]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
14 | #include <linux/mm.h> | |
15 | #include <linux/module.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/kernel_stat.h> | |
18 | #include <linux/swap.h> | |
19 | #include <linux/pagemap.h> | |
20 | #include <linux/init.h> | |
21 | #include <linux/highmem.h> | |
e129b5c2 | 22 | #include <linux/vmstat.h> |
1da177e4 LT |
23 | #include <linux/file.h> |
24 | #include <linux/writeback.h> | |
25 | #include <linux/blkdev.h> | |
26 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
27 | buffer_heads_over_limit */ | |
28 | #include <linux/mm_inline.h> | |
29 | #include <linux/pagevec.h> | |
30 | #include <linux/backing-dev.h> | |
31 | #include <linux/rmap.h> | |
32 | #include <linux/topology.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
35 | #include <linux/notifier.h> | |
36 | #include <linux/rwsem.h> | |
248a0301 | 37 | #include <linux/delay.h> |
3218ae14 | 38 | #include <linux/kthread.h> |
7dfb7103 | 39 | #include <linux/freezer.h> |
66e1707b | 40 | #include <linux/memcontrol.h> |
873b4771 | 41 | #include <linux/delayacct.h> |
af936a16 | 42 | #include <linux/sysctl.h> |
1da177e4 LT |
43 | |
44 | #include <asm/tlbflush.h> | |
45 | #include <asm/div64.h> | |
46 | ||
47 | #include <linux/swapops.h> | |
48 | ||
0f8053a5 NP |
49 | #include "internal.h" |
50 | ||
1da177e4 | 51 | struct scan_control { |
1da177e4 LT |
52 | /* Incremented by the number of inactive pages that were scanned */ |
53 | unsigned long nr_scanned; | |
54 | ||
1da177e4 | 55 | /* This context's GFP mask */ |
6daa0e28 | 56 | gfp_t gfp_mask; |
1da177e4 LT |
57 | |
58 | int may_writepage; | |
59 | ||
f1fd1067 CL |
60 | /* Can pages be swapped as part of reclaim? */ |
61 | int may_swap; | |
62 | ||
1da177e4 LT |
63 | /* This context's SWAP_CLUSTER_MAX. If freeing memory for |
64 | * suspend, we effectively ignore SWAP_CLUSTER_MAX. | |
65 | * In this context, it doesn't matter that we scan the | |
66 | * whole list at once. */ | |
67 | int swap_cluster_max; | |
d6277db4 RW |
68 | |
69 | int swappiness; | |
408d8544 NP |
70 | |
71 | int all_unreclaimable; | |
5ad333eb AW |
72 | |
73 | int order; | |
66e1707b BS |
74 | |
75 | /* Which cgroup do we reclaim from */ | |
76 | struct mem_cgroup *mem_cgroup; | |
77 | ||
78 | /* Pluggable isolate pages callback */ | |
79 | unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, | |
80 | unsigned long *scanned, int order, int mode, | |
81 | struct zone *z, struct mem_cgroup *mem_cont, | |
4f98a2fe | 82 | int active, int file); |
1da177e4 LT |
83 | }; |
84 | ||
1da177e4 LT |
85 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
86 | ||
87 | #ifdef ARCH_HAS_PREFETCH | |
88 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
89 | do { \ | |
90 | if ((_page)->lru.prev != _base) { \ | |
91 | struct page *prev; \ | |
92 | \ | |
93 | prev = lru_to_page(&(_page->lru)); \ | |
94 | prefetch(&prev->_field); \ | |
95 | } \ | |
96 | } while (0) | |
97 | #else | |
98 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
99 | #endif | |
100 | ||
101 | #ifdef ARCH_HAS_PREFETCHW | |
102 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
103 | do { \ | |
104 | if ((_page)->lru.prev != _base) { \ | |
105 | struct page *prev; \ | |
106 | \ | |
107 | prev = lru_to_page(&(_page->lru)); \ | |
108 | prefetchw(&prev->_field); \ | |
109 | } \ | |
110 | } while (0) | |
111 | #else | |
112 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
113 | #endif | |
114 | ||
115 | /* | |
116 | * From 0 .. 100. Higher means more swappy. | |
117 | */ | |
118 | int vm_swappiness = 60; | |
bd1e22b8 | 119 | long vm_total_pages; /* The total number of pages which the VM controls */ |
1da177e4 LT |
120 | |
121 | static LIST_HEAD(shrinker_list); | |
122 | static DECLARE_RWSEM(shrinker_rwsem); | |
123 | ||
00f0b825 | 124 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
91a45470 KH |
125 | #define scan_global_lru(sc) (!(sc)->mem_cgroup) |
126 | #else | |
127 | #define scan_global_lru(sc) (1) | |
128 | #endif | |
129 | ||
1da177e4 LT |
130 | /* |
131 | * Add a shrinker callback to be called from the vm | |
132 | */ | |
8e1f936b | 133 | void register_shrinker(struct shrinker *shrinker) |
1da177e4 | 134 | { |
8e1f936b RR |
135 | shrinker->nr = 0; |
136 | down_write(&shrinker_rwsem); | |
137 | list_add_tail(&shrinker->list, &shrinker_list); | |
138 | up_write(&shrinker_rwsem); | |
1da177e4 | 139 | } |
8e1f936b | 140 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
141 | |
142 | /* | |
143 | * Remove one | |
144 | */ | |
8e1f936b | 145 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 LT |
146 | { |
147 | down_write(&shrinker_rwsem); | |
148 | list_del(&shrinker->list); | |
149 | up_write(&shrinker_rwsem); | |
1da177e4 | 150 | } |
8e1f936b | 151 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 LT |
152 | |
153 | #define SHRINK_BATCH 128 | |
154 | /* | |
155 | * Call the shrink functions to age shrinkable caches | |
156 | * | |
157 | * Here we assume it costs one seek to replace a lru page and that it also | |
158 | * takes a seek to recreate a cache object. With this in mind we age equal | |
159 | * percentages of the lru and ageable caches. This should balance the seeks | |
160 | * generated by these structures. | |
161 | * | |
183ff22b | 162 | * If the vm encountered mapped pages on the LRU it increase the pressure on |
1da177e4 LT |
163 | * slab to avoid swapping. |
164 | * | |
165 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | |
166 | * | |
167 | * `lru_pages' represents the number of on-LRU pages in all the zones which | |
168 | * are eligible for the caller's allocation attempt. It is used for balancing | |
169 | * slab reclaim versus page reclaim. | |
b15e0905 | 170 | * |
171 | * Returns the number of slab objects which we shrunk. | |
1da177e4 | 172 | */ |
69e05944 AM |
173 | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, |
174 | unsigned long lru_pages) | |
1da177e4 LT |
175 | { |
176 | struct shrinker *shrinker; | |
69e05944 | 177 | unsigned long ret = 0; |
1da177e4 LT |
178 | |
179 | if (scanned == 0) | |
180 | scanned = SWAP_CLUSTER_MAX; | |
181 | ||
182 | if (!down_read_trylock(&shrinker_rwsem)) | |
b15e0905 | 183 | return 1; /* Assume we'll be able to shrink next time */ |
1da177e4 LT |
184 | |
185 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
186 | unsigned long long delta; | |
187 | unsigned long total_scan; | |
8e1f936b | 188 | unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); |
1da177e4 LT |
189 | |
190 | delta = (4 * scanned) / shrinker->seeks; | |
ea164d73 | 191 | delta *= max_pass; |
1da177e4 LT |
192 | do_div(delta, lru_pages + 1); |
193 | shrinker->nr += delta; | |
ea164d73 AA |
194 | if (shrinker->nr < 0) { |
195 | printk(KERN_ERR "%s: nr=%ld\n", | |
d40cee24 | 196 | __func__, shrinker->nr); |
ea164d73 AA |
197 | shrinker->nr = max_pass; |
198 | } | |
199 | ||
200 | /* | |
201 | * Avoid risking looping forever due to too large nr value: | |
202 | * never try to free more than twice the estimate number of | |
203 | * freeable entries. | |
204 | */ | |
205 | if (shrinker->nr > max_pass * 2) | |
206 | shrinker->nr = max_pass * 2; | |
1da177e4 LT |
207 | |
208 | total_scan = shrinker->nr; | |
209 | shrinker->nr = 0; | |
210 | ||
211 | while (total_scan >= SHRINK_BATCH) { | |
212 | long this_scan = SHRINK_BATCH; | |
213 | int shrink_ret; | |
b15e0905 | 214 | int nr_before; |
1da177e4 | 215 | |
8e1f936b RR |
216 | nr_before = (*shrinker->shrink)(0, gfp_mask); |
217 | shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); | |
1da177e4 LT |
218 | if (shrink_ret == -1) |
219 | break; | |
b15e0905 | 220 | if (shrink_ret < nr_before) |
221 | ret += nr_before - shrink_ret; | |
f8891e5e | 222 | count_vm_events(SLABS_SCANNED, this_scan); |
1da177e4 LT |
223 | total_scan -= this_scan; |
224 | ||
225 | cond_resched(); | |
226 | } | |
227 | ||
228 | shrinker->nr += total_scan; | |
229 | } | |
230 | up_read(&shrinker_rwsem); | |
b15e0905 | 231 | return ret; |
1da177e4 LT |
232 | } |
233 | ||
234 | /* Called without lock on whether page is mapped, so answer is unstable */ | |
235 | static inline int page_mapping_inuse(struct page *page) | |
236 | { | |
237 | struct address_space *mapping; | |
238 | ||
239 | /* Page is in somebody's page tables. */ | |
240 | if (page_mapped(page)) | |
241 | return 1; | |
242 | ||
243 | /* Be more reluctant to reclaim swapcache than pagecache */ | |
244 | if (PageSwapCache(page)) | |
245 | return 1; | |
246 | ||
247 | mapping = page_mapping(page); | |
248 | if (!mapping) | |
249 | return 0; | |
250 | ||
251 | /* File is mmap'd by somebody? */ | |
252 | return mapping_mapped(mapping); | |
253 | } | |
254 | ||
255 | static inline int is_page_cache_freeable(struct page *page) | |
256 | { | |
257 | return page_count(page) - !!PagePrivate(page) == 2; | |
258 | } | |
259 | ||
260 | static int may_write_to_queue(struct backing_dev_info *bdi) | |
261 | { | |
930d9152 | 262 | if (current->flags & PF_SWAPWRITE) |
1da177e4 LT |
263 | return 1; |
264 | if (!bdi_write_congested(bdi)) | |
265 | return 1; | |
266 | if (bdi == current->backing_dev_info) | |
267 | return 1; | |
268 | return 0; | |
269 | } | |
270 | ||
271 | /* | |
272 | * We detected a synchronous write error writing a page out. Probably | |
273 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
274 | * fsync(), msync() or close(). | |
275 | * | |
276 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
277 | * prevents it from being freed up. But we have a ref on the page and once | |
278 | * that page is locked, the mapping is pinned. | |
279 | * | |
280 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
281 | * __GFP_FS. | |
282 | */ | |
283 | static void handle_write_error(struct address_space *mapping, | |
284 | struct page *page, int error) | |
285 | { | |
286 | lock_page(page); | |
3e9f45bd GC |
287 | if (page_mapping(page) == mapping) |
288 | mapping_set_error(mapping, error); | |
1da177e4 LT |
289 | unlock_page(page); |
290 | } | |
291 | ||
c661b078 AW |
292 | /* Request for sync pageout. */ |
293 | enum pageout_io { | |
294 | PAGEOUT_IO_ASYNC, | |
295 | PAGEOUT_IO_SYNC, | |
296 | }; | |
297 | ||
04e62a29 CL |
298 | /* possible outcome of pageout() */ |
299 | typedef enum { | |
300 | /* failed to write page out, page is locked */ | |
301 | PAGE_KEEP, | |
302 | /* move page to the active list, page is locked */ | |
303 | PAGE_ACTIVATE, | |
304 | /* page has been sent to the disk successfully, page is unlocked */ | |
305 | PAGE_SUCCESS, | |
306 | /* page is clean and locked */ | |
307 | PAGE_CLEAN, | |
308 | } pageout_t; | |
309 | ||
1da177e4 | 310 | /* |
1742f19f AM |
311 | * pageout is called by shrink_page_list() for each dirty page. |
312 | * Calls ->writepage(). | |
1da177e4 | 313 | */ |
c661b078 AW |
314 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
315 | enum pageout_io sync_writeback) | |
1da177e4 LT |
316 | { |
317 | /* | |
318 | * If the page is dirty, only perform writeback if that write | |
319 | * will be non-blocking. To prevent this allocation from being | |
320 | * stalled by pagecache activity. But note that there may be | |
321 | * stalls if we need to run get_block(). We could test | |
322 | * PagePrivate for that. | |
323 | * | |
324 | * If this process is currently in generic_file_write() against | |
325 | * this page's queue, we can perform writeback even if that | |
326 | * will block. | |
327 | * | |
328 | * If the page is swapcache, write it back even if that would | |
329 | * block, for some throttling. This happens by accident, because | |
330 | * swap_backing_dev_info is bust: it doesn't reflect the | |
331 | * congestion state of the swapdevs. Easy to fix, if needed. | |
332 | * See swapfile.c:page_queue_congested(). | |
333 | */ | |
334 | if (!is_page_cache_freeable(page)) | |
335 | return PAGE_KEEP; | |
336 | if (!mapping) { | |
337 | /* | |
338 | * Some data journaling orphaned pages can have | |
339 | * page->mapping == NULL while being dirty with clean buffers. | |
340 | */ | |
323aca6c | 341 | if (PagePrivate(page)) { |
1da177e4 LT |
342 | if (try_to_free_buffers(page)) { |
343 | ClearPageDirty(page); | |
d40cee24 | 344 | printk("%s: orphaned page\n", __func__); |
1da177e4 LT |
345 | return PAGE_CLEAN; |
346 | } | |
347 | } | |
348 | return PAGE_KEEP; | |
349 | } | |
350 | if (mapping->a_ops->writepage == NULL) | |
351 | return PAGE_ACTIVATE; | |
352 | if (!may_write_to_queue(mapping->backing_dev_info)) | |
353 | return PAGE_KEEP; | |
354 | ||
355 | if (clear_page_dirty_for_io(page)) { | |
356 | int res; | |
357 | struct writeback_control wbc = { | |
358 | .sync_mode = WB_SYNC_NONE, | |
359 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
360 | .range_start = 0, |
361 | .range_end = LLONG_MAX, | |
1da177e4 LT |
362 | .nonblocking = 1, |
363 | .for_reclaim = 1, | |
364 | }; | |
365 | ||
366 | SetPageReclaim(page); | |
367 | res = mapping->a_ops->writepage(page, &wbc); | |
368 | if (res < 0) | |
369 | handle_write_error(mapping, page, res); | |
994fc28c | 370 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
371 | ClearPageReclaim(page); |
372 | return PAGE_ACTIVATE; | |
373 | } | |
c661b078 AW |
374 | |
375 | /* | |
376 | * Wait on writeback if requested to. This happens when | |
377 | * direct reclaiming a large contiguous area and the | |
378 | * first attempt to free a range of pages fails. | |
379 | */ | |
380 | if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) | |
381 | wait_on_page_writeback(page); | |
382 | ||
1da177e4 LT |
383 | if (!PageWriteback(page)) { |
384 | /* synchronous write or broken a_ops? */ | |
385 | ClearPageReclaim(page); | |
386 | } | |
e129b5c2 | 387 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
388 | return PAGE_SUCCESS; |
389 | } | |
390 | ||
391 | return PAGE_CLEAN; | |
392 | } | |
393 | ||
a649fd92 | 394 | /* |
e286781d NP |
395 | * Same as remove_mapping, but if the page is removed from the mapping, it |
396 | * gets returned with a refcount of 0. | |
a649fd92 | 397 | */ |
e286781d | 398 | static int __remove_mapping(struct address_space *mapping, struct page *page) |
49d2e9cc | 399 | { |
28e4d965 NP |
400 | BUG_ON(!PageLocked(page)); |
401 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc | 402 | |
19fd6231 | 403 | spin_lock_irq(&mapping->tree_lock); |
49d2e9cc | 404 | /* |
0fd0e6b0 NP |
405 | * The non racy check for a busy page. |
406 | * | |
407 | * Must be careful with the order of the tests. When someone has | |
408 | * a ref to the page, it may be possible that they dirty it then | |
409 | * drop the reference. So if PageDirty is tested before page_count | |
410 | * here, then the following race may occur: | |
411 | * | |
412 | * get_user_pages(&page); | |
413 | * [user mapping goes away] | |
414 | * write_to(page); | |
415 | * !PageDirty(page) [good] | |
416 | * SetPageDirty(page); | |
417 | * put_page(page); | |
418 | * !page_count(page) [good, discard it] | |
419 | * | |
420 | * [oops, our write_to data is lost] | |
421 | * | |
422 | * Reversing the order of the tests ensures such a situation cannot | |
423 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
424 | * load is not satisfied before that of page->_count. | |
425 | * | |
426 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
427 | * and thus under tree_lock, then this ordering is not required. | |
49d2e9cc | 428 | */ |
e286781d | 429 | if (!page_freeze_refs(page, 2)) |
49d2e9cc | 430 | goto cannot_free; |
e286781d NP |
431 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
432 | if (unlikely(PageDirty(page))) { | |
433 | page_unfreeze_refs(page, 2); | |
49d2e9cc | 434 | goto cannot_free; |
e286781d | 435 | } |
49d2e9cc CL |
436 | |
437 | if (PageSwapCache(page)) { | |
438 | swp_entry_t swap = { .val = page_private(page) }; | |
439 | __delete_from_swap_cache(page); | |
19fd6231 | 440 | spin_unlock_irq(&mapping->tree_lock); |
49d2e9cc | 441 | swap_free(swap); |
e286781d NP |
442 | } else { |
443 | __remove_from_page_cache(page); | |
19fd6231 | 444 | spin_unlock_irq(&mapping->tree_lock); |
49d2e9cc CL |
445 | } |
446 | ||
49d2e9cc CL |
447 | return 1; |
448 | ||
449 | cannot_free: | |
19fd6231 | 450 | spin_unlock_irq(&mapping->tree_lock); |
49d2e9cc CL |
451 | return 0; |
452 | } | |
453 | ||
e286781d NP |
454 | /* |
455 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
456 | * someone else has a ref on the page, abort and return 0. If it was | |
457 | * successfully detached, return 1. Assumes the caller has a single ref on | |
458 | * this page. | |
459 | */ | |
460 | int remove_mapping(struct address_space *mapping, struct page *page) | |
461 | { | |
462 | if (__remove_mapping(mapping, page)) { | |
463 | /* | |
464 | * Unfreezing the refcount with 1 rather than 2 effectively | |
465 | * drops the pagecache ref for us without requiring another | |
466 | * atomic operation. | |
467 | */ | |
468 | page_unfreeze_refs(page, 1); | |
469 | return 1; | |
470 | } | |
471 | return 0; | |
472 | } | |
473 | ||
894bc310 LS |
474 | /** |
475 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
476 | * @page: page to be put back to appropriate lru list | |
477 | * | |
478 | * Add previously isolated @page to appropriate LRU list. | |
479 | * Page may still be unevictable for other reasons. | |
480 | * | |
481 | * lru_lock must not be held, interrupts must be enabled. | |
482 | */ | |
483 | #ifdef CONFIG_UNEVICTABLE_LRU | |
484 | void putback_lru_page(struct page *page) | |
485 | { | |
486 | int lru; | |
487 | int active = !!TestClearPageActive(page); | |
bbfd28ee | 488 | int was_unevictable = PageUnevictable(page); |
894bc310 LS |
489 | |
490 | VM_BUG_ON(PageLRU(page)); | |
491 | ||
492 | redo: | |
493 | ClearPageUnevictable(page); | |
494 | ||
495 | if (page_evictable(page, NULL)) { | |
496 | /* | |
497 | * For evictable pages, we can use the cache. | |
498 | * In event of a race, worst case is we end up with an | |
499 | * unevictable page on [in]active list. | |
500 | * We know how to handle that. | |
501 | */ | |
502 | lru = active + page_is_file_cache(page); | |
503 | lru_cache_add_lru(page, lru); | |
504 | } else { | |
505 | /* | |
506 | * Put unevictable pages directly on zone's unevictable | |
507 | * list. | |
508 | */ | |
509 | lru = LRU_UNEVICTABLE; | |
510 | add_page_to_unevictable_list(page); | |
511 | } | |
512 | mem_cgroup_move_lists(page, lru); | |
513 | ||
514 | /* | |
515 | * page's status can change while we move it among lru. If an evictable | |
516 | * page is on unevictable list, it never be freed. To avoid that, | |
517 | * check after we added it to the list, again. | |
518 | */ | |
519 | if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { | |
520 | if (!isolate_lru_page(page)) { | |
521 | put_page(page); | |
522 | goto redo; | |
523 | } | |
524 | /* This means someone else dropped this page from LRU | |
525 | * So, it will be freed or putback to LRU again. There is | |
526 | * nothing to do here. | |
527 | */ | |
528 | } | |
529 | ||
bbfd28ee LS |
530 | if (was_unevictable && lru != LRU_UNEVICTABLE) |
531 | count_vm_event(UNEVICTABLE_PGRESCUED); | |
532 | else if (!was_unevictable && lru == LRU_UNEVICTABLE) | |
533 | count_vm_event(UNEVICTABLE_PGCULLED); | |
534 | ||
894bc310 LS |
535 | put_page(page); /* drop ref from isolate */ |
536 | } | |
537 | ||
538 | #else /* CONFIG_UNEVICTABLE_LRU */ | |
539 | ||
540 | void putback_lru_page(struct page *page) | |
541 | { | |
542 | int lru; | |
543 | VM_BUG_ON(PageLRU(page)); | |
544 | ||
545 | lru = !!TestClearPageActive(page) + page_is_file_cache(page); | |
546 | lru_cache_add_lru(page, lru); | |
547 | mem_cgroup_move_lists(page, lru); | |
548 | put_page(page); | |
549 | } | |
550 | #endif /* CONFIG_UNEVICTABLE_LRU */ | |
551 | ||
552 | ||
1da177e4 | 553 | /* |
1742f19f | 554 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 555 | */ |
1742f19f | 556 | static unsigned long shrink_page_list(struct list_head *page_list, |
c661b078 AW |
557 | struct scan_control *sc, |
558 | enum pageout_io sync_writeback) | |
1da177e4 LT |
559 | { |
560 | LIST_HEAD(ret_pages); | |
561 | struct pagevec freed_pvec; | |
562 | int pgactivate = 0; | |
05ff5137 | 563 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
564 | |
565 | cond_resched(); | |
566 | ||
567 | pagevec_init(&freed_pvec, 1); | |
568 | while (!list_empty(page_list)) { | |
569 | struct address_space *mapping; | |
570 | struct page *page; | |
571 | int may_enter_fs; | |
572 | int referenced; | |
573 | ||
574 | cond_resched(); | |
575 | ||
576 | page = lru_to_page(page_list); | |
577 | list_del(&page->lru); | |
578 | ||
529ae9aa | 579 | if (!trylock_page(page)) |
1da177e4 LT |
580 | goto keep; |
581 | ||
725d704e | 582 | VM_BUG_ON(PageActive(page)); |
1da177e4 LT |
583 | |
584 | sc->nr_scanned++; | |
80e43426 | 585 | |
b291f000 NP |
586 | if (unlikely(!page_evictable(page, NULL))) |
587 | goto cull_mlocked; | |
894bc310 | 588 | |
80e43426 CL |
589 | if (!sc->may_swap && page_mapped(page)) |
590 | goto keep_locked; | |
591 | ||
1da177e4 LT |
592 | /* Double the slab pressure for mapped and swapcache pages */ |
593 | if (page_mapped(page) || PageSwapCache(page)) | |
594 | sc->nr_scanned++; | |
595 | ||
c661b078 AW |
596 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
597 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
598 | ||
599 | if (PageWriteback(page)) { | |
600 | /* | |
601 | * Synchronous reclaim is performed in two passes, | |
602 | * first an asynchronous pass over the list to | |
603 | * start parallel writeback, and a second synchronous | |
604 | * pass to wait for the IO to complete. Wait here | |
605 | * for any page for which writeback has already | |
606 | * started. | |
607 | */ | |
608 | if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) | |
609 | wait_on_page_writeback(page); | |
4dd4b920 | 610 | else |
c661b078 AW |
611 | goto keep_locked; |
612 | } | |
1da177e4 | 613 | |
bed7161a | 614 | referenced = page_referenced(page, 1, sc->mem_cgroup); |
1da177e4 | 615 | /* In active use or really unfreeable? Activate it. */ |
5ad333eb AW |
616 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && |
617 | referenced && page_mapping_inuse(page)) | |
1da177e4 LT |
618 | goto activate_locked; |
619 | ||
620 | #ifdef CONFIG_SWAP | |
621 | /* | |
622 | * Anonymous process memory has backing store? | |
623 | * Try to allocate it some swap space here. | |
624 | */ | |
b291f000 NP |
625 | if (PageAnon(page) && !PageSwapCache(page)) { |
626 | switch (try_to_munlock(page)) { | |
627 | case SWAP_FAIL: /* shouldn't happen */ | |
628 | case SWAP_AGAIN: | |
629 | goto keep_locked; | |
630 | case SWAP_MLOCK: | |
631 | goto cull_mlocked; | |
632 | case SWAP_SUCCESS: | |
633 | ; /* fall thru'; add to swap cache */ | |
634 | } | |
1480a540 | 635 | if (!add_to_swap(page, GFP_ATOMIC)) |
1da177e4 | 636 | goto activate_locked; |
b291f000 | 637 | } |
1da177e4 LT |
638 | #endif /* CONFIG_SWAP */ |
639 | ||
640 | mapping = page_mapping(page); | |
1da177e4 LT |
641 | |
642 | /* | |
643 | * The page is mapped into the page tables of one or more | |
644 | * processes. Try to unmap it here. | |
645 | */ | |
646 | if (page_mapped(page) && mapping) { | |
a48d07af | 647 | switch (try_to_unmap(page, 0)) { |
1da177e4 LT |
648 | case SWAP_FAIL: |
649 | goto activate_locked; | |
650 | case SWAP_AGAIN: | |
651 | goto keep_locked; | |
b291f000 NP |
652 | case SWAP_MLOCK: |
653 | goto cull_mlocked; | |
1da177e4 LT |
654 | case SWAP_SUCCESS: |
655 | ; /* try to free the page below */ | |
656 | } | |
657 | } | |
658 | ||
659 | if (PageDirty(page)) { | |
5ad333eb | 660 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) |
1da177e4 | 661 | goto keep_locked; |
4dd4b920 | 662 | if (!may_enter_fs) |
1da177e4 | 663 | goto keep_locked; |
52a8363e | 664 | if (!sc->may_writepage) |
1da177e4 LT |
665 | goto keep_locked; |
666 | ||
667 | /* Page is dirty, try to write it out here */ | |
c661b078 | 668 | switch (pageout(page, mapping, sync_writeback)) { |
1da177e4 LT |
669 | case PAGE_KEEP: |
670 | goto keep_locked; | |
671 | case PAGE_ACTIVATE: | |
672 | goto activate_locked; | |
673 | case PAGE_SUCCESS: | |
4dd4b920 | 674 | if (PageWriteback(page) || PageDirty(page)) |
1da177e4 LT |
675 | goto keep; |
676 | /* | |
677 | * A synchronous write - probably a ramdisk. Go | |
678 | * ahead and try to reclaim the page. | |
679 | */ | |
529ae9aa | 680 | if (!trylock_page(page)) |
1da177e4 LT |
681 | goto keep; |
682 | if (PageDirty(page) || PageWriteback(page)) | |
683 | goto keep_locked; | |
684 | mapping = page_mapping(page); | |
685 | case PAGE_CLEAN: | |
686 | ; /* try to free the page below */ | |
687 | } | |
688 | } | |
689 | ||
690 | /* | |
691 | * If the page has buffers, try to free the buffer mappings | |
692 | * associated with this page. If we succeed we try to free | |
693 | * the page as well. | |
694 | * | |
695 | * We do this even if the page is PageDirty(). | |
696 | * try_to_release_page() does not perform I/O, but it is | |
697 | * possible for a page to have PageDirty set, but it is actually | |
698 | * clean (all its buffers are clean). This happens if the | |
699 | * buffers were written out directly, with submit_bh(). ext3 | |
894bc310 | 700 | * will do this, as well as the blockdev mapping. |
1da177e4 LT |
701 | * try_to_release_page() will discover that cleanness and will |
702 | * drop the buffers and mark the page clean - it can be freed. | |
703 | * | |
704 | * Rarely, pages can have buffers and no ->mapping. These are | |
705 | * the pages which were not successfully invalidated in | |
706 | * truncate_complete_page(). We try to drop those buffers here | |
707 | * and if that worked, and the page is no longer mapped into | |
708 | * process address space (page_count == 1) it can be freed. | |
709 | * Otherwise, leave the page on the LRU so it is swappable. | |
710 | */ | |
711 | if (PagePrivate(page)) { | |
712 | if (!try_to_release_page(page, sc->gfp_mask)) | |
713 | goto activate_locked; | |
e286781d NP |
714 | if (!mapping && page_count(page) == 1) { |
715 | unlock_page(page); | |
716 | if (put_page_testzero(page)) | |
717 | goto free_it; | |
718 | else { | |
719 | /* | |
720 | * rare race with speculative reference. | |
721 | * the speculative reference will free | |
722 | * this page shortly, so we may | |
723 | * increment nr_reclaimed here (and | |
724 | * leave it off the LRU). | |
725 | */ | |
726 | nr_reclaimed++; | |
727 | continue; | |
728 | } | |
729 | } | |
1da177e4 LT |
730 | } |
731 | ||
e286781d | 732 | if (!mapping || !__remove_mapping(mapping, page)) |
49d2e9cc | 733 | goto keep_locked; |
1da177e4 | 734 | |
a978d6f5 NP |
735 | /* |
736 | * At this point, we have no other references and there is | |
737 | * no way to pick any more up (removed from LRU, removed | |
738 | * from pagecache). Can use non-atomic bitops now (and | |
739 | * we obviously don't have to worry about waking up a process | |
740 | * waiting on the page lock, because there are no references. | |
741 | */ | |
742 | __clear_page_locked(page); | |
e286781d | 743 | free_it: |
05ff5137 | 744 | nr_reclaimed++; |
e286781d NP |
745 | if (!pagevec_add(&freed_pvec, page)) { |
746 | __pagevec_free(&freed_pvec); | |
747 | pagevec_reinit(&freed_pvec); | |
748 | } | |
1da177e4 LT |
749 | continue; |
750 | ||
b291f000 NP |
751 | cull_mlocked: |
752 | unlock_page(page); | |
753 | putback_lru_page(page); | |
754 | continue; | |
755 | ||
1da177e4 | 756 | activate_locked: |
68a22394 RR |
757 | /* Not a candidate for swapping, so reclaim swap space. */ |
758 | if (PageSwapCache(page) && vm_swap_full()) | |
759 | remove_exclusive_swap_page_ref(page); | |
894bc310 | 760 | VM_BUG_ON(PageActive(page)); |
1da177e4 LT |
761 | SetPageActive(page); |
762 | pgactivate++; | |
763 | keep_locked: | |
764 | unlock_page(page); | |
765 | keep: | |
766 | list_add(&page->lru, &ret_pages); | |
b291f000 | 767 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
1da177e4 LT |
768 | } |
769 | list_splice(&ret_pages, page_list); | |
770 | if (pagevec_count(&freed_pvec)) | |
e286781d | 771 | __pagevec_free(&freed_pvec); |
f8891e5e | 772 | count_vm_events(PGACTIVATE, pgactivate); |
05ff5137 | 773 | return nr_reclaimed; |
1da177e4 LT |
774 | } |
775 | ||
5ad333eb AW |
776 | /* LRU Isolation modes. */ |
777 | #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ | |
778 | #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ | |
779 | #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ | |
780 | ||
781 | /* | |
782 | * Attempt to remove the specified page from its LRU. Only take this page | |
783 | * if it is of the appropriate PageActive status. Pages which are being | |
784 | * freed elsewhere are also ignored. | |
785 | * | |
786 | * page: page to consider | |
787 | * mode: one of the LRU isolation modes defined above | |
788 | * | |
789 | * returns 0 on success, -ve errno on failure. | |
790 | */ | |
4f98a2fe | 791 | int __isolate_lru_page(struct page *page, int mode, int file) |
5ad333eb AW |
792 | { |
793 | int ret = -EINVAL; | |
794 | ||
795 | /* Only take pages on the LRU. */ | |
796 | if (!PageLRU(page)) | |
797 | return ret; | |
798 | ||
799 | /* | |
800 | * When checking the active state, we need to be sure we are | |
801 | * dealing with comparible boolean values. Take the logical not | |
802 | * of each. | |
803 | */ | |
804 | if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) | |
805 | return ret; | |
806 | ||
4f98a2fe RR |
807 | if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file)) |
808 | return ret; | |
809 | ||
894bc310 LS |
810 | /* |
811 | * When this function is being called for lumpy reclaim, we | |
812 | * initially look into all LRU pages, active, inactive and | |
813 | * unevictable; only give shrink_page_list evictable pages. | |
814 | */ | |
815 | if (PageUnevictable(page)) | |
816 | return ret; | |
817 | ||
5ad333eb AW |
818 | ret = -EBUSY; |
819 | if (likely(get_page_unless_zero(page))) { | |
820 | /* | |
821 | * Be careful not to clear PageLRU until after we're | |
822 | * sure the page is not being freed elsewhere -- the | |
823 | * page release code relies on it. | |
824 | */ | |
825 | ClearPageLRU(page); | |
826 | ret = 0; | |
827 | } | |
828 | ||
829 | return ret; | |
830 | } | |
831 | ||
1da177e4 LT |
832 | /* |
833 | * zone->lru_lock is heavily contended. Some of the functions that | |
834 | * shrink the lists perform better by taking out a batch of pages | |
835 | * and working on them outside the LRU lock. | |
836 | * | |
837 | * For pagecache intensive workloads, this function is the hottest | |
838 | * spot in the kernel (apart from copy_*_user functions). | |
839 | * | |
840 | * Appropriate locks must be held before calling this function. | |
841 | * | |
842 | * @nr_to_scan: The number of pages to look through on the list. | |
843 | * @src: The LRU list to pull pages off. | |
844 | * @dst: The temp list to put pages on to. | |
845 | * @scanned: The number of pages that were scanned. | |
5ad333eb AW |
846 | * @order: The caller's attempted allocation order |
847 | * @mode: One of the LRU isolation modes | |
4f98a2fe | 848 | * @file: True [1] if isolating file [!anon] pages |
1da177e4 LT |
849 | * |
850 | * returns how many pages were moved onto *@dst. | |
851 | */ | |
69e05944 AM |
852 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
853 | struct list_head *src, struct list_head *dst, | |
4f98a2fe | 854 | unsigned long *scanned, int order, int mode, int file) |
1da177e4 | 855 | { |
69e05944 | 856 | unsigned long nr_taken = 0; |
c9b02d97 | 857 | unsigned long scan; |
1da177e4 | 858 | |
c9b02d97 | 859 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
5ad333eb AW |
860 | struct page *page; |
861 | unsigned long pfn; | |
862 | unsigned long end_pfn; | |
863 | unsigned long page_pfn; | |
864 | int zone_id; | |
865 | ||
1da177e4 LT |
866 | page = lru_to_page(src); |
867 | prefetchw_prev_lru_page(page, src, flags); | |
868 | ||
725d704e | 869 | VM_BUG_ON(!PageLRU(page)); |
8d438f96 | 870 | |
4f98a2fe | 871 | switch (__isolate_lru_page(page, mode, file)) { |
5ad333eb AW |
872 | case 0: |
873 | list_move(&page->lru, dst); | |
7c8ee9a8 | 874 | nr_taken++; |
5ad333eb AW |
875 | break; |
876 | ||
877 | case -EBUSY: | |
878 | /* else it is being freed elsewhere */ | |
879 | list_move(&page->lru, src); | |
880 | continue; | |
46453a6e | 881 | |
5ad333eb AW |
882 | default: |
883 | BUG(); | |
884 | } | |
885 | ||
886 | if (!order) | |
887 | continue; | |
888 | ||
889 | /* | |
890 | * Attempt to take all pages in the order aligned region | |
891 | * surrounding the tag page. Only take those pages of | |
892 | * the same active state as that tag page. We may safely | |
893 | * round the target page pfn down to the requested order | |
894 | * as the mem_map is guarenteed valid out to MAX_ORDER, | |
895 | * where that page is in a different zone we will detect | |
896 | * it from its zone id and abort this block scan. | |
897 | */ | |
898 | zone_id = page_zone_id(page); | |
899 | page_pfn = page_to_pfn(page); | |
900 | pfn = page_pfn & ~((1 << order) - 1); | |
901 | end_pfn = pfn + (1 << order); | |
902 | for (; pfn < end_pfn; pfn++) { | |
903 | struct page *cursor_page; | |
904 | ||
905 | /* The target page is in the block, ignore it. */ | |
906 | if (unlikely(pfn == page_pfn)) | |
907 | continue; | |
908 | ||
909 | /* Avoid holes within the zone. */ | |
910 | if (unlikely(!pfn_valid_within(pfn))) | |
911 | break; | |
912 | ||
913 | cursor_page = pfn_to_page(pfn); | |
4f98a2fe | 914 | |
5ad333eb AW |
915 | /* Check that we have not crossed a zone boundary. */ |
916 | if (unlikely(page_zone_id(cursor_page) != zone_id)) | |
917 | continue; | |
4f98a2fe | 918 | switch (__isolate_lru_page(cursor_page, mode, file)) { |
5ad333eb AW |
919 | case 0: |
920 | list_move(&cursor_page->lru, dst); | |
921 | nr_taken++; | |
922 | scan++; | |
923 | break; | |
924 | ||
925 | case -EBUSY: | |
926 | /* else it is being freed elsewhere */ | |
927 | list_move(&cursor_page->lru, src); | |
928 | default: | |
894bc310 | 929 | break; /* ! on LRU or wrong list */ |
5ad333eb AW |
930 | } |
931 | } | |
1da177e4 LT |
932 | } |
933 | ||
934 | *scanned = scan; | |
935 | return nr_taken; | |
936 | } | |
937 | ||
66e1707b BS |
938 | static unsigned long isolate_pages_global(unsigned long nr, |
939 | struct list_head *dst, | |
940 | unsigned long *scanned, int order, | |
941 | int mode, struct zone *z, | |
942 | struct mem_cgroup *mem_cont, | |
4f98a2fe | 943 | int active, int file) |
66e1707b | 944 | { |
4f98a2fe | 945 | int lru = LRU_BASE; |
66e1707b | 946 | if (active) |
4f98a2fe RR |
947 | lru += LRU_ACTIVE; |
948 | if (file) | |
949 | lru += LRU_FILE; | |
950 | return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order, | |
951 | mode, !!file); | |
66e1707b BS |
952 | } |
953 | ||
5ad333eb AW |
954 | /* |
955 | * clear_active_flags() is a helper for shrink_active_list(), clearing | |
956 | * any active bits from the pages in the list. | |
957 | */ | |
4f98a2fe RR |
958 | static unsigned long clear_active_flags(struct list_head *page_list, |
959 | unsigned int *count) | |
5ad333eb AW |
960 | { |
961 | int nr_active = 0; | |
4f98a2fe | 962 | int lru; |
5ad333eb AW |
963 | struct page *page; |
964 | ||
4f98a2fe RR |
965 | list_for_each_entry(page, page_list, lru) { |
966 | lru = page_is_file_cache(page); | |
5ad333eb | 967 | if (PageActive(page)) { |
4f98a2fe | 968 | lru += LRU_ACTIVE; |
5ad333eb AW |
969 | ClearPageActive(page); |
970 | nr_active++; | |
971 | } | |
4f98a2fe RR |
972 | count[lru]++; |
973 | } | |
5ad333eb AW |
974 | |
975 | return nr_active; | |
976 | } | |
977 | ||
62695a84 NP |
978 | /** |
979 | * isolate_lru_page - tries to isolate a page from its LRU list | |
980 | * @page: page to isolate from its LRU list | |
981 | * | |
982 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
983 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
984 | * | |
985 | * Returns 0 if the page was removed from an LRU list. | |
986 | * Returns -EBUSY if the page was not on an LRU list. | |
987 | * | |
988 | * The returned page will have PageLRU() cleared. If it was found on | |
894bc310 LS |
989 | * the active list, it will have PageActive set. If it was found on |
990 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
991 | * may need to be cleared by the caller before letting the page go. | |
62695a84 NP |
992 | * |
993 | * The vmstat statistic corresponding to the list on which the page was | |
994 | * found will be decremented. | |
995 | * | |
996 | * Restrictions: | |
997 | * (1) Must be called with an elevated refcount on the page. This is a | |
998 | * fundamentnal difference from isolate_lru_pages (which is called | |
999 | * without a stable reference). | |
1000 | * (2) the lru_lock must not be held. | |
1001 | * (3) interrupts must be enabled. | |
1002 | */ | |
1003 | int isolate_lru_page(struct page *page) | |
1004 | { | |
1005 | int ret = -EBUSY; | |
1006 | ||
1007 | if (PageLRU(page)) { | |
1008 | struct zone *zone = page_zone(page); | |
1009 | ||
1010 | spin_lock_irq(&zone->lru_lock); | |
1011 | if (PageLRU(page) && get_page_unless_zero(page)) { | |
894bc310 | 1012 | int lru = page_lru(page); |
62695a84 NP |
1013 | ret = 0; |
1014 | ClearPageLRU(page); | |
4f98a2fe | 1015 | |
4f98a2fe | 1016 | del_page_from_lru_list(zone, page, lru); |
62695a84 NP |
1017 | } |
1018 | spin_unlock_irq(&zone->lru_lock); | |
1019 | } | |
1020 | return ret; | |
1021 | } | |
1022 | ||
1da177e4 | 1023 | /* |
1742f19f AM |
1024 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
1025 | * of reclaimed pages | |
1da177e4 | 1026 | */ |
1742f19f | 1027 | static unsigned long shrink_inactive_list(unsigned long max_scan, |
33c120ed RR |
1028 | struct zone *zone, struct scan_control *sc, |
1029 | int priority, int file) | |
1da177e4 LT |
1030 | { |
1031 | LIST_HEAD(page_list); | |
1032 | struct pagevec pvec; | |
69e05944 | 1033 | unsigned long nr_scanned = 0; |
05ff5137 | 1034 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
1035 | |
1036 | pagevec_init(&pvec, 1); | |
1037 | ||
1038 | lru_add_drain(); | |
1039 | spin_lock_irq(&zone->lru_lock); | |
69e05944 | 1040 | do { |
1da177e4 | 1041 | struct page *page; |
69e05944 AM |
1042 | unsigned long nr_taken; |
1043 | unsigned long nr_scan; | |
1044 | unsigned long nr_freed; | |
5ad333eb | 1045 | unsigned long nr_active; |
4f98a2fe | 1046 | unsigned int count[NR_LRU_LISTS] = { 0, }; |
33c120ed RR |
1047 | int mode = ISOLATE_INACTIVE; |
1048 | ||
1049 | /* | |
1050 | * If we need a large contiguous chunk of memory, or have | |
1051 | * trouble getting a small set of contiguous pages, we | |
1052 | * will reclaim both active and inactive pages. | |
1053 | * | |
1054 | * We use the same threshold as pageout congestion_wait below. | |
1055 | */ | |
1056 | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | |
1057 | mode = ISOLATE_BOTH; | |
1058 | else if (sc->order && priority < DEF_PRIORITY - 2) | |
1059 | mode = ISOLATE_BOTH; | |
1da177e4 | 1060 | |
66e1707b | 1061 | nr_taken = sc->isolate_pages(sc->swap_cluster_max, |
4f98a2fe RR |
1062 | &page_list, &nr_scan, sc->order, mode, |
1063 | zone, sc->mem_cgroup, 0, file); | |
1064 | nr_active = clear_active_flags(&page_list, count); | |
e9187bdc | 1065 | __count_vm_events(PGDEACTIVATE, nr_active); |
5ad333eb | 1066 | |
4f98a2fe RR |
1067 | __mod_zone_page_state(zone, NR_ACTIVE_FILE, |
1068 | -count[LRU_ACTIVE_FILE]); | |
1069 | __mod_zone_page_state(zone, NR_INACTIVE_FILE, | |
1070 | -count[LRU_INACTIVE_FILE]); | |
1071 | __mod_zone_page_state(zone, NR_ACTIVE_ANON, | |
1072 | -count[LRU_ACTIVE_ANON]); | |
1073 | __mod_zone_page_state(zone, NR_INACTIVE_ANON, | |
1074 | -count[LRU_INACTIVE_ANON]); | |
1075 | ||
1076 | if (scan_global_lru(sc)) { | |
1cfb419b | 1077 | zone->pages_scanned += nr_scan; |
4f98a2fe RR |
1078 | zone->recent_scanned[0] += count[LRU_INACTIVE_ANON]; |
1079 | zone->recent_scanned[0] += count[LRU_ACTIVE_ANON]; | |
1080 | zone->recent_scanned[1] += count[LRU_INACTIVE_FILE]; | |
1081 | zone->recent_scanned[1] += count[LRU_ACTIVE_FILE]; | |
1082 | } | |
1da177e4 LT |
1083 | spin_unlock_irq(&zone->lru_lock); |
1084 | ||
69e05944 | 1085 | nr_scanned += nr_scan; |
c661b078 AW |
1086 | nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); |
1087 | ||
1088 | /* | |
1089 | * If we are direct reclaiming for contiguous pages and we do | |
1090 | * not reclaim everything in the list, try again and wait | |
1091 | * for IO to complete. This will stall high-order allocations | |
1092 | * but that should be acceptable to the caller | |
1093 | */ | |
1094 | if (nr_freed < nr_taken && !current_is_kswapd() && | |
1095 | sc->order > PAGE_ALLOC_COSTLY_ORDER) { | |
1096 | congestion_wait(WRITE, HZ/10); | |
1097 | ||
1098 | /* | |
1099 | * The attempt at page out may have made some | |
1100 | * of the pages active, mark them inactive again. | |
1101 | */ | |
4f98a2fe | 1102 | nr_active = clear_active_flags(&page_list, count); |
c661b078 AW |
1103 | count_vm_events(PGDEACTIVATE, nr_active); |
1104 | ||
1105 | nr_freed += shrink_page_list(&page_list, sc, | |
1106 | PAGEOUT_IO_SYNC); | |
1107 | } | |
1108 | ||
05ff5137 | 1109 | nr_reclaimed += nr_freed; |
a74609fa NP |
1110 | local_irq_disable(); |
1111 | if (current_is_kswapd()) { | |
f8891e5e CL |
1112 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); |
1113 | __count_vm_events(KSWAPD_STEAL, nr_freed); | |
1cfb419b | 1114 | } else if (scan_global_lru(sc)) |
f8891e5e | 1115 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); |
1cfb419b | 1116 | |
918d3f90 | 1117 | __count_zone_vm_events(PGSTEAL, zone, nr_freed); |
a74609fa | 1118 | |
fb8d14e1 WF |
1119 | if (nr_taken == 0) |
1120 | goto done; | |
1121 | ||
a74609fa | 1122 | spin_lock(&zone->lru_lock); |
1da177e4 LT |
1123 | /* |
1124 | * Put back any unfreeable pages. | |
1125 | */ | |
1126 | while (!list_empty(&page_list)) { | |
894bc310 | 1127 | int lru; |
1da177e4 | 1128 | page = lru_to_page(&page_list); |
725d704e | 1129 | VM_BUG_ON(PageLRU(page)); |
1da177e4 | 1130 | list_del(&page->lru); |
894bc310 LS |
1131 | if (unlikely(!page_evictable(page, NULL))) { |
1132 | spin_unlock_irq(&zone->lru_lock); | |
1133 | putback_lru_page(page); | |
1134 | spin_lock_irq(&zone->lru_lock); | |
1135 | continue; | |
1136 | } | |
1137 | SetPageLRU(page); | |
1138 | lru = page_lru(page); | |
1139 | add_page_to_lru_list(zone, page, lru); | |
1140 | mem_cgroup_move_lists(page, lru); | |
4f98a2fe RR |
1141 | if (PageActive(page) && scan_global_lru(sc)) { |
1142 | int file = !!page_is_file_cache(page); | |
1143 | zone->recent_rotated[file]++; | |
1144 | } | |
1da177e4 LT |
1145 | if (!pagevec_add(&pvec, page)) { |
1146 | spin_unlock_irq(&zone->lru_lock); | |
1147 | __pagevec_release(&pvec); | |
1148 | spin_lock_irq(&zone->lru_lock); | |
1149 | } | |
1150 | } | |
69e05944 | 1151 | } while (nr_scanned < max_scan); |
fb8d14e1 | 1152 | spin_unlock(&zone->lru_lock); |
1da177e4 | 1153 | done: |
fb8d14e1 | 1154 | local_irq_enable(); |
1da177e4 | 1155 | pagevec_release(&pvec); |
05ff5137 | 1156 | return nr_reclaimed; |
1da177e4 LT |
1157 | } |
1158 | ||
3bb1a852 MB |
1159 | /* |
1160 | * We are about to scan this zone at a certain priority level. If that priority | |
1161 | * level is smaller (ie: more urgent) than the previous priority, then note | |
1162 | * that priority level within the zone. This is done so that when the next | |
1163 | * process comes in to scan this zone, it will immediately start out at this | |
1164 | * priority level rather than having to build up its own scanning priority. | |
1165 | * Here, this priority affects only the reclaim-mapped threshold. | |
1166 | */ | |
1167 | static inline void note_zone_scanning_priority(struct zone *zone, int priority) | |
1168 | { | |
1169 | if (priority < zone->prev_priority) | |
1170 | zone->prev_priority = priority; | |
1171 | } | |
1172 | ||
4ff1ffb4 NP |
1173 | static inline int zone_is_near_oom(struct zone *zone) |
1174 | { | |
4f98a2fe | 1175 | return zone->pages_scanned >= (zone_lru_pages(zone) * 3); |
1cfb419b KH |
1176 | } |
1177 | ||
1da177e4 LT |
1178 | /* |
1179 | * This moves pages from the active list to the inactive list. | |
1180 | * | |
1181 | * We move them the other way if the page is referenced by one or more | |
1182 | * processes, from rmap. | |
1183 | * | |
1184 | * If the pages are mostly unmapped, the processing is fast and it is | |
1185 | * appropriate to hold zone->lru_lock across the whole operation. But if | |
1186 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
1187 | * should drop zone->lru_lock around each page. It's impossible to balance | |
1188 | * this, so instead we remove the pages from the LRU while processing them. | |
1189 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1190 | * nobody will play with that bit on a non-LRU page. | |
1191 | * | |
1192 | * The downside is that we have to touch page->_count against each page. | |
1193 | * But we had to alter page->flags anyway. | |
1194 | */ | |
1cfb419b KH |
1195 | |
1196 | ||
1742f19f | 1197 | static void shrink_active_list(unsigned long nr_pages, struct zone *zone, |
4f98a2fe | 1198 | struct scan_control *sc, int priority, int file) |
1da177e4 | 1199 | { |
69e05944 | 1200 | unsigned long pgmoved; |
1da177e4 | 1201 | int pgdeactivate = 0; |
69e05944 | 1202 | unsigned long pgscanned; |
1da177e4 | 1203 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
b69408e8 | 1204 | LIST_HEAD(l_inactive); |
1da177e4 LT |
1205 | struct page *page; |
1206 | struct pagevec pvec; | |
4f98a2fe | 1207 | enum lru_list lru; |
1da177e4 LT |
1208 | |
1209 | lru_add_drain(); | |
1210 | spin_lock_irq(&zone->lru_lock); | |
66e1707b BS |
1211 | pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, |
1212 | ISOLATE_ACTIVE, zone, | |
4f98a2fe | 1213 | sc->mem_cgroup, 1, file); |
1cfb419b KH |
1214 | /* |
1215 | * zone->pages_scanned is used for detect zone's oom | |
1216 | * mem_cgroup remembers nr_scan by itself. | |
1217 | */ | |
4f98a2fe | 1218 | if (scan_global_lru(sc)) { |
1cfb419b | 1219 | zone->pages_scanned += pgscanned; |
4f98a2fe RR |
1220 | zone->recent_scanned[!!file] += pgmoved; |
1221 | } | |
1cfb419b | 1222 | |
4f98a2fe RR |
1223 | if (file) |
1224 | __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved); | |
1225 | else | |
1226 | __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved); | |
1da177e4 LT |
1227 | spin_unlock_irq(&zone->lru_lock); |
1228 | ||
556adecb | 1229 | pgmoved = 0; |
1da177e4 LT |
1230 | while (!list_empty(&l_hold)) { |
1231 | cond_resched(); | |
1232 | page = lru_to_page(&l_hold); | |
1233 | list_del(&page->lru); | |
7e9cd484 | 1234 | |
894bc310 LS |
1235 | if (unlikely(!page_evictable(page, NULL))) { |
1236 | putback_lru_page(page); | |
1237 | continue; | |
1238 | } | |
1239 | ||
7e9cd484 RR |
1240 | /* page_referenced clears PageReferenced */ |
1241 | if (page_mapping_inuse(page) && | |
1242 | page_referenced(page, 0, sc->mem_cgroup)) | |
1243 | pgmoved++; | |
1244 | ||
1da177e4 LT |
1245 | list_add(&page->lru, &l_inactive); |
1246 | } | |
1247 | ||
556adecb | 1248 | /* |
7e9cd484 RR |
1249 | * Count referenced pages from currently used mappings as |
1250 | * rotated, even though they are moved to the inactive list. | |
1251 | * This helps balance scan pressure between file and anonymous | |
1252 | * pages in get_scan_ratio. | |
1253 | */ | |
556adecb RR |
1254 | zone->recent_rotated[!!file] += pgmoved; |
1255 | ||
4f98a2fe | 1256 | /* |
7e9cd484 | 1257 | * Move the pages to the [file or anon] inactive list. |
4f98a2fe | 1258 | */ |
1da177e4 | 1259 | pagevec_init(&pvec, 1); |
7e9cd484 | 1260 | |
1da177e4 | 1261 | pgmoved = 0; |
4f98a2fe | 1262 | lru = LRU_BASE + file * LRU_FILE; |
1da177e4 LT |
1263 | spin_lock_irq(&zone->lru_lock); |
1264 | while (!list_empty(&l_inactive)) { | |
1265 | page = lru_to_page(&l_inactive); | |
1266 | prefetchw_prev_lru_page(page, &l_inactive, flags); | |
725d704e | 1267 | VM_BUG_ON(PageLRU(page)); |
8d438f96 | 1268 | SetPageLRU(page); |
725d704e | 1269 | VM_BUG_ON(!PageActive(page)); |
4c84cacf NP |
1270 | ClearPageActive(page); |
1271 | ||
4f98a2fe | 1272 | list_move(&page->lru, &zone->lru[lru].list); |
894bc310 | 1273 | mem_cgroup_move_lists(page, lru); |
1da177e4 LT |
1274 | pgmoved++; |
1275 | if (!pagevec_add(&pvec, page)) { | |
4f98a2fe | 1276 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); |
1da177e4 LT |
1277 | spin_unlock_irq(&zone->lru_lock); |
1278 | pgdeactivate += pgmoved; | |
1279 | pgmoved = 0; | |
1280 | if (buffer_heads_over_limit) | |
1281 | pagevec_strip(&pvec); | |
1282 | __pagevec_release(&pvec); | |
1283 | spin_lock_irq(&zone->lru_lock); | |
1284 | } | |
1285 | } | |
4f98a2fe | 1286 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); |
1da177e4 LT |
1287 | pgdeactivate += pgmoved; |
1288 | if (buffer_heads_over_limit) { | |
1289 | spin_unlock_irq(&zone->lru_lock); | |
1290 | pagevec_strip(&pvec); | |
1291 | spin_lock_irq(&zone->lru_lock); | |
1292 | } | |
f8891e5e CL |
1293 | __count_zone_vm_events(PGREFILL, zone, pgscanned); |
1294 | __count_vm_events(PGDEACTIVATE, pgdeactivate); | |
1295 | spin_unlock_irq(&zone->lru_lock); | |
68a22394 RR |
1296 | if (vm_swap_full()) |
1297 | pagevec_swap_free(&pvec); | |
1da177e4 | 1298 | |
a74609fa | 1299 | pagevec_release(&pvec); |
1da177e4 LT |
1300 | } |
1301 | ||
4f98a2fe | 1302 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
b69408e8 CL |
1303 | struct zone *zone, struct scan_control *sc, int priority) |
1304 | { | |
4f98a2fe RR |
1305 | int file = is_file_lru(lru); |
1306 | ||
556adecb RR |
1307 | if (lru == LRU_ACTIVE_FILE) { |
1308 | shrink_active_list(nr_to_scan, zone, sc, priority, file); | |
1309 | return 0; | |
1310 | } | |
1311 | ||
1312 | if (lru == LRU_ACTIVE_ANON && | |
1313 | (!scan_global_lru(sc) || inactive_anon_is_low(zone))) { | |
4f98a2fe | 1314 | shrink_active_list(nr_to_scan, zone, sc, priority, file); |
b69408e8 CL |
1315 | return 0; |
1316 | } | |
33c120ed | 1317 | return shrink_inactive_list(nr_to_scan, zone, sc, priority, file); |
4f98a2fe RR |
1318 | } |
1319 | ||
1320 | /* | |
1321 | * Determine how aggressively the anon and file LRU lists should be | |
1322 | * scanned. The relative value of each set of LRU lists is determined | |
1323 | * by looking at the fraction of the pages scanned we did rotate back | |
1324 | * onto the active list instead of evict. | |
1325 | * | |
1326 | * percent[0] specifies how much pressure to put on ram/swap backed | |
1327 | * memory, while percent[1] determines pressure on the file LRUs. | |
1328 | */ | |
1329 | static void get_scan_ratio(struct zone *zone, struct scan_control *sc, | |
1330 | unsigned long *percent) | |
1331 | { | |
1332 | unsigned long anon, file, free; | |
1333 | unsigned long anon_prio, file_prio; | |
1334 | unsigned long ap, fp; | |
1335 | ||
1336 | anon = zone_page_state(zone, NR_ACTIVE_ANON) + | |
1337 | zone_page_state(zone, NR_INACTIVE_ANON); | |
1338 | file = zone_page_state(zone, NR_ACTIVE_FILE) + | |
1339 | zone_page_state(zone, NR_INACTIVE_FILE); | |
1340 | free = zone_page_state(zone, NR_FREE_PAGES); | |
1341 | ||
1342 | /* If we have no swap space, do not bother scanning anon pages. */ | |
1343 | if (nr_swap_pages <= 0) { | |
1344 | percent[0] = 0; | |
1345 | percent[1] = 100; | |
1346 | return; | |
1347 | } | |
1348 | ||
1349 | /* If we have very few page cache pages, force-scan anon pages. */ | |
1350 | if (unlikely(file + free <= zone->pages_high)) { | |
1351 | percent[0] = 100; | |
1352 | percent[1] = 0; | |
1353 | return; | |
1354 | } | |
1355 | ||
1356 | /* | |
1357 | * OK, so we have swap space and a fair amount of page cache | |
1358 | * pages. We use the recently rotated / recently scanned | |
1359 | * ratios to determine how valuable each cache is. | |
1360 | * | |
1361 | * Because workloads change over time (and to avoid overflow) | |
1362 | * we keep these statistics as a floating average, which ends | |
1363 | * up weighing recent references more than old ones. | |
1364 | * | |
1365 | * anon in [0], file in [1] | |
1366 | */ | |
1367 | if (unlikely(zone->recent_scanned[0] > anon / 4)) { | |
1368 | spin_lock_irq(&zone->lru_lock); | |
1369 | zone->recent_scanned[0] /= 2; | |
1370 | zone->recent_rotated[0] /= 2; | |
1371 | spin_unlock_irq(&zone->lru_lock); | |
1372 | } | |
1373 | ||
1374 | if (unlikely(zone->recent_scanned[1] > file / 4)) { | |
1375 | spin_lock_irq(&zone->lru_lock); | |
1376 | zone->recent_scanned[1] /= 2; | |
1377 | zone->recent_rotated[1] /= 2; | |
1378 | spin_unlock_irq(&zone->lru_lock); | |
1379 | } | |
1380 | ||
1381 | /* | |
1382 | * With swappiness at 100, anonymous and file have the same priority. | |
1383 | * This scanning priority is essentially the inverse of IO cost. | |
1384 | */ | |
1385 | anon_prio = sc->swappiness; | |
1386 | file_prio = 200 - sc->swappiness; | |
1387 | ||
1388 | /* | |
1389 | * anon recent_rotated[0] | |
1390 | * %anon = 100 * ----------- / ----------------- * IO cost | |
1391 | * anon + file rotate_sum | |
1392 | */ | |
1393 | ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1); | |
1394 | ap /= zone->recent_rotated[0] + 1; | |
1395 | ||
1396 | fp = (file_prio + 1) * (zone->recent_scanned[1] + 1); | |
1397 | fp /= zone->recent_rotated[1] + 1; | |
1398 | ||
1399 | /* Normalize to percentages */ | |
1400 | percent[0] = 100 * ap / (ap + fp + 1); | |
1401 | percent[1] = 100 - percent[0]; | |
b69408e8 CL |
1402 | } |
1403 | ||
4f98a2fe | 1404 | |
1da177e4 LT |
1405 | /* |
1406 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | |
1407 | */ | |
05ff5137 AM |
1408 | static unsigned long shrink_zone(int priority, struct zone *zone, |
1409 | struct scan_control *sc) | |
1da177e4 | 1410 | { |
b69408e8 | 1411 | unsigned long nr[NR_LRU_LISTS]; |
8695949a | 1412 | unsigned long nr_to_scan; |
05ff5137 | 1413 | unsigned long nr_reclaimed = 0; |
4f98a2fe | 1414 | unsigned long percent[2]; /* anon @ 0; file @ 1 */ |
b69408e8 | 1415 | enum lru_list l; |
1da177e4 | 1416 | |
4f98a2fe RR |
1417 | get_scan_ratio(zone, sc, percent); |
1418 | ||
894bc310 | 1419 | for_each_evictable_lru(l) { |
4f98a2fe RR |
1420 | if (scan_global_lru(sc)) { |
1421 | int file = is_file_lru(l); | |
1422 | int scan; | |
e0f79b8f | 1423 | |
4f98a2fe RR |
1424 | scan = zone_page_state(zone, NR_LRU_BASE + l); |
1425 | if (priority) { | |
1426 | scan >>= priority; | |
1427 | scan = (scan * percent[file]) / 100; | |
1428 | } | |
e0f79b8f | 1429 | zone->lru[l].nr_scan += scan; |
b69408e8 CL |
1430 | nr[l] = zone->lru[l].nr_scan; |
1431 | if (nr[l] >= sc->swap_cluster_max) | |
1432 | zone->lru[l].nr_scan = 0; | |
1433 | else | |
1434 | nr[l] = 0; | |
4f98a2fe RR |
1435 | } else { |
1436 | /* | |
1437 | * This reclaim occurs not because zone memory shortage | |
1438 | * but because memory controller hits its limit. | |
1439 | * Don't modify zone reclaim related data. | |
1440 | */ | |
1441 | nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone, | |
1442 | priority, l); | |
b69408e8 | 1443 | } |
1cfb419b | 1444 | } |
1da177e4 | 1445 | |
556adecb RR |
1446 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || |
1447 | nr[LRU_INACTIVE_FILE]) { | |
894bc310 | 1448 | for_each_evictable_lru(l) { |
b69408e8 CL |
1449 | if (nr[l]) { |
1450 | nr_to_scan = min(nr[l], | |
1da177e4 | 1451 | (unsigned long)sc->swap_cluster_max); |
b69408e8 | 1452 | nr[l] -= nr_to_scan; |
1da177e4 | 1453 | |
b69408e8 CL |
1454 | nr_reclaimed += shrink_list(l, nr_to_scan, |
1455 | zone, sc, priority); | |
1456 | } | |
1da177e4 LT |
1457 | } |
1458 | } | |
1459 | ||
556adecb RR |
1460 | /* |
1461 | * Even if we did not try to evict anon pages at all, we want to | |
1462 | * rebalance the anon lru active/inactive ratio. | |
1463 | */ | |
1464 | if (!scan_global_lru(sc) || inactive_anon_is_low(zone)) | |
1465 | shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); | |
1466 | else if (!scan_global_lru(sc)) | |
1467 | shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); | |
1468 | ||
232ea4d6 | 1469 | throttle_vm_writeout(sc->gfp_mask); |
05ff5137 | 1470 | return nr_reclaimed; |
1da177e4 LT |
1471 | } |
1472 | ||
1473 | /* | |
1474 | * This is the direct reclaim path, for page-allocating processes. We only | |
1475 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
1476 | * request. | |
1477 | * | |
1478 | * We reclaim from a zone even if that zone is over pages_high. Because: | |
1479 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order | |
1480 | * allocation or | |
1481 | * b) The zones may be over pages_high but they must go *over* pages_high to | |
1482 | * satisfy the `incremental min' zone defense algorithm. | |
1483 | * | |
1484 | * Returns the number of reclaimed pages. | |
1485 | * | |
1486 | * If a zone is deemed to be full of pinned pages then just give it a light | |
1487 | * scan then give up on it. | |
1488 | */ | |
dac1d27b | 1489 | static unsigned long shrink_zones(int priority, struct zonelist *zonelist, |
05ff5137 | 1490 | struct scan_control *sc) |
1da177e4 | 1491 | { |
54a6eb5c | 1492 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); |
05ff5137 | 1493 | unsigned long nr_reclaimed = 0; |
dd1a239f | 1494 | struct zoneref *z; |
54a6eb5c | 1495 | struct zone *zone; |
1cfb419b | 1496 | |
408d8544 | 1497 | sc->all_unreclaimable = 1; |
54a6eb5c | 1498 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
f3fe6512 | 1499 | if (!populated_zone(zone)) |
1da177e4 | 1500 | continue; |
1cfb419b KH |
1501 | /* |
1502 | * Take care memory controller reclaiming has small influence | |
1503 | * to global LRU. | |
1504 | */ | |
1505 | if (scan_global_lru(sc)) { | |
1506 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | |
1507 | continue; | |
1508 | note_zone_scanning_priority(zone, priority); | |
1da177e4 | 1509 | |
1cfb419b KH |
1510 | if (zone_is_all_unreclaimable(zone) && |
1511 | priority != DEF_PRIORITY) | |
1512 | continue; /* Let kswapd poll it */ | |
1513 | sc->all_unreclaimable = 0; | |
1514 | } else { | |
1515 | /* | |
1516 | * Ignore cpuset limitation here. We just want to reduce | |
1517 | * # of used pages by us regardless of memory shortage. | |
1518 | */ | |
1519 | sc->all_unreclaimable = 0; | |
1520 | mem_cgroup_note_reclaim_priority(sc->mem_cgroup, | |
1521 | priority); | |
1522 | } | |
408d8544 | 1523 | |
05ff5137 | 1524 | nr_reclaimed += shrink_zone(priority, zone, sc); |
1da177e4 | 1525 | } |
1cfb419b | 1526 | |
05ff5137 | 1527 | return nr_reclaimed; |
1da177e4 | 1528 | } |
4f98a2fe | 1529 | |
1da177e4 LT |
1530 | /* |
1531 | * This is the main entry point to direct page reclaim. | |
1532 | * | |
1533 | * If a full scan of the inactive list fails to free enough memory then we | |
1534 | * are "out of memory" and something needs to be killed. | |
1535 | * | |
1536 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
1537 | * high - the zone may be full of dirty or under-writeback pages, which this | |
1538 | * caller can't do much about. We kick pdflush and take explicit naps in the | |
1539 | * hope that some of these pages can be written. But if the allocating task | |
1540 | * holds filesystem locks which prevent writeout this might not work, and the | |
1541 | * allocation attempt will fail. | |
a41f24ea NA |
1542 | * |
1543 | * returns: 0, if no pages reclaimed | |
1544 | * else, the number of pages reclaimed | |
1da177e4 | 1545 | */ |
dac1d27b | 1546 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
dd1a239f | 1547 | struct scan_control *sc) |
1da177e4 LT |
1548 | { |
1549 | int priority; | |
c700be3d | 1550 | unsigned long ret = 0; |
69e05944 | 1551 | unsigned long total_scanned = 0; |
05ff5137 | 1552 | unsigned long nr_reclaimed = 0; |
1da177e4 | 1553 | struct reclaim_state *reclaim_state = current->reclaim_state; |
1da177e4 | 1554 | unsigned long lru_pages = 0; |
dd1a239f | 1555 | struct zoneref *z; |
54a6eb5c | 1556 | struct zone *zone; |
dd1a239f | 1557 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); |
1da177e4 | 1558 | |
873b4771 KK |
1559 | delayacct_freepages_start(); |
1560 | ||
1cfb419b KH |
1561 | if (scan_global_lru(sc)) |
1562 | count_vm_event(ALLOCSTALL); | |
1563 | /* | |
1564 | * mem_cgroup will not do shrink_slab. | |
1565 | */ | |
1566 | if (scan_global_lru(sc)) { | |
54a6eb5c | 1567 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1da177e4 | 1568 | |
1cfb419b KH |
1569 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1570 | continue; | |
1da177e4 | 1571 | |
4f98a2fe | 1572 | lru_pages += zone_lru_pages(zone); |
1cfb419b | 1573 | } |
1da177e4 LT |
1574 | } |
1575 | ||
1576 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | |
66e1707b | 1577 | sc->nr_scanned = 0; |
f7b7fd8f RR |
1578 | if (!priority) |
1579 | disable_swap_token(); | |
dac1d27b | 1580 | nr_reclaimed += shrink_zones(priority, zonelist, sc); |
66e1707b BS |
1581 | /* |
1582 | * Don't shrink slabs when reclaiming memory from | |
1583 | * over limit cgroups | |
1584 | */ | |
91a45470 | 1585 | if (scan_global_lru(sc)) { |
dd1a239f | 1586 | shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); |
91a45470 KH |
1587 | if (reclaim_state) { |
1588 | nr_reclaimed += reclaim_state->reclaimed_slab; | |
1589 | reclaim_state->reclaimed_slab = 0; | |
1590 | } | |
1da177e4 | 1591 | } |
66e1707b BS |
1592 | total_scanned += sc->nr_scanned; |
1593 | if (nr_reclaimed >= sc->swap_cluster_max) { | |
a41f24ea | 1594 | ret = nr_reclaimed; |
1da177e4 LT |
1595 | goto out; |
1596 | } | |
1597 | ||
1598 | /* | |
1599 | * Try to write back as many pages as we just scanned. This | |
1600 | * tends to cause slow streaming writers to write data to the | |
1601 | * disk smoothly, at the dirtying rate, which is nice. But | |
1602 | * that's undesirable in laptop mode, where we *want* lumpy | |
1603 | * writeout. So in laptop mode, write out the whole world. | |
1604 | */ | |
66e1707b BS |
1605 | if (total_scanned > sc->swap_cluster_max + |
1606 | sc->swap_cluster_max / 2) { | |
687a21ce | 1607 | wakeup_pdflush(laptop_mode ? 0 : total_scanned); |
66e1707b | 1608 | sc->may_writepage = 1; |
1da177e4 LT |
1609 | } |
1610 | ||
1611 | /* Take a nap, wait for some writeback to complete */ | |
4dd4b920 | 1612 | if (sc->nr_scanned && priority < DEF_PRIORITY - 2) |
3fcfab16 | 1613 | congestion_wait(WRITE, HZ/10); |
1da177e4 | 1614 | } |
87547ee9 | 1615 | /* top priority shrink_zones still had more to do? don't OOM, then */ |
91a45470 | 1616 | if (!sc->all_unreclaimable && scan_global_lru(sc)) |
a41f24ea | 1617 | ret = nr_reclaimed; |
1da177e4 | 1618 | out: |
3bb1a852 MB |
1619 | /* |
1620 | * Now that we've scanned all the zones at this priority level, note | |
1621 | * that level within the zone so that the next thread which performs | |
1622 | * scanning of this zone will immediately start out at this priority | |
1623 | * level. This affects only the decision whether or not to bring | |
1624 | * mapped pages onto the inactive list. | |
1625 | */ | |
1626 | if (priority < 0) | |
1627 | priority = 0; | |
1da177e4 | 1628 | |
1cfb419b | 1629 | if (scan_global_lru(sc)) { |
54a6eb5c | 1630 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1cfb419b KH |
1631 | |
1632 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | |
1633 | continue; | |
1634 | ||
1635 | zone->prev_priority = priority; | |
1636 | } | |
1637 | } else | |
1638 | mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); | |
1da177e4 | 1639 | |
873b4771 KK |
1640 | delayacct_freepages_end(); |
1641 | ||
1da177e4 LT |
1642 | return ret; |
1643 | } | |
1644 | ||
dac1d27b MG |
1645 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
1646 | gfp_t gfp_mask) | |
66e1707b BS |
1647 | { |
1648 | struct scan_control sc = { | |
1649 | .gfp_mask = gfp_mask, | |
1650 | .may_writepage = !laptop_mode, | |
1651 | .swap_cluster_max = SWAP_CLUSTER_MAX, | |
1652 | .may_swap = 1, | |
1653 | .swappiness = vm_swappiness, | |
1654 | .order = order, | |
1655 | .mem_cgroup = NULL, | |
1656 | .isolate_pages = isolate_pages_global, | |
1657 | }; | |
1658 | ||
dd1a239f | 1659 | return do_try_to_free_pages(zonelist, &sc); |
66e1707b BS |
1660 | } |
1661 | ||
00f0b825 | 1662 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
66e1707b | 1663 | |
e1a1cd59 BS |
1664 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, |
1665 | gfp_t gfp_mask) | |
66e1707b BS |
1666 | { |
1667 | struct scan_control sc = { | |
66e1707b BS |
1668 | .may_writepage = !laptop_mode, |
1669 | .may_swap = 1, | |
1670 | .swap_cluster_max = SWAP_CLUSTER_MAX, | |
1671 | .swappiness = vm_swappiness, | |
1672 | .order = 0, | |
1673 | .mem_cgroup = mem_cont, | |
1674 | .isolate_pages = mem_cgroup_isolate_pages, | |
1675 | }; | |
dac1d27b | 1676 | struct zonelist *zonelist; |
66e1707b | 1677 | |
dd1a239f MG |
1678 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
1679 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
1680 | zonelist = NODE_DATA(numa_node_id())->node_zonelists; | |
1681 | return do_try_to_free_pages(zonelist, &sc); | |
66e1707b BS |
1682 | } |
1683 | #endif | |
1684 | ||
1da177e4 LT |
1685 | /* |
1686 | * For kswapd, balance_pgdat() will work across all this node's zones until | |
1687 | * they are all at pages_high. | |
1688 | * | |
1da177e4 LT |
1689 | * Returns the number of pages which were actually freed. |
1690 | * | |
1691 | * There is special handling here for zones which are full of pinned pages. | |
1692 | * This can happen if the pages are all mlocked, or if they are all used by | |
1693 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | |
1694 | * What we do is to detect the case where all pages in the zone have been | |
1695 | * scanned twice and there has been zero successful reclaim. Mark the zone as | |
1696 | * dead and from now on, only perform a short scan. Basically we're polling | |
1697 | * the zone for when the problem goes away. | |
1698 | * | |
1699 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
1700 | * zones which have free_pages > pages_high, but once a zone is found to have | |
1701 | * free_pages <= pages_high, we scan that zone and the lower zones regardless | |
1702 | * of the number of free pages in the lower zones. This interoperates with | |
1703 | * the page allocator fallback scheme to ensure that aging of pages is balanced | |
1704 | * across the zones. | |
1705 | */ | |
d6277db4 | 1706 | static unsigned long balance_pgdat(pg_data_t *pgdat, int order) |
1da177e4 | 1707 | { |
1da177e4 LT |
1708 | int all_zones_ok; |
1709 | int priority; | |
1710 | int i; | |
69e05944 | 1711 | unsigned long total_scanned; |
05ff5137 | 1712 | unsigned long nr_reclaimed; |
1da177e4 | 1713 | struct reclaim_state *reclaim_state = current->reclaim_state; |
179e9639 AM |
1714 | struct scan_control sc = { |
1715 | .gfp_mask = GFP_KERNEL, | |
1716 | .may_swap = 1, | |
d6277db4 RW |
1717 | .swap_cluster_max = SWAP_CLUSTER_MAX, |
1718 | .swappiness = vm_swappiness, | |
5ad333eb | 1719 | .order = order, |
66e1707b BS |
1720 | .mem_cgroup = NULL, |
1721 | .isolate_pages = isolate_pages_global, | |
179e9639 | 1722 | }; |
3bb1a852 MB |
1723 | /* |
1724 | * temp_priority is used to remember the scanning priority at which | |
1725 | * this zone was successfully refilled to free_pages == pages_high. | |
1726 | */ | |
1727 | int temp_priority[MAX_NR_ZONES]; | |
1da177e4 LT |
1728 | |
1729 | loop_again: | |
1730 | total_scanned = 0; | |
05ff5137 | 1731 | nr_reclaimed = 0; |
c0bbbc73 | 1732 | sc.may_writepage = !laptop_mode; |
f8891e5e | 1733 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 1734 | |
3bb1a852 MB |
1735 | for (i = 0; i < pgdat->nr_zones; i++) |
1736 | temp_priority[i] = DEF_PRIORITY; | |
1da177e4 LT |
1737 | |
1738 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | |
1739 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ | |
1740 | unsigned long lru_pages = 0; | |
1741 | ||
f7b7fd8f RR |
1742 | /* The swap token gets in the way of swapout... */ |
1743 | if (!priority) | |
1744 | disable_swap_token(); | |
1745 | ||
1da177e4 LT |
1746 | all_zones_ok = 1; |
1747 | ||
d6277db4 RW |
1748 | /* |
1749 | * Scan in the highmem->dma direction for the highest | |
1750 | * zone which needs scanning | |
1751 | */ | |
1752 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | |
1753 | struct zone *zone = pgdat->node_zones + i; | |
1da177e4 | 1754 | |
d6277db4 RW |
1755 | if (!populated_zone(zone)) |
1756 | continue; | |
1da177e4 | 1757 | |
e815af95 DR |
1758 | if (zone_is_all_unreclaimable(zone) && |
1759 | priority != DEF_PRIORITY) | |
d6277db4 | 1760 | continue; |
1da177e4 | 1761 | |
556adecb RR |
1762 | /* |
1763 | * Do some background aging of the anon list, to give | |
1764 | * pages a chance to be referenced before reclaiming. | |
1765 | */ | |
1766 | if (inactive_anon_is_low(zone)) | |
1767 | shrink_active_list(SWAP_CLUSTER_MAX, zone, | |
1768 | &sc, priority, 0); | |
1769 | ||
d6277db4 RW |
1770 | if (!zone_watermark_ok(zone, order, zone->pages_high, |
1771 | 0, 0)) { | |
1772 | end_zone = i; | |
e1dbeda6 | 1773 | break; |
1da177e4 | 1774 | } |
1da177e4 | 1775 | } |
e1dbeda6 AM |
1776 | if (i < 0) |
1777 | goto out; | |
1778 | ||
1da177e4 LT |
1779 | for (i = 0; i <= end_zone; i++) { |
1780 | struct zone *zone = pgdat->node_zones + i; | |
1781 | ||
4f98a2fe | 1782 | lru_pages += zone_lru_pages(zone); |
1da177e4 LT |
1783 | } |
1784 | ||
1785 | /* | |
1786 | * Now scan the zone in the dma->highmem direction, stopping | |
1787 | * at the last zone which needs scanning. | |
1788 | * | |
1789 | * We do this because the page allocator works in the opposite | |
1790 | * direction. This prevents the page allocator from allocating | |
1791 | * pages behind kswapd's direction of progress, which would | |
1792 | * cause too much scanning of the lower zones. | |
1793 | */ | |
1794 | for (i = 0; i <= end_zone; i++) { | |
1795 | struct zone *zone = pgdat->node_zones + i; | |
b15e0905 | 1796 | int nr_slab; |
1da177e4 | 1797 | |
f3fe6512 | 1798 | if (!populated_zone(zone)) |
1da177e4 LT |
1799 | continue; |
1800 | ||
e815af95 DR |
1801 | if (zone_is_all_unreclaimable(zone) && |
1802 | priority != DEF_PRIORITY) | |
1da177e4 LT |
1803 | continue; |
1804 | ||
d6277db4 RW |
1805 | if (!zone_watermark_ok(zone, order, zone->pages_high, |
1806 | end_zone, 0)) | |
1807 | all_zones_ok = 0; | |
3bb1a852 | 1808 | temp_priority[i] = priority; |
1da177e4 | 1809 | sc.nr_scanned = 0; |
3bb1a852 | 1810 | note_zone_scanning_priority(zone, priority); |
32a4330d RR |
1811 | /* |
1812 | * We put equal pressure on every zone, unless one | |
1813 | * zone has way too many pages free already. | |
1814 | */ | |
1815 | if (!zone_watermark_ok(zone, order, 8*zone->pages_high, | |
1816 | end_zone, 0)) | |
1817 | nr_reclaimed += shrink_zone(priority, zone, &sc); | |
1da177e4 | 1818 | reclaim_state->reclaimed_slab = 0; |
b15e0905 | 1819 | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, |
1820 | lru_pages); | |
05ff5137 | 1821 | nr_reclaimed += reclaim_state->reclaimed_slab; |
1da177e4 | 1822 | total_scanned += sc.nr_scanned; |
e815af95 | 1823 | if (zone_is_all_unreclaimable(zone)) |
1da177e4 | 1824 | continue; |
b15e0905 | 1825 | if (nr_slab == 0 && zone->pages_scanned >= |
4f98a2fe | 1826 | (zone_lru_pages(zone) * 6)) |
e815af95 DR |
1827 | zone_set_flag(zone, |
1828 | ZONE_ALL_UNRECLAIMABLE); | |
1da177e4 LT |
1829 | /* |
1830 | * If we've done a decent amount of scanning and | |
1831 | * the reclaim ratio is low, start doing writepage | |
1832 | * even in laptop mode | |
1833 | */ | |
1834 | if (total_scanned > SWAP_CLUSTER_MAX * 2 && | |
05ff5137 | 1835 | total_scanned > nr_reclaimed + nr_reclaimed / 2) |
1da177e4 LT |
1836 | sc.may_writepage = 1; |
1837 | } | |
1da177e4 LT |
1838 | if (all_zones_ok) |
1839 | break; /* kswapd: all done */ | |
1840 | /* | |
1841 | * OK, kswapd is getting into trouble. Take a nap, then take | |
1842 | * another pass across the zones. | |
1843 | */ | |
4dd4b920 | 1844 | if (total_scanned && priority < DEF_PRIORITY - 2) |
3fcfab16 | 1845 | congestion_wait(WRITE, HZ/10); |
1da177e4 LT |
1846 | |
1847 | /* | |
1848 | * We do this so kswapd doesn't build up large priorities for | |
1849 | * example when it is freeing in parallel with allocators. It | |
1850 | * matches the direct reclaim path behaviour in terms of impact | |
1851 | * on zone->*_priority. | |
1852 | */ | |
d6277db4 | 1853 | if (nr_reclaimed >= SWAP_CLUSTER_MAX) |
1da177e4 LT |
1854 | break; |
1855 | } | |
1856 | out: | |
3bb1a852 MB |
1857 | /* |
1858 | * Note within each zone the priority level at which this zone was | |
1859 | * brought into a happy state. So that the next thread which scans this | |
1860 | * zone will start out at that priority level. | |
1861 | */ | |
1da177e4 LT |
1862 | for (i = 0; i < pgdat->nr_zones; i++) { |
1863 | struct zone *zone = pgdat->node_zones + i; | |
1864 | ||
3bb1a852 | 1865 | zone->prev_priority = temp_priority[i]; |
1da177e4 LT |
1866 | } |
1867 | if (!all_zones_ok) { | |
1868 | cond_resched(); | |
8357376d RW |
1869 | |
1870 | try_to_freeze(); | |
1871 | ||
1da177e4 LT |
1872 | goto loop_again; |
1873 | } | |
1874 | ||
05ff5137 | 1875 | return nr_reclaimed; |
1da177e4 LT |
1876 | } |
1877 | ||
1878 | /* | |
1879 | * The background pageout daemon, started as a kernel thread | |
4f98a2fe | 1880 | * from the init process. |
1da177e4 LT |
1881 | * |
1882 | * This basically trickles out pages so that we have _some_ | |
1883 | * free memory available even if there is no other activity | |
1884 | * that frees anything up. This is needed for things like routing | |
1885 | * etc, where we otherwise might have all activity going on in | |
1886 | * asynchronous contexts that cannot page things out. | |
1887 | * | |
1888 | * If there are applications that are active memory-allocators | |
1889 | * (most normal use), this basically shouldn't matter. | |
1890 | */ | |
1891 | static int kswapd(void *p) | |
1892 | { | |
1893 | unsigned long order; | |
1894 | pg_data_t *pgdat = (pg_data_t*)p; | |
1895 | struct task_struct *tsk = current; | |
1896 | DEFINE_WAIT(wait); | |
1897 | struct reclaim_state reclaim_state = { | |
1898 | .reclaimed_slab = 0, | |
1899 | }; | |
c5f59f08 | 1900 | node_to_cpumask_ptr(cpumask, pgdat->node_id); |
1da177e4 | 1901 | |
c5f59f08 MT |
1902 | if (!cpus_empty(*cpumask)) |
1903 | set_cpus_allowed_ptr(tsk, cpumask); | |
1da177e4 LT |
1904 | current->reclaim_state = &reclaim_state; |
1905 | ||
1906 | /* | |
1907 | * Tell the memory management that we're a "memory allocator", | |
1908 | * and that if we need more memory we should get access to it | |
1909 | * regardless (see "__alloc_pages()"). "kswapd" should | |
1910 | * never get caught in the normal page freeing logic. | |
1911 | * | |
1912 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
1913 | * you need a small amount of memory in order to be able to | |
1914 | * page out something else, and this flag essentially protects | |
1915 | * us from recursively trying to free more memory as we're | |
1916 | * trying to free the first piece of memory in the first place). | |
1917 | */ | |
930d9152 | 1918 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
83144186 | 1919 | set_freezable(); |
1da177e4 LT |
1920 | |
1921 | order = 0; | |
1922 | for ( ; ; ) { | |
1923 | unsigned long new_order; | |
3e1d1d28 | 1924 | |
1da177e4 LT |
1925 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); |
1926 | new_order = pgdat->kswapd_max_order; | |
1927 | pgdat->kswapd_max_order = 0; | |
1928 | if (order < new_order) { | |
1929 | /* | |
1930 | * Don't sleep if someone wants a larger 'order' | |
1931 | * allocation | |
1932 | */ | |
1933 | order = new_order; | |
1934 | } else { | |
b1296cc4 RW |
1935 | if (!freezing(current)) |
1936 | schedule(); | |
1937 | ||
1da177e4 LT |
1938 | order = pgdat->kswapd_max_order; |
1939 | } | |
1940 | finish_wait(&pgdat->kswapd_wait, &wait); | |
1941 | ||
b1296cc4 RW |
1942 | if (!try_to_freeze()) { |
1943 | /* We can speed up thawing tasks if we don't call | |
1944 | * balance_pgdat after returning from the refrigerator | |
1945 | */ | |
1946 | balance_pgdat(pgdat, order); | |
1947 | } | |
1da177e4 LT |
1948 | } |
1949 | return 0; | |
1950 | } | |
1951 | ||
1952 | /* | |
1953 | * A zone is low on free memory, so wake its kswapd task to service it. | |
1954 | */ | |
1955 | void wakeup_kswapd(struct zone *zone, int order) | |
1956 | { | |
1957 | pg_data_t *pgdat; | |
1958 | ||
f3fe6512 | 1959 | if (!populated_zone(zone)) |
1da177e4 LT |
1960 | return; |
1961 | ||
1962 | pgdat = zone->zone_pgdat; | |
7fb1d9fc | 1963 | if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) |
1da177e4 LT |
1964 | return; |
1965 | if (pgdat->kswapd_max_order < order) | |
1966 | pgdat->kswapd_max_order = order; | |
02a0e53d | 1967 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1da177e4 | 1968 | return; |
8d0986e2 | 1969 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 1970 | return; |
8d0986e2 | 1971 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
1972 | } |
1973 | ||
4f98a2fe RR |
1974 | unsigned long global_lru_pages(void) |
1975 | { | |
1976 | return global_page_state(NR_ACTIVE_ANON) | |
1977 | + global_page_state(NR_ACTIVE_FILE) | |
1978 | + global_page_state(NR_INACTIVE_ANON) | |
1979 | + global_page_state(NR_INACTIVE_FILE); | |
1980 | } | |
1981 | ||
1da177e4 LT |
1982 | #ifdef CONFIG_PM |
1983 | /* | |
d6277db4 RW |
1984 | * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages |
1985 | * from LRU lists system-wide, for given pass and priority, and returns the | |
1986 | * number of reclaimed pages | |
1987 | * | |
1988 | * For pass > 3 we also try to shrink the LRU lists that contain a few pages | |
1989 | */ | |
e07aa05b NC |
1990 | static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, |
1991 | int pass, struct scan_control *sc) | |
d6277db4 RW |
1992 | { |
1993 | struct zone *zone; | |
1994 | unsigned long nr_to_scan, ret = 0; | |
b69408e8 | 1995 | enum lru_list l; |
d6277db4 RW |
1996 | |
1997 | for_each_zone(zone) { | |
1998 | ||
1999 | if (!populated_zone(zone)) | |
2000 | continue; | |
2001 | ||
e815af95 | 2002 | if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) |
d6277db4 RW |
2003 | continue; |
2004 | ||
894bc310 LS |
2005 | for_each_evictable_lru(l) { |
2006 | /* For pass = 0, we don't shrink the active list */ | |
4f98a2fe RR |
2007 | if (pass == 0 && |
2008 | (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE)) | |
b69408e8 CL |
2009 | continue; |
2010 | ||
2011 | zone->lru[l].nr_scan += | |
2012 | (zone_page_state(zone, NR_LRU_BASE + l) | |
2013 | >> prio) + 1; | |
2014 | if (zone->lru[l].nr_scan >= nr_pages || pass > 3) { | |
2015 | zone->lru[l].nr_scan = 0; | |
c8785385 | 2016 | nr_to_scan = min(nr_pages, |
b69408e8 CL |
2017 | zone_page_state(zone, |
2018 | NR_LRU_BASE + l)); | |
2019 | ret += shrink_list(l, nr_to_scan, zone, | |
2020 | sc, prio); | |
2021 | if (ret >= nr_pages) | |
2022 | return ret; | |
d6277db4 RW |
2023 | } |
2024 | } | |
d6277db4 RW |
2025 | } |
2026 | ||
2027 | return ret; | |
2028 | } | |
2029 | ||
2030 | /* | |
2031 | * Try to free `nr_pages' of memory, system-wide, and return the number of | |
2032 | * freed pages. | |
2033 | * | |
2034 | * Rather than trying to age LRUs the aim is to preserve the overall | |
2035 | * LRU order by reclaiming preferentially | |
2036 | * inactive > active > active referenced > active mapped | |
1da177e4 | 2037 | */ |
69e05944 | 2038 | unsigned long shrink_all_memory(unsigned long nr_pages) |
1da177e4 | 2039 | { |
d6277db4 | 2040 | unsigned long lru_pages, nr_slab; |
69e05944 | 2041 | unsigned long ret = 0; |
d6277db4 RW |
2042 | int pass; |
2043 | struct reclaim_state reclaim_state; | |
d6277db4 RW |
2044 | struct scan_control sc = { |
2045 | .gfp_mask = GFP_KERNEL, | |
2046 | .may_swap = 0, | |
2047 | .swap_cluster_max = nr_pages, | |
2048 | .may_writepage = 1, | |
2049 | .swappiness = vm_swappiness, | |
66e1707b | 2050 | .isolate_pages = isolate_pages_global, |
1da177e4 LT |
2051 | }; |
2052 | ||
2053 | current->reclaim_state = &reclaim_state; | |
69e05944 | 2054 | |
4f98a2fe | 2055 | lru_pages = global_lru_pages(); |
972d1a7b | 2056 | nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); |
d6277db4 RW |
2057 | /* If slab caches are huge, it's better to hit them first */ |
2058 | while (nr_slab >= lru_pages) { | |
2059 | reclaim_state.reclaimed_slab = 0; | |
2060 | shrink_slab(nr_pages, sc.gfp_mask, lru_pages); | |
2061 | if (!reclaim_state.reclaimed_slab) | |
1da177e4 | 2062 | break; |
d6277db4 RW |
2063 | |
2064 | ret += reclaim_state.reclaimed_slab; | |
2065 | if (ret >= nr_pages) | |
2066 | goto out; | |
2067 | ||
2068 | nr_slab -= reclaim_state.reclaimed_slab; | |
1da177e4 | 2069 | } |
d6277db4 RW |
2070 | |
2071 | /* | |
2072 | * We try to shrink LRUs in 5 passes: | |
2073 | * 0 = Reclaim from inactive_list only | |
2074 | * 1 = Reclaim from active list but don't reclaim mapped | |
2075 | * 2 = 2nd pass of type 1 | |
2076 | * 3 = Reclaim mapped (normal reclaim) | |
2077 | * 4 = 2nd pass of type 3 | |
2078 | */ | |
2079 | for (pass = 0; pass < 5; pass++) { | |
2080 | int prio; | |
2081 | ||
d6277db4 RW |
2082 | /* Force reclaiming mapped pages in the passes #3 and #4 */ |
2083 | if (pass > 2) { | |
2084 | sc.may_swap = 1; | |
2085 | sc.swappiness = 100; | |
2086 | } | |
2087 | ||
2088 | for (prio = DEF_PRIORITY; prio >= 0; prio--) { | |
2089 | unsigned long nr_to_scan = nr_pages - ret; | |
2090 | ||
d6277db4 | 2091 | sc.nr_scanned = 0; |
d6277db4 RW |
2092 | ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); |
2093 | if (ret >= nr_pages) | |
2094 | goto out; | |
2095 | ||
2096 | reclaim_state.reclaimed_slab = 0; | |
76395d37 | 2097 | shrink_slab(sc.nr_scanned, sc.gfp_mask, |
4f98a2fe | 2098 | global_lru_pages()); |
d6277db4 RW |
2099 | ret += reclaim_state.reclaimed_slab; |
2100 | if (ret >= nr_pages) | |
2101 | goto out; | |
2102 | ||
2103 | if (sc.nr_scanned && prio < DEF_PRIORITY - 2) | |
3fcfab16 | 2104 | congestion_wait(WRITE, HZ / 10); |
d6277db4 | 2105 | } |
248a0301 | 2106 | } |
d6277db4 RW |
2107 | |
2108 | /* | |
2109 | * If ret = 0, we could not shrink LRUs, but there may be something | |
2110 | * in slab caches | |
2111 | */ | |
76395d37 | 2112 | if (!ret) { |
d6277db4 RW |
2113 | do { |
2114 | reclaim_state.reclaimed_slab = 0; | |
4f98a2fe | 2115 | shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages()); |
d6277db4 RW |
2116 | ret += reclaim_state.reclaimed_slab; |
2117 | } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); | |
76395d37 | 2118 | } |
d6277db4 RW |
2119 | |
2120 | out: | |
1da177e4 | 2121 | current->reclaim_state = NULL; |
d6277db4 | 2122 | |
1da177e4 LT |
2123 | return ret; |
2124 | } | |
2125 | #endif | |
2126 | ||
1da177e4 LT |
2127 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
2128 | not required for correctness. So if the last cpu in a node goes | |
2129 | away, we get changed to run anywhere: as the first one comes back, | |
2130 | restore their cpu bindings. */ | |
9c7b216d | 2131 | static int __devinit cpu_callback(struct notifier_block *nfb, |
69e05944 | 2132 | unsigned long action, void *hcpu) |
1da177e4 | 2133 | { |
58c0a4a7 | 2134 | int nid; |
1da177e4 | 2135 | |
8bb78442 | 2136 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
58c0a4a7 | 2137 | for_each_node_state(nid, N_HIGH_MEMORY) { |
c5f59f08 MT |
2138 | pg_data_t *pgdat = NODE_DATA(nid); |
2139 | node_to_cpumask_ptr(mask, pgdat->node_id); | |
2140 | ||
2141 | if (any_online_cpu(*mask) < nr_cpu_ids) | |
1da177e4 | 2142 | /* One of our CPUs online: restore mask */ |
c5f59f08 | 2143 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
1da177e4 LT |
2144 | } |
2145 | } | |
2146 | return NOTIFY_OK; | |
2147 | } | |
1da177e4 | 2148 | |
3218ae14 YG |
2149 | /* |
2150 | * This kswapd start function will be called by init and node-hot-add. | |
2151 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
2152 | */ | |
2153 | int kswapd_run(int nid) | |
2154 | { | |
2155 | pg_data_t *pgdat = NODE_DATA(nid); | |
2156 | int ret = 0; | |
2157 | ||
2158 | if (pgdat->kswapd) | |
2159 | return 0; | |
2160 | ||
2161 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
2162 | if (IS_ERR(pgdat->kswapd)) { | |
2163 | /* failure at boot is fatal */ | |
2164 | BUG_ON(system_state == SYSTEM_BOOTING); | |
2165 | printk("Failed to start kswapd on node %d\n",nid); | |
2166 | ret = -1; | |
2167 | } | |
2168 | return ret; | |
2169 | } | |
2170 | ||
1da177e4 LT |
2171 | static int __init kswapd_init(void) |
2172 | { | |
3218ae14 | 2173 | int nid; |
69e05944 | 2174 | |
1da177e4 | 2175 | swap_setup(); |
9422ffba | 2176 | for_each_node_state(nid, N_HIGH_MEMORY) |
3218ae14 | 2177 | kswapd_run(nid); |
1da177e4 LT |
2178 | hotcpu_notifier(cpu_callback, 0); |
2179 | return 0; | |
2180 | } | |
2181 | ||
2182 | module_init(kswapd_init) | |
9eeff239 CL |
2183 | |
2184 | #ifdef CONFIG_NUMA | |
2185 | /* | |
2186 | * Zone reclaim mode | |
2187 | * | |
2188 | * If non-zero call zone_reclaim when the number of free pages falls below | |
2189 | * the watermarks. | |
9eeff239 CL |
2190 | */ |
2191 | int zone_reclaim_mode __read_mostly; | |
2192 | ||
1b2ffb78 | 2193 | #define RECLAIM_OFF 0 |
7d03431c | 2194 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
1b2ffb78 CL |
2195 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
2196 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | |
2197 | ||
a92f7126 CL |
2198 | /* |
2199 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | |
2200 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
2201 | * a zone. | |
2202 | */ | |
2203 | #define ZONE_RECLAIM_PRIORITY 4 | |
2204 | ||
9614634f CL |
2205 | /* |
2206 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to | |
2207 | * occur. | |
2208 | */ | |
2209 | int sysctl_min_unmapped_ratio = 1; | |
2210 | ||
0ff38490 CL |
2211 | /* |
2212 | * If the number of slab pages in a zone grows beyond this percentage then | |
2213 | * slab reclaim needs to occur. | |
2214 | */ | |
2215 | int sysctl_min_slab_ratio = 5; | |
2216 | ||
9eeff239 CL |
2217 | /* |
2218 | * Try to free up some pages from this zone through reclaim. | |
2219 | */ | |
179e9639 | 2220 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 2221 | { |
7fb2d46d | 2222 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 2223 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
2224 | struct task_struct *p = current; |
2225 | struct reclaim_state reclaim_state; | |
8695949a | 2226 | int priority; |
05ff5137 | 2227 | unsigned long nr_reclaimed = 0; |
179e9639 AM |
2228 | struct scan_control sc = { |
2229 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | |
2230 | .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), | |
69e05944 AM |
2231 | .swap_cluster_max = max_t(unsigned long, nr_pages, |
2232 | SWAP_CLUSTER_MAX), | |
179e9639 | 2233 | .gfp_mask = gfp_mask, |
d6277db4 | 2234 | .swappiness = vm_swappiness, |
66e1707b | 2235 | .isolate_pages = isolate_pages_global, |
179e9639 | 2236 | }; |
83e33a47 | 2237 | unsigned long slab_reclaimable; |
9eeff239 CL |
2238 | |
2239 | disable_swap_token(); | |
9eeff239 | 2240 | cond_resched(); |
d4f7796e CL |
2241 | /* |
2242 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | |
2243 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
2244 | * and RECLAIM_SWAP. | |
2245 | */ | |
2246 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
9eeff239 CL |
2247 | reclaim_state.reclaimed_slab = 0; |
2248 | p->reclaim_state = &reclaim_state; | |
c84db23c | 2249 | |
0ff38490 CL |
2250 | if (zone_page_state(zone, NR_FILE_PAGES) - |
2251 | zone_page_state(zone, NR_FILE_MAPPED) > | |
2252 | zone->min_unmapped_pages) { | |
2253 | /* | |
2254 | * Free memory by calling shrink zone with increasing | |
2255 | * priorities until we have enough memory freed. | |
2256 | */ | |
2257 | priority = ZONE_RECLAIM_PRIORITY; | |
2258 | do { | |
3bb1a852 | 2259 | note_zone_scanning_priority(zone, priority); |
0ff38490 CL |
2260 | nr_reclaimed += shrink_zone(priority, zone, &sc); |
2261 | priority--; | |
2262 | } while (priority >= 0 && nr_reclaimed < nr_pages); | |
2263 | } | |
c84db23c | 2264 | |
83e33a47 CL |
2265 | slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
2266 | if (slab_reclaimable > zone->min_slab_pages) { | |
2a16e3f4 | 2267 | /* |
7fb2d46d | 2268 | * shrink_slab() does not currently allow us to determine how |
0ff38490 CL |
2269 | * many pages were freed in this zone. So we take the current |
2270 | * number of slab pages and shake the slab until it is reduced | |
2271 | * by the same nr_pages that we used for reclaiming unmapped | |
2272 | * pages. | |
2a16e3f4 | 2273 | * |
0ff38490 CL |
2274 | * Note that shrink_slab will free memory on all zones and may |
2275 | * take a long time. | |
2a16e3f4 | 2276 | */ |
0ff38490 | 2277 | while (shrink_slab(sc.nr_scanned, gfp_mask, order) && |
83e33a47 CL |
2278 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) > |
2279 | slab_reclaimable - nr_pages) | |
0ff38490 | 2280 | ; |
83e33a47 CL |
2281 | |
2282 | /* | |
2283 | * Update nr_reclaimed by the number of slab pages we | |
2284 | * reclaimed from this zone. | |
2285 | */ | |
2286 | nr_reclaimed += slab_reclaimable - | |
2287 | zone_page_state(zone, NR_SLAB_RECLAIMABLE); | |
2a16e3f4 CL |
2288 | } |
2289 | ||
9eeff239 | 2290 | p->reclaim_state = NULL; |
d4f7796e | 2291 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
05ff5137 | 2292 | return nr_reclaimed >= nr_pages; |
9eeff239 | 2293 | } |
179e9639 AM |
2294 | |
2295 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |
2296 | { | |
179e9639 | 2297 | int node_id; |
d773ed6b | 2298 | int ret; |
179e9639 AM |
2299 | |
2300 | /* | |
0ff38490 CL |
2301 | * Zone reclaim reclaims unmapped file backed pages and |
2302 | * slab pages if we are over the defined limits. | |
34aa1330 | 2303 | * |
9614634f CL |
2304 | * A small portion of unmapped file backed pages is needed for |
2305 | * file I/O otherwise pages read by file I/O will be immediately | |
2306 | * thrown out if the zone is overallocated. So we do not reclaim | |
2307 | * if less than a specified percentage of the zone is used by | |
2308 | * unmapped file backed pages. | |
179e9639 | 2309 | */ |
34aa1330 | 2310 | if (zone_page_state(zone, NR_FILE_PAGES) - |
0ff38490 CL |
2311 | zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages |
2312 | && zone_page_state(zone, NR_SLAB_RECLAIMABLE) | |
2313 | <= zone->min_slab_pages) | |
9614634f | 2314 | return 0; |
179e9639 | 2315 | |
d773ed6b DR |
2316 | if (zone_is_all_unreclaimable(zone)) |
2317 | return 0; | |
2318 | ||
179e9639 | 2319 | /* |
d773ed6b | 2320 | * Do not scan if the allocation should not be delayed. |
179e9639 | 2321 | */ |
d773ed6b | 2322 | if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) |
179e9639 AM |
2323 | return 0; |
2324 | ||
2325 | /* | |
2326 | * Only run zone reclaim on the local zone or on zones that do not | |
2327 | * have associated processors. This will favor the local processor | |
2328 | * over remote processors and spread off node memory allocations | |
2329 | * as wide as possible. | |
2330 | */ | |
89fa3024 | 2331 | node_id = zone_to_nid(zone); |
37c0708d | 2332 | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) |
179e9639 | 2333 | return 0; |
d773ed6b DR |
2334 | |
2335 | if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) | |
2336 | return 0; | |
2337 | ret = __zone_reclaim(zone, gfp_mask, order); | |
2338 | zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); | |
2339 | ||
2340 | return ret; | |
179e9639 | 2341 | } |
9eeff239 | 2342 | #endif |
894bc310 LS |
2343 | |
2344 | #ifdef CONFIG_UNEVICTABLE_LRU | |
2345 | /* | |
2346 | * page_evictable - test whether a page is evictable | |
2347 | * @page: the page to test | |
2348 | * @vma: the VMA in which the page is or will be mapped, may be NULL | |
2349 | * | |
2350 | * Test whether page is evictable--i.e., should be placed on active/inactive | |
b291f000 NP |
2351 | * lists vs unevictable list. The vma argument is !NULL when called from the |
2352 | * fault path to determine how to instantate a new page. | |
894bc310 LS |
2353 | * |
2354 | * Reasons page might not be evictable: | |
ba9ddf49 | 2355 | * (1) page's mapping marked unevictable |
b291f000 | 2356 | * (2) page is part of an mlocked VMA |
ba9ddf49 | 2357 | * |
894bc310 LS |
2358 | */ |
2359 | int page_evictable(struct page *page, struct vm_area_struct *vma) | |
2360 | { | |
2361 | ||
ba9ddf49 LS |
2362 | if (mapping_unevictable(page_mapping(page))) |
2363 | return 0; | |
2364 | ||
b291f000 NP |
2365 | if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page))) |
2366 | return 0; | |
894bc310 LS |
2367 | |
2368 | return 1; | |
2369 | } | |
89e004ea | 2370 | |
af936a16 LS |
2371 | static void show_page_path(struct page *page) |
2372 | { | |
2373 | char buf[256]; | |
2374 | if (page_is_file_cache(page)) { | |
2375 | struct address_space *mapping = page->mapping; | |
2376 | struct dentry *dentry; | |
2377 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
2378 | ||
2379 | spin_lock(&mapping->i_mmap_lock); | |
2380 | dentry = d_find_alias(mapping->host); | |
2381 | printk(KERN_INFO "rescued: %s %lu\n", | |
2382 | dentry_path(dentry, buf, 256), pgoff); | |
2383 | spin_unlock(&mapping->i_mmap_lock); | |
2384 | } else { | |
2385 | #if defined(CONFIG_MM_OWNER) && defined(CONFIG_MMU) | |
2386 | struct anon_vma *anon_vma; | |
2387 | struct vm_area_struct *vma; | |
2388 | ||
2389 | anon_vma = page_lock_anon_vma(page); | |
2390 | if (!anon_vma) | |
2391 | return; | |
2392 | ||
2393 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
2394 | printk(KERN_INFO "rescued: anon %s\n", | |
2395 | vma->vm_mm->owner->comm); | |
2396 | break; | |
2397 | } | |
2398 | page_unlock_anon_vma(anon_vma); | |
2399 | #endif | |
2400 | } | |
2401 | } | |
2402 | ||
2403 | ||
89e004ea LS |
2404 | /** |
2405 | * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list | |
2406 | * @page: page to check evictability and move to appropriate lru list | |
2407 | * @zone: zone page is in | |
2408 | * | |
2409 | * Checks a page for evictability and moves the page to the appropriate | |
2410 | * zone lru list. | |
2411 | * | |
2412 | * Restrictions: zone->lru_lock must be held, page must be on LRU and must | |
2413 | * have PageUnevictable set. | |
2414 | */ | |
2415 | static void check_move_unevictable_page(struct page *page, struct zone *zone) | |
2416 | { | |
2417 | VM_BUG_ON(PageActive(page)); | |
2418 | ||
2419 | retry: | |
2420 | ClearPageUnevictable(page); | |
2421 | if (page_evictable(page, NULL)) { | |
2422 | enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page); | |
af936a16 LS |
2423 | |
2424 | show_page_path(page); | |
2425 | ||
89e004ea LS |
2426 | __dec_zone_state(zone, NR_UNEVICTABLE); |
2427 | list_move(&page->lru, &zone->lru[l].list); | |
2428 | __inc_zone_state(zone, NR_INACTIVE_ANON + l); | |
2429 | __count_vm_event(UNEVICTABLE_PGRESCUED); | |
2430 | } else { | |
2431 | /* | |
2432 | * rotate unevictable list | |
2433 | */ | |
2434 | SetPageUnevictable(page); | |
2435 | list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list); | |
2436 | if (page_evictable(page, NULL)) | |
2437 | goto retry; | |
2438 | } | |
2439 | } | |
2440 | ||
2441 | /** | |
2442 | * scan_mapping_unevictable_pages - scan an address space for evictable pages | |
2443 | * @mapping: struct address_space to scan for evictable pages | |
2444 | * | |
2445 | * Scan all pages in mapping. Check unevictable pages for | |
2446 | * evictability and move them to the appropriate zone lru list. | |
2447 | */ | |
2448 | void scan_mapping_unevictable_pages(struct address_space *mapping) | |
2449 | { | |
2450 | pgoff_t next = 0; | |
2451 | pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >> | |
2452 | PAGE_CACHE_SHIFT; | |
2453 | struct zone *zone; | |
2454 | struct pagevec pvec; | |
2455 | ||
2456 | if (mapping->nrpages == 0) | |
2457 | return; | |
2458 | ||
2459 | pagevec_init(&pvec, 0); | |
2460 | while (next < end && | |
2461 | pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { | |
2462 | int i; | |
2463 | int pg_scanned = 0; | |
2464 | ||
2465 | zone = NULL; | |
2466 | ||
2467 | for (i = 0; i < pagevec_count(&pvec); i++) { | |
2468 | struct page *page = pvec.pages[i]; | |
2469 | pgoff_t page_index = page->index; | |
2470 | struct zone *pagezone = page_zone(page); | |
2471 | ||
2472 | pg_scanned++; | |
2473 | if (page_index > next) | |
2474 | next = page_index; | |
2475 | next++; | |
2476 | ||
2477 | if (pagezone != zone) { | |
2478 | if (zone) | |
2479 | spin_unlock_irq(&zone->lru_lock); | |
2480 | zone = pagezone; | |
2481 | spin_lock_irq(&zone->lru_lock); | |
2482 | } | |
2483 | ||
2484 | if (PageLRU(page) && PageUnevictable(page)) | |
2485 | check_move_unevictable_page(page, zone); | |
2486 | } | |
2487 | if (zone) | |
2488 | spin_unlock_irq(&zone->lru_lock); | |
2489 | pagevec_release(&pvec); | |
2490 | ||
2491 | count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned); | |
2492 | } | |
2493 | ||
2494 | } | |
af936a16 LS |
2495 | |
2496 | /** | |
2497 | * scan_zone_unevictable_pages - check unevictable list for evictable pages | |
2498 | * @zone - zone of which to scan the unevictable list | |
2499 | * | |
2500 | * Scan @zone's unevictable LRU lists to check for pages that have become | |
2501 | * evictable. Move those that have to @zone's inactive list where they | |
2502 | * become candidates for reclaim, unless shrink_inactive_zone() decides | |
2503 | * to reactivate them. Pages that are still unevictable are rotated | |
2504 | * back onto @zone's unevictable list. | |
2505 | */ | |
2506 | #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */ | |
2507 | void scan_zone_unevictable_pages(struct zone *zone) | |
2508 | { | |
2509 | struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list; | |
2510 | unsigned long scan; | |
2511 | unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE); | |
2512 | ||
2513 | while (nr_to_scan > 0) { | |
2514 | unsigned long batch_size = min(nr_to_scan, | |
2515 | SCAN_UNEVICTABLE_BATCH_SIZE); | |
2516 | ||
2517 | spin_lock_irq(&zone->lru_lock); | |
2518 | for (scan = 0; scan < batch_size; scan++) { | |
2519 | struct page *page = lru_to_page(l_unevictable); | |
2520 | ||
2521 | if (!trylock_page(page)) | |
2522 | continue; | |
2523 | ||
2524 | prefetchw_prev_lru_page(page, l_unevictable, flags); | |
2525 | ||
2526 | if (likely(PageLRU(page) && PageUnevictable(page))) | |
2527 | check_move_unevictable_page(page, zone); | |
2528 | ||
2529 | unlock_page(page); | |
2530 | } | |
2531 | spin_unlock_irq(&zone->lru_lock); | |
2532 | ||
2533 | nr_to_scan -= batch_size; | |
2534 | } | |
2535 | } | |
2536 | ||
2537 | ||
2538 | /** | |
2539 | * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages | |
2540 | * | |
2541 | * A really big hammer: scan all zones' unevictable LRU lists to check for | |
2542 | * pages that have become evictable. Move those back to the zones' | |
2543 | * inactive list where they become candidates for reclaim. | |
2544 | * This occurs when, e.g., we have unswappable pages on the unevictable lists, | |
2545 | * and we add swap to the system. As such, it runs in the context of a task | |
2546 | * that has possibly/probably made some previously unevictable pages | |
2547 | * evictable. | |
2548 | */ | |
2549 | void scan_all_zones_unevictable_pages(void) | |
2550 | { | |
2551 | struct zone *zone; | |
2552 | ||
2553 | for_each_zone(zone) { | |
2554 | scan_zone_unevictable_pages(zone); | |
2555 | } | |
2556 | } | |
2557 | ||
2558 | /* | |
2559 | * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of | |
2560 | * all nodes' unevictable lists for evictable pages | |
2561 | */ | |
2562 | unsigned long scan_unevictable_pages; | |
2563 | ||
2564 | int scan_unevictable_handler(struct ctl_table *table, int write, | |
2565 | struct file *file, void __user *buffer, | |
2566 | size_t *length, loff_t *ppos) | |
2567 | { | |
2568 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); | |
2569 | ||
2570 | if (write && *(unsigned long *)table->data) | |
2571 | scan_all_zones_unevictable_pages(); | |
2572 | ||
2573 | scan_unevictable_pages = 0; | |
2574 | return 0; | |
2575 | } | |
2576 | ||
2577 | /* | |
2578 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of | |
2579 | * a specified node's per zone unevictable lists for evictable pages. | |
2580 | */ | |
2581 | ||
2582 | static ssize_t read_scan_unevictable_node(struct sys_device *dev, | |
2583 | struct sysdev_attribute *attr, | |
2584 | char *buf) | |
2585 | { | |
2586 | return sprintf(buf, "0\n"); /* always zero; should fit... */ | |
2587 | } | |
2588 | ||
2589 | static ssize_t write_scan_unevictable_node(struct sys_device *dev, | |
2590 | struct sysdev_attribute *attr, | |
2591 | const char *buf, size_t count) | |
2592 | { | |
2593 | struct zone *node_zones = NODE_DATA(dev->id)->node_zones; | |
2594 | struct zone *zone; | |
2595 | unsigned long res; | |
2596 | unsigned long req = strict_strtoul(buf, 10, &res); | |
2597 | ||
2598 | if (!req) | |
2599 | return 1; /* zero is no-op */ | |
2600 | ||
2601 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | |
2602 | if (!populated_zone(zone)) | |
2603 | continue; | |
2604 | scan_zone_unevictable_pages(zone); | |
2605 | } | |
2606 | return 1; | |
2607 | } | |
2608 | ||
2609 | ||
2610 | static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, | |
2611 | read_scan_unevictable_node, | |
2612 | write_scan_unevictable_node); | |
2613 | ||
2614 | int scan_unevictable_register_node(struct node *node) | |
2615 | { | |
2616 | return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages); | |
2617 | } | |
2618 | ||
2619 | void scan_unevictable_unregister_node(struct node *node) | |
2620 | { | |
2621 | sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); | |
2622 | } | |
2623 | ||
894bc310 | 2624 | #endif |