]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
16d69265 | 2 | #include <linux/mm.h> |
30992c97 MM |
3 | #include <linux/slab.h> |
4 | #include <linux/string.h> | |
3b32123d | 5 | #include <linux/compiler.h> |
b95f1b31 | 6 | #include <linux/export.h> |
96840aa0 | 7 | #include <linux/err.h> |
3b8f14b4 | 8 | #include <linux/sched.h> |
6e84f315 | 9 | #include <linux/sched/mm.h> |
79eb597c | 10 | #include <linux/sched/signal.h> |
68db0cf1 | 11 | #include <linux/sched/task_stack.h> |
eb36c587 | 12 | #include <linux/security.h> |
9800339b | 13 | #include <linux/swap.h> |
33806f06 | 14 | #include <linux/swapops.h> |
00619bcc JM |
15 | #include <linux/mman.h> |
16 | #include <linux/hugetlb.h> | |
39f1f78d | 17 | #include <linux/vmalloc.h> |
897ab3e0 | 18 | #include <linux/userfaultfd_k.h> |
649775be | 19 | #include <linux/elf.h> |
67f3977f AG |
20 | #include <linux/elf-randomize.h> |
21 | #include <linux/personality.h> | |
649775be | 22 | #include <linux/random.h> |
67f3977f AG |
23 | #include <linux/processor.h> |
24 | #include <linux/sizes.h> | |
25 | #include <linux/compat.h> | |
00619bcc | 26 | |
7c0f6ba6 | 27 | #include <linux/uaccess.h> |
30992c97 | 28 | |
6038def0 | 29 | #include "internal.h" |
014bb1de | 30 | #include "swap.h" |
6038def0 | 31 | |
a4bb1e43 AH |
32 | /** |
33 | * kfree_const - conditionally free memory | |
34 | * @x: pointer to the memory | |
35 | * | |
36 | * Function calls kfree only if @x is not in .rodata section. | |
37 | */ | |
38 | void kfree_const(const void *x) | |
39 | { | |
40 | if (!is_kernel_rodata((unsigned long)x)) | |
41 | kfree(x); | |
42 | } | |
43 | EXPORT_SYMBOL(kfree_const); | |
44 | ||
30992c97 | 45 | /** |
30992c97 | 46 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
47 | * @s: the string to duplicate |
48 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
49 | * |
50 | * Return: newly allocated copy of @s or %NULL in case of error | |
30992c97 MM |
51 | */ |
52 | char *kstrdup(const char *s, gfp_t gfp) | |
53 | { | |
54 | size_t len; | |
55 | char *buf; | |
56 | ||
57 | if (!s) | |
58 | return NULL; | |
59 | ||
60 | len = strlen(s) + 1; | |
1d2c8eea | 61 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
62 | if (buf) |
63 | memcpy(buf, s, len); | |
64 | return buf; | |
65 | } | |
66 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 67 | |
a4bb1e43 AH |
68 | /** |
69 | * kstrdup_const - conditionally duplicate an existing const string | |
70 | * @s: the string to duplicate | |
71 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
72 | * | |
295a1730 BG |
73 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const and |
74 | * must not be passed to krealloc(). | |
a862f68a MR |
75 | * |
76 | * Return: source string if it is in .rodata section otherwise | |
77 | * fallback to kstrdup. | |
a4bb1e43 AH |
78 | */ |
79 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
80 | { | |
81 | if (is_kernel_rodata((unsigned long)s)) | |
82 | return s; | |
83 | ||
84 | return kstrdup(s, gfp); | |
85 | } | |
86 | EXPORT_SYMBOL(kstrdup_const); | |
87 | ||
1e66df3e JF |
88 | /** |
89 | * kstrndup - allocate space for and copy an existing string | |
90 | * @s: the string to duplicate | |
91 | * @max: read at most @max chars from @s | |
92 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
93 | * |
94 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
a862f68a MR |
95 | * |
96 | * Return: newly allocated copy of @s or %NULL in case of error | |
1e66df3e JF |
97 | */ |
98 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
99 | { | |
100 | size_t len; | |
101 | char *buf; | |
102 | ||
103 | if (!s) | |
104 | return NULL; | |
105 | ||
106 | len = strnlen(s, max); | |
107 | buf = kmalloc_track_caller(len+1, gfp); | |
108 | if (buf) { | |
109 | memcpy(buf, s, len); | |
110 | buf[len] = '\0'; | |
111 | } | |
112 | return buf; | |
113 | } | |
114 | EXPORT_SYMBOL(kstrndup); | |
115 | ||
1a2f67b4 AD |
116 | /** |
117 | * kmemdup - duplicate region of memory | |
118 | * | |
119 | * @src: memory region to duplicate | |
120 | * @len: memory region length | |
121 | * @gfp: GFP mask to use | |
a862f68a | 122 | * |
0b7b8704 HS |
123 | * Return: newly allocated copy of @src or %NULL in case of error, |
124 | * result is physically contiguous. Use kfree() to free. | |
1a2f67b4 AD |
125 | */ |
126 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
127 | { | |
128 | void *p; | |
129 | ||
1d2c8eea | 130 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
131 | if (p) |
132 | memcpy(p, src, len); | |
133 | return p; | |
134 | } | |
135 | EXPORT_SYMBOL(kmemdup); | |
136 | ||
0b7b8704 HS |
137 | /** |
138 | * kvmemdup - duplicate region of memory | |
139 | * | |
140 | * @src: memory region to duplicate | |
141 | * @len: memory region length | |
142 | * @gfp: GFP mask to use | |
143 | * | |
144 | * Return: newly allocated copy of @src or %NULL in case of error, | |
145 | * result may be not physically contiguous. Use kvfree() to free. | |
146 | */ | |
147 | void *kvmemdup(const void *src, size_t len, gfp_t gfp) | |
148 | { | |
149 | void *p; | |
150 | ||
151 | p = kvmalloc(len, gfp); | |
152 | if (p) | |
153 | memcpy(p, src, len); | |
154 | return p; | |
155 | } | |
156 | EXPORT_SYMBOL(kvmemdup); | |
157 | ||
f3515741 DH |
158 | /** |
159 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
160 | * @s: The data to stringify | |
161 | * @len: The size of the data | |
162 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
163 | * |
164 | * Return: newly allocated copy of @s with NUL-termination or %NULL in | |
165 | * case of error | |
f3515741 DH |
166 | */ |
167 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
168 | { | |
169 | char *buf; | |
170 | ||
171 | if (!s) | |
172 | return NULL; | |
173 | ||
174 | buf = kmalloc_track_caller(len + 1, gfp); | |
175 | if (buf) { | |
176 | memcpy(buf, s, len); | |
177 | buf[len] = '\0'; | |
178 | } | |
179 | return buf; | |
180 | } | |
181 | EXPORT_SYMBOL(kmemdup_nul); | |
182 | ||
610a77e0 LZ |
183 | /** |
184 | * memdup_user - duplicate memory region from user space | |
185 | * | |
186 | * @src: source address in user space | |
187 | * @len: number of bytes to copy | |
188 | * | |
a862f68a | 189 | * Return: an ERR_PTR() on failure. Result is physically |
50fd2f29 | 190 | * contiguous, to be freed by kfree(). |
610a77e0 LZ |
191 | */ |
192 | void *memdup_user(const void __user *src, size_t len) | |
193 | { | |
194 | void *p; | |
195 | ||
6c8fcc09 | 196 | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); |
610a77e0 LZ |
197 | if (!p) |
198 | return ERR_PTR(-ENOMEM); | |
199 | ||
200 | if (copy_from_user(p, src, len)) { | |
201 | kfree(p); | |
202 | return ERR_PTR(-EFAULT); | |
203 | } | |
204 | ||
205 | return p; | |
206 | } | |
207 | EXPORT_SYMBOL(memdup_user); | |
208 | ||
50fd2f29 AV |
209 | /** |
210 | * vmemdup_user - duplicate memory region from user space | |
211 | * | |
212 | * @src: source address in user space | |
213 | * @len: number of bytes to copy | |
214 | * | |
a862f68a | 215 | * Return: an ERR_PTR() on failure. Result may be not |
50fd2f29 AV |
216 | * physically contiguous. Use kvfree() to free. |
217 | */ | |
218 | void *vmemdup_user(const void __user *src, size_t len) | |
219 | { | |
220 | void *p; | |
221 | ||
222 | p = kvmalloc(len, GFP_USER); | |
223 | if (!p) | |
224 | return ERR_PTR(-ENOMEM); | |
225 | ||
226 | if (copy_from_user(p, src, len)) { | |
227 | kvfree(p); | |
228 | return ERR_PTR(-EFAULT); | |
229 | } | |
230 | ||
231 | return p; | |
232 | } | |
233 | EXPORT_SYMBOL(vmemdup_user); | |
234 | ||
b86181f1 | 235 | /** |
96840aa0 | 236 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
237 | * @s: The string to duplicate |
238 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
a862f68a | 239 | * |
e9145521 | 240 | * Return: newly allocated copy of @s or an ERR_PTR() in case of error |
96840aa0 DA |
241 | */ |
242 | char *strndup_user(const char __user *s, long n) | |
243 | { | |
244 | char *p; | |
245 | long length; | |
246 | ||
247 | length = strnlen_user(s, n); | |
248 | ||
249 | if (!length) | |
250 | return ERR_PTR(-EFAULT); | |
251 | ||
252 | if (length > n) | |
253 | return ERR_PTR(-EINVAL); | |
254 | ||
90d74045 | 255 | p = memdup_user(s, length); |
96840aa0 | 256 | |
90d74045 JL |
257 | if (IS_ERR(p)) |
258 | return p; | |
96840aa0 DA |
259 | |
260 | p[length - 1] = '\0'; | |
261 | ||
262 | return p; | |
263 | } | |
264 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 265 | |
e9d408e1 AV |
266 | /** |
267 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
268 | * | |
269 | * @src: source address in user space | |
270 | * @len: number of bytes to copy | |
271 | * | |
a862f68a | 272 | * Return: an ERR_PTR() on failure. |
e9d408e1 AV |
273 | */ |
274 | void *memdup_user_nul(const void __user *src, size_t len) | |
275 | { | |
276 | char *p; | |
277 | ||
278 | /* | |
279 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
280 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
281 | * or GFP_ATOMIC. | |
282 | */ | |
283 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
284 | if (!p) | |
285 | return ERR_PTR(-ENOMEM); | |
286 | ||
287 | if (copy_from_user(p, src, len)) { | |
288 | kfree(p); | |
289 | return ERR_PTR(-EFAULT); | |
290 | } | |
291 | p[len] = '\0'; | |
292 | ||
293 | return p; | |
294 | } | |
295 | EXPORT_SYMBOL(memdup_user_nul); | |
296 | ||
b7643757 | 297 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 298 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 299 | { |
d17af505 AL |
300 | struct task_struct * __maybe_unused t = current; |
301 | ||
b7643757 SP |
302 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
303 | } | |
304 | ||
295992fb CK |
305 | /* |
306 | * Change backing file, only valid to use during initial VMA setup. | |
307 | */ | |
308 | void vma_set_file(struct vm_area_struct *vma, struct file *file) | |
309 | { | |
310 | /* Changing an anonymous vma with this is illegal */ | |
311 | get_file(file); | |
312 | swap(vma->vm_file, file); | |
313 | fput(file); | |
314 | } | |
315 | EXPORT_SYMBOL(vma_set_file); | |
316 | ||
649775be AG |
317 | #ifndef STACK_RND_MASK |
318 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ | |
319 | #endif | |
320 | ||
321 | unsigned long randomize_stack_top(unsigned long stack_top) | |
322 | { | |
323 | unsigned long random_variable = 0; | |
324 | ||
325 | if (current->flags & PF_RANDOMIZE) { | |
326 | random_variable = get_random_long(); | |
327 | random_variable &= STACK_RND_MASK; | |
328 | random_variable <<= PAGE_SHIFT; | |
329 | } | |
330 | #ifdef CONFIG_STACK_GROWSUP | |
331 | return PAGE_ALIGN(stack_top) + random_variable; | |
332 | #else | |
333 | return PAGE_ALIGN(stack_top) - random_variable; | |
334 | #endif | |
335 | } | |
336 | ||
5ad7dd88 JD |
337 | /** |
338 | * randomize_page - Generate a random, page aligned address | |
339 | * @start: The smallest acceptable address the caller will take. | |
340 | * @range: The size of the area, starting at @start, within which the | |
341 | * random address must fall. | |
342 | * | |
343 | * If @start + @range would overflow, @range is capped. | |
344 | * | |
345 | * NOTE: Historical use of randomize_range, which this replaces, presumed that | |
346 | * @start was already page aligned. We now align it regardless. | |
347 | * | |
348 | * Return: A page aligned address within [start, start + range). On error, | |
349 | * @start is returned. | |
350 | */ | |
351 | unsigned long randomize_page(unsigned long start, unsigned long range) | |
352 | { | |
353 | if (!PAGE_ALIGNED(start)) { | |
354 | range -= PAGE_ALIGN(start) - start; | |
355 | start = PAGE_ALIGN(start); | |
356 | } | |
357 | ||
358 | if (start > ULONG_MAX - range) | |
359 | range = ULONG_MAX - start; | |
360 | ||
361 | range >>= PAGE_SHIFT; | |
362 | ||
363 | if (range == 0) | |
364 | return start; | |
365 | ||
366 | return start + (get_random_long() % range << PAGE_SHIFT); | |
367 | } | |
368 | ||
67f3977f | 369 | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT |
723820f3 | 370 | unsigned long __weak arch_randomize_brk(struct mm_struct *mm) |
e7142bf5 AG |
371 | { |
372 | /* Is the current task 32bit ? */ | |
373 | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) | |
374 | return randomize_page(mm->brk, SZ_32M); | |
375 | ||
376 | return randomize_page(mm->brk, SZ_1G); | |
377 | } | |
378 | ||
67f3977f AG |
379 | unsigned long arch_mmap_rnd(void) |
380 | { | |
381 | unsigned long rnd; | |
382 | ||
383 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | |
384 | if (is_compat_task()) | |
385 | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); | |
386 | else | |
387 | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ | |
388 | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); | |
389 | ||
390 | return rnd << PAGE_SHIFT; | |
391 | } | |
67f3977f AG |
392 | |
393 | static int mmap_is_legacy(struct rlimit *rlim_stack) | |
394 | { | |
395 | if (current->personality & ADDR_COMPAT_LAYOUT) | |
396 | return 1; | |
397 | ||
398 | if (rlim_stack->rlim_cur == RLIM_INFINITY) | |
399 | return 1; | |
400 | ||
401 | return sysctl_legacy_va_layout; | |
402 | } | |
403 | ||
404 | /* | |
405 | * Leave enough space between the mmap area and the stack to honour ulimit in | |
406 | * the face of randomisation. | |
407 | */ | |
408 | #define MIN_GAP (SZ_128M) | |
409 | #define MAX_GAP (STACK_TOP / 6 * 5) | |
410 | ||
411 | static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) | |
412 | { | |
413 | unsigned long gap = rlim_stack->rlim_cur; | |
414 | unsigned long pad = stack_guard_gap; | |
415 | ||
416 | /* Account for stack randomization if necessary */ | |
417 | if (current->flags & PF_RANDOMIZE) | |
418 | pad += (STACK_RND_MASK << PAGE_SHIFT); | |
419 | ||
420 | /* Values close to RLIM_INFINITY can overflow. */ | |
421 | if (gap + pad > gap) | |
422 | gap += pad; | |
423 | ||
424 | if (gap < MIN_GAP) | |
425 | gap = MIN_GAP; | |
426 | else if (gap > MAX_GAP) | |
427 | gap = MAX_GAP; | |
428 | ||
429 | return PAGE_ALIGN(STACK_TOP - gap - rnd); | |
430 | } | |
431 | ||
432 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) | |
433 | { | |
434 | unsigned long random_factor = 0UL; | |
435 | ||
436 | if (current->flags & PF_RANDOMIZE) | |
437 | random_factor = arch_mmap_rnd(); | |
438 | ||
439 | if (mmap_is_legacy(rlim_stack)) { | |
440 | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; | |
441 | mm->get_unmapped_area = arch_get_unmapped_area; | |
442 | } else { | |
443 | mm->mmap_base = mmap_base(random_factor, rlim_stack); | |
444 | mm->get_unmapped_area = arch_get_unmapped_area_topdown; | |
445 | } | |
446 | } | |
447 | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | |
8f2af155 | 448 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
449 | { |
450 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
451 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
452 | } |
453 | #endif | |
912985dc | 454 | |
79eb597c DJ |
455 | /** |
456 | * __account_locked_vm - account locked pages to an mm's locked_vm | |
457 | * @mm: mm to account against | |
458 | * @pages: number of pages to account | |
459 | * @inc: %true if @pages should be considered positive, %false if not | |
460 | * @task: task used to check RLIMIT_MEMLOCK | |
461 | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped | |
462 | * | |
463 | * Assumes @task and @mm are valid (i.e. at least one reference on each), and | |
c1e8d7c6 | 464 | * that mmap_lock is held as writer. |
79eb597c DJ |
465 | * |
466 | * Return: | |
467 | * * 0 on success | |
468 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
469 | */ | |
470 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | |
471 | struct task_struct *task, bool bypass_rlim) | |
472 | { | |
473 | unsigned long locked_vm, limit; | |
474 | int ret = 0; | |
475 | ||
42fc5414 | 476 | mmap_assert_write_locked(mm); |
79eb597c DJ |
477 | |
478 | locked_vm = mm->locked_vm; | |
479 | if (inc) { | |
480 | if (!bypass_rlim) { | |
481 | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; | |
482 | if (locked_vm + pages > limit) | |
483 | ret = -ENOMEM; | |
484 | } | |
485 | if (!ret) | |
486 | mm->locked_vm = locked_vm + pages; | |
487 | } else { | |
488 | WARN_ON_ONCE(pages > locked_vm); | |
489 | mm->locked_vm = locked_vm - pages; | |
490 | } | |
491 | ||
492 | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, | |
493 | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, | |
494 | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), | |
495 | ret ? " - exceeded" : ""); | |
496 | ||
497 | return ret; | |
498 | } | |
499 | EXPORT_SYMBOL_GPL(__account_locked_vm); | |
500 | ||
501 | /** | |
502 | * account_locked_vm - account locked pages to an mm's locked_vm | |
503 | * @mm: mm to account against, may be NULL | |
504 | * @pages: number of pages to account | |
505 | * @inc: %true if @pages should be considered positive, %false if not | |
506 | * | |
507 | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). | |
508 | * | |
509 | * Return: | |
510 | * * 0 on success, or if mm is NULL | |
511 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
512 | */ | |
513 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) | |
514 | { | |
515 | int ret; | |
516 | ||
517 | if (pages == 0 || !mm) | |
518 | return 0; | |
519 | ||
d8ed45c5 | 520 | mmap_write_lock(mm); |
79eb597c DJ |
521 | ret = __account_locked_vm(mm, pages, inc, current, |
522 | capable(CAP_IPC_LOCK)); | |
d8ed45c5 | 523 | mmap_write_unlock(mm); |
79eb597c DJ |
524 | |
525 | return ret; | |
526 | } | |
527 | EXPORT_SYMBOL_GPL(account_locked_vm); | |
528 | ||
eb36c587 AV |
529 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
530 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 531 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
532 | { |
533 | unsigned long ret; | |
534 | struct mm_struct *mm = current->mm; | |
41badc15 | 535 | unsigned long populate; |
897ab3e0 | 536 | LIST_HEAD(uf); |
eb36c587 AV |
537 | |
538 | ret = security_mmap_file(file, prot, flag); | |
539 | if (!ret) { | |
d8ed45c5 | 540 | if (mmap_write_lock_killable(mm)) |
9fbeb5ab | 541 | return -EINTR; |
45e55300 PC |
542 | ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, |
543 | &uf); | |
d8ed45c5 | 544 | mmap_write_unlock(mm); |
897ab3e0 | 545 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
546 | if (populate) |
547 | mm_populate(ret, populate); | |
eb36c587 AV |
548 | } |
549 | return ret; | |
550 | } | |
551 | ||
552 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
553 | unsigned long len, unsigned long prot, | |
554 | unsigned long flag, unsigned long offset) | |
555 | { | |
556 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
557 | return -EINVAL; | |
ea53cde0 | 558 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
559 | return -EINVAL; |
560 | ||
9fbeb5ab | 561 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
562 | } |
563 | EXPORT_SYMBOL(vm_mmap); | |
564 | ||
a7c3e901 MH |
565 | /** |
566 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
567 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
568 | * @size: size of the request. | |
569 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
570 | * @node: numa node to allocate from | |
571 | * | |
572 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
573 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
574 | * | |
a421ef30 | 575 | * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. |
cc965a29 MH |
576 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is |
577 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 578 | * |
a862f68a | 579 | * Return: pointer to the allocated memory of %NULL in case of failure |
a7c3e901 MH |
580 | */ |
581 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
582 | { | |
583 | gfp_t kmalloc_flags = flags; | |
584 | void *ret; | |
585 | ||
a7c3e901 | 586 | /* |
4f4f2ba9 MH |
587 | * We want to attempt a large physically contiguous block first because |
588 | * it is less likely to fragment multiple larger blocks and therefore | |
589 | * contribute to a long term fragmentation less than vmalloc fallback. | |
590 | * However make sure that larger requests are not too disruptive - no | |
591 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 592 | */ |
6c5ab651 MH |
593 | if (size > PAGE_SIZE) { |
594 | kmalloc_flags |= __GFP_NOWARN; | |
595 | ||
cc965a29 | 596 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 | 597 | kmalloc_flags |= __GFP_NORETRY; |
a421ef30 MH |
598 | |
599 | /* nofail semantic is implemented by the vmalloc fallback */ | |
600 | kmalloc_flags &= ~__GFP_NOFAIL; | |
6c5ab651 | 601 | } |
a7c3e901 MH |
602 | |
603 | ret = kmalloc_node(size, kmalloc_flags, node); | |
604 | ||
605 | /* | |
606 | * It doesn't really make sense to fallback to vmalloc for sub page | |
607 | * requests | |
608 | */ | |
609 | if (ret || size <= PAGE_SIZE) | |
610 | return ret; | |
611 | ||
30c19366 FW |
612 | /* non-sleeping allocations are not supported by vmalloc */ |
613 | if (!gfpflags_allow_blocking(flags)) | |
614 | return NULL; | |
615 | ||
7661809d | 616 | /* Don't even allow crazy sizes */ |
0708a0af DB |
617 | if (unlikely(size > INT_MAX)) { |
618 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); | |
7661809d | 619 | return NULL; |
0708a0af | 620 | } |
7661809d | 621 | |
9becb688 LT |
622 | /* |
623 | * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, | |
624 | * since the callers already cannot assume anything | |
625 | * about the resulting pointer, and cannot play | |
626 | * protection games. | |
627 | */ | |
628 | return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, | |
629 | flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, | |
630 | node, __builtin_return_address(0)); | |
a7c3e901 MH |
631 | } |
632 | EXPORT_SYMBOL(kvmalloc_node); | |
633 | ||
ff4dc772 | 634 | /** |
04b8e946 AM |
635 | * kvfree() - Free memory. |
636 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 637 | * |
04b8e946 AM |
638 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
639 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
640 | * that you know which one to use. | |
641 | * | |
52414d33 | 642 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 643 | */ |
39f1f78d AV |
644 | void kvfree(const void *addr) |
645 | { | |
646 | if (is_vmalloc_addr(addr)) | |
647 | vfree(addr); | |
648 | else | |
649 | kfree(addr); | |
650 | } | |
651 | EXPORT_SYMBOL(kvfree); | |
652 | ||
d4eaa283 WL |
653 | /** |
654 | * kvfree_sensitive - Free a data object containing sensitive information. | |
655 | * @addr: address of the data object to be freed. | |
656 | * @len: length of the data object. | |
657 | * | |
658 | * Use the special memzero_explicit() function to clear the content of a | |
659 | * kvmalloc'ed object containing sensitive data to make sure that the | |
660 | * compiler won't optimize out the data clearing. | |
661 | */ | |
662 | void kvfree_sensitive(const void *addr, size_t len) | |
663 | { | |
664 | if (likely(!ZERO_OR_NULL_PTR(addr))) { | |
665 | memzero_explicit((void *)addr, len); | |
666 | kvfree(addr); | |
667 | } | |
668 | } | |
669 | EXPORT_SYMBOL(kvfree_sensitive); | |
670 | ||
de2860f4 DC |
671 | void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) |
672 | { | |
673 | void *newp; | |
674 | ||
675 | if (oldsize >= newsize) | |
676 | return (void *)p; | |
677 | newp = kvmalloc(newsize, flags); | |
678 | if (!newp) | |
679 | return NULL; | |
680 | memcpy(newp, p, oldsize); | |
681 | kvfree(p); | |
682 | return newp; | |
683 | } | |
684 | EXPORT_SYMBOL(kvrealloc); | |
685 | ||
a8749a35 PB |
686 | /** |
687 | * __vmalloc_array - allocate memory for a virtually contiguous array. | |
688 | * @n: number of elements. | |
689 | * @size: element size. | |
690 | * @flags: the type of memory to allocate (see kmalloc). | |
691 | */ | |
692 | void *__vmalloc_array(size_t n, size_t size, gfp_t flags) | |
693 | { | |
694 | size_t bytes; | |
695 | ||
696 | if (unlikely(check_mul_overflow(n, size, &bytes))) | |
697 | return NULL; | |
698 | return __vmalloc(bytes, flags); | |
699 | } | |
700 | EXPORT_SYMBOL(__vmalloc_array); | |
701 | ||
702 | /** | |
703 | * vmalloc_array - allocate memory for a virtually contiguous array. | |
704 | * @n: number of elements. | |
705 | * @size: element size. | |
706 | */ | |
707 | void *vmalloc_array(size_t n, size_t size) | |
708 | { | |
709 | return __vmalloc_array(n, size, GFP_KERNEL); | |
710 | } | |
711 | EXPORT_SYMBOL(vmalloc_array); | |
712 | ||
713 | /** | |
714 | * __vcalloc - allocate and zero memory for a virtually contiguous array. | |
715 | * @n: number of elements. | |
716 | * @size: element size. | |
717 | * @flags: the type of memory to allocate (see kmalloc). | |
718 | */ | |
719 | void *__vcalloc(size_t n, size_t size, gfp_t flags) | |
720 | { | |
721 | return __vmalloc_array(n, size, flags | __GFP_ZERO); | |
722 | } | |
723 | EXPORT_SYMBOL(__vcalloc); | |
724 | ||
725 | /** | |
726 | * vcalloc - allocate and zero memory for a virtually contiguous array. | |
727 | * @n: number of elements. | |
728 | * @size: element size. | |
729 | */ | |
730 | void *vcalloc(size_t n, size_t size) | |
731 | { | |
732 | return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); | |
733 | } | |
734 | EXPORT_SYMBOL(vcalloc); | |
735 | ||
e39155ea KS |
736 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ |
737 | void *page_rmapping(struct page *page) | |
738 | { | |
64601000 | 739 | return folio_raw_mapping(page_folio(page)); |
e39155ea KS |
740 | } |
741 | ||
e05b3453 | 742 | struct anon_vma *folio_anon_vma(struct folio *folio) |
e39155ea | 743 | { |
64601000 | 744 | unsigned long mapping = (unsigned long)folio->mapping; |
e39155ea | 745 | |
e39155ea KS |
746 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
747 | return NULL; | |
64601000 | 748 | return (void *)(mapping - PAGE_MAPPING_ANON); |
e39155ea KS |
749 | } |
750 | ||
2f52578f MWO |
751 | /** |
752 | * folio_mapping - Find the mapping where this folio is stored. | |
753 | * @folio: The folio. | |
754 | * | |
755 | * For folios which are in the page cache, return the mapping that this | |
756 | * page belongs to. Folios in the swap cache return the swap mapping | |
757 | * this page is stored in (which is different from the mapping for the | |
758 | * swap file or swap device where the data is stored). | |
759 | * | |
760 | * You can call this for folios which aren't in the swap cache or page | |
761 | * cache and it will return NULL. | |
762 | */ | |
763 | struct address_space *folio_mapping(struct folio *folio) | |
9800339b | 764 | { |
1c290f64 KS |
765 | struct address_space *mapping; |
766 | ||
03e5ac2f | 767 | /* This happens if someone calls flush_dcache_page on slab page */ |
2f52578f | 768 | if (unlikely(folio_test_slab(folio))) |
03e5ac2f MP |
769 | return NULL; |
770 | ||
2f52578f MWO |
771 | if (unlikely(folio_test_swapcache(folio))) |
772 | return swap_address_space(folio_swap_entry(folio)); | |
e39155ea | 773 | |
2f52578f | 774 | mapping = folio->mapping; |
68f2736a | 775 | if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) |
e39155ea | 776 | return NULL; |
bda807d4 | 777 | |
68f2736a | 778 | return mapping; |
9800339b | 779 | } |
2f52578f | 780 | EXPORT_SYMBOL(folio_mapping); |
9800339b | 781 | |
715cbfd6 MWO |
782 | /** |
783 | * folio_copy - Copy the contents of one folio to another. | |
784 | * @dst: Folio to copy to. | |
785 | * @src: Folio to copy from. | |
786 | * | |
787 | * The bytes in the folio represented by @src are copied to @dst. | |
788 | * Assumes the caller has validated that @dst is at least as large as @src. | |
789 | * Can be called in atomic context for order-0 folios, but if the folio is | |
790 | * larger, it may sleep. | |
791 | */ | |
792 | void folio_copy(struct folio *dst, struct folio *src) | |
79789db0 | 793 | { |
715cbfd6 MWO |
794 | long i = 0; |
795 | long nr = folio_nr_pages(src); | |
79789db0 | 796 | |
715cbfd6 MWO |
797 | for (;;) { |
798 | copy_highpage(folio_page(dst, i), folio_page(src, i)); | |
799 | if (++i == nr) | |
800 | break; | |
79789db0 | 801 | cond_resched(); |
79789db0 MWO |
802 | } |
803 | } | |
804 | ||
39a1aa8e AR |
805 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
806 | int sysctl_overcommit_ratio __read_mostly = 50; | |
807 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
808 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
809 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
810 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
811 | ||
32927393 CH |
812 | int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, |
813 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
814 | { |
815 | int ret; | |
816 | ||
817 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
818 | if (ret == 0 && write) | |
819 | sysctl_overcommit_kbytes = 0; | |
820 | return ret; | |
821 | } | |
822 | ||
56f3547b FT |
823 | static void sync_overcommit_as(struct work_struct *dummy) |
824 | { | |
825 | percpu_counter_sync(&vm_committed_as); | |
826 | } | |
827 | ||
828 | int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, | |
829 | size_t *lenp, loff_t *ppos) | |
830 | { | |
831 | struct ctl_table t; | |
bcbda810 | 832 | int new_policy = -1; |
56f3547b FT |
833 | int ret; |
834 | ||
835 | /* | |
836 | * The deviation of sync_overcommit_as could be big with loose policy | |
837 | * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to | |
838 | * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply | |
31454980 | 839 | * with the strict "NEVER", and to avoid possible race condition (even |
56f3547b FT |
840 | * though user usually won't too frequently do the switching to policy |
841 | * OVERCOMMIT_NEVER), the switch is done in the following order: | |
842 | * 1. changing the batch | |
843 | * 2. sync percpu count on each CPU | |
844 | * 3. switch the policy | |
845 | */ | |
846 | if (write) { | |
847 | t = *table; | |
848 | t.data = &new_policy; | |
849 | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | |
bcbda810 | 850 | if (ret || new_policy == -1) |
56f3547b FT |
851 | return ret; |
852 | ||
853 | mm_compute_batch(new_policy); | |
854 | if (new_policy == OVERCOMMIT_NEVER) | |
855 | schedule_on_each_cpu(sync_overcommit_as); | |
856 | sysctl_overcommit_memory = new_policy; | |
857 | } else { | |
858 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | |
859 | } | |
860 | ||
861 | return ret; | |
862 | } | |
863 | ||
32927393 CH |
864 | int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, |
865 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
866 | { |
867 | int ret; | |
868 | ||
869 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
870 | if (ret == 0 && write) | |
871 | sysctl_overcommit_ratio = 0; | |
872 | return ret; | |
873 | } | |
874 | ||
00619bcc JM |
875 | /* |
876 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
877 | */ | |
878 | unsigned long vm_commit_limit(void) | |
879 | { | |
49f0ce5f JM |
880 | unsigned long allowed; |
881 | ||
882 | if (sysctl_overcommit_kbytes) | |
883 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
884 | else | |
ca79b0c2 | 885 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
886 | * sysctl_overcommit_ratio / 100); |
887 | allowed += total_swap_pages; | |
888 | ||
889 | return allowed; | |
00619bcc JM |
890 | } |
891 | ||
39a1aa8e AR |
892 | /* |
893 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
894 | * other variables. It can be updated by several CPUs frequently. | |
895 | */ | |
896 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
897 | ||
898 | /* | |
899 | * The global memory commitment made in the system can be a metric | |
900 | * that can be used to drive ballooning decisions when Linux is hosted | |
901 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
902 | * balancing memory across competing virtual machines that are hosted. | |
903 | * Several metrics drive this policy engine including the guest reported | |
904 | * memory commitment. | |
4e2ee51e FT |
905 | * |
906 | * The time cost of this is very low for small platforms, and for big | |
907 | * platform like a 2S/36C/72T Skylake server, in worst case where | |
908 | * vm_committed_as's spinlock is under severe contention, the time cost | |
909 | * could be about 30~40 microseconds. | |
39a1aa8e AR |
910 | */ |
911 | unsigned long vm_memory_committed(void) | |
912 | { | |
4e2ee51e | 913 | return percpu_counter_sum_positive(&vm_committed_as); |
39a1aa8e AR |
914 | } |
915 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
916 | ||
917 | /* | |
918 | * Check that a process has enough memory to allocate a new virtual | |
919 | * mapping. 0 means there is enough memory for the allocation to | |
920 | * succeed and -ENOMEM implies there is not. | |
921 | * | |
922 | * We currently support three overcommit policies, which are set via the | |
ee65728e | 923 | * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst |
39a1aa8e AR |
924 | * |
925 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
926 | * Additional code 2002 Jul 20 by Robert Love. | |
927 | * | |
928 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
929 | * | |
930 | * Note this is a helper function intended to be used by LSMs which | |
931 | * wish to use this logic. | |
932 | */ | |
933 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
934 | { | |
8c7829b0 | 935 | long allowed; |
39a1aa8e | 936 | |
39a1aa8e AR |
937 | vm_acct_memory(pages); |
938 | ||
939 | /* | |
940 | * Sometimes we want to use more memory than we have | |
941 | */ | |
942 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
943 | return 0; | |
944 | ||
945 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
8c7829b0 | 946 | if (pages > totalram_pages() + total_swap_pages) |
39a1aa8e | 947 | goto error; |
8c7829b0 | 948 | return 0; |
39a1aa8e AR |
949 | } |
950 | ||
951 | allowed = vm_commit_limit(); | |
952 | /* | |
953 | * Reserve some for root | |
954 | */ | |
955 | if (!cap_sys_admin) | |
956 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
957 | ||
958 | /* | |
959 | * Don't let a single process grow so big a user can't recover | |
960 | */ | |
961 | if (mm) { | |
8c7829b0 JW |
962 | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
963 | ||
39a1aa8e AR |
964 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
965 | } | |
966 | ||
967 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
968 | return 0; | |
969 | error: | |
6bdfc60c | 970 | pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n", |
44b414c8 | 971 | __func__, current->pid, current->comm); |
39a1aa8e AR |
972 | vm_unacct_memory(pages); |
973 | ||
974 | return -ENOMEM; | |
975 | } | |
976 | ||
a9090253 WR |
977 | /** |
978 | * get_cmdline() - copy the cmdline value to a buffer. | |
979 | * @task: the task whose cmdline value to copy. | |
980 | * @buffer: the buffer to copy to. | |
981 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
982 | * to this length. | |
a862f68a MR |
983 | * |
984 | * Return: the size of the cmdline field copied. Note that the copy does | |
a9090253 WR |
985 | * not guarantee an ending NULL byte. |
986 | */ | |
987 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
988 | { | |
989 | int res = 0; | |
990 | unsigned int len; | |
991 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 992 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
993 | if (!mm) |
994 | goto out; | |
995 | if (!mm->arg_end) | |
996 | goto out_mm; /* Shh! No looking before we're done */ | |
997 | ||
bc81426f | 998 | spin_lock(&mm->arg_lock); |
a3b609ef MG |
999 | arg_start = mm->arg_start; |
1000 | arg_end = mm->arg_end; | |
1001 | env_start = mm->env_start; | |
1002 | env_end = mm->env_end; | |
bc81426f | 1003 | spin_unlock(&mm->arg_lock); |
a3b609ef MG |
1004 | |
1005 | len = arg_end - arg_start; | |
a9090253 WR |
1006 | |
1007 | if (len > buflen) | |
1008 | len = buflen; | |
1009 | ||
f307ab6d | 1010 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
1011 | |
1012 | /* | |
1013 | * If the nul at the end of args has been overwritten, then | |
1014 | * assume application is using setproctitle(3). | |
1015 | */ | |
1016 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
1017 | len = strnlen(buffer, res); | |
1018 | if (len < res) { | |
1019 | res = len; | |
1020 | } else { | |
a3b609ef | 1021 | len = env_end - env_start; |
a9090253 WR |
1022 | if (len > buflen - res) |
1023 | len = buflen - res; | |
a3b609ef | 1024 | res += access_process_vm(task, env_start, |
f307ab6d LS |
1025 | buffer+res, len, |
1026 | FOLL_FORCE); | |
a9090253 WR |
1027 | res = strnlen(buffer, res); |
1028 | } | |
1029 | } | |
1030 | out_mm: | |
1031 | mmput(mm); | |
1032 | out: | |
1033 | return res; | |
1034 | } | |
010c164a | 1035 | |
4d1a8a2d | 1036 | int __weak memcmp_pages(struct page *page1, struct page *page2) |
010c164a SL |
1037 | { |
1038 | char *addr1, *addr2; | |
1039 | int ret; | |
1040 | ||
1041 | addr1 = kmap_atomic(page1); | |
1042 | addr2 = kmap_atomic(page2); | |
1043 | ret = memcmp(addr1, addr2, PAGE_SIZE); | |
1044 | kunmap_atomic(addr2); | |
1045 | kunmap_atomic(addr1); | |
1046 | return ret; | |
1047 | } | |
8e7f37f2 | 1048 | |
5bb1bb35 | 1049 | #ifdef CONFIG_PRINTK |
8e7f37f2 PM |
1050 | /** |
1051 | * mem_dump_obj - Print available provenance information | |
1052 | * @object: object for which to find provenance information. | |
1053 | * | |
1054 | * This function uses pr_cont(), so that the caller is expected to have | |
1055 | * printed out whatever preamble is appropriate. The provenance information | |
1056 | * depends on the type of object and on how much debugging is enabled. | |
1057 | * For example, for a slab-cache object, the slab name is printed, and, | |
1058 | * if available, the return address and stack trace from the allocation | |
e548eaa1 | 1059 | * and last free path of that object. |
8e7f37f2 PM |
1060 | */ |
1061 | void mem_dump_obj(void *object) | |
1062 | { | |
2521781c JP |
1063 | const char *type; |
1064 | ||
98f18083 PM |
1065 | if (kmem_valid_obj(object)) { |
1066 | kmem_dump_obj(object); | |
1067 | return; | |
1068 | } | |
2521781c | 1069 | |
98f18083 PM |
1070 | if (vmalloc_dump_obj(object)) |
1071 | return; | |
2521781c JP |
1072 | |
1073 | if (virt_addr_valid(object)) | |
1074 | type = "non-slab/vmalloc memory"; | |
1075 | else if (object == NULL) | |
1076 | type = "NULL pointer"; | |
1077 | else if (object == ZERO_SIZE_PTR) | |
1078 | type = "zero-size pointer"; | |
1079 | else | |
1080 | type = "non-paged memory"; | |
1081 | ||
1082 | pr_cont(" %s\n", type); | |
8e7f37f2 | 1083 | } |
0d3dd2c8 | 1084 | EXPORT_SYMBOL_GPL(mem_dump_obj); |
5bb1bb35 | 1085 | #endif |
82840451 DH |
1086 | |
1087 | /* | |
1088 | * A driver might set a page logically offline -- PageOffline() -- and | |
1089 | * turn the page inaccessible in the hypervisor; after that, access to page | |
1090 | * content can be fatal. | |
1091 | * | |
1092 | * Some special PFN walkers -- i.e., /proc/kcore -- read content of random | |
1093 | * pages after checking PageOffline(); however, these PFN walkers can race | |
1094 | * with drivers that set PageOffline(). | |
1095 | * | |
1096 | * page_offline_freeze()/page_offline_thaw() allows for a subsystem to | |
1097 | * synchronize with such drivers, achieving that a page cannot be set | |
1098 | * PageOffline() while frozen. | |
1099 | * | |
1100 | * page_offline_begin()/page_offline_end() is used by drivers that care about | |
1101 | * such races when setting a page PageOffline(). | |
1102 | */ | |
1103 | static DECLARE_RWSEM(page_offline_rwsem); | |
1104 | ||
1105 | void page_offline_freeze(void) | |
1106 | { | |
1107 | down_read(&page_offline_rwsem); | |
1108 | } | |
1109 | ||
1110 | void page_offline_thaw(void) | |
1111 | { | |
1112 | up_read(&page_offline_rwsem); | |
1113 | } | |
1114 | ||
1115 | void page_offline_begin(void) | |
1116 | { | |
1117 | down_write(&page_offline_rwsem); | |
1118 | } | |
1119 | EXPORT_SYMBOL(page_offline_begin); | |
1120 | ||
1121 | void page_offline_end(void) | |
1122 | { | |
1123 | up_write(&page_offline_rwsem); | |
1124 | } | |
1125 | EXPORT_SYMBOL(page_offline_end); | |
08b0b005 MWO |
1126 | |
1127 | #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO | |
1128 | void flush_dcache_folio(struct folio *folio) | |
1129 | { | |
1130 | long i, nr = folio_nr_pages(folio); | |
1131 | ||
1132 | for (i = 0; i < nr; i++) | |
1133 | flush_dcache_page(folio_page(folio, i)); | |
1134 | } | |
1135 | EXPORT_SYMBOL(flush_dcache_folio); | |
1136 | #endif |