]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/timer.c | |
3 | * | |
8524070b | 4 | * Kernel internal timers, basic process system calls |
1da177e4 LT |
5 | * |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | |
7 | * | |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | |
9 | * | |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | |
13 | * serialize accesses to xtime/lost_ticks). | |
14 | * Copyright (C) 1998 Andrea Arcangeli | |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | |
20 | */ | |
21 | ||
22 | #include <linux/kernel_stat.h> | |
9984de1a | 23 | #include <linux/export.h> |
1da177e4 LT |
24 | #include <linux/interrupt.h> |
25 | #include <linux/percpu.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/mm.h> | |
28 | #include <linux/swap.h> | |
b488893a | 29 | #include <linux/pid_namespace.h> |
1da177e4 LT |
30 | #include <linux/notifier.h> |
31 | #include <linux/thread_info.h> | |
32 | #include <linux/time.h> | |
33 | #include <linux/jiffies.h> | |
34 | #include <linux/posix-timers.h> | |
35 | #include <linux/cpu.h> | |
36 | #include <linux/syscalls.h> | |
97a41e26 | 37 | #include <linux/delay.h> |
79bf2bb3 | 38 | #include <linux/tick.h> |
82f67cd9 | 39 | #include <linux/kallsyms.h> |
e360adbe | 40 | #include <linux/irq_work.h> |
eea08f32 | 41 | #include <linux/sched.h> |
cf4aebc2 | 42 | #include <linux/sched/sysctl.h> |
5a0e3ad6 | 43 | #include <linux/slab.h> |
1da177e4 LT |
44 | |
45 | #include <asm/uaccess.h> | |
46 | #include <asm/unistd.h> | |
47 | #include <asm/div64.h> | |
48 | #include <asm/timex.h> | |
49 | #include <asm/io.h> | |
50 | ||
2b022e3d XG |
51 | #define CREATE_TRACE_POINTS |
52 | #include <trace/events/timer.h> | |
53 | ||
ecea8d19 TG |
54 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
55 | ||
56 | EXPORT_SYMBOL(jiffies_64); | |
57 | ||
1da177e4 LT |
58 | /* |
59 | * per-CPU timer vector definitions: | |
60 | */ | |
1da177e4 LT |
61 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
62 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | |
63 | #define TVN_SIZE (1 << TVN_BITS) | |
64 | #define TVR_SIZE (1 << TVR_BITS) | |
65 | #define TVN_MASK (TVN_SIZE - 1) | |
66 | #define TVR_MASK (TVR_SIZE - 1) | |
26cff4e2 | 67 | #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1)) |
1da177e4 | 68 | |
a6fa8e5a | 69 | struct tvec { |
1da177e4 | 70 | struct list_head vec[TVN_SIZE]; |
a6fa8e5a | 71 | }; |
1da177e4 | 72 | |
a6fa8e5a | 73 | struct tvec_root { |
1da177e4 | 74 | struct list_head vec[TVR_SIZE]; |
a6fa8e5a | 75 | }; |
1da177e4 | 76 | |
a6fa8e5a | 77 | struct tvec_base { |
3691c519 ON |
78 | spinlock_t lock; |
79 | struct timer_list *running_timer; | |
1da177e4 | 80 | unsigned long timer_jiffies; |
97fd9ed4 | 81 | unsigned long next_timer; |
99d5f3aa | 82 | unsigned long active_timers; |
a6fa8e5a PM |
83 | struct tvec_root tv1; |
84 | struct tvec tv2; | |
85 | struct tvec tv3; | |
86 | struct tvec tv4; | |
87 | struct tvec tv5; | |
6e453a67 | 88 | } ____cacheline_aligned; |
1da177e4 | 89 | |
a6fa8e5a | 90 | struct tvec_base boot_tvec_bases; |
3691c519 | 91 | EXPORT_SYMBOL(boot_tvec_bases); |
a6fa8e5a | 92 | static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases; |
1da177e4 | 93 | |
6e453a67 | 94 | /* Functions below help us manage 'deferrable' flag */ |
a6fa8e5a | 95 | static inline unsigned int tbase_get_deferrable(struct tvec_base *base) |
6e453a67 | 96 | { |
e52b1db3 | 97 | return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE); |
6e453a67 VP |
98 | } |
99 | ||
c5f66e99 TH |
100 | static inline unsigned int tbase_get_irqsafe(struct tvec_base *base) |
101 | { | |
102 | return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE); | |
103 | } | |
104 | ||
a6fa8e5a | 105 | static inline struct tvec_base *tbase_get_base(struct tvec_base *base) |
6e453a67 | 106 | { |
e52b1db3 | 107 | return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK)); |
6e453a67 VP |
108 | } |
109 | ||
6e453a67 | 110 | static inline void |
a6fa8e5a | 111 | timer_set_base(struct timer_list *timer, struct tvec_base *new_base) |
6e453a67 | 112 | { |
e52b1db3 TH |
113 | unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK; |
114 | ||
115 | timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags); | |
6e453a67 VP |
116 | } |
117 | ||
9c133c46 AS |
118 | static unsigned long round_jiffies_common(unsigned long j, int cpu, |
119 | bool force_up) | |
4c36a5de AV |
120 | { |
121 | int rem; | |
122 | unsigned long original = j; | |
123 | ||
124 | /* | |
125 | * We don't want all cpus firing their timers at once hitting the | |
126 | * same lock or cachelines, so we skew each extra cpu with an extra | |
127 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which | |
128 | * already did this. | |
129 | * The skew is done by adding 3*cpunr, then round, then subtract this | |
130 | * extra offset again. | |
131 | */ | |
132 | j += cpu * 3; | |
133 | ||
134 | rem = j % HZ; | |
135 | ||
136 | /* | |
137 | * If the target jiffie is just after a whole second (which can happen | |
138 | * due to delays of the timer irq, long irq off times etc etc) then | |
139 | * we should round down to the whole second, not up. Use 1/4th second | |
140 | * as cutoff for this rounding as an extreme upper bound for this. | |
9c133c46 | 141 | * But never round down if @force_up is set. |
4c36a5de | 142 | */ |
9c133c46 | 143 | if (rem < HZ/4 && !force_up) /* round down */ |
4c36a5de AV |
144 | j = j - rem; |
145 | else /* round up */ | |
146 | j = j - rem + HZ; | |
147 | ||
148 | /* now that we have rounded, subtract the extra skew again */ | |
149 | j -= cpu * 3; | |
150 | ||
151 | if (j <= jiffies) /* rounding ate our timeout entirely; */ | |
152 | return original; | |
153 | return j; | |
154 | } | |
9c133c46 AS |
155 | |
156 | /** | |
157 | * __round_jiffies - function to round jiffies to a full second | |
158 | * @j: the time in (absolute) jiffies that should be rounded | |
159 | * @cpu: the processor number on which the timeout will happen | |
160 | * | |
161 | * __round_jiffies() rounds an absolute time in the future (in jiffies) | |
162 | * up or down to (approximately) full seconds. This is useful for timers | |
163 | * for which the exact time they fire does not matter too much, as long as | |
164 | * they fire approximately every X seconds. | |
165 | * | |
166 | * By rounding these timers to whole seconds, all such timers will fire | |
167 | * at the same time, rather than at various times spread out. The goal | |
168 | * of this is to have the CPU wake up less, which saves power. | |
169 | * | |
170 | * The exact rounding is skewed for each processor to avoid all | |
171 | * processors firing at the exact same time, which could lead | |
172 | * to lock contention or spurious cache line bouncing. | |
173 | * | |
174 | * The return value is the rounded version of the @j parameter. | |
175 | */ | |
176 | unsigned long __round_jiffies(unsigned long j, int cpu) | |
177 | { | |
178 | return round_jiffies_common(j, cpu, false); | |
179 | } | |
4c36a5de AV |
180 | EXPORT_SYMBOL_GPL(__round_jiffies); |
181 | ||
182 | /** | |
183 | * __round_jiffies_relative - function to round jiffies to a full second | |
184 | * @j: the time in (relative) jiffies that should be rounded | |
185 | * @cpu: the processor number on which the timeout will happen | |
186 | * | |
72fd4a35 | 187 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
188 | * up or down to (approximately) full seconds. This is useful for timers |
189 | * for which the exact time they fire does not matter too much, as long as | |
190 | * they fire approximately every X seconds. | |
191 | * | |
192 | * By rounding these timers to whole seconds, all such timers will fire | |
193 | * at the same time, rather than at various times spread out. The goal | |
194 | * of this is to have the CPU wake up less, which saves power. | |
195 | * | |
196 | * The exact rounding is skewed for each processor to avoid all | |
197 | * processors firing at the exact same time, which could lead | |
198 | * to lock contention or spurious cache line bouncing. | |
199 | * | |
72fd4a35 | 200 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
201 | */ |
202 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) | |
203 | { | |
9c133c46 AS |
204 | unsigned long j0 = jiffies; |
205 | ||
206 | /* Use j0 because jiffies might change while we run */ | |
207 | return round_jiffies_common(j + j0, cpu, false) - j0; | |
4c36a5de AV |
208 | } |
209 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); | |
210 | ||
211 | /** | |
212 | * round_jiffies - function to round jiffies to a full second | |
213 | * @j: the time in (absolute) jiffies that should be rounded | |
214 | * | |
72fd4a35 | 215 | * round_jiffies() rounds an absolute time in the future (in jiffies) |
4c36a5de AV |
216 | * up or down to (approximately) full seconds. This is useful for timers |
217 | * for which the exact time they fire does not matter too much, as long as | |
218 | * they fire approximately every X seconds. | |
219 | * | |
220 | * By rounding these timers to whole seconds, all such timers will fire | |
221 | * at the same time, rather than at various times spread out. The goal | |
222 | * of this is to have the CPU wake up less, which saves power. | |
223 | * | |
72fd4a35 | 224 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
225 | */ |
226 | unsigned long round_jiffies(unsigned long j) | |
227 | { | |
9c133c46 | 228 | return round_jiffies_common(j, raw_smp_processor_id(), false); |
4c36a5de AV |
229 | } |
230 | EXPORT_SYMBOL_GPL(round_jiffies); | |
231 | ||
232 | /** | |
233 | * round_jiffies_relative - function to round jiffies to a full second | |
234 | * @j: the time in (relative) jiffies that should be rounded | |
235 | * | |
72fd4a35 | 236 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
237 | * up or down to (approximately) full seconds. This is useful for timers |
238 | * for which the exact time they fire does not matter too much, as long as | |
239 | * they fire approximately every X seconds. | |
240 | * | |
241 | * By rounding these timers to whole seconds, all such timers will fire | |
242 | * at the same time, rather than at various times spread out. The goal | |
243 | * of this is to have the CPU wake up less, which saves power. | |
244 | * | |
72fd4a35 | 245 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
246 | */ |
247 | unsigned long round_jiffies_relative(unsigned long j) | |
248 | { | |
249 | return __round_jiffies_relative(j, raw_smp_processor_id()); | |
250 | } | |
251 | EXPORT_SYMBOL_GPL(round_jiffies_relative); | |
252 | ||
9c133c46 AS |
253 | /** |
254 | * __round_jiffies_up - function to round jiffies up to a full second | |
255 | * @j: the time in (absolute) jiffies that should be rounded | |
256 | * @cpu: the processor number on which the timeout will happen | |
257 | * | |
258 | * This is the same as __round_jiffies() except that it will never | |
259 | * round down. This is useful for timeouts for which the exact time | |
260 | * of firing does not matter too much, as long as they don't fire too | |
261 | * early. | |
262 | */ | |
263 | unsigned long __round_jiffies_up(unsigned long j, int cpu) | |
264 | { | |
265 | return round_jiffies_common(j, cpu, true); | |
266 | } | |
267 | EXPORT_SYMBOL_GPL(__round_jiffies_up); | |
268 | ||
269 | /** | |
270 | * __round_jiffies_up_relative - function to round jiffies up to a full second | |
271 | * @j: the time in (relative) jiffies that should be rounded | |
272 | * @cpu: the processor number on which the timeout will happen | |
273 | * | |
274 | * This is the same as __round_jiffies_relative() except that it will never | |
275 | * round down. This is useful for timeouts for which the exact time | |
276 | * of firing does not matter too much, as long as they don't fire too | |
277 | * early. | |
278 | */ | |
279 | unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) | |
280 | { | |
281 | unsigned long j0 = jiffies; | |
282 | ||
283 | /* Use j0 because jiffies might change while we run */ | |
284 | return round_jiffies_common(j + j0, cpu, true) - j0; | |
285 | } | |
286 | EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); | |
287 | ||
288 | /** | |
289 | * round_jiffies_up - function to round jiffies up to a full second | |
290 | * @j: the time in (absolute) jiffies that should be rounded | |
291 | * | |
292 | * This is the same as round_jiffies() except that it will never | |
293 | * round down. This is useful for timeouts for which the exact time | |
294 | * of firing does not matter too much, as long as they don't fire too | |
295 | * early. | |
296 | */ | |
297 | unsigned long round_jiffies_up(unsigned long j) | |
298 | { | |
299 | return round_jiffies_common(j, raw_smp_processor_id(), true); | |
300 | } | |
301 | EXPORT_SYMBOL_GPL(round_jiffies_up); | |
302 | ||
303 | /** | |
304 | * round_jiffies_up_relative - function to round jiffies up to a full second | |
305 | * @j: the time in (relative) jiffies that should be rounded | |
306 | * | |
307 | * This is the same as round_jiffies_relative() except that it will never | |
308 | * round down. This is useful for timeouts for which the exact time | |
309 | * of firing does not matter too much, as long as they don't fire too | |
310 | * early. | |
311 | */ | |
312 | unsigned long round_jiffies_up_relative(unsigned long j) | |
313 | { | |
314 | return __round_jiffies_up_relative(j, raw_smp_processor_id()); | |
315 | } | |
316 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); | |
317 | ||
3bbb9ec9 AV |
318 | /** |
319 | * set_timer_slack - set the allowed slack for a timer | |
0caa6210 | 320 | * @timer: the timer to be modified |
3bbb9ec9 AV |
321 | * @slack_hz: the amount of time (in jiffies) allowed for rounding |
322 | * | |
323 | * Set the amount of time, in jiffies, that a certain timer has | |
324 | * in terms of slack. By setting this value, the timer subsystem | |
325 | * will schedule the actual timer somewhere between | |
326 | * the time mod_timer() asks for, and that time plus the slack. | |
327 | * | |
328 | * By setting the slack to -1, a percentage of the delay is used | |
329 | * instead. | |
330 | */ | |
331 | void set_timer_slack(struct timer_list *timer, int slack_hz) | |
332 | { | |
333 | timer->slack = slack_hz; | |
334 | } | |
335 | EXPORT_SYMBOL_GPL(set_timer_slack); | |
336 | ||
facbb4a7 TG |
337 | static void |
338 | __internal_add_timer(struct tvec_base *base, struct timer_list *timer) | |
1da177e4 LT |
339 | { |
340 | unsigned long expires = timer->expires; | |
341 | unsigned long idx = expires - base->timer_jiffies; | |
342 | struct list_head *vec; | |
343 | ||
344 | if (idx < TVR_SIZE) { | |
345 | int i = expires & TVR_MASK; | |
346 | vec = base->tv1.vec + i; | |
347 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | |
348 | int i = (expires >> TVR_BITS) & TVN_MASK; | |
349 | vec = base->tv2.vec + i; | |
350 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | |
351 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | |
352 | vec = base->tv3.vec + i; | |
353 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | |
354 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | |
355 | vec = base->tv4.vec + i; | |
356 | } else if ((signed long) idx < 0) { | |
357 | /* | |
358 | * Can happen if you add a timer with expires == jiffies, | |
359 | * or you set a timer to go off in the past | |
360 | */ | |
361 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | |
362 | } else { | |
363 | int i; | |
26cff4e2 HC |
364 | /* If the timeout is larger than MAX_TVAL (on 64-bit |
365 | * architectures or with CONFIG_BASE_SMALL=1) then we | |
366 | * use the maximum timeout. | |
1da177e4 | 367 | */ |
26cff4e2 HC |
368 | if (idx > MAX_TVAL) { |
369 | idx = MAX_TVAL; | |
1da177e4 LT |
370 | expires = idx + base->timer_jiffies; |
371 | } | |
372 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | |
373 | vec = base->tv5.vec + i; | |
374 | } | |
375 | /* | |
376 | * Timers are FIFO: | |
377 | */ | |
378 | list_add_tail(&timer->entry, vec); | |
379 | } | |
380 | ||
facbb4a7 TG |
381 | static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) |
382 | { | |
383 | __internal_add_timer(base, timer); | |
384 | /* | |
99d5f3aa | 385 | * Update base->active_timers and base->next_timer |
facbb4a7 | 386 | */ |
99d5f3aa TG |
387 | if (!tbase_get_deferrable(timer->base)) { |
388 | if (time_before(timer->expires, base->next_timer)) | |
389 | base->next_timer = timer->expires; | |
390 | base->active_timers++; | |
391 | } | |
facbb4a7 TG |
392 | } |
393 | ||
82f67cd9 IM |
394 | #ifdef CONFIG_TIMER_STATS |
395 | void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) | |
396 | { | |
397 | if (timer->start_site) | |
398 | return; | |
399 | ||
400 | timer->start_site = addr; | |
401 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | |
402 | timer->start_pid = current->pid; | |
403 | } | |
c5c061b8 VP |
404 | |
405 | static void timer_stats_account_timer(struct timer_list *timer) | |
406 | { | |
407 | unsigned int flag = 0; | |
408 | ||
507e1231 HC |
409 | if (likely(!timer->start_site)) |
410 | return; | |
c5c061b8 VP |
411 | if (unlikely(tbase_get_deferrable(timer->base))) |
412 | flag |= TIMER_STATS_FLAG_DEFERRABLE; | |
413 | ||
414 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | |
415 | timer->function, timer->start_comm, flag); | |
416 | } | |
417 | ||
418 | #else | |
419 | static void timer_stats_account_timer(struct timer_list *timer) {} | |
82f67cd9 IM |
420 | #endif |
421 | ||
c6f3a97f TG |
422 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
423 | ||
424 | static struct debug_obj_descr timer_debug_descr; | |
425 | ||
99777288 SG |
426 | static void *timer_debug_hint(void *addr) |
427 | { | |
428 | return ((struct timer_list *) addr)->function; | |
429 | } | |
430 | ||
c6f3a97f TG |
431 | /* |
432 | * fixup_init is called when: | |
433 | * - an active object is initialized | |
55c888d6 | 434 | */ |
c6f3a97f TG |
435 | static int timer_fixup_init(void *addr, enum debug_obj_state state) |
436 | { | |
437 | struct timer_list *timer = addr; | |
438 | ||
439 | switch (state) { | |
440 | case ODEBUG_STATE_ACTIVE: | |
441 | del_timer_sync(timer); | |
442 | debug_object_init(timer, &timer_debug_descr); | |
443 | return 1; | |
444 | default: | |
445 | return 0; | |
446 | } | |
447 | } | |
448 | ||
fb16b8cf SB |
449 | /* Stub timer callback for improperly used timers. */ |
450 | static void stub_timer(unsigned long data) | |
451 | { | |
452 | WARN_ON(1); | |
453 | } | |
454 | ||
c6f3a97f TG |
455 | /* |
456 | * fixup_activate is called when: | |
457 | * - an active object is activated | |
458 | * - an unknown object is activated (might be a statically initialized object) | |
459 | */ | |
460 | static int timer_fixup_activate(void *addr, enum debug_obj_state state) | |
461 | { | |
462 | struct timer_list *timer = addr; | |
463 | ||
464 | switch (state) { | |
465 | ||
466 | case ODEBUG_STATE_NOTAVAILABLE: | |
467 | /* | |
468 | * This is not really a fixup. The timer was | |
469 | * statically initialized. We just make sure that it | |
470 | * is tracked in the object tracker. | |
471 | */ | |
472 | if (timer->entry.next == NULL && | |
473 | timer->entry.prev == TIMER_ENTRY_STATIC) { | |
474 | debug_object_init(timer, &timer_debug_descr); | |
475 | debug_object_activate(timer, &timer_debug_descr); | |
476 | return 0; | |
477 | } else { | |
fb16b8cf SB |
478 | setup_timer(timer, stub_timer, 0); |
479 | return 1; | |
c6f3a97f TG |
480 | } |
481 | return 0; | |
482 | ||
483 | case ODEBUG_STATE_ACTIVE: | |
484 | WARN_ON(1); | |
485 | ||
486 | default: | |
487 | return 0; | |
488 | } | |
489 | } | |
490 | ||
491 | /* | |
492 | * fixup_free is called when: | |
493 | * - an active object is freed | |
494 | */ | |
495 | static int timer_fixup_free(void *addr, enum debug_obj_state state) | |
496 | { | |
497 | struct timer_list *timer = addr; | |
498 | ||
499 | switch (state) { | |
500 | case ODEBUG_STATE_ACTIVE: | |
501 | del_timer_sync(timer); | |
502 | debug_object_free(timer, &timer_debug_descr); | |
503 | return 1; | |
504 | default: | |
505 | return 0; | |
506 | } | |
507 | } | |
508 | ||
dc4218bd CC |
509 | /* |
510 | * fixup_assert_init is called when: | |
511 | * - an untracked/uninit-ed object is found | |
512 | */ | |
513 | static int timer_fixup_assert_init(void *addr, enum debug_obj_state state) | |
514 | { | |
515 | struct timer_list *timer = addr; | |
516 | ||
517 | switch (state) { | |
518 | case ODEBUG_STATE_NOTAVAILABLE: | |
519 | if (timer->entry.prev == TIMER_ENTRY_STATIC) { | |
520 | /* | |
521 | * This is not really a fixup. The timer was | |
522 | * statically initialized. We just make sure that it | |
523 | * is tracked in the object tracker. | |
524 | */ | |
525 | debug_object_init(timer, &timer_debug_descr); | |
526 | return 0; | |
527 | } else { | |
528 | setup_timer(timer, stub_timer, 0); | |
529 | return 1; | |
530 | } | |
531 | default: | |
532 | return 0; | |
533 | } | |
534 | } | |
535 | ||
c6f3a97f | 536 | static struct debug_obj_descr timer_debug_descr = { |
dc4218bd CC |
537 | .name = "timer_list", |
538 | .debug_hint = timer_debug_hint, | |
539 | .fixup_init = timer_fixup_init, | |
540 | .fixup_activate = timer_fixup_activate, | |
541 | .fixup_free = timer_fixup_free, | |
542 | .fixup_assert_init = timer_fixup_assert_init, | |
c6f3a97f TG |
543 | }; |
544 | ||
545 | static inline void debug_timer_init(struct timer_list *timer) | |
546 | { | |
547 | debug_object_init(timer, &timer_debug_descr); | |
548 | } | |
549 | ||
550 | static inline void debug_timer_activate(struct timer_list *timer) | |
551 | { | |
552 | debug_object_activate(timer, &timer_debug_descr); | |
553 | } | |
554 | ||
555 | static inline void debug_timer_deactivate(struct timer_list *timer) | |
556 | { | |
557 | debug_object_deactivate(timer, &timer_debug_descr); | |
558 | } | |
559 | ||
560 | static inline void debug_timer_free(struct timer_list *timer) | |
561 | { | |
562 | debug_object_free(timer, &timer_debug_descr); | |
563 | } | |
564 | ||
dc4218bd CC |
565 | static inline void debug_timer_assert_init(struct timer_list *timer) |
566 | { | |
567 | debug_object_assert_init(timer, &timer_debug_descr); | |
568 | } | |
569 | ||
fc683995 TH |
570 | static void do_init_timer(struct timer_list *timer, unsigned int flags, |
571 | const char *name, struct lock_class_key *key); | |
c6f3a97f | 572 | |
fc683995 TH |
573 | void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags, |
574 | const char *name, struct lock_class_key *key) | |
c6f3a97f TG |
575 | { |
576 | debug_object_init_on_stack(timer, &timer_debug_descr); | |
fc683995 | 577 | do_init_timer(timer, flags, name, key); |
c6f3a97f | 578 | } |
6f2b9b9a | 579 | EXPORT_SYMBOL_GPL(init_timer_on_stack_key); |
c6f3a97f TG |
580 | |
581 | void destroy_timer_on_stack(struct timer_list *timer) | |
582 | { | |
583 | debug_object_free(timer, &timer_debug_descr); | |
584 | } | |
585 | EXPORT_SYMBOL_GPL(destroy_timer_on_stack); | |
586 | ||
587 | #else | |
588 | static inline void debug_timer_init(struct timer_list *timer) { } | |
589 | static inline void debug_timer_activate(struct timer_list *timer) { } | |
590 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | |
dc4218bd | 591 | static inline void debug_timer_assert_init(struct timer_list *timer) { } |
c6f3a97f TG |
592 | #endif |
593 | ||
2b022e3d XG |
594 | static inline void debug_init(struct timer_list *timer) |
595 | { | |
596 | debug_timer_init(timer); | |
597 | trace_timer_init(timer); | |
598 | } | |
599 | ||
600 | static inline void | |
601 | debug_activate(struct timer_list *timer, unsigned long expires) | |
602 | { | |
603 | debug_timer_activate(timer); | |
604 | trace_timer_start(timer, expires); | |
605 | } | |
606 | ||
607 | static inline void debug_deactivate(struct timer_list *timer) | |
608 | { | |
609 | debug_timer_deactivate(timer); | |
610 | trace_timer_cancel(timer); | |
611 | } | |
612 | ||
dc4218bd CC |
613 | static inline void debug_assert_init(struct timer_list *timer) |
614 | { | |
615 | debug_timer_assert_init(timer); | |
616 | } | |
617 | ||
fc683995 TH |
618 | static void do_init_timer(struct timer_list *timer, unsigned int flags, |
619 | const char *name, struct lock_class_key *key) | |
55c888d6 | 620 | { |
fc683995 TH |
621 | struct tvec_base *base = __raw_get_cpu_var(tvec_bases); |
622 | ||
55c888d6 | 623 | timer->entry.next = NULL; |
fc683995 | 624 | timer->base = (void *)((unsigned long)base | flags); |
3bbb9ec9 | 625 | timer->slack = -1; |
82f67cd9 IM |
626 | #ifdef CONFIG_TIMER_STATS |
627 | timer->start_site = NULL; | |
628 | timer->start_pid = -1; | |
629 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
630 | #endif | |
6f2b9b9a | 631 | lockdep_init_map(&timer->lockdep_map, name, key, 0); |
55c888d6 | 632 | } |
c6f3a97f TG |
633 | |
634 | /** | |
633fe795 | 635 | * init_timer_key - initialize a timer |
c6f3a97f | 636 | * @timer: the timer to be initialized |
fc683995 | 637 | * @flags: timer flags |
633fe795 RD |
638 | * @name: name of the timer |
639 | * @key: lockdep class key of the fake lock used for tracking timer | |
640 | * sync lock dependencies | |
c6f3a97f | 641 | * |
633fe795 | 642 | * init_timer_key() must be done to a timer prior calling *any* of the |
c6f3a97f TG |
643 | * other timer functions. |
644 | */ | |
fc683995 TH |
645 | void init_timer_key(struct timer_list *timer, unsigned int flags, |
646 | const char *name, struct lock_class_key *key) | |
c6f3a97f | 647 | { |
2b022e3d | 648 | debug_init(timer); |
fc683995 | 649 | do_init_timer(timer, flags, name, key); |
c6f3a97f | 650 | } |
6f2b9b9a | 651 | EXPORT_SYMBOL(init_timer_key); |
55c888d6 | 652 | |
ec44bc7a | 653 | static inline void detach_timer(struct timer_list *timer, bool clear_pending) |
55c888d6 ON |
654 | { |
655 | struct list_head *entry = &timer->entry; | |
656 | ||
2b022e3d | 657 | debug_deactivate(timer); |
c6f3a97f | 658 | |
55c888d6 ON |
659 | __list_del(entry->prev, entry->next); |
660 | if (clear_pending) | |
661 | entry->next = NULL; | |
662 | entry->prev = LIST_POISON2; | |
663 | } | |
664 | ||
99d5f3aa TG |
665 | static inline void |
666 | detach_expired_timer(struct timer_list *timer, struct tvec_base *base) | |
667 | { | |
668 | detach_timer(timer, true); | |
669 | if (!tbase_get_deferrable(timer->base)) | |
e52b1db3 | 670 | base->active_timers--; |
99d5f3aa TG |
671 | } |
672 | ||
ec44bc7a TG |
673 | static int detach_if_pending(struct timer_list *timer, struct tvec_base *base, |
674 | bool clear_pending) | |
675 | { | |
676 | if (!timer_pending(timer)) | |
677 | return 0; | |
678 | ||
679 | detach_timer(timer, clear_pending); | |
99d5f3aa | 680 | if (!tbase_get_deferrable(timer->base)) { |
e52b1db3 | 681 | base->active_timers--; |
99d5f3aa TG |
682 | if (timer->expires == base->next_timer) |
683 | base->next_timer = base->timer_jiffies; | |
684 | } | |
ec44bc7a TG |
685 | return 1; |
686 | } | |
687 | ||
55c888d6 | 688 | /* |
3691c519 | 689 | * We are using hashed locking: holding per_cpu(tvec_bases).lock |
55c888d6 ON |
690 | * means that all timers which are tied to this base via timer->base are |
691 | * locked, and the base itself is locked too. | |
692 | * | |
693 | * So __run_timers/migrate_timers can safely modify all timers which could | |
694 | * be found on ->tvX lists. | |
695 | * | |
696 | * When the timer's base is locked, and the timer removed from list, it is | |
697 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
698 | * locked. | |
699 | */ | |
a6fa8e5a | 700 | static struct tvec_base *lock_timer_base(struct timer_list *timer, |
55c888d6 | 701 | unsigned long *flags) |
89e7e374 | 702 | __acquires(timer->base->lock) |
55c888d6 | 703 | { |
a6fa8e5a | 704 | struct tvec_base *base; |
55c888d6 ON |
705 | |
706 | for (;;) { | |
a6fa8e5a | 707 | struct tvec_base *prelock_base = timer->base; |
6e453a67 | 708 | base = tbase_get_base(prelock_base); |
55c888d6 ON |
709 | if (likely(base != NULL)) { |
710 | spin_lock_irqsave(&base->lock, *flags); | |
6e453a67 | 711 | if (likely(prelock_base == timer->base)) |
55c888d6 ON |
712 | return base; |
713 | /* The timer has migrated to another CPU */ | |
714 | spin_unlock_irqrestore(&base->lock, *flags); | |
715 | } | |
716 | cpu_relax(); | |
717 | } | |
718 | } | |
719 | ||
74019224 | 720 | static inline int |
597d0275 AB |
721 | __mod_timer(struct timer_list *timer, unsigned long expires, |
722 | bool pending_only, int pinned) | |
1da177e4 | 723 | { |
a6fa8e5a | 724 | struct tvec_base *base, *new_base; |
1da177e4 | 725 | unsigned long flags; |
eea08f32 | 726 | int ret = 0 , cpu; |
1da177e4 | 727 | |
82f67cd9 | 728 | timer_stats_timer_set_start_info(timer); |
1da177e4 | 729 | BUG_ON(!timer->function); |
1da177e4 | 730 | |
55c888d6 ON |
731 | base = lock_timer_base(timer, &flags); |
732 | ||
ec44bc7a TG |
733 | ret = detach_if_pending(timer, base, false); |
734 | if (!ret && pending_only) | |
735 | goto out_unlock; | |
55c888d6 | 736 | |
2b022e3d | 737 | debug_activate(timer, expires); |
c6f3a97f | 738 | |
eea08f32 AB |
739 | cpu = smp_processor_id(); |
740 | ||
741 | #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) | |
83cd4fe2 VP |
742 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) |
743 | cpu = get_nohz_timer_target(); | |
eea08f32 AB |
744 | #endif |
745 | new_base = per_cpu(tvec_bases, cpu); | |
746 | ||
3691c519 | 747 | if (base != new_base) { |
1da177e4 | 748 | /* |
55c888d6 ON |
749 | * We are trying to schedule the timer on the local CPU. |
750 | * However we can't change timer's base while it is running, | |
751 | * otherwise del_timer_sync() can't detect that the timer's | |
752 | * handler yet has not finished. This also guarantees that | |
753 | * the timer is serialized wrt itself. | |
1da177e4 | 754 | */ |
a2c348fe | 755 | if (likely(base->running_timer != timer)) { |
55c888d6 | 756 | /* See the comment in lock_timer_base() */ |
6e453a67 | 757 | timer_set_base(timer, NULL); |
55c888d6 | 758 | spin_unlock(&base->lock); |
a2c348fe ON |
759 | base = new_base; |
760 | spin_lock(&base->lock); | |
6e453a67 | 761 | timer_set_base(timer, base); |
1da177e4 LT |
762 | } |
763 | } | |
764 | ||
1da177e4 | 765 | timer->expires = expires; |
a2c348fe | 766 | internal_add_timer(base, timer); |
74019224 IM |
767 | |
768 | out_unlock: | |
a2c348fe | 769 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 LT |
770 | |
771 | return ret; | |
772 | } | |
773 | ||
2aae4a10 | 774 | /** |
74019224 IM |
775 | * mod_timer_pending - modify a pending timer's timeout |
776 | * @timer: the pending timer to be modified | |
777 | * @expires: new timeout in jiffies | |
1da177e4 | 778 | * |
74019224 IM |
779 | * mod_timer_pending() is the same for pending timers as mod_timer(), |
780 | * but will not re-activate and modify already deleted timers. | |
781 | * | |
782 | * It is useful for unserialized use of timers. | |
1da177e4 | 783 | */ |
74019224 | 784 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) |
1da177e4 | 785 | { |
597d0275 | 786 | return __mod_timer(timer, expires, true, TIMER_NOT_PINNED); |
1da177e4 | 787 | } |
74019224 | 788 | EXPORT_SYMBOL(mod_timer_pending); |
1da177e4 | 789 | |
3bbb9ec9 AV |
790 | /* |
791 | * Decide where to put the timer while taking the slack into account | |
792 | * | |
793 | * Algorithm: | |
794 | * 1) calculate the maximum (absolute) time | |
795 | * 2) calculate the highest bit where the expires and new max are different | |
796 | * 3) use this bit to make a mask | |
797 | * 4) use the bitmask to round down the maximum time, so that all last | |
798 | * bits are zeros | |
799 | */ | |
800 | static inline | |
801 | unsigned long apply_slack(struct timer_list *timer, unsigned long expires) | |
802 | { | |
803 | unsigned long expires_limit, mask; | |
804 | int bit; | |
805 | ||
8e63d779 | 806 | if (timer->slack >= 0) { |
f00e047e | 807 | expires_limit = expires + timer->slack; |
8e63d779 | 808 | } else { |
1c3cc116 SAS |
809 | long delta = expires - jiffies; |
810 | ||
811 | if (delta < 256) | |
812 | return expires; | |
3bbb9ec9 | 813 | |
1c3cc116 | 814 | expires_limit = expires + delta / 256; |
8e63d779 | 815 | } |
3bbb9ec9 | 816 | mask = expires ^ expires_limit; |
3bbb9ec9 AV |
817 | if (mask == 0) |
818 | return expires; | |
819 | ||
820 | bit = find_last_bit(&mask, BITS_PER_LONG); | |
821 | ||
822 | mask = (1 << bit) - 1; | |
823 | ||
824 | expires_limit = expires_limit & ~(mask); | |
825 | ||
826 | return expires_limit; | |
827 | } | |
828 | ||
2aae4a10 | 829 | /** |
1da177e4 LT |
830 | * mod_timer - modify a timer's timeout |
831 | * @timer: the timer to be modified | |
2aae4a10 | 832 | * @expires: new timeout in jiffies |
1da177e4 | 833 | * |
72fd4a35 | 834 | * mod_timer() is a more efficient way to update the expire field of an |
1da177e4 LT |
835 | * active timer (if the timer is inactive it will be activated) |
836 | * | |
837 | * mod_timer(timer, expires) is equivalent to: | |
838 | * | |
839 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
840 | * | |
841 | * Note that if there are multiple unserialized concurrent users of the | |
842 | * same timer, then mod_timer() is the only safe way to modify the timeout, | |
843 | * since add_timer() cannot modify an already running timer. | |
844 | * | |
845 | * The function returns whether it has modified a pending timer or not. | |
846 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | |
847 | * active timer returns 1.) | |
848 | */ | |
849 | int mod_timer(struct timer_list *timer, unsigned long expires) | |
850 | { | |
1c3cc116 SAS |
851 | expires = apply_slack(timer, expires); |
852 | ||
1da177e4 LT |
853 | /* |
854 | * This is a common optimization triggered by the | |
855 | * networking code - if the timer is re-modified | |
856 | * to be the same thing then just return: | |
857 | */ | |
4841158b | 858 | if (timer_pending(timer) && timer->expires == expires) |
1da177e4 LT |
859 | return 1; |
860 | ||
597d0275 | 861 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); |
1da177e4 | 862 | } |
1da177e4 LT |
863 | EXPORT_SYMBOL(mod_timer); |
864 | ||
597d0275 AB |
865 | /** |
866 | * mod_timer_pinned - modify a timer's timeout | |
867 | * @timer: the timer to be modified | |
868 | * @expires: new timeout in jiffies | |
869 | * | |
870 | * mod_timer_pinned() is a way to update the expire field of an | |
871 | * active timer (if the timer is inactive it will be activated) | |
048a0e8f PM |
872 | * and to ensure that the timer is scheduled on the current CPU. |
873 | * | |
874 | * Note that this does not prevent the timer from being migrated | |
875 | * when the current CPU goes offline. If this is a problem for | |
876 | * you, use CPU-hotplug notifiers to handle it correctly, for | |
877 | * example, cancelling the timer when the corresponding CPU goes | |
878 | * offline. | |
597d0275 AB |
879 | * |
880 | * mod_timer_pinned(timer, expires) is equivalent to: | |
881 | * | |
882 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
883 | */ | |
884 | int mod_timer_pinned(struct timer_list *timer, unsigned long expires) | |
885 | { | |
886 | if (timer->expires == expires && timer_pending(timer)) | |
887 | return 1; | |
888 | ||
889 | return __mod_timer(timer, expires, false, TIMER_PINNED); | |
890 | } | |
891 | EXPORT_SYMBOL(mod_timer_pinned); | |
892 | ||
74019224 IM |
893 | /** |
894 | * add_timer - start a timer | |
895 | * @timer: the timer to be added | |
896 | * | |
897 | * The kernel will do a ->function(->data) callback from the | |
898 | * timer interrupt at the ->expires point in the future. The | |
899 | * current time is 'jiffies'. | |
900 | * | |
901 | * The timer's ->expires, ->function (and if the handler uses it, ->data) | |
902 | * fields must be set prior calling this function. | |
903 | * | |
904 | * Timers with an ->expires field in the past will be executed in the next | |
905 | * timer tick. | |
906 | */ | |
907 | void add_timer(struct timer_list *timer) | |
908 | { | |
909 | BUG_ON(timer_pending(timer)); | |
910 | mod_timer(timer, timer->expires); | |
911 | } | |
912 | EXPORT_SYMBOL(add_timer); | |
913 | ||
914 | /** | |
915 | * add_timer_on - start a timer on a particular CPU | |
916 | * @timer: the timer to be added | |
917 | * @cpu: the CPU to start it on | |
918 | * | |
919 | * This is not very scalable on SMP. Double adds are not possible. | |
920 | */ | |
921 | void add_timer_on(struct timer_list *timer, int cpu) | |
922 | { | |
923 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | |
924 | unsigned long flags; | |
925 | ||
926 | timer_stats_timer_set_start_info(timer); | |
927 | BUG_ON(timer_pending(timer) || !timer->function); | |
928 | spin_lock_irqsave(&base->lock, flags); | |
929 | timer_set_base(timer, base); | |
2b022e3d | 930 | debug_activate(timer, timer->expires); |
74019224 IM |
931 | internal_add_timer(base, timer); |
932 | /* | |
933 | * Check whether the other CPU is idle and needs to be | |
934 | * triggered to reevaluate the timer wheel when nohz is | |
935 | * active. We are protected against the other CPU fiddling | |
936 | * with the timer by holding the timer base lock. This also | |
937 | * makes sure that a CPU on the way to idle can not evaluate | |
938 | * the timer wheel. | |
939 | */ | |
940 | wake_up_idle_cpu(cpu); | |
941 | spin_unlock_irqrestore(&base->lock, flags); | |
942 | } | |
a9862e05 | 943 | EXPORT_SYMBOL_GPL(add_timer_on); |
74019224 | 944 | |
2aae4a10 | 945 | /** |
1da177e4 LT |
946 | * del_timer - deactive a timer. |
947 | * @timer: the timer to be deactivated | |
948 | * | |
949 | * del_timer() deactivates a timer - this works on both active and inactive | |
950 | * timers. | |
951 | * | |
952 | * The function returns whether it has deactivated a pending timer or not. | |
953 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | |
954 | * active timer returns 1.) | |
955 | */ | |
956 | int del_timer(struct timer_list *timer) | |
957 | { | |
a6fa8e5a | 958 | struct tvec_base *base; |
1da177e4 | 959 | unsigned long flags; |
55c888d6 | 960 | int ret = 0; |
1da177e4 | 961 | |
dc4218bd CC |
962 | debug_assert_init(timer); |
963 | ||
82f67cd9 | 964 | timer_stats_timer_clear_start_info(timer); |
55c888d6 ON |
965 | if (timer_pending(timer)) { |
966 | base = lock_timer_base(timer, &flags); | |
ec44bc7a | 967 | ret = detach_if_pending(timer, base, true); |
1da177e4 | 968 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 | 969 | } |
1da177e4 | 970 | |
55c888d6 | 971 | return ret; |
1da177e4 | 972 | } |
1da177e4 LT |
973 | EXPORT_SYMBOL(del_timer); |
974 | ||
2aae4a10 REB |
975 | /** |
976 | * try_to_del_timer_sync - Try to deactivate a timer | |
977 | * @timer: timer do del | |
978 | * | |
fd450b73 ON |
979 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
980 | * exit the timer is not queued and the handler is not running on any CPU. | |
fd450b73 ON |
981 | */ |
982 | int try_to_del_timer_sync(struct timer_list *timer) | |
983 | { | |
a6fa8e5a | 984 | struct tvec_base *base; |
fd450b73 ON |
985 | unsigned long flags; |
986 | int ret = -1; | |
987 | ||
dc4218bd CC |
988 | debug_assert_init(timer); |
989 | ||
fd450b73 ON |
990 | base = lock_timer_base(timer, &flags); |
991 | ||
ec44bc7a TG |
992 | if (base->running_timer != timer) { |
993 | timer_stats_timer_clear_start_info(timer); | |
994 | ret = detach_if_pending(timer, base, true); | |
fd450b73 | 995 | } |
fd450b73 ON |
996 | spin_unlock_irqrestore(&base->lock, flags); |
997 | ||
998 | return ret; | |
999 | } | |
e19dff1f DH |
1000 | EXPORT_SYMBOL(try_to_del_timer_sync); |
1001 | ||
6f1bc451 | 1002 | #ifdef CONFIG_SMP |
2aae4a10 | 1003 | /** |
1da177e4 LT |
1004 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
1005 | * @timer: the timer to be deactivated | |
1006 | * | |
1007 | * This function only differs from del_timer() on SMP: besides deactivating | |
1008 | * the timer it also makes sure the handler has finished executing on other | |
1009 | * CPUs. | |
1010 | * | |
72fd4a35 | 1011 | * Synchronization rules: Callers must prevent restarting of the timer, |
1da177e4 | 1012 | * otherwise this function is meaningless. It must not be called from |
c5f66e99 TH |
1013 | * interrupt contexts unless the timer is an irqsafe one. The caller must |
1014 | * not hold locks which would prevent completion of the timer's | |
1015 | * handler. The timer's handler must not call add_timer_on(). Upon exit the | |
1016 | * timer is not queued and the handler is not running on any CPU. | |
1da177e4 | 1017 | * |
c5f66e99 TH |
1018 | * Note: For !irqsafe timers, you must not hold locks that are held in |
1019 | * interrupt context while calling this function. Even if the lock has | |
1020 | * nothing to do with the timer in question. Here's why: | |
48228f7b SR |
1021 | * |
1022 | * CPU0 CPU1 | |
1023 | * ---- ---- | |
1024 | * <SOFTIRQ> | |
1025 | * call_timer_fn(); | |
1026 | * base->running_timer = mytimer; | |
1027 | * spin_lock_irq(somelock); | |
1028 | * <IRQ> | |
1029 | * spin_lock(somelock); | |
1030 | * del_timer_sync(mytimer); | |
1031 | * while (base->running_timer == mytimer); | |
1032 | * | |
1033 | * Now del_timer_sync() will never return and never release somelock. | |
1034 | * The interrupt on the other CPU is waiting to grab somelock but | |
1035 | * it has interrupted the softirq that CPU0 is waiting to finish. | |
1036 | * | |
1da177e4 | 1037 | * The function returns whether it has deactivated a pending timer or not. |
1da177e4 LT |
1038 | */ |
1039 | int del_timer_sync(struct timer_list *timer) | |
1040 | { | |
6f2b9b9a | 1041 | #ifdef CONFIG_LOCKDEP |
f266a511 PZ |
1042 | unsigned long flags; |
1043 | ||
48228f7b SR |
1044 | /* |
1045 | * If lockdep gives a backtrace here, please reference | |
1046 | * the synchronization rules above. | |
1047 | */ | |
7ff20792 | 1048 | local_irq_save(flags); |
6f2b9b9a JB |
1049 | lock_map_acquire(&timer->lockdep_map); |
1050 | lock_map_release(&timer->lockdep_map); | |
7ff20792 | 1051 | local_irq_restore(flags); |
6f2b9b9a | 1052 | #endif |
466bd303 YZ |
1053 | /* |
1054 | * don't use it in hardirq context, because it | |
1055 | * could lead to deadlock. | |
1056 | */ | |
c5f66e99 | 1057 | WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base)); |
fd450b73 ON |
1058 | for (;;) { |
1059 | int ret = try_to_del_timer_sync(timer); | |
1060 | if (ret >= 0) | |
1061 | return ret; | |
a0009652 | 1062 | cpu_relax(); |
fd450b73 | 1063 | } |
1da177e4 | 1064 | } |
55c888d6 | 1065 | EXPORT_SYMBOL(del_timer_sync); |
1da177e4 LT |
1066 | #endif |
1067 | ||
a6fa8e5a | 1068 | static int cascade(struct tvec_base *base, struct tvec *tv, int index) |
1da177e4 LT |
1069 | { |
1070 | /* cascade all the timers from tv up one level */ | |
3439dd86 P |
1071 | struct timer_list *timer, *tmp; |
1072 | struct list_head tv_list; | |
1073 | ||
1074 | list_replace_init(tv->vec + index, &tv_list); | |
1da177e4 | 1075 | |
1da177e4 | 1076 | /* |
3439dd86 P |
1077 | * We are removing _all_ timers from the list, so we |
1078 | * don't have to detach them individually. | |
1da177e4 | 1079 | */ |
3439dd86 | 1080 | list_for_each_entry_safe(timer, tmp, &tv_list, entry) { |
6e453a67 | 1081 | BUG_ON(tbase_get_base(timer->base) != base); |
facbb4a7 TG |
1082 | /* No accounting, while moving them */ |
1083 | __internal_add_timer(base, timer); | |
1da177e4 | 1084 | } |
1da177e4 LT |
1085 | |
1086 | return index; | |
1087 | } | |
1088 | ||
576da126 TG |
1089 | static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), |
1090 | unsigned long data) | |
1091 | { | |
1092 | int preempt_count = preempt_count(); | |
1093 | ||
1094 | #ifdef CONFIG_LOCKDEP | |
1095 | /* | |
1096 | * It is permissible to free the timer from inside the | |
1097 | * function that is called from it, this we need to take into | |
1098 | * account for lockdep too. To avoid bogus "held lock freed" | |
1099 | * warnings as well as problems when looking into | |
1100 | * timer->lockdep_map, make a copy and use that here. | |
1101 | */ | |
4d82a1de PZ |
1102 | struct lockdep_map lockdep_map; |
1103 | ||
1104 | lockdep_copy_map(&lockdep_map, &timer->lockdep_map); | |
576da126 TG |
1105 | #endif |
1106 | /* | |
1107 | * Couple the lock chain with the lock chain at | |
1108 | * del_timer_sync() by acquiring the lock_map around the fn() | |
1109 | * call here and in del_timer_sync(). | |
1110 | */ | |
1111 | lock_map_acquire(&lockdep_map); | |
1112 | ||
1113 | trace_timer_expire_entry(timer); | |
1114 | fn(data); | |
1115 | trace_timer_expire_exit(timer); | |
1116 | ||
1117 | lock_map_release(&lockdep_map); | |
1118 | ||
1119 | if (preempt_count != preempt_count()) { | |
802702e0 TG |
1120 | WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", |
1121 | fn, preempt_count, preempt_count()); | |
1122 | /* | |
1123 | * Restore the preempt count. That gives us a decent | |
1124 | * chance to survive and extract information. If the | |
1125 | * callback kept a lock held, bad luck, but not worse | |
1126 | * than the BUG() we had. | |
1127 | */ | |
1128 | preempt_count() = preempt_count; | |
576da126 TG |
1129 | } |
1130 | } | |
1131 | ||
2aae4a10 REB |
1132 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
1133 | ||
1134 | /** | |
1da177e4 LT |
1135 | * __run_timers - run all expired timers (if any) on this CPU. |
1136 | * @base: the timer vector to be processed. | |
1137 | * | |
1138 | * This function cascades all vectors and executes all expired timer | |
1139 | * vectors. | |
1140 | */ | |
a6fa8e5a | 1141 | static inline void __run_timers(struct tvec_base *base) |
1da177e4 LT |
1142 | { |
1143 | struct timer_list *timer; | |
1144 | ||
3691c519 | 1145 | spin_lock_irq(&base->lock); |
1da177e4 | 1146 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
626ab0e6 | 1147 | struct list_head work_list; |
1da177e4 | 1148 | struct list_head *head = &work_list; |
6819457d | 1149 | int index = base->timer_jiffies & TVR_MASK; |
626ab0e6 | 1150 | |
1da177e4 LT |
1151 | /* |
1152 | * Cascade timers: | |
1153 | */ | |
1154 | if (!index && | |
1155 | (!cascade(base, &base->tv2, INDEX(0))) && | |
1156 | (!cascade(base, &base->tv3, INDEX(1))) && | |
1157 | !cascade(base, &base->tv4, INDEX(2))) | |
1158 | cascade(base, &base->tv5, INDEX(3)); | |
626ab0e6 ON |
1159 | ++base->timer_jiffies; |
1160 | list_replace_init(base->tv1.vec + index, &work_list); | |
55c888d6 | 1161 | while (!list_empty(head)) { |
1da177e4 LT |
1162 | void (*fn)(unsigned long); |
1163 | unsigned long data; | |
c5f66e99 | 1164 | bool irqsafe; |
1da177e4 | 1165 | |
b5e61818 | 1166 | timer = list_first_entry(head, struct timer_list,entry); |
6819457d TG |
1167 | fn = timer->function; |
1168 | data = timer->data; | |
c5f66e99 | 1169 | irqsafe = tbase_get_irqsafe(timer->base); |
1da177e4 | 1170 | |
82f67cd9 IM |
1171 | timer_stats_account_timer(timer); |
1172 | ||
6f1bc451 | 1173 | base->running_timer = timer; |
99d5f3aa | 1174 | detach_expired_timer(timer, base); |
6f2b9b9a | 1175 | |
c5f66e99 TH |
1176 | if (irqsafe) { |
1177 | spin_unlock(&base->lock); | |
1178 | call_timer_fn(timer, fn, data); | |
1179 | spin_lock(&base->lock); | |
1180 | } else { | |
1181 | spin_unlock_irq(&base->lock); | |
1182 | call_timer_fn(timer, fn, data); | |
1183 | spin_lock_irq(&base->lock); | |
1184 | } | |
1da177e4 LT |
1185 | } |
1186 | } | |
6f1bc451 | 1187 | base->running_timer = NULL; |
3691c519 | 1188 | spin_unlock_irq(&base->lock); |
1da177e4 LT |
1189 | } |
1190 | ||
ee9c5785 | 1191 | #ifdef CONFIG_NO_HZ |
1da177e4 LT |
1192 | /* |
1193 | * Find out when the next timer event is due to happen. This | |
90cba64a RD |
1194 | * is used on S/390 to stop all activity when a CPU is idle. |
1195 | * This function needs to be called with interrupts disabled. | |
1da177e4 | 1196 | */ |
a6fa8e5a | 1197 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
1da177e4 | 1198 | { |
1cfd6849 | 1199 | unsigned long timer_jiffies = base->timer_jiffies; |
eaad084b | 1200 | unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; |
1cfd6849 | 1201 | int index, slot, array, found = 0; |
1da177e4 | 1202 | struct timer_list *nte; |
a6fa8e5a | 1203 | struct tvec *varray[4]; |
1da177e4 LT |
1204 | |
1205 | /* Look for timer events in tv1. */ | |
1cfd6849 | 1206 | index = slot = timer_jiffies & TVR_MASK; |
1da177e4 | 1207 | do { |
1cfd6849 | 1208 | list_for_each_entry(nte, base->tv1.vec + slot, entry) { |
6819457d TG |
1209 | if (tbase_get_deferrable(nte->base)) |
1210 | continue; | |
6e453a67 | 1211 | |
1cfd6849 | 1212 | found = 1; |
1da177e4 | 1213 | expires = nte->expires; |
1cfd6849 TG |
1214 | /* Look at the cascade bucket(s)? */ |
1215 | if (!index || slot < index) | |
1216 | goto cascade; | |
1217 | return expires; | |
1da177e4 | 1218 | } |
1cfd6849 TG |
1219 | slot = (slot + 1) & TVR_MASK; |
1220 | } while (slot != index); | |
1221 | ||
1222 | cascade: | |
1223 | /* Calculate the next cascade event */ | |
1224 | if (index) | |
1225 | timer_jiffies += TVR_SIZE - index; | |
1226 | timer_jiffies >>= TVR_BITS; | |
1da177e4 LT |
1227 | |
1228 | /* Check tv2-tv5. */ | |
1229 | varray[0] = &base->tv2; | |
1230 | varray[1] = &base->tv3; | |
1231 | varray[2] = &base->tv4; | |
1232 | varray[3] = &base->tv5; | |
1cfd6849 TG |
1233 | |
1234 | for (array = 0; array < 4; array++) { | |
a6fa8e5a | 1235 | struct tvec *varp = varray[array]; |
1cfd6849 TG |
1236 | |
1237 | index = slot = timer_jiffies & TVN_MASK; | |
1da177e4 | 1238 | do { |
1cfd6849 | 1239 | list_for_each_entry(nte, varp->vec + slot, entry) { |
a0419888 JH |
1240 | if (tbase_get_deferrable(nte->base)) |
1241 | continue; | |
1242 | ||
1cfd6849 | 1243 | found = 1; |
1da177e4 LT |
1244 | if (time_before(nte->expires, expires)) |
1245 | expires = nte->expires; | |
1cfd6849 TG |
1246 | } |
1247 | /* | |
1248 | * Do we still search for the first timer or are | |
1249 | * we looking up the cascade buckets ? | |
1250 | */ | |
1251 | if (found) { | |
1252 | /* Look at the cascade bucket(s)? */ | |
1253 | if (!index || slot < index) | |
1254 | break; | |
1255 | return expires; | |
1256 | } | |
1257 | slot = (slot + 1) & TVN_MASK; | |
1258 | } while (slot != index); | |
1259 | ||
1260 | if (index) | |
1261 | timer_jiffies += TVN_SIZE - index; | |
1262 | timer_jiffies >>= TVN_BITS; | |
1da177e4 | 1263 | } |
1cfd6849 TG |
1264 | return expires; |
1265 | } | |
69239749 | 1266 | |
1cfd6849 TG |
1267 | /* |
1268 | * Check, if the next hrtimer event is before the next timer wheel | |
1269 | * event: | |
1270 | */ | |
1271 | static unsigned long cmp_next_hrtimer_event(unsigned long now, | |
1272 | unsigned long expires) | |
1273 | { | |
1274 | ktime_t hr_delta = hrtimer_get_next_event(); | |
1275 | struct timespec tsdelta; | |
9501b6cf | 1276 | unsigned long delta; |
1cfd6849 TG |
1277 | |
1278 | if (hr_delta.tv64 == KTIME_MAX) | |
1279 | return expires; | |
0662b713 | 1280 | |
9501b6cf TG |
1281 | /* |
1282 | * Expired timer available, let it expire in the next tick | |
1283 | */ | |
1284 | if (hr_delta.tv64 <= 0) | |
1285 | return now + 1; | |
69239749 | 1286 | |
1cfd6849 | 1287 | tsdelta = ktime_to_timespec(hr_delta); |
9501b6cf | 1288 | delta = timespec_to_jiffies(&tsdelta); |
eaad084b TG |
1289 | |
1290 | /* | |
1291 | * Limit the delta to the max value, which is checked in | |
1292 | * tick_nohz_stop_sched_tick(): | |
1293 | */ | |
1294 | if (delta > NEXT_TIMER_MAX_DELTA) | |
1295 | delta = NEXT_TIMER_MAX_DELTA; | |
1296 | ||
9501b6cf TG |
1297 | /* |
1298 | * Take rounding errors in to account and make sure, that it | |
1299 | * expires in the next tick. Otherwise we go into an endless | |
1300 | * ping pong due to tick_nohz_stop_sched_tick() retriggering | |
1301 | * the timer softirq | |
1302 | */ | |
1303 | if (delta < 1) | |
1304 | delta = 1; | |
1305 | now += delta; | |
1cfd6849 TG |
1306 | if (time_before(now, expires)) |
1307 | return now; | |
1da177e4 LT |
1308 | return expires; |
1309 | } | |
1cfd6849 TG |
1310 | |
1311 | /** | |
8dce39c2 | 1312 | * get_next_timer_interrupt - return the jiffy of the next pending timer |
05fb6bf0 | 1313 | * @now: current time (in jiffies) |
1cfd6849 | 1314 | */ |
fd064b9b | 1315 | unsigned long get_next_timer_interrupt(unsigned long now) |
1cfd6849 | 1316 | { |
7496351a | 1317 | struct tvec_base *base = __this_cpu_read(tvec_bases); |
e40468a5 | 1318 | unsigned long expires = now + NEXT_TIMER_MAX_DELTA; |
1cfd6849 | 1319 | |
dbd87b5a HC |
1320 | /* |
1321 | * Pretend that there is no timer pending if the cpu is offline. | |
1322 | * Possible pending timers will be migrated later to an active cpu. | |
1323 | */ | |
1324 | if (cpu_is_offline(smp_processor_id())) | |
e40468a5 TG |
1325 | return expires; |
1326 | ||
1cfd6849 | 1327 | spin_lock(&base->lock); |
e40468a5 TG |
1328 | if (base->active_timers) { |
1329 | if (time_before_eq(base->next_timer, base->timer_jiffies)) | |
1330 | base->next_timer = __next_timer_interrupt(base); | |
1331 | expires = base->next_timer; | |
1332 | } | |
1cfd6849 TG |
1333 | spin_unlock(&base->lock); |
1334 | ||
1335 | if (time_before_eq(expires, now)) | |
1336 | return now; | |
1337 | ||
1338 | return cmp_next_hrtimer_event(now, expires); | |
1339 | } | |
1da177e4 LT |
1340 | #endif |
1341 | ||
1da177e4 | 1342 | /* |
5b4db0c2 | 1343 | * Called from the timer interrupt handler to charge one tick to the current |
1da177e4 LT |
1344 | * process. user_tick is 1 if the tick is user time, 0 for system. |
1345 | */ | |
1346 | void update_process_times(int user_tick) | |
1347 | { | |
1348 | struct task_struct *p = current; | |
1349 | int cpu = smp_processor_id(); | |
1350 | ||
1351 | /* Note: this timer irq context must be accounted for as well. */ | |
fa13a5a1 | 1352 | account_process_tick(p, user_tick); |
1da177e4 | 1353 | run_local_timers(); |
a157229c | 1354 | rcu_check_callbacks(cpu, user_tick); |
e360adbe PZ |
1355 | #ifdef CONFIG_IRQ_WORK |
1356 | if (in_irq()) | |
1357 | irq_work_run(); | |
1358 | #endif | |
1da177e4 | 1359 | scheduler_tick(); |
6819457d | 1360 | run_posix_cpu_timers(p); |
1da177e4 LT |
1361 | } |
1362 | ||
1da177e4 LT |
1363 | /* |
1364 | * This function runs timers and the timer-tq in bottom half context. | |
1365 | */ | |
1366 | static void run_timer_softirq(struct softirq_action *h) | |
1367 | { | |
7496351a | 1368 | struct tvec_base *base = __this_cpu_read(tvec_bases); |
1da177e4 | 1369 | |
d3d74453 | 1370 | hrtimer_run_pending(); |
82f67cd9 | 1371 | |
1da177e4 LT |
1372 | if (time_after_eq(jiffies, base->timer_jiffies)) |
1373 | __run_timers(base); | |
1374 | } | |
1375 | ||
1376 | /* | |
1377 | * Called by the local, per-CPU timer interrupt on SMP. | |
1378 | */ | |
1379 | void run_local_timers(void) | |
1380 | { | |
d3d74453 | 1381 | hrtimer_run_queues(); |
1da177e4 LT |
1382 | raise_softirq(TIMER_SOFTIRQ); |
1383 | } | |
1384 | ||
1da177e4 LT |
1385 | #ifdef __ARCH_WANT_SYS_ALARM |
1386 | ||
1387 | /* | |
1388 | * For backwards compatibility? This can be done in libc so Alpha | |
1389 | * and all newer ports shouldn't need it. | |
1390 | */ | |
58fd3aa2 | 1391 | SYSCALL_DEFINE1(alarm, unsigned int, seconds) |
1da177e4 | 1392 | { |
c08b8a49 | 1393 | return alarm_setitimer(seconds); |
1da177e4 LT |
1394 | } |
1395 | ||
1396 | #endif | |
1397 | ||
1da177e4 LT |
1398 | /** |
1399 | * sys_getpid - return the thread group id of the current process | |
1400 | * | |
1401 | * Note, despite the name, this returns the tgid not the pid. The tgid and | |
1402 | * the pid are identical unless CLONE_THREAD was specified on clone() in | |
1403 | * which case the tgid is the same in all threads of the same group. | |
1404 | * | |
1405 | * This is SMP safe as current->tgid does not change. | |
1406 | */ | |
58fd3aa2 | 1407 | SYSCALL_DEFINE0(getpid) |
1da177e4 | 1408 | { |
b488893a | 1409 | return task_tgid_vnr(current); |
1da177e4 LT |
1410 | } |
1411 | ||
1412 | /* | |
6997a6fa KK |
1413 | * Accessing ->real_parent is not SMP-safe, it could |
1414 | * change from under us. However, we can use a stale | |
1415 | * value of ->real_parent under rcu_read_lock(), see | |
1416 | * release_task()->call_rcu(delayed_put_task_struct). | |
1da177e4 | 1417 | */ |
dbf040d9 | 1418 | SYSCALL_DEFINE0(getppid) |
1da177e4 LT |
1419 | { |
1420 | int pid; | |
1da177e4 | 1421 | |
6997a6fa | 1422 | rcu_read_lock(); |
031af165 | 1423 | pid = task_tgid_vnr(rcu_dereference(current->real_parent)); |
6997a6fa | 1424 | rcu_read_unlock(); |
1da177e4 | 1425 | |
1da177e4 LT |
1426 | return pid; |
1427 | } | |
1428 | ||
dbf040d9 | 1429 | SYSCALL_DEFINE0(getuid) |
1da177e4 LT |
1430 | { |
1431 | /* Only we change this so SMP safe */ | |
a29c33f4 | 1432 | return from_kuid_munged(current_user_ns(), current_uid()); |
1da177e4 LT |
1433 | } |
1434 | ||
dbf040d9 | 1435 | SYSCALL_DEFINE0(geteuid) |
1da177e4 LT |
1436 | { |
1437 | /* Only we change this so SMP safe */ | |
a29c33f4 | 1438 | return from_kuid_munged(current_user_ns(), current_euid()); |
1da177e4 LT |
1439 | } |
1440 | ||
dbf040d9 | 1441 | SYSCALL_DEFINE0(getgid) |
1da177e4 LT |
1442 | { |
1443 | /* Only we change this so SMP safe */ | |
a29c33f4 | 1444 | return from_kgid_munged(current_user_ns(), current_gid()); |
1da177e4 LT |
1445 | } |
1446 | ||
dbf040d9 | 1447 | SYSCALL_DEFINE0(getegid) |
1da177e4 LT |
1448 | { |
1449 | /* Only we change this so SMP safe */ | |
a29c33f4 | 1450 | return from_kgid_munged(current_user_ns(), current_egid()); |
1da177e4 LT |
1451 | } |
1452 | ||
1da177e4 LT |
1453 | static void process_timeout(unsigned long __data) |
1454 | { | |
36c8b586 | 1455 | wake_up_process((struct task_struct *)__data); |
1da177e4 LT |
1456 | } |
1457 | ||
1458 | /** | |
1459 | * schedule_timeout - sleep until timeout | |
1460 | * @timeout: timeout value in jiffies | |
1461 | * | |
1462 | * Make the current task sleep until @timeout jiffies have | |
1463 | * elapsed. The routine will return immediately unless | |
1464 | * the current task state has been set (see set_current_state()). | |
1465 | * | |
1466 | * You can set the task state as follows - | |
1467 | * | |
1468 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | |
1469 | * pass before the routine returns. The routine will return 0 | |
1470 | * | |
1471 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1472 | * delivered to the current task. In this case the remaining time | |
1473 | * in jiffies will be returned, or 0 if the timer expired in time | |
1474 | * | |
1475 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1476 | * routine returns. | |
1477 | * | |
1478 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | |
1479 | * the CPU away without a bound on the timeout. In this case the return | |
1480 | * value will be %MAX_SCHEDULE_TIMEOUT. | |
1481 | * | |
1482 | * In all cases the return value is guaranteed to be non-negative. | |
1483 | */ | |
7ad5b3a5 | 1484 | signed long __sched schedule_timeout(signed long timeout) |
1da177e4 LT |
1485 | { |
1486 | struct timer_list timer; | |
1487 | unsigned long expire; | |
1488 | ||
1489 | switch (timeout) | |
1490 | { | |
1491 | case MAX_SCHEDULE_TIMEOUT: | |
1492 | /* | |
1493 | * These two special cases are useful to be comfortable | |
1494 | * in the caller. Nothing more. We could take | |
1495 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | |
1496 | * but I' d like to return a valid offset (>=0) to allow | |
1497 | * the caller to do everything it want with the retval. | |
1498 | */ | |
1499 | schedule(); | |
1500 | goto out; | |
1501 | default: | |
1502 | /* | |
1503 | * Another bit of PARANOID. Note that the retval will be | |
1504 | * 0 since no piece of kernel is supposed to do a check | |
1505 | * for a negative retval of schedule_timeout() (since it | |
1506 | * should never happens anyway). You just have the printk() | |
1507 | * that will tell you if something is gone wrong and where. | |
1508 | */ | |
5b149bcc | 1509 | if (timeout < 0) { |
1da177e4 | 1510 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
5b149bcc AM |
1511 | "value %lx\n", timeout); |
1512 | dump_stack(); | |
1da177e4 LT |
1513 | current->state = TASK_RUNNING; |
1514 | goto out; | |
1515 | } | |
1516 | } | |
1517 | ||
1518 | expire = timeout + jiffies; | |
1519 | ||
c6f3a97f | 1520 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); |
597d0275 | 1521 | __mod_timer(&timer, expire, false, TIMER_NOT_PINNED); |
1da177e4 LT |
1522 | schedule(); |
1523 | del_singleshot_timer_sync(&timer); | |
1524 | ||
c6f3a97f TG |
1525 | /* Remove the timer from the object tracker */ |
1526 | destroy_timer_on_stack(&timer); | |
1527 | ||
1da177e4 LT |
1528 | timeout = expire - jiffies; |
1529 | ||
1530 | out: | |
1531 | return timeout < 0 ? 0 : timeout; | |
1532 | } | |
1da177e4 LT |
1533 | EXPORT_SYMBOL(schedule_timeout); |
1534 | ||
8a1c1757 AM |
1535 | /* |
1536 | * We can use __set_current_state() here because schedule_timeout() calls | |
1537 | * schedule() unconditionally. | |
1538 | */ | |
64ed93a2 NA |
1539 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
1540 | { | |
a5a0d52c AM |
1541 | __set_current_state(TASK_INTERRUPTIBLE); |
1542 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1543 | } |
1544 | EXPORT_SYMBOL(schedule_timeout_interruptible); | |
1545 | ||
294d5cc2 MW |
1546 | signed long __sched schedule_timeout_killable(signed long timeout) |
1547 | { | |
1548 | __set_current_state(TASK_KILLABLE); | |
1549 | return schedule_timeout(timeout); | |
1550 | } | |
1551 | EXPORT_SYMBOL(schedule_timeout_killable); | |
1552 | ||
64ed93a2 NA |
1553 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) |
1554 | { | |
a5a0d52c AM |
1555 | __set_current_state(TASK_UNINTERRUPTIBLE); |
1556 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1557 | } |
1558 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | |
1559 | ||
1da177e4 | 1560 | /* Thread ID - the internal kernel "pid" */ |
58fd3aa2 | 1561 | SYSCALL_DEFINE0(gettid) |
1da177e4 | 1562 | { |
b488893a | 1563 | return task_pid_vnr(current); |
1da177e4 LT |
1564 | } |
1565 | ||
2aae4a10 | 1566 | /** |
d4d23add | 1567 | * do_sysinfo - fill in sysinfo struct |
2aae4a10 | 1568 | * @info: pointer to buffer to fill |
6819457d | 1569 | */ |
d4d23add | 1570 | int do_sysinfo(struct sysinfo *info) |
1da177e4 | 1571 | { |
1da177e4 LT |
1572 | unsigned long mem_total, sav_total; |
1573 | unsigned int mem_unit, bitcount; | |
2d02494f | 1574 | struct timespec tp; |
1da177e4 | 1575 | |
d4d23add | 1576 | memset(info, 0, sizeof(struct sysinfo)); |
1da177e4 | 1577 | |
2d02494f TG |
1578 | ktime_get_ts(&tp); |
1579 | monotonic_to_bootbased(&tp); | |
1580 | info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | |
1da177e4 | 1581 | |
2d02494f | 1582 | get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); |
1da177e4 | 1583 | |
2d02494f | 1584 | info->procs = nr_threads; |
1da177e4 | 1585 | |
d4d23add KM |
1586 | si_meminfo(info); |
1587 | si_swapinfo(info); | |
1da177e4 LT |
1588 | |
1589 | /* | |
1590 | * If the sum of all the available memory (i.e. ram + swap) | |
1591 | * is less than can be stored in a 32 bit unsigned long then | |
1592 | * we can be binary compatible with 2.2.x kernels. If not, | |
1593 | * well, in that case 2.2.x was broken anyways... | |
1594 | * | |
1595 | * -Erik Andersen <[email protected]> | |
1596 | */ | |
1597 | ||
d4d23add KM |
1598 | mem_total = info->totalram + info->totalswap; |
1599 | if (mem_total < info->totalram || mem_total < info->totalswap) | |
1da177e4 LT |
1600 | goto out; |
1601 | bitcount = 0; | |
d4d23add | 1602 | mem_unit = info->mem_unit; |
1da177e4 LT |
1603 | while (mem_unit > 1) { |
1604 | bitcount++; | |
1605 | mem_unit >>= 1; | |
1606 | sav_total = mem_total; | |
1607 | mem_total <<= 1; | |
1608 | if (mem_total < sav_total) | |
1609 | goto out; | |
1610 | } | |
1611 | ||
1612 | /* | |
1613 | * If mem_total did not overflow, multiply all memory values by | |
d4d23add | 1614 | * info->mem_unit and set it to 1. This leaves things compatible |
1da177e4 LT |
1615 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
1616 | * kernels... | |
1617 | */ | |
1618 | ||
d4d23add KM |
1619 | info->mem_unit = 1; |
1620 | info->totalram <<= bitcount; | |
1621 | info->freeram <<= bitcount; | |
1622 | info->sharedram <<= bitcount; | |
1623 | info->bufferram <<= bitcount; | |
1624 | info->totalswap <<= bitcount; | |
1625 | info->freeswap <<= bitcount; | |
1626 | info->totalhigh <<= bitcount; | |
1627 | info->freehigh <<= bitcount; | |
1628 | ||
1629 | out: | |
1630 | return 0; | |
1631 | } | |
1632 | ||
1e7bfb21 | 1633 | SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) |
d4d23add KM |
1634 | { |
1635 | struct sysinfo val; | |
1636 | ||
1637 | do_sysinfo(&val); | |
1da177e4 | 1638 | |
1da177e4 LT |
1639 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
1640 | return -EFAULT; | |
1641 | ||
1642 | return 0; | |
1643 | } | |
1644 | ||
b4be6258 | 1645 | static int __cpuinit init_timers_cpu(int cpu) |
1da177e4 LT |
1646 | { |
1647 | int j; | |
a6fa8e5a | 1648 | struct tvec_base *base; |
b4be6258 | 1649 | static char __cpuinitdata tvec_base_done[NR_CPUS]; |
55c888d6 | 1650 | |
ba6edfcd | 1651 | if (!tvec_base_done[cpu]) { |
a4a6198b JB |
1652 | static char boot_done; |
1653 | ||
a4a6198b | 1654 | if (boot_done) { |
ba6edfcd AM |
1655 | /* |
1656 | * The APs use this path later in boot | |
1657 | */ | |
94f6030c CL |
1658 | base = kmalloc_node(sizeof(*base), |
1659 | GFP_KERNEL | __GFP_ZERO, | |
a4a6198b JB |
1660 | cpu_to_node(cpu)); |
1661 | if (!base) | |
1662 | return -ENOMEM; | |
6e453a67 VP |
1663 | |
1664 | /* Make sure that tvec_base is 2 byte aligned */ | |
1665 | if (tbase_get_deferrable(base)) { | |
1666 | WARN_ON(1); | |
1667 | kfree(base); | |
1668 | return -ENOMEM; | |
1669 | } | |
ba6edfcd | 1670 | per_cpu(tvec_bases, cpu) = base; |
a4a6198b | 1671 | } else { |
ba6edfcd AM |
1672 | /* |
1673 | * This is for the boot CPU - we use compile-time | |
1674 | * static initialisation because per-cpu memory isn't | |
1675 | * ready yet and because the memory allocators are not | |
1676 | * initialised either. | |
1677 | */ | |
a4a6198b | 1678 | boot_done = 1; |
ba6edfcd | 1679 | base = &boot_tvec_bases; |
a4a6198b | 1680 | } |
ba6edfcd AM |
1681 | tvec_base_done[cpu] = 1; |
1682 | } else { | |
1683 | base = per_cpu(tvec_bases, cpu); | |
a4a6198b | 1684 | } |
ba6edfcd | 1685 | |
3691c519 | 1686 | spin_lock_init(&base->lock); |
d730e882 | 1687 | |
1da177e4 LT |
1688 | for (j = 0; j < TVN_SIZE; j++) { |
1689 | INIT_LIST_HEAD(base->tv5.vec + j); | |
1690 | INIT_LIST_HEAD(base->tv4.vec + j); | |
1691 | INIT_LIST_HEAD(base->tv3.vec + j); | |
1692 | INIT_LIST_HEAD(base->tv2.vec + j); | |
1693 | } | |
1694 | for (j = 0; j < TVR_SIZE; j++) | |
1695 | INIT_LIST_HEAD(base->tv1.vec + j); | |
1696 | ||
1697 | base->timer_jiffies = jiffies; | |
97fd9ed4 | 1698 | base->next_timer = base->timer_jiffies; |
99d5f3aa | 1699 | base->active_timers = 0; |
a4a6198b | 1700 | return 0; |
1da177e4 LT |
1701 | } |
1702 | ||
1703 | #ifdef CONFIG_HOTPLUG_CPU | |
a6fa8e5a | 1704 | static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head) |
1da177e4 LT |
1705 | { |
1706 | struct timer_list *timer; | |
1707 | ||
1708 | while (!list_empty(head)) { | |
b5e61818 | 1709 | timer = list_first_entry(head, struct timer_list, entry); |
99d5f3aa | 1710 | /* We ignore the accounting on the dying cpu */ |
ec44bc7a | 1711 | detach_timer(timer, false); |
6e453a67 | 1712 | timer_set_base(timer, new_base); |
1da177e4 | 1713 | internal_add_timer(new_base, timer); |
1da177e4 | 1714 | } |
1da177e4 LT |
1715 | } |
1716 | ||
48ccf3da | 1717 | static void __cpuinit migrate_timers(int cpu) |
1da177e4 | 1718 | { |
a6fa8e5a PM |
1719 | struct tvec_base *old_base; |
1720 | struct tvec_base *new_base; | |
1da177e4 LT |
1721 | int i; |
1722 | ||
1723 | BUG_ON(cpu_online(cpu)); | |
a4a6198b JB |
1724 | old_base = per_cpu(tvec_bases, cpu); |
1725 | new_base = get_cpu_var(tvec_bases); | |
d82f0b0f ON |
1726 | /* |
1727 | * The caller is globally serialized and nobody else | |
1728 | * takes two locks at once, deadlock is not possible. | |
1729 | */ | |
1730 | spin_lock_irq(&new_base->lock); | |
0d180406 | 1731 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
3691c519 ON |
1732 | |
1733 | BUG_ON(old_base->running_timer); | |
1da177e4 | 1734 | |
1da177e4 | 1735 | for (i = 0; i < TVR_SIZE; i++) |
55c888d6 ON |
1736 | migrate_timer_list(new_base, old_base->tv1.vec + i); |
1737 | for (i = 0; i < TVN_SIZE; i++) { | |
1738 | migrate_timer_list(new_base, old_base->tv2.vec + i); | |
1739 | migrate_timer_list(new_base, old_base->tv3.vec + i); | |
1740 | migrate_timer_list(new_base, old_base->tv4.vec + i); | |
1741 | migrate_timer_list(new_base, old_base->tv5.vec + i); | |
1742 | } | |
1743 | ||
0d180406 | 1744 | spin_unlock(&old_base->lock); |
d82f0b0f | 1745 | spin_unlock_irq(&new_base->lock); |
1da177e4 | 1746 | put_cpu_var(tvec_bases); |
1da177e4 LT |
1747 | } |
1748 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1749 | ||
8c78f307 | 1750 | static int __cpuinit timer_cpu_notify(struct notifier_block *self, |
1da177e4 LT |
1751 | unsigned long action, void *hcpu) |
1752 | { | |
1753 | long cpu = (long)hcpu; | |
80b5184c AM |
1754 | int err; |
1755 | ||
1da177e4 LT |
1756 | switch(action) { |
1757 | case CPU_UP_PREPARE: | |
8bb78442 | 1758 | case CPU_UP_PREPARE_FROZEN: |
80b5184c AM |
1759 | err = init_timers_cpu(cpu); |
1760 | if (err < 0) | |
1761 | return notifier_from_errno(err); | |
1da177e4 LT |
1762 | break; |
1763 | #ifdef CONFIG_HOTPLUG_CPU | |
1764 | case CPU_DEAD: | |
8bb78442 | 1765 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
1766 | migrate_timers(cpu); |
1767 | break; | |
1768 | #endif | |
1769 | default: | |
1770 | break; | |
1771 | } | |
1772 | return NOTIFY_OK; | |
1773 | } | |
1774 | ||
8c78f307 | 1775 | static struct notifier_block __cpuinitdata timers_nb = { |
1da177e4 LT |
1776 | .notifier_call = timer_cpu_notify, |
1777 | }; | |
1778 | ||
1779 | ||
1780 | void __init init_timers(void) | |
1781 | { | |
e52b1db3 TH |
1782 | int err; |
1783 | ||
1784 | /* ensure there are enough low bits for flags in timer->base pointer */ | |
1785 | BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK); | |
07dccf33 | 1786 | |
e52b1db3 TH |
1787 | err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
1788 | (void *)(long)smp_processor_id()); | |
82f67cd9 IM |
1789 | init_timer_stats(); |
1790 | ||
9e506f7a | 1791 | BUG_ON(err != NOTIFY_OK); |
1da177e4 | 1792 | register_cpu_notifier(&timers_nb); |
962cf36c | 1793 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq); |
1da177e4 LT |
1794 | } |
1795 | ||
1da177e4 LT |
1796 | /** |
1797 | * msleep - sleep safely even with waitqueue interruptions | |
1798 | * @msecs: Time in milliseconds to sleep for | |
1799 | */ | |
1800 | void msleep(unsigned int msecs) | |
1801 | { | |
1802 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1803 | ||
75bcc8c5 NA |
1804 | while (timeout) |
1805 | timeout = schedule_timeout_uninterruptible(timeout); | |
1da177e4 LT |
1806 | } |
1807 | ||
1808 | EXPORT_SYMBOL(msleep); | |
1809 | ||
1810 | /** | |
96ec3efd | 1811 | * msleep_interruptible - sleep waiting for signals |
1da177e4 LT |
1812 | * @msecs: Time in milliseconds to sleep for |
1813 | */ | |
1814 | unsigned long msleep_interruptible(unsigned int msecs) | |
1815 | { | |
1816 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1817 | ||
75bcc8c5 NA |
1818 | while (timeout && !signal_pending(current)) |
1819 | timeout = schedule_timeout_interruptible(timeout); | |
1da177e4 LT |
1820 | return jiffies_to_msecs(timeout); |
1821 | } | |
1822 | ||
1823 | EXPORT_SYMBOL(msleep_interruptible); | |
5e7f5a17 PP |
1824 | |
1825 | static int __sched do_usleep_range(unsigned long min, unsigned long max) | |
1826 | { | |
1827 | ktime_t kmin; | |
1828 | unsigned long delta; | |
1829 | ||
1830 | kmin = ktime_set(0, min * NSEC_PER_USEC); | |
1831 | delta = (max - min) * NSEC_PER_USEC; | |
1832 | return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL); | |
1833 | } | |
1834 | ||
1835 | /** | |
1836 | * usleep_range - Drop in replacement for udelay where wakeup is flexible | |
1837 | * @min: Minimum time in usecs to sleep | |
1838 | * @max: Maximum time in usecs to sleep | |
1839 | */ | |
1840 | void usleep_range(unsigned long min, unsigned long max) | |
1841 | { | |
1842 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
1843 | do_usleep_range(min, max); | |
1844 | } | |
1845 | EXPORT_SYMBOL(usleep_range); |