]>
Commit | Line | Data |
---|---|---|
20c8ccb1 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
86039bd3 AA |
2 | /* |
3 | * fs/userfaultfd.c | |
4 | * | |
5 | * Copyright (C) 2007 Davide Libenzi <[email protected]> | |
6 | * Copyright (C) 2008-2009 Red Hat, Inc. | |
7 | * Copyright (C) 2015 Red Hat, Inc. | |
8 | * | |
86039bd3 AA |
9 | * Some part derived from fs/eventfd.c (anon inode setup) and |
10 | * mm/ksm.c (mm hashing). | |
11 | */ | |
12 | ||
9cd75c3c | 13 | #include <linux/list.h> |
86039bd3 | 14 | #include <linux/hashtable.h> |
174cd4b1 | 15 | #include <linux/sched/signal.h> |
6e84f315 | 16 | #include <linux/sched/mm.h> |
86039bd3 AA |
17 | #include <linux/mm.h> |
18 | #include <linux/poll.h> | |
19 | #include <linux/slab.h> | |
20 | #include <linux/seq_file.h> | |
21 | #include <linux/file.h> | |
22 | #include <linux/bug.h> | |
23 | #include <linux/anon_inodes.h> | |
24 | #include <linux/syscalls.h> | |
25 | #include <linux/userfaultfd_k.h> | |
26 | #include <linux/mempolicy.h> | |
27 | #include <linux/ioctl.h> | |
28 | #include <linux/security.h> | |
cab350af | 29 | #include <linux/hugetlb.h> |
86039bd3 | 30 | |
cefdca0a PX |
31 | int sysctl_unprivileged_userfaultfd __read_mostly = 1; |
32 | ||
3004ec9c AA |
33 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; |
34 | ||
86039bd3 AA |
35 | enum userfaultfd_state { |
36 | UFFD_STATE_WAIT_API, | |
37 | UFFD_STATE_RUNNING, | |
38 | }; | |
39 | ||
3004ec9c AA |
40 | /* |
41 | * Start with fault_pending_wqh and fault_wqh so they're more likely | |
42 | * to be in the same cacheline. | |
cbcfa130 EB |
43 | * |
44 | * Locking order: | |
45 | * fd_wqh.lock | |
46 | * fault_pending_wqh.lock | |
47 | * fault_wqh.lock | |
48 | * event_wqh.lock | |
49 | * | |
50 | * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, | |
51 | * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's | |
52 | * also taken in IRQ context. | |
3004ec9c | 53 | */ |
86039bd3 | 54 | struct userfaultfd_ctx { |
15b726ef AA |
55 | /* waitqueue head for the pending (i.e. not read) userfaults */ |
56 | wait_queue_head_t fault_pending_wqh; | |
57 | /* waitqueue head for the userfaults */ | |
86039bd3 AA |
58 | wait_queue_head_t fault_wqh; |
59 | /* waitqueue head for the pseudo fd to wakeup poll/read */ | |
60 | wait_queue_head_t fd_wqh; | |
9cd75c3c PE |
61 | /* waitqueue head for events */ |
62 | wait_queue_head_t event_wqh; | |
2c5b7e1b AA |
63 | /* a refile sequence protected by fault_pending_wqh lock */ |
64 | struct seqcount refile_seq; | |
3004ec9c | 65 | /* pseudo fd refcounting */ |
ca880420 | 66 | refcount_t refcount; |
86039bd3 AA |
67 | /* userfaultfd syscall flags */ |
68 | unsigned int flags; | |
9cd75c3c PE |
69 | /* features requested from the userspace */ |
70 | unsigned int features; | |
86039bd3 AA |
71 | /* state machine */ |
72 | enum userfaultfd_state state; | |
73 | /* released */ | |
74 | bool released; | |
df2cc96e MR |
75 | /* memory mappings are changing because of non-cooperative event */ |
76 | bool mmap_changing; | |
86039bd3 AA |
77 | /* mm with one ore more vmas attached to this userfaultfd_ctx */ |
78 | struct mm_struct *mm; | |
79 | }; | |
80 | ||
893e26e6 PE |
81 | struct userfaultfd_fork_ctx { |
82 | struct userfaultfd_ctx *orig; | |
83 | struct userfaultfd_ctx *new; | |
84 | struct list_head list; | |
85 | }; | |
86 | ||
897ab3e0 MR |
87 | struct userfaultfd_unmap_ctx { |
88 | struct userfaultfd_ctx *ctx; | |
89 | unsigned long start; | |
90 | unsigned long end; | |
91 | struct list_head list; | |
92 | }; | |
93 | ||
86039bd3 | 94 | struct userfaultfd_wait_queue { |
a9b85f94 | 95 | struct uffd_msg msg; |
ac6424b9 | 96 | wait_queue_entry_t wq; |
86039bd3 | 97 | struct userfaultfd_ctx *ctx; |
15a77c6f | 98 | bool waken; |
86039bd3 AA |
99 | }; |
100 | ||
101 | struct userfaultfd_wake_range { | |
102 | unsigned long start; | |
103 | unsigned long len; | |
104 | }; | |
105 | ||
ac6424b9 | 106 | static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, |
86039bd3 AA |
107 | int wake_flags, void *key) |
108 | { | |
109 | struct userfaultfd_wake_range *range = key; | |
110 | int ret; | |
111 | struct userfaultfd_wait_queue *uwq; | |
112 | unsigned long start, len; | |
113 | ||
114 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); | |
115 | ret = 0; | |
86039bd3 AA |
116 | /* len == 0 means wake all */ |
117 | start = range->start; | |
118 | len = range->len; | |
a9b85f94 AA |
119 | if (len && (start > uwq->msg.arg.pagefault.address || |
120 | start + len <= uwq->msg.arg.pagefault.address)) | |
86039bd3 | 121 | goto out; |
15a77c6f AA |
122 | WRITE_ONCE(uwq->waken, true); |
123 | /* | |
a9668cd6 PZ |
124 | * The Program-Order guarantees provided by the scheduler |
125 | * ensure uwq->waken is visible before the task is woken. | |
15a77c6f | 126 | */ |
86039bd3 | 127 | ret = wake_up_state(wq->private, mode); |
a9668cd6 | 128 | if (ret) { |
86039bd3 AA |
129 | /* |
130 | * Wake only once, autoremove behavior. | |
131 | * | |
a9668cd6 PZ |
132 | * After the effect of list_del_init is visible to the other |
133 | * CPUs, the waitqueue may disappear from under us, see the | |
134 | * !list_empty_careful() in handle_userfault(). | |
135 | * | |
136 | * try_to_wake_up() has an implicit smp_mb(), and the | |
137 | * wq->private is read before calling the extern function | |
138 | * "wake_up_state" (which in turns calls try_to_wake_up). | |
86039bd3 | 139 | */ |
2055da97 | 140 | list_del_init(&wq->entry); |
a9668cd6 | 141 | } |
86039bd3 AA |
142 | out: |
143 | return ret; | |
144 | } | |
145 | ||
146 | /** | |
147 | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd | |
148 | * context. | |
149 | * @ctx: [in] Pointer to the userfaultfd context. | |
86039bd3 AA |
150 | */ |
151 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) | |
152 | { | |
ca880420 | 153 | refcount_inc(&ctx->refcount); |
86039bd3 AA |
154 | } |
155 | ||
156 | /** | |
157 | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd | |
158 | * context. | |
159 | * @ctx: [in] Pointer to userfaultfd context. | |
160 | * | |
161 | * The userfaultfd context reference must have been previously acquired either | |
162 | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). | |
163 | */ | |
164 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) | |
165 | { | |
ca880420 | 166 | if (refcount_dec_and_test(&ctx->refcount)) { |
86039bd3 AA |
167 | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); |
168 | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); | |
169 | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); | |
170 | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); | |
9cd75c3c PE |
171 | VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); |
172 | VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); | |
86039bd3 AA |
173 | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); |
174 | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); | |
d2005e3f | 175 | mmdrop(ctx->mm); |
3004ec9c | 176 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
86039bd3 AA |
177 | } |
178 | } | |
179 | ||
a9b85f94 | 180 | static inline void msg_init(struct uffd_msg *msg) |
86039bd3 | 181 | { |
a9b85f94 AA |
182 | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); |
183 | /* | |
184 | * Must use memset to zero out the paddings or kernel data is | |
185 | * leaked to userland. | |
186 | */ | |
187 | memset(msg, 0, sizeof(struct uffd_msg)); | |
188 | } | |
189 | ||
190 | static inline struct uffd_msg userfault_msg(unsigned long address, | |
191 | unsigned int flags, | |
9d4ac934 AP |
192 | unsigned long reason, |
193 | unsigned int features) | |
a9b85f94 AA |
194 | { |
195 | struct uffd_msg msg; | |
196 | msg_init(&msg); | |
197 | msg.event = UFFD_EVENT_PAGEFAULT; | |
198 | msg.arg.pagefault.address = address; | |
86039bd3 AA |
199 | if (flags & FAULT_FLAG_WRITE) |
200 | /* | |
a4605a61 | 201 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
a9b85f94 AA |
202 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE |
203 | * was not set in a UFFD_EVENT_PAGEFAULT, it means it | |
204 | * was a read fault, otherwise if set it means it's | |
205 | * a write fault. | |
86039bd3 | 206 | */ |
a9b85f94 | 207 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; |
86039bd3 AA |
208 | if (reason & VM_UFFD_WP) |
209 | /* | |
a9b85f94 AA |
210 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
211 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was | |
212 | * not set in a UFFD_EVENT_PAGEFAULT, it means it was | |
213 | * a missing fault, otherwise if set it means it's a | |
214 | * write protect fault. | |
86039bd3 | 215 | */ |
a9b85f94 | 216 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; |
9d4ac934 | 217 | if (features & UFFD_FEATURE_THREAD_ID) |
a36985d3 | 218 | msg.arg.pagefault.feat.ptid = task_pid_vnr(current); |
a9b85f94 | 219 | return msg; |
86039bd3 AA |
220 | } |
221 | ||
369cd212 MK |
222 | #ifdef CONFIG_HUGETLB_PAGE |
223 | /* | |
224 | * Same functionality as userfaultfd_must_wait below with modifications for | |
225 | * hugepmd ranges. | |
226 | */ | |
227 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
7868a208 | 228 | struct vm_area_struct *vma, |
369cd212 MK |
229 | unsigned long address, |
230 | unsigned long flags, | |
231 | unsigned long reason) | |
232 | { | |
233 | struct mm_struct *mm = ctx->mm; | |
1e2c0436 | 234 | pte_t *ptep, pte; |
369cd212 MK |
235 | bool ret = true; |
236 | ||
237 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
238 | ||
1e2c0436 JF |
239 | ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); |
240 | ||
241 | if (!ptep) | |
369cd212 MK |
242 | goto out; |
243 | ||
244 | ret = false; | |
1e2c0436 | 245 | pte = huge_ptep_get(ptep); |
369cd212 MK |
246 | |
247 | /* | |
248 | * Lockless access: we're in a wait_event so it's ok if it | |
249 | * changes under us. | |
250 | */ | |
1e2c0436 | 251 | if (huge_pte_none(pte)) |
369cd212 | 252 | ret = true; |
1e2c0436 | 253 | if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) |
369cd212 MK |
254 | ret = true; |
255 | out: | |
256 | return ret; | |
257 | } | |
258 | #else | |
259 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, | |
7868a208 | 260 | struct vm_area_struct *vma, |
369cd212 MK |
261 | unsigned long address, |
262 | unsigned long flags, | |
263 | unsigned long reason) | |
264 | { | |
265 | return false; /* should never get here */ | |
266 | } | |
267 | #endif /* CONFIG_HUGETLB_PAGE */ | |
268 | ||
8d2afd96 AA |
269 | /* |
270 | * Verify the pagetables are still not ok after having reigstered into | |
271 | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any | |
272 | * userfault that has already been resolved, if userfaultfd_read and | |
273 | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different | |
274 | * threads. | |
275 | */ | |
276 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, | |
277 | unsigned long address, | |
278 | unsigned long flags, | |
279 | unsigned long reason) | |
280 | { | |
281 | struct mm_struct *mm = ctx->mm; | |
282 | pgd_t *pgd; | |
c2febafc | 283 | p4d_t *p4d; |
8d2afd96 AA |
284 | pud_t *pud; |
285 | pmd_t *pmd, _pmd; | |
286 | pte_t *pte; | |
287 | bool ret = true; | |
288 | ||
289 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); | |
290 | ||
291 | pgd = pgd_offset(mm, address); | |
292 | if (!pgd_present(*pgd)) | |
293 | goto out; | |
c2febafc KS |
294 | p4d = p4d_offset(pgd, address); |
295 | if (!p4d_present(*p4d)) | |
296 | goto out; | |
297 | pud = pud_offset(p4d, address); | |
8d2afd96 AA |
298 | if (!pud_present(*pud)) |
299 | goto out; | |
300 | pmd = pmd_offset(pud, address); | |
301 | /* | |
302 | * READ_ONCE must function as a barrier with narrower scope | |
303 | * and it must be equivalent to: | |
304 | * _pmd = *pmd; barrier(); | |
305 | * | |
306 | * This is to deal with the instability (as in | |
307 | * pmd_trans_unstable) of the pmd. | |
308 | */ | |
309 | _pmd = READ_ONCE(*pmd); | |
a365ac09 | 310 | if (pmd_none(_pmd)) |
8d2afd96 AA |
311 | goto out; |
312 | ||
313 | ret = false; | |
a365ac09 YH |
314 | if (!pmd_present(_pmd)) |
315 | goto out; | |
316 | ||
8d2afd96 AA |
317 | if (pmd_trans_huge(_pmd)) |
318 | goto out; | |
319 | ||
320 | /* | |
321 | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it | |
322 | * and use the standard pte_offset_map() instead of parsing _pmd. | |
323 | */ | |
324 | pte = pte_offset_map(pmd, address); | |
325 | /* | |
326 | * Lockless access: we're in a wait_event so it's ok if it | |
327 | * changes under us. | |
328 | */ | |
329 | if (pte_none(*pte)) | |
330 | ret = true; | |
331 | pte_unmap(pte); | |
332 | ||
333 | out: | |
334 | return ret; | |
335 | } | |
336 | ||
3e69ad08 PX |
337 | /* Should pair with userfaultfd_signal_pending() */ |
338 | static inline long userfaultfd_get_blocking_state(unsigned int flags) | |
339 | { | |
340 | if (flags & FAULT_FLAG_INTERRUPTIBLE) | |
341 | return TASK_INTERRUPTIBLE; | |
342 | ||
343 | if (flags & FAULT_FLAG_KILLABLE) | |
344 | return TASK_KILLABLE; | |
345 | ||
346 | return TASK_UNINTERRUPTIBLE; | |
347 | } | |
348 | ||
349 | /* Should pair with userfaultfd_get_blocking_state() */ | |
350 | static inline bool userfaultfd_signal_pending(unsigned int flags) | |
351 | { | |
352 | if (flags & FAULT_FLAG_INTERRUPTIBLE) | |
353 | return signal_pending(current); | |
354 | ||
355 | if (flags & FAULT_FLAG_KILLABLE) | |
356 | return fatal_signal_pending(current); | |
357 | ||
358 | return false; | |
359 | } | |
360 | ||
86039bd3 AA |
361 | /* |
362 | * The locking rules involved in returning VM_FAULT_RETRY depending on | |
363 | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and | |
364 | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" | |
365 | * recommendation in __lock_page_or_retry is not an understatement. | |
366 | * | |
367 | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released | |
368 | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is | |
369 | * not set. | |
370 | * | |
371 | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not | |
372 | * set, VM_FAULT_RETRY can still be returned if and only if there are | |
373 | * fatal_signal_pending()s, and the mmap_sem must be released before | |
374 | * returning it. | |
375 | */ | |
2b740303 | 376 | vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) |
86039bd3 | 377 | { |
82b0f8c3 | 378 | struct mm_struct *mm = vmf->vma->vm_mm; |
86039bd3 AA |
379 | struct userfaultfd_ctx *ctx; |
380 | struct userfaultfd_wait_queue uwq; | |
2b740303 | 381 | vm_fault_t ret = VM_FAULT_SIGBUS; |
3e69ad08 | 382 | bool must_wait; |
15a77c6f | 383 | long blocking_state; |
86039bd3 | 384 | |
64c2b203 AA |
385 | /* |
386 | * We don't do userfault handling for the final child pid update. | |
387 | * | |
388 | * We also don't do userfault handling during | |
389 | * coredumping. hugetlbfs has the special | |
390 | * follow_hugetlb_page() to skip missing pages in the | |
391 | * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with | |
392 | * the no_page_table() helper in follow_page_mask(), but the | |
393 | * shmem_vm_ops->fault method is invoked even during | |
394 | * coredumping without mmap_sem and it ends up here. | |
395 | */ | |
396 | if (current->flags & (PF_EXITING|PF_DUMPCORE)) | |
397 | goto out; | |
398 | ||
399 | /* | |
400 | * Coredumping runs without mmap_sem so we can only check that | |
401 | * the mmap_sem is held, if PF_DUMPCORE was not set. | |
402 | */ | |
403 | WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); | |
404 | ||
82b0f8c3 | 405 | ctx = vmf->vma->vm_userfaultfd_ctx.ctx; |
86039bd3 | 406 | if (!ctx) |
ba85c702 | 407 | goto out; |
86039bd3 AA |
408 | |
409 | BUG_ON(ctx->mm != mm); | |
410 | ||
411 | VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); | |
412 | VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); | |
413 | ||
2d6d6f5a PS |
414 | if (ctx->features & UFFD_FEATURE_SIGBUS) |
415 | goto out; | |
416 | ||
86039bd3 AA |
417 | /* |
418 | * If it's already released don't get it. This avoids to loop | |
419 | * in __get_user_pages if userfaultfd_release waits on the | |
420 | * caller of handle_userfault to release the mmap_sem. | |
421 | */ | |
6aa7de05 | 422 | if (unlikely(READ_ONCE(ctx->released))) { |
656710a6 AA |
423 | /* |
424 | * Don't return VM_FAULT_SIGBUS in this case, so a non | |
425 | * cooperative manager can close the uffd after the | |
426 | * last UFFDIO_COPY, without risking to trigger an | |
427 | * involuntary SIGBUS if the process was starting the | |
428 | * userfaultfd while the userfaultfd was still armed | |
429 | * (but after the last UFFDIO_COPY). If the uffd | |
430 | * wasn't already closed when the userfault reached | |
431 | * this point, that would normally be solved by | |
432 | * userfaultfd_must_wait returning 'false'. | |
433 | * | |
434 | * If we were to return VM_FAULT_SIGBUS here, the non | |
435 | * cooperative manager would be instead forced to | |
436 | * always call UFFDIO_UNREGISTER before it can safely | |
437 | * close the uffd. | |
438 | */ | |
439 | ret = VM_FAULT_NOPAGE; | |
ba85c702 | 440 | goto out; |
656710a6 | 441 | } |
86039bd3 AA |
442 | |
443 | /* | |
444 | * Check that we can return VM_FAULT_RETRY. | |
445 | * | |
446 | * NOTE: it should become possible to return VM_FAULT_RETRY | |
447 | * even if FAULT_FLAG_TRIED is set without leading to gup() | |
448 | * -EBUSY failures, if the userfaultfd is to be extended for | |
449 | * VM_UFFD_WP tracking and we intend to arm the userfault | |
450 | * without first stopping userland access to the memory. For | |
451 | * VM_UFFD_MISSING userfaults this is enough for now. | |
452 | */ | |
82b0f8c3 | 453 | if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { |
86039bd3 AA |
454 | /* |
455 | * Validate the invariant that nowait must allow retry | |
456 | * to be sure not to return SIGBUS erroneously on | |
457 | * nowait invocations. | |
458 | */ | |
82b0f8c3 | 459 | BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); |
86039bd3 AA |
460 | #ifdef CONFIG_DEBUG_VM |
461 | if (printk_ratelimit()) { | |
462 | printk(KERN_WARNING | |
82b0f8c3 JK |
463 | "FAULT_FLAG_ALLOW_RETRY missing %x\n", |
464 | vmf->flags); | |
86039bd3 AA |
465 | dump_stack(); |
466 | } | |
467 | #endif | |
ba85c702 | 468 | goto out; |
86039bd3 AA |
469 | } |
470 | ||
471 | /* | |
472 | * Handle nowait, not much to do other than tell it to retry | |
473 | * and wait. | |
474 | */ | |
ba85c702 | 475 | ret = VM_FAULT_RETRY; |
82b0f8c3 | 476 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
ba85c702 | 477 | goto out; |
86039bd3 AA |
478 | |
479 | /* take the reference before dropping the mmap_sem */ | |
480 | userfaultfd_ctx_get(ctx); | |
481 | ||
86039bd3 AA |
482 | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); |
483 | uwq.wq.private = current; | |
9d4ac934 AP |
484 | uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, |
485 | ctx->features); | |
86039bd3 | 486 | uwq.ctx = ctx; |
15a77c6f | 487 | uwq.waken = false; |
86039bd3 | 488 | |
3e69ad08 | 489 | blocking_state = userfaultfd_get_blocking_state(vmf->flags); |
dfa37dc3 | 490 | |
cbcfa130 | 491 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
492 | /* |
493 | * After the __add_wait_queue the uwq is visible to userland | |
494 | * through poll/read(). | |
495 | */ | |
15b726ef AA |
496 | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); |
497 | /* | |
498 | * The smp_mb() after __set_current_state prevents the reads | |
499 | * following the spin_unlock to happen before the list_add in | |
500 | * __add_wait_queue. | |
501 | */ | |
15a77c6f | 502 | set_current_state(blocking_state); |
cbcfa130 | 503 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 | 504 | |
369cd212 MK |
505 | if (!is_vm_hugetlb_page(vmf->vma)) |
506 | must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, | |
507 | reason); | |
508 | else | |
7868a208 PA |
509 | must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, |
510 | vmf->address, | |
369cd212 | 511 | vmf->flags, reason); |
8d2afd96 AA |
512 | up_read(&mm->mmap_sem); |
513 | ||
6aa7de05 | 514 | if (likely(must_wait && !READ_ONCE(ctx->released) && |
3e69ad08 | 515 | !userfaultfd_signal_pending(vmf->flags))) { |
a9a08845 | 516 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
86039bd3 | 517 | schedule(); |
ba85c702 | 518 | ret |= VM_FAULT_MAJOR; |
15a77c6f AA |
519 | |
520 | /* | |
521 | * False wakeups can orginate even from rwsem before | |
522 | * up_read() however userfaults will wait either for a | |
523 | * targeted wakeup on the specific uwq waitqueue from | |
524 | * wake_userfault() or for signals or for uffd | |
525 | * release. | |
526 | */ | |
527 | while (!READ_ONCE(uwq.waken)) { | |
528 | /* | |
529 | * This needs the full smp_store_mb() | |
530 | * guarantee as the state write must be | |
531 | * visible to other CPUs before reading | |
532 | * uwq.waken from other CPUs. | |
533 | */ | |
534 | set_current_state(blocking_state); | |
535 | if (READ_ONCE(uwq.waken) || | |
536 | READ_ONCE(ctx->released) || | |
3e69ad08 | 537 | userfaultfd_signal_pending(vmf->flags)) |
15a77c6f AA |
538 | break; |
539 | schedule(); | |
540 | } | |
ba85c702 | 541 | } |
86039bd3 | 542 | |
ba85c702 | 543 | __set_current_state(TASK_RUNNING); |
15b726ef AA |
544 | |
545 | /* | |
546 | * Here we race with the list_del; list_add in | |
547 | * userfaultfd_ctx_read(), however because we don't ever run | |
548 | * list_del_init() to refile across the two lists, the prev | |
549 | * and next pointers will never point to self. list_add also | |
550 | * would never let any of the two pointers to point to | |
551 | * self. So list_empty_careful won't risk to see both pointers | |
552 | * pointing to self at any time during the list refile. The | |
553 | * only case where list_del_init() is called is the full | |
554 | * removal in the wake function and there we don't re-list_add | |
555 | * and it's fine not to block on the spinlock. The uwq on this | |
556 | * kernel stack can be released after the list_del_init. | |
557 | */ | |
2055da97 | 558 | if (!list_empty_careful(&uwq.wq.entry)) { |
cbcfa130 | 559 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
15b726ef AA |
560 | /* |
561 | * No need of list_del_init(), the uwq on the stack | |
562 | * will be freed shortly anyway. | |
563 | */ | |
2055da97 | 564 | list_del(&uwq.wq.entry); |
cbcfa130 | 565 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 | 566 | } |
86039bd3 AA |
567 | |
568 | /* | |
569 | * ctx may go away after this if the userfault pseudo fd is | |
570 | * already released. | |
571 | */ | |
572 | userfaultfd_ctx_put(ctx); | |
573 | ||
ba85c702 AA |
574 | out: |
575 | return ret; | |
86039bd3 AA |
576 | } |
577 | ||
8c9e7bb7 AA |
578 | static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, |
579 | struct userfaultfd_wait_queue *ewq) | |
9cd75c3c | 580 | { |
0cbb4b4f AA |
581 | struct userfaultfd_ctx *release_new_ctx; |
582 | ||
9a69a829 AA |
583 | if (WARN_ON_ONCE(current->flags & PF_EXITING)) |
584 | goto out; | |
9cd75c3c PE |
585 | |
586 | ewq->ctx = ctx; | |
587 | init_waitqueue_entry(&ewq->wq, current); | |
0cbb4b4f | 588 | release_new_ctx = NULL; |
9cd75c3c | 589 | |
cbcfa130 | 590 | spin_lock_irq(&ctx->event_wqh.lock); |
9cd75c3c PE |
591 | /* |
592 | * After the __add_wait_queue the uwq is visible to userland | |
593 | * through poll/read(). | |
594 | */ | |
595 | __add_wait_queue(&ctx->event_wqh, &ewq->wq); | |
596 | for (;;) { | |
597 | set_current_state(TASK_KILLABLE); | |
598 | if (ewq->msg.event == 0) | |
599 | break; | |
6aa7de05 | 600 | if (READ_ONCE(ctx->released) || |
9cd75c3c | 601 | fatal_signal_pending(current)) { |
384632e6 AA |
602 | /* |
603 | * &ewq->wq may be queued in fork_event, but | |
604 | * __remove_wait_queue ignores the head | |
605 | * parameter. It would be a problem if it | |
606 | * didn't. | |
607 | */ | |
9cd75c3c | 608 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); |
7eb76d45 MR |
609 | if (ewq->msg.event == UFFD_EVENT_FORK) { |
610 | struct userfaultfd_ctx *new; | |
611 | ||
612 | new = (struct userfaultfd_ctx *) | |
613 | (unsigned long) | |
614 | ewq->msg.arg.reserved.reserved1; | |
0cbb4b4f | 615 | release_new_ctx = new; |
7eb76d45 | 616 | } |
9cd75c3c PE |
617 | break; |
618 | } | |
619 | ||
cbcfa130 | 620 | spin_unlock_irq(&ctx->event_wqh.lock); |
9cd75c3c | 621 | |
a9a08845 | 622 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
9cd75c3c PE |
623 | schedule(); |
624 | ||
cbcfa130 | 625 | spin_lock_irq(&ctx->event_wqh.lock); |
9cd75c3c PE |
626 | } |
627 | __set_current_state(TASK_RUNNING); | |
cbcfa130 | 628 | spin_unlock_irq(&ctx->event_wqh.lock); |
9cd75c3c | 629 | |
0cbb4b4f AA |
630 | if (release_new_ctx) { |
631 | struct vm_area_struct *vma; | |
632 | struct mm_struct *mm = release_new_ctx->mm; | |
633 | ||
634 | /* the various vma->vm_userfaultfd_ctx still points to it */ | |
635 | down_write(&mm->mmap_sem); | |
04f5866e AA |
636 | /* no task can run (and in turn coredump) yet */ |
637 | VM_WARN_ON(!mmget_still_valid(mm)); | |
0cbb4b4f | 638 | for (vma = mm->mmap; vma; vma = vma->vm_next) |
31e810aa | 639 | if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { |
0cbb4b4f | 640 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
31e810aa MR |
641 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); |
642 | } | |
0cbb4b4f AA |
643 | up_write(&mm->mmap_sem); |
644 | ||
645 | userfaultfd_ctx_put(release_new_ctx); | |
646 | } | |
647 | ||
9cd75c3c PE |
648 | /* |
649 | * ctx may go away after this if the userfault pseudo fd is | |
650 | * already released. | |
651 | */ | |
9a69a829 | 652 | out: |
df2cc96e | 653 | WRITE_ONCE(ctx->mmap_changing, false); |
9cd75c3c | 654 | userfaultfd_ctx_put(ctx); |
9cd75c3c PE |
655 | } |
656 | ||
657 | static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, | |
658 | struct userfaultfd_wait_queue *ewq) | |
659 | { | |
660 | ewq->msg.event = 0; | |
661 | wake_up_locked(&ctx->event_wqh); | |
662 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); | |
663 | } | |
664 | ||
893e26e6 PE |
665 | int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) |
666 | { | |
667 | struct userfaultfd_ctx *ctx = NULL, *octx; | |
668 | struct userfaultfd_fork_ctx *fctx; | |
669 | ||
670 | octx = vma->vm_userfaultfd_ctx.ctx; | |
671 | if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { | |
672 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
673 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | |
674 | return 0; | |
675 | } | |
676 | ||
677 | list_for_each_entry(fctx, fcs, list) | |
678 | if (fctx->orig == octx) { | |
679 | ctx = fctx->new; | |
680 | break; | |
681 | } | |
682 | ||
683 | if (!ctx) { | |
684 | fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); | |
685 | if (!fctx) | |
686 | return -ENOMEM; | |
687 | ||
688 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); | |
689 | if (!ctx) { | |
690 | kfree(fctx); | |
691 | return -ENOMEM; | |
692 | } | |
693 | ||
ca880420 | 694 | refcount_set(&ctx->refcount, 1); |
893e26e6 PE |
695 | ctx->flags = octx->flags; |
696 | ctx->state = UFFD_STATE_RUNNING; | |
697 | ctx->features = octx->features; | |
698 | ctx->released = false; | |
df2cc96e | 699 | ctx->mmap_changing = false; |
893e26e6 | 700 | ctx->mm = vma->vm_mm; |
00bb31fa | 701 | mmgrab(ctx->mm); |
893e26e6 PE |
702 | |
703 | userfaultfd_ctx_get(octx); | |
df2cc96e | 704 | WRITE_ONCE(octx->mmap_changing, true); |
893e26e6 PE |
705 | fctx->orig = octx; |
706 | fctx->new = ctx; | |
707 | list_add_tail(&fctx->list, fcs); | |
708 | } | |
709 | ||
710 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
711 | return 0; | |
712 | } | |
713 | ||
8c9e7bb7 | 714 | static void dup_fctx(struct userfaultfd_fork_ctx *fctx) |
893e26e6 PE |
715 | { |
716 | struct userfaultfd_ctx *ctx = fctx->orig; | |
717 | struct userfaultfd_wait_queue ewq; | |
718 | ||
719 | msg_init(&ewq.msg); | |
720 | ||
721 | ewq.msg.event = UFFD_EVENT_FORK; | |
722 | ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; | |
723 | ||
8c9e7bb7 | 724 | userfaultfd_event_wait_completion(ctx, &ewq); |
893e26e6 PE |
725 | } |
726 | ||
727 | void dup_userfaultfd_complete(struct list_head *fcs) | |
728 | { | |
893e26e6 PE |
729 | struct userfaultfd_fork_ctx *fctx, *n; |
730 | ||
731 | list_for_each_entry_safe(fctx, n, fcs, list) { | |
8c9e7bb7 | 732 | dup_fctx(fctx); |
893e26e6 PE |
733 | list_del(&fctx->list); |
734 | kfree(fctx); | |
735 | } | |
736 | } | |
737 | ||
72f87654 PE |
738 | void mremap_userfaultfd_prep(struct vm_area_struct *vma, |
739 | struct vm_userfaultfd_ctx *vm_ctx) | |
740 | { | |
741 | struct userfaultfd_ctx *ctx; | |
742 | ||
743 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
3cfd22be PX |
744 | |
745 | if (!ctx) | |
746 | return; | |
747 | ||
748 | if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { | |
72f87654 PE |
749 | vm_ctx->ctx = ctx; |
750 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 751 | WRITE_ONCE(ctx->mmap_changing, true); |
3cfd22be PX |
752 | } else { |
753 | /* Drop uffd context if remap feature not enabled */ | |
754 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
755 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); | |
72f87654 PE |
756 | } |
757 | } | |
758 | ||
90794bf1 | 759 | void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, |
72f87654 PE |
760 | unsigned long from, unsigned long to, |
761 | unsigned long len) | |
762 | { | |
90794bf1 | 763 | struct userfaultfd_ctx *ctx = vm_ctx->ctx; |
72f87654 PE |
764 | struct userfaultfd_wait_queue ewq; |
765 | ||
766 | if (!ctx) | |
767 | return; | |
768 | ||
769 | if (to & ~PAGE_MASK) { | |
770 | userfaultfd_ctx_put(ctx); | |
771 | return; | |
772 | } | |
773 | ||
774 | msg_init(&ewq.msg); | |
775 | ||
776 | ewq.msg.event = UFFD_EVENT_REMAP; | |
777 | ewq.msg.arg.remap.from = from; | |
778 | ewq.msg.arg.remap.to = to; | |
779 | ewq.msg.arg.remap.len = len; | |
780 | ||
781 | userfaultfd_event_wait_completion(ctx, &ewq); | |
782 | } | |
783 | ||
70ccb92f | 784 | bool userfaultfd_remove(struct vm_area_struct *vma, |
d811914d | 785 | unsigned long start, unsigned long end) |
05ce7724 PE |
786 | { |
787 | struct mm_struct *mm = vma->vm_mm; | |
788 | struct userfaultfd_ctx *ctx; | |
789 | struct userfaultfd_wait_queue ewq; | |
790 | ||
791 | ctx = vma->vm_userfaultfd_ctx.ctx; | |
d811914d | 792 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) |
70ccb92f | 793 | return true; |
05ce7724 PE |
794 | |
795 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 796 | WRITE_ONCE(ctx->mmap_changing, true); |
05ce7724 PE |
797 | up_read(&mm->mmap_sem); |
798 | ||
05ce7724 PE |
799 | msg_init(&ewq.msg); |
800 | ||
d811914d MR |
801 | ewq.msg.event = UFFD_EVENT_REMOVE; |
802 | ewq.msg.arg.remove.start = start; | |
803 | ewq.msg.arg.remove.end = end; | |
05ce7724 PE |
804 | |
805 | userfaultfd_event_wait_completion(ctx, &ewq); | |
806 | ||
70ccb92f | 807 | return false; |
05ce7724 PE |
808 | } |
809 | ||
897ab3e0 MR |
810 | static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, |
811 | unsigned long start, unsigned long end) | |
812 | { | |
813 | struct userfaultfd_unmap_ctx *unmap_ctx; | |
814 | ||
815 | list_for_each_entry(unmap_ctx, unmaps, list) | |
816 | if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && | |
817 | unmap_ctx->end == end) | |
818 | return true; | |
819 | ||
820 | return false; | |
821 | } | |
822 | ||
823 | int userfaultfd_unmap_prep(struct vm_area_struct *vma, | |
824 | unsigned long start, unsigned long end, | |
825 | struct list_head *unmaps) | |
826 | { | |
827 | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { | |
828 | struct userfaultfd_unmap_ctx *unmap_ctx; | |
829 | struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; | |
830 | ||
831 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || | |
832 | has_unmap_ctx(ctx, unmaps, start, end)) | |
833 | continue; | |
834 | ||
835 | unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); | |
836 | if (!unmap_ctx) | |
837 | return -ENOMEM; | |
838 | ||
839 | userfaultfd_ctx_get(ctx); | |
df2cc96e | 840 | WRITE_ONCE(ctx->mmap_changing, true); |
897ab3e0 MR |
841 | unmap_ctx->ctx = ctx; |
842 | unmap_ctx->start = start; | |
843 | unmap_ctx->end = end; | |
844 | list_add_tail(&unmap_ctx->list, unmaps); | |
845 | } | |
846 | ||
847 | return 0; | |
848 | } | |
849 | ||
850 | void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) | |
851 | { | |
852 | struct userfaultfd_unmap_ctx *ctx, *n; | |
853 | struct userfaultfd_wait_queue ewq; | |
854 | ||
855 | list_for_each_entry_safe(ctx, n, uf, list) { | |
856 | msg_init(&ewq.msg); | |
857 | ||
858 | ewq.msg.event = UFFD_EVENT_UNMAP; | |
859 | ewq.msg.arg.remove.start = ctx->start; | |
860 | ewq.msg.arg.remove.end = ctx->end; | |
861 | ||
862 | userfaultfd_event_wait_completion(ctx->ctx, &ewq); | |
863 | ||
864 | list_del(&ctx->list); | |
865 | kfree(ctx); | |
866 | } | |
867 | } | |
868 | ||
86039bd3 AA |
869 | static int userfaultfd_release(struct inode *inode, struct file *file) |
870 | { | |
871 | struct userfaultfd_ctx *ctx = file->private_data; | |
872 | struct mm_struct *mm = ctx->mm; | |
873 | struct vm_area_struct *vma, *prev; | |
874 | /* len == 0 means wake all */ | |
875 | struct userfaultfd_wake_range range = { .len = 0, }; | |
876 | unsigned long new_flags; | |
46d0b24c | 877 | bool still_valid; |
86039bd3 | 878 | |
6aa7de05 | 879 | WRITE_ONCE(ctx->released, true); |
86039bd3 | 880 | |
d2005e3f ON |
881 | if (!mmget_not_zero(mm)) |
882 | goto wakeup; | |
883 | ||
86039bd3 AA |
884 | /* |
885 | * Flush page faults out of all CPUs. NOTE: all page faults | |
886 | * must be retried without returning VM_FAULT_SIGBUS if | |
887 | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx | |
888 | * changes while handle_userfault released the mmap_sem. So | |
889 | * it's critical that released is set to true (above), before | |
890 | * taking the mmap_sem for writing. | |
891 | */ | |
892 | down_write(&mm->mmap_sem); | |
46d0b24c | 893 | still_valid = mmget_still_valid(mm); |
86039bd3 AA |
894 | prev = NULL; |
895 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
896 | cond_resched(); | |
897 | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ | |
898 | !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
899 | if (vma->vm_userfaultfd_ctx.ctx != ctx) { | |
900 | prev = vma; | |
901 | continue; | |
902 | } | |
903 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); | |
46d0b24c ON |
904 | if (still_valid) { |
905 | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, | |
906 | new_flags, vma->anon_vma, | |
907 | vma->vm_file, vma->vm_pgoff, | |
908 | vma_policy(vma), | |
909 | NULL_VM_UFFD_CTX); | |
910 | if (prev) | |
911 | vma = prev; | |
912 | else | |
913 | prev = vma; | |
914 | } | |
86039bd3 AA |
915 | vma->vm_flags = new_flags; |
916 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
917 | } | |
918 | up_write(&mm->mmap_sem); | |
d2005e3f ON |
919 | mmput(mm); |
920 | wakeup: | |
86039bd3 | 921 | /* |
15b726ef | 922 | * After no new page faults can wait on this fault_*wqh, flush |
86039bd3 | 923 | * the last page faults that may have been already waiting on |
15b726ef | 924 | * the fault_*wqh. |
86039bd3 | 925 | */ |
cbcfa130 | 926 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
ac5be6b4 | 927 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); |
c430d1e8 | 928 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); |
cbcfa130 | 929 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 | 930 | |
5a18b64e MR |
931 | /* Flush pending events that may still wait on event_wqh */ |
932 | wake_up_all(&ctx->event_wqh); | |
933 | ||
a9a08845 | 934 | wake_up_poll(&ctx->fd_wqh, EPOLLHUP); |
86039bd3 AA |
935 | userfaultfd_ctx_put(ctx); |
936 | return 0; | |
937 | } | |
938 | ||
15b726ef | 939 | /* fault_pending_wqh.lock must be hold by the caller */ |
6dcc27fd PE |
940 | static inline struct userfaultfd_wait_queue *find_userfault_in( |
941 | wait_queue_head_t *wqh) | |
86039bd3 | 942 | { |
ac6424b9 | 943 | wait_queue_entry_t *wq; |
15b726ef | 944 | struct userfaultfd_wait_queue *uwq; |
86039bd3 | 945 | |
456a7378 | 946 | lockdep_assert_held(&wqh->lock); |
86039bd3 | 947 | |
15b726ef | 948 | uwq = NULL; |
6dcc27fd | 949 | if (!waitqueue_active(wqh)) |
15b726ef AA |
950 | goto out; |
951 | /* walk in reverse to provide FIFO behavior to read userfaults */ | |
2055da97 | 952 | wq = list_last_entry(&wqh->head, typeof(*wq), entry); |
15b726ef AA |
953 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
954 | out: | |
955 | return uwq; | |
86039bd3 | 956 | } |
6dcc27fd PE |
957 | |
958 | static inline struct userfaultfd_wait_queue *find_userfault( | |
959 | struct userfaultfd_ctx *ctx) | |
960 | { | |
961 | return find_userfault_in(&ctx->fault_pending_wqh); | |
962 | } | |
86039bd3 | 963 | |
9cd75c3c PE |
964 | static inline struct userfaultfd_wait_queue *find_userfault_evt( |
965 | struct userfaultfd_ctx *ctx) | |
966 | { | |
967 | return find_userfault_in(&ctx->event_wqh); | |
968 | } | |
969 | ||
076ccb76 | 970 | static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) |
86039bd3 AA |
971 | { |
972 | struct userfaultfd_ctx *ctx = file->private_data; | |
076ccb76 | 973 | __poll_t ret; |
86039bd3 AA |
974 | |
975 | poll_wait(file, &ctx->fd_wqh, wait); | |
976 | ||
977 | switch (ctx->state) { | |
978 | case UFFD_STATE_WAIT_API: | |
a9a08845 | 979 | return EPOLLERR; |
86039bd3 | 980 | case UFFD_STATE_RUNNING: |
ba85c702 AA |
981 | /* |
982 | * poll() never guarantees that read won't block. | |
983 | * userfaults can be waken before they're read(). | |
984 | */ | |
985 | if (unlikely(!(file->f_flags & O_NONBLOCK))) | |
a9a08845 | 986 | return EPOLLERR; |
15b726ef AA |
987 | /* |
988 | * lockless access to see if there are pending faults | |
989 | * __pollwait last action is the add_wait_queue but | |
990 | * the spin_unlock would allow the waitqueue_active to | |
991 | * pass above the actual list_add inside | |
992 | * add_wait_queue critical section. So use a full | |
993 | * memory barrier to serialize the list_add write of | |
994 | * add_wait_queue() with the waitqueue_active read | |
995 | * below. | |
996 | */ | |
997 | ret = 0; | |
998 | smp_mb(); | |
999 | if (waitqueue_active(&ctx->fault_pending_wqh)) | |
a9a08845 | 1000 | ret = EPOLLIN; |
9cd75c3c | 1001 | else if (waitqueue_active(&ctx->event_wqh)) |
a9a08845 | 1002 | ret = EPOLLIN; |
9cd75c3c | 1003 | |
86039bd3 AA |
1004 | return ret; |
1005 | default: | |
8474901a | 1006 | WARN_ON_ONCE(1); |
a9a08845 | 1007 | return EPOLLERR; |
86039bd3 AA |
1008 | } |
1009 | } | |
1010 | ||
893e26e6 PE |
1011 | static const struct file_operations userfaultfd_fops; |
1012 | ||
1013 | static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, | |
1014 | struct userfaultfd_ctx *new, | |
1015 | struct uffd_msg *msg) | |
1016 | { | |
1017 | int fd; | |
893e26e6 | 1018 | |
284cd241 EB |
1019 | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, |
1020 | O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); | |
893e26e6 PE |
1021 | if (fd < 0) |
1022 | return fd; | |
1023 | ||
893e26e6 PE |
1024 | msg->arg.reserved.reserved1 = 0; |
1025 | msg->arg.fork.ufd = fd; | |
893e26e6 PE |
1026 | return 0; |
1027 | } | |
1028 | ||
86039bd3 | 1029 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, |
a9b85f94 | 1030 | struct uffd_msg *msg) |
86039bd3 AA |
1031 | { |
1032 | ssize_t ret; | |
1033 | DECLARE_WAITQUEUE(wait, current); | |
15b726ef | 1034 | struct userfaultfd_wait_queue *uwq; |
893e26e6 PE |
1035 | /* |
1036 | * Handling fork event requires sleeping operations, so | |
1037 | * we drop the event_wqh lock, then do these ops, then | |
1038 | * lock it back and wake up the waiter. While the lock is | |
1039 | * dropped the ewq may go away so we keep track of it | |
1040 | * carefully. | |
1041 | */ | |
1042 | LIST_HEAD(fork_event); | |
1043 | struct userfaultfd_ctx *fork_nctx = NULL; | |
86039bd3 | 1044 | |
15b726ef | 1045 | /* always take the fd_wqh lock before the fault_pending_wqh lock */ |
ae62c16e | 1046 | spin_lock_irq(&ctx->fd_wqh.lock); |
86039bd3 AA |
1047 | __add_wait_queue(&ctx->fd_wqh, &wait); |
1048 | for (;;) { | |
1049 | set_current_state(TASK_INTERRUPTIBLE); | |
15b726ef AA |
1050 | spin_lock(&ctx->fault_pending_wqh.lock); |
1051 | uwq = find_userfault(ctx); | |
1052 | if (uwq) { | |
2c5b7e1b AA |
1053 | /* |
1054 | * Use a seqcount to repeat the lockless check | |
1055 | * in wake_userfault() to avoid missing | |
1056 | * wakeups because during the refile both | |
1057 | * waitqueue could become empty if this is the | |
1058 | * only userfault. | |
1059 | */ | |
1060 | write_seqcount_begin(&ctx->refile_seq); | |
1061 | ||
86039bd3 | 1062 | /* |
15b726ef AA |
1063 | * The fault_pending_wqh.lock prevents the uwq |
1064 | * to disappear from under us. | |
1065 | * | |
1066 | * Refile this userfault from | |
1067 | * fault_pending_wqh to fault_wqh, it's not | |
1068 | * pending anymore after we read it. | |
1069 | * | |
1070 | * Use list_del() by hand (as | |
1071 | * userfaultfd_wake_function also uses | |
1072 | * list_del_init() by hand) to be sure nobody | |
1073 | * changes __remove_wait_queue() to use | |
1074 | * list_del_init() in turn breaking the | |
1075 | * !list_empty_careful() check in | |
2055da97 | 1076 | * handle_userfault(). The uwq->wq.head list |
15b726ef AA |
1077 | * must never be empty at any time during the |
1078 | * refile, or the waitqueue could disappear | |
1079 | * from under us. The "wait_queue_head_t" | |
1080 | * parameter of __remove_wait_queue() is unused | |
1081 | * anyway. | |
86039bd3 | 1082 | */ |
2055da97 | 1083 | list_del(&uwq->wq.entry); |
c430d1e8 | 1084 | add_wait_queue(&ctx->fault_wqh, &uwq->wq); |
15b726ef | 1085 | |
2c5b7e1b AA |
1086 | write_seqcount_end(&ctx->refile_seq); |
1087 | ||
a9b85f94 AA |
1088 | /* careful to always initialize msg if ret == 0 */ |
1089 | *msg = uwq->msg; | |
15b726ef | 1090 | spin_unlock(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1091 | ret = 0; |
1092 | break; | |
1093 | } | |
15b726ef | 1094 | spin_unlock(&ctx->fault_pending_wqh.lock); |
9cd75c3c PE |
1095 | |
1096 | spin_lock(&ctx->event_wqh.lock); | |
1097 | uwq = find_userfault_evt(ctx); | |
1098 | if (uwq) { | |
1099 | *msg = uwq->msg; | |
1100 | ||
893e26e6 PE |
1101 | if (uwq->msg.event == UFFD_EVENT_FORK) { |
1102 | fork_nctx = (struct userfaultfd_ctx *) | |
1103 | (unsigned long) | |
1104 | uwq->msg.arg.reserved.reserved1; | |
2055da97 | 1105 | list_move(&uwq->wq.entry, &fork_event); |
384632e6 AA |
1106 | /* |
1107 | * fork_nctx can be freed as soon as | |
1108 | * we drop the lock, unless we take a | |
1109 | * reference on it. | |
1110 | */ | |
1111 | userfaultfd_ctx_get(fork_nctx); | |
893e26e6 PE |
1112 | spin_unlock(&ctx->event_wqh.lock); |
1113 | ret = 0; | |
1114 | break; | |
1115 | } | |
1116 | ||
9cd75c3c PE |
1117 | userfaultfd_event_complete(ctx, uwq); |
1118 | spin_unlock(&ctx->event_wqh.lock); | |
1119 | ret = 0; | |
1120 | break; | |
1121 | } | |
1122 | spin_unlock(&ctx->event_wqh.lock); | |
1123 | ||
86039bd3 AA |
1124 | if (signal_pending(current)) { |
1125 | ret = -ERESTARTSYS; | |
1126 | break; | |
1127 | } | |
1128 | if (no_wait) { | |
1129 | ret = -EAGAIN; | |
1130 | break; | |
1131 | } | |
ae62c16e | 1132 | spin_unlock_irq(&ctx->fd_wqh.lock); |
86039bd3 | 1133 | schedule(); |
ae62c16e | 1134 | spin_lock_irq(&ctx->fd_wqh.lock); |
86039bd3 AA |
1135 | } |
1136 | __remove_wait_queue(&ctx->fd_wqh, &wait); | |
1137 | __set_current_state(TASK_RUNNING); | |
ae62c16e | 1138 | spin_unlock_irq(&ctx->fd_wqh.lock); |
86039bd3 | 1139 | |
893e26e6 PE |
1140 | if (!ret && msg->event == UFFD_EVENT_FORK) { |
1141 | ret = resolve_userfault_fork(ctx, fork_nctx, msg); | |
cbcfa130 | 1142 | spin_lock_irq(&ctx->event_wqh.lock); |
384632e6 AA |
1143 | if (!list_empty(&fork_event)) { |
1144 | /* | |
1145 | * The fork thread didn't abort, so we can | |
1146 | * drop the temporary refcount. | |
1147 | */ | |
1148 | userfaultfd_ctx_put(fork_nctx); | |
1149 | ||
1150 | uwq = list_first_entry(&fork_event, | |
1151 | typeof(*uwq), | |
1152 | wq.entry); | |
1153 | /* | |
1154 | * If fork_event list wasn't empty and in turn | |
1155 | * the event wasn't already released by fork | |
1156 | * (the event is allocated on fork kernel | |
1157 | * stack), put the event back to its place in | |
1158 | * the event_wq. fork_event head will be freed | |
1159 | * as soon as we return so the event cannot | |
1160 | * stay queued there no matter the current | |
1161 | * "ret" value. | |
1162 | */ | |
1163 | list_del(&uwq->wq.entry); | |
1164 | __add_wait_queue(&ctx->event_wqh, &uwq->wq); | |
893e26e6 | 1165 | |
384632e6 AA |
1166 | /* |
1167 | * Leave the event in the waitqueue and report | |
1168 | * error to userland if we failed to resolve | |
1169 | * the userfault fork. | |
1170 | */ | |
1171 | if (likely(!ret)) | |
893e26e6 | 1172 | userfaultfd_event_complete(ctx, uwq); |
384632e6 AA |
1173 | } else { |
1174 | /* | |
1175 | * Here the fork thread aborted and the | |
1176 | * refcount from the fork thread on fork_nctx | |
1177 | * has already been released. We still hold | |
1178 | * the reference we took before releasing the | |
1179 | * lock above. If resolve_userfault_fork | |
1180 | * failed we've to drop it because the | |
1181 | * fork_nctx has to be freed in such case. If | |
1182 | * it succeeded we'll hold it because the new | |
1183 | * uffd references it. | |
1184 | */ | |
1185 | if (ret) | |
1186 | userfaultfd_ctx_put(fork_nctx); | |
893e26e6 | 1187 | } |
cbcfa130 | 1188 | spin_unlock_irq(&ctx->event_wqh.lock); |
893e26e6 PE |
1189 | } |
1190 | ||
86039bd3 AA |
1191 | return ret; |
1192 | } | |
1193 | ||
1194 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, | |
1195 | size_t count, loff_t *ppos) | |
1196 | { | |
1197 | struct userfaultfd_ctx *ctx = file->private_data; | |
1198 | ssize_t _ret, ret = 0; | |
a9b85f94 | 1199 | struct uffd_msg msg; |
86039bd3 AA |
1200 | int no_wait = file->f_flags & O_NONBLOCK; |
1201 | ||
1202 | if (ctx->state == UFFD_STATE_WAIT_API) | |
1203 | return -EINVAL; | |
86039bd3 AA |
1204 | |
1205 | for (;;) { | |
a9b85f94 | 1206 | if (count < sizeof(msg)) |
86039bd3 | 1207 | return ret ? ret : -EINVAL; |
a9b85f94 | 1208 | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); |
86039bd3 AA |
1209 | if (_ret < 0) |
1210 | return ret ? ret : _ret; | |
a9b85f94 | 1211 | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) |
86039bd3 | 1212 | return ret ? ret : -EFAULT; |
a9b85f94 AA |
1213 | ret += sizeof(msg); |
1214 | buf += sizeof(msg); | |
1215 | count -= sizeof(msg); | |
86039bd3 AA |
1216 | /* |
1217 | * Allow to read more than one fault at time but only | |
1218 | * block if waiting for the very first one. | |
1219 | */ | |
1220 | no_wait = O_NONBLOCK; | |
1221 | } | |
1222 | } | |
1223 | ||
1224 | static void __wake_userfault(struct userfaultfd_ctx *ctx, | |
1225 | struct userfaultfd_wake_range *range) | |
1226 | { | |
cbcfa130 | 1227 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 | 1228 | /* wake all in the range and autoremove */ |
15b726ef | 1229 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
ac5be6b4 | 1230 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, |
15b726ef AA |
1231 | range); |
1232 | if (waitqueue_active(&ctx->fault_wqh)) | |
c430d1e8 | 1233 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); |
cbcfa130 | 1234 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1235 | } |
1236 | ||
1237 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, | |
1238 | struct userfaultfd_wake_range *range) | |
1239 | { | |
2c5b7e1b AA |
1240 | unsigned seq; |
1241 | bool need_wakeup; | |
1242 | ||
86039bd3 AA |
1243 | /* |
1244 | * To be sure waitqueue_active() is not reordered by the CPU | |
1245 | * before the pagetable update, use an explicit SMP memory | |
1246 | * barrier here. PT lock release or up_read(mmap_sem) still | |
1247 | * have release semantics that can allow the | |
1248 | * waitqueue_active() to be reordered before the pte update. | |
1249 | */ | |
1250 | smp_mb(); | |
1251 | ||
1252 | /* | |
1253 | * Use waitqueue_active because it's very frequent to | |
1254 | * change the address space atomically even if there are no | |
1255 | * userfaults yet. So we take the spinlock only when we're | |
1256 | * sure we've userfaults to wake. | |
1257 | */ | |
2c5b7e1b AA |
1258 | do { |
1259 | seq = read_seqcount_begin(&ctx->refile_seq); | |
1260 | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || | |
1261 | waitqueue_active(&ctx->fault_wqh); | |
1262 | cond_resched(); | |
1263 | } while (read_seqcount_retry(&ctx->refile_seq, seq)); | |
1264 | if (need_wakeup) | |
86039bd3 AA |
1265 | __wake_userfault(ctx, range); |
1266 | } | |
1267 | ||
1268 | static __always_inline int validate_range(struct mm_struct *mm, | |
7d032574 | 1269 | __u64 *start, __u64 len) |
86039bd3 AA |
1270 | { |
1271 | __u64 task_size = mm->task_size; | |
1272 | ||
7d032574 AK |
1273 | *start = untagged_addr(*start); |
1274 | ||
1275 | if (*start & ~PAGE_MASK) | |
86039bd3 AA |
1276 | return -EINVAL; |
1277 | if (len & ~PAGE_MASK) | |
1278 | return -EINVAL; | |
1279 | if (!len) | |
1280 | return -EINVAL; | |
7d032574 | 1281 | if (*start < mmap_min_addr) |
86039bd3 | 1282 | return -EINVAL; |
7d032574 | 1283 | if (*start >= task_size) |
86039bd3 | 1284 | return -EINVAL; |
7d032574 | 1285 | if (len > task_size - *start) |
86039bd3 AA |
1286 | return -EINVAL; |
1287 | return 0; | |
1288 | } | |
1289 | ||
ba6907db MR |
1290 | static inline bool vma_can_userfault(struct vm_area_struct *vma) |
1291 | { | |
cac67329 MR |
1292 | return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || |
1293 | vma_is_shmem(vma); | |
ba6907db MR |
1294 | } |
1295 | ||
86039bd3 AA |
1296 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, |
1297 | unsigned long arg) | |
1298 | { | |
1299 | struct mm_struct *mm = ctx->mm; | |
1300 | struct vm_area_struct *vma, *prev, *cur; | |
1301 | int ret; | |
1302 | struct uffdio_register uffdio_register; | |
1303 | struct uffdio_register __user *user_uffdio_register; | |
1304 | unsigned long vm_flags, new_flags; | |
1305 | bool found; | |
ce53e8e6 | 1306 | bool basic_ioctls; |
86039bd3 AA |
1307 | unsigned long start, end, vma_end; |
1308 | ||
1309 | user_uffdio_register = (struct uffdio_register __user *) arg; | |
1310 | ||
1311 | ret = -EFAULT; | |
1312 | if (copy_from_user(&uffdio_register, user_uffdio_register, | |
1313 | sizeof(uffdio_register)-sizeof(__u64))) | |
1314 | goto out; | |
1315 | ||
1316 | ret = -EINVAL; | |
1317 | if (!uffdio_register.mode) | |
1318 | goto out; | |
1319 | if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| | |
1320 | UFFDIO_REGISTER_MODE_WP)) | |
1321 | goto out; | |
1322 | vm_flags = 0; | |
1323 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) | |
1324 | vm_flags |= VM_UFFD_MISSING; | |
1325 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { | |
1326 | vm_flags |= VM_UFFD_WP; | |
1327 | /* | |
1328 | * FIXME: remove the below error constraint by | |
1329 | * implementing the wprotect tracking mode. | |
1330 | */ | |
1331 | ret = -EINVAL; | |
1332 | goto out; | |
1333 | } | |
1334 | ||
7d032574 | 1335 | ret = validate_range(mm, &uffdio_register.range.start, |
86039bd3 AA |
1336 | uffdio_register.range.len); |
1337 | if (ret) | |
1338 | goto out; | |
1339 | ||
1340 | start = uffdio_register.range.start; | |
1341 | end = start + uffdio_register.range.len; | |
1342 | ||
d2005e3f ON |
1343 | ret = -ENOMEM; |
1344 | if (!mmget_not_zero(mm)) | |
1345 | goto out; | |
1346 | ||
86039bd3 | 1347 | down_write(&mm->mmap_sem); |
04f5866e AA |
1348 | if (!mmget_still_valid(mm)) |
1349 | goto out_unlock; | |
86039bd3 | 1350 | vma = find_vma_prev(mm, start, &prev); |
86039bd3 AA |
1351 | if (!vma) |
1352 | goto out_unlock; | |
1353 | ||
1354 | /* check that there's at least one vma in the range */ | |
1355 | ret = -EINVAL; | |
1356 | if (vma->vm_start >= end) | |
1357 | goto out_unlock; | |
1358 | ||
cab350af MK |
1359 | /* |
1360 | * If the first vma contains huge pages, make sure start address | |
1361 | * is aligned to huge page size. | |
1362 | */ | |
1363 | if (is_vm_hugetlb_page(vma)) { | |
1364 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1365 | ||
1366 | if (start & (vma_hpagesize - 1)) | |
1367 | goto out_unlock; | |
1368 | } | |
1369 | ||
86039bd3 AA |
1370 | /* |
1371 | * Search for not compatible vmas. | |
86039bd3 AA |
1372 | */ |
1373 | found = false; | |
ce53e8e6 | 1374 | basic_ioctls = false; |
86039bd3 AA |
1375 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
1376 | cond_resched(); | |
1377 | ||
1378 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1379 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1380 | ||
1381 | /* check not compatible vmas */ | |
1382 | ret = -EINVAL; | |
ba6907db | 1383 | if (!vma_can_userfault(cur)) |
86039bd3 | 1384 | goto out_unlock; |
29ec9066 AA |
1385 | |
1386 | /* | |
1387 | * UFFDIO_COPY will fill file holes even without | |
1388 | * PROT_WRITE. This check enforces that if this is a | |
1389 | * MAP_SHARED, the process has write permission to the backing | |
1390 | * file. If VM_MAYWRITE is set it also enforces that on a | |
1391 | * MAP_SHARED vma: there is no F_WRITE_SEAL and no further | |
1392 | * F_WRITE_SEAL can be taken until the vma is destroyed. | |
1393 | */ | |
1394 | ret = -EPERM; | |
1395 | if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) | |
1396 | goto out_unlock; | |
1397 | ||
cab350af MK |
1398 | /* |
1399 | * If this vma contains ending address, and huge pages | |
1400 | * check alignment. | |
1401 | */ | |
1402 | if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && | |
1403 | end > cur->vm_start) { | |
1404 | unsigned long vma_hpagesize = vma_kernel_pagesize(cur); | |
1405 | ||
1406 | ret = -EINVAL; | |
1407 | ||
1408 | if (end & (vma_hpagesize - 1)) | |
1409 | goto out_unlock; | |
1410 | } | |
86039bd3 AA |
1411 | |
1412 | /* | |
1413 | * Check that this vma isn't already owned by a | |
1414 | * different userfaultfd. We can't allow more than one | |
1415 | * userfaultfd to own a single vma simultaneously or we | |
1416 | * wouldn't know which one to deliver the userfaults to. | |
1417 | */ | |
1418 | ret = -EBUSY; | |
1419 | if (cur->vm_userfaultfd_ctx.ctx && | |
1420 | cur->vm_userfaultfd_ctx.ctx != ctx) | |
1421 | goto out_unlock; | |
1422 | ||
cab350af MK |
1423 | /* |
1424 | * Note vmas containing huge pages | |
1425 | */ | |
ce53e8e6 MR |
1426 | if (is_vm_hugetlb_page(cur)) |
1427 | basic_ioctls = true; | |
cab350af | 1428 | |
86039bd3 AA |
1429 | found = true; |
1430 | } | |
1431 | BUG_ON(!found); | |
1432 | ||
1433 | if (vma->vm_start < start) | |
1434 | prev = vma; | |
1435 | ||
1436 | ret = 0; | |
1437 | do { | |
1438 | cond_resched(); | |
1439 | ||
ba6907db | 1440 | BUG_ON(!vma_can_userfault(vma)); |
86039bd3 AA |
1441 | BUG_ON(vma->vm_userfaultfd_ctx.ctx && |
1442 | vma->vm_userfaultfd_ctx.ctx != ctx); | |
29ec9066 | 1443 | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
86039bd3 AA |
1444 | |
1445 | /* | |
1446 | * Nothing to do: this vma is already registered into this | |
1447 | * userfaultfd and with the right tracking mode too. | |
1448 | */ | |
1449 | if (vma->vm_userfaultfd_ctx.ctx == ctx && | |
1450 | (vma->vm_flags & vm_flags) == vm_flags) | |
1451 | goto skip; | |
1452 | ||
1453 | if (vma->vm_start > start) | |
1454 | start = vma->vm_start; | |
1455 | vma_end = min(end, vma->vm_end); | |
1456 | ||
9d4678eb AA |
1457 | new_flags = (vma->vm_flags & |
1458 | ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; | |
86039bd3 AA |
1459 | prev = vma_merge(mm, prev, start, vma_end, new_flags, |
1460 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1461 | vma_policy(vma), | |
1462 | ((struct vm_userfaultfd_ctx){ ctx })); | |
1463 | if (prev) { | |
1464 | vma = prev; | |
1465 | goto next; | |
1466 | } | |
1467 | if (vma->vm_start < start) { | |
1468 | ret = split_vma(mm, vma, start, 1); | |
1469 | if (ret) | |
1470 | break; | |
1471 | } | |
1472 | if (vma->vm_end > end) { | |
1473 | ret = split_vma(mm, vma, end, 0); | |
1474 | if (ret) | |
1475 | break; | |
1476 | } | |
1477 | next: | |
1478 | /* | |
1479 | * In the vma_merge() successful mprotect-like case 8: | |
1480 | * the next vma was merged into the current one and | |
1481 | * the current one has not been updated yet. | |
1482 | */ | |
1483 | vma->vm_flags = new_flags; | |
1484 | vma->vm_userfaultfd_ctx.ctx = ctx; | |
1485 | ||
1486 | skip: | |
1487 | prev = vma; | |
1488 | start = vma->vm_end; | |
1489 | vma = vma->vm_next; | |
1490 | } while (vma && vma->vm_start < end); | |
1491 | out_unlock: | |
1492 | up_write(&mm->mmap_sem); | |
d2005e3f | 1493 | mmput(mm); |
86039bd3 AA |
1494 | if (!ret) { |
1495 | /* | |
1496 | * Now that we scanned all vmas we can already tell | |
1497 | * userland which ioctls methods are guaranteed to | |
1498 | * succeed on this range. | |
1499 | */ | |
ce53e8e6 | 1500 | if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : |
cab350af | 1501 | UFFD_API_RANGE_IOCTLS, |
86039bd3 AA |
1502 | &user_uffdio_register->ioctls)) |
1503 | ret = -EFAULT; | |
1504 | } | |
1505 | out: | |
1506 | return ret; | |
1507 | } | |
1508 | ||
1509 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, | |
1510 | unsigned long arg) | |
1511 | { | |
1512 | struct mm_struct *mm = ctx->mm; | |
1513 | struct vm_area_struct *vma, *prev, *cur; | |
1514 | int ret; | |
1515 | struct uffdio_range uffdio_unregister; | |
1516 | unsigned long new_flags; | |
1517 | bool found; | |
1518 | unsigned long start, end, vma_end; | |
1519 | const void __user *buf = (void __user *)arg; | |
1520 | ||
1521 | ret = -EFAULT; | |
1522 | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) | |
1523 | goto out; | |
1524 | ||
7d032574 | 1525 | ret = validate_range(mm, &uffdio_unregister.start, |
86039bd3 AA |
1526 | uffdio_unregister.len); |
1527 | if (ret) | |
1528 | goto out; | |
1529 | ||
1530 | start = uffdio_unregister.start; | |
1531 | end = start + uffdio_unregister.len; | |
1532 | ||
d2005e3f ON |
1533 | ret = -ENOMEM; |
1534 | if (!mmget_not_zero(mm)) | |
1535 | goto out; | |
1536 | ||
86039bd3 | 1537 | down_write(&mm->mmap_sem); |
04f5866e AA |
1538 | if (!mmget_still_valid(mm)) |
1539 | goto out_unlock; | |
86039bd3 | 1540 | vma = find_vma_prev(mm, start, &prev); |
86039bd3 AA |
1541 | if (!vma) |
1542 | goto out_unlock; | |
1543 | ||
1544 | /* check that there's at least one vma in the range */ | |
1545 | ret = -EINVAL; | |
1546 | if (vma->vm_start >= end) | |
1547 | goto out_unlock; | |
1548 | ||
cab350af MK |
1549 | /* |
1550 | * If the first vma contains huge pages, make sure start address | |
1551 | * is aligned to huge page size. | |
1552 | */ | |
1553 | if (is_vm_hugetlb_page(vma)) { | |
1554 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); | |
1555 | ||
1556 | if (start & (vma_hpagesize - 1)) | |
1557 | goto out_unlock; | |
1558 | } | |
1559 | ||
86039bd3 AA |
1560 | /* |
1561 | * Search for not compatible vmas. | |
86039bd3 AA |
1562 | */ |
1563 | found = false; | |
1564 | ret = -EINVAL; | |
1565 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { | |
1566 | cond_resched(); | |
1567 | ||
1568 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ | |
1569 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); | |
1570 | ||
1571 | /* | |
1572 | * Check not compatible vmas, not strictly required | |
1573 | * here as not compatible vmas cannot have an | |
1574 | * userfaultfd_ctx registered on them, but this | |
1575 | * provides for more strict behavior to notice | |
1576 | * unregistration errors. | |
1577 | */ | |
ba6907db | 1578 | if (!vma_can_userfault(cur)) |
86039bd3 AA |
1579 | goto out_unlock; |
1580 | ||
1581 | found = true; | |
1582 | } | |
1583 | BUG_ON(!found); | |
1584 | ||
1585 | if (vma->vm_start < start) | |
1586 | prev = vma; | |
1587 | ||
1588 | ret = 0; | |
1589 | do { | |
1590 | cond_resched(); | |
1591 | ||
ba6907db | 1592 | BUG_ON(!vma_can_userfault(vma)); |
86039bd3 AA |
1593 | |
1594 | /* | |
1595 | * Nothing to do: this vma is already registered into this | |
1596 | * userfaultfd and with the right tracking mode too. | |
1597 | */ | |
1598 | if (!vma->vm_userfaultfd_ctx.ctx) | |
1599 | goto skip; | |
1600 | ||
01e881f5 AA |
1601 | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
1602 | ||
86039bd3 AA |
1603 | if (vma->vm_start > start) |
1604 | start = vma->vm_start; | |
1605 | vma_end = min(end, vma->vm_end); | |
1606 | ||
09fa5296 AA |
1607 | if (userfaultfd_missing(vma)) { |
1608 | /* | |
1609 | * Wake any concurrent pending userfault while | |
1610 | * we unregister, so they will not hang | |
1611 | * permanently and it avoids userland to call | |
1612 | * UFFDIO_WAKE explicitly. | |
1613 | */ | |
1614 | struct userfaultfd_wake_range range; | |
1615 | range.start = start; | |
1616 | range.len = vma_end - start; | |
1617 | wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); | |
1618 | } | |
1619 | ||
86039bd3 AA |
1620 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); |
1621 | prev = vma_merge(mm, prev, start, vma_end, new_flags, | |
1622 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, | |
1623 | vma_policy(vma), | |
1624 | NULL_VM_UFFD_CTX); | |
1625 | if (prev) { | |
1626 | vma = prev; | |
1627 | goto next; | |
1628 | } | |
1629 | if (vma->vm_start < start) { | |
1630 | ret = split_vma(mm, vma, start, 1); | |
1631 | if (ret) | |
1632 | break; | |
1633 | } | |
1634 | if (vma->vm_end > end) { | |
1635 | ret = split_vma(mm, vma, end, 0); | |
1636 | if (ret) | |
1637 | break; | |
1638 | } | |
1639 | next: | |
1640 | /* | |
1641 | * In the vma_merge() successful mprotect-like case 8: | |
1642 | * the next vma was merged into the current one and | |
1643 | * the current one has not been updated yet. | |
1644 | */ | |
1645 | vma->vm_flags = new_flags; | |
1646 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; | |
1647 | ||
1648 | skip: | |
1649 | prev = vma; | |
1650 | start = vma->vm_end; | |
1651 | vma = vma->vm_next; | |
1652 | } while (vma && vma->vm_start < end); | |
1653 | out_unlock: | |
1654 | up_write(&mm->mmap_sem); | |
d2005e3f | 1655 | mmput(mm); |
86039bd3 AA |
1656 | out: |
1657 | return ret; | |
1658 | } | |
1659 | ||
1660 | /* | |
ba85c702 AA |
1661 | * userfaultfd_wake may be used in combination with the |
1662 | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. | |
86039bd3 AA |
1663 | */ |
1664 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, | |
1665 | unsigned long arg) | |
1666 | { | |
1667 | int ret; | |
1668 | struct uffdio_range uffdio_wake; | |
1669 | struct userfaultfd_wake_range range; | |
1670 | const void __user *buf = (void __user *)arg; | |
1671 | ||
1672 | ret = -EFAULT; | |
1673 | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) | |
1674 | goto out; | |
1675 | ||
7d032574 | 1676 | ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); |
86039bd3 AA |
1677 | if (ret) |
1678 | goto out; | |
1679 | ||
1680 | range.start = uffdio_wake.start; | |
1681 | range.len = uffdio_wake.len; | |
1682 | ||
1683 | /* | |
1684 | * len == 0 means wake all and we don't want to wake all here, | |
1685 | * so check it again to be sure. | |
1686 | */ | |
1687 | VM_BUG_ON(!range.len); | |
1688 | ||
1689 | wake_userfault(ctx, &range); | |
1690 | ret = 0; | |
1691 | ||
1692 | out: | |
1693 | return ret; | |
1694 | } | |
1695 | ||
ad465cae AA |
1696 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, |
1697 | unsigned long arg) | |
1698 | { | |
1699 | __s64 ret; | |
1700 | struct uffdio_copy uffdio_copy; | |
1701 | struct uffdio_copy __user *user_uffdio_copy; | |
1702 | struct userfaultfd_wake_range range; | |
1703 | ||
1704 | user_uffdio_copy = (struct uffdio_copy __user *) arg; | |
1705 | ||
df2cc96e MR |
1706 | ret = -EAGAIN; |
1707 | if (READ_ONCE(ctx->mmap_changing)) | |
1708 | goto out; | |
1709 | ||
ad465cae AA |
1710 | ret = -EFAULT; |
1711 | if (copy_from_user(&uffdio_copy, user_uffdio_copy, | |
1712 | /* don't copy "copy" last field */ | |
1713 | sizeof(uffdio_copy)-sizeof(__s64))) | |
1714 | goto out; | |
1715 | ||
7d032574 | 1716 | ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); |
ad465cae AA |
1717 | if (ret) |
1718 | goto out; | |
1719 | /* | |
1720 | * double check for wraparound just in case. copy_from_user() | |
1721 | * will later check uffdio_copy.src + uffdio_copy.len to fit | |
1722 | * in the userland range. | |
1723 | */ | |
1724 | ret = -EINVAL; | |
1725 | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) | |
1726 | goto out; | |
1727 | if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) | |
1728 | goto out; | |
d2005e3f ON |
1729 | if (mmget_not_zero(ctx->mm)) { |
1730 | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, | |
df2cc96e | 1731 | uffdio_copy.len, &ctx->mmap_changing); |
d2005e3f | 1732 | mmput(ctx->mm); |
96333187 | 1733 | } else { |
e86b298b | 1734 | return -ESRCH; |
d2005e3f | 1735 | } |
ad465cae AA |
1736 | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) |
1737 | return -EFAULT; | |
1738 | if (ret < 0) | |
1739 | goto out; | |
1740 | BUG_ON(!ret); | |
1741 | /* len == 0 would wake all */ | |
1742 | range.len = ret; | |
1743 | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { | |
1744 | range.start = uffdio_copy.dst; | |
1745 | wake_userfault(ctx, &range); | |
1746 | } | |
1747 | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; | |
1748 | out: | |
1749 | return ret; | |
1750 | } | |
1751 | ||
1752 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, | |
1753 | unsigned long arg) | |
1754 | { | |
1755 | __s64 ret; | |
1756 | struct uffdio_zeropage uffdio_zeropage; | |
1757 | struct uffdio_zeropage __user *user_uffdio_zeropage; | |
1758 | struct userfaultfd_wake_range range; | |
1759 | ||
1760 | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; | |
1761 | ||
df2cc96e MR |
1762 | ret = -EAGAIN; |
1763 | if (READ_ONCE(ctx->mmap_changing)) | |
1764 | goto out; | |
1765 | ||
ad465cae AA |
1766 | ret = -EFAULT; |
1767 | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, | |
1768 | /* don't copy "zeropage" last field */ | |
1769 | sizeof(uffdio_zeropage)-sizeof(__s64))) | |
1770 | goto out; | |
1771 | ||
7d032574 | 1772 | ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, |
ad465cae AA |
1773 | uffdio_zeropage.range.len); |
1774 | if (ret) | |
1775 | goto out; | |
1776 | ret = -EINVAL; | |
1777 | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) | |
1778 | goto out; | |
1779 | ||
d2005e3f ON |
1780 | if (mmget_not_zero(ctx->mm)) { |
1781 | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, | |
df2cc96e MR |
1782 | uffdio_zeropage.range.len, |
1783 | &ctx->mmap_changing); | |
d2005e3f | 1784 | mmput(ctx->mm); |
9d95aa4b | 1785 | } else { |
e86b298b | 1786 | return -ESRCH; |
d2005e3f | 1787 | } |
ad465cae AA |
1788 | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) |
1789 | return -EFAULT; | |
1790 | if (ret < 0) | |
1791 | goto out; | |
1792 | /* len == 0 would wake all */ | |
1793 | BUG_ON(!ret); | |
1794 | range.len = ret; | |
1795 | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { | |
1796 | range.start = uffdio_zeropage.range.start; | |
1797 | wake_userfault(ctx, &range); | |
1798 | } | |
1799 | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; | |
1800 | out: | |
1801 | return ret; | |
1802 | } | |
1803 | ||
9cd75c3c PE |
1804 | static inline unsigned int uffd_ctx_features(__u64 user_features) |
1805 | { | |
1806 | /* | |
1807 | * For the current set of features the bits just coincide | |
1808 | */ | |
1809 | return (unsigned int)user_features; | |
1810 | } | |
1811 | ||
86039bd3 AA |
1812 | /* |
1813 | * userland asks for a certain API version and we return which bits | |
1814 | * and ioctl commands are implemented in this kernel for such API | |
1815 | * version or -EINVAL if unknown. | |
1816 | */ | |
1817 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, | |
1818 | unsigned long arg) | |
1819 | { | |
1820 | struct uffdio_api uffdio_api; | |
1821 | void __user *buf = (void __user *)arg; | |
1822 | int ret; | |
65603144 | 1823 | __u64 features; |
86039bd3 AA |
1824 | |
1825 | ret = -EINVAL; | |
1826 | if (ctx->state != UFFD_STATE_WAIT_API) | |
1827 | goto out; | |
1828 | ret = -EFAULT; | |
a9b85f94 | 1829 | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) |
86039bd3 | 1830 | goto out; |
65603144 | 1831 | features = uffdio_api.features; |
3c1c24d9 MR |
1832 | ret = -EINVAL; |
1833 | if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) | |
1834 | goto err_out; | |
1835 | ret = -EPERM; | |
1836 | if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) | |
1837 | goto err_out; | |
65603144 AA |
1838 | /* report all available features and ioctls to userland */ |
1839 | uffdio_api.features = UFFD_API_FEATURES; | |
86039bd3 AA |
1840 | uffdio_api.ioctls = UFFD_API_IOCTLS; |
1841 | ret = -EFAULT; | |
1842 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1843 | goto out; | |
1844 | ctx->state = UFFD_STATE_RUNNING; | |
65603144 AA |
1845 | /* only enable the requested features for this uffd context */ |
1846 | ctx->features = uffd_ctx_features(features); | |
86039bd3 AA |
1847 | ret = 0; |
1848 | out: | |
1849 | return ret; | |
3c1c24d9 MR |
1850 | err_out: |
1851 | memset(&uffdio_api, 0, sizeof(uffdio_api)); | |
1852 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) | |
1853 | ret = -EFAULT; | |
1854 | goto out; | |
86039bd3 AA |
1855 | } |
1856 | ||
1857 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, | |
1858 | unsigned long arg) | |
1859 | { | |
1860 | int ret = -EINVAL; | |
1861 | struct userfaultfd_ctx *ctx = file->private_data; | |
1862 | ||
e6485a47 AA |
1863 | if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) |
1864 | return -EINVAL; | |
1865 | ||
86039bd3 AA |
1866 | switch(cmd) { |
1867 | case UFFDIO_API: | |
1868 | ret = userfaultfd_api(ctx, arg); | |
1869 | break; | |
1870 | case UFFDIO_REGISTER: | |
1871 | ret = userfaultfd_register(ctx, arg); | |
1872 | break; | |
1873 | case UFFDIO_UNREGISTER: | |
1874 | ret = userfaultfd_unregister(ctx, arg); | |
1875 | break; | |
1876 | case UFFDIO_WAKE: | |
1877 | ret = userfaultfd_wake(ctx, arg); | |
1878 | break; | |
ad465cae AA |
1879 | case UFFDIO_COPY: |
1880 | ret = userfaultfd_copy(ctx, arg); | |
1881 | break; | |
1882 | case UFFDIO_ZEROPAGE: | |
1883 | ret = userfaultfd_zeropage(ctx, arg); | |
1884 | break; | |
86039bd3 AA |
1885 | } |
1886 | return ret; | |
1887 | } | |
1888 | ||
1889 | #ifdef CONFIG_PROC_FS | |
1890 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) | |
1891 | { | |
1892 | struct userfaultfd_ctx *ctx = f->private_data; | |
ac6424b9 | 1893 | wait_queue_entry_t *wq; |
86039bd3 AA |
1894 | unsigned long pending = 0, total = 0; |
1895 | ||
cbcfa130 | 1896 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
2055da97 | 1897 | list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { |
15b726ef AA |
1898 | pending++; |
1899 | total++; | |
1900 | } | |
2055da97 | 1901 | list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { |
86039bd3 AA |
1902 | total++; |
1903 | } | |
cbcfa130 | 1904 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
86039bd3 AA |
1905 | |
1906 | /* | |
1907 | * If more protocols will be added, there will be all shown | |
1908 | * separated by a space. Like this: | |
1909 | * protocols: aa:... bb:... | |
1910 | */ | |
1911 | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", | |
045098e9 | 1912 | pending, total, UFFD_API, ctx->features, |
86039bd3 AA |
1913 | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); |
1914 | } | |
1915 | #endif | |
1916 | ||
1917 | static const struct file_operations userfaultfd_fops = { | |
1918 | #ifdef CONFIG_PROC_FS | |
1919 | .show_fdinfo = userfaultfd_show_fdinfo, | |
1920 | #endif | |
1921 | .release = userfaultfd_release, | |
1922 | .poll = userfaultfd_poll, | |
1923 | .read = userfaultfd_read, | |
1924 | .unlocked_ioctl = userfaultfd_ioctl, | |
1832f2d8 | 1925 | .compat_ioctl = compat_ptr_ioctl, |
86039bd3 AA |
1926 | .llseek = noop_llseek, |
1927 | }; | |
1928 | ||
3004ec9c AA |
1929 | static void init_once_userfaultfd_ctx(void *mem) |
1930 | { | |
1931 | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; | |
1932 | ||
1933 | init_waitqueue_head(&ctx->fault_pending_wqh); | |
1934 | init_waitqueue_head(&ctx->fault_wqh); | |
9cd75c3c | 1935 | init_waitqueue_head(&ctx->event_wqh); |
3004ec9c | 1936 | init_waitqueue_head(&ctx->fd_wqh); |
2c5b7e1b | 1937 | seqcount_init(&ctx->refile_seq); |
3004ec9c AA |
1938 | } |
1939 | ||
284cd241 | 1940 | SYSCALL_DEFINE1(userfaultfd, int, flags) |
86039bd3 | 1941 | { |
86039bd3 | 1942 | struct userfaultfd_ctx *ctx; |
284cd241 | 1943 | int fd; |
86039bd3 | 1944 | |
cefdca0a PX |
1945 | if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) |
1946 | return -EPERM; | |
1947 | ||
86039bd3 AA |
1948 | BUG_ON(!current->mm); |
1949 | ||
1950 | /* Check the UFFD_* constants for consistency. */ | |
1951 | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); | |
1952 | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); | |
1953 | ||
86039bd3 | 1954 | if (flags & ~UFFD_SHARED_FCNTL_FLAGS) |
284cd241 | 1955 | return -EINVAL; |
86039bd3 | 1956 | |
3004ec9c | 1957 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
86039bd3 | 1958 | if (!ctx) |
284cd241 | 1959 | return -ENOMEM; |
86039bd3 | 1960 | |
ca880420 | 1961 | refcount_set(&ctx->refcount, 1); |
86039bd3 | 1962 | ctx->flags = flags; |
9cd75c3c | 1963 | ctx->features = 0; |
86039bd3 AA |
1964 | ctx->state = UFFD_STATE_WAIT_API; |
1965 | ctx->released = false; | |
df2cc96e | 1966 | ctx->mmap_changing = false; |
86039bd3 AA |
1967 | ctx->mm = current->mm; |
1968 | /* prevent the mm struct to be freed */ | |
f1f10076 | 1969 | mmgrab(ctx->mm); |
86039bd3 | 1970 | |
284cd241 EB |
1971 | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, |
1972 | O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); | |
1973 | if (fd < 0) { | |
d2005e3f | 1974 | mmdrop(ctx->mm); |
3004ec9c | 1975 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
c03e946f | 1976 | } |
86039bd3 | 1977 | return fd; |
86039bd3 | 1978 | } |
3004ec9c AA |
1979 | |
1980 | static int __init userfaultfd_init(void) | |
1981 | { | |
1982 | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", | |
1983 | sizeof(struct userfaultfd_ctx), | |
1984 | 0, | |
1985 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, | |
1986 | init_once_userfaultfd_ctx); | |
1987 | return 0; | |
1988 | } | |
1989 | __initcall(userfaultfd_init); |