * take care of from where we get pages. So the node where we start the | |
2463 | * scan does not need to be the current node. | |
2464 | */ | |
72835c86 | 2465 | nid = mem_cgroup_select_victim_node(memcg); |
889976db YH |
2466 | |
2467 | zonelist = NODE_DATA(nid)->node_zonelists; | |
bdce6d9e KM |
2468 | |
2469 | trace_mm_vmscan_memcg_reclaim_begin(0, | |
2470 | sc.may_writepage, | |
2471 | sc.gfp_mask); | |
2472 | ||
a09ed5e0 | 2473 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
bdce6d9e KM |
2474 | |
2475 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
2476 | ||
2477 | return nr_reclaimed; | |
66e1707b BS |
2478 | } |
2479 | #endif | |
2480 | ||
9e3b2f8c | 2481 | static void age_active_anon(struct zone *zone, struct scan_control *sc) |
f16015fb | 2482 | { |
b95a2f2d | 2483 | struct mem_cgroup *memcg; |
f16015fb | 2484 | |
b95a2f2d JW |
2485 | if (!total_swap_pages) |
2486 | return; | |
2487 | ||
2488 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
2489 | do { | |
c56d5c7d | 2490 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
b95a2f2d | 2491 | |
c56d5c7d | 2492 | if (inactive_anon_is_low(lruvec)) |
1a93be0e | 2493 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
9e3b2f8c | 2494 | sc, LRU_ACTIVE_ANON); |
b95a2f2d JW |
2495 | |
2496 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
2497 | } while (memcg); | |
f16015fb JW |
2498 | } |
2499 | ||
60cefed4 JW |
2500 | static bool zone_balanced(struct zone *zone, int order, |
2501 | unsigned long balance_gap, int classzone_idx) | |
2502 | { | |
2503 | if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + | |
2504 | balance_gap, classzone_idx, 0)) | |
2505 | return false; | |
2506 | ||
d84da3f9 KS |
2507 | if (IS_ENABLED(CONFIG_COMPACTION) && order && |
2508 | !compaction_suitable(zone, order)) | |
60cefed4 JW |
2509 | return false; |
2510 | ||
2511 | return true; | |
2512 | } | |
2513 | ||
1741c877 | 2514 | /* |
4ae0a48b ZC |
2515 | * pgdat_balanced() is used when checking if a node is balanced. |
2516 | * | |
2517 | * For order-0, all zones must be balanced! | |
2518 | * | |
2519 | * For high-order allocations only zones that meet watermarks and are in a | |
2520 | * zone allowed by the callers classzone_idx are added to balanced_pages. The | |
2521 | * total of balanced pages must be at least 25% of the zones allowed by | |
2522 | * classzone_idx for the node to be considered balanced. Forcing all zones to | |
2523 | * be balanced for high orders can cause excessive reclaim when there are | |
2524 | * imbalanced zones. | |
1741c877 MG |
2525 | * The choice of 25% is due to |
2526 | * o a 16M DMA zone that is balanced will not balance a zone on any | |
2527 | * reasonable sized machine | |
2528 | * o On all other machines, the top zone must be at least a reasonable | |
25985edc | 2529 | * percentage of the middle zones. For example, on 32-bit x86, highmem |
1741c877 MG |
2530 | * would need to be at least 256M for it to be balance a whole node. |
2531 | * Similarly, on x86-64 the Normal zone would need to be at least 1G | |
2532 | * to balance a node on its own. These seemed like reasonable ratios. | |
2533 | */ | |
4ae0a48b | 2534 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) |
1741c877 | 2535 | { |
b40da049 | 2536 | unsigned long managed_pages = 0; |
4ae0a48b | 2537 | unsigned long balanced_pages = 0; |
1741c877 MG |
2538 | int i; |
2539 | ||
4ae0a48b ZC |
2540 | /* Check the watermark levels */ |
2541 | for (i = 0; i <= classzone_idx; i++) { | |
2542 | struct zone *zone = pgdat->node_zones + i; | |
1741c877 | 2543 | |
4ae0a48b ZC |
2544 | if (!populated_zone(zone)) |
2545 | continue; | |
2546 | ||
b40da049 | 2547 | managed_pages += zone->managed_pages; |
4ae0a48b ZC |
2548 | |
2549 | /* | |
2550 | * A special case here: | |
2551 | * | |
2552 | * balance_pgdat() skips over all_unreclaimable after | |
2553 | * DEF_PRIORITY. Effectively, it considers them balanced so | |
2554 | * they must be considered balanced here as well! | |
2555 | */ | |
2556 | if (zone->all_unreclaimable) { | |
b40da049 | 2557 | balanced_pages += zone->managed_pages; |
4ae0a48b ZC |
2558 | continue; |
2559 | } | |
2560 | ||
2561 | if (zone_balanced(zone, order, 0, i)) | |
b40da049 | 2562 | balanced_pages += zone->managed_pages; |
4ae0a48b ZC |
2563 | else if (!order) |
2564 | return false; | |
2565 | } | |
2566 | ||
2567 | if (order) | |
b40da049 | 2568 | return balanced_pages >= (managed_pages >> 2); |
4ae0a48b ZC |
2569 | else |
2570 | return true; | |
1741c877 MG |
2571 | } |
2572 | ||
5515061d MG |
2573 | /* |
2574 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
2575 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
2576 | * | |
2577 | * Returns true if kswapd is ready to sleep | |
2578 | */ | |
2579 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, | |
dc83edd9 | 2580 | int classzone_idx) |
f50de2d3 | 2581 | { |
f50de2d3 MG |
2582 | /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ |
2583 | if (remaining) | |
5515061d MG |
2584 | return false; |
2585 | ||
2586 | /* | |
2587 | * There is a potential race between when kswapd checks its watermarks | |
2588 | * and a process gets throttled. There is also a potential race if | |
2589 | * processes get throttled, kswapd wakes, a large process exits therby | |
2590 | * balancing the zones that causes kswapd to miss a wakeup. If kswapd | |
2591 | * is going to sleep, no process should be sleeping on pfmemalloc_wait | |
2592 | * so wake them now if necessary. If necessary, processes will wake | |
2593 | * kswapd and get throttled again | |
2594 | */ | |
2595 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) { | |
2596 | wake_up(&pgdat->pfmemalloc_wait); | |
2597 | return false; | |
2598 | } | |
f50de2d3 | 2599 | |
4ae0a48b | 2600 | return pgdat_balanced(pgdat, order, classzone_idx); |
f50de2d3 MG |
2601 | } |
2602 | ||
1da177e4 LT |
2603 | /* |
2604 | * For kswapd, balance_pgdat() will work across all this node's zones until | |
41858966 | 2605 | * they are all at high_wmark_pages(zone). |
1da177e4 | 2606 | * |
0abdee2b | 2607 | * Returns the final order kswapd was reclaiming at |
1da177e4 LT |
2608 | * |
2609 | * There is special handling here for zones which are full of pinned pages. | |
2610 | * This can happen if the pages are all mlocked, or if they are all used by | |
2611 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | |
2612 | * What we do is to detect the case where all pages in the zone have been | |
2613 | * scanned twice and there has been zero successful reclaim. Mark the zone as | |
2614 | * dead and from now on, only perform a short scan. Basically we're polling | |
2615 | * the zone for when the problem goes away. | |
2616 | * | |
2617 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
41858966 MG |
2618 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
2619 | * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the | |
2620 | * lower zones regardless of the number of free pages in the lower zones. This | |
2621 | * interoperates with the page allocator fallback scheme to ensure that aging | |
2622 | * of pages is balanced across the zones. | |
1da177e4 | 2623 | */ |
99504748 | 2624 | static unsigned long balance_pgdat(pg_data_t *pgdat, int order, |
dc83edd9 | 2625 | int *classzone_idx) |
1da177e4 | 2626 | { |
dafcb73e | 2627 | bool pgdat_is_balanced = false; |
1da177e4 | 2628 | int i; |
99504748 | 2629 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ |
1da177e4 | 2630 | struct reclaim_state *reclaim_state = current->reclaim_state; |
0ae5e89c YH |
2631 | unsigned long nr_soft_reclaimed; |
2632 | unsigned long nr_soft_scanned; | |
179e9639 AM |
2633 | struct scan_control sc = { |
2634 | .gfp_mask = GFP_KERNEL, | |
a6dc60f8 | 2635 | .may_unmap = 1, |
2e2e4259 | 2636 | .may_swap = 1, |
22fba335 KM |
2637 | /* |
2638 | * kswapd doesn't want to be bailed out while reclaim. because | |
2639 | * we want to put equal scanning pressure on each zone. | |
2640 | */ | |
2641 | .nr_to_reclaim = ULONG_MAX, | |
5ad333eb | 2642 | .order = order, |
f16015fb | 2643 | .target_mem_cgroup = NULL, |
179e9639 | 2644 | }; |
a09ed5e0 YH |
2645 | struct shrink_control shrink = { |
2646 | .gfp_mask = sc.gfp_mask, | |
2647 | }; | |
1da177e4 | 2648 | loop_again: |
9e3b2f8c | 2649 | sc.priority = DEF_PRIORITY; |
a79311c1 | 2650 | sc.nr_reclaimed = 0; |
c0bbbc73 | 2651 | sc.may_writepage = !laptop_mode; |
f8891e5e | 2652 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 2653 | |
9e3b2f8c | 2654 | do { |
1da177e4 | 2655 | unsigned long lru_pages = 0; |
1da177e4 | 2656 | |
d6277db4 RW |
2657 | /* |
2658 | * Scan in the highmem->dma direction for the highest | |
2659 | * zone which needs scanning | |
2660 | */ | |
2661 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | |
2662 | struct zone *zone = pgdat->node_zones + i; | |
1da177e4 | 2663 | |
d6277db4 RW |
2664 | if (!populated_zone(zone)) |
2665 | continue; | |
1da177e4 | 2666 | |
9e3b2f8c KK |
2667 | if (zone->all_unreclaimable && |
2668 | sc.priority != DEF_PRIORITY) | |
d6277db4 | 2669 | continue; |
1da177e4 | 2670 | |
556adecb RR |
2671 | /* |
2672 | * Do some background aging of the anon list, to give | |
2673 | * pages a chance to be referenced before reclaiming. | |
2674 | */ | |
9e3b2f8c | 2675 | age_active_anon(zone, &sc); |
556adecb | 2676 | |
cc715d99 MG |
2677 | /* |
2678 | * If the number of buffer_heads in the machine | |
2679 | * exceeds the maximum allowed level and this node | |
2680 | * has a highmem zone, force kswapd to reclaim from | |
2681 | * it to relieve lowmem pressure. | |
2682 | */ | |
2683 | if (buffer_heads_over_limit && is_highmem_idx(i)) { | |
2684 | end_zone = i; | |
2685 | break; | |
2686 | } | |
2687 | ||
60cefed4 | 2688 | if (!zone_balanced(zone, order, 0, 0)) { |
d6277db4 | 2689 | end_zone = i; |
e1dbeda6 | 2690 | break; |
439423f6 SL |
2691 | } else { |
2692 | /* If balanced, clear the congested flag */ | |
2693 | zone_clear_flag(zone, ZONE_CONGESTED); | |
1da177e4 | 2694 | } |
1da177e4 | 2695 | } |
dafcb73e ZC |
2696 | |
2697 | if (i < 0) { | |
2698 | pgdat_is_balanced = true; | |
e1dbeda6 | 2699 | goto out; |
dafcb73e | 2700 | } |
e1dbeda6 | 2701 | |
1da177e4 LT |
2702 | for (i = 0; i <= end_zone; i++) { |
2703 | struct zone *zone = pgdat->node_zones + i; | |
2704 | ||
adea02a1 | 2705 | lru_pages += zone_reclaimable_pages(zone); |
1da177e4 LT |
2706 | } |
2707 | ||
2708 | /* | |
2709 | * Now scan the zone in the dma->highmem direction, stopping | |
2710 | * at the last zone which needs scanning. | |
2711 | * | |
2712 | * We do this because the page allocator works in the opposite | |
2713 | * direction. This prevents the page allocator from allocating | |
2714 | * pages behind kswapd's direction of progress, which would | |
2715 | * cause too much scanning of the lower zones. | |
2716 | */ | |
2717 | for (i = 0; i <= end_zone; i++) { | |
2718 | struct zone *zone = pgdat->node_zones + i; | |
fe2c2a10 | 2719 | int nr_slab, testorder; |
8afdcece | 2720 | unsigned long balance_gap; |
1da177e4 | 2721 | |
f3fe6512 | 2722 | if (!populated_zone(zone)) |
1da177e4 LT |
2723 | continue; |
2724 | ||
9e3b2f8c KK |
2725 | if (zone->all_unreclaimable && |
2726 | sc.priority != DEF_PRIORITY) | |
1da177e4 LT |
2727 | continue; |
2728 | ||
1da177e4 | 2729 | sc.nr_scanned = 0; |
4e416953 | 2730 | |
0ae5e89c | 2731 | nr_soft_scanned = 0; |
4e416953 BS |
2732 | /* |
2733 | * Call soft limit reclaim before calling shrink_zone. | |
4e416953 | 2734 | */ |
0ae5e89c YH |
2735 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, |
2736 | order, sc.gfp_mask, | |
2737 | &nr_soft_scanned); | |
2738 | sc.nr_reclaimed += nr_soft_reclaimed; | |
00918b6a | 2739 | |
32a4330d | 2740 | /* |
8afdcece MG |
2741 | * We put equal pressure on every zone, unless |
2742 | * one zone has way too many pages free | |
2743 | * already. The "too many pages" is defined | |
2744 | * as the high wmark plus a "gap" where the | |
2745 | * gap is either the low watermark or 1% | |
2746 | * of the zone, whichever is smaller. | |
32a4330d | 2747 | */ |
8afdcece | 2748 | balance_gap = min(low_wmark_pages(zone), |
b40da049 | 2749 | (zone->managed_pages + |
8afdcece MG |
2750 | KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / |
2751 | KSWAPD_ZONE_BALANCE_GAP_RATIO); | |
fe2c2a10 RR |
2752 | /* |
2753 | * Kswapd reclaims only single pages with compaction | |
2754 | * enabled. Trying too hard to reclaim until contiguous | |
2755 | * free pages have become available can hurt performance | |
2756 | * by evicting too much useful data from memory. | |
2757 | * Do not reclaim more than needed for compaction. | |
2758 | */ | |
2759 | testorder = order; | |
d84da3f9 | 2760 | if (IS_ENABLED(CONFIG_COMPACTION) && order && |
fe2c2a10 RR |
2761 | compaction_suitable(zone, order) != |
2762 | COMPACT_SKIPPED) | |
2763 | testorder = 0; | |
2764 | ||
cc715d99 | 2765 | if ((buffer_heads_over_limit && is_highmem_idx(i)) || |
60cefed4 JW |
2766 | !zone_balanced(zone, testorder, |
2767 | balance_gap, end_zone)) { | |
9e3b2f8c | 2768 | shrink_zone(zone, &sc); |
5a03b051 | 2769 | |
d7868dae MG |
2770 | reclaim_state->reclaimed_slab = 0; |
2771 | nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages); | |
2772 | sc.nr_reclaimed += reclaim_state->reclaimed_slab; | |
d7868dae MG |
2773 | |
2774 | if (nr_slab == 0 && !zone_reclaimable(zone)) | |
2775 | zone->all_unreclaimable = 1; | |
2776 | } | |
2777 | ||
1da177e4 | 2778 | /* |
0e50ce3b MK |
2779 | * If we're getting trouble reclaiming, start doing |
2780 | * writepage even in laptop mode. | |
1da177e4 | 2781 | */ |
0e50ce3b | 2782 | if (sc.priority < DEF_PRIORITY - 2) |
1da177e4 | 2783 | sc.may_writepage = 1; |
bb3ab596 | 2784 | |
215ddd66 MG |
2785 | if (zone->all_unreclaimable) { |
2786 | if (end_zone && end_zone == i) | |
2787 | end_zone--; | |
d7868dae | 2788 | continue; |
215ddd66 | 2789 | } |
d7868dae | 2790 | |
258401a6 | 2791 | if (zone_balanced(zone, testorder, 0, end_zone)) |
0e093d99 MG |
2792 | /* |
2793 | * If a zone reaches its high watermark, | |
2794 | * consider it to be no longer congested. It's | |
2795 | * possible there are dirty pages backed by | |
2796 | * congested BDIs but as pressure is relieved, | |
ab8704b8 | 2797 | * speculatively avoid congestion waits |
0e093d99 MG |
2798 | */ |
2799 | zone_clear_flag(zone, ZONE_CONGESTED); | |
1da177e4 | 2800 | } |
5515061d MG |
2801 | |
2802 | /* | |
2803 | * If the low watermark is met there is no need for processes | |
2804 | * to be throttled on pfmemalloc_wait as they should not be | |
2805 | * able to safely make forward progress. Wake them | |
2806 | */ | |
2807 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
2808 | pfmemalloc_watermark_ok(pgdat)) | |
2809 | wake_up(&pgdat->pfmemalloc_wait); | |
2810 | ||
dafcb73e ZC |
2811 | if (pgdat_balanced(pgdat, order, *classzone_idx)) { |
2812 | pgdat_is_balanced = true; | |
1da177e4 | 2813 | break; /* kswapd: all done */ |
dafcb73e ZC |
2814 | } |
2815 | ||
1da177e4 LT |
2816 | /* |
2817 | * We do this so kswapd doesn't build up large priorities for | |
2818 | * example when it is freeing in parallel with allocators. It | |
2819 | * matches the direct reclaim path behaviour in terms of impact | |
2820 | * on zone->*_priority. | |
2821 | */ | |
a79311c1 | 2822 | if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) |
1da177e4 | 2823 | break; |
9e3b2f8c | 2824 | } while (--sc.priority >= 0); |
99504748 | 2825 | |
dafcb73e ZC |
2826 | out: |
2827 | if (!pgdat_is_balanced) { | |
1da177e4 | 2828 | cond_resched(); |
8357376d RW |
2829 | |
2830 | try_to_freeze(); | |
2831 | ||
73ce02e9 KM |
2832 | /* |
2833 | * Fragmentation may mean that the system cannot be | |
2834 | * rebalanced for high-order allocations in all zones. | |
2835 | * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, | |
2836 | * it means the zones have been fully scanned and are still | |
2837 | * not balanced. For high-order allocations, there is | |
2838 | * little point trying all over again as kswapd may | |
2839 | * infinite loop. | |
2840 | * | |
2841 | * Instead, recheck all watermarks at order-0 as they | |
2842 | * are the most important. If watermarks are ok, kswapd will go | |
2843 | * back to sleep. High-order users can still perform direct | |
2844 | * reclaim if they wish. | |
2845 | */ | |
2846 | if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) | |
2847 | order = sc.order = 0; | |
2848 | ||
1da177e4 LT |
2849 | goto loop_again; |
2850 | } | |
2851 | ||
99504748 MG |
2852 | /* |
2853 | * If kswapd was reclaiming at a higher order, it has the option of | |
2854 | * sleeping without all zones being balanced. Before it does, it must | |
2855 | * ensure that the watermarks for order-0 on *all* zones are met and | |
2856 | * that the congestion flags are cleared. The congestion flag must | |
2857 | * be cleared as kswapd is the only mechanism that clears the flag | |
2858 | * and it is potentially going to sleep here. | |
2859 | */ | |
2860 | if (order) { | |
7be62de9 RR |
2861 | int zones_need_compaction = 1; |
2862 | ||
99504748 MG |
2863 | for (i = 0; i <= end_zone; i++) { |
2864 | struct zone *zone = pgdat->node_zones + i; | |
2865 | ||
2866 | if (!populated_zone(zone)) | |
2867 | continue; | |
2868 | ||
7be62de9 RR |
2869 | /* Check if the memory needs to be defragmented. */ |
2870 | if (zone_watermark_ok(zone, order, | |
2871 | low_wmark_pages(zone), *classzone_idx, 0)) | |
2872 | zones_need_compaction = 0; | |
99504748 | 2873 | } |
7be62de9 RR |
2874 | |
2875 | if (zones_need_compaction) | |
2876 | compact_pgdat(pgdat, order); | |
99504748 MG |
2877 | } |
2878 | ||
0abdee2b | 2879 | /* |
5515061d | 2880 | * Return the order we were reclaiming at so prepare_kswapd_sleep() |
0abdee2b MG |
2881 | * makes a decision on the order we were last reclaiming at. However, |
2882 | * if another caller entered the allocator slow path while kswapd | |
2883 | * was awake, order will remain at the higher level | |
2884 | */ | |
dc83edd9 | 2885 | *classzone_idx = end_zone; |
0abdee2b | 2886 | return order; |
1da177e4 LT |
2887 | } |
2888 | ||
dc83edd9 | 2889 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) |
f0bc0a60 KM |
2890 | { |
2891 | long remaining = 0; | |
2892 | DEFINE_WAIT(wait); | |
2893 | ||
2894 | if (freezing(current) || kthread_should_stop()) | |
2895 | return; | |
2896 | ||
2897 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
2898 | ||
2899 | /* Try to sleep for a short interval */ | |
5515061d | 2900 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
f0bc0a60 KM |
2901 | remaining = schedule_timeout(HZ/10); |
2902 | finish_wait(&pgdat->kswapd_wait, &wait); | |
2903 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
2904 | } | |
2905 | ||
2906 | /* | |
2907 | * After a short sleep, check if it was a premature sleep. If not, then | |
2908 | * go fully to sleep until explicitly woken up. | |
2909 | */ | |
5515061d | 2910 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
f0bc0a60 KM |
2911 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
2912 | ||
2913 | /* | |
2914 | * vmstat counters are not perfectly accurate and the estimated | |
2915 | * value for counters such as NR_FREE_PAGES can deviate from the | |
2916 | * true value by nr_online_cpus * threshold. To avoid the zone | |
2917 | * watermarks being breached while under pressure, we reduce the | |
2918 | * per-cpu vmstat threshold while kswapd is awake and restore | |
2919 | * them before going back to sleep. | |
2920 | */ | |
2921 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
1c7e7f6c | 2922 | |
62997027 MG |
2923 | /* |
2924 | * Compaction records what page blocks it recently failed to | |
2925 | * isolate pages from and skips them in the future scanning. | |
2926 | * When kswapd is going to sleep, it is reasonable to assume | |
2927 | * that pages and compaction may succeed so reset the cache. | |
2928 | */ | |
2929 | reset_isolation_suitable(pgdat); | |
2930 | ||
1c7e7f6c AK |
2931 | if (!kthread_should_stop()) |
2932 | schedule(); | |
2933 | ||
f0bc0a60 KM |
2934 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
2935 | } else { | |
2936 | if (remaining) | |
2937 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
2938 | else | |
2939 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
2940 | } | |
2941 | finish_wait(&pgdat->kswapd_wait, &wait); | |
2942 | } | |
2943 | ||
1da177e4 LT |
2944 | /* |
2945 | * The background pageout daemon, started as a kernel thread | |
4f98a2fe | 2946 | * from the init process. |
1da177e4 LT |
2947 | * |
2948 | * This basically trickles out pages so that we have _some_ | |
2949 | * free memory available even if there is no other activity | |
2950 | * that frees anything up. This is needed for things like routing | |
2951 | * etc, where we otherwise might have all activity going on in | |
2952 | * asynchronous contexts that cannot page things out. | |
2953 | * | |
2954 | * If there are applications that are active memory-allocators | |
2955 | * (most normal use), this basically shouldn't matter. | |
2956 | */ | |
2957 | static int kswapd(void *p) | |
2958 | { | |
215ddd66 | 2959 | unsigned long order, new_order; |
d2ebd0f6 | 2960 | unsigned balanced_order; |
215ddd66 | 2961 | int classzone_idx, new_classzone_idx; |
d2ebd0f6 | 2962 | int balanced_classzone_idx; |
1da177e4 LT |
2963 | pg_data_t *pgdat = (pg_data_t*)p; |
2964 | struct task_struct *tsk = current; | |
f0bc0a60 | 2965 | |
1da177e4 LT |
2966 | struct reclaim_state reclaim_state = { |
2967 | .reclaimed_slab = 0, | |
2968 | }; | |
a70f7302 | 2969 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
1da177e4 | 2970 | |
cf40bd16 NP |
2971 | lockdep_set_current_reclaim_state(GFP_KERNEL); |
2972 | ||
174596a0 | 2973 | if (!cpumask_empty(cpumask)) |
c5f59f08 | 2974 | set_cpus_allowed_ptr(tsk, cpumask); |
1da177e4 LT |
2975 | current->reclaim_state = &reclaim_state; |
2976 | ||
2977 | /* | |
2978 | * Tell the memory management that we're a "memory allocator", | |
2979 | * and that if we need more memory we should get access to it | |
2980 | * regardless (see "__alloc_pages()"). "kswapd" should | |
2981 | * never get caught in the normal page freeing logic. | |
2982 | * | |
2983 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
2984 | * you need a small amount of memory in order to be able to | |
2985 | * page out something else, and this flag essentially protects | |
2986 | * us from recursively trying to free more memory as we're | |
2987 | * trying to free the first piece of memory in the first place). | |
2988 | */ | |
930d9152 | 2989 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
83144186 | 2990 | set_freezable(); |
1da177e4 | 2991 | |
215ddd66 | 2992 | order = new_order = 0; |
d2ebd0f6 | 2993 | balanced_order = 0; |
215ddd66 | 2994 | classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; |
d2ebd0f6 | 2995 | balanced_classzone_idx = classzone_idx; |
1da177e4 | 2996 | for ( ; ; ) { |
6f6313d4 | 2997 | bool ret; |
3e1d1d28 | 2998 | |
215ddd66 MG |
2999 | /* |
3000 | * If the last balance_pgdat was unsuccessful it's unlikely a | |
3001 | * new request of a similar or harder type will succeed soon | |
3002 | * so consider going to sleep on the basis we reclaimed at | |
3003 | */ | |
d2ebd0f6 AS |
3004 | if (balanced_classzone_idx >= new_classzone_idx && |
3005 | balanced_order == new_order) { | |
215ddd66 MG |
3006 | new_order = pgdat->kswapd_max_order; |
3007 | new_classzone_idx = pgdat->classzone_idx; | |
3008 | pgdat->kswapd_max_order = 0; | |
3009 | pgdat->classzone_idx = pgdat->nr_zones - 1; | |
3010 | } | |
3011 | ||
99504748 | 3012 | if (order < new_order || classzone_idx > new_classzone_idx) { |
1da177e4 LT |
3013 | /* |
3014 | * Don't sleep if someone wants a larger 'order' | |
99504748 | 3015 | * allocation or has tigher zone constraints |
1da177e4 LT |
3016 | */ |
3017 | order = new_order; | |
99504748 | 3018 | classzone_idx = new_classzone_idx; |
1da177e4 | 3019 | } else { |
d2ebd0f6 AS |
3020 | kswapd_try_to_sleep(pgdat, balanced_order, |
3021 | balanced_classzone_idx); | |
1da177e4 | 3022 | order = pgdat->kswapd_max_order; |
99504748 | 3023 | classzone_idx = pgdat->classzone_idx; |
f0dfcde0 AS |
3024 | new_order = order; |
3025 | new_classzone_idx = classzone_idx; | |
4d40502e | 3026 | pgdat->kswapd_max_order = 0; |
215ddd66 | 3027 | pgdat->classzone_idx = pgdat->nr_zones - 1; |
1da177e4 | 3028 | } |
1da177e4 | 3029 | |
8fe23e05 DR |
3030 | ret = try_to_freeze(); |
3031 | if (kthread_should_stop()) | |
3032 | break; | |
3033 | ||
3034 | /* | |
3035 | * We can speed up thawing tasks if we don't call balance_pgdat | |
3036 | * after returning from the refrigerator | |
3037 | */ | |
33906bc5 MG |
3038 | if (!ret) { |
3039 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); | |
d2ebd0f6 AS |
3040 | balanced_classzone_idx = classzone_idx; |
3041 | balanced_order = balance_pgdat(pgdat, order, | |
3042 | &balanced_classzone_idx); | |
33906bc5 | 3043 | } |
1da177e4 | 3044 | } |
b0a8cc58 TY |
3045 | |
3046 | current->reclaim_state = NULL; | |
1da177e4 LT |
3047 | return 0; |
3048 | } | |
3049 | ||
3050 | /* | |
3051 | * A zone is low on free memory, so wake its kswapd task to service it. | |
3052 | */ | |
99504748 | 3053 | void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) |
1da177e4 LT |
3054 | { |
3055 | pg_data_t *pgdat; | |
3056 | ||
f3fe6512 | 3057 | if (!populated_zone(zone)) |
1da177e4 LT |
3058 | return; |
3059 | ||
88f5acf8 | 3060 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1da177e4 | 3061 | return; |
88f5acf8 | 3062 | pgdat = zone->zone_pgdat; |
99504748 | 3063 | if (pgdat->kswapd_max_order < order) { |
1da177e4 | 3064 | pgdat->kswapd_max_order = order; |
99504748 MG |
3065 | pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); |
3066 | } | |
8d0986e2 | 3067 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 3068 | return; |
88f5acf8 MG |
3069 | if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) |
3070 | return; | |
3071 | ||
3072 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); | |
8d0986e2 | 3073 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
3074 | } |
3075 | ||
adea02a1 WF |
3076 | /* |
3077 | * The reclaimable count would be mostly accurate. | |
3078 | * The less reclaimable pages may be | |
3079 | * - mlocked pages, which will be moved to unevictable list when encountered | |
3080 | * - mapped pages, which may require several travels to be reclaimed | |
3081 | * - dirty pages, which is not "instantly" reclaimable | |
3082 | */ | |
3083 | unsigned long global_reclaimable_pages(void) | |
4f98a2fe | 3084 | { |
adea02a1 WF |
3085 | int nr; |
3086 | ||
3087 | nr = global_page_state(NR_ACTIVE_FILE) + | |
3088 | global_page_state(NR_INACTIVE_FILE); | |
3089 | ||
ec8acf20 | 3090 | if (get_nr_swap_pages() > 0) |
adea02a1 WF |
3091 | nr += global_page_state(NR_ACTIVE_ANON) + |
3092 | global_page_state(NR_INACTIVE_ANON); | |
3093 | ||
3094 | return nr; | |
3095 | } | |
3096 | ||
3097 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
3098 | { | |
3099 | int nr; | |
3100 | ||
3101 | nr = zone_page_state(zone, NR_ACTIVE_FILE) + | |
3102 | zone_page_state(zone, NR_INACTIVE_FILE); | |
3103 | ||
ec8acf20 | 3104 | if (get_nr_swap_pages() > 0) |
adea02a1 WF |
3105 | nr += zone_page_state(zone, NR_ACTIVE_ANON) + |
3106 | zone_page_state(zone, NR_INACTIVE_ANON); | |
3107 | ||
3108 | return nr; | |
4f98a2fe RR |
3109 | } |
3110 | ||
c6f37f12 | 3111 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 3112 | /* |
7b51755c | 3113 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
d6277db4 RW |
3114 | * freed pages. |
3115 | * | |
3116 | * Rather than trying to age LRUs the aim is to preserve the overall | |
3117 | * LRU order by reclaiming preferentially | |
3118 | * inactive > active > active referenced > active mapped | |
1da177e4 | 3119 | */ |
7b51755c | 3120 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
1da177e4 | 3121 | { |
d6277db4 | 3122 | struct reclaim_state reclaim_state; |
d6277db4 | 3123 | struct scan_control sc = { |
7b51755c KM |
3124 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
3125 | .may_swap = 1, | |
3126 | .may_unmap = 1, | |
d6277db4 | 3127 | .may_writepage = 1, |
7b51755c KM |
3128 | .nr_to_reclaim = nr_to_reclaim, |
3129 | .hibernation_mode = 1, | |
7b51755c | 3130 | .order = 0, |
9e3b2f8c | 3131 | .priority = DEF_PRIORITY, |
1da177e4 | 3132 | }; |
a09ed5e0 YH |
3133 | struct shrink_control shrink = { |
3134 | .gfp_mask = sc.gfp_mask, | |
3135 | }; | |
3136 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | |
7b51755c KM |
3137 | struct task_struct *p = current; |
3138 | unsigned long nr_reclaimed; | |
1da177e4 | 3139 | |
7b51755c KM |
3140 | p->flags |= PF_MEMALLOC; |
3141 | lockdep_set_current_reclaim_state(sc.gfp_mask); | |
3142 | reclaim_state.reclaimed_slab = 0; | |
3143 | p->reclaim_state = &reclaim_state; | |
d6277db4 | 3144 | |
a09ed5e0 | 3145 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
d979677c | 3146 | |
7b51755c KM |
3147 | p->reclaim_state = NULL; |
3148 | lockdep_clear_current_reclaim_state(); | |
3149 | p->flags &= ~PF_MEMALLOC; | |
d6277db4 | 3150 | |
7b51755c | 3151 | return nr_reclaimed; |
1da177e4 | 3152 | } |
c6f37f12 | 3153 | #endif /* CONFIG_HIBERNATION */ |
1da177e4 | 3154 | |
1da177e4 LT |
3155 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
3156 | not required for correctness. So if the last cpu in a node goes | |
3157 | away, we get changed to run anywhere: as the first one comes back, | |
3158 | restore their cpu bindings. */ | |
fcb35a9b GKH |
3159 | static int cpu_callback(struct notifier_block *nfb, unsigned long action, |
3160 | void *hcpu) | |
1da177e4 | 3161 | { |
58c0a4a7 | 3162 | int nid; |
1da177e4 | 3163 | |
8bb78442 | 3164 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
48fb2e24 | 3165 | for_each_node_state(nid, N_MEMORY) { |
c5f59f08 | 3166 | pg_data_t *pgdat = NODE_DATA(nid); |
a70f7302 RR |
3167 | const struct cpumask *mask; |
3168 | ||
3169 | mask = cpumask_of_node(pgdat->node_id); | |
c5f59f08 | 3170 | |
3e597945 | 3171 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
1da177e4 | 3172 | /* One of our CPUs online: restore mask */ |
c5f59f08 | 3173 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
1da177e4 LT |
3174 | } |
3175 | } | |
3176 | return NOTIFY_OK; | |
3177 | } | |
1da177e4 | 3178 | |
3218ae14 YG |
3179 | /* |
3180 | * This kswapd start function will be called by init and node-hot-add. | |
3181 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
3182 | */ | |
3183 | int kswapd_run(int nid) | |
3184 | { | |
3185 | pg_data_t *pgdat = NODE_DATA(nid); | |
3186 | int ret = 0; | |
3187 | ||
3188 | if (pgdat->kswapd) | |
3189 | return 0; | |
3190 | ||
3191 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
3192 | if (IS_ERR(pgdat->kswapd)) { | |
3193 | /* failure at boot is fatal */ | |
3194 | BUG_ON(system_state == SYSTEM_BOOTING); | |
d5dc0ad9 GS |
3195 | pr_err("Failed to start kswapd on node %d\n", nid); |
3196 | ret = PTR_ERR(pgdat->kswapd); | |
d72515b8 | 3197 | pgdat->kswapd = NULL; |
3218ae14 YG |
3198 | } |
3199 | return ret; | |
3200 | } | |
3201 | ||
8fe23e05 | 3202 | /* |
d8adde17 JL |
3203 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
3204 | * hold lock_memory_hotplug(). | |
8fe23e05 DR |
3205 | */ |
3206 | void kswapd_stop(int nid) | |
3207 | { | |
3208 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
3209 | ||
d8adde17 | 3210 | if (kswapd) { |
8fe23e05 | 3211 | kthread_stop(kswapd); |
d8adde17 JL |
3212 | NODE_DATA(nid)->kswapd = NULL; |
3213 | } | |
8fe23e05 DR |
3214 | } |
3215 | ||
1da177e4 LT |
3216 | static int __init kswapd_init(void) |
3217 | { | |
3218ae14 | 3218 | int nid; |
69e05944 | 3219 | |
1da177e4 | 3220 | swap_setup(); |
48fb2e24 | 3221 | for_each_node_state(nid, N_MEMORY) |
3218ae14 | 3222 | kswapd_run(nid); |
1da177e4 LT |
3223 | hotcpu_notifier(cpu_callback, 0); |
3224 | return 0; | |
3225 | } | |
3226 | ||
3227 | module_init(kswapd_init) | |
9eeff239 CL |
3228 | |
3229 | #ifdef CONFIG_NUMA | |
3230 | /* | |
3231 | * Zone reclaim mode | |
3232 | * | |
3233 | * If non-zero call zone_reclaim when the number of free pages falls below | |
3234 | * the watermarks. | |
9eeff239 CL |
3235 | */ |
3236 | int zone_reclaim_mode __read_mostly; | |
3237 | ||
1b2ffb78 | 3238 | #define RECLAIM_OFF 0 |
7d03431c | 3239 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
1b2ffb78 CL |
3240 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
3241 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | |
3242 | ||
a92f7126 CL |
3243 | /* |
3244 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | |
3245 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
3246 | * a zone. | |
3247 | */ | |
3248 | #define ZONE_RECLAIM_PRIORITY 4 | |
3249 | ||
9614634f CL |
3250 | /* |
3251 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to | |
3252 | * occur. | |
3253 | */ | |
3254 | int sysctl_min_unmapped_ratio = 1; | |
3255 | ||
0ff38490 CL |
3256 | /* |
3257 | * If the number of slab pages in a zone grows beyond this percentage then | |
3258 | * slab reclaim needs to occur. | |
3259 | */ | |
3260 | int sysctl_min_slab_ratio = 5; | |
3261 | ||
90afa5de MG |
3262 | static inline unsigned long zone_unmapped_file_pages(struct zone *zone) |
3263 | { | |
3264 | unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); | |
3265 | unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + | |
3266 | zone_page_state(zone, NR_ACTIVE_FILE); | |
3267 | ||
3268 | /* | |
3269 | * It's possible for there to be more file mapped pages than | |
3270 | * accounted for by the pages on the file LRU lists because | |
3271 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
3272 | */ | |
3273 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
3274 | } | |
3275 | ||
3276 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
3277 | static long zone_pagecache_reclaimable(struct zone *zone) | |
3278 | { | |
3279 | long nr_pagecache_reclaimable; | |
3280 | long delta = 0; | |
3281 | ||
3282 | /* | |
3283 | * If RECLAIM_SWAP is set, then all file pages are considered | |
3284 | * potentially reclaimable. Otherwise, we have to worry about | |
3285 | * pages like swapcache and zone_unmapped_file_pages() provides | |
3286 | * a better estimate | |
3287 | */ | |
3288 | if (zone_reclaim_mode & RECLAIM_SWAP) | |
3289 | nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); | |
3290 | else | |
3291 | nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); | |
3292 | ||
3293 | /* If we can't clean pages, remove dirty pages from consideration */ | |
3294 | if (!(zone_reclaim_mode & RECLAIM_WRITE)) | |
3295 | delta += zone_page_state(zone, NR_FILE_DIRTY); | |
3296 | ||
3297 | /* Watch for any possible underflows due to delta */ | |
3298 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
3299 | delta = nr_pagecache_reclaimable; | |
3300 | ||
3301 | return nr_pagecache_reclaimable - delta; | |
3302 | } | |
3303 | ||
9eeff239 CL |
3304 | /* |
3305 | * Try to free up some pages from this zone through reclaim. | |
3306 | */ | |
179e9639 | 3307 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 3308 | { |
7fb2d46d | 3309 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 3310 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
3311 | struct task_struct *p = current; |
3312 | struct reclaim_state reclaim_state; | |
179e9639 AM |
3313 | struct scan_control sc = { |
3314 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | |
a6dc60f8 | 3315 | .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), |
2e2e4259 | 3316 | .may_swap = 1, |
62b726c1 | 3317 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
21caf2fc | 3318 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), |
bd2f6199 | 3319 | .order = order, |
9e3b2f8c | 3320 | .priority = ZONE_RECLAIM_PRIORITY, |
179e9639 | 3321 | }; |
a09ed5e0 YH |
3322 | struct shrink_control shrink = { |
3323 | .gfp_mask = sc.gfp_mask, | |
3324 | }; | |
15748048 | 3325 | unsigned long nr_slab_pages0, nr_slab_pages1; |
9eeff239 | 3326 | |
9eeff239 | 3327 | cond_resched(); |
d4f7796e CL |
3328 | /* |
3329 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | |
3330 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
3331 | * and RECLAIM_SWAP. | |
3332 | */ | |
3333 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
76ca542d | 3334 | lockdep_set_current_reclaim_state(gfp_mask); |
9eeff239 CL |
3335 | reclaim_state.reclaimed_slab = 0; |
3336 | p->reclaim_state = &reclaim_state; | |
c84db23c | 3337 | |
90afa5de | 3338 | if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { |
0ff38490 CL |
3339 | /* |
3340 | * Free memory by calling shrink zone with increasing | |
3341 | * priorities until we have enough memory freed. | |
3342 | */ | |
0ff38490 | 3343 | do { |
9e3b2f8c KK |
3344 | shrink_zone(zone, &sc); |
3345 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); | |
0ff38490 | 3346 | } |
c84db23c | 3347 | |
15748048 KM |
3348 | nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3349 | if (nr_slab_pages0 > zone->min_slab_pages) { | |
2a16e3f4 | 3350 | /* |
7fb2d46d | 3351 | * shrink_slab() does not currently allow us to determine how |
0ff38490 CL |
3352 | * many pages were freed in this zone. So we take the current |
3353 | * number of slab pages and shake the slab until it is reduced | |
3354 | * by the same nr_pages that we used for reclaiming unmapped | |
3355 | * pages. | |
2a16e3f4 | 3356 | * |
0ff38490 CL |
3357 | * Note that shrink_slab will free memory on all zones and may |
3358 | * take a long time. | |
2a16e3f4 | 3359 | */ |
4dc4b3d9 KM |
3360 | for (;;) { |
3361 | unsigned long lru_pages = zone_reclaimable_pages(zone); | |
3362 | ||
3363 | /* No reclaimable slab or very low memory pressure */ | |
1495f230 | 3364 | if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) |
4dc4b3d9 KM |
3365 | break; |
3366 | ||
3367 | /* Freed enough memory */ | |
3368 | nr_slab_pages1 = zone_page_state(zone, | |
3369 | NR_SLAB_RECLAIMABLE); | |
3370 | if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) | |
3371 | break; | |
3372 | } | |
83e33a47 CL |
3373 | |
3374 | /* | |
3375 | * Update nr_reclaimed by the number of slab pages we | |
3376 | * reclaimed from this zone. | |
3377 | */ | |
15748048 KM |
3378 | nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3379 | if (nr_slab_pages1 < nr_slab_pages0) | |
3380 | sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; | |
2a16e3f4 CL |
3381 | } |
3382 | ||
9eeff239 | 3383 | p->reclaim_state = NULL; |
d4f7796e | 3384 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
76ca542d | 3385 | lockdep_clear_current_reclaim_state(); |
a79311c1 | 3386 | return sc.nr_reclaimed >= nr_pages; |
9eeff239 | 3387 | } |
179e9639 AM |
3388 | |
3389 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |
3390 | { | |
179e9639 | 3391 | int node_id; |
d773ed6b | 3392 | int ret; |
179e9639 AM |
3393 | |
3394 | /* | |
0ff38490 CL |
3395 | * Zone reclaim reclaims unmapped file backed pages and |
3396 | * slab pages if we are over the defined limits. | |
34aa1330 | 3397 | * |
9614634f CL |
3398 | * A small portion of unmapped file backed pages is needed for |
3399 | * file I/O otherwise pages read by file I/O will be immediately | |
3400 | * thrown out if the zone is overallocated. So we do not reclaim | |
3401 | * if less than a specified percentage of the zone is used by | |
3402 | * unmapped file backed pages. | |
179e9639 | 3403 | */ |
90afa5de MG |
3404 | if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && |
3405 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) | |
fa5e084e | 3406 | return ZONE_RECLAIM_FULL; |
179e9639 | 3407 | |
93e4a89a | 3408 | if (zone->all_unreclaimable) |
fa5e084e | 3409 | return ZONE_RECLAIM_FULL; |
d773ed6b | 3410 | |
179e9639 | 3411 | /* |
d773ed6b | 3412 | * Do not scan if the allocation should not be delayed. |
179e9639 | 3413 | */ |
d773ed6b | 3414 | if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) |
fa5e084e | 3415 | return ZONE_RECLAIM_NOSCAN; |
179e9639 AM |
3416 | |
3417 | /* | |
3418 | * Only run zone reclaim on the local zone or on zones that do not | |
3419 | * have associated processors. This will favor the local processor | |
3420 | * over remote processors and spread off node memory allocations | |
3421 | * as wide as possible. | |
3422 | */ | |
89fa3024 | 3423 | node_id = zone_to_nid(zone); |
37c0708d | 3424 | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) |
fa5e084e | 3425 | return ZONE_RECLAIM_NOSCAN; |
d773ed6b DR |
3426 | |
3427 | if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) | |
fa5e084e MG |
3428 | return ZONE_RECLAIM_NOSCAN; |
3429 | ||
d773ed6b DR |
3430 | ret = __zone_reclaim(zone, gfp_mask, order); |
3431 | zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); | |
3432 | ||
24cf7251 MG |
3433 | if (!ret) |
3434 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
3435 | ||
d773ed6b | 3436 | return ret; |
179e9639 | 3437 | } |
9eeff239 | 3438 | #endif |
894bc310 | 3439 | |
894bc310 LS |
3440 | /* |
3441 | * page_evictable - test whether a page is evictable | |
3442 | * @page: the page to test | |
894bc310 LS |
3443 | * |
3444 | * Test whether page is evictable--i.e., should be placed on active/inactive | |
39b5f29a | 3445 | * lists vs unevictable list. |
894bc310 LS |
3446 | * |
3447 | * Reasons page might not be evictable: | |
ba9ddf49 | 3448 | * (1) page's mapping marked unevictable |
b291f000 | 3449 | * (2) page is part of an mlocked VMA |
ba9ddf49 | 3450 | * |
894bc310 | 3451 | */ |
39b5f29a | 3452 | int page_evictable(struct page *page) |
894bc310 | 3453 | { |
39b5f29a | 3454 | return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); |
894bc310 | 3455 | } |
89e004ea | 3456 | |
85046579 | 3457 | #ifdef CONFIG_SHMEM |
89e004ea | 3458 | /** |
24513264 HD |
3459 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list |
3460 | * @pages: array of pages to check | |
3461 | * @nr_pages: number of pages to check | |
89e004ea | 3462 | * |
24513264 | 3463 | * Checks pages for evictability and moves them to the appropriate lru list. |
85046579 HD |
3464 | * |
3465 | * This function is only used for SysV IPC SHM_UNLOCK. | |
89e004ea | 3466 | */ |
24513264 | 3467 | void check_move_unevictable_pages(struct page **pages, int nr_pages) |
89e004ea | 3468 | { |
925b7673 | 3469 | struct lruvec *lruvec; |
24513264 HD |
3470 | struct zone *zone = NULL; |
3471 | int pgscanned = 0; | |
3472 | int pgrescued = 0; | |
3473 | int i; | |
89e004ea | 3474 | |
24513264 HD |
3475 | for (i = 0; i < nr_pages; i++) { |
3476 | struct page *page = pages[i]; | |
3477 | struct zone *pagezone; | |
89e004ea | 3478 | |
24513264 HD |
3479 | pgscanned++; |
3480 | pagezone = page_zone(page); | |
3481 | if (pagezone != zone) { | |
3482 | if (zone) | |
3483 | spin_unlock_irq(&zone->lru_lock); | |
3484 | zone = pagezone; | |
3485 | spin_lock_irq(&zone->lru_lock); | |
3486 | } | |
fa9add64 | 3487 | lruvec = mem_cgroup_page_lruvec(page, zone); |
89e004ea | 3488 | |
24513264 HD |
3489 | if (!PageLRU(page) || !PageUnevictable(page)) |
3490 | continue; | |
89e004ea | 3491 | |
39b5f29a | 3492 | if (page_evictable(page)) { |
24513264 HD |
3493 | enum lru_list lru = page_lru_base_type(page); |
3494 | ||
3495 | VM_BUG_ON(PageActive(page)); | |
3496 | ClearPageUnevictable(page); | |
fa9add64 HD |
3497 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
3498 | add_page_to_lru_list(page, lruvec, lru); | |
24513264 | 3499 | pgrescued++; |
89e004ea | 3500 | } |
24513264 | 3501 | } |
89e004ea | 3502 | |
24513264 HD |
3503 | if (zone) { |
3504 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
3505 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
3506 | spin_unlock_irq(&zone->lru_lock); | |
89e004ea | 3507 | } |
89e004ea | 3508 | } |
85046579 | 3509 | #endif /* CONFIG_SHMEM */ |
af936a16 | 3510 | |
264e56d8 | 3511 | static void warn_scan_unevictable_pages(void) |
af936a16 | 3512 | { |
264e56d8 | 3513 | printk_once(KERN_WARNING |
25bd91bd | 3514 | "%s: The scan_unevictable_pages sysctl/node-interface has been " |
264e56d8 | 3515 | "disabled for lack of a legitimate use case. If you have " |
25bd91bd KM |
3516 | "one, please send an email to [email protected].\n", |
3517 | current->comm); | |
af936a16 LS |
3518 | } |
3519 | ||
3520 | /* | |
3521 | * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of | |
3522 | * all nodes' unevictable lists for evictable pages | |
3523 | */ | |
3524 | unsigned long scan_unevictable_pages; | |
3525 | ||
3526 | int scan_unevictable_handler(struct ctl_table *table, int write, | |
8d65af78 | 3527 | void __user *buffer, |
af936a16 LS |
3528 | size_t *length, loff_t *ppos) |
3529 | { | |
264e56d8 | 3530 | warn_scan_unevictable_pages(); |
8d65af78 | 3531 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
af936a16 LS |
3532 | scan_unevictable_pages = 0; |
3533 | return 0; | |
3534 | } | |
3535 | ||
e4455abb | 3536 | #ifdef CONFIG_NUMA |
af936a16 LS |
3537 | /* |
3538 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of | |
3539 | * a specified node's per zone unevictable lists for evictable pages. | |
3540 | */ | |
3541 | ||
10fbcf4c KS |
3542 | static ssize_t read_scan_unevictable_node(struct device *dev, |
3543 | struct device_attribute *attr, | |
af936a16 LS |
3544 | char *buf) |
3545 | { | |
264e56d8 | 3546 | warn_scan_unevictable_pages(); |
af936a16 LS |
3547 | return sprintf(buf, "0\n"); /* always zero; should fit... */ |
3548 | } | |
3549 | ||
10fbcf4c KS |
3550 | static ssize_t write_scan_unevictable_node(struct device *dev, |
3551 | struct device_attribute *attr, | |
af936a16 LS |
3552 | const char *buf, size_t count) |
3553 | { | |
264e56d8 | 3554 | warn_scan_unevictable_pages(); |
af936a16 LS |
3555 | return 1; |
3556 | } | |
3557 | ||
3558 | ||
10fbcf4c | 3559 | static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, |
af936a16 LS |
3560 | read_scan_unevictable_node, |
3561 | write_scan_unevictable_node); | |
3562 | ||
3563 | int scan_unevictable_register_node(struct node *node) | |
3564 | { | |
10fbcf4c | 3565 | return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); |
af936a16 LS |
3566 | } |
3567 | ||
3568 | void scan_unevictable_unregister_node(struct node *node) | |
3569 | { | |
10fbcf4c | 3570 | device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); |
af936a16 | 3571 | } |
e4455abb | 3572 | #endif |