]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/exit.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
1da177e4 LT |
7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | |
9 | #include <linux/interrupt.h> | |
1da177e4 | 10 | #include <linux/module.h> |
c59ede7b | 11 | #include <linux/capability.h> |
1da177e4 LT |
12 | #include <linux/completion.h> |
13 | #include <linux/personality.h> | |
14 | #include <linux/tty.h> | |
da9cbc87 | 15 | #include <linux/iocontext.h> |
1da177e4 LT |
16 | #include <linux/key.h> |
17 | #include <linux/security.h> | |
18 | #include <linux/cpu.h> | |
19 | #include <linux/acct.h> | |
8f0ab514 | 20 | #include <linux/tsacct_kern.h> |
1da177e4 | 21 | #include <linux/file.h> |
9f3acc31 | 22 | #include <linux/fdtable.h> |
80d26af8 | 23 | #include <linux/freezer.h> |
1da177e4 | 24 | #include <linux/binfmts.h> |
ab516013 | 25 | #include <linux/nsproxy.h> |
84d73786 | 26 | #include <linux/pid_namespace.h> |
1da177e4 LT |
27 | #include <linux/ptrace.h> |
28 | #include <linux/profile.h> | |
29 | #include <linux/mount.h> | |
30 | #include <linux/proc_fs.h> | |
49d769d5 | 31 | #include <linux/kthread.h> |
1da177e4 | 32 | #include <linux/mempolicy.h> |
c757249a | 33 | #include <linux/taskstats_kern.h> |
ca74e92b | 34 | #include <linux/delayacct.h> |
b4f48b63 | 35 | #include <linux/cgroup.h> |
1da177e4 | 36 | #include <linux/syscalls.h> |
7ed20e1a | 37 | #include <linux/signal.h> |
6a14c5c9 | 38 | #include <linux/posix-timers.h> |
9f46080c | 39 | #include <linux/cn_proc.h> |
de5097c2 | 40 | #include <linux/mutex.h> |
0771dfef | 41 | #include <linux/futex.h> |
b92ce558 | 42 | #include <linux/pipe_fs_i.h> |
fa84cb93 | 43 | #include <linux/audit.h> /* for audit_free() */ |
83cc5ed3 | 44 | #include <linux/resource.h> |
0d67a46d | 45 | #include <linux/blkdev.h> |
6eaeeaba | 46 | #include <linux/task_io_accounting_ops.h> |
30199f5a | 47 | #include <linux/tracehook.h> |
5ad4e53b | 48 | #include <linux/fs_struct.h> |
d84f4f99 | 49 | #include <linux/init_task.h> |
cdd6c482 | 50 | #include <linux/perf_event.h> |
ad8d75ff | 51 | #include <trace/events/sched.h> |
24f1e32c | 52 | #include <linux/hw_breakpoint.h> |
3d5992d2 | 53 | #include <linux/oom.h> |
54848d73 | 54 | #include <linux/writeback.h> |
40401530 | 55 | #include <linux/shm.h> |
5c9a8750 | 56 | #include <linux/kcov.h> |
1da177e4 LT |
57 | |
58 | #include <asm/uaccess.h> | |
59 | #include <asm/unistd.h> | |
60 | #include <asm/pgtable.h> | |
61 | #include <asm/mmu_context.h> | |
62 | ||
d40e48e0 | 63 | static void __unhash_process(struct task_struct *p, bool group_dead) |
1da177e4 LT |
64 | { |
65 | nr_threads--; | |
50d75f8d | 66 | detach_pid(p, PIDTYPE_PID); |
d40e48e0 | 67 | if (group_dead) { |
1da177e4 LT |
68 | detach_pid(p, PIDTYPE_PGID); |
69 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 | 70 | |
5e85d4ab | 71 | list_del_rcu(&p->tasks); |
9cd80bbb | 72 | list_del_init(&p->sibling); |
909ea964 | 73 | __this_cpu_dec(process_counts); |
1da177e4 | 74 | } |
47e65328 | 75 | list_del_rcu(&p->thread_group); |
0c740d0a | 76 | list_del_rcu(&p->thread_node); |
1da177e4 LT |
77 | } |
78 | ||
6a14c5c9 ON |
79 | /* |
80 | * This function expects the tasklist_lock write-locked. | |
81 | */ | |
82 | static void __exit_signal(struct task_struct *tsk) | |
83 | { | |
84 | struct signal_struct *sig = tsk->signal; | |
d40e48e0 | 85 | bool group_dead = thread_group_leader(tsk); |
6a14c5c9 | 86 | struct sighand_struct *sighand; |
4ada856f | 87 | struct tty_struct *uninitialized_var(tty); |
6fac4829 | 88 | cputime_t utime, stime; |
6a14c5c9 | 89 | |
d11c563d | 90 | sighand = rcu_dereference_check(tsk->sighand, |
db1466b3 | 91 | lockdep_tasklist_lock_is_held()); |
6a14c5c9 ON |
92 | spin_lock(&sighand->siglock); |
93 | ||
94 | posix_cpu_timers_exit(tsk); | |
d40e48e0 | 95 | if (group_dead) { |
6a14c5c9 | 96 | posix_cpu_timers_exit_group(tsk); |
4ada856f ON |
97 | tty = sig->tty; |
98 | sig->tty = NULL; | |
4a599942 | 99 | } else { |
e0a70217 ON |
100 | /* |
101 | * This can only happen if the caller is de_thread(). | |
102 | * FIXME: this is the temporary hack, we should teach | |
103 | * posix-cpu-timers to handle this case correctly. | |
104 | */ | |
105 | if (unlikely(has_group_leader_pid(tsk))) | |
106 | posix_cpu_timers_exit_group(tsk); | |
107 | ||
6a14c5c9 ON |
108 | /* |
109 | * If there is any task waiting for the group exit | |
110 | * then notify it: | |
111 | */ | |
d344193a | 112 | if (sig->notify_count > 0 && !--sig->notify_count) |
6a14c5c9 | 113 | wake_up_process(sig->group_exit_task); |
6db840fa | 114 | |
6a14c5c9 ON |
115 | if (tsk == sig->curr_target) |
116 | sig->curr_target = next_thread(tsk); | |
6a14c5c9 ON |
117 | } |
118 | ||
90ed9cbe | 119 | /* |
26e75b5c ON |
120 | * Accumulate here the counters for all threads as they die. We could |
121 | * skip the group leader because it is the last user of signal_struct, | |
122 | * but we want to avoid the race with thread_group_cputime() which can | |
123 | * see the empty ->thread_head list. | |
90ed9cbe RR |
124 | */ |
125 | task_cputime(tsk, &utime, &stime); | |
e78c3496 | 126 | write_seqlock(&sig->stats_lock); |
90ed9cbe RR |
127 | sig->utime += utime; |
128 | sig->stime += stime; | |
129 | sig->gtime += task_gtime(tsk); | |
130 | sig->min_flt += tsk->min_flt; | |
131 | sig->maj_flt += tsk->maj_flt; | |
132 | sig->nvcsw += tsk->nvcsw; | |
133 | sig->nivcsw += tsk->nivcsw; | |
134 | sig->inblock += task_io_get_inblock(tsk); | |
135 | sig->oublock += task_io_get_oublock(tsk); | |
136 | task_io_accounting_add(&sig->ioac, &tsk->ioac); | |
137 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | |
b3ac022c | 138 | sig->nr_threads--; |
d40e48e0 | 139 | __unhash_process(tsk, group_dead); |
e78c3496 | 140 | write_sequnlock(&sig->stats_lock); |
5876700c | 141 | |
da7978b0 ON |
142 | /* |
143 | * Do this under ->siglock, we can race with another thread | |
144 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | |
145 | */ | |
146 | flush_sigqueue(&tsk->pending); | |
a7e5328a | 147 | tsk->sighand = NULL; |
6a14c5c9 | 148 | spin_unlock(&sighand->siglock); |
6a14c5c9 | 149 | |
a7e5328a | 150 | __cleanup_sighand(sighand); |
a0be55de | 151 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
d40e48e0 | 152 | if (group_dead) { |
6a14c5c9 | 153 | flush_sigqueue(&sig->shared_pending); |
4ada856f | 154 | tty_kref_put(tty); |
6a14c5c9 ON |
155 | } |
156 | } | |
157 | ||
8c7904a0 EB |
158 | static void delayed_put_task_struct(struct rcu_head *rhp) |
159 | { | |
0a16b607 MD |
160 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
161 | ||
4e231c79 | 162 | perf_event_delayed_put(tsk); |
0a16b607 MD |
163 | trace_sched_process_free(tsk); |
164 | put_task_struct(tsk); | |
8c7904a0 EB |
165 | } |
166 | ||
f470021a | 167 | |
a0be55de | 168 | void release_task(struct task_struct *p) |
1da177e4 | 169 | { |
36c8b586 | 170 | struct task_struct *leader; |
1da177e4 | 171 | int zap_leader; |
1f09f974 | 172 | repeat: |
c69e8d9c | 173 | /* don't need to get the RCU readlock here - the process is dead and |
d11c563d PM |
174 | * can't be modifying its own credentials. But shut RCU-lockdep up */ |
175 | rcu_read_lock(); | |
c69e8d9c | 176 | atomic_dec(&__task_cred(p)->user->processes); |
d11c563d | 177 | rcu_read_unlock(); |
c69e8d9c | 178 | |
60347f67 | 179 | proc_flush_task(p); |
0203026b | 180 | |
1da177e4 | 181 | write_lock_irq(&tasklist_lock); |
a288eecc | 182 | ptrace_release_task(p); |
1da177e4 | 183 | __exit_signal(p); |
35f5cad8 | 184 | |
1da177e4 LT |
185 | /* |
186 | * If we are the last non-leader member of the thread | |
187 | * group, and the leader is zombie, then notify the | |
188 | * group leader's parent process. (if it wants notification.) | |
189 | */ | |
190 | zap_leader = 0; | |
191 | leader = p->group_leader; | |
a0be55de IA |
192 | if (leader != p && thread_group_empty(leader) |
193 | && leader->exit_state == EXIT_ZOMBIE) { | |
1da177e4 LT |
194 | /* |
195 | * If we were the last child thread and the leader has | |
196 | * exited already, and the leader's parent ignores SIGCHLD, | |
197 | * then we are the one who should release the leader. | |
dae33574 | 198 | */ |
86773473 | 199 | zap_leader = do_notify_parent(leader, leader->exit_signal); |
dae33574 RM |
200 | if (zap_leader) |
201 | leader->exit_state = EXIT_DEAD; | |
1da177e4 LT |
202 | } |
203 | ||
1da177e4 | 204 | write_unlock_irq(&tasklist_lock); |
1da177e4 | 205 | release_thread(p); |
8c7904a0 | 206 | call_rcu(&p->rcu, delayed_put_task_struct); |
1da177e4 LT |
207 | |
208 | p = leader; | |
209 | if (unlikely(zap_leader)) | |
210 | goto repeat; | |
211 | } | |
212 | ||
1da177e4 LT |
213 | /* |
214 | * Determine if a process group is "orphaned", according to the POSIX | |
215 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
216 | * by terminal-generated stop signals. Newly orphaned process groups are | |
217 | * to receive a SIGHUP and a SIGCONT. | |
218 | * | |
219 | * "I ask you, have you ever known what it is to be an orphan?" | |
220 | */ | |
a0be55de IA |
221 | static int will_become_orphaned_pgrp(struct pid *pgrp, |
222 | struct task_struct *ignored_task) | |
1da177e4 LT |
223 | { |
224 | struct task_struct *p; | |
1da177e4 | 225 | |
0475ac08 | 226 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
05e83df6 ON |
227 | if ((p == ignored_task) || |
228 | (p->exit_state && thread_group_empty(p)) || | |
229 | is_global_init(p->real_parent)) | |
1da177e4 | 230 | continue; |
05e83df6 | 231 | |
0475ac08 | 232 | if (task_pgrp(p->real_parent) != pgrp && |
05e83df6 ON |
233 | task_session(p->real_parent) == task_session(p)) |
234 | return 0; | |
0475ac08 | 235 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
05e83df6 ON |
236 | |
237 | return 1; | |
1da177e4 LT |
238 | } |
239 | ||
3e7cd6c4 | 240 | int is_current_pgrp_orphaned(void) |
1da177e4 LT |
241 | { |
242 | int retval; | |
243 | ||
244 | read_lock(&tasklist_lock); | |
3e7cd6c4 | 245 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
1da177e4 LT |
246 | read_unlock(&tasklist_lock); |
247 | ||
248 | return retval; | |
249 | } | |
250 | ||
961c4675 | 251 | static bool has_stopped_jobs(struct pid *pgrp) |
1da177e4 | 252 | { |
1da177e4 LT |
253 | struct task_struct *p; |
254 | ||
0475ac08 | 255 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
961c4675 ON |
256 | if (p->signal->flags & SIGNAL_STOP_STOPPED) |
257 | return true; | |
0475ac08 | 258 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
961c4675 ON |
259 | |
260 | return false; | |
1da177e4 LT |
261 | } |
262 | ||
f49ee505 ON |
263 | /* |
264 | * Check to see if any process groups have become orphaned as | |
265 | * a result of our exiting, and if they have any stopped jobs, | |
266 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
267 | */ | |
268 | static void | |
269 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | |
270 | { | |
271 | struct pid *pgrp = task_pgrp(tsk); | |
272 | struct task_struct *ignored_task = tsk; | |
273 | ||
274 | if (!parent) | |
a0be55de IA |
275 | /* exit: our father is in a different pgrp than |
276 | * we are and we were the only connection outside. | |
277 | */ | |
f49ee505 ON |
278 | parent = tsk->real_parent; |
279 | else | |
280 | /* reparent: our child is in a different pgrp than | |
281 | * we are, and it was the only connection outside. | |
282 | */ | |
283 | ignored_task = NULL; | |
284 | ||
285 | if (task_pgrp(parent) != pgrp && | |
286 | task_session(parent) == task_session(tsk) && | |
287 | will_become_orphaned_pgrp(pgrp, ignored_task) && | |
288 | has_stopped_jobs(pgrp)) { | |
289 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | |
290 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
291 | } | |
292 | } | |
293 | ||
f98bafa0 | 294 | #ifdef CONFIG_MEMCG |
cf475ad2 | 295 | /* |
733eda7a | 296 | * A task is exiting. If it owned this mm, find a new owner for the mm. |
cf475ad2 | 297 | */ |
cf475ad2 BS |
298 | void mm_update_next_owner(struct mm_struct *mm) |
299 | { | |
300 | struct task_struct *c, *g, *p = current; | |
301 | ||
302 | retry: | |
733eda7a KH |
303 | /* |
304 | * If the exiting or execing task is not the owner, it's | |
305 | * someone else's problem. | |
306 | */ | |
307 | if (mm->owner != p) | |
cf475ad2 | 308 | return; |
733eda7a KH |
309 | /* |
310 | * The current owner is exiting/execing and there are no other | |
311 | * candidates. Do not leave the mm pointing to a possibly | |
312 | * freed task structure. | |
313 | */ | |
314 | if (atomic_read(&mm->mm_users) <= 1) { | |
315 | mm->owner = NULL; | |
316 | return; | |
317 | } | |
cf475ad2 BS |
318 | |
319 | read_lock(&tasklist_lock); | |
320 | /* | |
321 | * Search in the children | |
322 | */ | |
323 | list_for_each_entry(c, &p->children, sibling) { | |
324 | if (c->mm == mm) | |
325 | goto assign_new_owner; | |
326 | } | |
327 | ||
328 | /* | |
329 | * Search in the siblings | |
330 | */ | |
dea33cfd | 331 | list_for_each_entry(c, &p->real_parent->children, sibling) { |
cf475ad2 BS |
332 | if (c->mm == mm) |
333 | goto assign_new_owner; | |
334 | } | |
335 | ||
336 | /* | |
f87fb599 | 337 | * Search through everything else, we should not get here often. |
cf475ad2 | 338 | */ |
39af1765 ON |
339 | for_each_process(g) { |
340 | if (g->flags & PF_KTHREAD) | |
341 | continue; | |
342 | for_each_thread(g, c) { | |
343 | if (c->mm == mm) | |
344 | goto assign_new_owner; | |
345 | if (c->mm) | |
346 | break; | |
347 | } | |
f87fb599 | 348 | } |
cf475ad2 | 349 | read_unlock(&tasklist_lock); |
31a78f23 BS |
350 | /* |
351 | * We found no owner yet mm_users > 1: this implies that we are | |
352 | * most likely racing with swapoff (try_to_unuse()) or /proc or | |
e5991371 | 353 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. |
31a78f23 | 354 | */ |
31a78f23 | 355 | mm->owner = NULL; |
cf475ad2 BS |
356 | return; |
357 | ||
358 | assign_new_owner: | |
359 | BUG_ON(c == p); | |
360 | get_task_struct(c); | |
361 | /* | |
362 | * The task_lock protects c->mm from changing. | |
363 | * We always want mm->owner->mm == mm | |
364 | */ | |
365 | task_lock(c); | |
e5991371 HD |
366 | /* |
367 | * Delay read_unlock() till we have the task_lock() | |
368 | * to ensure that c does not slip away underneath us | |
369 | */ | |
370 | read_unlock(&tasklist_lock); | |
cf475ad2 BS |
371 | if (c->mm != mm) { |
372 | task_unlock(c); | |
373 | put_task_struct(c); | |
374 | goto retry; | |
375 | } | |
cf475ad2 BS |
376 | mm->owner = c; |
377 | task_unlock(c); | |
378 | put_task_struct(c); | |
379 | } | |
f98bafa0 | 380 | #endif /* CONFIG_MEMCG */ |
cf475ad2 | 381 | |
1da177e4 LT |
382 | /* |
383 | * Turn us into a lazy TLB process if we | |
384 | * aren't already.. | |
385 | */ | |
a0be55de | 386 | static void exit_mm(struct task_struct *tsk) |
1da177e4 LT |
387 | { |
388 | struct mm_struct *mm = tsk->mm; | |
b564daf8 | 389 | struct core_state *core_state; |
1da177e4 | 390 | |
48d212a2 | 391 | mm_release(tsk, mm); |
1da177e4 LT |
392 | if (!mm) |
393 | return; | |
4fe7efdb | 394 | sync_mm_rss(mm); |
1da177e4 LT |
395 | /* |
396 | * Serialize with any possible pending coredump. | |
999d9fc1 | 397 | * We must hold mmap_sem around checking core_state |
1da177e4 | 398 | * and clearing tsk->mm. The core-inducing thread |
999d9fc1 | 399 | * will increment ->nr_threads for each thread in the |
1da177e4 LT |
400 | * group with ->mm != NULL. |
401 | */ | |
402 | down_read(&mm->mmap_sem); | |
b564daf8 ON |
403 | core_state = mm->core_state; |
404 | if (core_state) { | |
405 | struct core_thread self; | |
a0be55de | 406 | |
1da177e4 | 407 | up_read(&mm->mmap_sem); |
1da177e4 | 408 | |
b564daf8 ON |
409 | self.task = tsk; |
410 | self.next = xchg(&core_state->dumper.next, &self); | |
411 | /* | |
412 | * Implies mb(), the result of xchg() must be visible | |
413 | * to core_state->dumper. | |
414 | */ | |
415 | if (atomic_dec_and_test(&core_state->nr_threads)) | |
416 | complete(&core_state->startup); | |
1da177e4 | 417 | |
a94e2d40 ON |
418 | for (;;) { |
419 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | |
420 | if (!self.task) /* see coredump_finish() */ | |
421 | break; | |
80d26af8 | 422 | freezable_schedule(); |
a94e2d40 ON |
423 | } |
424 | __set_task_state(tsk, TASK_RUNNING); | |
1da177e4 LT |
425 | down_read(&mm->mmap_sem); |
426 | } | |
427 | atomic_inc(&mm->mm_count); | |
125e1874 | 428 | BUG_ON(mm != tsk->active_mm); |
1da177e4 LT |
429 | /* more a memory barrier than a real lock */ |
430 | task_lock(tsk); | |
431 | tsk->mm = NULL; | |
432 | up_read(&mm->mmap_sem); | |
433 | enter_lazy_tlb(mm, current); | |
434 | task_unlock(tsk); | |
cf475ad2 | 435 | mm_update_next_owner(mm); |
1da177e4 | 436 | mmput(mm); |
c32b3cbe | 437 | if (test_thread_flag(TIF_MEMDIE)) |
36324a99 | 438 | exit_oom_victim(tsk); |
1da177e4 LT |
439 | } |
440 | ||
c9dc05bf ON |
441 | static struct task_struct *find_alive_thread(struct task_struct *p) |
442 | { | |
443 | struct task_struct *t; | |
444 | ||
445 | for_each_thread(p, t) { | |
446 | if (!(t->flags & PF_EXITING)) | |
447 | return t; | |
448 | } | |
449 | return NULL; | |
450 | } | |
451 | ||
1109909c ON |
452 | static struct task_struct *find_child_reaper(struct task_struct *father) |
453 | __releases(&tasklist_lock) | |
454 | __acquires(&tasklist_lock) | |
455 | { | |
456 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | |
457 | struct task_struct *reaper = pid_ns->child_reaper; | |
458 | ||
459 | if (likely(reaper != father)) | |
460 | return reaper; | |
461 | ||
c9dc05bf ON |
462 | reaper = find_alive_thread(father); |
463 | if (reaper) { | |
1109909c ON |
464 | pid_ns->child_reaper = reaper; |
465 | return reaper; | |
466 | } | |
467 | ||
468 | write_unlock_irq(&tasklist_lock); | |
469 | if (unlikely(pid_ns == &init_pid_ns)) { | |
470 | panic("Attempted to kill init! exitcode=0x%08x\n", | |
471 | father->signal->group_exit_code ?: father->exit_code); | |
472 | } | |
473 | zap_pid_ns_processes(pid_ns); | |
474 | write_lock_irq(&tasklist_lock); | |
475 | ||
476 | return father; | |
477 | } | |
478 | ||
1da177e4 | 479 | /* |
ebec18a6 LP |
480 | * When we die, we re-parent all our children, and try to: |
481 | * 1. give them to another thread in our thread group, if such a member exists | |
482 | * 2. give it to the first ancestor process which prctl'd itself as a | |
483 | * child_subreaper for its children (like a service manager) | |
484 | * 3. give it to the init process (PID 1) in our pid namespace | |
1da177e4 | 485 | */ |
1109909c ON |
486 | static struct task_struct *find_new_reaper(struct task_struct *father, |
487 | struct task_struct *child_reaper) | |
1da177e4 | 488 | { |
c9dc05bf | 489 | struct task_struct *thread, *reaper; |
1da177e4 | 490 | |
c9dc05bf ON |
491 | thread = find_alive_thread(father); |
492 | if (thread) | |
950bbabb | 493 | return thread; |
1da177e4 | 494 | |
7d24e2df | 495 | if (father->signal->has_child_subreaper) { |
ebec18a6 | 496 | /* |
175aed3f ON |
497 | * Find the first ->is_child_subreaper ancestor in our pid_ns. |
498 | * We start from father to ensure we can not look into another | |
499 | * namespace, this is safe because all its threads are dead. | |
ebec18a6 | 500 | */ |
7d24e2df | 501 | for (reaper = father; |
1109909c | 502 | !same_thread_group(reaper, child_reaper); |
ebec18a6 | 503 | reaper = reaper->real_parent) { |
175aed3f ON |
504 | /* call_usermodehelper() descendants need this check */ |
505 | if (reaper == &init_task) | |
ebec18a6 LP |
506 | break; |
507 | if (!reaper->signal->is_child_subreaper) | |
508 | continue; | |
c9dc05bf ON |
509 | thread = find_alive_thread(reaper); |
510 | if (thread) | |
511 | return thread; | |
ebec18a6 | 512 | } |
1da177e4 | 513 | } |
762a24be | 514 | |
1109909c | 515 | return child_reaper; |
950bbabb ON |
516 | } |
517 | ||
5dfc80be ON |
518 | /* |
519 | * Any that need to be release_task'd are put on the @dead list. | |
520 | */ | |
9cd80bbb | 521 | static void reparent_leader(struct task_struct *father, struct task_struct *p, |
5dfc80be ON |
522 | struct list_head *dead) |
523 | { | |
2831096e | 524 | if (unlikely(p->exit_state == EXIT_DEAD)) |
5dfc80be ON |
525 | return; |
526 | ||
abd50b39 | 527 | /* We don't want people slaying init. */ |
5dfc80be ON |
528 | p->exit_signal = SIGCHLD; |
529 | ||
530 | /* If it has exited notify the new parent about this child's death. */ | |
d21142ec | 531 | if (!p->ptrace && |
5dfc80be | 532 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { |
86773473 | 533 | if (do_notify_parent(p, p->exit_signal)) { |
5dfc80be | 534 | p->exit_state = EXIT_DEAD; |
dc2fd4b0 | 535 | list_add(&p->ptrace_entry, dead); |
5dfc80be ON |
536 | } |
537 | } | |
538 | ||
539 | kill_orphaned_pgrp(p, father); | |
540 | } | |
541 | ||
482a3767 ON |
542 | /* |
543 | * This does two things: | |
544 | * | |
545 | * A. Make init inherit all the child processes | |
546 | * B. Check to see if any process groups have become orphaned | |
547 | * as a result of our exiting, and if they have any stopped | |
548 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
549 | */ | |
550 | static void forget_original_parent(struct task_struct *father, | |
551 | struct list_head *dead) | |
1da177e4 | 552 | { |
482a3767 | 553 | struct task_struct *p, *t, *reaper; |
762a24be | 554 | |
7c8bd232 | 555 | if (unlikely(!list_empty(&father->ptraced))) |
482a3767 | 556 | exit_ptrace(father, dead); |
f470021a | 557 | |
7c8bd232 | 558 | /* Can drop and reacquire tasklist_lock */ |
1109909c | 559 | reaper = find_child_reaper(father); |
ad9e206a | 560 | if (list_empty(&father->children)) |
482a3767 | 561 | return; |
1109909c ON |
562 | |
563 | reaper = find_new_reaper(father, reaper); | |
2831096e | 564 | list_for_each_entry(p, &father->children, sibling) { |
57a05918 | 565 | for_each_thread(p, t) { |
9cd80bbb | 566 | t->real_parent = reaper; |
57a05918 ON |
567 | BUG_ON((!t->ptrace) != (t->parent == father)); |
568 | if (likely(!t->ptrace)) | |
9cd80bbb | 569 | t->parent = t->real_parent; |
9cd80bbb ON |
570 | if (t->pdeath_signal) |
571 | group_send_sig_info(t->pdeath_signal, | |
572 | SEND_SIG_NOINFO, t); | |
57a05918 | 573 | } |
2831096e ON |
574 | /* |
575 | * If this is a threaded reparent there is no need to | |
576 | * notify anyone anything has happened. | |
577 | */ | |
578 | if (!same_thread_group(reaper, father)) | |
482a3767 | 579 | reparent_leader(father, p, dead); |
1da177e4 | 580 | } |
2831096e | 581 | list_splice_tail_init(&father->children, &reaper->children); |
1da177e4 LT |
582 | } |
583 | ||
584 | /* | |
585 | * Send signals to all our closest relatives so that they know | |
586 | * to properly mourn us.. | |
587 | */ | |
821c7de7 | 588 | static void exit_notify(struct task_struct *tsk, int group_dead) |
1da177e4 | 589 | { |
53c8f9f1 | 590 | bool autoreap; |
482a3767 ON |
591 | struct task_struct *p, *n; |
592 | LIST_HEAD(dead); | |
1da177e4 | 593 | |
762a24be | 594 | write_lock_irq(&tasklist_lock); |
482a3767 ON |
595 | forget_original_parent(tsk, &dead); |
596 | ||
821c7de7 ON |
597 | if (group_dead) |
598 | kill_orphaned_pgrp(tsk->group_leader, NULL); | |
1da177e4 | 599 | |
45cdf5cc ON |
600 | if (unlikely(tsk->ptrace)) { |
601 | int sig = thread_group_leader(tsk) && | |
602 | thread_group_empty(tsk) && | |
603 | !ptrace_reparented(tsk) ? | |
604 | tsk->exit_signal : SIGCHLD; | |
605 | autoreap = do_notify_parent(tsk, sig); | |
606 | } else if (thread_group_leader(tsk)) { | |
607 | autoreap = thread_group_empty(tsk) && | |
608 | do_notify_parent(tsk, tsk->exit_signal); | |
609 | } else { | |
610 | autoreap = true; | |
611 | } | |
1da177e4 | 612 | |
53c8f9f1 | 613 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; |
6c66e7db ON |
614 | if (tsk->exit_state == EXIT_DEAD) |
615 | list_add(&tsk->ptrace_entry, &dead); | |
1da177e4 | 616 | |
9c339168 ON |
617 | /* mt-exec, de_thread() is waiting for group leader */ |
618 | if (unlikely(tsk->signal->notify_count < 0)) | |
6db840fa | 619 | wake_up_process(tsk->signal->group_exit_task); |
1da177e4 LT |
620 | write_unlock_irq(&tasklist_lock); |
621 | ||
482a3767 ON |
622 | list_for_each_entry_safe(p, n, &dead, ptrace_entry) { |
623 | list_del_init(&p->ptrace_entry); | |
624 | release_task(p); | |
625 | } | |
1da177e4 LT |
626 | } |
627 | ||
e18eecb8 JD |
628 | #ifdef CONFIG_DEBUG_STACK_USAGE |
629 | static void check_stack_usage(void) | |
630 | { | |
631 | static DEFINE_SPINLOCK(low_water_lock); | |
632 | static int lowest_to_date = THREAD_SIZE; | |
e18eecb8 JD |
633 | unsigned long free; |
634 | ||
7c9f8861 | 635 | free = stack_not_used(current); |
e18eecb8 JD |
636 | |
637 | if (free >= lowest_to_date) | |
638 | return; | |
639 | ||
640 | spin_lock(&low_water_lock); | |
641 | if (free < lowest_to_date) { | |
a0be55de IA |
642 | pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", |
643 | current->comm, task_pid_nr(current), free); | |
e18eecb8 JD |
644 | lowest_to_date = free; |
645 | } | |
646 | spin_unlock(&low_water_lock); | |
647 | } | |
648 | #else | |
649 | static inline void check_stack_usage(void) {} | |
650 | #endif | |
651 | ||
9402c95f | 652 | void do_exit(long code) |
1da177e4 LT |
653 | { |
654 | struct task_struct *tsk = current; | |
655 | int group_dead; | |
3f95aa81 | 656 | TASKS_RCU(int tasks_rcu_i); |
1da177e4 LT |
657 | |
658 | profile_task_exit(tsk); | |
5c9a8750 | 659 | kcov_task_exit(tsk); |
1da177e4 | 660 | |
73c10101 | 661 | WARN_ON(blk_needs_flush_plug(tsk)); |
22e2c507 | 662 | |
1da177e4 LT |
663 | if (unlikely(in_interrupt())) |
664 | panic("Aiee, killing interrupt handler!"); | |
665 | if (unlikely(!tsk->pid)) | |
666 | panic("Attempted to kill the idle task!"); | |
1da177e4 | 667 | |
33dd94ae NE |
668 | /* |
669 | * If do_exit is called because this processes oopsed, it's possible | |
670 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | |
671 | * continuing. Amongst other possible reasons, this is to prevent | |
672 | * mm_release()->clear_child_tid() from writing to a user-controlled | |
673 | * kernel address. | |
674 | */ | |
675 | set_fs(USER_DS); | |
676 | ||
a288eecc | 677 | ptrace_event(PTRACE_EVENT_EXIT, code); |
1da177e4 | 678 | |
e0e81739 DH |
679 | validate_creds_for_do_exit(tsk); |
680 | ||
df164db5 AN |
681 | /* |
682 | * We're taking recursive faults here in do_exit. Safest is to just | |
683 | * leave this task alone and wait for reboot. | |
684 | */ | |
685 | if (unlikely(tsk->flags & PF_EXITING)) { | |
a0be55de | 686 | pr_alert("Fixing recursive fault but reboot is needed!\n"); |
778e9a9c AK |
687 | /* |
688 | * We can do this unlocked here. The futex code uses | |
689 | * this flag just to verify whether the pi state | |
690 | * cleanup has been done or not. In the worst case it | |
691 | * loops once more. We pretend that the cleanup was | |
692 | * done as there is no way to return. Either the | |
693 | * OWNER_DIED bit is set by now or we push the blocked | |
694 | * task into the wait for ever nirwana as well. | |
695 | */ | |
696 | tsk->flags |= PF_EXITPIDONE; | |
df164db5 AN |
697 | set_current_state(TASK_UNINTERRUPTIBLE); |
698 | schedule(); | |
699 | } | |
700 | ||
d12619b5 | 701 | exit_signals(tsk); /* sets PF_EXITING */ |
778e9a9c AK |
702 | /* |
703 | * tsk->flags are checked in the futex code to protect against | |
ed3e694d | 704 | * an exiting task cleaning up the robust pi futexes. |
778e9a9c | 705 | */ |
d2ee7198 | 706 | smp_mb(); |
1d615482 | 707 | raw_spin_unlock_wait(&tsk->pi_lock); |
1da177e4 | 708 | |
1dc0fffc | 709 | if (unlikely(in_atomic())) { |
a0be55de IA |
710 | pr_info("note: %s[%d] exited with preempt_count %d\n", |
711 | current->comm, task_pid_nr(current), | |
712 | preempt_count()); | |
1dc0fffc PZ |
713 | preempt_count_set(PREEMPT_ENABLED); |
714 | } | |
1da177e4 | 715 | |
48d212a2 LT |
716 | /* sync mm's RSS info before statistics gathering */ |
717 | if (tsk->mm) | |
718 | sync_mm_rss(tsk->mm); | |
51229b49 | 719 | acct_update_integrals(tsk); |
1da177e4 | 720 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 721 | if (group_dead) { |
778e9a9c | 722 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 723 | exit_itimers(tsk->signal); |
1f10206c JP |
724 | if (tsk->mm) |
725 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | |
c3068951 | 726 | } |
f6ec29a4 | 727 | acct_collect(code, group_dead); |
522ed776 MT |
728 | if (group_dead) |
729 | tty_audit_exit(); | |
a4ff8dba | 730 | audit_free(tsk); |
115085ea | 731 | |
48d212a2 | 732 | tsk->exit_code = code; |
115085ea | 733 | taskstats_exit(tsk, group_dead); |
c757249a | 734 | |
1da177e4 LT |
735 | exit_mm(tsk); |
736 | ||
0e464814 | 737 | if (group_dead) |
f6ec29a4 | 738 | acct_process(); |
0a16b607 MD |
739 | trace_sched_process_exit(tsk); |
740 | ||
1da177e4 | 741 | exit_sem(tsk); |
b34a6b1d | 742 | exit_shm(tsk); |
1ec7f1dd AV |
743 | exit_files(tsk); |
744 | exit_fs(tsk); | |
c39df5fa ON |
745 | if (group_dead) |
746 | disassociate_ctty(1); | |
8aac6270 | 747 | exit_task_namespaces(tsk); |
ed3e694d | 748 | exit_task_work(tsk); |
1da177e4 | 749 | exit_thread(); |
0b3fcf17 SE |
750 | |
751 | /* | |
752 | * Flush inherited counters to the parent - before the parent | |
753 | * gets woken up by child-exit notifications. | |
754 | * | |
755 | * because of cgroup mode, must be called before cgroup_exit() | |
756 | */ | |
757 | perf_event_exit_task(tsk); | |
758 | ||
1ec41830 | 759 | cgroup_exit(tsk); |
1da177e4 | 760 | |
24f1e32c FW |
761 | /* |
762 | * FIXME: do that only when needed, using sched_exit tracepoint | |
763 | */ | |
7c8df286 | 764 | flush_ptrace_hw_breakpoint(tsk); |
33b2fb30 | 765 | |
49f5903b | 766 | TASKS_RCU(preempt_disable()); |
3f95aa81 | 767 | TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); |
49f5903b | 768 | TASKS_RCU(preempt_enable()); |
821c7de7 | 769 | exit_notify(tsk, group_dead); |
ef982393 | 770 | proc_exit_connector(tsk); |
1da177e4 | 771 | #ifdef CONFIG_NUMA |
c0ff7453 | 772 | task_lock(tsk); |
f0be3d32 | 773 | mpol_put(tsk->mempolicy); |
1da177e4 | 774 | tsk->mempolicy = NULL; |
c0ff7453 | 775 | task_unlock(tsk); |
1da177e4 | 776 | #endif |
42b2dd0a | 777 | #ifdef CONFIG_FUTEX |
c87e2837 IM |
778 | if (unlikely(current->pi_state_cache)) |
779 | kfree(current->pi_state_cache); | |
42b2dd0a | 780 | #endif |
de5097c2 | 781 | /* |
9a11b49a | 782 | * Make sure we are holding no locks: |
de5097c2 | 783 | */ |
1b1d2fb4 | 784 | debug_check_no_locks_held(); |
778e9a9c AK |
785 | /* |
786 | * We can do this unlocked here. The futex code uses this flag | |
787 | * just to verify whether the pi state cleanup has been done | |
788 | * or not. In the worst case it loops once more. | |
789 | */ | |
790 | tsk->flags |= PF_EXITPIDONE; | |
1da177e4 | 791 | |
afc847b7 | 792 | if (tsk->io_context) |
b69f2292 | 793 | exit_io_context(tsk); |
afc847b7 | 794 | |
b92ce558 | 795 | if (tsk->splice_pipe) |
4b8a8f1e | 796 | free_pipe_info(tsk->splice_pipe); |
b92ce558 | 797 | |
5640f768 ED |
798 | if (tsk->task_frag.page) |
799 | put_page(tsk->task_frag.page); | |
800 | ||
e0e81739 DH |
801 | validate_creds_for_do_exit(tsk); |
802 | ||
4bcb8232 | 803 | check_stack_usage(); |
7407251a | 804 | preempt_disable(); |
54848d73 WF |
805 | if (tsk->nr_dirtied) |
806 | __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); | |
f41d911f | 807 | exit_rcu(); |
3f95aa81 | 808 | TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); |
b5740f4b YG |
809 | |
810 | /* | |
811 | * The setting of TASK_RUNNING by try_to_wake_up() may be delayed | |
812 | * when the following two conditions become true. | |
813 | * - There is race condition of mmap_sem (It is acquired by | |
814 | * exit_mm()), and | |
815 | * - SMI occurs before setting TASK_RUNINNG. | |
816 | * (or hypervisor of virtual machine switches to other guest) | |
817 | * As a result, we may become TASK_RUNNING after becoming TASK_DEAD | |
818 | * | |
819 | * To avoid it, we have to wait for releasing tsk->pi_lock which | |
820 | * is held by try_to_wake_up() | |
821 | */ | |
822 | smp_mb(); | |
823 | raw_spin_unlock_wait(&tsk->pi_lock); | |
824 | ||
55a101f8 | 825 | /* causes final put_task_struct in finish_task_switch(). */ |
c394cc9f | 826 | tsk->state = TASK_DEAD; |
a585042f | 827 | tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ |
1da177e4 LT |
828 | schedule(); |
829 | BUG(); | |
830 | /* Avoid "noreturn function does return". */ | |
54306cf0 AC |
831 | for (;;) |
832 | cpu_relax(); /* For when BUG is null */ | |
1da177e4 | 833 | } |
012914da RA |
834 | EXPORT_SYMBOL_GPL(do_exit); |
835 | ||
9402c95f | 836 | void complete_and_exit(struct completion *comp, long code) |
1da177e4 LT |
837 | { |
838 | if (comp) | |
839 | complete(comp); | |
55a101f8 | 840 | |
1da177e4 LT |
841 | do_exit(code); |
842 | } | |
1da177e4 LT |
843 | EXPORT_SYMBOL(complete_and_exit); |
844 | ||
754fe8d2 | 845 | SYSCALL_DEFINE1(exit, int, error_code) |
1da177e4 LT |
846 | { |
847 | do_exit((error_code&0xff)<<8); | |
848 | } | |
849 | ||
1da177e4 LT |
850 | /* |
851 | * Take down every thread in the group. This is called by fatal signals | |
852 | * as well as by sys_exit_group (below). | |
853 | */ | |
9402c95f | 854 | void |
1da177e4 LT |
855 | do_group_exit(int exit_code) |
856 | { | |
bfc4b089 ON |
857 | struct signal_struct *sig = current->signal; |
858 | ||
1da177e4 LT |
859 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
860 | ||
bfc4b089 ON |
861 | if (signal_group_exit(sig)) |
862 | exit_code = sig->group_exit_code; | |
1da177e4 | 863 | else if (!thread_group_empty(current)) { |
1da177e4 | 864 | struct sighand_struct *const sighand = current->sighand; |
a0be55de | 865 | |
1da177e4 | 866 | spin_lock_irq(&sighand->siglock); |
ed5d2cac | 867 | if (signal_group_exit(sig)) |
1da177e4 LT |
868 | /* Another thread got here before we took the lock. */ |
869 | exit_code = sig->group_exit_code; | |
870 | else { | |
1da177e4 | 871 | sig->group_exit_code = exit_code; |
ed5d2cac | 872 | sig->flags = SIGNAL_GROUP_EXIT; |
1da177e4 LT |
873 | zap_other_threads(current); |
874 | } | |
875 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
876 | } |
877 | ||
878 | do_exit(exit_code); | |
879 | /* NOTREACHED */ | |
880 | } | |
881 | ||
882 | /* | |
883 | * this kills every thread in the thread group. Note that any externally | |
884 | * wait4()-ing process will get the correct exit code - even if this | |
885 | * thread is not the thread group leader. | |
886 | */ | |
754fe8d2 | 887 | SYSCALL_DEFINE1(exit_group, int, error_code) |
1da177e4 LT |
888 | { |
889 | do_group_exit((error_code & 0xff) << 8); | |
2ed7c03e HC |
890 | /* NOTREACHED */ |
891 | return 0; | |
1da177e4 LT |
892 | } |
893 | ||
9e8ae01d ON |
894 | struct wait_opts { |
895 | enum pid_type wo_type; | |
9e8ae01d | 896 | int wo_flags; |
e1eb1ebc | 897 | struct pid *wo_pid; |
9e8ae01d ON |
898 | |
899 | struct siginfo __user *wo_info; | |
900 | int __user *wo_stat; | |
901 | struct rusage __user *wo_rusage; | |
902 | ||
0b7570e7 | 903 | wait_queue_t child_wait; |
9e8ae01d ON |
904 | int notask_error; |
905 | }; | |
906 | ||
989264f4 ON |
907 | static inline |
908 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | |
161550d7 | 909 | { |
989264f4 ON |
910 | if (type != PIDTYPE_PID) |
911 | task = task->group_leader; | |
912 | return task->pids[type].pid; | |
161550d7 EB |
913 | } |
914 | ||
989264f4 | 915 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 916 | { |
5c01ba49 ON |
917 | return wo->wo_type == PIDTYPE_MAX || |
918 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
919 | } | |
1da177e4 | 920 | |
5c01ba49 ON |
921 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) |
922 | { | |
923 | if (!eligible_pid(wo, p)) | |
924 | return 0; | |
1da177e4 LT |
925 | /* Wait for all children (clone and not) if __WALL is set; |
926 | * otherwise, wait for clone children *only* if __WCLONE is | |
927 | * set; otherwise, wait for non-clone children *only*. (Note: | |
928 | * A "clone" child here is one that reports to its parent | |
929 | * using a signal other than SIGCHLD.) */ | |
9e8ae01d ON |
930 | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) |
931 | && !(wo->wo_flags & __WALL)) | |
1da177e4 | 932 | return 0; |
1da177e4 | 933 | |
14dd0b81 | 934 | return 1; |
1da177e4 LT |
935 | } |
936 | ||
9e8ae01d ON |
937 | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, |
938 | pid_t pid, uid_t uid, int why, int status) | |
1da177e4 | 939 | { |
9e8ae01d ON |
940 | struct siginfo __user *infop; |
941 | int retval = wo->wo_rusage | |
942 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
36c8b586 | 943 | |
1da177e4 | 944 | put_task_struct(p); |
9e8ae01d | 945 | infop = wo->wo_info; |
b6fe2d11 VM |
946 | if (infop) { |
947 | if (!retval) | |
948 | retval = put_user(SIGCHLD, &infop->si_signo); | |
949 | if (!retval) | |
950 | retval = put_user(0, &infop->si_errno); | |
951 | if (!retval) | |
952 | retval = put_user((short)why, &infop->si_code); | |
953 | if (!retval) | |
954 | retval = put_user(pid, &infop->si_pid); | |
955 | if (!retval) | |
956 | retval = put_user(uid, &infop->si_uid); | |
957 | if (!retval) | |
958 | retval = put_user(status, &infop->si_status); | |
959 | } | |
1da177e4 LT |
960 | if (!retval) |
961 | retval = pid; | |
962 | return retval; | |
963 | } | |
964 | ||
965 | /* | |
966 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
967 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
968 | * the lock and this task is uninteresting. If we return nonzero, we have | |
969 | * released the lock and the system call should return. | |
970 | */ | |
9e8ae01d | 971 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 972 | { |
f6507f83 | 973 | int state, retval, status; |
6c5f3e7b | 974 | pid_t pid = task_pid_vnr(p); |
43e13cc1 | 975 | uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
9e8ae01d | 976 | struct siginfo __user *infop; |
1da177e4 | 977 | |
9e8ae01d | 978 | if (!likely(wo->wo_flags & WEXITED)) |
98abed02 RM |
979 | return 0; |
980 | ||
9e8ae01d | 981 | if (unlikely(wo->wo_flags & WNOWAIT)) { |
1da177e4 | 982 | int exit_code = p->exit_code; |
f3abd4f9 | 983 | int why; |
1da177e4 | 984 | |
1da177e4 LT |
985 | get_task_struct(p); |
986 | read_unlock(&tasklist_lock); | |
1029a2b5 PZ |
987 | sched_annotate_sleep(); |
988 | ||
1da177e4 LT |
989 | if ((exit_code & 0x7f) == 0) { |
990 | why = CLD_EXITED; | |
991 | status = exit_code >> 8; | |
992 | } else { | |
993 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
994 | status = exit_code & 0x7f; | |
995 | } | |
9e8ae01d | 996 | return wait_noreap_copyout(wo, p, pid, uid, why, status); |
1da177e4 | 997 | } |
1da177e4 | 998 | /* |
abd50b39 | 999 | * Move the task's state to DEAD/TRACE, only one thread can do this. |
1da177e4 | 1000 | */ |
f6507f83 ON |
1001 | state = (ptrace_reparented(p) && thread_group_leader(p)) ? |
1002 | EXIT_TRACE : EXIT_DEAD; | |
abd50b39 | 1003 | if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) |
1da177e4 | 1004 | return 0; |
986094df ON |
1005 | /* |
1006 | * We own this thread, nobody else can reap it. | |
1007 | */ | |
1008 | read_unlock(&tasklist_lock); | |
1009 | sched_annotate_sleep(); | |
f6507f83 | 1010 | |
befca967 | 1011 | /* |
f6507f83 | 1012 | * Check thread_group_leader() to exclude the traced sub-threads. |
befca967 | 1013 | */ |
f6507f83 | 1014 | if (state == EXIT_DEAD && thread_group_leader(p)) { |
f953ccd0 ON |
1015 | struct signal_struct *sig = p->signal; |
1016 | struct signal_struct *psig = current->signal; | |
1f10206c | 1017 | unsigned long maxrss; |
0cf55e1e | 1018 | cputime_t tgutime, tgstime; |
3795e161 | 1019 | |
1da177e4 LT |
1020 | /* |
1021 | * The resource counters for the group leader are in its | |
1022 | * own task_struct. Those for dead threads in the group | |
1023 | * are in its signal_struct, as are those for the child | |
1024 | * processes it has previously reaped. All these | |
1025 | * accumulate in the parent's signal_struct c* fields. | |
1026 | * | |
1027 | * We don't bother to take a lock here to protect these | |
f953ccd0 ON |
1028 | * p->signal fields because the whole thread group is dead |
1029 | * and nobody can change them. | |
1030 | * | |
1031 | * psig->stats_lock also protects us from our sub-theads | |
1032 | * which can reap other children at the same time. Until | |
1033 | * we change k_getrusage()-like users to rely on this lock | |
1034 | * we have to take ->siglock as well. | |
0cf55e1e | 1035 | * |
a0be55de IA |
1036 | * We use thread_group_cputime_adjusted() to get times for |
1037 | * the thread group, which consolidates times for all threads | |
1038 | * in the group including the group leader. | |
1da177e4 | 1039 | */ |
e80d0a1a | 1040 | thread_group_cputime_adjusted(p, &tgutime, &tgstime); |
f953ccd0 | 1041 | spin_lock_irq(¤t->sighand->siglock); |
e78c3496 | 1042 | write_seqlock(&psig->stats_lock); |
64861634 MS |
1043 | psig->cutime += tgutime + sig->cutime; |
1044 | psig->cstime += tgstime + sig->cstime; | |
6fac4829 | 1045 | psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; |
3795e161 JJ |
1046 | psig->cmin_flt += |
1047 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1048 | psig->cmaj_flt += | |
1049 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1050 | psig->cnvcsw += | |
1051 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1052 | psig->cnivcsw += | |
1053 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
6eaeeaba ED |
1054 | psig->cinblock += |
1055 | task_io_get_inblock(p) + | |
1056 | sig->inblock + sig->cinblock; | |
1057 | psig->coublock += | |
1058 | task_io_get_oublock(p) + | |
1059 | sig->oublock + sig->coublock; | |
1f10206c JP |
1060 | maxrss = max(sig->maxrss, sig->cmaxrss); |
1061 | if (psig->cmaxrss < maxrss) | |
1062 | psig->cmaxrss = maxrss; | |
5995477a AR |
1063 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1064 | task_io_accounting_add(&psig->ioac, &sig->ioac); | |
e78c3496 | 1065 | write_sequnlock(&psig->stats_lock); |
f953ccd0 | 1066 | spin_unlock_irq(¤t->sighand->siglock); |
1da177e4 LT |
1067 | } |
1068 | ||
9e8ae01d ON |
1069 | retval = wo->wo_rusage |
1070 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1da177e4 LT |
1071 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1072 | ? p->signal->group_exit_code : p->exit_code; | |
9e8ae01d ON |
1073 | if (!retval && wo->wo_stat) |
1074 | retval = put_user(status, wo->wo_stat); | |
1075 | ||
1076 | infop = wo->wo_info; | |
1da177e4 LT |
1077 | if (!retval && infop) |
1078 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1079 | if (!retval && infop) | |
1080 | retval = put_user(0, &infop->si_errno); | |
1081 | if (!retval && infop) { | |
1082 | int why; | |
1083 | ||
1084 | if ((status & 0x7f) == 0) { | |
1085 | why = CLD_EXITED; | |
1086 | status >>= 8; | |
1087 | } else { | |
1088 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1089 | status &= 0x7f; | |
1090 | } | |
1091 | retval = put_user((short)why, &infop->si_code); | |
1092 | if (!retval) | |
1093 | retval = put_user(status, &infop->si_status); | |
1094 | } | |
1095 | if (!retval && infop) | |
3a515e4a | 1096 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1097 | if (!retval && infop) |
c69e8d9c | 1098 | retval = put_user(uid, &infop->si_uid); |
2f4e6e2a | 1099 | if (!retval) |
3a515e4a | 1100 | retval = pid; |
2f4e6e2a | 1101 | |
b4360690 | 1102 | if (state == EXIT_TRACE) { |
1da177e4 | 1103 | write_lock_irq(&tasklist_lock); |
2f4e6e2a ON |
1104 | /* We dropped tasklist, ptracer could die and untrace */ |
1105 | ptrace_unlink(p); | |
b4360690 ON |
1106 | |
1107 | /* If parent wants a zombie, don't release it now */ | |
1108 | state = EXIT_ZOMBIE; | |
1109 | if (do_notify_parent(p, p->exit_signal)) | |
1110 | state = EXIT_DEAD; | |
abd50b39 | 1111 | p->exit_state = state; |
1da177e4 LT |
1112 | write_unlock_irq(&tasklist_lock); |
1113 | } | |
abd50b39 | 1114 | if (state == EXIT_DEAD) |
1da177e4 | 1115 | release_task(p); |
2f4e6e2a | 1116 | |
1da177e4 LT |
1117 | return retval; |
1118 | } | |
1119 | ||
90bc8d8b ON |
1120 | static int *task_stopped_code(struct task_struct *p, bool ptrace) |
1121 | { | |
1122 | if (ptrace) { | |
570ac933 | 1123 | if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) |
90bc8d8b ON |
1124 | return &p->exit_code; |
1125 | } else { | |
1126 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | |
1127 | return &p->signal->group_exit_code; | |
1128 | } | |
1129 | return NULL; | |
1130 | } | |
1131 | ||
19e27463 TH |
1132 | /** |
1133 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | |
1134 | * @wo: wait options | |
1135 | * @ptrace: is the wait for ptrace | |
1136 | * @p: task to wait for | |
1137 | * | |
1138 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | |
1139 | * | |
1140 | * CONTEXT: | |
1141 | * read_lock(&tasklist_lock), which is released if return value is | |
1142 | * non-zero. Also, grabs and releases @p->sighand->siglock. | |
1143 | * | |
1144 | * RETURNS: | |
1145 | * 0 if wait condition didn't exist and search for other wait conditions | |
1146 | * should continue. Non-zero return, -errno on failure and @p's pid on | |
1147 | * success, implies that tasklist_lock is released and wait condition | |
1148 | * search should terminate. | |
1da177e4 | 1149 | */ |
9e8ae01d ON |
1150 | static int wait_task_stopped(struct wait_opts *wo, |
1151 | int ptrace, struct task_struct *p) | |
1da177e4 | 1152 | { |
9e8ae01d | 1153 | struct siginfo __user *infop; |
90bc8d8b | 1154 | int retval, exit_code, *p_code, why; |
ee7c82da | 1155 | uid_t uid = 0; /* unneeded, required by compiler */ |
c8950783 | 1156 | pid_t pid; |
1da177e4 | 1157 | |
47918025 ON |
1158 | /* |
1159 | * Traditionally we see ptrace'd stopped tasks regardless of options. | |
1160 | */ | |
9e8ae01d | 1161 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) |
98abed02 RM |
1162 | return 0; |
1163 | ||
19e27463 TH |
1164 | if (!task_stopped_code(p, ptrace)) |
1165 | return 0; | |
1166 | ||
ee7c82da ON |
1167 | exit_code = 0; |
1168 | spin_lock_irq(&p->sighand->siglock); | |
1169 | ||
90bc8d8b ON |
1170 | p_code = task_stopped_code(p, ptrace); |
1171 | if (unlikely(!p_code)) | |
ee7c82da ON |
1172 | goto unlock_sig; |
1173 | ||
90bc8d8b | 1174 | exit_code = *p_code; |
ee7c82da ON |
1175 | if (!exit_code) |
1176 | goto unlock_sig; | |
1177 | ||
9e8ae01d | 1178 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
90bc8d8b | 1179 | *p_code = 0; |
ee7c82da | 1180 | |
8ca937a6 | 1181 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
ee7c82da ON |
1182 | unlock_sig: |
1183 | spin_unlock_irq(&p->sighand->siglock); | |
1184 | if (!exit_code) | |
1da177e4 LT |
1185 | return 0; |
1186 | ||
1187 | /* | |
1188 | * Now we are pretty sure this task is interesting. | |
1189 | * Make sure it doesn't get reaped out from under us while we | |
1190 | * give up the lock and then examine it below. We don't want to | |
1191 | * keep holding onto the tasklist_lock while we call getrusage and | |
1192 | * possibly take page faults for user memory. | |
1193 | */ | |
1194 | get_task_struct(p); | |
6c5f3e7b | 1195 | pid = task_pid_vnr(p); |
f470021a | 1196 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1da177e4 | 1197 | read_unlock(&tasklist_lock); |
1029a2b5 | 1198 | sched_annotate_sleep(); |
1da177e4 | 1199 | |
9e8ae01d ON |
1200 | if (unlikely(wo->wo_flags & WNOWAIT)) |
1201 | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); | |
1202 | ||
1203 | retval = wo->wo_rusage | |
1204 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1205 | if (!retval && wo->wo_stat) | |
1206 | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); | |
1da177e4 | 1207 | |
9e8ae01d | 1208 | infop = wo->wo_info; |
1da177e4 LT |
1209 | if (!retval && infop) |
1210 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1211 | if (!retval && infop) | |
1212 | retval = put_user(0, &infop->si_errno); | |
1213 | if (!retval && infop) | |
6efcae46 | 1214 | retval = put_user((short)why, &infop->si_code); |
1da177e4 LT |
1215 | if (!retval && infop) |
1216 | retval = put_user(exit_code, &infop->si_status); | |
1217 | if (!retval && infop) | |
c8950783 | 1218 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1219 | if (!retval && infop) |
ee7c82da | 1220 | retval = put_user(uid, &infop->si_uid); |
1da177e4 | 1221 | if (!retval) |
c8950783 | 1222 | retval = pid; |
1da177e4 LT |
1223 | put_task_struct(p); |
1224 | ||
1225 | BUG_ON(!retval); | |
1226 | return retval; | |
1227 | } | |
1228 | ||
1229 | /* | |
1230 | * Handle do_wait work for one task in a live, non-stopped state. | |
1231 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1232 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1233 | * released the lock and the system call should return. | |
1234 | */ | |
9e8ae01d | 1235 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) |
1da177e4 LT |
1236 | { |
1237 | int retval; | |
1238 | pid_t pid; | |
1239 | uid_t uid; | |
1240 | ||
9e8ae01d | 1241 | if (!unlikely(wo->wo_flags & WCONTINUED)) |
98abed02 RM |
1242 | return 0; |
1243 | ||
1da177e4 LT |
1244 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1245 | return 0; | |
1246 | ||
1247 | spin_lock_irq(&p->sighand->siglock); | |
1248 | /* Re-check with the lock held. */ | |
1249 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1250 | spin_unlock_irq(&p->sighand->siglock); | |
1251 | return 0; | |
1252 | } | |
9e8ae01d | 1253 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1da177e4 | 1254 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
8ca937a6 | 1255 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
1da177e4 LT |
1256 | spin_unlock_irq(&p->sighand->siglock); |
1257 | ||
6c5f3e7b | 1258 | pid = task_pid_vnr(p); |
1da177e4 LT |
1259 | get_task_struct(p); |
1260 | read_unlock(&tasklist_lock); | |
1029a2b5 | 1261 | sched_annotate_sleep(); |
1da177e4 | 1262 | |
9e8ae01d ON |
1263 | if (!wo->wo_info) { |
1264 | retval = wo->wo_rusage | |
1265 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1da177e4 | 1266 | put_task_struct(p); |
9e8ae01d ON |
1267 | if (!retval && wo->wo_stat) |
1268 | retval = put_user(0xffff, wo->wo_stat); | |
1da177e4 | 1269 | if (!retval) |
3a515e4a | 1270 | retval = pid; |
1da177e4 | 1271 | } else { |
9e8ae01d ON |
1272 | retval = wait_noreap_copyout(wo, p, pid, uid, |
1273 | CLD_CONTINUED, SIGCONT); | |
1da177e4 LT |
1274 | BUG_ON(retval == 0); |
1275 | } | |
1276 | ||
1277 | return retval; | |
1278 | } | |
1279 | ||
98abed02 RM |
1280 | /* |
1281 | * Consider @p for a wait by @parent. | |
1282 | * | |
9e8ae01d | 1283 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1284 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1285 | * Returns zero if the search for a child should continue; | |
9e8ae01d | 1286 | * then ->notask_error is 0 if @p is an eligible child, |
14dd0b81 | 1287 | * or another error from security_task_wait(), or still -ECHILD. |
98abed02 | 1288 | */ |
b6e763f0 ON |
1289 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1290 | struct task_struct *p) | |
98abed02 | 1291 | { |
3245d6ac ON |
1292 | /* |
1293 | * We can race with wait_task_zombie() from another thread. | |
1294 | * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition | |
1295 | * can't confuse the checks below. | |
1296 | */ | |
1297 | int exit_state = ACCESS_ONCE(p->exit_state); | |
b3ab0316 ON |
1298 | int ret; |
1299 | ||
3245d6ac | 1300 | if (unlikely(exit_state == EXIT_DEAD)) |
b3ab0316 ON |
1301 | return 0; |
1302 | ||
1303 | ret = eligible_child(wo, p); | |
14dd0b81 | 1304 | if (!ret) |
98abed02 RM |
1305 | return ret; |
1306 | ||
a2322e1d | 1307 | ret = security_task_wait(p); |
14dd0b81 RM |
1308 | if (unlikely(ret < 0)) { |
1309 | /* | |
1310 | * If we have not yet seen any eligible child, | |
1311 | * then let this error code replace -ECHILD. | |
1312 | * A permission error will give the user a clue | |
1313 | * to look for security policy problems, rather | |
1314 | * than for mysterious wait bugs. | |
1315 | */ | |
9e8ae01d ON |
1316 | if (wo->notask_error) |
1317 | wo->notask_error = ret; | |
78a3d9d5 | 1318 | return 0; |
14dd0b81 RM |
1319 | } |
1320 | ||
3245d6ac | 1321 | if (unlikely(exit_state == EXIT_TRACE)) { |
50b8d257 | 1322 | /* |
abd50b39 ON |
1323 | * ptrace == 0 means we are the natural parent. In this case |
1324 | * we should clear notask_error, debugger will notify us. | |
50b8d257 | 1325 | */ |
abd50b39 | 1326 | if (likely(!ptrace)) |
50b8d257 | 1327 | wo->notask_error = 0; |
823b018e | 1328 | return 0; |
50b8d257 | 1329 | } |
823b018e | 1330 | |
377d75da ON |
1331 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1332 | /* | |
1333 | * If it is traced by its real parent's group, just pretend | |
1334 | * the caller is ptrace_do_wait() and reap this child if it | |
1335 | * is zombie. | |
1336 | * | |
1337 | * This also hides group stop state from real parent; otherwise | |
1338 | * a single stop can be reported twice as group and ptrace stop. | |
1339 | * If a ptracer wants to distinguish these two events for its | |
1340 | * own children it should create a separate process which takes | |
1341 | * the role of real parent. | |
1342 | */ | |
1343 | if (!ptrace_reparented(p)) | |
1344 | ptrace = 1; | |
1345 | } | |
1346 | ||
45cb24a1 | 1347 | /* slay zombie? */ |
3245d6ac | 1348 | if (exit_state == EXIT_ZOMBIE) { |
9b84cca2 | 1349 | /* we don't reap group leaders with subthreads */ |
7c733eb3 ON |
1350 | if (!delay_group_leader(p)) { |
1351 | /* | |
1352 | * A zombie ptracee is only visible to its ptracer. | |
1353 | * Notification and reaping will be cascaded to the | |
1354 | * real parent when the ptracer detaches. | |
1355 | */ | |
1356 | if (unlikely(ptrace) || likely(!p->ptrace)) | |
1357 | return wait_task_zombie(wo, p); | |
1358 | } | |
98abed02 | 1359 | |
f470021a | 1360 | /* |
9b84cca2 TH |
1361 | * Allow access to stopped/continued state via zombie by |
1362 | * falling through. Clearing of notask_error is complex. | |
1363 | * | |
1364 | * When !@ptrace: | |
1365 | * | |
1366 | * If WEXITED is set, notask_error should naturally be | |
1367 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, | |
1368 | * so, if there are live subthreads, there are events to | |
1369 | * wait for. If all subthreads are dead, it's still safe | |
1370 | * to clear - this function will be called again in finite | |
1371 | * amount time once all the subthreads are released and | |
1372 | * will then return without clearing. | |
1373 | * | |
1374 | * When @ptrace: | |
1375 | * | |
1376 | * Stopped state is per-task and thus can't change once the | |
1377 | * target task dies. Only continued and exited can happen. | |
1378 | * Clear notask_error if WCONTINUED | WEXITED. | |
1379 | */ | |
1380 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | |
1381 | wo->notask_error = 0; | |
1382 | } else { | |
1383 | /* | |
1384 | * @p is alive and it's gonna stop, continue or exit, so | |
1385 | * there always is something to wait for. | |
f470021a | 1386 | */ |
9e8ae01d | 1387 | wo->notask_error = 0; |
f470021a RM |
1388 | } |
1389 | ||
98abed02 | 1390 | /* |
45cb24a1 TH |
1391 | * Wait for stopped. Depending on @ptrace, different stopped state |
1392 | * is used and the two don't interact with each other. | |
98abed02 | 1393 | */ |
19e27463 TH |
1394 | ret = wait_task_stopped(wo, ptrace, p); |
1395 | if (ret) | |
1396 | return ret; | |
98abed02 RM |
1397 | |
1398 | /* | |
45cb24a1 TH |
1399 | * Wait for continued. There's only one continued state and the |
1400 | * ptracer can consume it which can confuse the real parent. Don't | |
1401 | * use WCONTINUED from ptracer. You don't need or want it. | |
98abed02 | 1402 | */ |
9e8ae01d | 1403 | return wait_task_continued(wo, p); |
98abed02 RM |
1404 | } |
1405 | ||
1406 | /* | |
1407 | * Do the work of do_wait() for one thread in the group, @tsk. | |
1408 | * | |
9e8ae01d | 1409 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1410 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1411 | * Returns zero if the search for a child should continue; then | |
9e8ae01d | 1412 | * ->notask_error is 0 if there were any eligible children, |
14dd0b81 | 1413 | * or another error from security_task_wait(), or still -ECHILD. |
98abed02 | 1414 | */ |
9e8ae01d | 1415 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1416 | { |
1417 | struct task_struct *p; | |
1418 | ||
1419 | list_for_each_entry(p, &tsk->children, sibling) { | |
9cd80bbb | 1420 | int ret = wait_consider_task(wo, 0, p); |
a0be55de | 1421 | |
9cd80bbb ON |
1422 | if (ret) |
1423 | return ret; | |
98abed02 RM |
1424 | } |
1425 | ||
1426 | return 0; | |
1427 | } | |
1428 | ||
9e8ae01d | 1429 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1430 | { |
1431 | struct task_struct *p; | |
1432 | ||
f470021a | 1433 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
b6e763f0 | 1434 | int ret = wait_consider_task(wo, 1, p); |
a0be55de | 1435 | |
f470021a | 1436 | if (ret) |
98abed02 | 1437 | return ret; |
98abed02 RM |
1438 | } |
1439 | ||
1440 | return 0; | |
1441 | } | |
1442 | ||
0b7570e7 ON |
1443 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, |
1444 | int sync, void *key) | |
1445 | { | |
1446 | struct wait_opts *wo = container_of(wait, struct wait_opts, | |
1447 | child_wait); | |
1448 | struct task_struct *p = key; | |
1449 | ||
5c01ba49 | 1450 | if (!eligible_pid(wo, p)) |
0b7570e7 ON |
1451 | return 0; |
1452 | ||
b4fe5182 ON |
1453 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) |
1454 | return 0; | |
1455 | ||
0b7570e7 ON |
1456 | return default_wake_function(wait, mode, sync, key); |
1457 | } | |
1458 | ||
a7f0765e ON |
1459 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) |
1460 | { | |
0b7570e7 ON |
1461 | __wake_up_sync_key(&parent->signal->wait_chldexit, |
1462 | TASK_INTERRUPTIBLE, 1, p); | |
a7f0765e ON |
1463 | } |
1464 | ||
9e8ae01d | 1465 | static long do_wait(struct wait_opts *wo) |
1da177e4 | 1466 | { |
1da177e4 | 1467 | struct task_struct *tsk; |
98abed02 | 1468 | int retval; |
1da177e4 | 1469 | |
9e8ae01d | 1470 | trace_sched_process_wait(wo->wo_pid); |
0a16b607 | 1471 | |
0b7570e7 ON |
1472 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1473 | wo->child_wait.private = current; | |
1474 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | |
1da177e4 | 1475 | repeat: |
98abed02 | 1476 | /* |
3da56d16 | 1477 | * If there is nothing that can match our criteria, just get out. |
9e8ae01d ON |
1478 | * We will clear ->notask_error to zero if we see any child that |
1479 | * might later match our criteria, even if we are not able to reap | |
1480 | * it yet. | |
98abed02 | 1481 | */ |
64a16caf | 1482 | wo->notask_error = -ECHILD; |
9e8ae01d ON |
1483 | if ((wo->wo_type < PIDTYPE_MAX) && |
1484 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | |
64a16caf | 1485 | goto notask; |
161550d7 | 1486 | |
f95d39d1 | 1487 | set_current_state(TASK_INTERRUPTIBLE); |
1da177e4 LT |
1488 | read_lock(&tasklist_lock); |
1489 | tsk = current; | |
1490 | do { | |
64a16caf ON |
1491 | retval = do_wait_thread(wo, tsk); |
1492 | if (retval) | |
1493 | goto end; | |
9e8ae01d | 1494 | |
64a16caf ON |
1495 | retval = ptrace_do_wait(wo, tsk); |
1496 | if (retval) | |
98abed02 | 1497 | goto end; |
98abed02 | 1498 | |
9e8ae01d | 1499 | if (wo->wo_flags & __WNOTHREAD) |
1da177e4 | 1500 | break; |
a3f6dfb7 | 1501 | } while_each_thread(current, tsk); |
1da177e4 | 1502 | read_unlock(&tasklist_lock); |
f2cc3eb1 | 1503 | |
64a16caf | 1504 | notask: |
9e8ae01d ON |
1505 | retval = wo->notask_error; |
1506 | if (!retval && !(wo->wo_flags & WNOHANG)) { | |
1da177e4 | 1507 | retval = -ERESTARTSYS; |
98abed02 RM |
1508 | if (!signal_pending(current)) { |
1509 | schedule(); | |
1510 | goto repeat; | |
1511 | } | |
1da177e4 | 1512 | } |
1da177e4 | 1513 | end: |
f95d39d1 | 1514 | __set_current_state(TASK_RUNNING); |
0b7570e7 | 1515 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1da177e4 LT |
1516 | return retval; |
1517 | } | |
1518 | ||
17da2bd9 HC |
1519 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, |
1520 | infop, int, options, struct rusage __user *, ru) | |
1da177e4 | 1521 | { |
9e8ae01d | 1522 | struct wait_opts wo; |
161550d7 EB |
1523 | struct pid *pid = NULL; |
1524 | enum pid_type type; | |
1da177e4 LT |
1525 | long ret; |
1526 | ||
1527 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | |
1528 | return -EINVAL; | |
1529 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1530 | return -EINVAL; | |
1531 | ||
1532 | switch (which) { | |
1533 | case P_ALL: | |
161550d7 | 1534 | type = PIDTYPE_MAX; |
1da177e4 LT |
1535 | break; |
1536 | case P_PID: | |
161550d7 EB |
1537 | type = PIDTYPE_PID; |
1538 | if (upid <= 0) | |
1da177e4 LT |
1539 | return -EINVAL; |
1540 | break; | |
1541 | case P_PGID: | |
161550d7 EB |
1542 | type = PIDTYPE_PGID; |
1543 | if (upid <= 0) | |
1da177e4 | 1544 | return -EINVAL; |
1da177e4 LT |
1545 | break; |
1546 | default: | |
1547 | return -EINVAL; | |
1548 | } | |
1549 | ||
161550d7 EB |
1550 | if (type < PIDTYPE_MAX) |
1551 | pid = find_get_pid(upid); | |
9e8ae01d ON |
1552 | |
1553 | wo.wo_type = type; | |
1554 | wo.wo_pid = pid; | |
1555 | wo.wo_flags = options; | |
1556 | wo.wo_info = infop; | |
1557 | wo.wo_stat = NULL; | |
1558 | wo.wo_rusage = ru; | |
1559 | ret = do_wait(&wo); | |
dfe16dfa VM |
1560 | |
1561 | if (ret > 0) { | |
1562 | ret = 0; | |
1563 | } else if (infop) { | |
1564 | /* | |
1565 | * For a WNOHANG return, clear out all the fields | |
1566 | * we would set so the user can easily tell the | |
1567 | * difference. | |
1568 | */ | |
1569 | if (!ret) | |
1570 | ret = put_user(0, &infop->si_signo); | |
1571 | if (!ret) | |
1572 | ret = put_user(0, &infop->si_errno); | |
1573 | if (!ret) | |
1574 | ret = put_user(0, &infop->si_code); | |
1575 | if (!ret) | |
1576 | ret = put_user(0, &infop->si_pid); | |
1577 | if (!ret) | |
1578 | ret = put_user(0, &infop->si_uid); | |
1579 | if (!ret) | |
1580 | ret = put_user(0, &infop->si_status); | |
1581 | } | |
1582 | ||
161550d7 | 1583 | put_pid(pid); |
1da177e4 LT |
1584 | return ret; |
1585 | } | |
1586 | ||
754fe8d2 HC |
1587 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, |
1588 | int, options, struct rusage __user *, ru) | |
1da177e4 | 1589 | { |
9e8ae01d | 1590 | struct wait_opts wo; |
161550d7 EB |
1591 | struct pid *pid = NULL; |
1592 | enum pid_type type; | |
1da177e4 LT |
1593 | long ret; |
1594 | ||
1595 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1596 | __WNOTHREAD|__WCLONE|__WALL)) | |
1597 | return -EINVAL; | |
161550d7 EB |
1598 | |
1599 | if (upid == -1) | |
1600 | type = PIDTYPE_MAX; | |
1601 | else if (upid < 0) { | |
1602 | type = PIDTYPE_PGID; | |
1603 | pid = find_get_pid(-upid); | |
1604 | } else if (upid == 0) { | |
1605 | type = PIDTYPE_PGID; | |
2ae448ef | 1606 | pid = get_task_pid(current, PIDTYPE_PGID); |
161550d7 EB |
1607 | } else /* upid > 0 */ { |
1608 | type = PIDTYPE_PID; | |
1609 | pid = find_get_pid(upid); | |
1610 | } | |
1611 | ||
9e8ae01d ON |
1612 | wo.wo_type = type; |
1613 | wo.wo_pid = pid; | |
1614 | wo.wo_flags = options | WEXITED; | |
1615 | wo.wo_info = NULL; | |
1616 | wo.wo_stat = stat_addr; | |
1617 | wo.wo_rusage = ru; | |
1618 | ret = do_wait(&wo); | |
161550d7 | 1619 | put_pid(pid); |
1da177e4 | 1620 | |
1da177e4 LT |
1621 | return ret; |
1622 | } | |
1623 | ||
1624 | #ifdef __ARCH_WANT_SYS_WAITPID | |
1625 | ||
1626 | /* | |
1627 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1628 | * implemented by calling sys_wait4() from libc.a. | |
1629 | */ | |
17da2bd9 | 1630 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) |
1da177e4 LT |
1631 | { |
1632 | return sys_wait4(pid, stat_addr, options, NULL); | |
1633 | } | |
1634 | ||
1635 | #endif |