]>
Commit | Line | Data |
---|---|---|
3b827c1b JF |
1 | /* |
2 | * Xen mmu operations | |
3 | * | |
4 | * This file contains the various mmu fetch and update operations. | |
5 | * The most important job they must perform is the mapping between the | |
6 | * domain's pfn and the overall machine mfns. | |
7 | * | |
8 | * Xen allows guests to directly update the pagetable, in a controlled | |
9 | * fashion. In other words, the guest modifies the same pagetable | |
10 | * that the CPU actually uses, which eliminates the overhead of having | |
11 | * a separate shadow pagetable. | |
12 | * | |
13 | * In order to allow this, it falls on the guest domain to map its | |
14 | * notion of a "physical" pfn - which is just a domain-local linear | |
15 | * address - into a real "machine address" which the CPU's MMU can | |
16 | * use. | |
17 | * | |
18 | * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be | |
19 | * inserted directly into the pagetable. When creating a new | |
20 | * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, | |
21 | * when reading the content back with __(pgd|pmd|pte)_val, it converts | |
22 | * the mfn back into a pfn. | |
23 | * | |
24 | * The other constraint is that all pages which make up a pagetable | |
25 | * must be mapped read-only in the guest. This prevents uncontrolled | |
26 | * guest updates to the pagetable. Xen strictly enforces this, and | |
27 | * will disallow any pagetable update which will end up mapping a | |
28 | * pagetable page RW, and will disallow using any writable page as a | |
29 | * pagetable. | |
30 | * | |
31 | * Naively, when loading %cr3 with the base of a new pagetable, Xen | |
32 | * would need to validate the whole pagetable before going on. | |
33 | * Naturally, this is quite slow. The solution is to "pin" a | |
34 | * pagetable, which enforces all the constraints on the pagetable even | |
35 | * when it is not actively in use. This menas that Xen can be assured | |
36 | * that it is still valid when you do load it into %cr3, and doesn't | |
37 | * need to revalidate it. | |
38 | * | |
39 | * Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007 | |
40 | */ | |
f120f13e | 41 | #include <linux/sched.h> |
f4f97b3e | 42 | #include <linux/highmem.h> |
994025ca | 43 | #include <linux/debugfs.h> |
3b827c1b | 44 | #include <linux/bug.h> |
d2cb2145 | 45 | #include <linux/vmalloc.h> |
44408ad7 | 46 | #include <linux/module.h> |
5a0e3ad6 | 47 | #include <linux/gfp.h> |
a9ce6bc1 | 48 | #include <linux/memblock.h> |
2222e71b | 49 | #include <linux/seq_file.h> |
34b6f01a | 50 | #include <linux/crash_dump.h> |
3b827c1b | 51 | |
84708807 JF |
52 | #include <trace/events/xen.h> |
53 | ||
3b827c1b JF |
54 | #include <asm/pgtable.h> |
55 | #include <asm/tlbflush.h> | |
5deb30d1 | 56 | #include <asm/fixmap.h> |
3b827c1b | 57 | #include <asm/mmu_context.h> |
319f3ba5 | 58 | #include <asm/setup.h> |
f4f97b3e | 59 | #include <asm/paravirt.h> |
7347b408 | 60 | #include <asm/e820.h> |
cbcd79c2 | 61 | #include <asm/linkage.h> |
08bbc9da | 62 | #include <asm/page.h> |
fef5ba79 | 63 | #include <asm/init.h> |
41f2e477 | 64 | #include <asm/pat.h> |
900cba88 | 65 | #include <asm/smp.h> |
3b827c1b JF |
66 | |
67 | #include <asm/xen/hypercall.h> | |
f4f97b3e | 68 | #include <asm/xen/hypervisor.h> |
3b827c1b | 69 | |
c0011dbf | 70 | #include <xen/xen.h> |
3b827c1b JF |
71 | #include <xen/page.h> |
72 | #include <xen/interface/xen.h> | |
59151001 | 73 | #include <xen/interface/hvm/hvm_op.h> |
319f3ba5 | 74 | #include <xen/interface/version.h> |
c0011dbf | 75 | #include <xen/interface/memory.h> |
319f3ba5 | 76 | #include <xen/hvc-console.h> |
3b827c1b | 77 | |
f4f97b3e | 78 | #include "multicalls.h" |
3b827c1b | 79 | #include "mmu.h" |
994025ca JF |
80 | #include "debugfs.h" |
81 | ||
19001c8c AN |
82 | /* |
83 | * Protects atomic reservation decrease/increase against concurrent increases. | |
06f521d5 | 84 | * Also protects non-atomic updates of current_pages and balloon lists. |
19001c8c AN |
85 | */ |
86 | DEFINE_SPINLOCK(xen_reservation_lock); | |
87 | ||
caaf9ecf | 88 | #ifdef CONFIG_X86_32 |
319f3ba5 JF |
89 | /* |
90 | * Identity map, in addition to plain kernel map. This needs to be | |
91 | * large enough to allocate page table pages to allocate the rest. | |
92 | * Each page can map 2MB. | |
93 | */ | |
764f0138 JF |
94 | #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) |
95 | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); | |
caaf9ecf | 96 | #endif |
319f3ba5 JF |
97 | #ifdef CONFIG_X86_64 |
98 | /* l3 pud for userspace vsyscall mapping */ | |
99 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | |
100 | #endif /* CONFIG_X86_64 */ | |
101 | ||
102 | /* | |
103 | * Note about cr3 (pagetable base) values: | |
104 | * | |
105 | * xen_cr3 contains the current logical cr3 value; it contains the | |
106 | * last set cr3. This may not be the current effective cr3, because | |
107 | * its update may be being lazily deferred. However, a vcpu looking | |
108 | * at its own cr3 can use this value knowing that it everything will | |
109 | * be self-consistent. | |
110 | * | |
111 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the | |
112 | * hypercall to set the vcpu cr3 is complete (so it may be a little | |
113 | * out of date, but it will never be set early). If one vcpu is | |
114 | * looking at another vcpu's cr3 value, it should use this variable. | |
115 | */ | |
116 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ | |
117 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ | |
118 | ||
119 | ||
d6182fbf JF |
120 | /* |
121 | * Just beyond the highest usermode address. STACK_TOP_MAX has a | |
122 | * redzone above it, so round it up to a PGD boundary. | |
123 | */ | |
124 | #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) | |
125 | ||
9976b39b JF |
126 | unsigned long arbitrary_virt_to_mfn(void *vaddr) |
127 | { | |
128 | xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); | |
129 | ||
130 | return PFN_DOWN(maddr.maddr); | |
131 | } | |
132 | ||
ce803e70 | 133 | xmaddr_t arbitrary_virt_to_machine(void *vaddr) |
3b827c1b | 134 | { |
ce803e70 | 135 | unsigned long address = (unsigned long)vaddr; |
da7bfc50 | 136 | unsigned int level; |
9f32d21c CL |
137 | pte_t *pte; |
138 | unsigned offset; | |
3b827c1b | 139 | |
9f32d21c CL |
140 | /* |
141 | * if the PFN is in the linear mapped vaddr range, we can just use | |
142 | * the (quick) virt_to_machine() p2m lookup | |
143 | */ | |
144 | if (virt_addr_valid(vaddr)) | |
145 | return virt_to_machine(vaddr); | |
146 | ||
147 | /* otherwise we have to do a (slower) full page-table walk */ | |
3b827c1b | 148 | |
9f32d21c CL |
149 | pte = lookup_address(address, &level); |
150 | BUG_ON(pte == NULL); | |
151 | offset = address & ~PAGE_MASK; | |
ebd879e3 | 152 | return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); |
3b827c1b | 153 | } |
de23be5f | 154 | EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); |
3b827c1b JF |
155 | |
156 | void make_lowmem_page_readonly(void *vaddr) | |
157 | { | |
158 | pte_t *pte, ptev; | |
159 | unsigned long address = (unsigned long)vaddr; | |
da7bfc50 | 160 | unsigned int level; |
3b827c1b | 161 | |
f0646e43 | 162 | pte = lookup_address(address, &level); |
fef5ba79 JF |
163 | if (pte == NULL) |
164 | return; /* vaddr missing */ | |
3b827c1b JF |
165 | |
166 | ptev = pte_wrprotect(*pte); | |
167 | ||
168 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | |
169 | BUG(); | |
170 | } | |
171 | ||
172 | void make_lowmem_page_readwrite(void *vaddr) | |
173 | { | |
174 | pte_t *pte, ptev; | |
175 | unsigned long address = (unsigned long)vaddr; | |
da7bfc50 | 176 | unsigned int level; |
3b827c1b | 177 | |
f0646e43 | 178 | pte = lookup_address(address, &level); |
fef5ba79 JF |
179 | if (pte == NULL) |
180 | return; /* vaddr missing */ | |
3b827c1b JF |
181 | |
182 | ptev = pte_mkwrite(*pte); | |
183 | ||
184 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | |
185 | BUG(); | |
186 | } | |
187 | ||
188 | ||
7708ad64 | 189 | static bool xen_page_pinned(void *ptr) |
e2426cf8 JF |
190 | { |
191 | struct page *page = virt_to_page(ptr); | |
192 | ||
193 | return PagePinned(page); | |
194 | } | |
195 | ||
eba3ff8b | 196 | void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) |
c0011dbf JF |
197 | { |
198 | struct multicall_space mcs; | |
199 | struct mmu_update *u; | |
200 | ||
84708807 JF |
201 | trace_xen_mmu_set_domain_pte(ptep, pteval, domid); |
202 | ||
c0011dbf JF |
203 | mcs = xen_mc_entry(sizeof(*u)); |
204 | u = mcs.args; | |
205 | ||
206 | /* ptep might be kmapped when using 32-bit HIGHPTE */ | |
d5108316 | 207 | u->ptr = virt_to_machine(ptep).maddr; |
c0011dbf JF |
208 | u->val = pte_val_ma(pteval); |
209 | ||
eba3ff8b | 210 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); |
c0011dbf JF |
211 | |
212 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
213 | } | |
eba3ff8b JF |
214 | EXPORT_SYMBOL_GPL(xen_set_domain_pte); |
215 | ||
7708ad64 | 216 | static void xen_extend_mmu_update(const struct mmu_update *update) |
3b827c1b | 217 | { |
d66bf8fc JF |
218 | struct multicall_space mcs; |
219 | struct mmu_update *u; | |
3b827c1b | 220 | |
400d3494 JF |
221 | mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); |
222 | ||
994025ca | 223 | if (mcs.mc != NULL) { |
400d3494 | 224 | mcs.mc->args[1]++; |
994025ca | 225 | } else { |
400d3494 JF |
226 | mcs = __xen_mc_entry(sizeof(*u)); |
227 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | |
228 | } | |
d66bf8fc | 229 | |
d66bf8fc | 230 | u = mcs.args; |
400d3494 JF |
231 | *u = *update; |
232 | } | |
233 | ||
dcf7435c JF |
234 | static void xen_extend_mmuext_op(const struct mmuext_op *op) |
235 | { | |
236 | struct multicall_space mcs; | |
237 | struct mmuext_op *u; | |
238 | ||
239 | mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); | |
240 | ||
241 | if (mcs.mc != NULL) { | |
242 | mcs.mc->args[1]++; | |
243 | } else { | |
244 | mcs = __xen_mc_entry(sizeof(*u)); | |
245 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | |
246 | } | |
247 | ||
248 | u = mcs.args; | |
249 | *u = *op; | |
250 | } | |
251 | ||
4c13629f | 252 | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) |
400d3494 JF |
253 | { |
254 | struct mmu_update u; | |
255 | ||
256 | preempt_disable(); | |
257 | ||
258 | xen_mc_batch(); | |
259 | ||
ce803e70 JF |
260 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
261 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; | |
400d3494 | 262 | u.val = pmd_val_ma(val); |
7708ad64 | 263 | xen_extend_mmu_update(&u); |
d66bf8fc JF |
264 | |
265 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
266 | ||
267 | preempt_enable(); | |
3b827c1b JF |
268 | } |
269 | ||
4c13629f | 270 | static void xen_set_pmd(pmd_t *ptr, pmd_t val) |
e2426cf8 | 271 | { |
84708807 JF |
272 | trace_xen_mmu_set_pmd(ptr, val); |
273 | ||
e2426cf8 JF |
274 | /* If page is not pinned, we can just update the entry |
275 | directly */ | |
7708ad64 | 276 | if (!xen_page_pinned(ptr)) { |
e2426cf8 JF |
277 | *ptr = val; |
278 | return; | |
279 | } | |
280 | ||
281 | xen_set_pmd_hyper(ptr, val); | |
282 | } | |
283 | ||
3b827c1b JF |
284 | /* |
285 | * Associate a virtual page frame with a given physical page frame | |
286 | * and protection flags for that frame. | |
287 | */ | |
288 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) | |
289 | { | |
836fe2f2 | 290 | set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); |
3b827c1b JF |
291 | } |
292 | ||
4a35c13c | 293 | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) |
3b827c1b | 294 | { |
4a35c13c | 295 | struct mmu_update u; |
c0011dbf | 296 | |
4a35c13c JF |
297 | if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) |
298 | return false; | |
994025ca | 299 | |
4a35c13c | 300 | xen_mc_batch(); |
d66bf8fc | 301 | |
4a35c13c JF |
302 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
303 | u.val = pte_val_ma(pteval); | |
304 | xen_extend_mmu_update(&u); | |
a99ac5e8 | 305 | |
4a35c13c | 306 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
2bd50036 | 307 | |
4a35c13c JF |
308 | return true; |
309 | } | |
310 | ||
84708807 | 311 | static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) |
4a35c13c | 312 | { |
d095d43e DV |
313 | if (!xen_batched_set_pte(ptep, pteval)) { |
314 | /* | |
315 | * Could call native_set_pte() here and trap and | |
316 | * emulate the PTE write but with 32-bit guests this | |
317 | * needs two traps (one for each of the two 32-bit | |
318 | * words in the PTE) so do one hypercall directly | |
319 | * instead. | |
320 | */ | |
321 | struct mmu_update u; | |
322 | ||
323 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; | |
324 | u.val = pte_val_ma(pteval); | |
325 | HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); | |
326 | } | |
3b827c1b JF |
327 | } |
328 | ||
84708807 JF |
329 | static void xen_set_pte(pte_t *ptep, pte_t pteval) |
330 | { | |
331 | trace_xen_mmu_set_pte(ptep, pteval); | |
332 | __xen_set_pte(ptep, pteval); | |
333 | } | |
334 | ||
4c13629f | 335 | static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, |
4a35c13c JF |
336 | pte_t *ptep, pte_t pteval) |
337 | { | |
84708807 JF |
338 | trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); |
339 | __xen_set_pte(ptep, pteval); | |
3b827c1b JF |
340 | } |
341 | ||
f63c2f24 T |
342 | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, |
343 | unsigned long addr, pte_t *ptep) | |
947a69c9 | 344 | { |
e57778a1 | 345 | /* Just return the pte as-is. We preserve the bits on commit */ |
84708807 | 346 | trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); |
e57778a1 JF |
347 | return *ptep; |
348 | } | |
349 | ||
350 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, | |
351 | pte_t *ptep, pte_t pte) | |
352 | { | |
400d3494 | 353 | struct mmu_update u; |
e57778a1 | 354 | |
84708807 | 355 | trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); |
400d3494 | 356 | xen_mc_batch(); |
947a69c9 | 357 | |
d5108316 | 358 | u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; |
400d3494 | 359 | u.val = pte_val_ma(pte); |
7708ad64 | 360 | xen_extend_mmu_update(&u); |
947a69c9 | 361 | |
e57778a1 | 362 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
947a69c9 JF |
363 | } |
364 | ||
ebb9cfe2 JF |
365 | /* Assume pteval_t is equivalent to all the other *val_t types. */ |
366 | static pteval_t pte_mfn_to_pfn(pteval_t val) | |
947a69c9 | 367 | { |
ebb9cfe2 | 368 | if (val & _PAGE_PRESENT) { |
59438c9f | 369 | unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
b7e5ffe5 KRW |
370 | unsigned long pfn = mfn_to_pfn(mfn); |
371 | ||
77be1fab | 372 | pteval_t flags = val & PTE_FLAGS_MASK; |
b7e5ffe5 KRW |
373 | if (unlikely(pfn == ~0)) |
374 | val = flags & ~_PAGE_PRESENT; | |
375 | else | |
376 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; | |
ebb9cfe2 | 377 | } |
947a69c9 | 378 | |
ebb9cfe2 | 379 | return val; |
947a69c9 JF |
380 | } |
381 | ||
ebb9cfe2 | 382 | static pteval_t pte_pfn_to_mfn(pteval_t val) |
947a69c9 | 383 | { |
ebb9cfe2 | 384 | if (val & _PAGE_PRESENT) { |
59438c9f | 385 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
77be1fab | 386 | pteval_t flags = val & PTE_FLAGS_MASK; |
fb38923e | 387 | unsigned long mfn; |
cfd8951e | 388 | |
fb38923e KRW |
389 | if (!xen_feature(XENFEAT_auto_translated_physmap)) |
390 | mfn = get_phys_to_machine(pfn); | |
391 | else | |
392 | mfn = pfn; | |
cfd8951e JF |
393 | /* |
394 | * If there's no mfn for the pfn, then just create an | |
395 | * empty non-present pte. Unfortunately this loses | |
396 | * information about the original pfn, so | |
397 | * pte_mfn_to_pfn is asymmetric. | |
398 | */ | |
399 | if (unlikely(mfn == INVALID_P2M_ENTRY)) { | |
400 | mfn = 0; | |
401 | flags = 0; | |
fb38923e KRW |
402 | } else { |
403 | /* | |
404 | * Paramount to do this test _after_ the | |
405 | * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY & | |
406 | * IDENTITY_FRAME_BIT resolves to true. | |
407 | */ | |
408 | mfn &= ~FOREIGN_FRAME_BIT; | |
409 | if (mfn & IDENTITY_FRAME_BIT) { | |
410 | mfn &= ~IDENTITY_FRAME_BIT; | |
411 | flags |= _PAGE_IOMAP; | |
412 | } | |
cfd8951e | 413 | } |
cfd8951e | 414 | val = ((pteval_t)mfn << PAGE_SHIFT) | flags; |
947a69c9 JF |
415 | } |
416 | ||
ebb9cfe2 | 417 | return val; |
947a69c9 JF |
418 | } |
419 | ||
c0011dbf JF |
420 | static pteval_t iomap_pte(pteval_t val) |
421 | { | |
422 | if (val & _PAGE_PRESENT) { | |
423 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | |
424 | pteval_t flags = val & PTE_FLAGS_MASK; | |
425 | ||
426 | /* We assume the pte frame number is a MFN, so | |
427 | just use it as-is. */ | |
428 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; | |
429 | } | |
430 | ||
431 | return val; | |
432 | } | |
433 | ||
4c13629f | 434 | static pteval_t xen_pte_val(pte_t pte) |
947a69c9 | 435 | { |
41f2e477 | 436 | pteval_t pteval = pte.pte; |
8eaffa67 | 437 | #if 0 |
41f2e477 JF |
438 | /* If this is a WC pte, convert back from Xen WC to Linux WC */ |
439 | if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { | |
440 | WARN_ON(!pat_enabled); | |
441 | pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; | |
442 | } | |
8eaffa67 | 443 | #endif |
41f2e477 JF |
444 | if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) |
445 | return pteval; | |
446 | ||
447 | return pte_mfn_to_pfn(pteval); | |
947a69c9 | 448 | } |
da5de7c2 | 449 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); |
947a69c9 | 450 | |
4c13629f | 451 | static pgdval_t xen_pgd_val(pgd_t pgd) |
947a69c9 | 452 | { |
ebb9cfe2 | 453 | return pte_mfn_to_pfn(pgd.pgd); |
947a69c9 | 454 | } |
da5de7c2 | 455 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); |
947a69c9 | 456 | |
41f2e477 JF |
457 | /* |
458 | * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 | |
459 | * are reserved for now, to correspond to the Intel-reserved PAT | |
460 | * types. | |
461 | * | |
462 | * We expect Linux's PAT set as follows: | |
463 | * | |
464 | * Idx PTE flags Linux Xen Default | |
465 | * 0 WB WB WB | |
466 | * 1 PWT WC WT WT | |
467 | * 2 PCD UC- UC- UC- | |
468 | * 3 PCD PWT UC UC UC | |
469 | * 4 PAT WB WC WB | |
470 | * 5 PAT PWT WC WP WT | |
471 | * 6 PAT PCD UC- UC UC- | |
472 | * 7 PAT PCD PWT UC UC UC | |
473 | */ | |
474 | ||
475 | void xen_set_pat(u64 pat) | |
476 | { | |
477 | /* We expect Linux to use a PAT setting of | |
478 | * UC UC- WC WB (ignoring the PAT flag) */ | |
479 | WARN_ON(pat != 0x0007010600070106ull); | |
480 | } | |
481 | ||
4c13629f | 482 | static pte_t xen_make_pte(pteval_t pte) |
947a69c9 | 483 | { |
7347b408 | 484 | phys_addr_t addr = (pte & PTE_PFN_MASK); |
8eaffa67 | 485 | #if 0 |
41f2e477 JF |
486 | /* If Linux is trying to set a WC pte, then map to the Xen WC. |
487 | * If _PAGE_PAT is set, then it probably means it is really | |
488 | * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope | |
489 | * things work out OK... | |
490 | * | |
491 | * (We should never see kernel mappings with _PAGE_PSE set, | |
492 | * but we could see hugetlbfs mappings, I think.). | |
493 | */ | |
494 | if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { | |
495 | if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) | |
496 | pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; | |
497 | } | |
8eaffa67 | 498 | #endif |
7347b408 AN |
499 | /* |
500 | * Unprivileged domains are allowed to do IOMAPpings for | |
501 | * PCI passthrough, but not map ISA space. The ISA | |
502 | * mappings are just dummy local mappings to keep other | |
503 | * parts of the kernel happy. | |
504 | */ | |
505 | if (unlikely(pte & _PAGE_IOMAP) && | |
506 | (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { | |
c0011dbf | 507 | pte = iomap_pte(pte); |
7347b408 AN |
508 | } else { |
509 | pte &= ~_PAGE_IOMAP; | |
c0011dbf | 510 | pte = pte_pfn_to_mfn(pte); |
7347b408 | 511 | } |
c0011dbf | 512 | |
ebb9cfe2 | 513 | return native_make_pte(pte); |
947a69c9 | 514 | } |
da5de7c2 | 515 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); |
947a69c9 | 516 | |
4c13629f | 517 | static pgd_t xen_make_pgd(pgdval_t pgd) |
947a69c9 | 518 | { |
ebb9cfe2 JF |
519 | pgd = pte_pfn_to_mfn(pgd); |
520 | return native_make_pgd(pgd); | |
947a69c9 | 521 | } |
da5de7c2 | 522 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); |
947a69c9 | 523 | |
4c13629f | 524 | static pmdval_t xen_pmd_val(pmd_t pmd) |
947a69c9 | 525 | { |
ebb9cfe2 | 526 | return pte_mfn_to_pfn(pmd.pmd); |
947a69c9 | 527 | } |
da5de7c2 | 528 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); |
28499143 | 529 | |
4c13629f | 530 | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
f4f97b3e | 531 | { |
400d3494 | 532 | struct mmu_update u; |
f4f97b3e | 533 | |
d66bf8fc JF |
534 | preempt_disable(); |
535 | ||
400d3494 JF |
536 | xen_mc_batch(); |
537 | ||
ce803e70 JF |
538 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
539 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; | |
400d3494 | 540 | u.val = pud_val_ma(val); |
7708ad64 | 541 | xen_extend_mmu_update(&u); |
d66bf8fc JF |
542 | |
543 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
544 | ||
545 | preempt_enable(); | |
f4f97b3e JF |
546 | } |
547 | ||
4c13629f | 548 | static void xen_set_pud(pud_t *ptr, pud_t val) |
e2426cf8 | 549 | { |
84708807 JF |
550 | trace_xen_mmu_set_pud(ptr, val); |
551 | ||
e2426cf8 JF |
552 | /* If page is not pinned, we can just update the entry |
553 | directly */ | |
7708ad64 | 554 | if (!xen_page_pinned(ptr)) { |
e2426cf8 JF |
555 | *ptr = val; |
556 | return; | |
557 | } | |
558 | ||
559 | xen_set_pud_hyper(ptr, val); | |
560 | } | |
561 | ||
f6e58732 | 562 | #ifdef CONFIG_X86_PAE |
4c13629f | 563 | static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) |
3b827c1b | 564 | { |
84708807 | 565 | trace_xen_mmu_set_pte_atomic(ptep, pte); |
f6e58732 | 566 | set_64bit((u64 *)ptep, native_pte_val(pte)); |
3b827c1b JF |
567 | } |
568 | ||
4c13629f | 569 | static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
3b827c1b | 570 | { |
84708807 | 571 | trace_xen_mmu_pte_clear(mm, addr, ptep); |
4a35c13c JF |
572 | if (!xen_batched_set_pte(ptep, native_make_pte(0))) |
573 | native_pte_clear(mm, addr, ptep); | |
3b827c1b JF |
574 | } |
575 | ||
4c13629f | 576 | static void xen_pmd_clear(pmd_t *pmdp) |
3b827c1b | 577 | { |
84708807 | 578 | trace_xen_mmu_pmd_clear(pmdp); |
e2426cf8 | 579 | set_pmd(pmdp, __pmd(0)); |
3b827c1b | 580 | } |
f6e58732 | 581 | #endif /* CONFIG_X86_PAE */ |
3b827c1b | 582 | |
4c13629f | 583 | static pmd_t xen_make_pmd(pmdval_t pmd) |
3b827c1b | 584 | { |
ebb9cfe2 | 585 | pmd = pte_pfn_to_mfn(pmd); |
947a69c9 | 586 | return native_make_pmd(pmd); |
3b827c1b | 587 | } |
da5de7c2 | 588 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); |
3b827c1b | 589 | |
f6e58732 | 590 | #if PAGETABLE_LEVELS == 4 |
4c13629f | 591 | static pudval_t xen_pud_val(pud_t pud) |
f6e58732 JF |
592 | { |
593 | return pte_mfn_to_pfn(pud.pud); | |
594 | } | |
da5de7c2 | 595 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); |
f6e58732 | 596 | |
4c13629f | 597 | static pud_t xen_make_pud(pudval_t pud) |
f6e58732 JF |
598 | { |
599 | pud = pte_pfn_to_mfn(pud); | |
600 | ||
601 | return native_make_pud(pud); | |
602 | } | |
da5de7c2 | 603 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); |
f6e58732 | 604 | |
4c13629f | 605 | static pgd_t *xen_get_user_pgd(pgd_t *pgd) |
f6e58732 | 606 | { |
d6182fbf JF |
607 | pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); |
608 | unsigned offset = pgd - pgd_page; | |
609 | pgd_t *user_ptr = NULL; | |
f6e58732 | 610 | |
d6182fbf JF |
611 | if (offset < pgd_index(USER_LIMIT)) { |
612 | struct page *page = virt_to_page(pgd_page); | |
613 | user_ptr = (pgd_t *)page->private; | |
614 | if (user_ptr) | |
615 | user_ptr += offset; | |
616 | } | |
f6e58732 | 617 | |
d6182fbf JF |
618 | return user_ptr; |
619 | } | |
620 | ||
621 | static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) | |
622 | { | |
623 | struct mmu_update u; | |
f6e58732 JF |
624 | |
625 | u.ptr = virt_to_machine(ptr).maddr; | |
626 | u.val = pgd_val_ma(val); | |
7708ad64 | 627 | xen_extend_mmu_update(&u); |
d6182fbf JF |
628 | } |
629 | ||
630 | /* | |
631 | * Raw hypercall-based set_pgd, intended for in early boot before | |
632 | * there's a page structure. This implies: | |
633 | * 1. The only existing pagetable is the kernel's | |
634 | * 2. It is always pinned | |
635 | * 3. It has no user pagetable attached to it | |
636 | */ | |
4c13629f | 637 | static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) |
d6182fbf JF |
638 | { |
639 | preempt_disable(); | |
640 | ||
641 | xen_mc_batch(); | |
642 | ||
643 | __xen_set_pgd_hyper(ptr, val); | |
f6e58732 JF |
644 | |
645 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
646 | ||
647 | preempt_enable(); | |
648 | } | |
649 | ||
4c13629f | 650 | static void xen_set_pgd(pgd_t *ptr, pgd_t val) |
f6e58732 | 651 | { |
d6182fbf JF |
652 | pgd_t *user_ptr = xen_get_user_pgd(ptr); |
653 | ||
84708807 JF |
654 | trace_xen_mmu_set_pgd(ptr, user_ptr, val); |
655 | ||
f6e58732 JF |
656 | /* If page is not pinned, we can just update the entry |
657 | directly */ | |
7708ad64 | 658 | if (!xen_page_pinned(ptr)) { |
f6e58732 | 659 | *ptr = val; |
d6182fbf | 660 | if (user_ptr) { |
7708ad64 | 661 | WARN_ON(xen_page_pinned(user_ptr)); |
d6182fbf JF |
662 | *user_ptr = val; |
663 | } | |
f6e58732 JF |
664 | return; |
665 | } | |
666 | ||
d6182fbf JF |
667 | /* If it's pinned, then we can at least batch the kernel and |
668 | user updates together. */ | |
669 | xen_mc_batch(); | |
670 | ||
671 | __xen_set_pgd_hyper(ptr, val); | |
672 | if (user_ptr) | |
673 | __xen_set_pgd_hyper(user_ptr, val); | |
674 | ||
675 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
f6e58732 JF |
676 | } |
677 | #endif /* PAGETABLE_LEVELS == 4 */ | |
678 | ||
f4f97b3e | 679 | /* |
5deb30d1 JF |
680 | * (Yet another) pagetable walker. This one is intended for pinning a |
681 | * pagetable. This means that it walks a pagetable and calls the | |
682 | * callback function on each page it finds making up the page table, | |
683 | * at every level. It walks the entire pagetable, but it only bothers | |
684 | * pinning pte pages which are below limit. In the normal case this | |
685 | * will be STACK_TOP_MAX, but at boot we need to pin up to | |
686 | * FIXADDR_TOP. | |
687 | * | |
688 | * For 32-bit the important bit is that we don't pin beyond there, | |
689 | * because then we start getting into Xen's ptes. | |
690 | * | |
691 | * For 64-bit, we must skip the Xen hole in the middle of the address | |
692 | * space, just after the big x86-64 virtual hole. | |
693 | */ | |
86bbc2c2 IC |
694 | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, |
695 | int (*func)(struct mm_struct *mm, struct page *, | |
696 | enum pt_level), | |
697 | unsigned long limit) | |
3b827c1b | 698 | { |
f4f97b3e | 699 | int flush = 0; |
5deb30d1 JF |
700 | unsigned hole_low, hole_high; |
701 | unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; | |
702 | unsigned pgdidx, pudidx, pmdidx; | |
f4f97b3e | 703 | |
5deb30d1 JF |
704 | /* The limit is the last byte to be touched */ |
705 | limit--; | |
706 | BUG_ON(limit >= FIXADDR_TOP); | |
3b827c1b JF |
707 | |
708 | if (xen_feature(XENFEAT_auto_translated_physmap)) | |
f4f97b3e JF |
709 | return 0; |
710 | ||
5deb30d1 JF |
711 | /* |
712 | * 64-bit has a great big hole in the middle of the address | |
713 | * space, which contains the Xen mappings. On 32-bit these | |
714 | * will end up making a zero-sized hole and so is a no-op. | |
715 | */ | |
d6182fbf | 716 | hole_low = pgd_index(USER_LIMIT); |
5deb30d1 JF |
717 | hole_high = pgd_index(PAGE_OFFSET); |
718 | ||
719 | pgdidx_limit = pgd_index(limit); | |
720 | #if PTRS_PER_PUD > 1 | |
721 | pudidx_limit = pud_index(limit); | |
722 | #else | |
723 | pudidx_limit = 0; | |
724 | #endif | |
725 | #if PTRS_PER_PMD > 1 | |
726 | pmdidx_limit = pmd_index(limit); | |
727 | #else | |
728 | pmdidx_limit = 0; | |
729 | #endif | |
730 | ||
5deb30d1 | 731 | for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { |
f4f97b3e | 732 | pud_t *pud; |
3b827c1b | 733 | |
5deb30d1 JF |
734 | if (pgdidx >= hole_low && pgdidx < hole_high) |
735 | continue; | |
f4f97b3e | 736 | |
5deb30d1 | 737 | if (!pgd_val(pgd[pgdidx])) |
3b827c1b | 738 | continue; |
f4f97b3e | 739 | |
5deb30d1 | 740 | pud = pud_offset(&pgd[pgdidx], 0); |
3b827c1b JF |
741 | |
742 | if (PTRS_PER_PUD > 1) /* not folded */ | |
eefb47f6 | 743 | flush |= (*func)(mm, virt_to_page(pud), PT_PUD); |
f4f97b3e | 744 | |
5deb30d1 | 745 | for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { |
f4f97b3e | 746 | pmd_t *pmd; |
f4f97b3e | 747 | |
5deb30d1 JF |
748 | if (pgdidx == pgdidx_limit && |
749 | pudidx > pudidx_limit) | |
750 | goto out; | |
3b827c1b | 751 | |
5deb30d1 | 752 | if (pud_none(pud[pudidx])) |
3b827c1b | 753 | continue; |
f4f97b3e | 754 | |
5deb30d1 | 755 | pmd = pmd_offset(&pud[pudidx], 0); |
3b827c1b JF |
756 | |
757 | if (PTRS_PER_PMD > 1) /* not folded */ | |
eefb47f6 | 758 | flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); |
f4f97b3e | 759 | |
5deb30d1 JF |
760 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { |
761 | struct page *pte; | |
762 | ||
763 | if (pgdidx == pgdidx_limit && | |
764 | pudidx == pudidx_limit && | |
765 | pmdidx > pmdidx_limit) | |
766 | goto out; | |
3b827c1b | 767 | |
5deb30d1 | 768 | if (pmd_none(pmd[pmdidx])) |
3b827c1b JF |
769 | continue; |
770 | ||
5deb30d1 | 771 | pte = pmd_page(pmd[pmdidx]); |
eefb47f6 | 772 | flush |= (*func)(mm, pte, PT_PTE); |
3b827c1b JF |
773 | } |
774 | } | |
775 | } | |
11ad93e5 | 776 | |
5deb30d1 | 777 | out: |
11ad93e5 JF |
778 | /* Do the top level last, so that the callbacks can use it as |
779 | a cue to do final things like tlb flushes. */ | |
eefb47f6 | 780 | flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); |
f4f97b3e JF |
781 | |
782 | return flush; | |
3b827c1b JF |
783 | } |
784 | ||
86bbc2c2 IC |
785 | static int xen_pgd_walk(struct mm_struct *mm, |
786 | int (*func)(struct mm_struct *mm, struct page *, | |
787 | enum pt_level), | |
788 | unsigned long limit) | |
789 | { | |
790 | return __xen_pgd_walk(mm, mm->pgd, func, limit); | |
791 | } | |
792 | ||
7708ad64 JF |
793 | /* If we're using split pte locks, then take the page's lock and |
794 | return a pointer to it. Otherwise return NULL. */ | |
eefb47f6 | 795 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) |
74260714 JF |
796 | { |
797 | spinlock_t *ptl = NULL; | |
798 | ||
f7d0b926 | 799 | #if USE_SPLIT_PTLOCKS |
74260714 | 800 | ptl = __pte_lockptr(page); |
eefb47f6 | 801 | spin_lock_nest_lock(ptl, &mm->page_table_lock); |
74260714 JF |
802 | #endif |
803 | ||
804 | return ptl; | |
805 | } | |
806 | ||
7708ad64 | 807 | static void xen_pte_unlock(void *v) |
74260714 JF |
808 | { |
809 | spinlock_t *ptl = v; | |
810 | spin_unlock(ptl); | |
811 | } | |
812 | ||
813 | static void xen_do_pin(unsigned level, unsigned long pfn) | |
814 | { | |
dcf7435c | 815 | struct mmuext_op op; |
74260714 | 816 | |
dcf7435c JF |
817 | op.cmd = level; |
818 | op.arg1.mfn = pfn_to_mfn(pfn); | |
819 | ||
820 | xen_extend_mmuext_op(&op); | |
74260714 JF |
821 | } |
822 | ||
eefb47f6 JF |
823 | static int xen_pin_page(struct mm_struct *mm, struct page *page, |
824 | enum pt_level level) | |
f4f97b3e | 825 | { |
d60cd46b | 826 | unsigned pgfl = TestSetPagePinned(page); |
f4f97b3e JF |
827 | int flush; |
828 | ||
829 | if (pgfl) | |
830 | flush = 0; /* already pinned */ | |
831 | else if (PageHighMem(page)) | |
832 | /* kmaps need flushing if we found an unpinned | |
833 | highpage */ | |
834 | flush = 1; | |
835 | else { | |
836 | void *pt = lowmem_page_address(page); | |
837 | unsigned long pfn = page_to_pfn(page); | |
838 | struct multicall_space mcs = __xen_mc_entry(0); | |
74260714 | 839 | spinlock_t *ptl; |
f4f97b3e JF |
840 | |
841 | flush = 0; | |
842 | ||
11ad93e5 JF |
843 | /* |
844 | * We need to hold the pagetable lock between the time | |
845 | * we make the pagetable RO and when we actually pin | |
846 | * it. If we don't, then other users may come in and | |
847 | * attempt to update the pagetable by writing it, | |
848 | * which will fail because the memory is RO but not | |
849 | * pinned, so Xen won't do the trap'n'emulate. | |
850 | * | |
851 | * If we're using split pte locks, we can't hold the | |
852 | * entire pagetable's worth of locks during the | |
853 | * traverse, because we may wrap the preempt count (8 | |
854 | * bits). The solution is to mark RO and pin each PTE | |
855 | * page while holding the lock. This means the number | |
856 | * of locks we end up holding is never more than a | |
857 | * batch size (~32 entries, at present). | |
858 | * | |
859 | * If we're not using split pte locks, we needn't pin | |
860 | * the PTE pages independently, because we're | |
861 | * protected by the overall pagetable lock. | |
862 | */ | |
74260714 JF |
863 | ptl = NULL; |
864 | if (level == PT_PTE) | |
eefb47f6 | 865 | ptl = xen_pte_lock(page, mm); |
74260714 | 866 | |
f4f97b3e JF |
867 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
868 | pfn_pte(pfn, PAGE_KERNEL_RO), | |
74260714 JF |
869 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
870 | ||
11ad93e5 | 871 | if (ptl) { |
74260714 JF |
872 | xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); |
873 | ||
74260714 JF |
874 | /* Queue a deferred unlock for when this batch |
875 | is completed. */ | |
7708ad64 | 876 | xen_mc_callback(xen_pte_unlock, ptl); |
74260714 | 877 | } |
f4f97b3e JF |
878 | } |
879 | ||
880 | return flush; | |
881 | } | |
3b827c1b | 882 | |
f4f97b3e JF |
883 | /* This is called just after a mm has been created, but it has not |
884 | been used yet. We need to make sure that its pagetable is all | |
885 | read-only, and can be pinned. */ | |
eefb47f6 | 886 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) |
3b827c1b | 887 | { |
5f94fb5b JF |
888 | trace_xen_mmu_pgd_pin(mm, pgd); |
889 | ||
f4f97b3e | 890 | xen_mc_batch(); |
3b827c1b | 891 | |
86bbc2c2 | 892 | if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { |
d05fdf31 | 893 | /* re-enable interrupts for flushing */ |
f87e4cac | 894 | xen_mc_issue(0); |
d05fdf31 | 895 | |
f4f97b3e | 896 | kmap_flush_unused(); |
d05fdf31 | 897 | |
f87e4cac JF |
898 | xen_mc_batch(); |
899 | } | |
f4f97b3e | 900 | |
d6182fbf JF |
901 | #ifdef CONFIG_X86_64 |
902 | { | |
903 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | |
904 | ||
905 | xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); | |
906 | ||
907 | if (user_pgd) { | |
eefb47f6 | 908 | xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); |
f63c2f24 T |
909 | xen_do_pin(MMUEXT_PIN_L4_TABLE, |
910 | PFN_DOWN(__pa(user_pgd))); | |
d6182fbf JF |
911 | } |
912 | } | |
913 | #else /* CONFIG_X86_32 */ | |
5deb30d1 JF |
914 | #ifdef CONFIG_X86_PAE |
915 | /* Need to make sure unshared kernel PMD is pinnable */ | |
47cb2ed9 | 916 | xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
eefb47f6 | 917 | PT_PMD); |
5deb30d1 | 918 | #endif |
28499143 | 919 | xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); |
d6182fbf | 920 | #endif /* CONFIG_X86_64 */ |
f4f97b3e | 921 | xen_mc_issue(0); |
3b827c1b JF |
922 | } |
923 | ||
eefb47f6 JF |
924 | static void xen_pgd_pin(struct mm_struct *mm) |
925 | { | |
926 | __xen_pgd_pin(mm, mm->pgd); | |
927 | } | |
928 | ||
0e91398f JF |
929 | /* |
930 | * On save, we need to pin all pagetables to make sure they get their | |
931 | * mfns turned into pfns. Search the list for any unpinned pgds and pin | |
932 | * them (unpinned pgds are not currently in use, probably because the | |
933 | * process is under construction or destruction). | |
eefb47f6 JF |
934 | * |
935 | * Expected to be called in stop_machine() ("equivalent to taking | |
936 | * every spinlock in the system"), so the locking doesn't really | |
937 | * matter all that much. | |
0e91398f JF |
938 | */ |
939 | void xen_mm_pin_all(void) | |
940 | { | |
0e91398f | 941 | struct page *page; |
74260714 | 942 | |
a79e53d8 | 943 | spin_lock(&pgd_lock); |
f4f97b3e | 944 | |
0e91398f JF |
945 | list_for_each_entry(page, &pgd_list, lru) { |
946 | if (!PagePinned(page)) { | |
eefb47f6 | 947 | __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); |
0e91398f JF |
948 | SetPageSavePinned(page); |
949 | } | |
950 | } | |
951 | ||
a79e53d8 | 952 | spin_unlock(&pgd_lock); |
3b827c1b JF |
953 | } |
954 | ||
c1f2f09e EH |
955 | /* |
956 | * The init_mm pagetable is really pinned as soon as its created, but | |
957 | * that's before we have page structures to store the bits. So do all | |
958 | * the book-keeping now. | |
959 | */ | |
3f508953 | 960 | static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, |
eefb47f6 | 961 | enum pt_level level) |
3b827c1b | 962 | { |
f4f97b3e JF |
963 | SetPagePinned(page); |
964 | return 0; | |
965 | } | |
3b827c1b | 966 | |
b96229b5 | 967 | static void __init xen_mark_init_mm_pinned(void) |
f4f97b3e | 968 | { |
eefb47f6 | 969 | xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); |
f4f97b3e | 970 | } |
3b827c1b | 971 | |
eefb47f6 JF |
972 | static int xen_unpin_page(struct mm_struct *mm, struct page *page, |
973 | enum pt_level level) | |
f4f97b3e | 974 | { |
d60cd46b | 975 | unsigned pgfl = TestClearPagePinned(page); |
3b827c1b | 976 | |
f4f97b3e JF |
977 | if (pgfl && !PageHighMem(page)) { |
978 | void *pt = lowmem_page_address(page); | |
979 | unsigned long pfn = page_to_pfn(page); | |
74260714 JF |
980 | spinlock_t *ptl = NULL; |
981 | struct multicall_space mcs; | |
982 | ||
11ad93e5 JF |
983 | /* |
984 | * Do the converse to pin_page. If we're using split | |
985 | * pte locks, we must be holding the lock for while | |
986 | * the pte page is unpinned but still RO to prevent | |
987 | * concurrent updates from seeing it in this | |
988 | * partially-pinned state. | |
989 | */ | |
74260714 | 990 | if (level == PT_PTE) { |
eefb47f6 | 991 | ptl = xen_pte_lock(page, mm); |
74260714 | 992 | |
11ad93e5 JF |
993 | if (ptl) |
994 | xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); | |
74260714 JF |
995 | } |
996 | ||
997 | mcs = __xen_mc_entry(0); | |
f4f97b3e JF |
998 | |
999 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | |
1000 | pfn_pte(pfn, PAGE_KERNEL), | |
74260714 JF |
1001 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
1002 | ||
1003 | if (ptl) { | |
1004 | /* unlock when batch completed */ | |
7708ad64 | 1005 | xen_mc_callback(xen_pte_unlock, ptl); |
74260714 | 1006 | } |
f4f97b3e JF |
1007 | } |
1008 | ||
1009 | return 0; /* never need to flush on unpin */ | |
3b827c1b JF |
1010 | } |
1011 | ||
f4f97b3e | 1012 | /* Release a pagetables pages back as normal RW */ |
eefb47f6 | 1013 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) |
f4f97b3e | 1014 | { |
5f94fb5b JF |
1015 | trace_xen_mmu_pgd_unpin(mm, pgd); |
1016 | ||
f4f97b3e JF |
1017 | xen_mc_batch(); |
1018 | ||
74260714 | 1019 | xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
f4f97b3e | 1020 | |
d6182fbf JF |
1021 | #ifdef CONFIG_X86_64 |
1022 | { | |
1023 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | |
1024 | ||
1025 | if (user_pgd) { | |
f63c2f24 T |
1026 | xen_do_pin(MMUEXT_UNPIN_TABLE, |
1027 | PFN_DOWN(__pa(user_pgd))); | |
eefb47f6 | 1028 | xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); |
d6182fbf JF |
1029 | } |
1030 | } | |
1031 | #endif | |
1032 | ||
5deb30d1 JF |
1033 | #ifdef CONFIG_X86_PAE |
1034 | /* Need to make sure unshared kernel PMD is unpinned */ | |
47cb2ed9 | 1035 | xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
eefb47f6 | 1036 | PT_PMD); |
5deb30d1 | 1037 | #endif |
d6182fbf | 1038 | |
86bbc2c2 | 1039 | __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); |
f4f97b3e JF |
1040 | |
1041 | xen_mc_issue(0); | |
1042 | } | |
3b827c1b | 1043 | |
eefb47f6 JF |
1044 | static void xen_pgd_unpin(struct mm_struct *mm) |
1045 | { | |
1046 | __xen_pgd_unpin(mm, mm->pgd); | |
1047 | } | |
1048 | ||
0e91398f JF |
1049 | /* |
1050 | * On resume, undo any pinning done at save, so that the rest of the | |
1051 | * kernel doesn't see any unexpected pinned pagetables. | |
1052 | */ | |
1053 | void xen_mm_unpin_all(void) | |
1054 | { | |
0e91398f JF |
1055 | struct page *page; |
1056 | ||
a79e53d8 | 1057 | spin_lock(&pgd_lock); |
0e91398f JF |
1058 | |
1059 | list_for_each_entry(page, &pgd_list, lru) { | |
1060 | if (PageSavePinned(page)) { | |
1061 | BUG_ON(!PagePinned(page)); | |
eefb47f6 | 1062 | __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); |
0e91398f JF |
1063 | ClearPageSavePinned(page); |
1064 | } | |
1065 | } | |
1066 | ||
a79e53d8 | 1067 | spin_unlock(&pgd_lock); |
0e91398f JF |
1068 | } |
1069 | ||
4c13629f | 1070 | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) |
3b827c1b | 1071 | { |
f4f97b3e | 1072 | spin_lock(&next->page_table_lock); |
eefb47f6 | 1073 | xen_pgd_pin(next); |
f4f97b3e | 1074 | spin_unlock(&next->page_table_lock); |
3b827c1b JF |
1075 | } |
1076 | ||
4c13629f | 1077 | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) |
3b827c1b | 1078 | { |
f4f97b3e | 1079 | spin_lock(&mm->page_table_lock); |
eefb47f6 | 1080 | xen_pgd_pin(mm); |
f4f97b3e | 1081 | spin_unlock(&mm->page_table_lock); |
3b827c1b JF |
1082 | } |
1083 | ||
3b827c1b | 1084 | |
f87e4cac JF |
1085 | #ifdef CONFIG_SMP |
1086 | /* Another cpu may still have their %cr3 pointing at the pagetable, so | |
1087 | we need to repoint it somewhere else before we can unpin it. */ | |
1088 | static void drop_other_mm_ref(void *info) | |
1089 | { | |
1090 | struct mm_struct *mm = info; | |
ce87b3d3 | 1091 | struct mm_struct *active_mm; |
3b827c1b | 1092 | |
2113f469 | 1093 | active_mm = this_cpu_read(cpu_tlbstate.active_mm); |
ce87b3d3 | 1094 | |
2113f469 | 1095 | if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) |
f87e4cac | 1096 | leave_mm(smp_processor_id()); |
9f79991d JF |
1097 | |
1098 | /* If this cpu still has a stale cr3 reference, then make sure | |
1099 | it has been flushed. */ | |
2113f469 | 1100 | if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) |
9f79991d | 1101 | load_cr3(swapper_pg_dir); |
f87e4cac | 1102 | } |
3b827c1b | 1103 | |
7708ad64 | 1104 | static void xen_drop_mm_ref(struct mm_struct *mm) |
f87e4cac | 1105 | { |
e4d98207 | 1106 | cpumask_var_t mask; |
9f79991d JF |
1107 | unsigned cpu; |
1108 | ||
f87e4cac JF |
1109 | if (current->active_mm == mm) { |
1110 | if (current->mm == mm) | |
1111 | load_cr3(swapper_pg_dir); | |
1112 | else | |
1113 | leave_mm(smp_processor_id()); | |
9f79991d JF |
1114 | } |
1115 | ||
1116 | /* Get the "official" set of cpus referring to our pagetable. */ | |
e4d98207 MT |
1117 | if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { |
1118 | for_each_online_cpu(cpu) { | |
78f1c4d6 | 1119 | if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) |
e4d98207 MT |
1120 | && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) |
1121 | continue; | |
1122 | smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); | |
1123 | } | |
1124 | return; | |
1125 | } | |
78f1c4d6 | 1126 | cpumask_copy(mask, mm_cpumask(mm)); |
9f79991d JF |
1127 | |
1128 | /* It's possible that a vcpu may have a stale reference to our | |
1129 | cr3, because its in lazy mode, and it hasn't yet flushed | |
1130 | its set of pending hypercalls yet. In this case, we can | |
1131 | look at its actual current cr3 value, and force it to flush | |
1132 | if needed. */ | |
1133 | for_each_online_cpu(cpu) { | |
1134 | if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) | |
e4d98207 | 1135 | cpumask_set_cpu(cpu, mask); |
3b827c1b JF |
1136 | } |
1137 | ||
e4d98207 MT |
1138 | if (!cpumask_empty(mask)) |
1139 | smp_call_function_many(mask, drop_other_mm_ref, mm, 1); | |
1140 | free_cpumask_var(mask); | |
f87e4cac JF |
1141 | } |
1142 | #else | |
7708ad64 | 1143 | static void xen_drop_mm_ref(struct mm_struct *mm) |
f87e4cac JF |
1144 | { |
1145 | if (current->active_mm == mm) | |
1146 | load_cr3(swapper_pg_dir); | |
1147 | } | |
1148 | #endif | |
1149 | ||
1150 | /* | |
1151 | * While a process runs, Xen pins its pagetables, which means that the | |
1152 | * hypervisor forces it to be read-only, and it controls all updates | |
1153 | * to it. This means that all pagetable updates have to go via the | |
1154 | * hypervisor, which is moderately expensive. | |
1155 | * | |
1156 | * Since we're pulling the pagetable down, we switch to use init_mm, | |
1157 | * unpin old process pagetable and mark it all read-write, which | |
1158 | * allows further operations on it to be simple memory accesses. | |
1159 | * | |
1160 | * The only subtle point is that another CPU may be still using the | |
1161 | * pagetable because of lazy tlb flushing. This means we need need to | |
1162 | * switch all CPUs off this pagetable before we can unpin it. | |
1163 | */ | |
4c13629f | 1164 | static void xen_exit_mmap(struct mm_struct *mm) |
f87e4cac JF |
1165 | { |
1166 | get_cpu(); /* make sure we don't move around */ | |
7708ad64 | 1167 | xen_drop_mm_ref(mm); |
f87e4cac | 1168 | put_cpu(); |
3b827c1b | 1169 | |
f120f13e | 1170 | spin_lock(&mm->page_table_lock); |
df912ea4 JF |
1171 | |
1172 | /* pgd may not be pinned in the error exit path of execve */ | |
7708ad64 | 1173 | if (xen_page_pinned(mm->pgd)) |
eefb47f6 | 1174 | xen_pgd_unpin(mm); |
74260714 | 1175 | |
f120f13e | 1176 | spin_unlock(&mm->page_table_lock); |
3b827c1b | 1177 | } |
994025ca | 1178 | |
c7112887 AR |
1179 | static void xen_post_allocator_init(void); |
1180 | ||
7f914062 KRW |
1181 | #ifdef CONFIG_X86_64 |
1182 | static void __init xen_cleanhighmap(unsigned long vaddr, | |
1183 | unsigned long vaddr_end) | |
1184 | { | |
1185 | unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; | |
1186 | pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); | |
1187 | ||
1188 | /* NOTE: The loop is more greedy than the cleanup_highmap variant. | |
1189 | * We include the PMD passed in on _both_ boundaries. */ | |
1190 | for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE)); | |
1191 | pmd++, vaddr += PMD_SIZE) { | |
1192 | if (pmd_none(*pmd)) | |
1193 | continue; | |
1194 | if (vaddr < (unsigned long) _text || vaddr > kernel_end) | |
1195 | set_pmd(pmd, __pmd(0)); | |
1196 | } | |
1197 | /* In case we did something silly, we should crash in this function | |
1198 | * instead of somewhere later and be confusing. */ | |
1199 | xen_mc_flush(); | |
1200 | } | |
1201 | #endif | |
98104c34 | 1202 | static void __init xen_pagetable_init(void) |
319f3ba5 | 1203 | { |
7f914062 KRW |
1204 | #ifdef CONFIG_X86_64 |
1205 | unsigned long size; | |
1206 | unsigned long addr; | |
1207 | #endif | |
98104c34 | 1208 | paging_init(); |
319f3ba5 | 1209 | xen_setup_shared_info(); |
7f914062 KRW |
1210 | #ifdef CONFIG_X86_64 |
1211 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { | |
1212 | unsigned long new_mfn_list; | |
1213 | ||
1214 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); | |
1215 | ||
1216 | /* On 32-bit, we get zero so this never gets executed. */ | |
1217 | new_mfn_list = xen_revector_p2m_tree(); | |
1218 | if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) { | |
1219 | /* using __ka address and sticking INVALID_P2M_ENTRY! */ | |
1220 | memset((void *)xen_start_info->mfn_list, 0xff, size); | |
1221 | ||
1222 | /* We should be in __ka space. */ | |
1223 | BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map); | |
1224 | addr = xen_start_info->mfn_list; | |
7f914062 KRW |
1225 | /* We roundup to the PMD, which means that if anybody at this stage is |
1226 | * using the __ka address of xen_start_info or xen_start_info->shared_info | |
1227 | * they are in going to crash. Fortunatly we have already revectored | |
1228 | * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */ | |
1229 | size = roundup(size, PMD_SIZE); | |
1230 | xen_cleanhighmap(addr, addr + size); | |
1231 | ||
785f6231 | 1232 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
7f914062 KRW |
1233 | memblock_free(__pa(xen_start_info->mfn_list), size); |
1234 | /* And revector! Bye bye old array */ | |
1235 | xen_start_info->mfn_list = new_mfn_list; | |
32873187 KRW |
1236 | } else |
1237 | goto skip; | |
7f914062 | 1238 | } |
3aca7fbc KRW |
1239 | /* At this stage, cleanup_highmap has already cleaned __ka space |
1240 | * from _brk_limit way up to the max_pfn_mapped (which is the end of | |
1241 | * the ramdisk). We continue on, erasing PMD entries that point to page | |
1242 | * tables - do note that they are accessible at this stage via __va. | |
1243 | * For good measure we also round up to the PMD - which means that if | |
1244 | * anybody is using __ka address to the initial boot-stack - and try | |
1245 | * to use it - they are going to crash. The xen_start_info has been | |
1246 | * taken care of already in xen_setup_kernel_pagetable. */ | |
1247 | addr = xen_start_info->pt_base; | |
1248 | size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE); | |
1249 | ||
1250 | xen_cleanhighmap(addr, addr + size); | |
1251 | xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); | |
1252 | #ifdef DEBUG | |
1253 | /* This is superflous and is not neccessary, but you know what | |
1254 | * lets do it. The MODULES_VADDR -> MODULES_END should be clear of | |
1255 | * anything at this stage. */ | |
1256 | xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1); | |
1257 | #endif | |
32873187 | 1258 | skip: |
7f914062 | 1259 | #endif |
f1d7062a | 1260 | xen_post_allocator_init(); |
319f3ba5 | 1261 | } |
319f3ba5 JF |
1262 | static void xen_write_cr2(unsigned long cr2) |
1263 | { | |
2113f469 | 1264 | this_cpu_read(xen_vcpu)->arch.cr2 = cr2; |
319f3ba5 JF |
1265 | } |
1266 | ||
1267 | static unsigned long xen_read_cr2(void) | |
1268 | { | |
2113f469 | 1269 | return this_cpu_read(xen_vcpu)->arch.cr2; |
319f3ba5 JF |
1270 | } |
1271 | ||
1272 | unsigned long xen_read_cr2_direct(void) | |
1273 | { | |
2113f469 | 1274 | return this_cpu_read(xen_vcpu_info.arch.cr2); |
319f3ba5 JF |
1275 | } |
1276 | ||
95a7d768 KRW |
1277 | void xen_flush_tlb_all(void) |
1278 | { | |
1279 | struct mmuext_op *op; | |
1280 | struct multicall_space mcs; | |
1281 | ||
1282 | trace_xen_mmu_flush_tlb_all(0); | |
1283 | ||
1284 | preempt_disable(); | |
1285 | ||
1286 | mcs = xen_mc_entry(sizeof(*op)); | |
1287 | ||
1288 | op = mcs.args; | |
1289 | op->cmd = MMUEXT_TLB_FLUSH_ALL; | |
1290 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | |
1291 | ||
1292 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
1293 | ||
1294 | preempt_enable(); | |
1295 | } | |
319f3ba5 JF |
1296 | static void xen_flush_tlb(void) |
1297 | { | |
1298 | struct mmuext_op *op; | |
1299 | struct multicall_space mcs; | |
1300 | ||
c8eed171 JF |
1301 | trace_xen_mmu_flush_tlb(0); |
1302 | ||
319f3ba5 JF |
1303 | preempt_disable(); |
1304 | ||
1305 | mcs = xen_mc_entry(sizeof(*op)); | |
1306 | ||
1307 | op = mcs.args; | |
1308 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | |
1309 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | |
1310 | ||
1311 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
1312 | ||
1313 | preempt_enable(); | |
1314 | } | |
1315 | ||
1316 | static void xen_flush_tlb_single(unsigned long addr) | |
1317 | { | |
1318 | struct mmuext_op *op; | |
1319 | struct multicall_space mcs; | |
1320 | ||
c8eed171 JF |
1321 | trace_xen_mmu_flush_tlb_single(addr); |
1322 | ||
319f3ba5 JF |
1323 | preempt_disable(); |
1324 | ||
1325 | mcs = xen_mc_entry(sizeof(*op)); | |
1326 | op = mcs.args; | |
1327 | op->cmd = MMUEXT_INVLPG_LOCAL; | |
1328 | op->arg1.linear_addr = addr & PAGE_MASK; | |
1329 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | |
1330 | ||
1331 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
1332 | ||
1333 | preempt_enable(); | |
1334 | } | |
1335 | ||
1336 | static void xen_flush_tlb_others(const struct cpumask *cpus, | |
e7b52ffd AS |
1337 | struct mm_struct *mm, unsigned long start, |
1338 | unsigned long end) | |
319f3ba5 JF |
1339 | { |
1340 | struct { | |
1341 | struct mmuext_op op; | |
32dd1194 | 1342 | #ifdef CONFIG_SMP |
900cba88 | 1343 | DECLARE_BITMAP(mask, num_processors); |
32dd1194 KRW |
1344 | #else |
1345 | DECLARE_BITMAP(mask, NR_CPUS); | |
1346 | #endif | |
319f3ba5 JF |
1347 | } *args; |
1348 | struct multicall_space mcs; | |
1349 | ||
e7b52ffd | 1350 | trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); |
c8eed171 | 1351 | |
e3f8a74e JF |
1352 | if (cpumask_empty(cpus)) |
1353 | return; /* nothing to do */ | |
319f3ba5 JF |
1354 | |
1355 | mcs = xen_mc_entry(sizeof(*args)); | |
1356 | args = mcs.args; | |
1357 | args->op.arg2.vcpumask = to_cpumask(args->mask); | |
1358 | ||
1359 | /* Remove us, and any offline CPUS. */ | |
1360 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); | |
1361 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); | |
319f3ba5 | 1362 | |
e7b52ffd | 1363 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; |
ce7184bd | 1364 | if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { |
319f3ba5 | 1365 | args->op.cmd = MMUEXT_INVLPG_MULTI; |
e7b52ffd | 1366 | args->op.arg1.linear_addr = start; |
319f3ba5 JF |
1367 | } |
1368 | ||
1369 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | |
1370 | ||
319f3ba5 JF |
1371 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
1372 | } | |
1373 | ||
1374 | static unsigned long xen_read_cr3(void) | |
1375 | { | |
2113f469 | 1376 | return this_cpu_read(xen_cr3); |
319f3ba5 JF |
1377 | } |
1378 | ||
1379 | static void set_current_cr3(void *v) | |
1380 | { | |
2113f469 | 1381 | this_cpu_write(xen_current_cr3, (unsigned long)v); |
319f3ba5 JF |
1382 | } |
1383 | ||
1384 | static void __xen_write_cr3(bool kernel, unsigned long cr3) | |
1385 | { | |
dcf7435c | 1386 | struct mmuext_op op; |
319f3ba5 JF |
1387 | unsigned long mfn; |
1388 | ||
c8eed171 JF |
1389 | trace_xen_mmu_write_cr3(kernel, cr3); |
1390 | ||
319f3ba5 JF |
1391 | if (cr3) |
1392 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); | |
1393 | else | |
1394 | mfn = 0; | |
1395 | ||
1396 | WARN_ON(mfn == 0 && kernel); | |
1397 | ||
dcf7435c JF |
1398 | op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; |
1399 | op.arg1.mfn = mfn; | |
319f3ba5 | 1400 | |
dcf7435c | 1401 | xen_extend_mmuext_op(&op); |
319f3ba5 JF |
1402 | |
1403 | if (kernel) { | |
2113f469 | 1404 | this_cpu_write(xen_cr3, cr3); |
319f3ba5 JF |
1405 | |
1406 | /* Update xen_current_cr3 once the batch has actually | |
1407 | been submitted. */ | |
1408 | xen_mc_callback(set_current_cr3, (void *)cr3); | |
1409 | } | |
1410 | } | |
319f3ba5 JF |
1411 | static void xen_write_cr3(unsigned long cr3) |
1412 | { | |
1413 | BUG_ON(preemptible()); | |
1414 | ||
1415 | xen_mc_batch(); /* disables interrupts */ | |
1416 | ||
1417 | /* Update while interrupts are disabled, so its atomic with | |
1418 | respect to ipis */ | |
2113f469 | 1419 | this_cpu_write(xen_cr3, cr3); |
319f3ba5 JF |
1420 | |
1421 | __xen_write_cr3(true, cr3); | |
1422 | ||
1423 | #ifdef CONFIG_X86_64 | |
1424 | { | |
1425 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | |
1426 | if (user_pgd) | |
1427 | __xen_write_cr3(false, __pa(user_pgd)); | |
1428 | else | |
1429 | __xen_write_cr3(false, 0); | |
1430 | } | |
1431 | #endif | |
1432 | ||
1433 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ | |
1434 | } | |
1435 | ||
0cc9129d KRW |
1436 | #ifdef CONFIG_X86_64 |
1437 | /* | |
1438 | * At the start of the day - when Xen launches a guest, it has already | |
1439 | * built pagetables for the guest. We diligently look over them | |
1440 | * in xen_setup_kernel_pagetable and graft as appropiate them in the | |
1441 | * init_level4_pgt and its friends. Then when we are happy we load | |
1442 | * the new init_level4_pgt - and continue on. | |
1443 | * | |
1444 | * The generic code starts (start_kernel) and 'init_mem_mapping' sets | |
1445 | * up the rest of the pagetables. When it has completed it loads the cr3. | |
1446 | * N.B. that baremetal would start at 'start_kernel' (and the early | |
1447 | * #PF handler would create bootstrap pagetables) - so we are running | |
1448 | * with the same assumptions as what to do when write_cr3 is executed | |
1449 | * at this point. | |
1450 | * | |
1451 | * Since there are no user-page tables at all, we have two variants | |
1452 | * of xen_write_cr3 - the early bootup (this one), and the late one | |
1453 | * (xen_write_cr3). The reason we have to do that is that in 64-bit | |
1454 | * the Linux kernel and user-space are both in ring 3 while the | |
1455 | * hypervisor is in ring 0. | |
1456 | */ | |
1457 | static void __init xen_write_cr3_init(unsigned long cr3) | |
1458 | { | |
1459 | BUG_ON(preemptible()); | |
1460 | ||
1461 | xen_mc_batch(); /* disables interrupts */ | |
1462 | ||
1463 | /* Update while interrupts are disabled, so its atomic with | |
1464 | respect to ipis */ | |
1465 | this_cpu_write(xen_cr3, cr3); | |
1466 | ||
1467 | __xen_write_cr3(true, cr3); | |
1468 | ||
1469 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ | |
0cc9129d KRW |
1470 | } |
1471 | #endif | |
1472 | ||
319f3ba5 JF |
1473 | static int xen_pgd_alloc(struct mm_struct *mm) |
1474 | { | |
1475 | pgd_t *pgd = mm->pgd; | |
1476 | int ret = 0; | |
1477 | ||
1478 | BUG_ON(PagePinned(virt_to_page(pgd))); | |
1479 | ||
1480 | #ifdef CONFIG_X86_64 | |
1481 | { | |
1482 | struct page *page = virt_to_page(pgd); | |
1483 | pgd_t *user_pgd; | |
1484 | ||
1485 | BUG_ON(page->private != 0); | |
1486 | ||
1487 | ret = -ENOMEM; | |
1488 | ||
1489 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | |
1490 | page->private = (unsigned long)user_pgd; | |
1491 | ||
1492 | if (user_pgd != NULL) { | |
1493 | user_pgd[pgd_index(VSYSCALL_START)] = | |
1494 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | |
1495 | ret = 0; | |
1496 | } | |
1497 | ||
1498 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | |
1499 | } | |
1500 | #endif | |
1501 | ||
1502 | return ret; | |
1503 | } | |
1504 | ||
1505 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | |
1506 | { | |
1507 | #ifdef CONFIG_X86_64 | |
1508 | pgd_t *user_pgd = xen_get_user_pgd(pgd); | |
1509 | ||
1510 | if (user_pgd) | |
1511 | free_page((unsigned long)user_pgd); | |
1512 | #endif | |
1513 | } | |
1514 | ||
ee176455 | 1515 | #ifdef CONFIG_X86_32 |
3f508953 | 1516 | static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) |
1f4f9315 JF |
1517 | { |
1518 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | |
1519 | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | |
1520 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | |
1521 | pte_val_ma(pte)); | |
ee176455 SS |
1522 | |
1523 | return pte; | |
1524 | } | |
1525 | #else /* CONFIG_X86_64 */ | |
3f508953 | 1526 | static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) |
ee176455 | 1527 | { |
1f4f9315 JF |
1528 | return pte; |
1529 | } | |
ee176455 | 1530 | #endif /* CONFIG_X86_64 */ |
1f4f9315 | 1531 | |
d095d43e DV |
1532 | /* |
1533 | * Init-time set_pte while constructing initial pagetables, which | |
1534 | * doesn't allow RO page table pages to be remapped RW. | |
1535 | * | |
66a27dde DV |
1536 | * If there is no MFN for this PFN then this page is initially |
1537 | * ballooned out so clear the PTE (as in decrease_reservation() in | |
1538 | * drivers/xen/balloon.c). | |
1539 | * | |
d095d43e DV |
1540 | * Many of these PTE updates are done on unpinned and writable pages |
1541 | * and doing a hypercall for these is unnecessary and expensive. At | |
1542 | * this point it is not possible to tell if a page is pinned or not, | |
1543 | * so always write the PTE directly and rely on Xen trapping and | |
1544 | * emulating any updates as necessary. | |
1545 | */ | |
3f508953 | 1546 | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) |
1f4f9315 | 1547 | { |
66a27dde DV |
1548 | if (pte_mfn(pte) != INVALID_P2M_ENTRY) |
1549 | pte = mask_rw_pte(ptep, pte); | |
1550 | else | |
1551 | pte = __pte_ma(0); | |
1f4f9315 | 1552 | |
d095d43e | 1553 | native_set_pte(ptep, pte); |
1f4f9315 | 1554 | } |
319f3ba5 | 1555 | |
b96229b5 JF |
1556 | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
1557 | { | |
1558 | struct mmuext_op op; | |
1559 | op.cmd = cmd; | |
1560 | op.arg1.mfn = pfn_to_mfn(pfn); | |
1561 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | |
1562 | BUG(); | |
1563 | } | |
1564 | ||
319f3ba5 JF |
1565 | /* Early in boot, while setting up the initial pagetable, assume |
1566 | everything is pinned. */ | |
3f508953 | 1567 | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) |
319f3ba5 | 1568 | { |
b96229b5 JF |
1569 | #ifdef CONFIG_FLATMEM |
1570 | BUG_ON(mem_map); /* should only be used early */ | |
1571 | #endif | |
1572 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | |
1573 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | |
1574 | } | |
1575 | ||
1576 | /* Used for pmd and pud */ | |
3f508953 | 1577 | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) |
b96229b5 | 1578 | { |
319f3ba5 JF |
1579 | #ifdef CONFIG_FLATMEM |
1580 | BUG_ON(mem_map); /* should only be used early */ | |
1581 | #endif | |
1582 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | |
1583 | } | |
1584 | ||
1585 | /* Early release_pte assumes that all pts are pinned, since there's | |
1586 | only init_mm and anything attached to that is pinned. */ | |
3f508953 | 1587 | static void __init xen_release_pte_init(unsigned long pfn) |
319f3ba5 | 1588 | { |
b96229b5 | 1589 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
319f3ba5 JF |
1590 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
1591 | } | |
1592 | ||
3f508953 | 1593 | static void __init xen_release_pmd_init(unsigned long pfn) |
319f3ba5 | 1594 | { |
b96229b5 | 1595 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
319f3ba5 JF |
1596 | } |
1597 | ||
bc7fe1d9 JF |
1598 | static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
1599 | { | |
1600 | struct multicall_space mcs; | |
1601 | struct mmuext_op *op; | |
1602 | ||
1603 | mcs = __xen_mc_entry(sizeof(*op)); | |
1604 | op = mcs.args; | |
1605 | op->cmd = cmd; | |
1606 | op->arg1.mfn = pfn_to_mfn(pfn); | |
1607 | ||
1608 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | |
1609 | } | |
1610 | ||
1611 | static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) | |
1612 | { | |
1613 | struct multicall_space mcs; | |
1614 | unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); | |
1615 | ||
1616 | mcs = __xen_mc_entry(0); | |
1617 | MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, | |
1618 | pfn_pte(pfn, prot), 0); | |
1619 | } | |
1620 | ||
319f3ba5 JF |
1621 | /* This needs to make sure the new pte page is pinned iff its being |
1622 | attached to a pinned pagetable. */ | |
bc7fe1d9 JF |
1623 | static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, |
1624 | unsigned level) | |
319f3ba5 | 1625 | { |
bc7fe1d9 JF |
1626 | bool pinned = PagePinned(virt_to_page(mm->pgd)); |
1627 | ||
c2ba050d | 1628 | trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); |
319f3ba5 | 1629 | |
c2ba050d | 1630 | if (pinned) { |
bc7fe1d9 | 1631 | struct page *page = pfn_to_page(pfn); |
319f3ba5 | 1632 | |
319f3ba5 JF |
1633 | SetPagePinned(page); |
1634 | ||
319f3ba5 | 1635 | if (!PageHighMem(page)) { |
bc7fe1d9 JF |
1636 | xen_mc_batch(); |
1637 | ||
1638 | __set_pfn_prot(pfn, PAGE_KERNEL_RO); | |
1639 | ||
319f3ba5 | 1640 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) |
bc7fe1d9 JF |
1641 | __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
1642 | ||
1643 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
319f3ba5 JF |
1644 | } else { |
1645 | /* make sure there are no stray mappings of | |
1646 | this page */ | |
1647 | kmap_flush_unused(); | |
1648 | } | |
1649 | } | |
1650 | } | |
1651 | ||
1652 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | |
1653 | { | |
1654 | xen_alloc_ptpage(mm, pfn, PT_PTE); | |
1655 | } | |
1656 | ||
1657 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | |
1658 | { | |
1659 | xen_alloc_ptpage(mm, pfn, PT_PMD); | |
1660 | } | |
1661 | ||
1662 | /* This should never happen until we're OK to use struct page */ | |
bc7fe1d9 | 1663 | static inline void xen_release_ptpage(unsigned long pfn, unsigned level) |
319f3ba5 JF |
1664 | { |
1665 | struct page *page = pfn_to_page(pfn); | |
c2ba050d | 1666 | bool pinned = PagePinned(page); |
319f3ba5 | 1667 | |
c2ba050d | 1668 | trace_xen_mmu_release_ptpage(pfn, level, pinned); |
319f3ba5 | 1669 | |
c2ba050d | 1670 | if (pinned) { |
319f3ba5 | 1671 | if (!PageHighMem(page)) { |
bc7fe1d9 JF |
1672 | xen_mc_batch(); |
1673 | ||
319f3ba5 | 1674 | if (level == PT_PTE && USE_SPLIT_PTLOCKS) |
bc7fe1d9 JF |
1675 | __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
1676 | ||
1677 | __set_pfn_prot(pfn, PAGE_KERNEL); | |
1678 | ||
1679 | xen_mc_issue(PARAVIRT_LAZY_MMU); | |
319f3ba5 JF |
1680 | } |
1681 | ClearPagePinned(page); | |
1682 | } | |
1683 | } | |
1684 | ||
1685 | static void xen_release_pte(unsigned long pfn) | |
1686 | { | |
1687 | xen_release_ptpage(pfn, PT_PTE); | |
1688 | } | |
1689 | ||
1690 | static void xen_release_pmd(unsigned long pfn) | |
1691 | { | |
1692 | xen_release_ptpage(pfn, PT_PMD); | |
1693 | } | |
1694 | ||
1695 | #if PAGETABLE_LEVELS == 4 | |
1696 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | |
1697 | { | |
1698 | xen_alloc_ptpage(mm, pfn, PT_PUD); | |
1699 | } | |
1700 | ||
1701 | static void xen_release_pud(unsigned long pfn) | |
1702 | { | |
1703 | xen_release_ptpage(pfn, PT_PUD); | |
1704 | } | |
1705 | #endif | |
1706 | ||
1707 | void __init xen_reserve_top(void) | |
1708 | { | |
1709 | #ifdef CONFIG_X86_32 | |
1710 | unsigned long top = HYPERVISOR_VIRT_START; | |
1711 | struct xen_platform_parameters pp; | |
1712 | ||
1713 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | |
1714 | top = pp.virt_start; | |
1715 | ||
1716 | reserve_top_address(-top); | |
1717 | #endif /* CONFIG_X86_32 */ | |
1718 | } | |
1719 | ||
1720 | /* | |
1721 | * Like __va(), but returns address in the kernel mapping (which is | |
1722 | * all we have until the physical memory mapping has been set up. | |
1723 | */ | |
1724 | static void *__ka(phys_addr_t paddr) | |
1725 | { | |
1726 | #ifdef CONFIG_X86_64 | |
1727 | return (void *)(paddr + __START_KERNEL_map); | |
1728 | #else | |
1729 | return __va(paddr); | |
1730 | #endif | |
1731 | } | |
1732 | ||
1733 | /* Convert a machine address to physical address */ | |
1734 | static unsigned long m2p(phys_addr_t maddr) | |
1735 | { | |
1736 | phys_addr_t paddr; | |
1737 | ||
1738 | maddr &= PTE_PFN_MASK; | |
1739 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | |
1740 | ||
1741 | return paddr; | |
1742 | } | |
1743 | ||
1744 | /* Convert a machine address to kernel virtual */ | |
1745 | static void *m2v(phys_addr_t maddr) | |
1746 | { | |
1747 | return __ka(m2p(maddr)); | |
1748 | } | |
1749 | ||
4ec5387c | 1750 | /* Set the page permissions on an identity-mapped pages */ |
319f3ba5 JF |
1751 | static void set_page_prot(void *addr, pgprot_t prot) |
1752 | { | |
1753 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | |
1754 | pte_t pte = pfn_pte(pfn, prot); | |
1755 | ||
1756 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | |
1757 | BUG(); | |
1758 | } | |
caaf9ecf | 1759 | #ifdef CONFIG_X86_32 |
3f508953 | 1760 | static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) |
319f3ba5 JF |
1761 | { |
1762 | unsigned pmdidx, pteidx; | |
1763 | unsigned ident_pte; | |
1764 | unsigned long pfn; | |
1765 | ||
764f0138 JF |
1766 | level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, |
1767 | PAGE_SIZE); | |
1768 | ||
319f3ba5 JF |
1769 | ident_pte = 0; |
1770 | pfn = 0; | |
1771 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | |
1772 | pte_t *pte_page; | |
1773 | ||
1774 | /* Reuse or allocate a page of ptes */ | |
1775 | if (pmd_present(pmd[pmdidx])) | |
1776 | pte_page = m2v(pmd[pmdidx].pmd); | |
1777 | else { | |
1778 | /* Check for free pte pages */ | |
764f0138 | 1779 | if (ident_pte == LEVEL1_IDENT_ENTRIES) |
319f3ba5 JF |
1780 | break; |
1781 | ||
1782 | pte_page = &level1_ident_pgt[ident_pte]; | |
1783 | ident_pte += PTRS_PER_PTE; | |
1784 | ||
1785 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | |
1786 | } | |
1787 | ||
1788 | /* Install mappings */ | |
1789 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | |
1790 | pte_t pte; | |
1791 | ||
a91d9287 SS |
1792 | #ifdef CONFIG_X86_32 |
1793 | if (pfn > max_pfn_mapped) | |
1794 | max_pfn_mapped = pfn; | |
1795 | #endif | |
1796 | ||
319f3ba5 JF |
1797 | if (!pte_none(pte_page[pteidx])) |
1798 | continue; | |
1799 | ||
1800 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | |
1801 | pte_page[pteidx] = pte; | |
1802 | } | |
1803 | } | |
1804 | ||
1805 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | |
1806 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | |
1807 | ||
1808 | set_page_prot(pmd, PAGE_KERNEL_RO); | |
1809 | } | |
caaf9ecf | 1810 | #endif |
7e77506a IC |
1811 | void __init xen_setup_machphys_mapping(void) |
1812 | { | |
1813 | struct xen_machphys_mapping mapping; | |
7e77506a IC |
1814 | |
1815 | if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { | |
1816 | machine_to_phys_mapping = (unsigned long *)mapping.v_start; | |
ccbcdf7c | 1817 | machine_to_phys_nr = mapping.max_mfn + 1; |
7e77506a | 1818 | } else { |
ccbcdf7c | 1819 | machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; |
7e77506a | 1820 | } |
ccbcdf7c | 1821 | #ifdef CONFIG_X86_32 |
61cca2fa JB |
1822 | WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) |
1823 | < machine_to_phys_mapping); | |
ccbcdf7c | 1824 | #endif |
7e77506a IC |
1825 | } |
1826 | ||
319f3ba5 JF |
1827 | #ifdef CONFIG_X86_64 |
1828 | static void convert_pfn_mfn(void *v) | |
1829 | { | |
1830 | pte_t *pte = v; | |
1831 | int i; | |
1832 | ||
1833 | /* All levels are converted the same way, so just treat them | |
1834 | as ptes. */ | |
1835 | for (i = 0; i < PTRS_PER_PTE; i++) | |
1836 | pte[i] = xen_make_pte(pte[i].pte); | |
1837 | } | |
488f046d KRW |
1838 | static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, |
1839 | unsigned long addr) | |
1840 | { | |
1841 | if (*pt_base == PFN_DOWN(__pa(addr))) { | |
1842 | set_page_prot((void *)addr, PAGE_KERNEL); | |
1843 | clear_page((void *)addr); | |
1844 | (*pt_base)++; | |
1845 | } | |
1846 | if (*pt_end == PFN_DOWN(__pa(addr))) { | |
1847 | set_page_prot((void *)addr, PAGE_KERNEL); | |
1848 | clear_page((void *)addr); | |
1849 | (*pt_end)--; | |
1850 | } | |
1851 | } | |
319f3ba5 | 1852 | /* |
0d2eb44f | 1853 | * Set up the initial kernel pagetable. |
319f3ba5 JF |
1854 | * |
1855 | * We can construct this by grafting the Xen provided pagetable into | |
1856 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into | |
1857 | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This | |
1858 | * means that only the kernel has a physical mapping to start with - | |
1859 | * but that's enough to get __va working. We need to fill in the rest | |
1860 | * of the physical mapping once some sort of allocator has been set | |
1861 | * up. | |
1862 | */ | |
3699aad0 | 1863 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
319f3ba5 JF |
1864 | { |
1865 | pud_t *l3; | |
1866 | pmd_t *l2; | |
488f046d KRW |
1867 | unsigned long addr[3]; |
1868 | unsigned long pt_base, pt_end; | |
1869 | unsigned i; | |
319f3ba5 | 1870 | |
14988a4d SS |
1871 | /* max_pfn_mapped is the last pfn mapped in the initial memory |
1872 | * mappings. Considering that on Xen after the kernel mappings we | |
1873 | * have the mappings of some pages that don't exist in pfn space, we | |
1874 | * set max_pfn_mapped to the last real pfn mapped. */ | |
1875 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); | |
1876 | ||
488f046d KRW |
1877 | pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); |
1878 | pt_end = pt_base + xen_start_info->nr_pt_frames; | |
1879 | ||
319f3ba5 JF |
1880 | /* Zap identity mapping */ |
1881 | init_level4_pgt[0] = __pgd(0); | |
1882 | ||
1883 | /* Pre-constructed entries are in pfn, so convert to mfn */ | |
4fac153a KRW |
1884 | /* L4[272] -> level3_ident_pgt |
1885 | * L4[511] -> level3_kernel_pgt */ | |
319f3ba5 | 1886 | convert_pfn_mfn(init_level4_pgt); |
4fac153a KRW |
1887 | |
1888 | /* L3_i[0] -> level2_ident_pgt */ | |
319f3ba5 | 1889 | convert_pfn_mfn(level3_ident_pgt); |
4fac153a KRW |
1890 | /* L3_k[510] -> level2_kernel_pgt |
1891 | * L3_i[511] -> level2_fixmap_pgt */ | |
319f3ba5 JF |
1892 | convert_pfn_mfn(level3_kernel_pgt); |
1893 | ||
4fac153a | 1894 | /* We get [511][511] and have Xen's version of level2_kernel_pgt */ |
319f3ba5 JF |
1895 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); |
1896 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | |
1897 | ||
488f046d KRW |
1898 | addr[0] = (unsigned long)pgd; |
1899 | addr[1] = (unsigned long)l3; | |
1900 | addr[2] = (unsigned long)l2; | |
4fac153a KRW |
1901 | /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: |
1902 | * Both L4[272][0] and L4[511][511] have entries that point to the same | |
1903 | * L2 (PMD) tables. Meaning that if you modify it in __va space | |
1904 | * it will be also modified in the __ka space! (But if you just | |
1905 | * modify the PMD table to point to other PTE's or none, then you | |
1906 | * are OK - which is what cleanup_highmap does) */ | |
ae895ed7 | 1907 | copy_page(level2_ident_pgt, l2); |
4fac153a | 1908 | /* Graft it onto L4[511][511] */ |
ae895ed7 | 1909 | copy_page(level2_kernel_pgt, l2); |
319f3ba5 | 1910 | |
4fac153a | 1911 | /* Get [511][510] and graft that in level2_fixmap_pgt */ |
319f3ba5 JF |
1912 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); |
1913 | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | |
ae895ed7 | 1914 | copy_page(level2_fixmap_pgt, l2); |
4fac153a KRW |
1915 | /* Note that we don't do anything with level1_fixmap_pgt which |
1916 | * we don't need. */ | |
319f3ba5 JF |
1917 | |
1918 | /* Make pagetable pieces RO */ | |
1919 | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | |
1920 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | |
1921 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | |
1922 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | |
caaf9ecf | 1923 | set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); |
319f3ba5 JF |
1924 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); |
1925 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | |
1926 | ||
1927 | /* Pin down new L4 */ | |
1928 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | |
1929 | PFN_DOWN(__pa_symbol(init_level4_pgt))); | |
1930 | ||
1931 | /* Unpin Xen-provided one */ | |
1932 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | |
1933 | ||
319f3ba5 JF |
1934 | /* |
1935 | * At this stage there can be no user pgd, and no page | |
1936 | * structure to attach it to, so make sure we just set kernel | |
1937 | * pgd. | |
1938 | */ | |
1939 | xen_mc_batch(); | |
488f046d | 1940 | __xen_write_cr3(true, __pa(init_level4_pgt)); |
319f3ba5 JF |
1941 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
1942 | ||
488f046d KRW |
1943 | /* We can't that easily rip out L3 and L2, as the Xen pagetables are |
1944 | * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for | |
1945 | * the initial domain. For guests using the toolstack, they are in: | |
1946 | * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only | |
1947 | * rip out the [L4] (pgd), but for guests we shave off three pages. | |
1948 | */ | |
1949 | for (i = 0; i < ARRAY_SIZE(addr); i++) | |
1950 | check_pt_base(&pt_base, &pt_end, addr[i]); | |
319f3ba5 | 1951 | |
488f046d KRW |
1952 | /* Our (by three pages) smaller Xen pagetable that we are using */ |
1953 | memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE); | |
7f914062 KRW |
1954 | /* Revector the xen_start_info */ |
1955 | xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); | |
319f3ba5 JF |
1956 | } |
1957 | #else /* !CONFIG_X86_64 */ | |
5b5c1af1 IC |
1958 | static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); |
1959 | static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); | |
1960 | ||
3f508953 | 1961 | static void __init xen_write_cr3_init(unsigned long cr3) |
5b5c1af1 IC |
1962 | { |
1963 | unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); | |
1964 | ||
1965 | BUG_ON(read_cr3() != __pa(initial_page_table)); | |
1966 | BUG_ON(cr3 != __pa(swapper_pg_dir)); | |
1967 | ||
1968 | /* | |
1969 | * We are switching to swapper_pg_dir for the first time (from | |
1970 | * initial_page_table) and therefore need to mark that page | |
1971 | * read-only and then pin it. | |
1972 | * | |
1973 | * Xen disallows sharing of kernel PMDs for PAE | |
1974 | * guests. Therefore we must copy the kernel PMD from | |
1975 | * initial_page_table into a new kernel PMD to be used in | |
1976 | * swapper_pg_dir. | |
1977 | */ | |
1978 | swapper_kernel_pmd = | |
1979 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); | |
ae895ed7 | 1980 | copy_page(swapper_kernel_pmd, initial_kernel_pmd); |
5b5c1af1 IC |
1981 | swapper_pg_dir[KERNEL_PGD_BOUNDARY] = |
1982 | __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); | |
1983 | set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); | |
1984 | ||
1985 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | |
1986 | xen_write_cr3(cr3); | |
1987 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); | |
1988 | ||
1989 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, | |
1990 | PFN_DOWN(__pa(initial_page_table))); | |
1991 | set_page_prot(initial_page_table, PAGE_KERNEL); | |
1992 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL); | |
1993 | ||
1994 | pv_mmu_ops.write_cr3 = &xen_write_cr3; | |
1995 | } | |
319f3ba5 | 1996 | |
3699aad0 | 1997 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
319f3ba5 JF |
1998 | { |
1999 | pmd_t *kernel_pmd; | |
2000 | ||
5b5c1af1 IC |
2001 | initial_kernel_pmd = |
2002 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); | |
f0991802 | 2003 | |
a91d9287 SS |
2004 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + |
2005 | xen_start_info->nr_pt_frames * PAGE_SIZE + | |
2006 | 512*1024); | |
319f3ba5 JF |
2007 | |
2008 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | |
ae895ed7 | 2009 | copy_page(initial_kernel_pmd, kernel_pmd); |
319f3ba5 | 2010 | |
5b5c1af1 | 2011 | xen_map_identity_early(initial_kernel_pmd, max_pfn); |
319f3ba5 | 2012 | |
ae895ed7 | 2013 | copy_page(initial_page_table, pgd); |
5b5c1af1 IC |
2014 | initial_page_table[KERNEL_PGD_BOUNDARY] = |
2015 | __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); | |
319f3ba5 | 2016 | |
5b5c1af1 IC |
2017 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); |
2018 | set_page_prot(initial_page_table, PAGE_KERNEL_RO); | |
319f3ba5 JF |
2019 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); |
2020 | ||
2021 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | |
2022 | ||
5b5c1af1 IC |
2023 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, |
2024 | PFN_DOWN(__pa(initial_page_table))); | |
2025 | xen_write_cr3(__pa(initial_page_table)); | |
319f3ba5 | 2026 | |
24aa0788 | 2027 | memblock_reserve(__pa(xen_start_info->pt_base), |
dc6821e0 | 2028 | xen_start_info->nr_pt_frames * PAGE_SIZE); |
319f3ba5 JF |
2029 | } |
2030 | #endif /* CONFIG_X86_64 */ | |
2031 | ||
98511f35 JF |
2032 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; |
2033 | ||
3b3809ac | 2034 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) |
319f3ba5 JF |
2035 | { |
2036 | pte_t pte; | |
2037 | ||
2038 | phys >>= PAGE_SHIFT; | |
2039 | ||
2040 | switch (idx) { | |
2041 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | |
2042 | #ifdef CONFIG_X86_F00F_BUG | |
2043 | case FIX_F00F_IDT: | |
2044 | #endif | |
2045 | #ifdef CONFIG_X86_32 | |
2046 | case FIX_WP_TEST: | |
2047 | case FIX_VDSO: | |
2048 | # ifdef CONFIG_HIGHMEM | |
2049 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: | |
2050 | # endif | |
2051 | #else | |
2052 | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | |
5d5791af | 2053 | case VVAR_PAGE: |
319f3ba5 | 2054 | #endif |
3ecb1b7d JF |
2055 | case FIX_TEXT_POKE0: |
2056 | case FIX_TEXT_POKE1: | |
2057 | /* All local page mappings */ | |
319f3ba5 JF |
2058 | pte = pfn_pte(phys, prot); |
2059 | break; | |
2060 | ||
98511f35 JF |
2061 | #ifdef CONFIG_X86_LOCAL_APIC |
2062 | case FIX_APIC_BASE: /* maps dummy local APIC */ | |
2063 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | |
2064 | break; | |
2065 | #endif | |
2066 | ||
2067 | #ifdef CONFIG_X86_IO_APIC | |
2068 | case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: | |
2069 | /* | |
2070 | * We just don't map the IO APIC - all access is via | |
2071 | * hypercalls. Keep the address in the pte for reference. | |
2072 | */ | |
27abd14b | 2073 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
98511f35 JF |
2074 | break; |
2075 | #endif | |
2076 | ||
c0011dbf JF |
2077 | case FIX_PARAVIRT_BOOTMAP: |
2078 | /* This is an MFN, but it isn't an IO mapping from the | |
2079 | IO domain */ | |
319f3ba5 JF |
2080 | pte = mfn_pte(phys, prot); |
2081 | break; | |
c0011dbf JF |
2082 | |
2083 | default: | |
2084 | /* By default, set_fixmap is used for hardware mappings */ | |
2085 | pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); | |
2086 | break; | |
319f3ba5 JF |
2087 | } |
2088 | ||
2089 | __native_set_fixmap(idx, pte); | |
2090 | ||
2091 | #ifdef CONFIG_X86_64 | |
2092 | /* Replicate changes to map the vsyscall page into the user | |
2093 | pagetable vsyscall mapping. */ | |
5d5791af AL |
2094 | if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) || |
2095 | idx == VVAR_PAGE) { | |
319f3ba5 JF |
2096 | unsigned long vaddr = __fix_to_virt(idx); |
2097 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | |
2098 | } | |
2099 | #endif | |
2100 | } | |
2101 | ||
3f508953 | 2102 | static void __init xen_post_allocator_init(void) |
319f3ba5 JF |
2103 | { |
2104 | pv_mmu_ops.set_pte = xen_set_pte; | |
2105 | pv_mmu_ops.set_pmd = xen_set_pmd; | |
2106 | pv_mmu_ops.set_pud = xen_set_pud; | |
2107 | #if PAGETABLE_LEVELS == 4 | |
2108 | pv_mmu_ops.set_pgd = xen_set_pgd; | |
2109 | #endif | |
2110 | ||
2111 | /* This will work as long as patching hasn't happened yet | |
2112 | (which it hasn't) */ | |
2113 | pv_mmu_ops.alloc_pte = xen_alloc_pte; | |
2114 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | |
2115 | pv_mmu_ops.release_pte = xen_release_pte; | |
2116 | pv_mmu_ops.release_pmd = xen_release_pmd; | |
2117 | #if PAGETABLE_LEVELS == 4 | |
2118 | pv_mmu_ops.alloc_pud = xen_alloc_pud; | |
2119 | pv_mmu_ops.release_pud = xen_release_pud; | |
2120 | #endif | |
2121 | ||
2122 | #ifdef CONFIG_X86_64 | |
d3eb2c89 | 2123 | pv_mmu_ops.write_cr3 = &xen_write_cr3; |
319f3ba5 JF |
2124 | SetPagePinned(virt_to_page(level3_user_vsyscall)); |
2125 | #endif | |
2126 | xen_mark_init_mm_pinned(); | |
2127 | } | |
2128 | ||
b407fc57 JF |
2129 | static void xen_leave_lazy_mmu(void) |
2130 | { | |
5caecb94 | 2131 | preempt_disable(); |
b407fc57 JF |
2132 | xen_mc_flush(); |
2133 | paravirt_leave_lazy_mmu(); | |
5caecb94 | 2134 | preempt_enable(); |
b407fc57 | 2135 | } |
319f3ba5 | 2136 | |
3f508953 | 2137 | static const struct pv_mmu_ops xen_mmu_ops __initconst = { |
319f3ba5 JF |
2138 | .read_cr2 = xen_read_cr2, |
2139 | .write_cr2 = xen_write_cr2, | |
2140 | ||
2141 | .read_cr3 = xen_read_cr3, | |
5b5c1af1 | 2142 | .write_cr3 = xen_write_cr3_init, |
319f3ba5 JF |
2143 | |
2144 | .flush_tlb_user = xen_flush_tlb, | |
2145 | .flush_tlb_kernel = xen_flush_tlb, | |
2146 | .flush_tlb_single = xen_flush_tlb_single, | |
2147 | .flush_tlb_others = xen_flush_tlb_others, | |
2148 | ||
2149 | .pte_update = paravirt_nop, | |
2150 | .pte_update_defer = paravirt_nop, | |
2151 | ||
2152 | .pgd_alloc = xen_pgd_alloc, | |
2153 | .pgd_free = xen_pgd_free, | |
2154 | ||
2155 | .alloc_pte = xen_alloc_pte_init, | |
2156 | .release_pte = xen_release_pte_init, | |
b96229b5 | 2157 | .alloc_pmd = xen_alloc_pmd_init, |
b96229b5 | 2158 | .release_pmd = xen_release_pmd_init, |
319f3ba5 | 2159 | |
319f3ba5 | 2160 | .set_pte = xen_set_pte_init, |
319f3ba5 JF |
2161 | .set_pte_at = xen_set_pte_at, |
2162 | .set_pmd = xen_set_pmd_hyper, | |
2163 | ||
2164 | .ptep_modify_prot_start = __ptep_modify_prot_start, | |
2165 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, | |
2166 | ||
da5de7c2 JF |
2167 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), |
2168 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), | |
319f3ba5 | 2169 | |
da5de7c2 JF |
2170 | .make_pte = PV_CALLEE_SAVE(xen_make_pte), |
2171 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), | |
319f3ba5 JF |
2172 | |
2173 | #ifdef CONFIG_X86_PAE | |
2174 | .set_pte_atomic = xen_set_pte_atomic, | |
319f3ba5 JF |
2175 | .pte_clear = xen_pte_clear, |
2176 | .pmd_clear = xen_pmd_clear, | |
2177 | #endif /* CONFIG_X86_PAE */ | |
2178 | .set_pud = xen_set_pud_hyper, | |
2179 | ||
da5de7c2 JF |
2180 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), |
2181 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), | |
319f3ba5 JF |
2182 | |
2183 | #if PAGETABLE_LEVELS == 4 | |
da5de7c2 JF |
2184 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), |
2185 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), | |
319f3ba5 JF |
2186 | .set_pgd = xen_set_pgd_hyper, |
2187 | ||
b96229b5 JF |
2188 | .alloc_pud = xen_alloc_pmd_init, |
2189 | .release_pud = xen_release_pmd_init, | |
319f3ba5 JF |
2190 | #endif /* PAGETABLE_LEVELS == 4 */ |
2191 | ||
2192 | .activate_mm = xen_activate_mm, | |
2193 | .dup_mmap = xen_dup_mmap, | |
2194 | .exit_mmap = xen_exit_mmap, | |
2195 | ||
2196 | .lazy_mode = { | |
2197 | .enter = paravirt_enter_lazy_mmu, | |
b407fc57 | 2198 | .leave = xen_leave_lazy_mmu, |
319f3ba5 JF |
2199 | }, |
2200 | ||
2201 | .set_fixmap = xen_set_fixmap, | |
2202 | }; | |
2203 | ||
030cb6c0 TG |
2204 | void __init xen_init_mmu_ops(void) |
2205 | { | |
7737b215 | 2206 | x86_init.paging.pagetable_init = xen_pagetable_init; |
030cb6c0 | 2207 | pv_mmu_ops = xen_mmu_ops; |
d2cb2145 | 2208 | |
98511f35 | 2209 | memset(dummy_mapping, 0xff, PAGE_SIZE); |
030cb6c0 | 2210 | } |
319f3ba5 | 2211 | |
08bbc9da AN |
2212 | /* Protected by xen_reservation_lock. */ |
2213 | #define MAX_CONTIG_ORDER 9 /* 2MB */ | |
2214 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; | |
2215 | ||
2216 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) | |
2217 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, | |
2218 | unsigned long *in_frames, | |
2219 | unsigned long *out_frames) | |
2220 | { | |
2221 | int i; | |
2222 | struct multicall_space mcs; | |
2223 | ||
2224 | xen_mc_batch(); | |
2225 | for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { | |
2226 | mcs = __xen_mc_entry(0); | |
2227 | ||
2228 | if (in_frames) | |
2229 | in_frames[i] = virt_to_mfn(vaddr); | |
2230 | ||
2231 | MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); | |
6eaa412f | 2232 | __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); |
08bbc9da AN |
2233 | |
2234 | if (out_frames) | |
2235 | out_frames[i] = virt_to_pfn(vaddr); | |
2236 | } | |
2237 | xen_mc_issue(0); | |
2238 | } | |
2239 | ||
2240 | /* | |
2241 | * Update the pfn-to-mfn mappings for a virtual address range, either to | |
2242 | * point to an array of mfns, or contiguously from a single starting | |
2243 | * mfn. | |
2244 | */ | |
2245 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, | |
2246 | unsigned long *mfns, | |
2247 | unsigned long first_mfn) | |
2248 | { | |
2249 | unsigned i, limit; | |
2250 | unsigned long mfn; | |
2251 | ||
2252 | xen_mc_batch(); | |
2253 | ||
2254 | limit = 1u << order; | |
2255 | for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { | |
2256 | struct multicall_space mcs; | |
2257 | unsigned flags; | |
2258 | ||
2259 | mcs = __xen_mc_entry(0); | |
2260 | if (mfns) | |
2261 | mfn = mfns[i]; | |
2262 | else | |
2263 | mfn = first_mfn + i; | |
2264 | ||
2265 | if (i < (limit - 1)) | |
2266 | flags = 0; | |
2267 | else { | |
2268 | if (order == 0) | |
2269 | flags = UVMF_INVLPG | UVMF_ALL; | |
2270 | else | |
2271 | flags = UVMF_TLB_FLUSH | UVMF_ALL; | |
2272 | } | |
2273 | ||
2274 | MULTI_update_va_mapping(mcs.mc, vaddr, | |
2275 | mfn_pte(mfn, PAGE_KERNEL), flags); | |
2276 | ||
2277 | set_phys_to_machine(virt_to_pfn(vaddr), mfn); | |
2278 | } | |
2279 | ||
2280 | xen_mc_issue(0); | |
2281 | } | |
2282 | ||
2283 | /* | |
2284 | * Perform the hypercall to exchange a region of our pfns to point to | |
2285 | * memory with the required contiguous alignment. Takes the pfns as | |
2286 | * input, and populates mfns as output. | |
2287 | * | |
2288 | * Returns a success code indicating whether the hypervisor was able to | |
2289 | * satisfy the request or not. | |
2290 | */ | |
2291 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, | |
2292 | unsigned long *pfns_in, | |
2293 | unsigned long extents_out, | |
2294 | unsigned int order_out, | |
2295 | unsigned long *mfns_out, | |
2296 | unsigned int address_bits) | |
2297 | { | |
2298 | long rc; | |
2299 | int success; | |
2300 | ||
2301 | struct xen_memory_exchange exchange = { | |
2302 | .in = { | |
2303 | .nr_extents = extents_in, | |
2304 | .extent_order = order_in, | |
2305 | .extent_start = pfns_in, | |
2306 | .domid = DOMID_SELF | |
2307 | }, | |
2308 | .out = { | |
2309 | .nr_extents = extents_out, | |
2310 | .extent_order = order_out, | |
2311 | .extent_start = mfns_out, | |
2312 | .address_bits = address_bits, | |
2313 | .domid = DOMID_SELF | |
2314 | } | |
2315 | }; | |
2316 | ||
2317 | BUG_ON(extents_in << order_in != extents_out << order_out); | |
2318 | ||
2319 | rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); | |
2320 | success = (exchange.nr_exchanged == extents_in); | |
2321 | ||
2322 | BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); | |
2323 | BUG_ON(success && (rc != 0)); | |
2324 | ||
2325 | return success; | |
2326 | } | |
2327 | ||
2328 | int xen_create_contiguous_region(unsigned long vstart, unsigned int order, | |
2329 | unsigned int address_bits) | |
2330 | { | |
2331 | unsigned long *in_frames = discontig_frames, out_frame; | |
2332 | unsigned long flags; | |
2333 | int success; | |
2334 | ||
2335 | /* | |
2336 | * Currently an auto-translated guest will not perform I/O, nor will | |
2337 | * it require PAE page directories below 4GB. Therefore any calls to | |
2338 | * this function are redundant and can be ignored. | |
2339 | */ | |
2340 | ||
2341 | if (xen_feature(XENFEAT_auto_translated_physmap)) | |
2342 | return 0; | |
2343 | ||
2344 | if (unlikely(order > MAX_CONTIG_ORDER)) | |
2345 | return -ENOMEM; | |
2346 | ||
2347 | memset((void *) vstart, 0, PAGE_SIZE << order); | |
2348 | ||
08bbc9da AN |
2349 | spin_lock_irqsave(&xen_reservation_lock, flags); |
2350 | ||
2351 | /* 1. Zap current PTEs, remembering MFNs. */ | |
2352 | xen_zap_pfn_range(vstart, order, in_frames, NULL); | |
2353 | ||
2354 | /* 2. Get a new contiguous memory extent. */ | |
2355 | out_frame = virt_to_pfn(vstart); | |
2356 | success = xen_exchange_memory(1UL << order, 0, in_frames, | |
2357 | 1, order, &out_frame, | |
2358 | address_bits); | |
2359 | ||
2360 | /* 3. Map the new extent in place of old pages. */ | |
2361 | if (success) | |
2362 | xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); | |
2363 | else | |
2364 | xen_remap_exchanged_ptes(vstart, order, in_frames, 0); | |
2365 | ||
2366 | spin_unlock_irqrestore(&xen_reservation_lock, flags); | |
2367 | ||
2368 | return success ? 0 : -ENOMEM; | |
2369 | } | |
2370 | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); | |
2371 | ||
2372 | void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) | |
2373 | { | |
2374 | unsigned long *out_frames = discontig_frames, in_frame; | |
2375 | unsigned long flags; | |
2376 | int success; | |
2377 | ||
2378 | if (xen_feature(XENFEAT_auto_translated_physmap)) | |
2379 | return; | |
2380 | ||
2381 | if (unlikely(order > MAX_CONTIG_ORDER)) | |
2382 | return; | |
2383 | ||
2384 | memset((void *) vstart, 0, PAGE_SIZE << order); | |
2385 | ||
08bbc9da AN |
2386 | spin_lock_irqsave(&xen_reservation_lock, flags); |
2387 | ||
2388 | /* 1. Find start MFN of contiguous extent. */ | |
2389 | in_frame = virt_to_mfn(vstart); | |
2390 | ||
2391 | /* 2. Zap current PTEs. */ | |
2392 | xen_zap_pfn_range(vstart, order, NULL, out_frames); | |
2393 | ||
2394 | /* 3. Do the exchange for non-contiguous MFNs. */ | |
2395 | success = xen_exchange_memory(1, order, &in_frame, 1UL << order, | |
2396 | 0, out_frames, 0); | |
2397 | ||
2398 | /* 4. Map new pages in place of old pages. */ | |
2399 | if (success) | |
2400 | xen_remap_exchanged_ptes(vstart, order, out_frames, 0); | |
2401 | else | |
2402 | xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); | |
2403 | ||
2404 | spin_unlock_irqrestore(&xen_reservation_lock, flags); | |
030cb6c0 | 2405 | } |
08bbc9da | 2406 | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); |
319f3ba5 | 2407 | |
ca65f9fc | 2408 | #ifdef CONFIG_XEN_PVHVM |
34b6f01a OH |
2409 | #ifdef CONFIG_PROC_VMCORE |
2410 | /* | |
2411 | * This function is used in two contexts: | |
2412 | * - the kdump kernel has to check whether a pfn of the crashed kernel | |
2413 | * was a ballooned page. vmcore is using this function to decide | |
2414 | * whether to access a pfn of the crashed kernel. | |
2415 | * - the kexec kernel has to check whether a pfn was ballooned by the | |
2416 | * previous kernel. If the pfn is ballooned, handle it properly. | |
2417 | * Returns 0 if the pfn is not backed by a RAM page, the caller may | |
2418 | * handle the pfn special in this case. | |
2419 | */ | |
2420 | static int xen_oldmem_pfn_is_ram(unsigned long pfn) | |
2421 | { | |
2422 | struct xen_hvm_get_mem_type a = { | |
2423 | .domid = DOMID_SELF, | |
2424 | .pfn = pfn, | |
2425 | }; | |
2426 | int ram; | |
2427 | ||
2428 | if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a)) | |
2429 | return -ENXIO; | |
2430 | ||
2431 | switch (a.mem_type) { | |
2432 | case HVMMEM_mmio_dm: | |
2433 | ram = 0; | |
2434 | break; | |
2435 | case HVMMEM_ram_rw: | |
2436 | case HVMMEM_ram_ro: | |
2437 | default: | |
2438 | ram = 1; | |
2439 | break; | |
2440 | } | |
2441 | ||
2442 | return ram; | |
2443 | } | |
2444 | #endif | |
2445 | ||
59151001 SS |
2446 | static void xen_hvm_exit_mmap(struct mm_struct *mm) |
2447 | { | |
2448 | struct xen_hvm_pagetable_dying a; | |
2449 | int rc; | |
2450 | ||
2451 | a.domid = DOMID_SELF; | |
2452 | a.gpa = __pa(mm->pgd); | |
2453 | rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); | |
2454 | WARN_ON_ONCE(rc < 0); | |
2455 | } | |
2456 | ||
2457 | static int is_pagetable_dying_supported(void) | |
2458 | { | |
2459 | struct xen_hvm_pagetable_dying a; | |
2460 | int rc = 0; | |
2461 | ||
2462 | a.domid = DOMID_SELF; | |
2463 | a.gpa = 0x00; | |
2464 | rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); | |
2465 | if (rc < 0) { | |
2466 | printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); | |
2467 | return 0; | |
2468 | } | |
2469 | return 1; | |
2470 | } | |
2471 | ||
2472 | void __init xen_hvm_init_mmu_ops(void) | |
2473 | { | |
2474 | if (is_pagetable_dying_supported()) | |
2475 | pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; | |
34b6f01a OH |
2476 | #ifdef CONFIG_PROC_VMCORE |
2477 | register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram); | |
2478 | #endif | |
59151001 | 2479 | } |
ca65f9fc | 2480 | #endif |
59151001 | 2481 | |
de1ef206 IC |
2482 | #define REMAP_BATCH_SIZE 16 |
2483 | ||
2484 | struct remap_data { | |
2485 | unsigned long mfn; | |
2486 | pgprot_t prot; | |
2487 | struct mmu_update *mmu_update; | |
2488 | }; | |
2489 | ||
2490 | static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, | |
2491 | unsigned long addr, void *data) | |
2492 | { | |
2493 | struct remap_data *rmd = data; | |
2494 | pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); | |
2495 | ||
d5108316 | 2496 | rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; |
de1ef206 IC |
2497 | rmd->mmu_update->val = pte_val_ma(pte); |
2498 | rmd->mmu_update++; | |
2499 | ||
2500 | return 0; | |
2501 | } | |
2502 | ||
2503 | int xen_remap_domain_mfn_range(struct vm_area_struct *vma, | |
2504 | unsigned long addr, | |
7892f692 | 2505 | xen_pfn_t mfn, int nr, |
9a032e39 IC |
2506 | pgprot_t prot, unsigned domid, |
2507 | struct page **pages) | |
2508 | ||
de1ef206 IC |
2509 | { |
2510 | struct remap_data rmd; | |
2511 | struct mmu_update mmu_update[REMAP_BATCH_SIZE]; | |
2512 | int batch; | |
2513 | unsigned long range; | |
2514 | int err = 0; | |
2515 | ||
1a1d4331 SS |
2516 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
2517 | return -EINVAL; | |
2518 | ||
de1ef206 IC |
2519 | prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); |
2520 | ||
314e51b9 | 2521 | BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); |
de1ef206 IC |
2522 | |
2523 | rmd.mfn = mfn; | |
2524 | rmd.prot = prot; | |
2525 | ||
2526 | while (nr) { | |
2527 | batch = min(REMAP_BATCH_SIZE, nr); | |
2528 | range = (unsigned long)batch << PAGE_SHIFT; | |
2529 | ||
2530 | rmd.mmu_update = mmu_update; | |
2531 | err = apply_to_page_range(vma->vm_mm, addr, range, | |
2532 | remap_area_mfn_pte_fn, &rmd); | |
2533 | if (err) | |
2534 | goto out; | |
2535 | ||
69870a84 DV |
2536 | err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid); |
2537 | if (err < 0) | |
de1ef206 IC |
2538 | goto out; |
2539 | ||
2540 | nr -= batch; | |
2541 | addr += range; | |
2542 | } | |
2543 | ||
2544 | err = 0; | |
2545 | out: | |
2546 | ||
95a7d768 | 2547 | xen_flush_tlb_all(); |
de1ef206 IC |
2548 | |
2549 | return err; | |
2550 | } | |
2551 | EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); | |
9a032e39 IC |
2552 | |
2553 | /* Returns: 0 success */ | |
2554 | int xen_unmap_domain_mfn_range(struct vm_area_struct *vma, | |
2555 | int numpgs, struct page **pages) | |
2556 | { | |
2557 | if (!pages || !xen_feature(XENFEAT_auto_translated_physmap)) | |
2558 | return 0; | |
2559 | ||
2560 | return -EINVAL; | |
2561 | } | |
2562 | EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range); |