]>
Commit | Line | Data |
---|---|---|
20c8ccb1 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
86039bd3 AA |
2 | /* |
3 | * fs/userfaultfd.c | |
4 | * | |
5 | * Copyright (C) 2007 Davide Libenzi <[email protected]> | |
6 | * Copyright (C) 2008-2009 Red Hat, Inc. | |
7 | * Copyright (C) 2015 Red Hat, Inc. | |
8 | * | |
86039bd3 AA |
9 | * Some part derived from fs/eventfd.c (anon inode setup) and |
10 | * mm/ksm.c (mm hashing). | |
11 | */ | |
12 | ||
9cd75c3c | 13 | #include <linux/list.h> |
86039bd3 | 14 | #include <linux/hashtable.h> |
174cd4b1 | 15 | #include <linux/sched/signal.h> |
6e84f315 | 16 | #include <linux/sched/mm.h> |
86039bd3 AA |
17 | #include <linux/mm.h> |
18 | #include <linux/poll.h> | |
19 | #include <linux/slab.h> | |
20 | #include <linux/seq_file.h> | |
21 | #include <linux/file.h> | |
22 | #include <linux/bug.h> | |
23 | #include <linux/anon_inodes.h> | |
24 | #include <linux/syscalls.h> | |
25 | #include <linux/userfaultfd_k.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ioctl.h> | |
28 | #include <linux/security.h> | |
cab350af | 29 | #include <linux/hugetlb.h> |
86039bd3 | 30 | |
cefdca0a PX |
31 | int sysctl_unprivileged_userfaultfd __read_mostly = 1; |
32 | ||
3004ec9c AA |
33 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; |
34 | ||
86039bd3 AA |
35 | enum userfaultfd_state { |
36 | UFFD_STATE_WAIT_API, | |
37 | UFFD_STATE_RUNNING, | |
38 | }; | |
39 | ||
3004ec9c AA |
40 | /* |
41 | * Start with fault_pending_wqh and fault_wqh so they're more likely | |
42 | * to be in the same cacheline. | |
cbcfa130 EB |
43 | * |
44 | * Locking order: | |
45 | * fd_wqh.lock | |
46 | * fault_pending_wqh.lock | |
47 | * fault_wqh.lock | |
48 | * event_wqh.lock | |
49 | * | |
50 | * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, | |
51 | * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's | |
52 | * also taken in IRQ context. | |
3004ec9c | 53 | */ |
86039bd3 | 54 | struct userfaultfd_ctx { |
15b726ef AA |
55 | /* waitqueue head for the pending (i.e. not read) userfaults */ |
56 | wait_queue_head_t fault_pending_wqh; | |
57 | /* waitqueue head for the userfaults */ | |
86039bd3 AA |
58 | wait_queue_head_t fault_wqh; |
59 | /* waitqueue head for the pseudo fd to wakeup poll/read */ | |
60 | wait_queue_head_t fd_wqh; | |
9cd75c3c PE |
61 | /* waitqueue head for events */ |
62 | wait_queue_head_t event_wqh; | |
2c5b7e1b | 63 | /* a refile sequence protected by fault_pending_wqh lock */ |
2ca97ac8 | 64 | seqcount_spinlock_t refile_seq; |
3004ec9c | 65 | /* pseudo fd refcounting */ |
ca880420 | 66 | refcount_t refcount; |
86039bd3 AA |
67 | /* userfaultfd syscall flags */ |
68 | unsigned int flags; | |
9cd75c3c PE |
69 | /* features requested from the userspace */ |
70 | unsigned int features; | |
86039bd3 AA |
71 | /* state machine */ |
72 | enum userfaultfd_state state; | |
73 | /* released */ | |
74 | bool released; | |
df2cc96e MR |
75 | /* memory mappings are changing because of non-cooperative event */ |
76 | bool mmap_changing; | |
86039bd3 AA |
77 | /* mm with one ore more vmas attached to this userfaultfd_ctx */ |
78 | struct mm_struct *mm; | |
79 | }; | |
80 | ||
893e26e6 PE |
81 | struct userfaultfd_fork_ctx { |
82 | struct userfaultfd_ctx *orig; | |
83 | struct userfaultfd_ctx *new; | |
84 | struct list_head list; | |
85 | }; | |
86 | ||
897ab3e0 MR |
87 | struct userfaultfd_unmap_ctx { |
88 | struct userfaultfd_ctx *ctx; | |
89 | unsigned long start; | |
90 | unsigned long end; | |
91 | struct list_head list; | |
92 | }; | |
93 | ||
86039bd3 | 94 | struct userfaultfd_wait_queue { |
a9b85f94 | 95 | struct uffd_msg msg; |
ac6424b9 | 96 | wait_queue_entry_t wq; |
86039bd3 | 97 | struct userfaultfd_ctx *ctx; |
15a77c6f | 98 | bool waken; |
86039bd3 AA |
99 | }; |
100 | ||
101 | struct userfaultfd_wake_range { | |
102 | unsigned long start; | |
103 | unsigned long len; | |
104 | }; | |
105 | ||
ac6424b9 | 106 | static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, |
86039bd3 AA |
107 | int wake_flags, void *key) |
108 | { | |
109 | struct userfaultfd_wake_range *range = key; | |
110 | int ret; | |
111 | struct userfaultfd_wait_queue *uwq; | |
112 | unsigned long start, len; | |
113 | ||
114 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
115 | ret = 0; | |
86039bd3 AA |
116 | /* len == 0 means wake all */ |
117 | start = range->start; | |
118 | len = range->len; | |
a9b85f94 AA |
119 | if (len && (start > uwq->msg.arg.pagefault.address || |
120 | start + len <= uwq->msg.arg.pagefault.address)) | |
86039bd3 | 121 | goto out; |
15a77c6f AA |
122 | WRITE_ONCE(uwq->waken, true); |
123 | /* | |
a9668cd6 PZ |
124 | * The Program-Order guarantees provided by the scheduler |
125 | * ensure uwq->waken is visible before the task is woken. | |
15a77c6f | 126 | */ |
86039bd3 | 127 | ret = wake_up_state(wq->private, mode); |
a9668cd6 | 128 | if (ret) { |
86039bd3 AA |
129 | /* |
130 | * Wake only once, autoremove behavior. | |
131 | * | |
a9668cd6 PZ |
132 | * After the effect of list_del_init is visible to the other |
133 | * CPUs, the waitqueue may disappear from under us, see the | |
134 | * !list_empty_careful() in handle_userfault(). | |
135 | * | |
136 | * try_to_wake_up() has an implicit smp_mb(), and the | |
137 | * wq->private is read before calling the extern function | |
138 | * "wake_up_state" (which in turns calls try_to_wake_up). | |
86039bd3 | 139 | */ |
2055da97 | 140 | list_del_init(&wq->entry); |
a9668cd6 | 141 | } |
86039bd3 AA |
142 | out: |
143 | return ret; | |
144 | } | |
145 | ||
146 | /** | |
147 | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd | |
148 | * context. | |
149 | * @ctx: [in] Pointer to the userfaultfd context. | |
86039bd3 AA |
150 | */ |
151 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) | |
152 | { | |
ca880420 | 153 | refcount_inc(&ctx->refcount); |
86039bd3 AA |
154 | } |
155 | ||
156 | /** | |
157 | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd | |
158 | * context. | |
159 | * @ctx: [in] Pointer to userfaultfd context. | |
160 | * | |
161 | * The userfaultfd context reference must have been previously acquired either | |
162 | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). | |
163 | */ | |
164 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) | |
165 | { | |
ca880420 | 166 | if (refcount_dec_and_test(&ctx->refcount)) { |
86039bd3 AA |
167 | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); |
168 | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); | |
169 | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); | |
170 | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); | |
9cd75c3c PE |
171 | VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); |
172 | VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); | |
86039bd3 AA |
173 | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); |
174 | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); | |
d2005e3f | 175 | mmdrop(ctx->mm); |
3004ec9c | 176 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
86039bd3 AA |
177 | } |
178 | } | |
179 | ||
a9b85f94 | 180 | static inline void msg_init(struct uffd_msg *msg) |
86039bd3 | 181 | { |
a9b85f94 AA |
182 | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); |
183 | /* | |
184 | * Must use memset to zero out the paddings or kernel data is | |
185 | * leaked to userland. | |
186 | */ | |
187 | memset(msg, 0, sizeof(struct uffd_msg)); | |
188 | } | |
189 | ||
190 | static inline struct uffd_msg userfault_msg(unsigned long address, | |
191 | unsigned int flags, | |
9d4ac934 AP |
192 | unsigned long reason, |
193 | unsigned int features) | |
a9b85f94 AA |
194 | { |
195 | struct uffd_msg msg; | |
196 | msg_init(&msg); | |
197 | msg.event = UFFD_EVENT_PAGEFAULT; | |
198 | msg.arg.pagefault.address = address; | |
86039bd3 AA |
199 | if (flags & FAULT_FLAG_WRITE) |
200 | /* | |
a4605a61 | 201 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
a9b85f94 AA |
202 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE |
203 | * was not set in a UFFD_EVENT_PAGEFAULT, it means it | |
204 | * was a read fault, otherwise if set it means it's | |
205 | * a write fault. | |
86039bd3 | 206 | */ |
a9b85f94 | 207 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; |
86039bd3 AA |
208 | if (reason & VM_UFFD_WP) |
209 | /* | |
a9b85f94 AA |
210 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
211 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was | |
212 | * not set in a UFFD_EVENT_PAGEFAULT, it means it was | |
213 | * a missing fault, otherwise if set it means it's a | |
214 | * write protect fault. | |
86039bd3 | 215 | */ |
a9b85f94 | 216 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; |
9d4ac934 | 217 | if (features & UFFD_FEATURE_THREAD_ID) |
a36985d3 | 218 | msg.arg.pagefault.feat.ptid = task_pid_vnr(current); |
a9b85f94 | 219 | return msg; |
86039bd3 AA |
220 | } |
221 | ||
369cd212 MK |
222 | #ifdef CONFIG_HUGETLB_PAGE |
223 | /* | |
224 | * Same functionality as userfaultfd_must_wait below with modifications for | |
225 | * hugepmd ranges. | |
226 | */ | |
227 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
7868a208 | 228 | struct vm_area_struct *vma, |
369cd212 MK |
229 | unsigned long address, |
230 | unsigned long flags, | |
231 | unsigned long reason) | |
232 | { | |
233 | struct mm_struct *mm = ctx->mm; | |
1e2c0436 | 234 | pte_t *ptep, pte; |
369cd212 MK |
235 | bool ret = true; |
236 | ||
42fc5414 | 237 | mmap_assert_locked(mm); |
369cd212 | 238 | |
1e2c0436 JF |
239 | ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); |
240 | ||
241 | if (!ptep) | |
369cd212 MK |
242 | goto out; |
243 | ||
244 | ret = false; | |
1e2c0436 | 245 | pte = huge_ptep_get(ptep); |
369cd212 MK |
246 | |
247 | /* | |
248 | * Lockless access: we're in a wait_event so it's ok if it | |
249 | * changes under us. | |
250 | */ | |
1e2c0436 | 251 | if (huge_pte_none(pte)) |
369cd212 | 252 | ret = true; |
1e2c0436 | 253 | if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) |
369cd212 MK |
254 | ret = true; |
255 | out: | |
256 | return ret; | |
257 | } | |
258 | #else | |
259 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
7868a208 | 260 | struct vm_area_struct *vma, |
369cd212 MK |
261 | unsigned long address, |
262 | unsigned long flags, | |
263 | unsigned long reason) | |
264 | { | |
265 | return false; /* should never get here */ | |
266 | } | |
267 | #endif /* CONFIG_HUGETLB_PAGE */ | |
268 | ||
8d2afd96 AA |
269 | /* |
270 | * Verify the pagetables are still not ok after having reigstered into | |
271 | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any | |
272 | * userfault that has already been resolved, if userfaultfd_read and | |
273 | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different | |
274 | * threads. | |
275 | */ | |
276 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, | |
277 | unsigned long address, | |
278 | unsigned long flags, | |
279 | unsigned long reason) | |
280 | { | |
281 | struct mm_struct *mm = ctx->mm; | |
282 | pgd_t *pgd; | |
c2febafc | 283 | p4d_t *p4d; |
8d2afd96 AA |
284 | pud_t *pud; |
285 | pmd_t *pmd, _pmd; | |
286 | pte_t *pte; | |
287 | bool ret = true; | |
288 | ||
42fc5414 | 289 | mmap_assert_locked(mm); |
8d2afd96 AA |
290 | |
291 | pgd = pgd_offset(mm, address); | |
292 | if (!pgd_present(*pgd)) | |
293 | goto out; | |
c2febafc KS |
294 | p4d = p4d_offset(pgd, address); |
295 | if (!p4d_present(*p4d)) | |
296 | goto out; | |
297 | pud = pud_offset(p4d, address); | |
8d2afd96 AA |
298 | if (!pud_present(*pud)) |
299 | goto out; | |
300 | pmd = pmd_offset(pud, address); | |
301 | /* | |
302 | * READ_ONCE must function as a barrier with narrower scope | |
303 | * and it must be equivalent to: | |
304 | * _pmd = *pmd; barrier(); | |
305 | * | |
306 | * This is to deal with the instability (as in | |
307 | * pmd_trans_unstable) of the pmd. | |
308 | */ | |
309 | _pmd = READ_ONCE(*pmd); | |
a365ac09 | 310 | if (pmd_none(_pmd)) |
8d2afd96 AA |
311 | goto out; |
312 | ||
313 | ret = false; | |
a365ac09 YH |
314 | if (!pmd_present(_pmd)) |
315 | goto out; | |
316 | ||
63b2d417 AA |
317 | if (pmd_trans_huge(_pmd)) { |
318 | if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) | |
319 | ret = true; | |
8d2afd96 | 320 | goto out; |
63b2d417 | 321 | } |
8d2afd96 AA |
322 | |
323 | /* | |
324 | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it | |
325 | * and use the standard pte_offset_map() instead of parsing _pmd. | |
326 | */ | |
327 | pte = pte_offset_map(pmd, address); | |
328 | /* | |
329 | * Lockless access: we're in a wait_event so it's ok if it | |
330 | * changes under us. | |
331 | */ | |
332 | if (pte_none(*pte)) | |
333 | ret = true; | |
63b2d417 AA |
334 | if (!pte_write(*pte) && (reason & VM_UFFD_WP)) |
335 | ret = true; | |
8d2afd96 AA |
336 | pte_unmap(pte); |
337 | ||
338 | out: | |
339 | return ret; | |
340 | } | |
341 | ||
3e69ad08 PX |
342 | static inline long userfaultfd_get_blocking_state(unsigned int flags) |
343 | { | |
344 | if (flags & FAULT_FLAG_INTERRUPTIBLE) | |
345 | return TASK_INTERRUPTIBLE; | |
346 | ||
347 | if (flags & FAULT_FLAG_KILLABLE) | |
348 | return TASK_KILLABLE; | |
349 | ||
350 | return TASK_UNINTERRUPTIBLE; | |
351 | } | |
352 | ||
86039bd3 AA |
353 | /* |
354 | * The locking rules involved in returning VM_FAULT_RETRY depending on | |
355 | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and | |
356 | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" | |
357 | * recommendation in __lock_page_or_retry is not an understatement. | |
358 | * | |
c1e8d7c6 | 359 | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released |
86039bd3 AA |
360 | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is |
361 | * not set. | |
362 | * | |
363 | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not | |
364 | * set, VM_FAULT_RETRY can still be returned if and only if there are | |
c1e8d7c6 | 365 | * fatal_signal_pending()s, and the mmap_lock must be released before |
86039bd3 AA |
366 | * returning it. |
367 | */ | |
2b740303 | 368 | vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) |
86039bd3 | 369 | { |
82b0f8c3 | 370 | struct mm_struct *mm = vmf->vma->vm_mm; |
86039bd3 AA |
371 | struct userfaultfd_ctx *ctx; |
372 | struct userfaultfd_wait_queue uwq; | |
2b740303 | 373 | vm_fault_t ret = VM_FAULT_SIGBUS; |
3e69ad08 | 374 | bool must_wait; |
15a77c6f | 375 | long blocking_state; |
86039bd3 | 376 | |
64c2b203 AA |
377 | /* |
378 | * We don't do userfault handling for the final child pid update. | |
379 | * | |
380 | * We also don't do userfault handling during | |
381 | * coredumping. hugetlbfs has the special | |
382 | * follow_hugetlb_page() to skip missing pages in the | |
383 | * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with | |
384 | * the no_page_table() helper in follow_page_mask(), but the | |
385 | * shmem_vm_ops->fault method is invoked even during | |
c1e8d7c6 | 386 | * coredumping without mmap_lock and it ends up here. |
64c2b203 AA |
387 | */ |
388 | if (current->flags & (PF_EXITING|PF_DUMPCORE)) | |
389 | goto out; | |
390 | ||
391 | /* | |
c1e8d7c6 ML |
392 | * Coredumping runs without mmap_lock so we can only check that |
393 | * the mmap_lock is held, if PF_DUMPCORE was not set. | |
64c2b203 | 394 | */ |
42fc5414 | 395 | mmap_assert_locked(mm); |
64c2b203 | 396 | |
82b0f8c3 | 397 | ctx = vmf->vma->vm_userfaultfd_ctx.ctx; |
86039bd3 | 398 | if (!ctx) |
ba85c702 | 399 | goto out; |
86039bd3 AA |
400 | |
401 | BUG_ON(ctx->mm != mm); | |
402 | ||
403 | VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); | |
404 | VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); | |
405 | ||
2d6d6f5a PS |
406 | if (ctx->features & UFFD_FEATURE_SIGBUS) |
407 | goto out; | |
408 | ||
86039bd3 AA |
409 | /* |
410 | * If it's already released don't get it. This avoids to loop | |
411 | * in __get_user_pages if userfaultfd_release waits on the | |
c1e8d7c6 | 412 | * caller of handle_userfault to release the mmap_lock. |
86039bd3 | 413 | */ |
6aa7de05 | 414 | if (unlikely(READ_ONCE(ctx->released))) { |
656710a6 AA |
415 | /* |
416 | * Don't return VM_FAULT_SIGBUS in this case, so a non | |
417 | * cooperative manager can close the uffd after the | |
418 | * last UFFDIO_COPY, without risking to trigger an | |
419 | * involuntary SIGBUS if the process was starting the | |
420 | * userfaultfd while the userfaultfd was still armed | |
421 | * (but after the last UFFDIO_COPY). If the uffd | |
422 | * wasn't already closed when the userfault reached | |
423 | * this point, that would normally be solved by | |
424 | * userfaultfd_must_wait returning 'false'. | |
425 | * | |
426 | * If we were to return VM_FAULT_SIGBUS here, the non | |
427 | * cooperative manager would be instead forced to | |
428 | * always call UFFDIO_UNREGISTER before it can safely | |
429 | * close the uffd. | |
430 | */ | |
431 | ret = VM_FAULT_NOPAGE; | |
ba85c702 | 432 | goto out; |
656710a6 | 433 | } |
86039bd3 AA |
434 | |
435 | /* | |
436 | * Check that we can return VM_FAULT_RETRY. | |
437 | * | |
438 | * NOTE: it should become possible to return VM_FAULT_RETRY | |
439 | * even if FAULT_FLAG_TRIED is set without leading to gup() | |
440 | * -EBUSY failures, if the userfaultfd is to be extended for | |
441 | * VM_UFFD_WP tracking and we intend to arm the userfault | |
442 | * without first stopping userland access to the memory. For | |
443 | * VM_UFFD_MISSING userfaults this is enough for now. | |
444 | */ | |
82b0f8c3 | 445 | if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { |
86039bd3 AA |
446 | /* |
447 | * Validate the invariant that nowait must allow retry | |
448 | * to be sure not to return SIGBUS erroneously on | |
449 | * nowait invocations. | |
450 | */ | |
82b0f8c3 | 451 | BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); |
86039bd3 AA |
452 | #ifdef CONFIG_DEBUG_VM |
453 | if (printk_ratelimit()) { | |
454 | printk(KERN_WARNING | |
82b0f8c3 JK |
455 | "FAULT_FLAG_ALLOW_RETRY missing %x\n", |
456 | vmf->flags); | |
86039bd3 AA |
457 | dump_stack(); |
458 | } | |
459 | #endif | |
ba85c702 | 460 | goto out; |
86039bd3 AA |
461 | } |
462 | ||
463 | /* | |
464 | * Handle nowait, not much to do other than tell it to retry | |
465 | * and wait. | |
466 | */ | |
ba85c702 | 467 | ret = VM_FAULT_RETRY; |
82b0f8c3 | 468 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
ba85c702 | 469 | goto out; |
86039bd3 | 470 | |
c1e8d7c6 | 471 | /* take the reference before dropping the mmap_lock */ |
86039bd3 AA |
472 | userfaultfd_ctx_get(ctx); |
473 | ||
86039bd3 AA |
474 | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); |
475 | uwq.wq.private = current; | |
9d4ac934 AP |
476 | uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, |
477 | ctx->features); | |
86039bd3 | 478 | uwq.ctx = ctx; |
15a77c6f | 479 | uwq.waken = false; |
86039bd3 | 480 | |
3e69ad08 | 481 | blocking_state = userfaultfd_get_blocking_state(vmf->flags); |
dfa37dc3 | 482 | |
cbcfa130 | 483 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
484 | /* |
485 | * After the __add_wait_queue the uwq is visible to userland | |
486 | * through poll/read(). | |
487 | */ | |
15b726ef AA |
488 | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); |
489 | /* | |
490 | * The smp_mb() after __set_current_state prevents the reads | |
491 | * following the spin_unlock to happen before the list_add in | |
492 | * __add_wait_queue. | |
493 | */ | |
15a77c6f | 494 | set_current_state(blocking_state); |
cbcfa130 | 495 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 | 496 | |
369cd212 MK |
497 | if (!is_vm_hugetlb_page(vmf->vma)) |
498 | must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, | |
499 | reason); | |
500 | else | |
7868a208 PA |
501 | must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, |
502 | vmf->address, | |
369cd212 | 503 | vmf->flags, reason); |
d8ed45c5 | 504 | mmap_read_unlock(mm); |
8d2afd96 | 505 | |
f9bf3522 | 506 | if (likely(must_wait && !READ_ONCE(ctx->released))) { |
a9a08845 | 507 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
86039bd3 | 508 | schedule(); |
ba85c702 | 509 | } |
86039bd3 | 510 | |
ba85c702 | 511 | __set_current_state(TASK_RUNNING); |
15b726ef AA |
512 | |
513 | /* | |
514 | * Here we race with the list_del; list_add in | |
515 | * userfaultfd_ctx_read(), however because we don't ever run | |
516 | * list_del_init() to refile across the two lists, the prev | |
517 | * and next pointers will never point to self. list_add also | |
518 | * would never let any of the two pointers to point to | |
519 | * self. So list_empty_careful won't risk to see both pointers | |
520 | * pointing to self at any time during the list refile. The | |
521 | * only case where list_del_init() is called is the full | |
522 | * removal in the wake function and there we don't re-list_add | |
523 | * and it's fine not to block on the spinlock. The uwq on this | |
524 | * kernel stack can be released after the list_del_init. | |
525 | */ | |
2055da97 | 526 | if (!list_empty_careful(&uwq.wq.entry)) { |
cbcfa130 | 527 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
15b726ef AA |
528 | /* |
529 | * No need of list_del_init(), the uwq on the stack | |
530 | * will be freed shortly anyway. | |
531 | */ | |
2055da97 | 532 | list_del(&uwq.wq.entry); |
cbcfa130 | 533 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 | 534 | } |
86039bd3 AA |
535 | |
536 | /* | |
537 | * ctx may go away after this if the userfault pseudo fd is | |
538 | * already released. | |
539 | */ | |
540 | userfaultfd_ctx_put(ctx); | |
541 | ||
ba85c702 AA |
542 | out: |
543 | return ret; | |
86039bd3 AA |
544 | } |
545 | ||
8c9e7bb7 AA |
546 | static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, |
547 | struct userfaultfd_wait_queue *ewq) | |
9cd75c3c | 548 | { |
0cbb4b4f AA |
549 | struct userfaultfd_ctx *release_new_ctx; |
550 | ||
9a69a829 AA |
551 | if (WARN_ON_ONCE(current->flags & PF_EXITING)) |
552 | goto out; | |
9cd75c3c PE |
553 | |
554 | ewq->ctx = ctx; | |
555 | init_waitqueue_entry(&ewq->wq, current); | |
0cbb4b4f | 556 | release_new_ctx = NULL; |
9cd75c3c | 557 | |
cbcfa130 | 558 | spin_lock_irq(&ctx->event_wqh.lock); |
9cd75c3c PE |
559 | /* |
560 | * After the __add_wait_queue the uwq is visible to userland | |
561 | * through poll/read(). | |
562 | */ | |
563 | __add_wait_queue(&ctx->event_wqh, &ewq->wq); | |
564 | for (;;) { | |
565 | set_current_state(TASK_KILLABLE); | |
566 | if (ewq->msg.event == 0) | |
567 | break; | |
6aa7de05 | 568 | if (READ_ONCE(ctx->released) || |
9cd75c3c | 569 | fatal_signal_pending(current)) { |
384632e6 AA |
570 | /* |
571 | * &ewq->wq may be queued in fork_event, but | |
572 | * __remove_wait_queue ignores the head | |
573 | * parameter. It would be a problem if it | |
574 | * didn't. | |
575 | */ | |
9cd75c3c | 576 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); |
7eb76d45 MR |
577 | if (ewq->msg.event == UFFD_EVENT_FORK) { |
578 | struct userfaultfd_ctx *new; | |
579 | ||
580 | new = (struct userfaultfd_ctx *) | |
581 | (unsigned long) | |
582 | ewq->msg.arg.reserved.reserved1; | |
0cbb4b4f | 583 | release_new_ctx = new; |
7eb76d45 | 584 | } |
9cd75c3c PE |
585 | break; |
586 | } | |
587 | ||
cbcfa130 | 588 | spin_unlock_irq(&ctx->event_wqh.lock); |
9cd75c3c | 589 | |
a9a08845 | 590 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
9cd75c3c PE |
591 | schedule(); |
592 | ||
cbcfa130 | 593 | spin_lock_irq(&ctx->event_wqh.lock); |
9cd75c3c PE |
594 | } |
595 | __set_current_state(TASK_RUNNING); | |
cbcfa130 | 596 | spin_unlock_irq(&ctx->event_wqh.lock); |
9cd75c3c | 597 | |
0cbb4b4f AA |
598 | if (release_new_ctx) { |
599 | struct vm_area_struct *vma; | |
600 | struct mm_struct *mm = release_new_ctx->mm; | |
601 | ||
602 | /* the various vma->vm_userfaultfd_ctx still points to it */ | |
d8ed45c5 | 603 | mmap_write_lock(mm); |
04f5866e AA |
604 | /* no task can run (and in turn coredump) yet */ |
605 | VM_WARN_ON(!mmget_still_valid(mm)); | |
0cbb4b4f | 606 | for (vma = mm->mmap; vma; vma = vma->vm_next) |
31e810aa | 607 | if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { |
0cbb4b4f | 608 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
31e810aa MR |
609 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); |
610 | } | |
d8ed45c5 | 611 | mmap_write_unlock(mm); |
0cbb4b4f AA |
612 | |
613 | userfaultfd_ctx_put(release_new_ctx); | |
614 | } | |
615 | ||
9cd75c3c PE |
616 | /* |
617 | * ctx may go away after this if the userfault pseudo fd is | |
618 | * already released. | |
619 | */ | |
9a69a829 | 620 | out: |
df2cc96e | 621 | WRITE_ONCE(ctx->mmap_changing, false); |
9cd75c3c | 622 | userfaultfd_ctx_put(ctx); |
9cd75c3c PE |
623 | } |
624 | ||
625 | static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, | |
626 | struct userfaultfd_wait_queue *ewq) | |
627 | { | |
628 | ewq->msg.event = 0; | |
629 | wake_up_locked(&ctx->event_wqh); | |
630 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | |
631 | } | |
632 | ||
893e26e6 PE |
633 | int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) |
634 | { | |
635 | struct userfaultfd_ctx *ctx = NULL, *octx; | |
636 | struct userfaultfd_fork_ctx *fctx; | |
637 | ||
638 | octx = vma->vm_userfaultfd_ctx.ctx; | |
639 | if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { | |
640 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
641 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | |
642 | return 0; | |
643 | } | |
644 | ||
645 | list_for_each_entry(fctx, fcs, list) | |
646 | if (fctx->orig == octx) { | |
647 | ctx = fctx->new; | |
648 | break; | |
649 | } | |
650 | ||
651 | if (!ctx) { | |
652 | fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); | |
653 | if (!fctx) | |
654 | return -ENOMEM; | |
655 | ||
656 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); | |
657 | if (!ctx) { | |
658 | kfree(fctx); | |
659 | return -ENOMEM; | |
660 | } | |
661 | ||
ca880420 | 662 | refcount_set(&ctx->refcount, 1); |
893e26e6 PE |
663 | ctx->flags = octx->flags; |
664 | ctx->state = UFFD_STATE_RUNNING; | |
665 | ctx->features = octx->features; | |
666 | ctx->released = false; | |
df2cc96e | 667 | ctx->mmap_changing = false; |
893e26e6 | 668 | ctx->mm = vma->vm_mm; |
00bb31fa | 669 | mmgrab(ctx->mm); |
893e26e6 PE |
670 | |
671 | userfaultfd_ctx_get(octx); | |
df2cc96e | 672 | WRITE_ONCE(octx->mmap_changing, true); |
893e26e6 PE |
673 | fctx->orig = octx; |
674 | fctx->new = ctx; | |
675 | list_add_tail(&fctx->list, fcs); | |
676 | } | |
677 | ||
678 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
679 | return 0; | |
680 | } | |
681 | ||
8c9e7bb7 | 682 | static void dup_fctx(struct userfaultfd_fork_ctx *fctx) |
893e26e6 PE |
683 | { |
684 | struct userfaultfd_ctx *ctx = fctx->orig; | |
685 | struct userfaultfd_wait_queue ewq; | |
686 | ||
687 | msg_init(&ewq.msg); | |
688 | ||
689 | ewq.msg.event = UFFD_EVENT_FORK; | |
690 | ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; | |
691 | ||
8c9e7bb7 | 692 | userfaultfd_event_wait_completion(ctx, &ewq); |
893e26e6 PE |
693 | } |
694 | ||
695 | void dup_userfaultfd_complete(struct list_head *fcs) | |
696 | { | |
893e26e6 PE |
697 | struct userfaultfd_fork_ctx *fctx, *n; |
698 | ||
699 | list_for_each_entry_safe(fctx, n, fcs, list) { | |
8c9e7bb7 | 700 | dup_fctx(fctx); |
893e26e6 PE |
701 | list_del(&fctx->list); |
702 | kfree(fctx); | |
703 | } | |
704 | } | |
705 | ||
72f87654 PE |
706 | void mremap_userfaultfd_prep(struct vm_area_struct *vma, |
707 | struct vm_userfaultfd_ctx *vm_ctx) | |
708 | { | |
709 | struct userfaultfd_ctx *ctx; | |
710 | ||
711 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
3cfd22be PX |
712 | |
713 | if (!ctx) | |
714 | return; | |
715 | ||
716 | if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { | |
72f87654 PE |
717 | vm_ctx->ctx = ctx; |
718 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 719 | WRITE_ONCE(ctx->mmap_changing, true); |
3cfd22be PX |
720 | } else { |
721 | /* Drop uffd context if remap feature not enabled */ | |
722 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
723 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | |
72f87654 PE |
724 | } |
725 | } | |
726 | ||
90794bf1 | 727 | void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, |
72f87654 PE |
728 | unsigned long from, unsigned long to, |
729 | unsigned long len) | |
730 | { | |
90794bf1 | 731 | struct userfaultfd_ctx *ctx = vm_ctx->ctx; |
72f87654 PE |
732 | struct userfaultfd_wait_queue ewq; |
733 | ||
734 | if (!ctx) | |
735 | return; | |
736 | ||
737 | if (to & ~PAGE_MASK) { | |
738 | userfaultfd_ctx_put(ctx); | |
739 | return; | |
740 | } | |
741 | ||
742 | msg_init(&ewq.msg); | |
743 | ||
744 | ewq.msg.event = UFFD_EVENT_REMAP; | |
745 | ewq.msg.arg.remap.from = from; | |
746 | ewq.msg.arg.remap.to = to; | |
747 | ewq.msg.arg.remap.len = len; | |
748 | ||
749 | userfaultfd_event_wait_completion(ctx, &ewq); | |
750 | } | |
751 | ||
70ccb92f | 752 | bool userfaultfd_remove(struct vm_area_struct *vma, |
d811914d | 753 | unsigned long start, unsigned long end) |
05ce7724 PE |
754 | { |
755 | struct mm_struct *mm = vma->vm_mm; | |
756 | struct userfaultfd_ctx *ctx; | |
757 | struct userfaultfd_wait_queue ewq; | |
758 | ||
759 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
d811914d | 760 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) |
70ccb92f | 761 | return true; |
05ce7724 PE |
762 | |
763 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 764 | WRITE_ONCE(ctx->mmap_changing, true); |
d8ed45c5 | 765 | mmap_read_unlock(mm); |
05ce7724 | 766 | |
05ce7724 PE |
767 | msg_init(&ewq.msg); |
768 | ||
d811914d MR |
769 | ewq.msg.event = UFFD_EVENT_REMOVE; |
770 | ewq.msg.arg.remove.start = start; | |
771 | ewq.msg.arg.remove.end = end; | |
05ce7724 PE |
772 | |
773 | userfaultfd_event_wait_completion(ctx, &ewq); | |
774 | ||
70ccb92f | 775 | return false; |
05ce7724 PE |
776 | } |
777 | ||
897ab3e0 MR |
778 | static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, |
779 | unsigned long start, unsigned long end) | |
780 | { | |
781 | struct userfaultfd_unmap_ctx *unmap_ctx; | |
782 | ||
783 | list_for_each_entry(unmap_ctx, unmaps, list) | |
784 | if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && | |
785 | unmap_ctx->end == end) | |
786 | return true; | |
787 | ||
788 | return false; | |
789 | } | |
790 | ||
791 | int userfaultfd_unmap_prep(struct vm_area_struct *vma, | |
792 | unsigned long start, unsigned long end, | |
793 | struct list_head *unmaps) | |
794 | { | |
795 | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { | |
796 | struct userfaultfd_unmap_ctx *unmap_ctx; | |
797 | struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; | |
798 | ||
799 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || | |
800 | has_unmap_ctx(ctx, unmaps, start, end)) | |
801 | continue; | |
802 | ||
803 | unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); | |
804 | if (!unmap_ctx) | |
805 | return -ENOMEM; | |
806 | ||
807 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 808 | WRITE_ONCE(ctx->mmap_changing, true); |
897ab3e0 MR |
809 | unmap_ctx->ctx = ctx; |
810 | unmap_ctx->start = start; | |
811 | unmap_ctx->end = end; | |
812 | list_add_tail(&unmap_ctx->list, unmaps); | |
813 | } | |
814 | ||
815 | return 0; | |
816 | } | |
817 | ||
818 | void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) | |
819 | { | |
820 | struct userfaultfd_unmap_ctx *ctx, *n; | |
821 | struct userfaultfd_wait_queue ewq; | |
822 | ||
823 | list_for_each_entry_safe(ctx, n, uf, list) { | |
824 | msg_init(&ewq.msg); | |
825 | ||
826 | ewq.msg.event = UFFD_EVENT_UNMAP; | |
827 | ewq.msg.arg.remove.start = ctx->start; | |
828 | ewq.msg.arg.remove.end = ctx->end; | |
829 | ||
830 | userfaultfd_event_wait_completion(ctx->ctx, &ewq); | |
831 | ||
832 | list_del(&ctx->list); | |
833 | kfree(ctx); | |
834 | } | |
835 | } | |
836 | ||
86039bd3 AA |
837 | static int userfaultfd_release(struct inode *inode, struct file *file) |
838 | { | |
839 | struct userfaultfd_ctx *ctx = file->private_data; | |
840 | struct mm_struct *mm = ctx->mm; | |
841 | struct vm_area_struct *vma, *prev; | |
842 | /* len == 0 means wake all */ | |
843 | struct userfaultfd_wake_range range = { .len = 0, }; | |
844 | unsigned long new_flags; | |
46d0b24c | 845 | bool still_valid; |
86039bd3 | 846 | |
6aa7de05 | 847 | WRITE_ONCE(ctx->released, true); |
86039bd3 | 848 | |
d2005e3f ON |
849 | if (!mmget_not_zero(mm)) |
850 | goto wakeup; | |
851 | ||
86039bd3 AA |
852 | /* |
853 | * Flush page faults out of all CPUs. NOTE: all page faults | |
854 | * must be retried without returning VM_FAULT_SIGBUS if | |
855 | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx | |
c1e8d7c6 | 856 | * changes while handle_userfault released the mmap_lock. So |
86039bd3 | 857 | * it's critical that released is set to true (above), before |
c1e8d7c6 | 858 | * taking the mmap_lock for writing. |
86039bd3 | 859 | */ |
d8ed45c5 | 860 | mmap_write_lock(mm); |
46d0b24c | 861 | still_valid = mmget_still_valid(mm); |
86039bd3 AA |
862 | prev = NULL; |
863 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
864 | cond_resched(); | |
865 | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ | |
866 | !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
867 | if (vma->vm_userfaultfd_ctx.ctx != ctx) { | |
868 | prev = vma; | |
869 | continue; | |
870 | } | |
871 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | |
46d0b24c ON |
872 | if (still_valid) { |
873 | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, | |
874 | new_flags, vma->anon_vma, | |
875 | vma->vm_file, vma->vm_pgoff, | |
876 | vma_policy(vma), | |
877 | NULL_VM_UFFD_CTX); | |
878 | if (prev) | |
879 | vma = prev; | |
880 | else | |
881 | prev = vma; | |
882 | } | |
86039bd3 AA |
883 | vma->vm_flags = new_flags; |
884 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
885 | } | |
d8ed45c5 | 886 | mmap_write_unlock(mm); |
d2005e3f ON |
887 | mmput(mm); |
888 | wakeup: | |
86039bd3 | 889 | /* |
15b726ef | 890 | * After no new page faults can wait on this fault_*wqh, flush |
86039bd3 | 891 | * the last page faults that may have been already waiting on |
15b726ef | 892 | * the fault_*wqh. |
86039bd3 | 893 | */ |
cbcfa130 | 894 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
ac5be6b4 | 895 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); |
c430d1e8 | 896 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); |
cbcfa130 | 897 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 | 898 | |
5a18b64e MR |
899 | /* Flush pending events that may still wait on event_wqh */ |
900 | wake_up_all(&ctx->event_wqh); | |
901 | ||
a9a08845 | 902 | wake_up_poll(&ctx->fd_wqh, EPOLLHUP); |
86039bd3 AA |
903 | userfaultfd_ctx_put(ctx); |
904 | return 0; | |
905 | } | |
906 | ||
15b726ef | 907 | /* fault_pending_wqh.lock must be hold by the caller */ |
6dcc27fd PE |
908 | static inline struct userfaultfd_wait_queue *find_userfault_in( |
909 | wait_queue_head_t *wqh) | |
86039bd3 | 910 | { |
ac6424b9 | 911 | wait_queue_entry_t *wq; |
15b726ef | 912 | struct userfaultfd_wait_queue *uwq; |
86039bd3 | 913 | |
456a7378 | 914 | lockdep_assert_held(&wqh->lock); |
86039bd3 | 915 | |
15b726ef | 916 | uwq = NULL; |
6dcc27fd | 917 | if (!waitqueue_active(wqh)) |
15b726ef AA |
918 | goto out; |
919 | /* walk in reverse to provide FIFO behavior to read userfaults */ | |
2055da97 | 920 | wq = list_last_entry(&wqh->head, typeof(*wq), entry); |
15b726ef AA |
921 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
922 | out: | |
923 | return uwq; | |
86039bd3 | 924 | } |
6dcc27fd PE |
925 | |
926 | static inline struct userfaultfd_wait_queue *find_userfault( | |
927 | struct userfaultfd_ctx *ctx) | |
928 | { | |
929 | return find_userfault_in(&ctx->fault_pending_wqh); | |
930 | } | |
86039bd3 | 931 | |
9cd75c3c PE |
932 | static inline struct userfaultfd_wait_queue *find_userfault_evt( |
933 | struct userfaultfd_ctx *ctx) | |
934 | { | |
935 | return find_userfault_in(&ctx->event_wqh); | |
936 | } | |
937 | ||
076ccb76 | 938 | static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) |
86039bd3 AA |
939 | { |
940 | struct userfaultfd_ctx *ctx = file->private_data; | |
076ccb76 | 941 | __poll_t ret; |
86039bd3 AA |
942 | |
943 | poll_wait(file, &ctx->fd_wqh, wait); | |
944 | ||
945 | switch (ctx->state) { | |
946 | case UFFD_STATE_WAIT_API: | |
a9a08845 | 947 | return EPOLLERR; |
86039bd3 | 948 | case UFFD_STATE_RUNNING: |
ba85c702 AA |
949 | /* |
950 | * poll() never guarantees that read won't block. | |
951 | * userfaults can be waken before they're read(). | |
952 | */ | |
953 | if (unlikely(!(file->f_flags & O_NONBLOCK))) | |
a9a08845 | 954 | return EPOLLERR; |
15b726ef AA |
955 | /* |
956 | * lockless access to see if there are pending faults | |
957 | * __pollwait last action is the add_wait_queue but | |
958 | * the spin_unlock would allow the waitqueue_active to | |
959 | * pass above the actual list_add inside | |
960 | * add_wait_queue critical section. So use a full | |
961 | * memory barrier to serialize the list_add write of | |
962 | * add_wait_queue() with the waitqueue_active read | |
963 | * below. | |
964 | */ | |
965 | ret = 0; | |
966 | smp_mb(); | |
967 | if (waitqueue_active(&ctx->fault_pending_wqh)) | |
a9a08845 | 968 | ret = EPOLLIN; |
9cd75c3c | 969 | else if (waitqueue_active(&ctx->event_wqh)) |
a9a08845 | 970 | ret = EPOLLIN; |
9cd75c3c | 971 | |
86039bd3 AA |
972 | return ret; |
973 | default: | |
8474901a | 974 | WARN_ON_ONCE(1); |
a9a08845 | 975 | return EPOLLERR; |
86039bd3 AA |
976 | } |
977 | } | |
978 | ||
893e26e6 PE |
979 | static const struct file_operations userfaultfd_fops; |
980 | ||
981 | static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, | |
982 | struct userfaultfd_ctx *new, | |
983 | struct uffd_msg *msg) | |
984 | { | |
985 | int fd; | |
893e26e6 | 986 | |
284cd241 EB |
987 | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, |
988 | O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); | |
893e26e6 PE |
989 | if (fd < 0) |
990 | return fd; | |
991 | ||
893e26e6 PE |
992 | msg->arg.reserved.reserved1 = 0; |
993 | msg->arg.fork.ufd = fd; | |
893e26e6 PE |
994 | return 0; |
995 | } | |
996 | ||
86039bd3 | 997 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, |
a9b85f94 | 998 | struct uffd_msg *msg) |
86039bd3 AA |
999 | { |
1000 | ssize_t ret; | |
1001 | DECLARE_WAITQUEUE(wait, current); | |
15b726ef | 1002 | struct userfaultfd_wait_queue *uwq; |
893e26e6 PE |
1003 | /* |
1004 | * Handling fork event requires sleeping operations, so | |
1005 | * we drop the event_wqh lock, then do these ops, then | |
1006 | * lock it back and wake up the waiter. While the lock is | |
1007 | * dropped the ewq may go away so we keep track of it | |
1008 | * carefully. | |
1009 | */ | |
1010 | LIST_HEAD(fork_event); | |
1011 | struct userfaultfd_ctx *fork_nctx = NULL; | |
86039bd3 | 1012 | |
15b726ef | 1013 | /* always take the fd_wqh lock before the fault_pending_wqh lock */ |
ae62c16e | 1014 | spin_lock_irq(&ctx->fd_wqh.lock); |
86039bd3 AA |
1015 | __add_wait_queue(&ctx->fd_wqh, &wait); |
1016 | for (;;) { | |
1017 | set_current_state(TASK_INTERRUPTIBLE); | |
15b726ef AA |
1018 | spin_lock(&ctx->fault_pending_wqh.lock); |
1019 | uwq = find_userfault(ctx); | |
1020 | if (uwq) { | |
2c5b7e1b AA |
1021 | /* |
1022 | * Use a seqcount to repeat the lockless check | |
1023 | * in wake_userfault() to avoid missing | |
1024 | * wakeups because during the refile both | |
1025 | * waitqueue could become empty if this is the | |
1026 | * only userfault. | |
1027 | */ | |
1028 | write_seqcount_begin(&ctx->refile_seq); | |
1029 | ||
86039bd3 | 1030 | /* |
15b726ef AA |
1031 | * The fault_pending_wqh.lock prevents the uwq |
1032 | * to disappear from under us. | |
1033 | * | |
1034 | * Refile this userfault from | |
1035 | * fault_pending_wqh to fault_wqh, it's not | |
1036 | * pending anymore after we read it. | |
1037 | * | |
1038 | * Use list_del() by hand (as | |
1039 | * userfaultfd_wake_function also uses | |
1040 | * list_del_init() by hand) to be sure nobody | |
1041 | * changes __remove_wait_queue() to use | |
1042 | * list_del_init() in turn breaking the | |
1043 | * !list_empty_careful() check in | |
2055da97 | 1044 | * handle_userfault(). The uwq->wq.head list |
15b726ef AA |
1045 | * must never be empty at any time during the |
1046 | * refile, or the waitqueue could disappear | |
1047 | * from under us. The "wait_queue_head_t" | |
1048 | * parameter of __remove_wait_queue() is unused | |
1049 | * anyway. | |
86039bd3 | 1050 | */ |
2055da97 | 1051 | list_del(&uwq->wq.entry); |
c430d1e8 | 1052 | add_wait_queue(&ctx->fault_wqh, &uwq->wq); |
15b726ef | 1053 | |
2c5b7e1b AA |
1054 | write_seqcount_end(&ctx->refile_seq); |
1055 | ||
a9b85f94 AA |
1056 | /* careful to always initialize msg if ret == 0 */ |
1057 | *msg = uwq->msg; | |
15b726ef | 1058 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1059 | ret = 0; |
1060 | break; | |
1061 | } | |
15b726ef | 1062 | spin_unlock(&ctx->fault_pending_wqh.lock); |
9cd75c3c PE |
1063 | |
1064 | spin_lock(&ctx->event_wqh.lock); | |
1065 | uwq = find_userfault_evt(ctx); | |
1066 | if (uwq) { | |
1067 | *msg = uwq->msg; | |
1068 | ||
893e26e6 PE |
1069 | if (uwq->msg.event == UFFD_EVENT_FORK) { |
1070 | fork_nctx = (struct userfaultfd_ctx *) | |
1071 | (unsigned long) | |
1072 | uwq->msg.arg.reserved.reserved1; | |
2055da97 | 1073 | list_move(&uwq->wq.entry, &fork_event); |
384632e6 AA |
1074 | /* |
1075 | * fork_nctx can be freed as soon as | |
1076 | * we drop the lock, unless we take a | |
1077 | * reference on it. | |
1078 | */ | |
1079 | userfaultfd_ctx_get(fork_nctx); | |
893e26e6 PE |
1080 | spin_unlock(&ctx->event_wqh.lock); |
1081 | ret = 0; | |
1082 | break; | |
1083 | } | |
1084 | ||
9cd75c3c PE |
1085 | userfaultfd_event_complete(ctx, uwq); |
1086 | spin_unlock(&ctx->event_wqh.lock); | |
1087 | ret = 0; | |
1088 | break; | |
1089 | } | |
1090 | spin_unlock(&ctx->event_wqh.lock); | |
1091 | ||
86039bd3 AA |
1092 | if (signal_pending(current)) { |
1093 | ret = -ERESTARTSYS; | |
1094 | break; | |
1095 | } | |
1096 | if (no_wait) { | |
1097 | ret = -EAGAIN; | |
1098 | break; | |
1099 | } | |
ae62c16e | 1100 | spin_unlock_irq(&ctx->fd_wqh.lock); |
86039bd3 | 1101 | schedule(); |
ae62c16e | 1102 | spin_lock_irq(&ctx->fd_wqh.lock); |
86039bd3 AA |
1103 | } |
1104 | __remove_wait_queue(&ctx->fd_wqh, &wait); | |
1105 | __set_current_state(TASK_RUNNING); | |
ae62c16e | 1106 | spin_unlock_irq(&ctx->fd_wqh.lock); |
86039bd3 | 1107 | |
893e26e6 PE |
1108 | if (!ret && msg->event == UFFD_EVENT_FORK) { |
1109 | ret = resolve_userfault_fork(ctx, fork_nctx, msg); | |
cbcfa130 | 1110 | spin_lock_irq(&ctx->event_wqh.lock); |
384632e6 AA |
1111 | if (!list_empty(&fork_event)) { |
1112 | /* | |
1113 | * The fork thread didn't abort, so we can | |
1114 | * drop the temporary refcount. | |
1115 | */ | |
1116 | userfaultfd_ctx_put(fork_nctx); | |
1117 | ||
1118 | uwq = list_first_entry(&fork_event, | |
1119 | typeof(*uwq), | |
1120 | wq.entry); | |
1121 | /* | |
1122 | * If fork_event list wasn't empty and in turn | |
1123 | * the event wasn't already released by fork | |
1124 | * (the event is allocated on fork kernel | |
1125 | * stack), put the event back to its place in | |
1126 | * the event_wq. fork_event head will be freed | |
1127 | * as soon as we return so the event cannot | |
1128 | * stay queued there no matter the current | |
1129 | * "ret" value. | |
1130 | */ | |
1131 | list_del(&uwq->wq.entry); | |
1132 | __add_wait_queue(&ctx->event_wqh, &uwq->wq); | |
893e26e6 | 1133 | |
384632e6 AA |
1134 | /* |
1135 | * Leave the event in the waitqueue and report | |
1136 | * error to userland if we failed to resolve | |
1137 | * the userfault fork. | |
1138 | */ | |
1139 | if (likely(!ret)) | |
893e26e6 | 1140 | userfaultfd_event_complete(ctx, uwq); |
384632e6 AA |
1141 | } else { |
1142 | /* | |
1143 | * Here the fork thread aborted and the | |
1144 | * refcount from the fork thread on fork_nctx | |
1145 | * has already been released. We still hold | |
1146 | * the reference we took before releasing the | |
1147 | * lock above. If resolve_userfault_fork | |
1148 | * failed we've to drop it because the | |
1149 | * fork_nctx has to be freed in such case. If | |
1150 | * it succeeded we'll hold it because the new | |
1151 | * uffd references it. | |
1152 | */ | |
1153 | if (ret) | |
1154 | userfaultfd_ctx_put(fork_nctx); | |
893e26e6 | 1155 | } |
cbcfa130 | 1156 | spin_unlock_irq(&ctx->event_wqh.lock); |
893e26e6 PE |
1157 | } |
1158 | ||
86039bd3 AA |
1159 | return ret; |
1160 | } | |
1161 | ||
1162 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, | |
1163 | size_t count, loff_t *ppos) | |
1164 | { | |
1165 | struct userfaultfd_ctx *ctx = file->private_data; | |
1166 | ssize_t _ret, ret = 0; | |
a9b85f94 | 1167 | struct uffd_msg msg; |
86039bd3 AA |
1168 | int no_wait = file->f_flags & O_NONBLOCK; |
1169 | ||
1170 | if (ctx->state == UFFD_STATE_WAIT_API) | |
1171 | return -EINVAL; | |
86039bd3 AA |
1172 | |
1173 | for (;;) { | |
a9b85f94 | 1174 | if (count < sizeof(msg)) |
86039bd3 | 1175 | return ret ? ret : -EINVAL; |
a9b85f94 | 1176 | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); |
86039bd3 AA |
1177 | if (_ret < 0) |
1178 | return ret ? ret : _ret; | |
a9b85f94 | 1179 | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) |
86039bd3 | 1180 | return ret ? ret : -EFAULT; |
a9b85f94 AA |
1181 | ret += sizeof(msg); |
1182 | buf += sizeof(msg); | |
1183 | count -= sizeof(msg); | |
86039bd3 AA |
1184 | /* |
1185 | * Allow to read more than one fault at time but only | |
1186 | * block if waiting for the very first one. | |
1187 | */ | |
1188 | no_wait = O_NONBLOCK; | |
1189 | } | |
1190 | } | |
1191 | ||
1192 | static void __wake_userfault(struct userfaultfd_ctx *ctx, | |
1193 | struct userfaultfd_wake_range *range) | |
1194 | { | |
cbcfa130 | 1195 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 | 1196 | /* wake all in the range and autoremove */ |
15b726ef | 1197 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
ac5be6b4 | 1198 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, |
15b726ef AA |
1199 | range); |
1200 | if (waitqueue_active(&ctx->fault_wqh)) | |
c430d1e8 | 1201 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); |
cbcfa130 | 1202 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1203 | } |
1204 | ||
1205 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, | |
1206 | struct userfaultfd_wake_range *range) | |
1207 | { | |
2c5b7e1b AA |
1208 | unsigned seq; |
1209 | bool need_wakeup; | |
1210 | ||
86039bd3 AA |
1211 | /* |
1212 | * To be sure waitqueue_active() is not reordered by the CPU | |
1213 | * before the pagetable update, use an explicit SMP memory | |
3e4e28c5 | 1214 | * barrier here. PT lock release or mmap_read_unlock(mm) still |
86039bd3 AA |
1215 | * have release semantics that can allow the |
1216 | * waitqueue_active() to be reordered before the pte update. | |
1217 | */ | |
1218 | smp_mb(); | |
1219 | ||
1220 | /* | |
1221 | * Use waitqueue_active because it's very frequent to | |
1222 | * change the address space atomically even if there are no | |
1223 | * userfaults yet. So we take the spinlock only when we're | |
1224 | * sure we've userfaults to wake. | |
1225 | */ | |
2c5b7e1b AA |
1226 | do { |
1227 | seq = read_seqcount_begin(&ctx->refile_seq); | |
1228 | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || | |
1229 | waitqueue_active(&ctx->fault_wqh); | |
1230 | cond_resched(); | |
1231 | } while (read_seqcount_retry(&ctx->refile_seq, seq)); | |
1232 | if (need_wakeup) | |
86039bd3 AA |
1233 | __wake_userfault(ctx, range); |
1234 | } | |
1235 | ||
1236 | static __always_inline int validate_range(struct mm_struct *mm, | |
7d032574 | 1237 | __u64 *start, __u64 len) |
86039bd3 AA |
1238 | { |
1239 | __u64 task_size = mm->task_size; | |
1240 | ||
7d032574 AK |
1241 | *start = untagged_addr(*start); |
1242 | ||
1243 | if (*start & ~PAGE_MASK) | |
86039bd3 AA |
1244 | return -EINVAL; |
1245 | if (len & ~PAGE_MASK) | |
1246 | return -EINVAL; | |
1247 | if (!len) | |
1248 | return -EINVAL; | |
7d032574 | 1249 | if (*start < mmap_min_addr) |
86039bd3 | 1250 | return -EINVAL; |
7d032574 | 1251 | if (*start >= task_size) |
86039bd3 | 1252 | return -EINVAL; |
7d032574 | 1253 | if (len > task_size - *start) |
86039bd3 AA |
1254 | return -EINVAL; |
1255 | return 0; | |
1256 | } | |
1257 | ||
63b2d417 AA |
1258 | static inline bool vma_can_userfault(struct vm_area_struct *vma, |
1259 | unsigned long vm_flags) | |
ba6907db | 1260 | { |
63b2d417 AA |
1261 | /* FIXME: add WP support to hugetlbfs and shmem */ |
1262 | return vma_is_anonymous(vma) || | |
1263 | ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && | |
1264 | !(vm_flags & VM_UFFD_WP)); | |
ba6907db MR |
1265 | } |
1266 | ||
86039bd3 AA |
1267 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, |
1268 | unsigned long arg) | |
1269 | { | |
1270 | struct mm_struct *mm = ctx->mm; | |
1271 | struct vm_area_struct *vma, *prev, *cur; | |
1272 | int ret; | |
1273 | struct uffdio_register uffdio_register; | |
1274 | struct uffdio_register __user *user_uffdio_register; | |
1275 | unsigned long vm_flags, new_flags; | |
1276 | bool found; | |
ce53e8e6 | 1277 | bool basic_ioctls; |
86039bd3 AA |
1278 | unsigned long start, end, vma_end; |
1279 | ||
1280 | user_uffdio_register = (struct uffdio_register __user *) arg; | |
1281 | ||
1282 | ret = -EFAULT; | |
1283 | if (copy_from_user(&uffdio_register, user_uffdio_register, | |
1284 | sizeof(uffdio_register)-sizeof(__u64))) | |
1285 | goto out; | |
1286 | ||
1287 | ret = -EINVAL; | |
1288 | if (!uffdio_register.mode) | |
1289 | goto out; | |
1290 | if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| | |
1291 | UFFDIO_REGISTER_MODE_WP)) | |
1292 | goto out; | |
1293 | vm_flags = 0; | |
1294 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) | |
1295 | vm_flags |= VM_UFFD_MISSING; | |
63b2d417 | 1296 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) |
86039bd3 | 1297 | vm_flags |= VM_UFFD_WP; |
86039bd3 | 1298 | |
7d032574 | 1299 | ret = validate_range(mm, &uffdio_register.range.start, |
86039bd3 AA |
1300 | uffdio_register.range.len); |
1301 | if (ret) | |
1302 | goto out; | |
1303 | ||
1304 | start = uffdio_register.range.start; | |
1305 | end = start + uffdio_register.range.len; | |
1306 | ||
d2005e3f ON |
1307 | ret = -ENOMEM; |
1308 | if (!mmget_not_zero(mm)) | |
1309 | goto out; | |
1310 | ||
d8ed45c5 | 1311 | mmap_write_lock(mm); |
04f5866e AA |
1312 | if (!mmget_still_valid(mm)) |
1313 | goto out_unlock; | |
86039bd3 | 1314 | vma = find_vma_prev(mm, start, &prev); |
86039bd3 AA |
1315 | if (!vma) |
1316 | goto out_unlock; | |
1317 | ||
1318 | /* check that there's at least one vma in the range */ | |
1319 | ret = -EINVAL; | |
1320 | if (vma->vm_start >= end) | |
1321 | goto out_unlock; | |
1322 | ||
cab350af MK |
1323 | /* |
1324 | * If the first vma contains huge pages, make sure start address | |
1325 | * is aligned to huge page size. | |
1326 | */ | |
1327 | if (is_vm_hugetlb_page(vma)) { | |
1328 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1329 | ||
1330 | if (start & (vma_hpagesize - 1)) | |
1331 | goto out_unlock; | |
1332 | } | |
1333 | ||
86039bd3 AA |
1334 | /* |
1335 | * Search for not compatible vmas. | |
86039bd3 AA |
1336 | */ |
1337 | found = false; | |
ce53e8e6 | 1338 | basic_ioctls = false; |
86039bd3 AA |
1339 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
1340 | cond_resched(); | |
1341 | ||
1342 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1343 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1344 | ||
1345 | /* check not compatible vmas */ | |
1346 | ret = -EINVAL; | |
63b2d417 | 1347 | if (!vma_can_userfault(cur, vm_flags)) |
86039bd3 | 1348 | goto out_unlock; |
29ec9066 AA |
1349 | |
1350 | /* | |
1351 | * UFFDIO_COPY will fill file holes even without | |
1352 | * PROT_WRITE. This check enforces that if this is a | |
1353 | * MAP_SHARED, the process has write permission to the backing | |
1354 | * file. If VM_MAYWRITE is set it also enforces that on a | |
1355 | * MAP_SHARED vma: there is no F_WRITE_SEAL and no further | |
1356 | * F_WRITE_SEAL can be taken until the vma is destroyed. | |
1357 | */ | |
1358 | ret = -EPERM; | |
1359 | if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) | |
1360 | goto out_unlock; | |
1361 | ||
cab350af MK |
1362 | /* |
1363 | * If this vma contains ending address, and huge pages | |
1364 | * check alignment. | |
1365 | */ | |
1366 | if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && | |
1367 | end > cur->vm_start) { | |
1368 | unsigned long vma_hpagesize = vma_kernel_pagesize(cur); | |
1369 | ||
1370 | ret = -EINVAL; | |
1371 | ||
1372 | if (end & (vma_hpagesize - 1)) | |
1373 | goto out_unlock; | |
1374 | } | |
63b2d417 AA |
1375 | if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) |
1376 | goto out_unlock; | |
86039bd3 AA |
1377 | |
1378 | /* | |
1379 | * Check that this vma isn't already owned by a | |
1380 | * different userfaultfd. We can't allow more than one | |
1381 | * userfaultfd to own a single vma simultaneously or we | |
1382 | * wouldn't know which one to deliver the userfaults to. | |
1383 | */ | |
1384 | ret = -EBUSY; | |
1385 | if (cur->vm_userfaultfd_ctx.ctx && | |
1386 | cur->vm_userfaultfd_ctx.ctx != ctx) | |
1387 | goto out_unlock; | |
1388 | ||
cab350af MK |
1389 | /* |
1390 | * Note vmas containing huge pages | |
1391 | */ | |
ce53e8e6 MR |
1392 | if (is_vm_hugetlb_page(cur)) |
1393 | basic_ioctls = true; | |
cab350af | 1394 | |
86039bd3 AA |
1395 | found = true; |
1396 | } | |
1397 | BUG_ON(!found); | |
1398 | ||
1399 | if (vma->vm_start < start) | |
1400 | prev = vma; | |
1401 | ||
1402 | ret = 0; | |
1403 | do { | |
1404 | cond_resched(); | |
1405 | ||
63b2d417 | 1406 | BUG_ON(!vma_can_userfault(vma, vm_flags)); |
86039bd3 AA |
1407 | BUG_ON(vma->vm_userfaultfd_ctx.ctx && |
1408 | vma->vm_userfaultfd_ctx.ctx != ctx); | |
29ec9066 | 1409 | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
86039bd3 AA |
1410 | |
1411 | /* | |
1412 | * Nothing to do: this vma is already registered into this | |
1413 | * userfaultfd and with the right tracking mode too. | |
1414 | */ | |
1415 | if (vma->vm_userfaultfd_ctx.ctx == ctx && | |
1416 | (vma->vm_flags & vm_flags) == vm_flags) | |
1417 | goto skip; | |
1418 | ||
1419 | if (vma->vm_start > start) | |
1420 | start = vma->vm_start; | |
1421 | vma_end = min(end, vma->vm_end); | |
1422 | ||
9d4678eb AA |
1423 | new_flags = (vma->vm_flags & |
1424 | ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; | |
86039bd3 AA |
1425 | prev = vma_merge(mm, prev, start, vma_end, new_flags, |
1426 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1427 | vma_policy(vma), | |
1428 | ((struct vm_userfaultfd_ctx){ ctx })); | |
1429 | if (prev) { | |
1430 | vma = prev; | |
1431 | goto next; | |
1432 | } | |
1433 | if (vma->vm_start < start) { | |
1434 | ret = split_vma(mm, vma, start, 1); | |
1435 | if (ret) | |
1436 | break; | |
1437 | } | |
1438 | if (vma->vm_end > end) { | |
1439 | ret = split_vma(mm, vma, end, 0); | |
1440 | if (ret) | |
1441 | break; | |
1442 | } | |
1443 | next: | |
1444 | /* | |
1445 | * In the vma_merge() successful mprotect-like case 8: | |
1446 | * the next vma was merged into the current one and | |
1447 | * the current one has not been updated yet. | |
1448 | */ | |
1449 | vma->vm_flags = new_flags; | |
1450 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
1451 | ||
1452 | skip: | |
1453 | prev = vma; | |
1454 | start = vma->vm_end; | |
1455 | vma = vma->vm_next; | |
1456 | } while (vma && vma->vm_start < end); | |
1457 | out_unlock: | |
d8ed45c5 | 1458 | mmap_write_unlock(mm); |
d2005e3f | 1459 | mmput(mm); |
86039bd3 | 1460 | if (!ret) { |
14819305 PX |
1461 | __u64 ioctls_out; |
1462 | ||
1463 | ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : | |
1464 | UFFD_API_RANGE_IOCTLS; | |
1465 | ||
1466 | /* | |
1467 | * Declare the WP ioctl only if the WP mode is | |
1468 | * specified and all checks passed with the range | |
1469 | */ | |
1470 | if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) | |
1471 | ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); | |
1472 | ||
86039bd3 AA |
1473 | /* |
1474 | * Now that we scanned all vmas we can already tell | |
1475 | * userland which ioctls methods are guaranteed to | |
1476 | * succeed on this range. | |
1477 | */ | |
14819305 | 1478 | if (put_user(ioctls_out, &user_uffdio_register->ioctls)) |
86039bd3 AA |
1479 | ret = -EFAULT; |
1480 | } | |
1481 | out: | |
1482 | return ret; | |
1483 | } | |
1484 | ||
1485 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, | |
1486 | unsigned long arg) | |
1487 | { | |
1488 | struct mm_struct *mm = ctx->mm; | |
1489 | struct vm_area_struct *vma, *prev, *cur; | |
1490 | int ret; | |
1491 | struct uffdio_range uffdio_unregister; | |
1492 | unsigned long new_flags; | |
1493 | bool found; | |
1494 | unsigned long start, end, vma_end; | |
1495 | const void __user *buf = (void __user *)arg; | |
1496 | ||
1497 | ret = -EFAULT; | |
1498 | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) | |
1499 | goto out; | |
1500 | ||
7d032574 | 1501 | ret = validate_range(mm, &uffdio_unregister.start, |
86039bd3 AA |
1502 | uffdio_unregister.len); |
1503 | if (ret) | |
1504 | goto out; | |
1505 | ||
1506 | start = uffdio_unregister.start; | |
1507 | end = start + uffdio_unregister.len; | |
1508 | ||
d2005e3f ON |
1509 | ret = -ENOMEM; |
1510 | if (!mmget_not_zero(mm)) | |
1511 | goto out; | |
1512 | ||
d8ed45c5 | 1513 | mmap_write_lock(mm); |
04f5866e AA |
1514 | if (!mmget_still_valid(mm)) |
1515 | goto out_unlock; | |
86039bd3 | 1516 | vma = find_vma_prev(mm, start, &prev); |
86039bd3 AA |
1517 | if (!vma) |
1518 | goto out_unlock; | |
1519 | ||
1520 | /* check that there's at least one vma in the range */ | |
1521 | ret = -EINVAL; | |
1522 | if (vma->vm_start >= end) | |
1523 | goto out_unlock; | |
1524 | ||
cab350af MK |
1525 | /* |
1526 | * If the first vma contains huge pages, make sure start address | |
1527 | * is aligned to huge page size. | |
1528 | */ | |
1529 | if (is_vm_hugetlb_page(vma)) { | |
1530 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1531 | ||
1532 | if (start & (vma_hpagesize - 1)) | |
1533 | goto out_unlock; | |
1534 | } | |
1535 | ||
86039bd3 AA |
1536 | /* |
1537 | * Search for not compatible vmas. | |
86039bd3 AA |
1538 | */ |
1539 | found = false; | |
1540 | ret = -EINVAL; | |
1541 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | |
1542 | cond_resched(); | |
1543 | ||
1544 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1545 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1546 | ||
1547 | /* | |
1548 | * Check not compatible vmas, not strictly required | |
1549 | * here as not compatible vmas cannot have an | |
1550 | * userfaultfd_ctx registered on them, but this | |
1551 | * provides for more strict behavior to notice | |
1552 | * unregistration errors. | |
1553 | */ | |
63b2d417 | 1554 | if (!vma_can_userfault(cur, cur->vm_flags)) |
86039bd3 AA |
1555 | goto out_unlock; |
1556 | ||
1557 | found = true; | |
1558 | } | |
1559 | BUG_ON(!found); | |
1560 | ||
1561 | if (vma->vm_start < start) | |
1562 | prev = vma; | |
1563 | ||
1564 | ret = 0; | |
1565 | do { | |
1566 | cond_resched(); | |
1567 | ||
63b2d417 | 1568 | BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); |
86039bd3 AA |
1569 | |
1570 | /* | |
1571 | * Nothing to do: this vma is already registered into this | |
1572 | * userfaultfd and with the right tracking mode too. | |
1573 | */ | |
1574 | if (!vma->vm_userfaultfd_ctx.ctx) | |
1575 | goto skip; | |
1576 | ||
01e881f5 AA |
1577 | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
1578 | ||
86039bd3 AA |
1579 | if (vma->vm_start > start) |
1580 | start = vma->vm_start; | |
1581 | vma_end = min(end, vma->vm_end); | |
1582 | ||
09fa5296 AA |
1583 | if (userfaultfd_missing(vma)) { |
1584 | /* | |
1585 | * Wake any concurrent pending userfault while | |
1586 | * we unregister, so they will not hang | |
1587 | * permanently and it avoids userland to call | |
1588 | * UFFDIO_WAKE explicitly. | |
1589 | */ | |
1590 | struct userfaultfd_wake_range range; | |
1591 | range.start = start; | |
1592 | range.len = vma_end - start; | |
1593 | wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); | |
1594 | } | |
1595 | ||
86039bd3 AA |
1596 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); |
1597 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
1598 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1599 | vma_policy(vma), | |
1600 | NULL_VM_UFFD_CTX); | |
1601 | if (prev) { | |
1602 | vma = prev; | |
1603 | goto next; | |
1604 | } | |
1605 | if (vma->vm_start < start) { | |
1606 | ret = split_vma(mm, vma, start, 1); | |
1607 | if (ret) | |
1608 | break; | |
1609 | } | |
1610 | if (vma->vm_end > end) { | |
1611 | ret = split_vma(mm, vma, end, 0); | |
1612 | if (ret) | |
1613 | break; | |
1614 | } | |
1615 | next: | |
1616 | /* | |
1617 | * In the vma_merge() successful mprotect-like case 8: | |
1618 | * the next vma was merged into the current one and | |
1619 | * the current one has not been updated yet. | |
1620 | */ | |
1621 | vma->vm_flags = new_flags; | |
1622 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
1623 | ||
1624 | skip: | |
1625 | prev = vma; | |
1626 | start = vma->vm_end; | |
1627 | vma = vma->vm_next; | |
1628 | } while (vma && vma->vm_start < end); | |
1629 | out_unlock: | |
d8ed45c5 | 1630 | mmap_write_unlock(mm); |
d2005e3f | 1631 | mmput(mm); |
86039bd3 AA |
1632 | out: |
1633 | return ret; | |
1634 | } | |
1635 | ||
1636 | /* | |
ba85c702 AA |
1637 | * userfaultfd_wake may be used in combination with the |
1638 | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. | |
86039bd3 AA |
1639 | */ |
1640 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, | |
1641 | unsigned long arg) | |
1642 | { | |
1643 | int ret; | |
1644 | struct uffdio_range uffdio_wake; | |
1645 | struct userfaultfd_wake_range range; | |
1646 | const void __user *buf = (void __user *)arg; | |
1647 | ||
1648 | ret = -EFAULT; | |
1649 | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) | |
1650 | goto out; | |
1651 | ||
7d032574 | 1652 | ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); |
86039bd3 AA |
1653 | if (ret) |
1654 | goto out; | |
1655 | ||
1656 | range.start = uffdio_wake.start; | |
1657 | range.len = uffdio_wake.len; | |
1658 | ||
1659 | /* | |
1660 | * len == 0 means wake all and we don't want to wake all here, | |
1661 | * so check it again to be sure. | |
1662 | */ | |
1663 | VM_BUG_ON(!range.len); | |
1664 | ||
1665 | wake_userfault(ctx, &range); | |
1666 | ret = 0; | |
1667 | ||
1668 | out: | |
1669 | return ret; | |
1670 | } | |
1671 | ||
ad465cae AA |
1672 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, |
1673 | unsigned long arg) | |
1674 | { | |
1675 | __s64 ret; | |
1676 | struct uffdio_copy uffdio_copy; | |
1677 | struct uffdio_copy __user *user_uffdio_copy; | |
1678 | struct userfaultfd_wake_range range; | |
1679 | ||
1680 | user_uffdio_copy = (struct uffdio_copy __user *) arg; | |
1681 | ||
df2cc96e MR |
1682 | ret = -EAGAIN; |
1683 | if (READ_ONCE(ctx->mmap_changing)) | |
1684 | goto out; | |
1685 | ||
ad465cae AA |
1686 | ret = -EFAULT; |
1687 | if (copy_from_user(&uffdio_copy, user_uffdio_copy, | |
1688 | /* don't copy "copy" last field */ | |
1689 | sizeof(uffdio_copy)-sizeof(__s64))) | |
1690 | goto out; | |
1691 | ||
7d032574 | 1692 | ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); |
ad465cae AA |
1693 | if (ret) |
1694 | goto out; | |
1695 | /* | |
1696 | * double check for wraparound just in case. copy_from_user() | |
1697 | * will later check uffdio_copy.src + uffdio_copy.len to fit | |
1698 | * in the userland range. | |
1699 | */ | |
1700 | ret = -EINVAL; | |
1701 | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) | |
1702 | goto out; | |
72981e0e | 1703 | if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) |
ad465cae | 1704 | goto out; |
d2005e3f ON |
1705 | if (mmget_not_zero(ctx->mm)) { |
1706 | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, | |
72981e0e AA |
1707 | uffdio_copy.len, &ctx->mmap_changing, |
1708 | uffdio_copy.mode); | |
d2005e3f | 1709 | mmput(ctx->mm); |
96333187 | 1710 | } else { |
e86b298b | 1711 | return -ESRCH; |
d2005e3f | 1712 | } |
ad465cae AA |
1713 | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) |
1714 | return -EFAULT; | |
1715 | if (ret < 0) | |
1716 | goto out; | |
1717 | BUG_ON(!ret); | |
1718 | /* len == 0 would wake all */ | |
1719 | range.len = ret; | |
1720 | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { | |
1721 | range.start = uffdio_copy.dst; | |
1722 | wake_userfault(ctx, &range); | |
1723 | } | |
1724 | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; | |
1725 | out: | |
1726 | return ret; | |
1727 | } | |
1728 | ||
1729 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, | |
1730 | unsigned long arg) | |
1731 | { | |
1732 | __s64 ret; | |
1733 | struct uffdio_zeropage uffdio_zeropage; | |
1734 | struct uffdio_zeropage __user *user_uffdio_zeropage; | |
1735 | struct userfaultfd_wake_range range; | |
1736 | ||
1737 | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; | |
1738 | ||
df2cc96e MR |
1739 | ret = -EAGAIN; |
1740 | if (READ_ONCE(ctx->mmap_changing)) | |
1741 | goto out; | |
1742 | ||
ad465cae AA |
1743 | ret = -EFAULT; |
1744 | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, | |
1745 | /* don't copy "zeropage" last field */ | |
1746 | sizeof(uffdio_zeropage)-sizeof(__s64))) | |
1747 | goto out; | |
1748 | ||
7d032574 | 1749 | ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, |
ad465cae AA |
1750 | uffdio_zeropage.range.len); |
1751 | if (ret) | |
1752 | goto out; | |
1753 | ret = -EINVAL; | |
1754 | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) | |
1755 | goto out; | |
1756 | ||
d2005e3f ON |
1757 | if (mmget_not_zero(ctx->mm)) { |
1758 | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, | |
df2cc96e MR |
1759 | uffdio_zeropage.range.len, |
1760 | &ctx->mmap_changing); | |
d2005e3f | 1761 | mmput(ctx->mm); |
9d95aa4b | 1762 | } else { |
e86b298b | 1763 | return -ESRCH; |
d2005e3f | 1764 | } |
ad465cae AA |
1765 | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) |
1766 | return -EFAULT; | |
1767 | if (ret < 0) | |
1768 | goto out; | |
1769 | /* len == 0 would wake all */ | |
1770 | BUG_ON(!ret); | |
1771 | range.len = ret; | |
1772 | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { | |
1773 | range.start = uffdio_zeropage.range.start; | |
1774 | wake_userfault(ctx, &range); | |
1775 | } | |
1776 | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; | |
1777 | out: | |
1778 | return ret; | |
1779 | } | |
1780 | ||
63b2d417 AA |
1781 | static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, |
1782 | unsigned long arg) | |
1783 | { | |
1784 | int ret; | |
1785 | struct uffdio_writeprotect uffdio_wp; | |
1786 | struct uffdio_writeprotect __user *user_uffdio_wp; | |
1787 | struct userfaultfd_wake_range range; | |
23080e27 | 1788 | bool mode_wp, mode_dontwake; |
63b2d417 AA |
1789 | |
1790 | if (READ_ONCE(ctx->mmap_changing)) | |
1791 | return -EAGAIN; | |
1792 | ||
1793 | user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; | |
1794 | ||
1795 | if (copy_from_user(&uffdio_wp, user_uffdio_wp, | |
1796 | sizeof(struct uffdio_writeprotect))) | |
1797 | return -EFAULT; | |
1798 | ||
1799 | ret = validate_range(ctx->mm, &uffdio_wp.range.start, | |
1800 | uffdio_wp.range.len); | |
1801 | if (ret) | |
1802 | return ret; | |
1803 | ||
1804 | if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | | |
1805 | UFFDIO_WRITEPROTECT_MODE_WP)) | |
1806 | return -EINVAL; | |
23080e27 PX |
1807 | |
1808 | mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; | |
1809 | mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; | |
1810 | ||
1811 | if (mode_wp && mode_dontwake) | |
63b2d417 AA |
1812 | return -EINVAL; |
1813 | ||
1814 | ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, | |
23080e27 | 1815 | uffdio_wp.range.len, mode_wp, |
63b2d417 AA |
1816 | &ctx->mmap_changing); |
1817 | if (ret) | |
1818 | return ret; | |
1819 | ||
23080e27 | 1820 | if (!mode_wp && !mode_dontwake) { |
63b2d417 AA |
1821 | range.start = uffdio_wp.range.start; |
1822 | range.len = uffdio_wp.range.len; | |
1823 | wake_userfault(ctx, &range); | |
1824 | } | |
1825 | return ret; | |
1826 | } | |
1827 | ||
9cd75c3c PE |
1828 | static inline unsigned int uffd_ctx_features(__u64 user_features) |
1829 | { | |
1830 | /* | |
1831 | * For the current set of features the bits just coincide | |
1832 | */ | |
1833 | return (unsigned int)user_features; | |
1834 | } | |
1835 | ||
86039bd3 AA |
1836 | /* |
1837 | * userland asks for a certain API version and we return which bits | |
1838 | * and ioctl commands are implemented in this kernel for such API | |
1839 | * version or -EINVAL if unknown. | |
1840 | */ | |
1841 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, | |
1842 | unsigned long arg) | |
1843 | { | |
1844 | struct uffdio_api uffdio_api; | |
1845 | void __user *buf = (void __user *)arg; | |
1846 | int ret; | |
65603144 | 1847 | __u64 features; |
86039bd3 AA |
1848 | |
1849 | ret = -EINVAL; | |
1850 | if (ctx->state != UFFD_STATE_WAIT_API) | |
1851 | goto out; | |
1852 | ret = -EFAULT; | |
a9b85f94 | 1853 | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) |
86039bd3 | 1854 | goto out; |
65603144 | 1855 | features = uffdio_api.features; |
3c1c24d9 MR |
1856 | ret = -EINVAL; |
1857 | if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) | |
1858 | goto err_out; | |
1859 | ret = -EPERM; | |
1860 | if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) | |
1861 | goto err_out; | |
65603144 AA |
1862 | /* report all available features and ioctls to userland */ |
1863 | uffdio_api.features = UFFD_API_FEATURES; | |
86039bd3 AA |
1864 | uffdio_api.ioctls = UFFD_API_IOCTLS; |
1865 | ret = -EFAULT; | |
1866 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1867 | goto out; | |
1868 | ctx->state = UFFD_STATE_RUNNING; | |
65603144 AA |
1869 | /* only enable the requested features for this uffd context */ |
1870 | ctx->features = uffd_ctx_features(features); | |
86039bd3 AA |
1871 | ret = 0; |
1872 | out: | |
1873 | return ret; | |
3c1c24d9 MR |
1874 | err_out: |
1875 | memset(&uffdio_api, 0, sizeof(uffdio_api)); | |
1876 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1877 | ret = -EFAULT; | |
1878 | goto out; | |
86039bd3 AA |
1879 | } |
1880 | ||
1881 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, | |
1882 | unsigned long arg) | |
1883 | { | |
1884 | int ret = -EINVAL; | |
1885 | struct userfaultfd_ctx *ctx = file->private_data; | |
1886 | ||
e6485a47 AA |
1887 | if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) |
1888 | return -EINVAL; | |
1889 | ||
86039bd3 AA |
1890 | switch(cmd) { |
1891 | case UFFDIO_API: | |
1892 | ret = userfaultfd_api(ctx, arg); | |
1893 | break; | |
1894 | case UFFDIO_REGISTER: | |
1895 | ret = userfaultfd_register(ctx, arg); | |
1896 | break; | |
1897 | case UFFDIO_UNREGISTER: | |
1898 | ret = userfaultfd_unregister(ctx, arg); | |
1899 | break; | |
1900 | case UFFDIO_WAKE: | |
1901 | ret = userfaultfd_wake(ctx, arg); | |
1902 | break; | |
ad465cae AA |
1903 | case UFFDIO_COPY: |
1904 | ret = userfaultfd_copy(ctx, arg); | |
1905 | break; | |
1906 | case UFFDIO_ZEROPAGE: | |
1907 | ret = userfaultfd_zeropage(ctx, arg); | |
1908 | break; | |
63b2d417 AA |
1909 | case UFFDIO_WRITEPROTECT: |
1910 | ret = userfaultfd_writeprotect(ctx, arg); | |
1911 | break; | |
86039bd3 AA |
1912 | } |
1913 | return ret; | |
1914 | } | |
1915 | ||
1916 | #ifdef CONFIG_PROC_FS | |
1917 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) | |
1918 | { | |
1919 | struct userfaultfd_ctx *ctx = f->private_data; | |
ac6424b9 | 1920 | wait_queue_entry_t *wq; |
86039bd3 AA |
1921 | unsigned long pending = 0, total = 0; |
1922 | ||
cbcfa130 | 1923 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
2055da97 | 1924 | list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { |
15b726ef AA |
1925 | pending++; |
1926 | total++; | |
1927 | } | |
2055da97 | 1928 | list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { |
86039bd3 AA |
1929 | total++; |
1930 | } | |
cbcfa130 | 1931 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1932 | |
1933 | /* | |
1934 | * If more protocols will be added, there will be all shown | |
1935 | * separated by a space. Like this: | |
1936 | * protocols: aa:... bb:... | |
1937 | */ | |
1938 | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", | |
045098e9 | 1939 | pending, total, UFFD_API, ctx->features, |
86039bd3 AA |
1940 | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); |
1941 | } | |
1942 | #endif | |
1943 | ||
1944 | static const struct file_operations userfaultfd_fops = { | |
1945 | #ifdef CONFIG_PROC_FS | |
1946 | .show_fdinfo = userfaultfd_show_fdinfo, | |
1947 | #endif | |
1948 | .release = userfaultfd_release, | |
1949 | .poll = userfaultfd_poll, | |
1950 | .read = userfaultfd_read, | |
1951 | .unlocked_ioctl = userfaultfd_ioctl, | |
1832f2d8 | 1952 | .compat_ioctl = compat_ptr_ioctl, |
86039bd3 AA |
1953 | .llseek = noop_llseek, |
1954 | }; | |
1955 | ||
3004ec9c AA |
1956 | static void init_once_userfaultfd_ctx(void *mem) |
1957 | { | |
1958 | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; | |
1959 | ||
1960 | init_waitqueue_head(&ctx->fault_pending_wqh); | |
1961 | init_waitqueue_head(&ctx->fault_wqh); | |
9cd75c3c | 1962 | init_waitqueue_head(&ctx->event_wqh); |
3004ec9c | 1963 | init_waitqueue_head(&ctx->fd_wqh); |
2ca97ac8 | 1964 | seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); |
3004ec9c AA |
1965 | } |
1966 | ||
284cd241 | 1967 | SYSCALL_DEFINE1(userfaultfd, int, flags) |
86039bd3 | 1968 | { |
86039bd3 | 1969 | struct userfaultfd_ctx *ctx; |
284cd241 | 1970 | int fd; |
86039bd3 | 1971 | |
cefdca0a PX |
1972 | if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) |
1973 | return -EPERM; | |
1974 | ||
86039bd3 AA |
1975 | BUG_ON(!current->mm); |
1976 | ||
1977 | /* Check the UFFD_* constants for consistency. */ | |
1978 | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); | |
1979 | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); | |
1980 | ||
86039bd3 | 1981 | if (flags & ~UFFD_SHARED_FCNTL_FLAGS) |
284cd241 | 1982 | return -EINVAL; |
86039bd3 | 1983 | |
3004ec9c | 1984 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
86039bd3 | 1985 | if (!ctx) |
284cd241 | 1986 | return -ENOMEM; |
86039bd3 | 1987 | |
ca880420 | 1988 | refcount_set(&ctx->refcount, 1); |
86039bd3 | 1989 | ctx->flags = flags; |
9cd75c3c | 1990 | ctx->features = 0; |
86039bd3 AA |
1991 | ctx->state = UFFD_STATE_WAIT_API; |
1992 | ctx->released = false; | |
df2cc96e | 1993 | ctx->mmap_changing = false; |
86039bd3 AA |
1994 | ctx->mm = current->mm; |
1995 | /* prevent the mm struct to be freed */ | |
f1f10076 | 1996 | mmgrab(ctx->mm); |
86039bd3 | 1997 | |
284cd241 EB |
1998 | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, |
1999 | O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); | |
2000 | if (fd < 0) { | |
d2005e3f | 2001 | mmdrop(ctx->mm); |
3004ec9c | 2002 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
c03e946f | 2003 | } |
86039bd3 | 2004 | return fd; |
86039bd3 | 2005 | } |
3004ec9c AA |
2006 | |
2007 | static int __init userfaultfd_init(void) | |
2008 | { | |
2009 | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", | |
2010 | sizeof(struct userfaultfd_ctx), | |
2011 | 0, | |
2012 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | |
2013 | init_once_userfaultfd_ctx); | |
2014 | return 0; | |
2015 | } | |
2016 | __initcall(userfaultfd_init); |