]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/timer.c | |
3 | * | |
8524070b | 4 | * Kernel internal timers, basic process system calls |
1da177e4 LT |
5 | * |
6 | * Copyright (C) 1991, 1992 Linus Torvalds | |
7 | * | |
8 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. | |
9 | * | |
10 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 | |
11 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
12 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to | |
13 | * serialize accesses to xtime/lost_ticks). | |
14 | * Copyright (C) 1998 Andrea Arcangeli | |
15 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl | |
16 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love | |
17 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. | |
18 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar | |
19 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar | |
20 | */ | |
21 | ||
22 | #include <linux/kernel_stat.h> | |
9984de1a | 23 | #include <linux/export.h> |
1da177e4 LT |
24 | #include <linux/interrupt.h> |
25 | #include <linux/percpu.h> | |
26 | #include <linux/init.h> | |
27 | #include <linux/mm.h> | |
28 | #include <linux/swap.h> | |
b488893a | 29 | #include <linux/pid_namespace.h> |
1da177e4 LT |
30 | #include <linux/notifier.h> |
31 | #include <linux/thread_info.h> | |
32 | #include <linux/time.h> | |
33 | #include <linux/jiffies.h> | |
34 | #include <linux/posix-timers.h> | |
35 | #include <linux/cpu.h> | |
36 | #include <linux/syscalls.h> | |
97a41e26 | 37 | #include <linux/delay.h> |
79bf2bb3 | 38 | #include <linux/tick.h> |
82f67cd9 | 39 | #include <linux/kallsyms.h> |
e360adbe | 40 | #include <linux/irq_work.h> |
eea08f32 | 41 | #include <linux/sched.h> |
5a0e3ad6 | 42 | #include <linux/slab.h> |
1da177e4 LT |
43 | |
44 | #include <asm/uaccess.h> | |
45 | #include <asm/unistd.h> | |
46 | #include <asm/div64.h> | |
47 | #include <asm/timex.h> | |
48 | #include <asm/io.h> | |
49 | ||
2b022e3d XG |
50 | #define CREATE_TRACE_POINTS |
51 | #include <trace/events/timer.h> | |
52 | ||
ecea8d19 TG |
53 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
54 | ||
55 | EXPORT_SYMBOL(jiffies_64); | |
56 | ||
1da177e4 LT |
57 | /* |
58 | * per-CPU timer vector definitions: | |
59 | */ | |
1da177e4 LT |
60 | #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) |
61 | #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) | |
62 | #define TVN_SIZE (1 << TVN_BITS) | |
63 | #define TVR_SIZE (1 << TVR_BITS) | |
64 | #define TVN_MASK (TVN_SIZE - 1) | |
65 | #define TVR_MASK (TVR_SIZE - 1) | |
66 | ||
a6fa8e5a | 67 | struct tvec { |
1da177e4 | 68 | struct list_head vec[TVN_SIZE]; |
a6fa8e5a | 69 | }; |
1da177e4 | 70 | |
a6fa8e5a | 71 | struct tvec_root { |
1da177e4 | 72 | struct list_head vec[TVR_SIZE]; |
a6fa8e5a | 73 | }; |
1da177e4 | 74 | |
a6fa8e5a | 75 | struct tvec_base { |
3691c519 ON |
76 | spinlock_t lock; |
77 | struct timer_list *running_timer; | |
1da177e4 | 78 | unsigned long timer_jiffies; |
97fd9ed4 | 79 | unsigned long next_timer; |
a6fa8e5a PM |
80 | struct tvec_root tv1; |
81 | struct tvec tv2; | |
82 | struct tvec tv3; | |
83 | struct tvec tv4; | |
84 | struct tvec tv5; | |
6e453a67 | 85 | } ____cacheline_aligned; |
1da177e4 | 86 | |
a6fa8e5a | 87 | struct tvec_base boot_tvec_bases; |
3691c519 | 88 | EXPORT_SYMBOL(boot_tvec_bases); |
a6fa8e5a | 89 | static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases; |
1da177e4 | 90 | |
6e453a67 | 91 | /* Functions below help us manage 'deferrable' flag */ |
a6fa8e5a | 92 | static inline unsigned int tbase_get_deferrable(struct tvec_base *base) |
6e453a67 | 93 | { |
e9910846 | 94 | return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG); |
6e453a67 VP |
95 | } |
96 | ||
a6fa8e5a | 97 | static inline struct tvec_base *tbase_get_base(struct tvec_base *base) |
6e453a67 | 98 | { |
a6fa8e5a | 99 | return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG)); |
6e453a67 VP |
100 | } |
101 | ||
102 | static inline void timer_set_deferrable(struct timer_list *timer) | |
103 | { | |
dd6414b5 | 104 | timer->base = TBASE_MAKE_DEFERRED(timer->base); |
6e453a67 VP |
105 | } |
106 | ||
107 | static inline void | |
a6fa8e5a | 108 | timer_set_base(struct timer_list *timer, struct tvec_base *new_base) |
6e453a67 | 109 | { |
a6fa8e5a | 110 | timer->base = (struct tvec_base *)((unsigned long)(new_base) | |
6819457d | 111 | tbase_get_deferrable(timer->base)); |
6e453a67 VP |
112 | } |
113 | ||
9c133c46 AS |
114 | static unsigned long round_jiffies_common(unsigned long j, int cpu, |
115 | bool force_up) | |
4c36a5de AV |
116 | { |
117 | int rem; | |
118 | unsigned long original = j; | |
119 | ||
120 | /* | |
121 | * We don't want all cpus firing their timers at once hitting the | |
122 | * same lock or cachelines, so we skew each extra cpu with an extra | |
123 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which | |
124 | * already did this. | |
125 | * The skew is done by adding 3*cpunr, then round, then subtract this | |
126 | * extra offset again. | |
127 | */ | |
128 | j += cpu * 3; | |
129 | ||
130 | rem = j % HZ; | |
131 | ||
132 | /* | |
133 | * If the target jiffie is just after a whole second (which can happen | |
134 | * due to delays of the timer irq, long irq off times etc etc) then | |
135 | * we should round down to the whole second, not up. Use 1/4th second | |
136 | * as cutoff for this rounding as an extreme upper bound for this. | |
9c133c46 | 137 | * But never round down if @force_up is set. |
4c36a5de | 138 | */ |
9c133c46 | 139 | if (rem < HZ/4 && !force_up) /* round down */ |
4c36a5de AV |
140 | j = j - rem; |
141 | else /* round up */ | |
142 | j = j - rem + HZ; | |
143 | ||
144 | /* now that we have rounded, subtract the extra skew again */ | |
145 | j -= cpu * 3; | |
146 | ||
147 | if (j <= jiffies) /* rounding ate our timeout entirely; */ | |
148 | return original; | |
149 | return j; | |
150 | } | |
9c133c46 AS |
151 | |
152 | /** | |
153 | * __round_jiffies - function to round jiffies to a full second | |
154 | * @j: the time in (absolute) jiffies that should be rounded | |
155 | * @cpu: the processor number on which the timeout will happen | |
156 | * | |
157 | * __round_jiffies() rounds an absolute time in the future (in jiffies) | |
158 | * up or down to (approximately) full seconds. This is useful for timers | |
159 | * for which the exact time they fire does not matter too much, as long as | |
160 | * they fire approximately every X seconds. | |
161 | * | |
162 | * By rounding these timers to whole seconds, all such timers will fire | |
163 | * at the same time, rather than at various times spread out. The goal | |
164 | * of this is to have the CPU wake up less, which saves power. | |
165 | * | |
166 | * The exact rounding is skewed for each processor to avoid all | |
167 | * processors firing at the exact same time, which could lead | |
168 | * to lock contention or spurious cache line bouncing. | |
169 | * | |
170 | * The return value is the rounded version of the @j parameter. | |
171 | */ | |
172 | unsigned long __round_jiffies(unsigned long j, int cpu) | |
173 | { | |
174 | return round_jiffies_common(j, cpu, false); | |
175 | } | |
4c36a5de AV |
176 | EXPORT_SYMBOL_GPL(__round_jiffies); |
177 | ||
178 | /** | |
179 | * __round_jiffies_relative - function to round jiffies to a full second | |
180 | * @j: the time in (relative) jiffies that should be rounded | |
181 | * @cpu: the processor number on which the timeout will happen | |
182 | * | |
72fd4a35 | 183 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
184 | * up or down to (approximately) full seconds. This is useful for timers |
185 | * for which the exact time they fire does not matter too much, as long as | |
186 | * they fire approximately every X seconds. | |
187 | * | |
188 | * By rounding these timers to whole seconds, all such timers will fire | |
189 | * at the same time, rather than at various times spread out. The goal | |
190 | * of this is to have the CPU wake up less, which saves power. | |
191 | * | |
192 | * The exact rounding is skewed for each processor to avoid all | |
193 | * processors firing at the exact same time, which could lead | |
194 | * to lock contention or spurious cache line bouncing. | |
195 | * | |
72fd4a35 | 196 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
197 | */ |
198 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) | |
199 | { | |
9c133c46 AS |
200 | unsigned long j0 = jiffies; |
201 | ||
202 | /* Use j0 because jiffies might change while we run */ | |
203 | return round_jiffies_common(j + j0, cpu, false) - j0; | |
4c36a5de AV |
204 | } |
205 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); | |
206 | ||
207 | /** | |
208 | * round_jiffies - function to round jiffies to a full second | |
209 | * @j: the time in (absolute) jiffies that should be rounded | |
210 | * | |
72fd4a35 | 211 | * round_jiffies() rounds an absolute time in the future (in jiffies) |
4c36a5de AV |
212 | * up or down to (approximately) full seconds. This is useful for timers |
213 | * for which the exact time they fire does not matter too much, as long as | |
214 | * they fire approximately every X seconds. | |
215 | * | |
216 | * By rounding these timers to whole seconds, all such timers will fire | |
217 | * at the same time, rather than at various times spread out. The goal | |
218 | * of this is to have the CPU wake up less, which saves power. | |
219 | * | |
72fd4a35 | 220 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
221 | */ |
222 | unsigned long round_jiffies(unsigned long j) | |
223 | { | |
9c133c46 | 224 | return round_jiffies_common(j, raw_smp_processor_id(), false); |
4c36a5de AV |
225 | } |
226 | EXPORT_SYMBOL_GPL(round_jiffies); | |
227 | ||
228 | /** | |
229 | * round_jiffies_relative - function to round jiffies to a full second | |
230 | * @j: the time in (relative) jiffies that should be rounded | |
231 | * | |
72fd4a35 | 232 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) |
4c36a5de AV |
233 | * up or down to (approximately) full seconds. This is useful for timers |
234 | * for which the exact time they fire does not matter too much, as long as | |
235 | * they fire approximately every X seconds. | |
236 | * | |
237 | * By rounding these timers to whole seconds, all such timers will fire | |
238 | * at the same time, rather than at various times spread out. The goal | |
239 | * of this is to have the CPU wake up less, which saves power. | |
240 | * | |
72fd4a35 | 241 | * The return value is the rounded version of the @j parameter. |
4c36a5de AV |
242 | */ |
243 | unsigned long round_jiffies_relative(unsigned long j) | |
244 | { | |
245 | return __round_jiffies_relative(j, raw_smp_processor_id()); | |
246 | } | |
247 | EXPORT_SYMBOL_GPL(round_jiffies_relative); | |
248 | ||
9c133c46 AS |
249 | /** |
250 | * __round_jiffies_up - function to round jiffies up to a full second | |
251 | * @j: the time in (absolute) jiffies that should be rounded | |
252 | * @cpu: the processor number on which the timeout will happen | |
253 | * | |
254 | * This is the same as __round_jiffies() except that it will never | |
255 | * round down. This is useful for timeouts for which the exact time | |
256 | * of firing does not matter too much, as long as they don't fire too | |
257 | * early. | |
258 | */ | |
259 | unsigned long __round_jiffies_up(unsigned long j, int cpu) | |
260 | { | |
261 | return round_jiffies_common(j, cpu, true); | |
262 | } | |
263 | EXPORT_SYMBOL_GPL(__round_jiffies_up); | |
264 | ||
265 | /** | |
266 | * __round_jiffies_up_relative - function to round jiffies up to a full second | |
267 | * @j: the time in (relative) jiffies that should be rounded | |
268 | * @cpu: the processor number on which the timeout will happen | |
269 | * | |
270 | * This is the same as __round_jiffies_relative() except that it will never | |
271 | * round down. This is useful for timeouts for which the exact time | |
272 | * of firing does not matter too much, as long as they don't fire too | |
273 | * early. | |
274 | */ | |
275 | unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) | |
276 | { | |
277 | unsigned long j0 = jiffies; | |
278 | ||
279 | /* Use j0 because jiffies might change while we run */ | |
280 | return round_jiffies_common(j + j0, cpu, true) - j0; | |
281 | } | |
282 | EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); | |
283 | ||
284 | /** | |
285 | * round_jiffies_up - function to round jiffies up to a full second | |
286 | * @j: the time in (absolute) jiffies that should be rounded | |
287 | * | |
288 | * This is the same as round_jiffies() except that it will never | |
289 | * round down. This is useful for timeouts for which the exact time | |
290 | * of firing does not matter too much, as long as they don't fire too | |
291 | * early. | |
292 | */ | |
293 | unsigned long round_jiffies_up(unsigned long j) | |
294 | { | |
295 | return round_jiffies_common(j, raw_smp_processor_id(), true); | |
296 | } | |
297 | EXPORT_SYMBOL_GPL(round_jiffies_up); | |
298 | ||
299 | /** | |
300 | * round_jiffies_up_relative - function to round jiffies up to a full second | |
301 | * @j: the time in (relative) jiffies that should be rounded | |
302 | * | |
303 | * This is the same as round_jiffies_relative() except that it will never | |
304 | * round down. This is useful for timeouts for which the exact time | |
305 | * of firing does not matter too much, as long as they don't fire too | |
306 | * early. | |
307 | */ | |
308 | unsigned long round_jiffies_up_relative(unsigned long j) | |
309 | { | |
310 | return __round_jiffies_up_relative(j, raw_smp_processor_id()); | |
311 | } | |
312 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); | |
313 | ||
3bbb9ec9 AV |
314 | /** |
315 | * set_timer_slack - set the allowed slack for a timer | |
0caa6210 | 316 | * @timer: the timer to be modified |
3bbb9ec9 AV |
317 | * @slack_hz: the amount of time (in jiffies) allowed for rounding |
318 | * | |
319 | * Set the amount of time, in jiffies, that a certain timer has | |
320 | * in terms of slack. By setting this value, the timer subsystem | |
321 | * will schedule the actual timer somewhere between | |
322 | * the time mod_timer() asks for, and that time plus the slack. | |
323 | * | |
324 | * By setting the slack to -1, a percentage of the delay is used | |
325 | * instead. | |
326 | */ | |
327 | void set_timer_slack(struct timer_list *timer, int slack_hz) | |
328 | { | |
329 | timer->slack = slack_hz; | |
330 | } | |
331 | EXPORT_SYMBOL_GPL(set_timer_slack); | |
332 | ||
a6fa8e5a | 333 | static void internal_add_timer(struct tvec_base *base, struct timer_list *timer) |
1da177e4 LT |
334 | { |
335 | unsigned long expires = timer->expires; | |
336 | unsigned long idx = expires - base->timer_jiffies; | |
337 | struct list_head *vec; | |
338 | ||
339 | if (idx < TVR_SIZE) { | |
340 | int i = expires & TVR_MASK; | |
341 | vec = base->tv1.vec + i; | |
342 | } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { | |
343 | int i = (expires >> TVR_BITS) & TVN_MASK; | |
344 | vec = base->tv2.vec + i; | |
345 | } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { | |
346 | int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; | |
347 | vec = base->tv3.vec + i; | |
348 | } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { | |
349 | int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; | |
350 | vec = base->tv4.vec + i; | |
351 | } else if ((signed long) idx < 0) { | |
352 | /* | |
353 | * Can happen if you add a timer with expires == jiffies, | |
354 | * or you set a timer to go off in the past | |
355 | */ | |
356 | vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); | |
357 | } else { | |
358 | int i; | |
359 | /* If the timeout is larger than 0xffffffff on 64-bit | |
360 | * architectures then we use the maximum timeout: | |
361 | */ | |
362 | if (idx > 0xffffffffUL) { | |
363 | idx = 0xffffffffUL; | |
364 | expires = idx + base->timer_jiffies; | |
365 | } | |
366 | i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; | |
367 | vec = base->tv5.vec + i; | |
368 | } | |
369 | /* | |
370 | * Timers are FIFO: | |
371 | */ | |
372 | list_add_tail(&timer->entry, vec); | |
373 | } | |
374 | ||
82f67cd9 IM |
375 | #ifdef CONFIG_TIMER_STATS |
376 | void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr) | |
377 | { | |
378 | if (timer->start_site) | |
379 | return; | |
380 | ||
381 | timer->start_site = addr; | |
382 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | |
383 | timer->start_pid = current->pid; | |
384 | } | |
c5c061b8 VP |
385 | |
386 | static void timer_stats_account_timer(struct timer_list *timer) | |
387 | { | |
388 | unsigned int flag = 0; | |
389 | ||
507e1231 HC |
390 | if (likely(!timer->start_site)) |
391 | return; | |
c5c061b8 VP |
392 | if (unlikely(tbase_get_deferrable(timer->base))) |
393 | flag |= TIMER_STATS_FLAG_DEFERRABLE; | |
394 | ||
395 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | |
396 | timer->function, timer->start_comm, flag); | |
397 | } | |
398 | ||
399 | #else | |
400 | static void timer_stats_account_timer(struct timer_list *timer) {} | |
82f67cd9 IM |
401 | #endif |
402 | ||
c6f3a97f TG |
403 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
404 | ||
405 | static struct debug_obj_descr timer_debug_descr; | |
406 | ||
99777288 SG |
407 | static void *timer_debug_hint(void *addr) |
408 | { | |
409 | return ((struct timer_list *) addr)->function; | |
410 | } | |
411 | ||
c6f3a97f TG |
412 | /* |
413 | * fixup_init is called when: | |
414 | * - an active object is initialized | |
55c888d6 | 415 | */ |
c6f3a97f TG |
416 | static int timer_fixup_init(void *addr, enum debug_obj_state state) |
417 | { | |
418 | struct timer_list *timer = addr; | |
419 | ||
420 | switch (state) { | |
421 | case ODEBUG_STATE_ACTIVE: | |
422 | del_timer_sync(timer); | |
423 | debug_object_init(timer, &timer_debug_descr); | |
424 | return 1; | |
425 | default: | |
426 | return 0; | |
427 | } | |
428 | } | |
429 | ||
fb16b8cf SB |
430 | /* Stub timer callback for improperly used timers. */ |
431 | static void stub_timer(unsigned long data) | |
432 | { | |
433 | WARN_ON(1); | |
434 | } | |
435 | ||
c6f3a97f TG |
436 | /* |
437 | * fixup_activate is called when: | |
438 | * - an active object is activated | |
439 | * - an unknown object is activated (might be a statically initialized object) | |
440 | */ | |
441 | static int timer_fixup_activate(void *addr, enum debug_obj_state state) | |
442 | { | |
443 | struct timer_list *timer = addr; | |
444 | ||
445 | switch (state) { | |
446 | ||
447 | case ODEBUG_STATE_NOTAVAILABLE: | |
448 | /* | |
449 | * This is not really a fixup. The timer was | |
450 | * statically initialized. We just make sure that it | |
451 | * is tracked in the object tracker. | |
452 | */ | |
453 | if (timer->entry.next == NULL && | |
454 | timer->entry.prev == TIMER_ENTRY_STATIC) { | |
455 | debug_object_init(timer, &timer_debug_descr); | |
456 | debug_object_activate(timer, &timer_debug_descr); | |
457 | return 0; | |
458 | } else { | |
fb16b8cf SB |
459 | setup_timer(timer, stub_timer, 0); |
460 | return 1; | |
c6f3a97f TG |
461 | } |
462 | return 0; | |
463 | ||
464 | case ODEBUG_STATE_ACTIVE: | |
465 | WARN_ON(1); | |
466 | ||
467 | default: | |
468 | return 0; | |
469 | } | |
470 | } | |
471 | ||
472 | /* | |
473 | * fixup_free is called when: | |
474 | * - an active object is freed | |
475 | */ | |
476 | static int timer_fixup_free(void *addr, enum debug_obj_state state) | |
477 | { | |
478 | struct timer_list *timer = addr; | |
479 | ||
480 | switch (state) { | |
481 | case ODEBUG_STATE_ACTIVE: | |
482 | del_timer_sync(timer); | |
483 | debug_object_free(timer, &timer_debug_descr); | |
484 | return 1; | |
485 | default: | |
486 | return 0; | |
487 | } | |
488 | } | |
489 | ||
dc4218bd CC |
490 | /* |
491 | * fixup_assert_init is called when: | |
492 | * - an untracked/uninit-ed object is found | |
493 | */ | |
494 | static int timer_fixup_assert_init(void *addr, enum debug_obj_state state) | |
495 | { | |
496 | struct timer_list *timer = addr; | |
497 | ||
498 | switch (state) { | |
499 | case ODEBUG_STATE_NOTAVAILABLE: | |
500 | if (timer->entry.prev == TIMER_ENTRY_STATIC) { | |
501 | /* | |
502 | * This is not really a fixup. The timer was | |
503 | * statically initialized. We just make sure that it | |
504 | * is tracked in the object tracker. | |
505 | */ | |
506 | debug_object_init(timer, &timer_debug_descr); | |
507 | return 0; | |
508 | } else { | |
509 | setup_timer(timer, stub_timer, 0); | |
510 | return 1; | |
511 | } | |
512 | default: | |
513 | return 0; | |
514 | } | |
515 | } | |
516 | ||
c6f3a97f | 517 | static struct debug_obj_descr timer_debug_descr = { |
dc4218bd CC |
518 | .name = "timer_list", |
519 | .debug_hint = timer_debug_hint, | |
520 | .fixup_init = timer_fixup_init, | |
521 | .fixup_activate = timer_fixup_activate, | |
522 | .fixup_free = timer_fixup_free, | |
523 | .fixup_assert_init = timer_fixup_assert_init, | |
c6f3a97f TG |
524 | }; |
525 | ||
526 | static inline void debug_timer_init(struct timer_list *timer) | |
527 | { | |
528 | debug_object_init(timer, &timer_debug_descr); | |
529 | } | |
530 | ||
531 | static inline void debug_timer_activate(struct timer_list *timer) | |
532 | { | |
533 | debug_object_activate(timer, &timer_debug_descr); | |
534 | } | |
535 | ||
536 | static inline void debug_timer_deactivate(struct timer_list *timer) | |
537 | { | |
538 | debug_object_deactivate(timer, &timer_debug_descr); | |
539 | } | |
540 | ||
541 | static inline void debug_timer_free(struct timer_list *timer) | |
542 | { | |
543 | debug_object_free(timer, &timer_debug_descr); | |
544 | } | |
545 | ||
dc4218bd CC |
546 | static inline void debug_timer_assert_init(struct timer_list *timer) |
547 | { | |
548 | debug_object_assert_init(timer, &timer_debug_descr); | |
549 | } | |
550 | ||
6f2b9b9a JB |
551 | static void __init_timer(struct timer_list *timer, |
552 | const char *name, | |
553 | struct lock_class_key *key); | |
c6f3a97f | 554 | |
6f2b9b9a JB |
555 | void init_timer_on_stack_key(struct timer_list *timer, |
556 | const char *name, | |
557 | struct lock_class_key *key) | |
c6f3a97f TG |
558 | { |
559 | debug_object_init_on_stack(timer, &timer_debug_descr); | |
6f2b9b9a | 560 | __init_timer(timer, name, key); |
c6f3a97f | 561 | } |
6f2b9b9a | 562 | EXPORT_SYMBOL_GPL(init_timer_on_stack_key); |
c6f3a97f TG |
563 | |
564 | void destroy_timer_on_stack(struct timer_list *timer) | |
565 | { | |
566 | debug_object_free(timer, &timer_debug_descr); | |
567 | } | |
568 | EXPORT_SYMBOL_GPL(destroy_timer_on_stack); | |
569 | ||
570 | #else | |
571 | static inline void debug_timer_init(struct timer_list *timer) { } | |
572 | static inline void debug_timer_activate(struct timer_list *timer) { } | |
573 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | |
dc4218bd | 574 | static inline void debug_timer_assert_init(struct timer_list *timer) { } |
c6f3a97f TG |
575 | #endif |
576 | ||
2b022e3d XG |
577 | static inline void debug_init(struct timer_list *timer) |
578 | { | |
579 | debug_timer_init(timer); | |
580 | trace_timer_init(timer); | |
581 | } | |
582 | ||
583 | static inline void | |
584 | debug_activate(struct timer_list *timer, unsigned long expires) | |
585 | { | |
586 | debug_timer_activate(timer); | |
587 | trace_timer_start(timer, expires); | |
588 | } | |
589 | ||
590 | static inline void debug_deactivate(struct timer_list *timer) | |
591 | { | |
592 | debug_timer_deactivate(timer); | |
593 | trace_timer_cancel(timer); | |
594 | } | |
595 | ||
dc4218bd CC |
596 | static inline void debug_assert_init(struct timer_list *timer) |
597 | { | |
598 | debug_timer_assert_init(timer); | |
599 | } | |
600 | ||
6f2b9b9a JB |
601 | static void __init_timer(struct timer_list *timer, |
602 | const char *name, | |
603 | struct lock_class_key *key) | |
55c888d6 ON |
604 | { |
605 | timer->entry.next = NULL; | |
bfe5d834 | 606 | timer->base = __raw_get_cpu_var(tvec_bases); |
3bbb9ec9 | 607 | timer->slack = -1; |
82f67cd9 IM |
608 | #ifdef CONFIG_TIMER_STATS |
609 | timer->start_site = NULL; | |
610 | timer->start_pid = -1; | |
611 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
612 | #endif | |
6f2b9b9a | 613 | lockdep_init_map(&timer->lockdep_map, name, key, 0); |
55c888d6 | 614 | } |
c6f3a97f | 615 | |
8cadd283 JB |
616 | void setup_deferrable_timer_on_stack_key(struct timer_list *timer, |
617 | const char *name, | |
618 | struct lock_class_key *key, | |
619 | void (*function)(unsigned long), | |
620 | unsigned long data) | |
621 | { | |
622 | timer->function = function; | |
623 | timer->data = data; | |
624 | init_timer_on_stack_key(timer, name, key); | |
625 | timer_set_deferrable(timer); | |
626 | } | |
627 | EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key); | |
628 | ||
c6f3a97f | 629 | /** |
633fe795 | 630 | * init_timer_key - initialize a timer |
c6f3a97f | 631 | * @timer: the timer to be initialized |
633fe795 RD |
632 | * @name: name of the timer |
633 | * @key: lockdep class key of the fake lock used for tracking timer | |
634 | * sync lock dependencies | |
c6f3a97f | 635 | * |
633fe795 | 636 | * init_timer_key() must be done to a timer prior calling *any* of the |
c6f3a97f TG |
637 | * other timer functions. |
638 | */ | |
6f2b9b9a JB |
639 | void init_timer_key(struct timer_list *timer, |
640 | const char *name, | |
641 | struct lock_class_key *key) | |
c6f3a97f | 642 | { |
2b022e3d | 643 | debug_init(timer); |
6f2b9b9a | 644 | __init_timer(timer, name, key); |
c6f3a97f | 645 | } |
6f2b9b9a | 646 | EXPORT_SYMBOL(init_timer_key); |
55c888d6 | 647 | |
6f2b9b9a JB |
648 | void init_timer_deferrable_key(struct timer_list *timer, |
649 | const char *name, | |
650 | struct lock_class_key *key) | |
6e453a67 | 651 | { |
6f2b9b9a | 652 | init_timer_key(timer, name, key); |
6e453a67 VP |
653 | timer_set_deferrable(timer); |
654 | } | |
6f2b9b9a | 655 | EXPORT_SYMBOL(init_timer_deferrable_key); |
6e453a67 | 656 | |
ec44bc7a | 657 | static inline void detach_timer(struct timer_list *timer, bool clear_pending) |
55c888d6 ON |
658 | { |
659 | struct list_head *entry = &timer->entry; | |
660 | ||
2b022e3d | 661 | debug_deactivate(timer); |
c6f3a97f | 662 | |
55c888d6 ON |
663 | __list_del(entry->prev, entry->next); |
664 | if (clear_pending) | |
665 | entry->next = NULL; | |
666 | entry->prev = LIST_POISON2; | |
667 | } | |
668 | ||
ec44bc7a TG |
669 | static int detach_if_pending(struct timer_list *timer, struct tvec_base *base, |
670 | bool clear_pending) | |
671 | { | |
672 | if (!timer_pending(timer)) | |
673 | return 0; | |
674 | ||
675 | detach_timer(timer, clear_pending); | |
676 | if (timer->expires == base->next_timer && | |
677 | !tbase_get_deferrable(timer->base)) | |
678 | base->next_timer = base->timer_jiffies; | |
679 | return 1; | |
680 | } | |
681 | ||
55c888d6 | 682 | /* |
3691c519 | 683 | * We are using hashed locking: holding per_cpu(tvec_bases).lock |
55c888d6 ON |
684 | * means that all timers which are tied to this base via timer->base are |
685 | * locked, and the base itself is locked too. | |
686 | * | |
687 | * So __run_timers/migrate_timers can safely modify all timers which could | |
688 | * be found on ->tvX lists. | |
689 | * | |
690 | * When the timer's base is locked, and the timer removed from list, it is | |
691 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
692 | * locked. | |
693 | */ | |
a6fa8e5a | 694 | static struct tvec_base *lock_timer_base(struct timer_list *timer, |
55c888d6 | 695 | unsigned long *flags) |
89e7e374 | 696 | __acquires(timer->base->lock) |
55c888d6 | 697 | { |
a6fa8e5a | 698 | struct tvec_base *base; |
55c888d6 ON |
699 | |
700 | for (;;) { | |
a6fa8e5a | 701 | struct tvec_base *prelock_base = timer->base; |
6e453a67 | 702 | base = tbase_get_base(prelock_base); |
55c888d6 ON |
703 | if (likely(base != NULL)) { |
704 | spin_lock_irqsave(&base->lock, *flags); | |
6e453a67 | 705 | if (likely(prelock_base == timer->base)) |
55c888d6 ON |
706 | return base; |
707 | /* The timer has migrated to another CPU */ | |
708 | spin_unlock_irqrestore(&base->lock, *flags); | |
709 | } | |
710 | cpu_relax(); | |
711 | } | |
712 | } | |
713 | ||
74019224 | 714 | static inline int |
597d0275 AB |
715 | __mod_timer(struct timer_list *timer, unsigned long expires, |
716 | bool pending_only, int pinned) | |
1da177e4 | 717 | { |
a6fa8e5a | 718 | struct tvec_base *base, *new_base; |
1da177e4 | 719 | unsigned long flags; |
eea08f32 | 720 | int ret = 0 , cpu; |
1da177e4 | 721 | |
82f67cd9 | 722 | timer_stats_timer_set_start_info(timer); |
1da177e4 | 723 | BUG_ON(!timer->function); |
1da177e4 | 724 | |
55c888d6 ON |
725 | base = lock_timer_base(timer, &flags); |
726 | ||
ec44bc7a TG |
727 | ret = detach_if_pending(timer, base, false); |
728 | if (!ret && pending_only) | |
729 | goto out_unlock; | |
55c888d6 | 730 | |
2b022e3d | 731 | debug_activate(timer, expires); |
c6f3a97f | 732 | |
eea08f32 AB |
733 | cpu = smp_processor_id(); |
734 | ||
735 | #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) | |
83cd4fe2 VP |
736 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) |
737 | cpu = get_nohz_timer_target(); | |
eea08f32 AB |
738 | #endif |
739 | new_base = per_cpu(tvec_bases, cpu); | |
740 | ||
3691c519 | 741 | if (base != new_base) { |
1da177e4 | 742 | /* |
55c888d6 ON |
743 | * We are trying to schedule the timer on the local CPU. |
744 | * However we can't change timer's base while it is running, | |
745 | * otherwise del_timer_sync() can't detect that the timer's | |
746 | * handler yet has not finished. This also guarantees that | |
747 | * the timer is serialized wrt itself. | |
1da177e4 | 748 | */ |
a2c348fe | 749 | if (likely(base->running_timer != timer)) { |
55c888d6 | 750 | /* See the comment in lock_timer_base() */ |
6e453a67 | 751 | timer_set_base(timer, NULL); |
55c888d6 | 752 | spin_unlock(&base->lock); |
a2c348fe ON |
753 | base = new_base; |
754 | spin_lock(&base->lock); | |
6e453a67 | 755 | timer_set_base(timer, base); |
1da177e4 LT |
756 | } |
757 | } | |
758 | ||
1da177e4 | 759 | timer->expires = expires; |
97fd9ed4 MS |
760 | if (time_before(timer->expires, base->next_timer) && |
761 | !tbase_get_deferrable(timer->base)) | |
762 | base->next_timer = timer->expires; | |
a2c348fe | 763 | internal_add_timer(base, timer); |
74019224 IM |
764 | |
765 | out_unlock: | |
a2c348fe | 766 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 LT |
767 | |
768 | return ret; | |
769 | } | |
770 | ||
2aae4a10 | 771 | /** |
74019224 IM |
772 | * mod_timer_pending - modify a pending timer's timeout |
773 | * @timer: the pending timer to be modified | |
774 | * @expires: new timeout in jiffies | |
1da177e4 | 775 | * |
74019224 IM |
776 | * mod_timer_pending() is the same for pending timers as mod_timer(), |
777 | * but will not re-activate and modify already deleted timers. | |
778 | * | |
779 | * It is useful for unserialized use of timers. | |
1da177e4 | 780 | */ |
74019224 | 781 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) |
1da177e4 | 782 | { |
597d0275 | 783 | return __mod_timer(timer, expires, true, TIMER_NOT_PINNED); |
1da177e4 | 784 | } |
74019224 | 785 | EXPORT_SYMBOL(mod_timer_pending); |
1da177e4 | 786 | |
3bbb9ec9 AV |
787 | /* |
788 | * Decide where to put the timer while taking the slack into account | |
789 | * | |
790 | * Algorithm: | |
791 | * 1) calculate the maximum (absolute) time | |
792 | * 2) calculate the highest bit where the expires and new max are different | |
793 | * 3) use this bit to make a mask | |
794 | * 4) use the bitmask to round down the maximum time, so that all last | |
795 | * bits are zeros | |
796 | */ | |
797 | static inline | |
798 | unsigned long apply_slack(struct timer_list *timer, unsigned long expires) | |
799 | { | |
800 | unsigned long expires_limit, mask; | |
801 | int bit; | |
802 | ||
8e63d779 | 803 | if (timer->slack >= 0) { |
f00e047e | 804 | expires_limit = expires + timer->slack; |
8e63d779 | 805 | } else { |
1c3cc116 SAS |
806 | long delta = expires - jiffies; |
807 | ||
808 | if (delta < 256) | |
809 | return expires; | |
3bbb9ec9 | 810 | |
1c3cc116 | 811 | expires_limit = expires + delta / 256; |
8e63d779 | 812 | } |
3bbb9ec9 | 813 | mask = expires ^ expires_limit; |
3bbb9ec9 AV |
814 | if (mask == 0) |
815 | return expires; | |
816 | ||
817 | bit = find_last_bit(&mask, BITS_PER_LONG); | |
818 | ||
819 | mask = (1 << bit) - 1; | |
820 | ||
821 | expires_limit = expires_limit & ~(mask); | |
822 | ||
823 | return expires_limit; | |
824 | } | |
825 | ||
2aae4a10 | 826 | /** |
1da177e4 LT |
827 | * mod_timer - modify a timer's timeout |
828 | * @timer: the timer to be modified | |
2aae4a10 | 829 | * @expires: new timeout in jiffies |
1da177e4 | 830 | * |
72fd4a35 | 831 | * mod_timer() is a more efficient way to update the expire field of an |
1da177e4 LT |
832 | * active timer (if the timer is inactive it will be activated) |
833 | * | |
834 | * mod_timer(timer, expires) is equivalent to: | |
835 | * | |
836 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
837 | * | |
838 | * Note that if there are multiple unserialized concurrent users of the | |
839 | * same timer, then mod_timer() is the only safe way to modify the timeout, | |
840 | * since add_timer() cannot modify an already running timer. | |
841 | * | |
842 | * The function returns whether it has modified a pending timer or not. | |
843 | * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an | |
844 | * active timer returns 1.) | |
845 | */ | |
846 | int mod_timer(struct timer_list *timer, unsigned long expires) | |
847 | { | |
1c3cc116 SAS |
848 | expires = apply_slack(timer, expires); |
849 | ||
1da177e4 LT |
850 | /* |
851 | * This is a common optimization triggered by the | |
852 | * networking code - if the timer is re-modified | |
853 | * to be the same thing then just return: | |
854 | */ | |
4841158b | 855 | if (timer_pending(timer) && timer->expires == expires) |
1da177e4 LT |
856 | return 1; |
857 | ||
597d0275 | 858 | return __mod_timer(timer, expires, false, TIMER_NOT_PINNED); |
1da177e4 | 859 | } |
1da177e4 LT |
860 | EXPORT_SYMBOL(mod_timer); |
861 | ||
597d0275 AB |
862 | /** |
863 | * mod_timer_pinned - modify a timer's timeout | |
864 | * @timer: the timer to be modified | |
865 | * @expires: new timeout in jiffies | |
866 | * | |
867 | * mod_timer_pinned() is a way to update the expire field of an | |
868 | * active timer (if the timer is inactive it will be activated) | |
048a0e8f PM |
869 | * and to ensure that the timer is scheduled on the current CPU. |
870 | * | |
871 | * Note that this does not prevent the timer from being migrated | |
872 | * when the current CPU goes offline. If this is a problem for | |
873 | * you, use CPU-hotplug notifiers to handle it correctly, for | |
874 | * example, cancelling the timer when the corresponding CPU goes | |
875 | * offline. | |
597d0275 AB |
876 | * |
877 | * mod_timer_pinned(timer, expires) is equivalent to: | |
878 | * | |
879 | * del_timer(timer); timer->expires = expires; add_timer(timer); | |
880 | */ | |
881 | int mod_timer_pinned(struct timer_list *timer, unsigned long expires) | |
882 | { | |
883 | if (timer->expires == expires && timer_pending(timer)) | |
884 | return 1; | |
885 | ||
886 | return __mod_timer(timer, expires, false, TIMER_PINNED); | |
887 | } | |
888 | EXPORT_SYMBOL(mod_timer_pinned); | |
889 | ||
74019224 IM |
890 | /** |
891 | * add_timer - start a timer | |
892 | * @timer: the timer to be added | |
893 | * | |
894 | * The kernel will do a ->function(->data) callback from the | |
895 | * timer interrupt at the ->expires point in the future. The | |
896 | * current time is 'jiffies'. | |
897 | * | |
898 | * The timer's ->expires, ->function (and if the handler uses it, ->data) | |
899 | * fields must be set prior calling this function. | |
900 | * | |
901 | * Timers with an ->expires field in the past will be executed in the next | |
902 | * timer tick. | |
903 | */ | |
904 | void add_timer(struct timer_list *timer) | |
905 | { | |
906 | BUG_ON(timer_pending(timer)); | |
907 | mod_timer(timer, timer->expires); | |
908 | } | |
909 | EXPORT_SYMBOL(add_timer); | |
910 | ||
911 | /** | |
912 | * add_timer_on - start a timer on a particular CPU | |
913 | * @timer: the timer to be added | |
914 | * @cpu: the CPU to start it on | |
915 | * | |
916 | * This is not very scalable on SMP. Double adds are not possible. | |
917 | */ | |
918 | void add_timer_on(struct timer_list *timer, int cpu) | |
919 | { | |
920 | struct tvec_base *base = per_cpu(tvec_bases, cpu); | |
921 | unsigned long flags; | |
922 | ||
923 | timer_stats_timer_set_start_info(timer); | |
924 | BUG_ON(timer_pending(timer) || !timer->function); | |
925 | spin_lock_irqsave(&base->lock, flags); | |
926 | timer_set_base(timer, base); | |
2b022e3d | 927 | debug_activate(timer, timer->expires); |
97fd9ed4 MS |
928 | if (time_before(timer->expires, base->next_timer) && |
929 | !tbase_get_deferrable(timer->base)) | |
930 | base->next_timer = timer->expires; | |
74019224 IM |
931 | internal_add_timer(base, timer); |
932 | /* | |
933 | * Check whether the other CPU is idle and needs to be | |
934 | * triggered to reevaluate the timer wheel when nohz is | |
935 | * active. We are protected against the other CPU fiddling | |
936 | * with the timer by holding the timer base lock. This also | |
937 | * makes sure that a CPU on the way to idle can not evaluate | |
938 | * the timer wheel. | |
939 | */ | |
940 | wake_up_idle_cpu(cpu); | |
941 | spin_unlock_irqrestore(&base->lock, flags); | |
942 | } | |
a9862e05 | 943 | EXPORT_SYMBOL_GPL(add_timer_on); |
74019224 | 944 | |
2aae4a10 | 945 | /** |
1da177e4 LT |
946 | * del_timer - deactive a timer. |
947 | * @timer: the timer to be deactivated | |
948 | * | |
949 | * del_timer() deactivates a timer - this works on both active and inactive | |
950 | * timers. | |
951 | * | |
952 | * The function returns whether it has deactivated a pending timer or not. | |
953 | * (ie. del_timer() of an inactive timer returns 0, del_timer() of an | |
954 | * active timer returns 1.) | |
955 | */ | |
956 | int del_timer(struct timer_list *timer) | |
957 | { | |
a6fa8e5a | 958 | struct tvec_base *base; |
1da177e4 | 959 | unsigned long flags; |
55c888d6 | 960 | int ret = 0; |
1da177e4 | 961 | |
dc4218bd CC |
962 | debug_assert_init(timer); |
963 | ||
82f67cd9 | 964 | timer_stats_timer_clear_start_info(timer); |
55c888d6 ON |
965 | if (timer_pending(timer)) { |
966 | base = lock_timer_base(timer, &flags); | |
ec44bc7a | 967 | ret = detach_if_pending(timer, base, true); |
1da177e4 | 968 | spin_unlock_irqrestore(&base->lock, flags); |
1da177e4 | 969 | } |
1da177e4 | 970 | |
55c888d6 | 971 | return ret; |
1da177e4 | 972 | } |
1da177e4 LT |
973 | EXPORT_SYMBOL(del_timer); |
974 | ||
2aae4a10 REB |
975 | /** |
976 | * try_to_del_timer_sync - Try to deactivate a timer | |
977 | * @timer: timer do del | |
978 | * | |
fd450b73 ON |
979 | * This function tries to deactivate a timer. Upon successful (ret >= 0) |
980 | * exit the timer is not queued and the handler is not running on any CPU. | |
fd450b73 ON |
981 | */ |
982 | int try_to_del_timer_sync(struct timer_list *timer) | |
983 | { | |
a6fa8e5a | 984 | struct tvec_base *base; |
fd450b73 ON |
985 | unsigned long flags; |
986 | int ret = -1; | |
987 | ||
dc4218bd CC |
988 | debug_assert_init(timer); |
989 | ||
fd450b73 ON |
990 | base = lock_timer_base(timer, &flags); |
991 | ||
ec44bc7a TG |
992 | if (base->running_timer != timer) { |
993 | timer_stats_timer_clear_start_info(timer); | |
994 | ret = detach_if_pending(timer, base, true); | |
fd450b73 | 995 | } |
fd450b73 ON |
996 | spin_unlock_irqrestore(&base->lock, flags); |
997 | ||
998 | return ret; | |
999 | } | |
e19dff1f DH |
1000 | EXPORT_SYMBOL(try_to_del_timer_sync); |
1001 | ||
6f1bc451 | 1002 | #ifdef CONFIG_SMP |
2aae4a10 | 1003 | /** |
1da177e4 LT |
1004 | * del_timer_sync - deactivate a timer and wait for the handler to finish. |
1005 | * @timer: the timer to be deactivated | |
1006 | * | |
1007 | * This function only differs from del_timer() on SMP: besides deactivating | |
1008 | * the timer it also makes sure the handler has finished executing on other | |
1009 | * CPUs. | |
1010 | * | |
72fd4a35 | 1011 | * Synchronization rules: Callers must prevent restarting of the timer, |
1da177e4 | 1012 | * otherwise this function is meaningless. It must not be called from |
7ff20792 | 1013 | * interrupt contexts. The caller must not hold locks which would prevent |
55c888d6 ON |
1014 | * completion of the timer's handler. The timer's handler must not call |
1015 | * add_timer_on(). Upon exit the timer is not queued and the handler is | |
1016 | * not running on any CPU. | |
1da177e4 | 1017 | * |
48228f7b SR |
1018 | * Note: You must not hold locks that are held in interrupt context |
1019 | * while calling this function. Even if the lock has nothing to do | |
1020 | * with the timer in question. Here's why: | |
1021 | * | |
1022 | * CPU0 CPU1 | |
1023 | * ---- ---- | |
1024 | * <SOFTIRQ> | |
1025 | * call_timer_fn(); | |
1026 | * base->running_timer = mytimer; | |
1027 | * spin_lock_irq(somelock); | |
1028 | * <IRQ> | |
1029 | * spin_lock(somelock); | |
1030 | * del_timer_sync(mytimer); | |
1031 | * while (base->running_timer == mytimer); | |
1032 | * | |
1033 | * Now del_timer_sync() will never return and never release somelock. | |
1034 | * The interrupt on the other CPU is waiting to grab somelock but | |
1035 | * it has interrupted the softirq that CPU0 is waiting to finish. | |
1036 | * | |
1da177e4 | 1037 | * The function returns whether it has deactivated a pending timer or not. |
1da177e4 LT |
1038 | */ |
1039 | int del_timer_sync(struct timer_list *timer) | |
1040 | { | |
6f2b9b9a | 1041 | #ifdef CONFIG_LOCKDEP |
f266a511 PZ |
1042 | unsigned long flags; |
1043 | ||
48228f7b SR |
1044 | /* |
1045 | * If lockdep gives a backtrace here, please reference | |
1046 | * the synchronization rules above. | |
1047 | */ | |
7ff20792 | 1048 | local_irq_save(flags); |
6f2b9b9a JB |
1049 | lock_map_acquire(&timer->lockdep_map); |
1050 | lock_map_release(&timer->lockdep_map); | |
7ff20792 | 1051 | local_irq_restore(flags); |
6f2b9b9a | 1052 | #endif |
466bd303 YZ |
1053 | /* |
1054 | * don't use it in hardirq context, because it | |
1055 | * could lead to deadlock. | |
1056 | */ | |
1057 | WARN_ON(in_irq()); | |
fd450b73 ON |
1058 | for (;;) { |
1059 | int ret = try_to_del_timer_sync(timer); | |
1060 | if (ret >= 0) | |
1061 | return ret; | |
a0009652 | 1062 | cpu_relax(); |
fd450b73 | 1063 | } |
1da177e4 | 1064 | } |
55c888d6 | 1065 | EXPORT_SYMBOL(del_timer_sync); |
1da177e4 LT |
1066 | #endif |
1067 | ||
a6fa8e5a | 1068 | static int cascade(struct tvec_base *base, struct tvec *tv, int index) |
1da177e4 LT |
1069 | { |
1070 | /* cascade all the timers from tv up one level */ | |
3439dd86 P |
1071 | struct timer_list *timer, *tmp; |
1072 | struct list_head tv_list; | |
1073 | ||
1074 | list_replace_init(tv->vec + index, &tv_list); | |
1da177e4 | 1075 | |
1da177e4 | 1076 | /* |
3439dd86 P |
1077 | * We are removing _all_ timers from the list, so we |
1078 | * don't have to detach them individually. | |
1da177e4 | 1079 | */ |
3439dd86 | 1080 | list_for_each_entry_safe(timer, tmp, &tv_list, entry) { |
6e453a67 | 1081 | BUG_ON(tbase_get_base(timer->base) != base); |
3439dd86 | 1082 | internal_add_timer(base, timer); |
1da177e4 | 1083 | } |
1da177e4 LT |
1084 | |
1085 | return index; | |
1086 | } | |
1087 | ||
576da126 TG |
1088 | static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long), |
1089 | unsigned long data) | |
1090 | { | |
1091 | int preempt_count = preempt_count(); | |
1092 | ||
1093 | #ifdef CONFIG_LOCKDEP | |
1094 | /* | |
1095 | * It is permissible to free the timer from inside the | |
1096 | * function that is called from it, this we need to take into | |
1097 | * account for lockdep too. To avoid bogus "held lock freed" | |
1098 | * warnings as well as problems when looking into | |
1099 | * timer->lockdep_map, make a copy and use that here. | |
1100 | */ | |
4d82a1de PZ |
1101 | struct lockdep_map lockdep_map; |
1102 | ||
1103 | lockdep_copy_map(&lockdep_map, &timer->lockdep_map); | |
576da126 TG |
1104 | #endif |
1105 | /* | |
1106 | * Couple the lock chain with the lock chain at | |
1107 | * del_timer_sync() by acquiring the lock_map around the fn() | |
1108 | * call here and in del_timer_sync(). | |
1109 | */ | |
1110 | lock_map_acquire(&lockdep_map); | |
1111 | ||
1112 | trace_timer_expire_entry(timer); | |
1113 | fn(data); | |
1114 | trace_timer_expire_exit(timer); | |
1115 | ||
1116 | lock_map_release(&lockdep_map); | |
1117 | ||
1118 | if (preempt_count != preempt_count()) { | |
802702e0 TG |
1119 | WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n", |
1120 | fn, preempt_count, preempt_count()); | |
1121 | /* | |
1122 | * Restore the preempt count. That gives us a decent | |
1123 | * chance to survive and extract information. If the | |
1124 | * callback kept a lock held, bad luck, but not worse | |
1125 | * than the BUG() we had. | |
1126 | */ | |
1127 | preempt_count() = preempt_count; | |
576da126 TG |
1128 | } |
1129 | } | |
1130 | ||
2aae4a10 REB |
1131 | #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) |
1132 | ||
1133 | /** | |
1da177e4 LT |
1134 | * __run_timers - run all expired timers (if any) on this CPU. |
1135 | * @base: the timer vector to be processed. | |
1136 | * | |
1137 | * This function cascades all vectors and executes all expired timer | |
1138 | * vectors. | |
1139 | */ | |
a6fa8e5a | 1140 | static inline void __run_timers(struct tvec_base *base) |
1da177e4 LT |
1141 | { |
1142 | struct timer_list *timer; | |
1143 | ||
3691c519 | 1144 | spin_lock_irq(&base->lock); |
1da177e4 | 1145 | while (time_after_eq(jiffies, base->timer_jiffies)) { |
626ab0e6 | 1146 | struct list_head work_list; |
1da177e4 | 1147 | struct list_head *head = &work_list; |
6819457d | 1148 | int index = base->timer_jiffies & TVR_MASK; |
626ab0e6 | 1149 | |
1da177e4 LT |
1150 | /* |
1151 | * Cascade timers: | |
1152 | */ | |
1153 | if (!index && | |
1154 | (!cascade(base, &base->tv2, INDEX(0))) && | |
1155 | (!cascade(base, &base->tv3, INDEX(1))) && | |
1156 | !cascade(base, &base->tv4, INDEX(2))) | |
1157 | cascade(base, &base->tv5, INDEX(3)); | |
626ab0e6 ON |
1158 | ++base->timer_jiffies; |
1159 | list_replace_init(base->tv1.vec + index, &work_list); | |
55c888d6 | 1160 | while (!list_empty(head)) { |
1da177e4 LT |
1161 | void (*fn)(unsigned long); |
1162 | unsigned long data; | |
1163 | ||
b5e61818 | 1164 | timer = list_first_entry(head, struct timer_list,entry); |
6819457d TG |
1165 | fn = timer->function; |
1166 | data = timer->data; | |
1da177e4 | 1167 | |
82f67cd9 IM |
1168 | timer_stats_account_timer(timer); |
1169 | ||
6f1bc451 | 1170 | base->running_timer = timer; |
ec44bc7a | 1171 | detach_timer(timer, true); |
6f2b9b9a | 1172 | |
3691c519 | 1173 | spin_unlock_irq(&base->lock); |
576da126 | 1174 | call_timer_fn(timer, fn, data); |
3691c519 | 1175 | spin_lock_irq(&base->lock); |
1da177e4 LT |
1176 | } |
1177 | } | |
6f1bc451 | 1178 | base->running_timer = NULL; |
3691c519 | 1179 | spin_unlock_irq(&base->lock); |
1da177e4 LT |
1180 | } |
1181 | ||
ee9c5785 | 1182 | #ifdef CONFIG_NO_HZ |
1da177e4 LT |
1183 | /* |
1184 | * Find out when the next timer event is due to happen. This | |
90cba64a RD |
1185 | * is used on S/390 to stop all activity when a CPU is idle. |
1186 | * This function needs to be called with interrupts disabled. | |
1da177e4 | 1187 | */ |
a6fa8e5a | 1188 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
1da177e4 | 1189 | { |
1cfd6849 | 1190 | unsigned long timer_jiffies = base->timer_jiffies; |
eaad084b | 1191 | unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA; |
1cfd6849 | 1192 | int index, slot, array, found = 0; |
1da177e4 | 1193 | struct timer_list *nte; |
a6fa8e5a | 1194 | struct tvec *varray[4]; |
1da177e4 LT |
1195 | |
1196 | /* Look for timer events in tv1. */ | |
1cfd6849 | 1197 | index = slot = timer_jiffies & TVR_MASK; |
1da177e4 | 1198 | do { |
1cfd6849 | 1199 | list_for_each_entry(nte, base->tv1.vec + slot, entry) { |
6819457d TG |
1200 | if (tbase_get_deferrable(nte->base)) |
1201 | continue; | |
6e453a67 | 1202 | |
1cfd6849 | 1203 | found = 1; |
1da177e4 | 1204 | expires = nte->expires; |
1cfd6849 TG |
1205 | /* Look at the cascade bucket(s)? */ |
1206 | if (!index || slot < index) | |
1207 | goto cascade; | |
1208 | return expires; | |
1da177e4 | 1209 | } |
1cfd6849 TG |
1210 | slot = (slot + 1) & TVR_MASK; |
1211 | } while (slot != index); | |
1212 | ||
1213 | cascade: | |
1214 | /* Calculate the next cascade event */ | |
1215 | if (index) | |
1216 | timer_jiffies += TVR_SIZE - index; | |
1217 | timer_jiffies >>= TVR_BITS; | |
1da177e4 LT |
1218 | |
1219 | /* Check tv2-tv5. */ | |
1220 | varray[0] = &base->tv2; | |
1221 | varray[1] = &base->tv3; | |
1222 | varray[2] = &base->tv4; | |
1223 | varray[3] = &base->tv5; | |
1cfd6849 TG |
1224 | |
1225 | for (array = 0; array < 4; array++) { | |
a6fa8e5a | 1226 | struct tvec *varp = varray[array]; |
1cfd6849 TG |
1227 | |
1228 | index = slot = timer_jiffies & TVN_MASK; | |
1da177e4 | 1229 | do { |
1cfd6849 | 1230 | list_for_each_entry(nte, varp->vec + slot, entry) { |
a0419888 JH |
1231 | if (tbase_get_deferrable(nte->base)) |
1232 | continue; | |
1233 | ||
1cfd6849 | 1234 | found = 1; |
1da177e4 LT |
1235 | if (time_before(nte->expires, expires)) |
1236 | expires = nte->expires; | |
1cfd6849 TG |
1237 | } |
1238 | /* | |
1239 | * Do we still search for the first timer or are | |
1240 | * we looking up the cascade buckets ? | |
1241 | */ | |
1242 | if (found) { | |
1243 | /* Look at the cascade bucket(s)? */ | |
1244 | if (!index || slot < index) | |
1245 | break; | |
1246 | return expires; | |
1247 | } | |
1248 | slot = (slot + 1) & TVN_MASK; | |
1249 | } while (slot != index); | |
1250 | ||
1251 | if (index) | |
1252 | timer_jiffies += TVN_SIZE - index; | |
1253 | timer_jiffies >>= TVN_BITS; | |
1da177e4 | 1254 | } |
1cfd6849 TG |
1255 | return expires; |
1256 | } | |
69239749 | 1257 | |
1cfd6849 TG |
1258 | /* |
1259 | * Check, if the next hrtimer event is before the next timer wheel | |
1260 | * event: | |
1261 | */ | |
1262 | static unsigned long cmp_next_hrtimer_event(unsigned long now, | |
1263 | unsigned long expires) | |
1264 | { | |
1265 | ktime_t hr_delta = hrtimer_get_next_event(); | |
1266 | struct timespec tsdelta; | |
9501b6cf | 1267 | unsigned long delta; |
1cfd6849 TG |
1268 | |
1269 | if (hr_delta.tv64 == KTIME_MAX) | |
1270 | return expires; | |
0662b713 | 1271 | |
9501b6cf TG |
1272 | /* |
1273 | * Expired timer available, let it expire in the next tick | |
1274 | */ | |
1275 | if (hr_delta.tv64 <= 0) | |
1276 | return now + 1; | |
69239749 | 1277 | |
1cfd6849 | 1278 | tsdelta = ktime_to_timespec(hr_delta); |
9501b6cf | 1279 | delta = timespec_to_jiffies(&tsdelta); |
eaad084b TG |
1280 | |
1281 | /* | |
1282 | * Limit the delta to the max value, which is checked in | |
1283 | * tick_nohz_stop_sched_tick(): | |
1284 | */ | |
1285 | if (delta > NEXT_TIMER_MAX_DELTA) | |
1286 | delta = NEXT_TIMER_MAX_DELTA; | |
1287 | ||
9501b6cf TG |
1288 | /* |
1289 | * Take rounding errors in to account and make sure, that it | |
1290 | * expires in the next tick. Otherwise we go into an endless | |
1291 | * ping pong due to tick_nohz_stop_sched_tick() retriggering | |
1292 | * the timer softirq | |
1293 | */ | |
1294 | if (delta < 1) | |
1295 | delta = 1; | |
1296 | now += delta; | |
1cfd6849 TG |
1297 | if (time_before(now, expires)) |
1298 | return now; | |
1da177e4 LT |
1299 | return expires; |
1300 | } | |
1cfd6849 TG |
1301 | |
1302 | /** | |
8dce39c2 | 1303 | * get_next_timer_interrupt - return the jiffy of the next pending timer |
05fb6bf0 | 1304 | * @now: current time (in jiffies) |
1cfd6849 | 1305 | */ |
fd064b9b | 1306 | unsigned long get_next_timer_interrupt(unsigned long now) |
1cfd6849 | 1307 | { |
7496351a | 1308 | struct tvec_base *base = __this_cpu_read(tvec_bases); |
fd064b9b | 1309 | unsigned long expires; |
1cfd6849 | 1310 | |
dbd87b5a HC |
1311 | /* |
1312 | * Pretend that there is no timer pending if the cpu is offline. | |
1313 | * Possible pending timers will be migrated later to an active cpu. | |
1314 | */ | |
1315 | if (cpu_is_offline(smp_processor_id())) | |
1316 | return now + NEXT_TIMER_MAX_DELTA; | |
1cfd6849 | 1317 | spin_lock(&base->lock); |
97fd9ed4 MS |
1318 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
1319 | base->next_timer = __next_timer_interrupt(base); | |
1320 | expires = base->next_timer; | |
1cfd6849 TG |
1321 | spin_unlock(&base->lock); |
1322 | ||
1323 | if (time_before_eq(expires, now)) | |
1324 | return now; | |
1325 | ||
1326 | return cmp_next_hrtimer_event(now, expires); | |
1327 | } | |
1da177e4 LT |
1328 | #endif |
1329 | ||
1da177e4 | 1330 | /* |
5b4db0c2 | 1331 | * Called from the timer interrupt handler to charge one tick to the current |
1da177e4 LT |
1332 | * process. user_tick is 1 if the tick is user time, 0 for system. |
1333 | */ | |
1334 | void update_process_times(int user_tick) | |
1335 | { | |
1336 | struct task_struct *p = current; | |
1337 | int cpu = smp_processor_id(); | |
1338 | ||
1339 | /* Note: this timer irq context must be accounted for as well. */ | |
fa13a5a1 | 1340 | account_process_tick(p, user_tick); |
1da177e4 | 1341 | run_local_timers(); |
a157229c | 1342 | rcu_check_callbacks(cpu, user_tick); |
b845b517 | 1343 | printk_tick(); |
e360adbe PZ |
1344 | #ifdef CONFIG_IRQ_WORK |
1345 | if (in_irq()) | |
1346 | irq_work_run(); | |
1347 | #endif | |
1da177e4 | 1348 | scheduler_tick(); |
6819457d | 1349 | run_posix_cpu_timers(p); |
1da177e4 LT |
1350 | } |
1351 | ||
1da177e4 LT |
1352 | /* |
1353 | * This function runs timers and the timer-tq in bottom half context. | |
1354 | */ | |
1355 | static void run_timer_softirq(struct softirq_action *h) | |
1356 | { | |
7496351a | 1357 | struct tvec_base *base = __this_cpu_read(tvec_bases); |
1da177e4 | 1358 | |
d3d74453 | 1359 | hrtimer_run_pending(); |
82f67cd9 | 1360 | |
1da177e4 LT |
1361 | if (time_after_eq(jiffies, base->timer_jiffies)) |
1362 | __run_timers(base); | |
1363 | } | |
1364 | ||
1365 | /* | |
1366 | * Called by the local, per-CPU timer interrupt on SMP. | |
1367 | */ | |
1368 | void run_local_timers(void) | |
1369 | { | |
d3d74453 | 1370 | hrtimer_run_queues(); |
1da177e4 LT |
1371 | raise_softirq(TIMER_SOFTIRQ); |
1372 | } | |
1373 | ||
1da177e4 LT |
1374 | #ifdef __ARCH_WANT_SYS_ALARM |
1375 | ||
1376 | /* | |
1377 | * For backwards compatibility? This can be done in libc so Alpha | |
1378 | * and all newer ports shouldn't need it. | |
1379 | */ | |
58fd3aa2 | 1380 | SYSCALL_DEFINE1(alarm, unsigned int, seconds) |
1da177e4 | 1381 | { |
c08b8a49 | 1382 | return alarm_setitimer(seconds); |
1da177e4 LT |
1383 | } |
1384 | ||
1385 | #endif | |
1386 | ||
1387 | #ifndef __alpha__ | |
1388 | ||
1389 | /* | |
1390 | * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this | |
1391 | * should be moved into arch/i386 instead? | |
1392 | */ | |
1393 | ||
1394 | /** | |
1395 | * sys_getpid - return the thread group id of the current process | |
1396 | * | |
1397 | * Note, despite the name, this returns the tgid not the pid. The tgid and | |
1398 | * the pid are identical unless CLONE_THREAD was specified on clone() in | |
1399 | * which case the tgid is the same in all threads of the same group. | |
1400 | * | |
1401 | * This is SMP safe as current->tgid does not change. | |
1402 | */ | |
58fd3aa2 | 1403 | SYSCALL_DEFINE0(getpid) |
1da177e4 | 1404 | { |
b488893a | 1405 | return task_tgid_vnr(current); |
1da177e4 LT |
1406 | } |
1407 | ||
1408 | /* | |
6997a6fa KK |
1409 | * Accessing ->real_parent is not SMP-safe, it could |
1410 | * change from under us. However, we can use a stale | |
1411 | * value of ->real_parent under rcu_read_lock(), see | |
1412 | * release_task()->call_rcu(delayed_put_task_struct). | |
1da177e4 | 1413 | */ |
dbf040d9 | 1414 | SYSCALL_DEFINE0(getppid) |
1da177e4 LT |
1415 | { |
1416 | int pid; | |
1da177e4 | 1417 | |
6997a6fa | 1418 | rcu_read_lock(); |
031af165 | 1419 | pid = task_tgid_vnr(rcu_dereference(current->real_parent)); |
6997a6fa | 1420 | rcu_read_unlock(); |
1da177e4 | 1421 | |
1da177e4 LT |
1422 | return pid; |
1423 | } | |
1424 | ||
dbf040d9 | 1425 | SYSCALL_DEFINE0(getuid) |
1da177e4 LT |
1426 | { |
1427 | /* Only we change this so SMP safe */ | |
a29c33f4 | 1428 | return from_kuid_munged(current_user_ns(), current_uid()); |
1da177e4 LT |
1429 | } |
1430 | ||
dbf040d9 | 1431 | SYSCALL_DEFINE0(geteuid) |
1da177e4 LT |
1432 | { |
1433 | /* Only we change this so SMP safe */ | |
a29c33f4 | 1434 | return from_kuid_munged(current_user_ns(), current_euid()); |
1da177e4 LT |
1435 | } |
1436 | ||
dbf040d9 | 1437 | SYSCALL_DEFINE0(getgid) |
1da177e4 LT |
1438 | { |
1439 | /* Only we change this so SMP safe */ | |
a29c33f4 | 1440 | return from_kgid_munged(current_user_ns(), current_gid()); |
1da177e4 LT |
1441 | } |
1442 | ||
dbf040d9 | 1443 | SYSCALL_DEFINE0(getegid) |
1da177e4 LT |
1444 | { |
1445 | /* Only we change this so SMP safe */ | |
a29c33f4 | 1446 | return from_kgid_munged(current_user_ns(), current_egid()); |
1da177e4 LT |
1447 | } |
1448 | ||
1449 | #endif | |
1450 | ||
1451 | static void process_timeout(unsigned long __data) | |
1452 | { | |
36c8b586 | 1453 | wake_up_process((struct task_struct *)__data); |
1da177e4 LT |
1454 | } |
1455 | ||
1456 | /** | |
1457 | * schedule_timeout - sleep until timeout | |
1458 | * @timeout: timeout value in jiffies | |
1459 | * | |
1460 | * Make the current task sleep until @timeout jiffies have | |
1461 | * elapsed. The routine will return immediately unless | |
1462 | * the current task state has been set (see set_current_state()). | |
1463 | * | |
1464 | * You can set the task state as follows - | |
1465 | * | |
1466 | * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to | |
1467 | * pass before the routine returns. The routine will return 0 | |
1468 | * | |
1469 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1470 | * delivered to the current task. In this case the remaining time | |
1471 | * in jiffies will be returned, or 0 if the timer expired in time | |
1472 | * | |
1473 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1474 | * routine returns. | |
1475 | * | |
1476 | * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule | |
1477 | * the CPU away without a bound on the timeout. In this case the return | |
1478 | * value will be %MAX_SCHEDULE_TIMEOUT. | |
1479 | * | |
1480 | * In all cases the return value is guaranteed to be non-negative. | |
1481 | */ | |
7ad5b3a5 | 1482 | signed long __sched schedule_timeout(signed long timeout) |
1da177e4 LT |
1483 | { |
1484 | struct timer_list timer; | |
1485 | unsigned long expire; | |
1486 | ||
1487 | switch (timeout) | |
1488 | { | |
1489 | case MAX_SCHEDULE_TIMEOUT: | |
1490 | /* | |
1491 | * These two special cases are useful to be comfortable | |
1492 | * in the caller. Nothing more. We could take | |
1493 | * MAX_SCHEDULE_TIMEOUT from one of the negative value | |
1494 | * but I' d like to return a valid offset (>=0) to allow | |
1495 | * the caller to do everything it want with the retval. | |
1496 | */ | |
1497 | schedule(); | |
1498 | goto out; | |
1499 | default: | |
1500 | /* | |
1501 | * Another bit of PARANOID. Note that the retval will be | |
1502 | * 0 since no piece of kernel is supposed to do a check | |
1503 | * for a negative retval of schedule_timeout() (since it | |
1504 | * should never happens anyway). You just have the printk() | |
1505 | * that will tell you if something is gone wrong and where. | |
1506 | */ | |
5b149bcc | 1507 | if (timeout < 0) { |
1da177e4 | 1508 | printk(KERN_ERR "schedule_timeout: wrong timeout " |
5b149bcc AM |
1509 | "value %lx\n", timeout); |
1510 | dump_stack(); | |
1da177e4 LT |
1511 | current->state = TASK_RUNNING; |
1512 | goto out; | |
1513 | } | |
1514 | } | |
1515 | ||
1516 | expire = timeout + jiffies; | |
1517 | ||
c6f3a97f | 1518 | setup_timer_on_stack(&timer, process_timeout, (unsigned long)current); |
597d0275 | 1519 | __mod_timer(&timer, expire, false, TIMER_NOT_PINNED); |
1da177e4 LT |
1520 | schedule(); |
1521 | del_singleshot_timer_sync(&timer); | |
1522 | ||
c6f3a97f TG |
1523 | /* Remove the timer from the object tracker */ |
1524 | destroy_timer_on_stack(&timer); | |
1525 | ||
1da177e4 LT |
1526 | timeout = expire - jiffies; |
1527 | ||
1528 | out: | |
1529 | return timeout < 0 ? 0 : timeout; | |
1530 | } | |
1da177e4 LT |
1531 | EXPORT_SYMBOL(schedule_timeout); |
1532 | ||
8a1c1757 AM |
1533 | /* |
1534 | * We can use __set_current_state() here because schedule_timeout() calls | |
1535 | * schedule() unconditionally. | |
1536 | */ | |
64ed93a2 NA |
1537 | signed long __sched schedule_timeout_interruptible(signed long timeout) |
1538 | { | |
a5a0d52c AM |
1539 | __set_current_state(TASK_INTERRUPTIBLE); |
1540 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1541 | } |
1542 | EXPORT_SYMBOL(schedule_timeout_interruptible); | |
1543 | ||
294d5cc2 MW |
1544 | signed long __sched schedule_timeout_killable(signed long timeout) |
1545 | { | |
1546 | __set_current_state(TASK_KILLABLE); | |
1547 | return schedule_timeout(timeout); | |
1548 | } | |
1549 | EXPORT_SYMBOL(schedule_timeout_killable); | |
1550 | ||
64ed93a2 NA |
1551 | signed long __sched schedule_timeout_uninterruptible(signed long timeout) |
1552 | { | |
a5a0d52c AM |
1553 | __set_current_state(TASK_UNINTERRUPTIBLE); |
1554 | return schedule_timeout(timeout); | |
64ed93a2 NA |
1555 | } |
1556 | EXPORT_SYMBOL(schedule_timeout_uninterruptible); | |
1557 | ||
1da177e4 | 1558 | /* Thread ID - the internal kernel "pid" */ |
58fd3aa2 | 1559 | SYSCALL_DEFINE0(gettid) |
1da177e4 | 1560 | { |
b488893a | 1561 | return task_pid_vnr(current); |
1da177e4 LT |
1562 | } |
1563 | ||
2aae4a10 | 1564 | /** |
d4d23add | 1565 | * do_sysinfo - fill in sysinfo struct |
2aae4a10 | 1566 | * @info: pointer to buffer to fill |
6819457d | 1567 | */ |
d4d23add | 1568 | int do_sysinfo(struct sysinfo *info) |
1da177e4 | 1569 | { |
1da177e4 LT |
1570 | unsigned long mem_total, sav_total; |
1571 | unsigned int mem_unit, bitcount; | |
2d02494f | 1572 | struct timespec tp; |
1da177e4 | 1573 | |
d4d23add | 1574 | memset(info, 0, sizeof(struct sysinfo)); |
1da177e4 | 1575 | |
2d02494f TG |
1576 | ktime_get_ts(&tp); |
1577 | monotonic_to_bootbased(&tp); | |
1578 | info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); | |
1da177e4 | 1579 | |
2d02494f | 1580 | get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT); |
1da177e4 | 1581 | |
2d02494f | 1582 | info->procs = nr_threads; |
1da177e4 | 1583 | |
d4d23add KM |
1584 | si_meminfo(info); |
1585 | si_swapinfo(info); | |
1da177e4 LT |
1586 | |
1587 | /* | |
1588 | * If the sum of all the available memory (i.e. ram + swap) | |
1589 | * is less than can be stored in a 32 bit unsigned long then | |
1590 | * we can be binary compatible with 2.2.x kernels. If not, | |
1591 | * well, in that case 2.2.x was broken anyways... | |
1592 | * | |
1593 | * -Erik Andersen <[email protected]> | |
1594 | */ | |
1595 | ||
d4d23add KM |
1596 | mem_total = info->totalram + info->totalswap; |
1597 | if (mem_total < info->totalram || mem_total < info->totalswap) | |
1da177e4 LT |
1598 | goto out; |
1599 | bitcount = 0; | |
d4d23add | 1600 | mem_unit = info->mem_unit; |
1da177e4 LT |
1601 | while (mem_unit > 1) { |
1602 | bitcount++; | |
1603 | mem_unit >>= 1; | |
1604 | sav_total = mem_total; | |
1605 | mem_total <<= 1; | |
1606 | if (mem_total < sav_total) | |
1607 | goto out; | |
1608 | } | |
1609 | ||
1610 | /* | |
1611 | * If mem_total did not overflow, multiply all memory values by | |
d4d23add | 1612 | * info->mem_unit and set it to 1. This leaves things compatible |
1da177e4 LT |
1613 | * with 2.2.x, and also retains compatibility with earlier 2.4.x |
1614 | * kernels... | |
1615 | */ | |
1616 | ||
d4d23add KM |
1617 | info->mem_unit = 1; |
1618 | info->totalram <<= bitcount; | |
1619 | info->freeram <<= bitcount; | |
1620 | info->sharedram <<= bitcount; | |
1621 | info->bufferram <<= bitcount; | |
1622 | info->totalswap <<= bitcount; | |
1623 | info->freeswap <<= bitcount; | |
1624 | info->totalhigh <<= bitcount; | |
1625 | info->freehigh <<= bitcount; | |
1626 | ||
1627 | out: | |
1628 | return 0; | |
1629 | } | |
1630 | ||
1e7bfb21 | 1631 | SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info) |
d4d23add KM |
1632 | { |
1633 | struct sysinfo val; | |
1634 | ||
1635 | do_sysinfo(&val); | |
1da177e4 | 1636 | |
1da177e4 LT |
1637 | if (copy_to_user(info, &val, sizeof(struct sysinfo))) |
1638 | return -EFAULT; | |
1639 | ||
1640 | return 0; | |
1641 | } | |
1642 | ||
b4be6258 | 1643 | static int __cpuinit init_timers_cpu(int cpu) |
1da177e4 LT |
1644 | { |
1645 | int j; | |
a6fa8e5a | 1646 | struct tvec_base *base; |
b4be6258 | 1647 | static char __cpuinitdata tvec_base_done[NR_CPUS]; |
55c888d6 | 1648 | |
ba6edfcd | 1649 | if (!tvec_base_done[cpu]) { |
a4a6198b JB |
1650 | static char boot_done; |
1651 | ||
a4a6198b | 1652 | if (boot_done) { |
ba6edfcd AM |
1653 | /* |
1654 | * The APs use this path later in boot | |
1655 | */ | |
94f6030c CL |
1656 | base = kmalloc_node(sizeof(*base), |
1657 | GFP_KERNEL | __GFP_ZERO, | |
a4a6198b JB |
1658 | cpu_to_node(cpu)); |
1659 | if (!base) | |
1660 | return -ENOMEM; | |
6e453a67 VP |
1661 | |
1662 | /* Make sure that tvec_base is 2 byte aligned */ | |
1663 | if (tbase_get_deferrable(base)) { | |
1664 | WARN_ON(1); | |
1665 | kfree(base); | |
1666 | return -ENOMEM; | |
1667 | } | |
ba6edfcd | 1668 | per_cpu(tvec_bases, cpu) = base; |
a4a6198b | 1669 | } else { |
ba6edfcd AM |
1670 | /* |
1671 | * This is for the boot CPU - we use compile-time | |
1672 | * static initialisation because per-cpu memory isn't | |
1673 | * ready yet and because the memory allocators are not | |
1674 | * initialised either. | |
1675 | */ | |
a4a6198b | 1676 | boot_done = 1; |
ba6edfcd | 1677 | base = &boot_tvec_bases; |
a4a6198b | 1678 | } |
ba6edfcd AM |
1679 | tvec_base_done[cpu] = 1; |
1680 | } else { | |
1681 | base = per_cpu(tvec_bases, cpu); | |
a4a6198b | 1682 | } |
ba6edfcd | 1683 | |
3691c519 | 1684 | spin_lock_init(&base->lock); |
d730e882 | 1685 | |
1da177e4 LT |
1686 | for (j = 0; j < TVN_SIZE; j++) { |
1687 | INIT_LIST_HEAD(base->tv5.vec + j); | |
1688 | INIT_LIST_HEAD(base->tv4.vec + j); | |
1689 | INIT_LIST_HEAD(base->tv3.vec + j); | |
1690 | INIT_LIST_HEAD(base->tv2.vec + j); | |
1691 | } | |
1692 | for (j = 0; j < TVR_SIZE; j++) | |
1693 | INIT_LIST_HEAD(base->tv1.vec + j); | |
1694 | ||
1695 | base->timer_jiffies = jiffies; | |
97fd9ed4 | 1696 | base->next_timer = base->timer_jiffies; |
a4a6198b | 1697 | return 0; |
1da177e4 LT |
1698 | } |
1699 | ||
1700 | #ifdef CONFIG_HOTPLUG_CPU | |
a6fa8e5a | 1701 | static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head) |
1da177e4 LT |
1702 | { |
1703 | struct timer_list *timer; | |
1704 | ||
1705 | while (!list_empty(head)) { | |
b5e61818 | 1706 | timer = list_first_entry(head, struct timer_list, entry); |
ec44bc7a | 1707 | detach_timer(timer, false); |
6e453a67 | 1708 | timer_set_base(timer, new_base); |
97fd9ed4 MS |
1709 | if (time_before(timer->expires, new_base->next_timer) && |
1710 | !tbase_get_deferrable(timer->base)) | |
1711 | new_base->next_timer = timer->expires; | |
1da177e4 | 1712 | internal_add_timer(new_base, timer); |
1da177e4 | 1713 | } |
1da177e4 LT |
1714 | } |
1715 | ||
48ccf3da | 1716 | static void __cpuinit migrate_timers(int cpu) |
1da177e4 | 1717 | { |
a6fa8e5a PM |
1718 | struct tvec_base *old_base; |
1719 | struct tvec_base *new_base; | |
1da177e4 LT |
1720 | int i; |
1721 | ||
1722 | BUG_ON(cpu_online(cpu)); | |
a4a6198b JB |
1723 | old_base = per_cpu(tvec_bases, cpu); |
1724 | new_base = get_cpu_var(tvec_bases); | |
d82f0b0f ON |
1725 | /* |
1726 | * The caller is globally serialized and nobody else | |
1727 | * takes two locks at once, deadlock is not possible. | |
1728 | */ | |
1729 | spin_lock_irq(&new_base->lock); | |
0d180406 | 1730 | spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
3691c519 ON |
1731 | |
1732 | BUG_ON(old_base->running_timer); | |
1da177e4 | 1733 | |
1da177e4 | 1734 | for (i = 0; i < TVR_SIZE; i++) |
55c888d6 ON |
1735 | migrate_timer_list(new_base, old_base->tv1.vec + i); |
1736 | for (i = 0; i < TVN_SIZE; i++) { | |
1737 | migrate_timer_list(new_base, old_base->tv2.vec + i); | |
1738 | migrate_timer_list(new_base, old_base->tv3.vec + i); | |
1739 | migrate_timer_list(new_base, old_base->tv4.vec + i); | |
1740 | migrate_timer_list(new_base, old_base->tv5.vec + i); | |
1741 | } | |
1742 | ||
0d180406 | 1743 | spin_unlock(&old_base->lock); |
d82f0b0f | 1744 | spin_unlock_irq(&new_base->lock); |
1da177e4 | 1745 | put_cpu_var(tvec_bases); |
1da177e4 LT |
1746 | } |
1747 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1748 | ||
8c78f307 | 1749 | static int __cpuinit timer_cpu_notify(struct notifier_block *self, |
1da177e4 LT |
1750 | unsigned long action, void *hcpu) |
1751 | { | |
1752 | long cpu = (long)hcpu; | |
80b5184c AM |
1753 | int err; |
1754 | ||
1da177e4 LT |
1755 | switch(action) { |
1756 | case CPU_UP_PREPARE: | |
8bb78442 | 1757 | case CPU_UP_PREPARE_FROZEN: |
80b5184c AM |
1758 | err = init_timers_cpu(cpu); |
1759 | if (err < 0) | |
1760 | return notifier_from_errno(err); | |
1da177e4 LT |
1761 | break; |
1762 | #ifdef CONFIG_HOTPLUG_CPU | |
1763 | case CPU_DEAD: | |
8bb78442 | 1764 | case CPU_DEAD_FROZEN: |
1da177e4 LT |
1765 | migrate_timers(cpu); |
1766 | break; | |
1767 | #endif | |
1768 | default: | |
1769 | break; | |
1770 | } | |
1771 | return NOTIFY_OK; | |
1772 | } | |
1773 | ||
8c78f307 | 1774 | static struct notifier_block __cpuinitdata timers_nb = { |
1da177e4 LT |
1775 | .notifier_call = timer_cpu_notify, |
1776 | }; | |
1777 | ||
1778 | ||
1779 | void __init init_timers(void) | |
1780 | { | |
07dccf33 | 1781 | int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, |
1da177e4 | 1782 | (void *)(long)smp_processor_id()); |
07dccf33 | 1783 | |
82f67cd9 IM |
1784 | init_timer_stats(); |
1785 | ||
9e506f7a | 1786 | BUG_ON(err != NOTIFY_OK); |
1da177e4 | 1787 | register_cpu_notifier(&timers_nb); |
962cf36c | 1788 | open_softirq(TIMER_SOFTIRQ, run_timer_softirq); |
1da177e4 LT |
1789 | } |
1790 | ||
1da177e4 LT |
1791 | /** |
1792 | * msleep - sleep safely even with waitqueue interruptions | |
1793 | * @msecs: Time in milliseconds to sleep for | |
1794 | */ | |
1795 | void msleep(unsigned int msecs) | |
1796 | { | |
1797 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1798 | ||
75bcc8c5 NA |
1799 | while (timeout) |
1800 | timeout = schedule_timeout_uninterruptible(timeout); | |
1da177e4 LT |
1801 | } |
1802 | ||
1803 | EXPORT_SYMBOL(msleep); | |
1804 | ||
1805 | /** | |
96ec3efd | 1806 | * msleep_interruptible - sleep waiting for signals |
1da177e4 LT |
1807 | * @msecs: Time in milliseconds to sleep for |
1808 | */ | |
1809 | unsigned long msleep_interruptible(unsigned int msecs) | |
1810 | { | |
1811 | unsigned long timeout = msecs_to_jiffies(msecs) + 1; | |
1812 | ||
75bcc8c5 NA |
1813 | while (timeout && !signal_pending(current)) |
1814 | timeout = schedule_timeout_interruptible(timeout); | |
1da177e4 LT |
1815 | return jiffies_to_msecs(timeout); |
1816 | } | |
1817 | ||
1818 | EXPORT_SYMBOL(msleep_interruptible); | |
5e7f5a17 PP |
1819 | |
1820 | static int __sched do_usleep_range(unsigned long min, unsigned long max) | |
1821 | { | |
1822 | ktime_t kmin; | |
1823 | unsigned long delta; | |
1824 | ||
1825 | kmin = ktime_set(0, min * NSEC_PER_USEC); | |
1826 | delta = (max - min) * NSEC_PER_USEC; | |
1827 | return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL); | |
1828 | } | |
1829 | ||
1830 | /** | |
1831 | * usleep_range - Drop in replacement for udelay where wakeup is flexible | |
1832 | * @min: Minimum time in usecs to sleep | |
1833 | * @max: Maximum time in usecs to sleep | |
1834 | */ | |
1835 | void usleep_range(unsigned long min, unsigned long max) | |
1836 | { | |
1837 | __set_current_state(TASK_UNINTERRUPTIBLE); | |
1838 | do_usleep_range(min, max); | |
1839 | } | |
1840 | EXPORT_SYMBOL(usleep_range); |