]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
6b74ab97 MG |
2 | /* |
3 | * mm_init.c - Memory initialisation verification and debugging | |
4 | * | |
5 | * Copyright 2008 IBM Corporation, 2008 | |
6 | * Author Mel Gorman <[email protected]> | |
7 | * | |
8 | */ | |
9 | #include <linux/kernel.h> | |
10 | #include <linux/init.h> | |
ff7ea79c | 11 | #include <linux/kobject.h> |
b95f1b31 | 12 | #include <linux/export.h> |
917d9290 TC |
13 | #include <linux/memory.h> |
14 | #include <linux/notifier.h> | |
7e18adb4 | 15 | #include <linux/sched.h> |
56f3547b | 16 | #include <linux/mman.h> |
9420f89d MRI |
17 | #include <linux/memblock.h> |
18 | #include <linux/page-isolation.h> | |
19 | #include <linux/padata.h> | |
20 | #include <linux/nmi.h> | |
21 | #include <linux/buffer_head.h> | |
22 | #include <linux/kmemleak.h> | |
b7ec1bf3 MRI |
23 | #include <linux/kfence.h> |
24 | #include <linux/page_ext.h> | |
25 | #include <linux/pti.h> | |
26 | #include <linux/pgtable.h> | |
dcfe378c | 27 | #include <linux/stackdepot.h> |
eb8589b4 MRI |
28 | #include <linux/swap.h> |
29 | #include <linux/cma.h> | |
7ea6ec4c | 30 | #include <linux/crash_dump.h> |
f6bec26c | 31 | #include <linux/execmem.h> |
15995a35 | 32 | #include <linux/vmstat.h> |
708614e6 | 33 | #include "internal.h" |
d5d2c02a | 34 | #include "slab.h" |
9420f89d | 35 | #include "shuffle.h" |
6b74ab97 | 36 | |
b7ec1bf3 MRI |
37 | #include <asm/setup.h> |
38 | ||
5e9426ab | 39 | #ifdef CONFIG_DEBUG_MEMORY_INIT |
194e8151 | 40 | int __meminitdata mminit_loglevel; |
6b74ab97 | 41 | |
68ad8df4 | 42 | /* The zonelists are simply reported, validation is manual. */ |
0e2342c7 | 43 | void __init mminit_verify_zonelist(void) |
68ad8df4 MG |
44 | { |
45 | int nid; | |
46 | ||
47 | if (mminit_loglevel < MMINIT_VERIFY) | |
48 | return; | |
49 | ||
50 | for_each_online_node(nid) { | |
51 | pg_data_t *pgdat = NODE_DATA(nid); | |
52 | struct zone *zone; | |
53 | struct zoneref *z; | |
54 | struct zonelist *zonelist; | |
55 | int i, listid, zoneid; | |
56 | ||
68ad8df4 MG |
57 | for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { |
58 | ||
59 | /* Identify the zone and nodelist */ | |
60 | zoneid = i % MAX_NR_ZONES; | |
61 | listid = i / MAX_NR_ZONES; | |
62 | zonelist = &pgdat->node_zonelists[listid]; | |
63 | zone = &pgdat->node_zones[zoneid]; | |
64 | if (!populated_zone(zone)) | |
65 | continue; | |
66 | ||
67 | /* Print information about the zonelist */ | |
68 | printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", | |
69 | listid > 0 ? "thisnode" : "general", nid, | |
70 | zone->name); | |
71 | ||
72 | /* Iterate the zonelist */ | |
c1093b74 PT |
73 | for_each_zone_zonelist(zone, z, zonelist, zoneid) |
74 | pr_cont("%d:%s ", zone_to_nid(zone), zone->name); | |
1170532b | 75 | pr_cont("\n"); |
68ad8df4 MG |
76 | } |
77 | } | |
78 | } | |
79 | ||
708614e6 MG |
80 | void __init mminit_verify_pageflags_layout(void) |
81 | { | |
82 | int shift, width; | |
83 | unsigned long or_mask, add_mask; | |
84 | ||
daee07bf | 85 | shift = BITS_PER_LONG; |
86fea8b4 | 86 | width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH |
ec1c86b2 | 87 | - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; |
708614e6 | 88 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", |
ec1c86b2 | 89 | "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", |
708614e6 MG |
90 | SECTIONS_WIDTH, |
91 | NODES_WIDTH, | |
92 | ZONES_WIDTH, | |
90572890 | 93 | LAST_CPUPID_WIDTH, |
86fea8b4 | 94 | KASAN_TAG_WIDTH, |
ec1c86b2 YZ |
95 | LRU_GEN_WIDTH, |
96 | LRU_REFS_WIDTH, | |
708614e6 MG |
97 | NR_PAGEFLAGS); |
98 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", | |
86fea8b4 | 99 | "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", |
708614e6 | 100 | SECTIONS_SHIFT, |
708614e6 | 101 | NODES_SHIFT, |
a4e1b4c6 | 102 | ZONES_SHIFT, |
86fea8b4 JX |
103 | LAST_CPUPID_SHIFT, |
104 | KASAN_TAG_WIDTH); | |
a4e1b4c6 | 105 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", |
86fea8b4 | 106 | "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", |
708614e6 MG |
107 | (unsigned long)SECTIONS_PGSHIFT, |
108 | (unsigned long)NODES_PGSHIFT, | |
a4e1b4c6 | 109 | (unsigned long)ZONES_PGSHIFT, |
86fea8b4 JX |
110 | (unsigned long)LAST_CPUPID_PGSHIFT, |
111 | (unsigned long)KASAN_TAG_PGSHIFT); | |
a4e1b4c6 MG |
112 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", |
113 | "Node/Zone ID: %lu -> %lu\n", | |
114 | (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), | |
115 | (unsigned long)ZONEID_PGOFF); | |
708614e6 | 116 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", |
a4e1b4c6 | 117 | "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", |
708614e6 MG |
118 | shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); |
119 | #ifdef NODE_NOT_IN_PAGE_FLAGS | |
120 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", | |
121 | "Node not in page flags"); | |
122 | #endif | |
90572890 | 123 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
a4e1b4c6 | 124 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", |
90572890 | 125 | "Last cpupid not in page flags"); |
a4e1b4c6 | 126 | #endif |
708614e6 MG |
127 | |
128 | if (SECTIONS_WIDTH) { | |
129 | shift -= SECTIONS_WIDTH; | |
130 | BUG_ON(shift != SECTIONS_PGSHIFT); | |
131 | } | |
132 | if (NODES_WIDTH) { | |
133 | shift -= NODES_WIDTH; | |
134 | BUG_ON(shift != NODES_PGSHIFT); | |
135 | } | |
136 | if (ZONES_WIDTH) { | |
137 | shift -= ZONES_WIDTH; | |
138 | BUG_ON(shift != ZONES_PGSHIFT); | |
139 | } | |
140 | ||
141 | /* Check for bitmask overlaps */ | |
142 | or_mask = (ZONES_MASK << ZONES_PGSHIFT) | | |
143 | (NODES_MASK << NODES_PGSHIFT) | | |
144 | (SECTIONS_MASK << SECTIONS_PGSHIFT); | |
145 | add_mask = (ZONES_MASK << ZONES_PGSHIFT) + | |
146 | (NODES_MASK << NODES_PGSHIFT) + | |
147 | (SECTIONS_MASK << SECTIONS_PGSHIFT); | |
148 | BUG_ON(or_mask != add_mask); | |
149 | } | |
150 | ||
6b74ab97 MG |
151 | static __init int set_mminit_loglevel(char *str) |
152 | { | |
153 | get_option(&str, &mminit_loglevel); | |
154 | return 0; | |
155 | } | |
156 | early_param("mminit_loglevel", set_mminit_loglevel); | |
5e9426ab | 157 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ |
ff7ea79c NA |
158 | |
159 | struct kobject *mm_kobj; | |
ff7ea79c | 160 | |
917d9290 TC |
161 | #ifdef CONFIG_SMP |
162 | s32 vm_committed_as_batch = 32; | |
163 | ||
56f3547b | 164 | void mm_compute_batch(int overcommit_policy) |
917d9290 TC |
165 | { |
166 | u64 memsized_batch; | |
167 | s32 nr = num_present_cpus(); | |
168 | s32 batch = max_t(s32, nr*2, 32); | |
56f3547b FT |
169 | unsigned long ram_pages = totalram_pages(); |
170 | ||
171 | /* | |
172 | * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of | |
173 | * (total memory/#cpus), and lift it to 25% for other policies | |
174 | * to easy the possible lock contention for percpu_counter | |
175 | * vm_committed_as, while the max limit is INT_MAX | |
176 | */ | |
177 | if (overcommit_policy == OVERCOMMIT_NEVER) | |
178 | memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); | |
179 | else | |
180 | memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); | |
917d9290 TC |
181 | |
182 | vm_committed_as_batch = max_t(s32, memsized_batch, batch); | |
183 | } | |
184 | ||
185 | static int __meminit mm_compute_batch_notifier(struct notifier_block *self, | |
186 | unsigned long action, void *arg) | |
187 | { | |
188 | switch (action) { | |
189 | case MEM_ONLINE: | |
190 | case MEM_OFFLINE: | |
56f3547b | 191 | mm_compute_batch(sysctl_overcommit_memory); |
01359eb2 | 192 | break; |
917d9290 TC |
193 | default: |
194 | break; | |
195 | } | |
196 | return NOTIFY_OK; | |
197 | } | |
198 | ||
917d9290 TC |
199 | static int __init mm_compute_batch_init(void) |
200 | { | |
56f3547b | 201 | mm_compute_batch(sysctl_overcommit_memory); |
1eeaa4fd | 202 | hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); |
917d9290 TC |
203 | return 0; |
204 | } | |
205 | ||
206 | __initcall(mm_compute_batch_init); | |
207 | ||
208 | #endif | |
209 | ||
ff7ea79c NA |
210 | static int __init mm_sysfs_init(void) |
211 | { | |
212 | mm_kobj = kobject_create_and_add("mm", kernel_kobj); | |
213 | if (!mm_kobj) | |
214 | return -ENOMEM; | |
215 | ||
216 | return 0; | |
217 | } | |
e82cb95d | 218 | postcore_initcall(mm_sysfs_init); |
9420f89d MRI |
219 | |
220 | static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; | |
221 | static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; | |
222 | static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; | |
223 | ||
224 | static unsigned long required_kernelcore __initdata; | |
225 | static unsigned long required_kernelcore_percent __initdata; | |
226 | static unsigned long required_movablecore __initdata; | |
227 | static unsigned long required_movablecore_percent __initdata; | |
228 | ||
229 | static unsigned long nr_kernel_pages __initdata; | |
230 | static unsigned long nr_all_pages __initdata; | |
9420f89d | 231 | |
de57807e | 232 | static bool deferred_struct_pages __meminitdata; |
9420f89d MRI |
233 | |
234 | static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); | |
235 | ||
236 | static int __init cmdline_parse_core(char *p, unsigned long *core, | |
237 | unsigned long *percent) | |
238 | { | |
239 | unsigned long long coremem; | |
240 | char *endptr; | |
241 | ||
242 | if (!p) | |
243 | return -EINVAL; | |
244 | ||
245 | /* Value may be a percentage of total memory, otherwise bytes */ | |
246 | coremem = simple_strtoull(p, &endptr, 0); | |
247 | if (*endptr == '%') { | |
248 | /* Paranoid check for percent values greater than 100 */ | |
249 | WARN_ON(coremem > 100); | |
250 | ||
251 | *percent = coremem; | |
252 | } else { | |
253 | coremem = memparse(p, &p); | |
254 | /* Paranoid check that UL is enough for the coremem value */ | |
255 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | |
256 | ||
257 | *core = coremem >> PAGE_SHIFT; | |
258 | *percent = 0UL; | |
259 | } | |
260 | return 0; | |
261 | } | |
262 | ||
072ba380 KW |
263 | bool mirrored_kernelcore __initdata_memblock; |
264 | ||
9420f89d MRI |
265 | /* |
266 | * kernelcore=size sets the amount of memory for use for allocations that | |
267 | * cannot be reclaimed or migrated. | |
268 | */ | |
269 | static int __init cmdline_parse_kernelcore(char *p) | |
270 | { | |
271 | /* parse kernelcore=mirror */ | |
272 | if (parse_option_str(p, "mirror")) { | |
273 | mirrored_kernelcore = true; | |
274 | return 0; | |
275 | } | |
276 | ||
277 | return cmdline_parse_core(p, &required_kernelcore, | |
278 | &required_kernelcore_percent); | |
279 | } | |
280 | early_param("kernelcore", cmdline_parse_kernelcore); | |
281 | ||
282 | /* | |
283 | * movablecore=size sets the amount of memory for use for allocations that | |
284 | * can be reclaimed or migrated. | |
285 | */ | |
286 | static int __init cmdline_parse_movablecore(char *p) | |
287 | { | |
288 | return cmdline_parse_core(p, &required_movablecore, | |
289 | &required_movablecore_percent); | |
290 | } | |
291 | early_param("movablecore", cmdline_parse_movablecore); | |
292 | ||
293 | /* | |
294 | * early_calculate_totalpages() | |
295 | * Sum pages in active regions for movable zone. | |
296 | * Populate N_MEMORY for calculating usable_nodes. | |
297 | */ | |
298 | static unsigned long __init early_calculate_totalpages(void) | |
299 | { | |
300 | unsigned long totalpages = 0; | |
301 | unsigned long start_pfn, end_pfn; | |
302 | int i, nid; | |
303 | ||
304 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
305 | unsigned long pages = end_pfn - start_pfn; | |
306 | ||
307 | totalpages += pages; | |
308 | if (pages) | |
309 | node_set_state(nid, N_MEMORY); | |
310 | } | |
311 | return totalpages; | |
312 | } | |
313 | ||
314 | /* | |
315 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
316 | * assumption is made that zones within a node are ordered in monotonic | |
317 | * increasing memory addresses so that the "highest" populated zone is used | |
318 | */ | |
319 | static void __init find_usable_zone_for_movable(void) | |
320 | { | |
321 | int zone_index; | |
322 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
323 | if (zone_index == ZONE_MOVABLE) | |
324 | continue; | |
325 | ||
326 | if (arch_zone_highest_possible_pfn[zone_index] > | |
327 | arch_zone_lowest_possible_pfn[zone_index]) | |
328 | break; | |
329 | } | |
330 | ||
331 | VM_BUG_ON(zone_index == -1); | |
332 | movable_zone = zone_index; | |
333 | } | |
334 | ||
335 | /* | |
336 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
337 | * is spread evenly between nodes as long as the nodes have enough | |
338 | * memory. When they don't, some nodes will have more kernelcore than | |
339 | * others | |
340 | */ | |
341 | static void __init find_zone_movable_pfns_for_nodes(void) | |
342 | { | |
343 | int i, nid; | |
344 | unsigned long usable_startpfn; | |
345 | unsigned long kernelcore_node, kernelcore_remaining; | |
346 | /* save the state before borrow the nodemask */ | |
347 | nodemask_t saved_node_state = node_states[N_MEMORY]; | |
348 | unsigned long totalpages = early_calculate_totalpages(); | |
349 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); | |
350 | struct memblock_region *r; | |
351 | ||
352 | /* Need to find movable_zone earlier when movable_node is specified. */ | |
353 | find_usable_zone_for_movable(); | |
354 | ||
355 | /* | |
356 | * If movable_node is specified, ignore kernelcore and movablecore | |
357 | * options. | |
358 | */ | |
359 | if (movable_node_is_enabled()) { | |
360 | for_each_mem_region(r) { | |
361 | if (!memblock_is_hotpluggable(r)) | |
362 | continue; | |
363 | ||
364 | nid = memblock_get_region_node(r); | |
365 | ||
3be381d1 | 366 | usable_startpfn = memblock_region_memory_base_pfn(r); |
9420f89d MRI |
367 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
368 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
369 | usable_startpfn; | |
370 | } | |
371 | ||
372 | goto out2; | |
373 | } | |
374 | ||
375 | /* | |
376 | * If kernelcore=mirror is specified, ignore movablecore option | |
377 | */ | |
378 | if (mirrored_kernelcore) { | |
379 | bool mem_below_4gb_not_mirrored = false; | |
380 | ||
0db31d63 MW |
381 | if (!memblock_has_mirror()) { |
382 | pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); | |
383 | goto out; | |
384 | } | |
385 | ||
7ea6ec4c MW |
386 | if (is_kdump_kernel()) { |
387 | pr_warn("The system is under kdump, ignore kernelcore=mirror.\n"); | |
388 | goto out; | |
389 | } | |
390 | ||
9420f89d MRI |
391 | for_each_mem_region(r) { |
392 | if (memblock_is_mirror(r)) | |
393 | continue; | |
394 | ||
395 | nid = memblock_get_region_node(r); | |
396 | ||
397 | usable_startpfn = memblock_region_memory_base_pfn(r); | |
398 | ||
399 | if (usable_startpfn < PHYS_PFN(SZ_4G)) { | |
400 | mem_below_4gb_not_mirrored = true; | |
401 | continue; | |
402 | } | |
403 | ||
404 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | |
405 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
406 | usable_startpfn; | |
407 | } | |
408 | ||
409 | if (mem_below_4gb_not_mirrored) | |
410 | pr_warn("This configuration results in unmirrored kernel memory.\n"); | |
411 | ||
412 | goto out2; | |
413 | } | |
414 | ||
415 | /* | |
416 | * If kernelcore=nn% or movablecore=nn% was specified, calculate the | |
417 | * amount of necessary memory. | |
418 | */ | |
419 | if (required_kernelcore_percent) | |
420 | required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / | |
421 | 10000UL; | |
422 | if (required_movablecore_percent) | |
423 | required_movablecore = (totalpages * 100 * required_movablecore_percent) / | |
424 | 10000UL; | |
425 | ||
426 | /* | |
427 | * If movablecore= was specified, calculate what size of | |
428 | * kernelcore that corresponds so that memory usable for | |
429 | * any allocation type is evenly spread. If both kernelcore | |
430 | * and movablecore are specified, then the value of kernelcore | |
431 | * will be used for required_kernelcore if it's greater than | |
432 | * what movablecore would have allowed. | |
433 | */ | |
434 | if (required_movablecore) { | |
435 | unsigned long corepages; | |
436 | ||
437 | /* | |
438 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
439 | * was requested by the user | |
440 | */ | |
441 | required_movablecore = | |
442 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
443 | required_movablecore = min(totalpages, required_movablecore); | |
444 | corepages = totalpages - required_movablecore; | |
445 | ||
446 | required_kernelcore = max(required_kernelcore, corepages); | |
447 | } | |
448 | ||
449 | /* | |
450 | * If kernelcore was not specified or kernelcore size is larger | |
451 | * than totalpages, there is no ZONE_MOVABLE. | |
452 | */ | |
453 | if (!required_kernelcore || required_kernelcore >= totalpages) | |
454 | goto out; | |
455 | ||
456 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
457 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | |
458 | ||
459 | restart: | |
460 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
461 | kernelcore_node = required_kernelcore / usable_nodes; | |
462 | for_each_node_state(nid, N_MEMORY) { | |
463 | unsigned long start_pfn, end_pfn; | |
464 | ||
465 | /* | |
466 | * Recalculate kernelcore_node if the division per node | |
467 | * now exceeds what is necessary to satisfy the requested | |
468 | * amount of memory for the kernel | |
469 | */ | |
470 | if (required_kernelcore < kernelcore_node) | |
471 | kernelcore_node = required_kernelcore / usable_nodes; | |
472 | ||
473 | /* | |
474 | * As the map is walked, we track how much memory is usable | |
475 | * by the kernel using kernelcore_remaining. When it is | |
476 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
477 | */ | |
478 | kernelcore_remaining = kernelcore_node; | |
479 | ||
480 | /* Go through each range of PFNs within this node */ | |
481 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | |
482 | unsigned long size_pages; | |
483 | ||
484 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); | |
485 | if (start_pfn >= end_pfn) | |
486 | continue; | |
487 | ||
488 | /* Account for what is only usable for kernelcore */ | |
489 | if (start_pfn < usable_startpfn) { | |
490 | unsigned long kernel_pages; | |
491 | kernel_pages = min(end_pfn, usable_startpfn) | |
492 | - start_pfn; | |
493 | ||
494 | kernelcore_remaining -= min(kernel_pages, | |
495 | kernelcore_remaining); | |
496 | required_kernelcore -= min(kernel_pages, | |
497 | required_kernelcore); | |
498 | ||
499 | /* Continue if range is now fully accounted */ | |
500 | if (end_pfn <= usable_startpfn) { | |
501 | ||
502 | /* | |
503 | * Push zone_movable_pfn to the end so | |
504 | * that if we have to rebalance | |
505 | * kernelcore across nodes, we will | |
506 | * not double account here | |
507 | */ | |
508 | zone_movable_pfn[nid] = end_pfn; | |
509 | continue; | |
510 | } | |
511 | start_pfn = usable_startpfn; | |
512 | } | |
513 | ||
514 | /* | |
515 | * The usable PFN range for ZONE_MOVABLE is from | |
516 | * start_pfn->end_pfn. Calculate size_pages as the | |
517 | * number of pages used as kernelcore | |
518 | */ | |
519 | size_pages = end_pfn - start_pfn; | |
520 | if (size_pages > kernelcore_remaining) | |
521 | size_pages = kernelcore_remaining; | |
522 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
523 | ||
524 | /* | |
525 | * Some kernelcore has been met, update counts and | |
526 | * break if the kernelcore for this node has been | |
527 | * satisfied | |
528 | */ | |
529 | required_kernelcore -= min(required_kernelcore, | |
530 | size_pages); | |
531 | kernelcore_remaining -= size_pages; | |
532 | if (!kernelcore_remaining) | |
533 | break; | |
534 | } | |
535 | } | |
536 | ||
537 | /* | |
538 | * If there is still required_kernelcore, we do another pass with one | |
539 | * less node in the count. This will push zone_movable_pfn[nid] further | |
540 | * along on the nodes that still have memory until kernelcore is | |
541 | * satisfied | |
542 | */ | |
543 | usable_nodes--; | |
544 | if (usable_nodes && required_kernelcore > usable_nodes) | |
545 | goto restart; | |
546 | ||
547 | out2: | |
548 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | |
549 | for (nid = 0; nid < MAX_NUMNODES; nid++) { | |
550 | unsigned long start_pfn, end_pfn; | |
551 | ||
552 | zone_movable_pfn[nid] = | |
553 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
554 | ||
555 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
556 | if (zone_movable_pfn[nid] >= end_pfn) | |
557 | zone_movable_pfn[nid] = 0; | |
558 | } | |
559 | ||
560 | out: | |
561 | /* restore the node_state */ | |
562 | node_states[N_MEMORY] = saved_node_state; | |
563 | } | |
564 | ||
fde1c4ec | 565 | void __meminit __init_single_page(struct page *page, unsigned long pfn, |
9420f89d MRI |
566 | unsigned long zone, int nid) |
567 | { | |
568 | mm_zero_struct_page(page); | |
569 | set_page_links(page, zone, nid, pfn); | |
570 | init_page_count(page); | |
11d5401b | 571 | atomic_set(&page->_mapcount, -1); |
9420f89d MRI |
572 | page_cpupid_reset_last(page); |
573 | page_kasan_tag_reset(page); | |
574 | ||
575 | INIT_LIST_HEAD(&page->lru); | |
576 | #ifdef WANT_PAGE_VIRTUAL | |
577 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
578 | if (!is_highmem_idx(zone)) | |
579 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | |
580 | #endif | |
581 | } | |
582 | ||
583 | #ifdef CONFIG_NUMA | |
584 | /* | |
585 | * During memory init memblocks map pfns to nids. The search is expensive and | |
586 | * this caches recent lookups. The implementation of __early_pfn_to_nid | |
587 | * treats start/end as pfns. | |
588 | */ | |
589 | struct mminit_pfnnid_cache { | |
590 | unsigned long last_start; | |
591 | unsigned long last_end; | |
592 | int last_nid; | |
593 | }; | |
594 | ||
595 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; | |
596 | ||
597 | /* | |
598 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
599 | */ | |
600 | static int __meminit __early_pfn_to_nid(unsigned long pfn, | |
601 | struct mminit_pfnnid_cache *state) | |
602 | { | |
603 | unsigned long start_pfn, end_pfn; | |
604 | int nid; | |
605 | ||
606 | if (state->last_start <= pfn && pfn < state->last_end) | |
607 | return state->last_nid; | |
608 | ||
609 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); | |
610 | if (nid != NUMA_NO_NODE) { | |
611 | state->last_start = start_pfn; | |
612 | state->last_end = end_pfn; | |
613 | state->last_nid = nid; | |
614 | } | |
615 | ||
616 | return nid; | |
617 | } | |
618 | ||
619 | int __meminit early_pfn_to_nid(unsigned long pfn) | |
620 | { | |
621 | static DEFINE_SPINLOCK(early_pfn_lock); | |
622 | int nid; | |
623 | ||
624 | spin_lock(&early_pfn_lock); | |
625 | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); | |
626 | if (nid < 0) | |
627 | nid = first_online_node; | |
628 | spin_unlock(&early_pfn_lock); | |
629 | ||
630 | return nid; | |
631 | } | |
534ef4e1 MRI |
632 | |
633 | int hashdist = HASHDIST_DEFAULT; | |
634 | ||
635 | static int __init set_hashdist(char *str) | |
636 | { | |
637 | if (!str) | |
638 | return 0; | |
639 | hashdist = simple_strtoul(str, &str, 0); | |
640 | return 1; | |
641 | } | |
642 | __setup("hashdist=", set_hashdist); | |
643 | ||
644 | static inline void fixup_hashdist(void) | |
645 | { | |
646 | if (num_node_state(N_MEMORY) == 1) | |
647 | hashdist = 0; | |
648 | } | |
649 | #else | |
650 | static inline void fixup_hashdist(void) {} | |
9420f89d MRI |
651 | #endif /* CONFIG_NUMA */ |
652 | ||
653 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
654 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) | |
655 | { | |
656 | pgdat->first_deferred_pfn = ULONG_MAX; | |
657 | } | |
658 | ||
659 | /* Returns true if the struct page for the pfn is initialised */ | |
61167ad5 | 660 | static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) |
9420f89d | 661 | { |
9420f89d MRI |
662 | if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) |
663 | return false; | |
664 | ||
665 | return true; | |
666 | } | |
667 | ||
668 | /* | |
669 | * Returns true when the remaining initialisation should be deferred until | |
670 | * later in the boot cycle when it can be parallelised. | |
671 | */ | |
672 | static bool __meminit | |
673 | defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | |
674 | { | |
675 | static unsigned long prev_end_pfn, nr_initialised; | |
676 | ||
677 | if (early_page_ext_enabled()) | |
678 | return false; | |
922306a2 WY |
679 | |
680 | /* Always populate low zones for address-constrained allocations */ | |
681 | if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) | |
682 | return false; | |
683 | ||
684 | if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) | |
685 | return true; | |
686 | ||
9420f89d MRI |
687 | /* |
688 | * prev_end_pfn static that contains the end of previous zone | |
689 | * No need to protect because called very early in boot before smp_init. | |
690 | */ | |
691 | if (prev_end_pfn != end_pfn) { | |
692 | prev_end_pfn = end_pfn; | |
693 | nr_initialised = 0; | |
694 | } | |
695 | ||
9420f89d MRI |
696 | /* |
697 | * We start only with one section of pages, more pages are added as | |
698 | * needed until the rest of deferred pages are initialized. | |
699 | */ | |
700 | nr_initialised++; | |
701 | if ((nr_initialised > PAGES_PER_SECTION) && | |
702 | (pfn & (PAGES_PER_SECTION - 1)) == 0) { | |
703 | NODE_DATA(nid)->first_deferred_pfn = pfn; | |
704 | return true; | |
705 | } | |
706 | return false; | |
707 | } | |
708 | ||
61167ad5 | 709 | static void __meminit init_reserved_page(unsigned long pfn, int nid) |
9420f89d MRI |
710 | { |
711 | pg_data_t *pgdat; | |
61167ad5 | 712 | int zid; |
9420f89d | 713 | |
61167ad5 | 714 | if (early_page_initialised(pfn, nid)) |
9420f89d MRI |
715 | return; |
716 | ||
9420f89d MRI |
717 | pgdat = NODE_DATA(nid); |
718 | ||
719 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
720 | struct zone *zone = &pgdat->node_zones[zid]; | |
721 | ||
722 | if (zone_spans_pfn(zone, pfn)) | |
723 | break; | |
724 | } | |
725 | __init_single_page(pfn_to_page(pfn), pfn, zid, nid); | |
726 | } | |
727 | #else | |
728 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} | |
729 | ||
61167ad5 | 730 | static inline bool early_page_initialised(unsigned long pfn, int nid) |
9420f89d MRI |
731 | { |
732 | return true; | |
733 | } | |
734 | ||
735 | static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | |
736 | { | |
737 | return false; | |
738 | } | |
739 | ||
61167ad5 | 740 | static inline void init_reserved_page(unsigned long pfn, int nid) |
9420f89d MRI |
741 | { |
742 | } | |
743 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
744 | ||
745 | /* | |
746 | * Initialised pages do not have PageReserved set. This function is | |
747 | * called for each range allocated by the bootmem allocator and | |
748 | * marks the pages PageReserved. The remaining valid pages are later | |
749 | * sent to the buddy page allocator. | |
750 | */ | |
61167ad5 YD |
751 | void __meminit reserve_bootmem_region(phys_addr_t start, |
752 | phys_addr_t end, int nid) | |
9420f89d MRI |
753 | { |
754 | unsigned long start_pfn = PFN_DOWN(start); | |
755 | unsigned long end_pfn = PFN_UP(end); | |
756 | ||
757 | for (; start_pfn < end_pfn; start_pfn++) { | |
758 | if (pfn_valid(start_pfn)) { | |
759 | struct page *page = pfn_to_page(start_pfn); | |
760 | ||
61167ad5 | 761 | init_reserved_page(start_pfn, nid); |
9420f89d | 762 | |
9420f89d MRI |
763 | /* |
764 | * no need for atomic set_bit because the struct | |
765 | * page is not visible yet so nobody should | |
766 | * access it yet. | |
767 | */ | |
768 | __SetPageReserved(page); | |
769 | } | |
770 | } | |
771 | } | |
772 | ||
773 | /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ | |
774 | static bool __meminit | |
775 | overlap_memmap_init(unsigned long zone, unsigned long *pfn) | |
776 | { | |
777 | static struct memblock_region *r; | |
778 | ||
779 | if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | |
780 | if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { | |
781 | for_each_mem_region(r) { | |
782 | if (*pfn < memblock_region_memory_end_pfn(r)) | |
783 | break; | |
784 | } | |
785 | } | |
786 | if (*pfn >= memblock_region_memory_base_pfn(r) && | |
787 | memblock_is_mirror(r)) { | |
788 | *pfn = memblock_region_memory_end_pfn(r); | |
789 | return true; | |
790 | } | |
791 | } | |
792 | return false; | |
793 | } | |
794 | ||
795 | /* | |
796 | * Only struct pages that correspond to ranges defined by memblock.memory | |
797 | * are zeroed and initialized by going through __init_single_page() during | |
798 | * memmap_init_zone_range(). | |
799 | * | |
800 | * But, there could be struct pages that correspond to holes in | |
801 | * memblock.memory. This can happen because of the following reasons: | |
802 | * - physical memory bank size is not necessarily the exact multiple of the | |
803 | * arbitrary section size | |
804 | * - early reserved memory may not be listed in memblock.memory | |
ecf5dd1f | 805 | * - non-memory regions covered by the contigious flatmem mapping |
9420f89d MRI |
806 | * - memory layouts defined with memmap= kernel parameter may not align |
807 | * nicely with memmap sections | |
808 | * | |
809 | * Explicitly initialize those struct pages so that: | |
810 | * - PG_Reserved is set | |
811 | * - zone and node links point to zone and node that span the page if the | |
812 | * hole is in the middle of a zone | |
813 | * - zone and node links point to adjacent zone/node if the hole falls on | |
814 | * the zone boundary; the pages in such holes will be prepended to the | |
815 | * zone/node above the hole except for the trailing pages in the last | |
816 | * section that will be appended to the zone/node below. | |
817 | */ | |
818 | static void __init init_unavailable_range(unsigned long spfn, | |
819 | unsigned long epfn, | |
820 | int zone, int node) | |
821 | { | |
822 | unsigned long pfn; | |
823 | u64 pgcnt = 0; | |
824 | ||
825 | for (pfn = spfn; pfn < epfn; pfn++) { | |
826 | if (!pfn_valid(pageblock_start_pfn(pfn))) { | |
827 | pfn = pageblock_end_pfn(pfn) - 1; | |
828 | continue; | |
829 | } | |
830 | __init_single_page(pfn_to_page(pfn), pfn, zone, node); | |
831 | __SetPageReserved(pfn_to_page(pfn)); | |
832 | pgcnt++; | |
833 | } | |
834 | ||
835 | if (pgcnt) | |
01846c6c | 836 | pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n", |
9420f89d MRI |
837 | node, zone_names[zone], pgcnt); |
838 | } | |
839 | ||
840 | /* | |
841 | * Initially all pages are reserved - free ones are freed | |
842 | * up by memblock_free_all() once the early boot process is | |
843 | * done. Non-atomic initialization, single-pass. | |
844 | * | |
845 | * All aligned pageblocks are initialized to the specified migratetype | |
846 | * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related | |
847 | * zone stats (e.g., nr_isolate_pageblock) are touched. | |
848 | */ | |
849 | void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, | |
850 | unsigned long start_pfn, unsigned long zone_end_pfn, | |
851 | enum meminit_context context, | |
852 | struct vmem_altmap *altmap, int migratetype) | |
853 | { | |
854 | unsigned long pfn, end_pfn = start_pfn + size; | |
855 | struct page *page; | |
856 | ||
857 | if (highest_memmap_pfn < end_pfn - 1) | |
858 | highest_memmap_pfn = end_pfn - 1; | |
859 | ||
860 | #ifdef CONFIG_ZONE_DEVICE | |
861 | /* | |
862 | * Honor reservation requested by the driver for this ZONE_DEVICE | |
863 | * memory. We limit the total number of pages to initialize to just | |
864 | * those that might contain the memory mapping. We will defer the | |
865 | * ZONE_DEVICE page initialization until after we have released | |
866 | * the hotplug lock. | |
867 | */ | |
868 | if (zone == ZONE_DEVICE) { | |
869 | if (!altmap) | |
870 | return; | |
871 | ||
872 | if (start_pfn == altmap->base_pfn) | |
873 | start_pfn += altmap->reserve; | |
874 | end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | |
875 | } | |
876 | #endif | |
877 | ||
878 | for (pfn = start_pfn; pfn < end_pfn; ) { | |
879 | /* | |
880 | * There can be holes in boot-time mem_map[]s handed to this | |
881 | * function. They do not exist on hotplugged memory. | |
882 | */ | |
883 | if (context == MEMINIT_EARLY) { | |
884 | if (overlap_memmap_init(zone, &pfn)) | |
885 | continue; | |
886 | if (defer_init(nid, pfn, zone_end_pfn)) { | |
887 | deferred_struct_pages = true; | |
888 | break; | |
889 | } | |
890 | } | |
891 | ||
892 | page = pfn_to_page(pfn); | |
893 | __init_single_page(page, pfn, zone, nid); | |
503b158f DH |
894 | if (context == MEMINIT_HOTPLUG) { |
895 | #ifdef CONFIG_ZONE_DEVICE | |
896 | if (zone == ZONE_DEVICE) | |
897 | __SetPageReserved(page); | |
898 | else | |
899 | #endif | |
900 | __SetPageOffline(page); | |
901 | } | |
9420f89d MRI |
902 | |
903 | /* | |
904 | * Usually, we want to mark the pageblock MIGRATE_MOVABLE, | |
905 | * such that unmovable allocations won't be scattered all | |
906 | * over the place during system boot. | |
907 | */ | |
908 | if (pageblock_aligned(pfn)) { | |
909 | set_pageblock_migratetype(page, migratetype); | |
910 | cond_resched(); | |
911 | } | |
912 | pfn++; | |
913 | } | |
914 | } | |
915 | ||
916 | static void __init memmap_init_zone_range(struct zone *zone, | |
917 | unsigned long start_pfn, | |
918 | unsigned long end_pfn, | |
919 | unsigned long *hole_pfn) | |
920 | { | |
921 | unsigned long zone_start_pfn = zone->zone_start_pfn; | |
922 | unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; | |
923 | int nid = zone_to_nid(zone), zone_id = zone_idx(zone); | |
924 | ||
925 | start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); | |
926 | end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); | |
927 | ||
928 | if (start_pfn >= end_pfn) | |
929 | return; | |
930 | ||
931 | memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, | |
932 | zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); | |
933 | ||
934 | if (*hole_pfn < start_pfn) | |
935 | init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); | |
936 | ||
937 | *hole_pfn = end_pfn; | |
938 | } | |
939 | ||
940 | static void __init memmap_init(void) | |
941 | { | |
942 | unsigned long start_pfn, end_pfn; | |
943 | unsigned long hole_pfn = 0; | |
944 | int i, j, zone_id = 0, nid; | |
945 | ||
946 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
947 | struct pglist_data *node = NODE_DATA(nid); | |
948 | ||
949 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
950 | struct zone *zone = node->node_zones + j; | |
951 | ||
952 | if (!populated_zone(zone)) | |
953 | continue; | |
954 | ||
955 | memmap_init_zone_range(zone, start_pfn, end_pfn, | |
956 | &hole_pfn); | |
957 | zone_id = j; | |
958 | } | |
959 | } | |
960 | ||
961 | #ifdef CONFIG_SPARSEMEM | |
962 | /* | |
963 | * Initialize the memory map for hole in the range [memory_end, | |
964 | * section_end]. | |
965 | * Append the pages in this hole to the highest zone in the last | |
966 | * node. | |
967 | * The call to init_unavailable_range() is outside the ifdef to | |
968 | * silence the compiler warining about zone_id set but not used; | |
969 | * for FLATMEM it is a nop anyway | |
970 | */ | |
971 | end_pfn = round_up(end_pfn, PAGES_PER_SECTION); | |
972 | if (hole_pfn < end_pfn) | |
973 | #endif | |
974 | init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); | |
975 | } | |
976 | ||
977 | #ifdef CONFIG_ZONE_DEVICE | |
978 | static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, | |
979 | unsigned long zone_idx, int nid, | |
980 | struct dev_pagemap *pgmap) | |
981 | { | |
982 | ||
983 | __init_single_page(page, pfn, zone_idx, nid); | |
984 | ||
985 | /* | |
986 | * Mark page reserved as it will need to wait for onlining | |
987 | * phase for it to be fully associated with a zone. | |
988 | * | |
989 | * We can use the non-atomic __set_bit operation for setting | |
990 | * the flag as we are still initializing the pages. | |
991 | */ | |
992 | __SetPageReserved(page); | |
993 | ||
994 | /* | |
995 | * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer | |
996 | * and zone_device_data. It is a bug if a ZONE_DEVICE page is | |
997 | * ever freed or placed on a driver-private list. | |
998 | */ | |
999 | page->pgmap = pgmap; | |
1000 | page->zone_device_data = NULL; | |
1001 | ||
1002 | /* | |
1003 | * Mark the block movable so that blocks are reserved for | |
1004 | * movable at startup. This will force kernel allocations | |
1005 | * to reserve their blocks rather than leaking throughout | |
1006 | * the address space during boot when many long-lived | |
1007 | * kernel allocations are made. | |
1008 | * | |
1009 | * Please note that MEMINIT_HOTPLUG path doesn't clear memmap | |
1010 | * because this is done early in section_activate() | |
1011 | */ | |
1012 | if (pageblock_aligned(pfn)) { | |
1013 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
1014 | cond_resched(); | |
1015 | } | |
1016 | ||
1017 | /* | |
1018 | * ZONE_DEVICE pages are released directly to the driver page allocator | |
1019 | * which will set the page count to 1 when allocating the page. | |
1020 | */ | |
1021 | if (pgmap->type == MEMORY_DEVICE_PRIVATE || | |
1022 | pgmap->type == MEMORY_DEVICE_COHERENT) | |
1023 | set_page_count(page, 0); | |
1024 | } | |
1025 | ||
1026 | /* | |
1027 | * With compound page geometry and when struct pages are stored in ram most | |
1028 | * tail pages are reused. Consequently, the amount of unique struct pages to | |
1029 | * initialize is a lot smaller that the total amount of struct pages being | |
1030 | * mapped. This is a paired / mild layering violation with explicit knowledge | |
1031 | * of how the sparse_vmemmap internals handle compound pages in the lack | |
1032 | * of an altmap. See vmemmap_populate_compound_pages(). | |
1033 | */ | |
1034 | static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, | |
87a7ae75 | 1035 | struct dev_pagemap *pgmap) |
9420f89d | 1036 | { |
87a7ae75 AK |
1037 | if (!vmemmap_can_optimize(altmap, pgmap)) |
1038 | return pgmap_vmemmap_nr(pgmap); | |
1039 | ||
c1a6c536 | 1040 | return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); |
9420f89d MRI |
1041 | } |
1042 | ||
1043 | static void __ref memmap_init_compound(struct page *head, | |
1044 | unsigned long head_pfn, | |
1045 | unsigned long zone_idx, int nid, | |
1046 | struct dev_pagemap *pgmap, | |
1047 | unsigned long nr_pages) | |
1048 | { | |
1049 | unsigned long pfn, end_pfn = head_pfn + nr_pages; | |
1050 | unsigned int order = pgmap->vmemmap_shift; | |
1051 | ||
1052 | __SetPageHead(head); | |
1053 | for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { | |
1054 | struct page *page = pfn_to_page(pfn); | |
1055 | ||
1056 | __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); | |
1057 | prep_compound_tail(head, pfn - head_pfn); | |
1058 | set_page_count(page, 0); | |
1059 | ||
1060 | /* | |
1061 | * The first tail page stores important compound page info. | |
1062 | * Call prep_compound_head() after the first tail page has | |
1063 | * been initialized, to not have the data overwritten. | |
1064 | */ | |
1065 | if (pfn == head_pfn + 1) | |
1066 | prep_compound_head(head, order); | |
1067 | } | |
1068 | } | |
1069 | ||
1070 | void __ref memmap_init_zone_device(struct zone *zone, | |
1071 | unsigned long start_pfn, | |
1072 | unsigned long nr_pages, | |
1073 | struct dev_pagemap *pgmap) | |
1074 | { | |
1075 | unsigned long pfn, end_pfn = start_pfn + nr_pages; | |
1076 | struct pglist_data *pgdat = zone->zone_pgdat; | |
1077 | struct vmem_altmap *altmap = pgmap_altmap(pgmap); | |
1078 | unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); | |
1079 | unsigned long zone_idx = zone_idx(zone); | |
1080 | unsigned long start = jiffies; | |
1081 | int nid = pgdat->node_id; | |
1082 | ||
1083 | if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) | |
1084 | return; | |
1085 | ||
1086 | /* | |
1087 | * The call to memmap_init should have already taken care | |
1088 | * of the pages reserved for the memmap, so we can just jump to | |
1089 | * the end of that region and start processing the device pages. | |
1090 | */ | |
1091 | if (altmap) { | |
1092 | start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | |
1093 | nr_pages = end_pfn - start_pfn; | |
1094 | } | |
1095 | ||
1096 | for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { | |
1097 | struct page *page = pfn_to_page(pfn); | |
1098 | ||
1099 | __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); | |
1100 | ||
1101 | if (pfns_per_compound == 1) | |
1102 | continue; | |
1103 | ||
1104 | memmap_init_compound(page, pfn, zone_idx, nid, pgmap, | |
87a7ae75 | 1105 | compound_nr_pages(altmap, pgmap)); |
9420f89d MRI |
1106 | } |
1107 | ||
dd31bad2 | 1108 | pr_debug("%s initialised %lu pages in %ums\n", __func__, |
9420f89d MRI |
1109 | nr_pages, jiffies_to_msecs(jiffies - start)); |
1110 | } | |
1111 | #endif | |
1112 | ||
1113 | /* | |
1114 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
1115 | * because it is sized independent of architecture. Unlike the other zones, | |
1116 | * the starting point for ZONE_MOVABLE is not fixed. It may be different | |
1117 | * in each node depending on the size of each node and how evenly kernelcore | |
1118 | * is distributed. This helper function adjusts the zone ranges | |
1119 | * provided by the architecture for a given node by using the end of the | |
1120 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
1121 | * zones within a node are in order of monotonic increases memory addresses | |
1122 | */ | |
1123 | static void __init adjust_zone_range_for_zone_movable(int nid, | |
1124 | unsigned long zone_type, | |
9420f89d MRI |
1125 | unsigned long node_end_pfn, |
1126 | unsigned long *zone_start_pfn, | |
1127 | unsigned long *zone_end_pfn) | |
1128 | { | |
1129 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
1130 | if (zone_movable_pfn[nid]) { | |
1131 | /* Size ZONE_MOVABLE */ | |
1132 | if (zone_type == ZONE_MOVABLE) { | |
1133 | *zone_start_pfn = zone_movable_pfn[nid]; | |
1134 | *zone_end_pfn = min(node_end_pfn, | |
1135 | arch_zone_highest_possible_pfn[movable_zone]); | |
1136 | ||
1137 | /* Adjust for ZONE_MOVABLE starting within this range */ | |
1138 | } else if (!mirrored_kernelcore && | |
1139 | *zone_start_pfn < zone_movable_pfn[nid] && | |
1140 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
1141 | *zone_end_pfn = zone_movable_pfn[nid]; | |
1142 | ||
1143 | /* Check if this whole range is within ZONE_MOVABLE */ | |
1144 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
1145 | *zone_start_pfn = *zone_end_pfn; | |
1146 | } | |
1147 | } | |
1148 | ||
1149 | /* | |
1150 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
1151 | * then all holes in the requested range will be accounted for. | |
1152 | */ | |
b6dd9459 | 1153 | static unsigned long __init __absent_pages_in_range(int nid, |
9420f89d MRI |
1154 | unsigned long range_start_pfn, |
1155 | unsigned long range_end_pfn) | |
1156 | { | |
1157 | unsigned long nr_absent = range_end_pfn - range_start_pfn; | |
1158 | unsigned long start_pfn, end_pfn; | |
1159 | int i; | |
1160 | ||
1161 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | |
1162 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
1163 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
1164 | nr_absent -= end_pfn - start_pfn; | |
1165 | } | |
1166 | return nr_absent; | |
1167 | } | |
1168 | ||
1169 | /** | |
1170 | * absent_pages_in_range - Return number of page frames in holes within a range | |
1171 | * @start_pfn: The start PFN to start searching for holes | |
1172 | * @end_pfn: The end PFN to stop searching for holes | |
1173 | * | |
1174 | * Return: the number of pages frames in memory holes within a range. | |
1175 | */ | |
1176 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
1177 | unsigned long end_pfn) | |
1178 | { | |
1179 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
1180 | } | |
1181 | ||
1182 | /* Return the number of page frames in holes in a zone on a node */ | |
1183 | static unsigned long __init zone_absent_pages_in_node(int nid, | |
1184 | unsigned long zone_type, | |
1c2d252f HX |
1185 | unsigned long zone_start_pfn, |
1186 | unsigned long zone_end_pfn) | |
9420f89d | 1187 | { |
9420f89d MRI |
1188 | unsigned long nr_absent; |
1189 | ||
1c2d252f HX |
1190 | /* zone is empty, we don't have any absent pages */ |
1191 | if (zone_start_pfn == zone_end_pfn) | |
9420f89d MRI |
1192 | return 0; |
1193 | ||
9420f89d MRI |
1194 | nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
1195 | ||
1196 | /* | |
1197 | * ZONE_MOVABLE handling. | |
1198 | * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | |
1199 | * and vice versa. | |
1200 | */ | |
1201 | if (mirrored_kernelcore && zone_movable_pfn[nid]) { | |
1202 | unsigned long start_pfn, end_pfn; | |
1203 | struct memblock_region *r; | |
1204 | ||
1205 | for_each_mem_region(r) { | |
1206 | start_pfn = clamp(memblock_region_memory_base_pfn(r), | |
1207 | zone_start_pfn, zone_end_pfn); | |
1208 | end_pfn = clamp(memblock_region_memory_end_pfn(r), | |
1209 | zone_start_pfn, zone_end_pfn); | |
1210 | ||
1211 | if (zone_type == ZONE_MOVABLE && | |
1212 | memblock_is_mirror(r)) | |
1213 | nr_absent += end_pfn - start_pfn; | |
1214 | ||
1215 | if (zone_type == ZONE_NORMAL && | |
1216 | !memblock_is_mirror(r)) | |
1217 | nr_absent += end_pfn - start_pfn; | |
1218 | } | |
1219 | } | |
1220 | ||
1221 | return nr_absent; | |
1222 | } | |
1223 | ||
1224 | /* | |
1225 | * Return the number of pages a zone spans in a node, including holes | |
1226 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
1227 | */ | |
1228 | static unsigned long __init zone_spanned_pages_in_node(int nid, | |
1229 | unsigned long zone_type, | |
1230 | unsigned long node_start_pfn, | |
1231 | unsigned long node_end_pfn, | |
1232 | unsigned long *zone_start_pfn, | |
1233 | unsigned long *zone_end_pfn) | |
1234 | { | |
1235 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | |
1236 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9420f89d MRI |
1237 | |
1238 | /* Get the start and end of the zone */ | |
1239 | *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | |
1240 | *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
0792e47d HX |
1241 | adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, |
1242 | zone_start_pfn, zone_end_pfn); | |
9420f89d MRI |
1243 | |
1244 | /* Check that this node has pages within the zone's required range */ | |
1245 | if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) | |
1246 | return 0; | |
1247 | ||
1248 | /* Move the zone boundaries inside the node if necessary */ | |
1249 | *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); | |
1250 | *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | |
1251 | ||
1252 | /* Return the spanned pages */ | |
1253 | return *zone_end_pfn - *zone_start_pfn; | |
1254 | } | |
1255 | ||
ba1b67c7 HX |
1256 | static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) |
1257 | { | |
1258 | struct zone *z; | |
1259 | ||
1260 | for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { | |
1261 | z->zone_start_pfn = 0; | |
1262 | z->spanned_pages = 0; | |
1263 | z->present_pages = 0; | |
1264 | #if defined(CONFIG_MEMORY_HOTPLUG) | |
1265 | z->present_early_pages = 0; | |
1266 | #endif | |
1267 | } | |
1268 | ||
1269 | pgdat->node_spanned_pages = 0; | |
1270 | pgdat->node_present_pages = 0; | |
1271 | pr_debug("On node %d totalpages: 0\n", pgdat->node_id); | |
1272 | } | |
1273 | ||
8ad41849 BH |
1274 | static void __init calc_nr_kernel_pages(void) |
1275 | { | |
1276 | unsigned long start_pfn, end_pfn; | |
1277 | phys_addr_t start_addr, end_addr; | |
1278 | u64 u; | |
1279 | #ifdef CONFIG_HIGHMEM | |
1280 | unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]; | |
1281 | #endif | |
1282 | ||
1283 | for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { | |
1284 | start_pfn = PFN_UP(start_addr); | |
1285 | end_pfn = PFN_DOWN(end_addr); | |
1286 | ||
1287 | if (start_pfn < end_pfn) { | |
1288 | nr_all_pages += end_pfn - start_pfn; | |
1289 | #ifdef CONFIG_HIGHMEM | |
1290 | start_pfn = clamp(start_pfn, 0, high_zone_low); | |
1291 | end_pfn = clamp(end_pfn, 0, high_zone_low); | |
1292 | #endif | |
1293 | nr_kernel_pages += end_pfn - start_pfn; | |
1294 | } | |
1295 | } | |
1296 | } | |
1297 | ||
9420f89d MRI |
1298 | static void __init calculate_node_totalpages(struct pglist_data *pgdat, |
1299 | unsigned long node_start_pfn, | |
1300 | unsigned long node_end_pfn) | |
1301 | { | |
1302 | unsigned long realtotalpages = 0, totalpages = 0; | |
1303 | enum zone_type i; | |
1304 | ||
1305 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1306 | struct zone *zone = pgdat->node_zones + i; | |
1307 | unsigned long zone_start_pfn, zone_end_pfn; | |
1308 | unsigned long spanned, absent; | |
1c2d252f | 1309 | unsigned long real_size; |
9420f89d MRI |
1310 | |
1311 | spanned = zone_spanned_pages_in_node(pgdat->node_id, i, | |
1312 | node_start_pfn, | |
1313 | node_end_pfn, | |
1314 | &zone_start_pfn, | |
1315 | &zone_end_pfn); | |
1316 | absent = zone_absent_pages_in_node(pgdat->node_id, i, | |
1c2d252f HX |
1317 | zone_start_pfn, |
1318 | zone_end_pfn); | |
9420f89d | 1319 | |
1c2d252f | 1320 | real_size = spanned - absent; |
9420f89d | 1321 | |
1c2d252f | 1322 | if (spanned) |
9420f89d MRI |
1323 | zone->zone_start_pfn = zone_start_pfn; |
1324 | else | |
1325 | zone->zone_start_pfn = 0; | |
1c2d252f | 1326 | zone->spanned_pages = spanned; |
9420f89d MRI |
1327 | zone->present_pages = real_size; |
1328 | #if defined(CONFIG_MEMORY_HOTPLUG) | |
1329 | zone->present_early_pages = real_size; | |
1330 | #endif | |
1331 | ||
1c2d252f | 1332 | totalpages += spanned; |
9420f89d MRI |
1333 | realtotalpages += real_size; |
1334 | } | |
1335 | ||
1336 | pgdat->node_spanned_pages = totalpages; | |
1337 | pgdat->node_present_pages = realtotalpages; | |
1338 | pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | |
1339 | } | |
1340 | ||
9420f89d MRI |
1341 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1342 | static void pgdat_init_split_queue(struct pglist_data *pgdat) | |
1343 | { | |
1344 | struct deferred_split *ds_queue = &pgdat->deferred_split_queue; | |
1345 | ||
1346 | spin_lock_init(&ds_queue->split_queue_lock); | |
1347 | INIT_LIST_HEAD(&ds_queue->split_queue); | |
1348 | ds_queue->split_queue_len = 0; | |
1349 | } | |
1350 | #else | |
1351 | static void pgdat_init_split_queue(struct pglist_data *pgdat) {} | |
1352 | #endif | |
1353 | ||
1354 | #ifdef CONFIG_COMPACTION | |
1355 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) | |
1356 | { | |
1357 | init_waitqueue_head(&pgdat->kcompactd_wait); | |
1358 | } | |
1359 | #else | |
1360 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} | |
1361 | #endif | |
1362 | ||
1363 | static void __meminit pgdat_init_internals(struct pglist_data *pgdat) | |
1364 | { | |
1365 | int i; | |
1366 | ||
1367 | pgdat_resize_init(pgdat); | |
1368 | pgdat_kswapd_lock_init(pgdat); | |
1369 | ||
1370 | pgdat_init_split_queue(pgdat); | |
1371 | pgdat_init_kcompactd(pgdat); | |
1372 | ||
1373 | init_waitqueue_head(&pgdat->kswapd_wait); | |
1374 | init_waitqueue_head(&pgdat->pfmemalloc_wait); | |
1375 | ||
1376 | for (i = 0; i < NR_VMSCAN_THROTTLE; i++) | |
1377 | init_waitqueue_head(&pgdat->reclaim_wait[i]); | |
1378 | ||
1379 | pgdat_page_ext_init(pgdat); | |
1380 | lruvec_init(&pgdat->__lruvec); | |
1381 | } | |
1382 | ||
1383 | static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, | |
1384 | unsigned long remaining_pages) | |
1385 | { | |
1386 | atomic_long_set(&zone->managed_pages, remaining_pages); | |
1387 | zone_set_nid(zone, nid); | |
1388 | zone->name = zone_names[idx]; | |
1389 | zone->zone_pgdat = NODE_DATA(nid); | |
1390 | spin_lock_init(&zone->lock); | |
1391 | zone_seqlock_init(zone); | |
1392 | zone_pcp_init(zone); | |
1393 | } | |
1394 | ||
1395 | static void __meminit zone_init_free_lists(struct zone *zone) | |
1396 | { | |
1397 | unsigned int order, t; | |
1398 | for_each_migratetype_order(order, t) { | |
1399 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1400 | zone->free_area[order].nr_free = 0; | |
1401 | } | |
dcdfdd40 KS |
1402 | |
1403 | #ifdef CONFIG_UNACCEPTED_MEMORY | |
1404 | INIT_LIST_HEAD(&zone->unaccepted_pages); | |
1405 | #endif | |
9420f89d MRI |
1406 | } |
1407 | ||
1408 | void __meminit init_currently_empty_zone(struct zone *zone, | |
1409 | unsigned long zone_start_pfn, | |
1410 | unsigned long size) | |
1411 | { | |
1412 | struct pglist_data *pgdat = zone->zone_pgdat; | |
1413 | int zone_idx = zone_idx(zone) + 1; | |
1414 | ||
1415 | if (zone_idx > pgdat->nr_zones) | |
1416 | pgdat->nr_zones = zone_idx; | |
1417 | ||
1418 | zone->zone_start_pfn = zone_start_pfn; | |
1419 | ||
1420 | mminit_dprintk(MMINIT_TRACE, "memmap_init", | |
1421 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
1422 | pgdat->node_id, | |
1423 | (unsigned long)zone_idx(zone), | |
1424 | zone_start_pfn, (zone_start_pfn + size)); | |
1425 | ||
1426 | zone_init_free_lists(zone); | |
1427 | zone->initialized = 1; | |
1428 | } | |
1429 | ||
1430 | #ifndef CONFIG_SPARSEMEM | |
1431 | /* | |
1432 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
1433 | * Start by making sure zonesize is a multiple of pageblock_order by rounding | |
1434 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
1435 | * round what is now in bits to nearest long in bits, then return it in | |
1436 | * bytes. | |
1437 | */ | |
1438 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) | |
1439 | { | |
1440 | unsigned long usemapsize; | |
1441 | ||
1442 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); | |
1443 | usemapsize = roundup(zonesize, pageblock_nr_pages); | |
1444 | usemapsize = usemapsize >> pageblock_order; | |
1445 | usemapsize *= NR_PAGEBLOCK_BITS; | |
daee07bf | 1446 | usemapsize = roundup(usemapsize, BITS_PER_LONG); |
9420f89d | 1447 | |
daee07bf | 1448 | return usemapsize / BITS_PER_BYTE; |
9420f89d MRI |
1449 | } |
1450 | ||
1451 | static void __ref setup_usemap(struct zone *zone) | |
1452 | { | |
1453 | unsigned long usemapsize = usemap_size(zone->zone_start_pfn, | |
1454 | zone->spanned_pages); | |
1455 | zone->pageblock_flags = NULL; | |
1456 | if (usemapsize) { | |
1457 | zone->pageblock_flags = | |
1458 | memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, | |
1459 | zone_to_nid(zone)); | |
1460 | if (!zone->pageblock_flags) | |
1461 | panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", | |
1462 | usemapsize, zone->name, zone_to_nid(zone)); | |
1463 | } | |
1464 | } | |
1465 | #else | |
1466 | static inline void setup_usemap(struct zone *zone) {} | |
1467 | #endif /* CONFIG_SPARSEMEM */ | |
1468 | ||
1469 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | |
1470 | ||
1471 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ | |
1472 | void __init set_pageblock_order(void) | |
1473 | { | |
5e0a760b | 1474 | unsigned int order = MAX_PAGE_ORDER; |
9420f89d MRI |
1475 | |
1476 | /* Check that pageblock_nr_pages has not already been setup */ | |
1477 | if (pageblock_order) | |
1478 | return; | |
1479 | ||
1480 | /* Don't let pageblocks exceed the maximum allocation granularity. */ | |
1481 | if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) | |
1482 | order = HUGETLB_PAGE_ORDER; | |
1483 | ||
1484 | /* | |
1485 | * Assume the largest contiguous order of interest is a huge page. | |
e99fb98d | 1486 | * This value may be variable depending on boot parameters on powerpc. |
9420f89d MRI |
1487 | */ |
1488 | pageblock_order = order; | |
1489 | } | |
1490 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
1491 | ||
1492 | /* | |
1493 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
1494 | * is unused as pageblock_order is set at compile-time. See | |
1495 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
1496 | * the kernel config | |
1497 | */ | |
1498 | void __init set_pageblock_order(void) | |
1499 | { | |
1500 | } | |
1501 | ||
1502 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
1503 | ||
1504 | /* | |
1505 | * Set up the zone data structures | |
1506 | * - init pgdat internals | |
1507 | * - init all zones belonging to this node | |
1508 | * | |
1509 | * NOTE: this function is only called during memory hotplug | |
1510 | */ | |
1511 | #ifdef CONFIG_MEMORY_HOTPLUG | |
1512 | void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) | |
1513 | { | |
1514 | int nid = pgdat->node_id; | |
1515 | enum zone_type z; | |
1516 | int cpu; | |
1517 | ||
1518 | pgdat_init_internals(pgdat); | |
1519 | ||
1520 | if (pgdat->per_cpu_nodestats == &boot_nodestats) | |
1521 | pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); | |
1522 | ||
1523 | /* | |
1524 | * Reset the nr_zones, order and highest_zoneidx before reuse. | |
1525 | * Note that kswapd will init kswapd_highest_zoneidx properly | |
1526 | * when it starts in the near future. | |
1527 | */ | |
1528 | pgdat->nr_zones = 0; | |
1529 | pgdat->kswapd_order = 0; | |
1530 | pgdat->kswapd_highest_zoneidx = 0; | |
1531 | pgdat->node_start_pfn = 0; | |
32b6a4a1 HX |
1532 | pgdat->node_present_pages = 0; |
1533 | ||
9420f89d MRI |
1534 | for_each_online_cpu(cpu) { |
1535 | struct per_cpu_nodestat *p; | |
1536 | ||
1537 | p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); | |
1538 | memset(p, 0, sizeof(*p)); | |
1539 | } | |
1540 | ||
32b6a4a1 HX |
1541 | /* |
1542 | * When memory is hot-added, all the memory is in offline state. So | |
1543 | * clear all zones' present_pages and managed_pages because they will | |
1544 | * be updated in online_pages() and offline_pages(). | |
1545 | */ | |
1546 | for (z = 0; z < MAX_NR_ZONES; z++) { | |
1547 | struct zone *zone = pgdat->node_zones + z; | |
1548 | ||
1549 | zone->present_pages = 0; | |
1550 | zone_init_internals(zone, z, nid, 0); | |
1551 | } | |
9420f89d MRI |
1552 | } |
1553 | #endif | |
1554 | ||
9420f89d MRI |
1555 | static void __init free_area_init_core(struct pglist_data *pgdat) |
1556 | { | |
1557 | enum zone_type j; | |
1558 | int nid = pgdat->node_id; | |
1559 | ||
1560 | pgdat_init_internals(pgdat); | |
1561 | pgdat->per_cpu_nodestats = &boot_nodestats; | |
1562 | ||
1563 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
1564 | struct zone *zone = pgdat->node_zones + j; | |
0ac5e785 | 1565 | unsigned long size = zone->spanned_pages; |
9420f89d MRI |
1566 | |
1567 | /* | |
0ac5e785 BH |
1568 | * Initialize zone->managed_pages as 0 , it will be reset |
1569 | * when memblock allocator frees pages into buddy system. | |
9420f89d | 1570 | */ |
0ac5e785 | 1571 | zone_init_internals(zone, j, nid, zone->present_pages); |
9420f89d MRI |
1572 | |
1573 | if (!size) | |
1574 | continue; | |
1575 | ||
9420f89d MRI |
1576 | setup_usemap(zone); |
1577 | init_currently_empty_zone(zone, zone->zone_start_pfn, size); | |
1578 | } | |
1579 | } | |
1580 | ||
1581 | void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, | |
1582 | phys_addr_t min_addr, int nid, bool exact_nid) | |
1583 | { | |
1584 | void *ptr; | |
1585 | ||
1586 | if (exact_nid) | |
1587 | ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, | |
1588 | MEMBLOCK_ALLOC_ACCESSIBLE, | |
1589 | nid); | |
1590 | else | |
1591 | ptr = memblock_alloc_try_nid_raw(size, align, min_addr, | |
1592 | MEMBLOCK_ALLOC_ACCESSIBLE, | |
1593 | nid); | |
1594 | ||
1595 | if (ptr && size > 0) | |
1596 | page_init_poison(ptr, size); | |
1597 | ||
1598 | return ptr; | |
1599 | } | |
1600 | ||
1601 | #ifdef CONFIG_FLATMEM | |
1602 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | |
1603 | { | |
e99fb98d KW |
1604 | unsigned long start, offset, size, end; |
1605 | struct page *map; | |
9420f89d MRI |
1606 | |
1607 | /* Skip empty nodes */ | |
1608 | if (!pgdat->node_spanned_pages) | |
1609 | return; | |
1610 | ||
1611 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | |
1612 | offset = pgdat->node_start_pfn - start; | |
9420f89d | 1613 | /* |
5e0a760b | 1614 | * The zone's endpoints aren't required to be MAX_PAGE_ORDER |
e99fb98d KW |
1615 | * aligned but the node_mem_map endpoints must be in order |
1616 | * for the buddy allocator to function correctly. | |
9420f89d | 1617 | */ |
e99fb98d KW |
1618 | end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES); |
1619 | size = (end - start) * sizeof(struct page); | |
1620 | map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, | |
1621 | pgdat->node_id, false); | |
1622 | if (!map) | |
1623 | panic("Failed to allocate %ld bytes for node %d memory map\n", | |
1624 | size, pgdat->node_id); | |
1625 | pgdat->node_mem_map = map + offset; | |
9d857311 | 1626 | memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); |
e99fb98d KW |
1627 | pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", |
1628 | __func__, pgdat->node_id, (unsigned long)pgdat, | |
1629 | (unsigned long)pgdat->node_mem_map); | |
1630 | #ifndef CONFIG_NUMA | |
1631 | /* the global mem_map is just set as node 0's */ | |
9420f89d MRI |
1632 | if (pgdat == NODE_DATA(0)) { |
1633 | mem_map = NODE_DATA(0)->node_mem_map; | |
1634 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | |
1635 | mem_map -= offset; | |
1636 | } | |
1637 | #endif | |
1638 | } | |
1639 | #else | |
1640 | static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } | |
1641 | #endif /* CONFIG_FLATMEM */ | |
1642 | ||
1643 | /** | |
1644 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
1645 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | |
1646 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
1647 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
1648 | * | |
1649 | * It returns the start and end page frame of a node based on information | |
1650 | * provided by memblock_set_node(). If called for a node | |
3a29280a | 1651 | * with no available memory, the start and end PFNs will be 0. |
9420f89d MRI |
1652 | */ |
1653 | void __init get_pfn_range_for_nid(unsigned int nid, | |
1654 | unsigned long *start_pfn, unsigned long *end_pfn) | |
1655 | { | |
1656 | unsigned long this_start_pfn, this_end_pfn; | |
1657 | int i; | |
1658 | ||
1659 | *start_pfn = -1UL; | |
1660 | *end_pfn = 0; | |
1661 | ||
1662 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { | |
1663 | *start_pfn = min(*start_pfn, this_start_pfn); | |
1664 | *end_pfn = max(*end_pfn, this_end_pfn); | |
1665 | } | |
1666 | ||
1667 | if (*start_pfn == -1UL) | |
1668 | *start_pfn = 0; | |
1669 | } | |
1670 | ||
1671 | static void __init free_area_init_node(int nid) | |
1672 | { | |
1673 | pg_data_t *pgdat = NODE_DATA(nid); | |
1674 | unsigned long start_pfn = 0; | |
1675 | unsigned long end_pfn = 0; | |
1676 | ||
1677 | /* pg_data_t should be reset to zero when it's allocated */ | |
1678 | WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); | |
1679 | ||
1680 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
1681 | ||
1682 | pgdat->node_id = nid; | |
1683 | pgdat->node_start_pfn = start_pfn; | |
1684 | pgdat->per_cpu_nodestats = NULL; | |
1685 | ||
1686 | if (start_pfn != end_pfn) { | |
1687 | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, | |
1688 | (u64)start_pfn << PAGE_SHIFT, | |
1689 | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | |
ba1b67c7 HX |
1690 | |
1691 | calculate_node_totalpages(pgdat, start_pfn, end_pfn); | |
9420f89d MRI |
1692 | } else { |
1693 | pr_info("Initmem setup node %d as memoryless\n", nid); | |
9420f89d | 1694 | |
ba1b67c7 HX |
1695 | reset_memoryless_node_totalpages(pgdat); |
1696 | } | |
9420f89d MRI |
1697 | |
1698 | alloc_node_mem_map(pgdat); | |
1699 | pgdat_set_deferred_range(pgdat); | |
1700 | ||
1701 | free_area_init_core(pgdat); | |
1702 | lru_gen_init_pgdat(pgdat); | |
1703 | } | |
1704 | ||
1705 | /* Any regular or high memory on that node ? */ | |
b894da04 | 1706 | static void __init check_for_memory(pg_data_t *pgdat) |
9420f89d MRI |
1707 | { |
1708 | enum zone_type zone_type; | |
1709 | ||
1710 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | |
1711 | struct zone *zone = &pgdat->node_zones[zone_type]; | |
1712 | if (populated_zone(zone)) { | |
1713 | if (IS_ENABLED(CONFIG_HIGHMEM)) | |
91ff4d75 | 1714 | node_set_state(pgdat->node_id, N_HIGH_MEMORY); |
9420f89d | 1715 | if (zone_type <= ZONE_NORMAL) |
91ff4d75 | 1716 | node_set_state(pgdat->node_id, N_NORMAL_MEMORY); |
9420f89d MRI |
1717 | break; |
1718 | } | |
1719 | } | |
1720 | } | |
1721 | ||
1722 | #if MAX_NUMNODES > 1 | |
1723 | /* | |
1724 | * Figure out the number of possible node ids. | |
1725 | */ | |
1726 | void __init setup_nr_node_ids(void) | |
1727 | { | |
1728 | unsigned int highest; | |
1729 | ||
1730 | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); | |
1731 | nr_node_ids = highest + 1; | |
1732 | } | |
1733 | #endif | |
1734 | ||
9420f89d MRI |
1735 | /* |
1736 | * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For | |
1737 | * such cases we allow max_zone_pfn sorted in the descending order | |
1738 | */ | |
5f300fd5 | 1739 | static bool arch_has_descending_max_zone_pfns(void) |
9420f89d | 1740 | { |
5f300fd5 | 1741 | return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); |
9420f89d MRI |
1742 | } |
1743 | ||
1744 | /** | |
1745 | * free_area_init - Initialise all pg_data_t and zone data | |
1746 | * @max_zone_pfn: an array of max PFNs for each zone | |
1747 | * | |
1748 | * This will call free_area_init_node() for each active node in the system. | |
1749 | * Using the page ranges provided by memblock_set_node(), the size of each | |
1750 | * zone in each node and their holes is calculated. If the maximum PFN | |
1751 | * between two adjacent zones match, it is assumed that the zone is empty. | |
1752 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
1753 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
1754 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
1755 | * at arch_max_dma_pfn. | |
1756 | */ | |
1757 | void __init free_area_init(unsigned long *max_zone_pfn) | |
1758 | { | |
1759 | unsigned long start_pfn, end_pfn; | |
1760 | int i, nid, zone; | |
1761 | bool descending; | |
1762 | ||
1763 | /* Record where the zone boundaries are */ | |
1764 | memset(arch_zone_lowest_possible_pfn, 0, | |
1765 | sizeof(arch_zone_lowest_possible_pfn)); | |
1766 | memset(arch_zone_highest_possible_pfn, 0, | |
1767 | sizeof(arch_zone_highest_possible_pfn)); | |
1768 | ||
1769 | start_pfn = PHYS_PFN(memblock_start_of_DRAM()); | |
1770 | descending = arch_has_descending_max_zone_pfns(); | |
1771 | ||
1772 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1773 | if (descending) | |
1774 | zone = MAX_NR_ZONES - i - 1; | |
1775 | else | |
1776 | zone = i; | |
1777 | ||
1778 | if (zone == ZONE_MOVABLE) | |
1779 | continue; | |
1780 | ||
1781 | end_pfn = max(max_zone_pfn[zone], start_pfn); | |
1782 | arch_zone_lowest_possible_pfn[zone] = start_pfn; | |
1783 | arch_zone_highest_possible_pfn[zone] = end_pfn; | |
1784 | ||
1785 | start_pfn = end_pfn; | |
1786 | } | |
1787 | ||
1788 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
1789 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
1790 | find_zone_movable_pfns_for_nodes(); | |
1791 | ||
1792 | /* Print out the zone ranges */ | |
1793 | pr_info("Zone ranges:\n"); | |
1794 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1795 | if (i == ZONE_MOVABLE) | |
1796 | continue; | |
1797 | pr_info(" %-8s ", zone_names[i]); | |
1798 | if (arch_zone_lowest_possible_pfn[i] == | |
1799 | arch_zone_highest_possible_pfn[i]) | |
1800 | pr_cont("empty\n"); | |
1801 | else | |
1802 | pr_cont("[mem %#018Lx-%#018Lx]\n", | |
1803 | (u64)arch_zone_lowest_possible_pfn[i] | |
1804 | << PAGE_SHIFT, | |
1805 | ((u64)arch_zone_highest_possible_pfn[i] | |
1806 | << PAGE_SHIFT) - 1); | |
1807 | } | |
1808 | ||
1809 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
1810 | pr_info("Movable zone start for each node\n"); | |
1811 | for (i = 0; i < MAX_NUMNODES; i++) { | |
1812 | if (zone_movable_pfn[i]) | |
1813 | pr_info(" Node %d: %#018Lx\n", i, | |
1814 | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | |
1815 | } | |
1816 | ||
1817 | /* | |
1818 | * Print out the early node map, and initialize the | |
1819 | * subsection-map relative to active online memory ranges to | |
1820 | * enable future "sub-section" extensions of the memory map. | |
1821 | */ | |
1822 | pr_info("Early memory node ranges\n"); | |
1823 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
1824 | pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, | |
1825 | (u64)start_pfn << PAGE_SHIFT, | |
1826 | ((u64)end_pfn << PAGE_SHIFT) - 1); | |
1827 | subsection_map_init(start_pfn, end_pfn - start_pfn); | |
1828 | } | |
1829 | ||
1830 | /* Initialise every node */ | |
1831 | mminit_verify_pageflags_layout(); | |
1832 | setup_nr_node_ids(); | |
e3d9b45f HX |
1833 | set_pageblock_order(); |
1834 | ||
9420f89d MRI |
1835 | for_each_node(nid) { |
1836 | pg_data_t *pgdat; | |
1837 | ||
1838 | if (!node_online(nid)) { | |
9420f89d MRI |
1839 | /* Allocator not initialized yet */ |
1840 | pgdat = arch_alloc_nodedata(nid); | |
1841 | if (!pgdat) | |
1842 | panic("Cannot allocate %zuB for node %d.\n", | |
1843 | sizeof(*pgdat), nid); | |
1844 | arch_refresh_nodedata(nid, pgdat); | |
9420f89d MRI |
1845 | } |
1846 | ||
1847 | pgdat = NODE_DATA(nid); | |
1848 | free_area_init_node(nid); | |
1849 | ||
c091dd96 BH |
1850 | /* |
1851 | * No sysfs hierarcy will be created via register_one_node() | |
1852 | *for memory-less node because here it's not marked as N_MEMORY | |
1853 | *and won't be set online later. The benefit is userspace | |
1854 | *program won't be confused by sysfs files/directories of | |
1855 | *memory-less node. The pgdat will get fully initialized by | |
1856 | *hotadd_init_pgdat() when memory is hotplugged into this node. | |
1857 | */ | |
1858 | if (pgdat->node_present_pages) { | |
9420f89d | 1859 | node_set_state(nid, N_MEMORY); |
c091dd96 BH |
1860 | check_for_memory(pgdat); |
1861 | } | |
9420f89d MRI |
1862 | } |
1863 | ||
0ac5e785 | 1864 | calc_nr_kernel_pages(); |
9420f89d | 1865 | memmap_init(); |
534ef4e1 MRI |
1866 | |
1867 | /* disable hash distribution for systems with a single node */ | |
1868 | fixup_hashdist(); | |
9420f89d MRI |
1869 | } |
1870 | ||
1871 | /** | |
1872 | * node_map_pfn_alignment - determine the maximum internode alignment | |
1873 | * | |
1874 | * This function should be called after node map is populated and sorted. | |
1875 | * It calculates the maximum power of two alignment which can distinguish | |
1876 | * all the nodes. | |
1877 | * | |
1878 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
1879 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
1880 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
1881 | * shifted, 1GiB is enough and this function will indicate so. | |
1882 | * | |
1883 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
1884 | * model has fine enough granularity to avoid incorrect mapping for the | |
1885 | * populated node map. | |
1886 | * | |
1887 | * Return: the determined alignment in pfn's. 0 if there is no alignment | |
1888 | * requirement (single node). | |
1889 | */ | |
1890 | unsigned long __init node_map_pfn_alignment(void) | |
1891 | { | |
1892 | unsigned long accl_mask = 0, last_end = 0; | |
1893 | unsigned long start, end, mask; | |
1894 | int last_nid = NUMA_NO_NODE; | |
1895 | int i, nid; | |
1896 | ||
1897 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { | |
1898 | if (!start || last_nid < 0 || last_nid == nid) { | |
1899 | last_nid = nid; | |
1900 | last_end = end; | |
1901 | continue; | |
1902 | } | |
1903 | ||
1904 | /* | |
1905 | * Start with a mask granular enough to pin-point to the | |
1906 | * start pfn and tick off bits one-by-one until it becomes | |
1907 | * too coarse to separate the current node from the last. | |
1908 | */ | |
1909 | mask = ~((1 << __ffs(start)) - 1); | |
1910 | while (mask && last_end <= (start & (mask << 1))) | |
1911 | mask <<= 1; | |
1912 | ||
1913 | /* accumulate all internode masks */ | |
1914 | accl_mask |= mask; | |
1915 | } | |
1916 | ||
1917 | /* convert mask to number of pages */ | |
1918 | return ~accl_mask + 1; | |
1919 | } | |
1920 | ||
1921 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
972b89c1 WY |
1922 | static void __init deferred_free_pages(unsigned long pfn, |
1923 | unsigned long nr_pages) | |
9420f89d MRI |
1924 | { |
1925 | struct page *page; | |
1926 | unsigned long i; | |
1927 | ||
1928 | if (!nr_pages) | |
1929 | return; | |
1930 | ||
1931 | page = pfn_to_page(pfn); | |
1932 | ||
1933 | /* Free a large naturally-aligned chunk if possible */ | |
3f6dac0f KS |
1934 | if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { |
1935 | for (i = 0; i < nr_pages; i += pageblock_nr_pages) | |
1936 | set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); | |
13c52654 | 1937 | __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY); |
9420f89d MRI |
1938 | return; |
1939 | } | |
1940 | ||
5e0a760b | 1941 | /* Accept chunks smaller than MAX_PAGE_ORDER upfront */ |
dcdfdd40 KS |
1942 | accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages)); |
1943 | ||
9420f89d MRI |
1944 | for (i = 0; i < nr_pages; i++, page++, pfn++) { |
1945 | if (pageblock_aligned(pfn)) | |
1946 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
13c52654 | 1947 | __free_pages_core(page, 0, MEMINIT_EARLY); |
9420f89d MRI |
1948 | } |
1949 | } | |
1950 | ||
1951 | /* Completion tracking for deferred_init_memmap() threads */ | |
1952 | static atomic_t pgdat_init_n_undone __initdata; | |
1953 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | |
1954 | ||
1955 | static inline void __init pgdat_init_report_one_done(void) | |
1956 | { | |
1957 | if (atomic_dec_and_test(&pgdat_init_n_undone)) | |
1958 | complete(&pgdat_init_all_done_comp); | |
1959 | } | |
1960 | ||
9420f89d MRI |
1961 | /* |
1962 | * Initialize struct pages. We minimize pfn page lookups and scheduler checks | |
3f6dac0f | 1963 | * by performing it only once every MAX_ORDER_NR_PAGES. |
9420f89d MRI |
1964 | * Return number of pages initialized. |
1965 | */ | |
972b89c1 WY |
1966 | static unsigned long __init deferred_init_pages(struct zone *zone, |
1967 | unsigned long pfn, unsigned long end_pfn) | |
9420f89d MRI |
1968 | { |
1969 | int nid = zone_to_nid(zone); | |
972b89c1 | 1970 | unsigned long nr_pages = end_pfn - pfn; |
9420f89d | 1971 | int zid = zone_idx(zone); |
972b89c1 | 1972 | struct page *page = pfn_to_page(pfn); |
9420f89d | 1973 | |
972b89c1 | 1974 | for (; pfn < end_pfn; pfn++, page++) |
9420f89d | 1975 | __init_single_page(page, pfn, zid, nid); |
f55d3471 | 1976 | return nr_pages; |
9420f89d MRI |
1977 | } |
1978 | ||
1979 | /* | |
f1180fd2 WY |
1980 | * This function is meant to pre-load the iterator for the zone init from |
1981 | * a given point. | |
1982 | * Specifically it walks through the ranges starting with initial index | |
1983 | * passed to it until we are caught up to the first_init_pfn value and | |
1984 | * exits there. If we never encounter the value we return false indicating | |
1985 | * there are no valid ranges left. | |
9420f89d MRI |
1986 | */ |
1987 | static bool __init | |
1988 | deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, | |
1989 | unsigned long *spfn, unsigned long *epfn, | |
1990 | unsigned long first_init_pfn) | |
1991 | { | |
f1180fd2 WY |
1992 | u64 j = *i; |
1993 | ||
1994 | if (j == 0) | |
1995 | __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn); | |
9420f89d MRI |
1996 | |
1997 | /* | |
1998 | * Start out by walking through the ranges in this zone that have | |
1999 | * already been initialized. We don't need to do anything with them | |
2000 | * so we just need to flush them out of the system. | |
2001 | */ | |
f1180fd2 | 2002 | for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) { |
9420f89d MRI |
2003 | if (*epfn <= first_init_pfn) |
2004 | continue; | |
2005 | if (*spfn < first_init_pfn) | |
2006 | *spfn = first_init_pfn; | |
2007 | *i = j; | |
2008 | return true; | |
2009 | } | |
2010 | ||
2011 | return false; | |
2012 | } | |
2013 | ||
2014 | /* | |
2015 | * Initialize and free pages. We do it in two loops: first we initialize | |
2016 | * struct page, then free to buddy allocator, because while we are | |
2017 | * freeing pages we can access pages that are ahead (computing buddy | |
2018 | * page in __free_one_page()). | |
2019 | * | |
2020 | * In order to try and keep some memory in the cache we have the loop | |
2021 | * broken along max page order boundaries. This way we will not cause | |
2022 | * any issues with the buddy page computation. | |
2023 | */ | |
2024 | static unsigned long __init | |
2025 | deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, | |
2026 | unsigned long *end_pfn) | |
2027 | { | |
2028 | unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); | |
2029 | unsigned long spfn = *start_pfn, epfn = *end_pfn; | |
2030 | unsigned long nr_pages = 0; | |
2031 | u64 j = *i; | |
2032 | ||
2033 | /* First we loop through and initialize the page values */ | |
2034 | for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { | |
2035 | unsigned long t; | |
2036 | ||
2037 | if (mo_pfn <= *start_pfn) | |
2038 | break; | |
2039 | ||
2040 | t = min(mo_pfn, *end_pfn); | |
2041 | nr_pages += deferred_init_pages(zone, *start_pfn, t); | |
2042 | ||
2043 | if (mo_pfn < *end_pfn) { | |
2044 | *start_pfn = mo_pfn; | |
2045 | break; | |
2046 | } | |
2047 | } | |
2048 | ||
2049 | /* Reset values and now loop through freeing pages as needed */ | |
2050 | swap(j, *i); | |
2051 | ||
2052 | for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { | |
2053 | unsigned long t; | |
2054 | ||
2055 | if (mo_pfn <= spfn) | |
2056 | break; | |
2057 | ||
2058 | t = min(mo_pfn, epfn); | |
972b89c1 | 2059 | deferred_free_pages(spfn, t - spfn); |
9420f89d MRI |
2060 | |
2061 | if (mo_pfn <= epfn) | |
2062 | break; | |
2063 | } | |
2064 | ||
2065 | return nr_pages; | |
2066 | } | |
2067 | ||
2068 | static void __init | |
2069 | deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, | |
2070 | void *arg) | |
2071 | { | |
2072 | unsigned long spfn, epfn; | |
2073 | struct zone *zone = arg; | |
f1180fd2 | 2074 | u64 i = 0; |
9420f89d MRI |
2075 | |
2076 | deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); | |
2077 | ||
2078 | /* | |
5e0a760b KS |
2079 | * Initialize and free pages in MAX_PAGE_ORDER sized increments so that |
2080 | * we can avoid introducing any issues with the buddy allocator. | |
9420f89d MRI |
2081 | */ |
2082 | while (spfn < end_pfn) { | |
2083 | deferred_init_maxorder(&i, zone, &spfn, &epfn); | |
2084 | cond_resched(); | |
2085 | } | |
2086 | } | |
2087 | ||
188f87f2 | 2088 | static unsigned int __init |
9420f89d MRI |
2089 | deferred_page_init_max_threads(const struct cpumask *node_cpumask) |
2090 | { | |
188f87f2 | 2091 | return max(cpumask_weight(node_cpumask), 1U); |
9420f89d MRI |
2092 | } |
2093 | ||
2094 | /* Initialise remaining memory on a node */ | |
2095 | static int __init deferred_init_memmap(void *data) | |
2096 | { | |
2097 | pg_data_t *pgdat = data; | |
2098 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | |
2099 | unsigned long spfn = 0, epfn = 0; | |
2100 | unsigned long first_init_pfn, flags; | |
2101 | unsigned long start = jiffies; | |
2102 | struct zone *zone; | |
ce8ebb95 | 2103 | int max_threads; |
f1180fd2 | 2104 | u64 i = 0; |
9420f89d MRI |
2105 | |
2106 | /* Bind memory initialisation thread to a local node if possible */ | |
2107 | if (!cpumask_empty(cpumask)) | |
2108 | set_cpus_allowed_ptr(current, cpumask); | |
2109 | ||
2110 | pgdat_resize_lock(pgdat, &flags); | |
2111 | first_init_pfn = pgdat->first_deferred_pfn; | |
2112 | if (first_init_pfn == ULONG_MAX) { | |
2113 | pgdat_resize_unlock(pgdat, &flags); | |
2114 | pgdat_init_report_one_done(); | |
2115 | return 0; | |
2116 | } | |
2117 | ||
2118 | /* Sanity check boundaries */ | |
2119 | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | |
2120 | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | |
2121 | pgdat->first_deferred_pfn = ULONG_MAX; | |
2122 | ||
2123 | /* | |
2124 | * Once we unlock here, the zone cannot be grown anymore, thus if an | |
2125 | * interrupt thread must allocate this early in boot, zone must be | |
2126 | * pre-grown prior to start of deferred page initialization. | |
2127 | */ | |
2128 | pgdat_resize_unlock(pgdat, &flags); | |
2129 | ||
ce8ebb95 WY |
2130 | /* Only the highest zone is deferred */ |
2131 | zone = pgdat->node_zones + pgdat->nr_zones - 1; | |
9420f89d MRI |
2132 | |
2133 | max_threads = deferred_page_init_max_threads(cpumask); | |
2134 | ||
544b8e14 WY |
2135 | while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) { |
2136 | first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION); | |
9420f89d MRI |
2137 | struct padata_mt_job job = { |
2138 | .thread_fn = deferred_init_memmap_chunk, | |
2139 | .fn_arg = zone, | |
2140 | .start = spfn, | |
544b8e14 | 2141 | .size = first_init_pfn - spfn, |
9420f89d MRI |
2142 | .align = PAGES_PER_SECTION, |
2143 | .min_chunk = PAGES_PER_SECTION, | |
2144 | .max_threads = max_threads, | |
eb522866 | 2145 | .numa_aware = false, |
9420f89d MRI |
2146 | }; |
2147 | ||
2148 | padata_do_multithreaded(&job); | |
9420f89d | 2149 | } |
544b8e14 | 2150 | |
9420f89d | 2151 | /* Sanity check that the next zone really is unpopulated */ |
ce8ebb95 | 2152 | WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone)); |
9420f89d MRI |
2153 | |
2154 | pr_info("node %d deferred pages initialised in %ums\n", | |
2155 | pgdat->node_id, jiffies_to_msecs(jiffies - start)); | |
2156 | ||
2157 | pgdat_init_report_one_done(); | |
2158 | return 0; | |
2159 | } | |
2160 | ||
2161 | /* | |
2162 | * If this zone has deferred pages, try to grow it by initializing enough | |
2163 | * deferred pages to satisfy the allocation specified by order, rounded up to | |
2164 | * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments | |
2165 | * of SECTION_SIZE bytes by initializing struct pages in increments of | |
2166 | * PAGES_PER_SECTION * sizeof(struct page) bytes. | |
2167 | * | |
2168 | * Return true when zone was grown, otherwise return false. We return true even | |
2169 | * when we grow less than requested, to let the caller decide if there are | |
2170 | * enough pages to satisfy the allocation. | |
9420f89d MRI |
2171 | */ |
2172 | bool __init deferred_grow_zone(struct zone *zone, unsigned int order) | |
2173 | { | |
2174 | unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); | |
2175 | pg_data_t *pgdat = zone->zone_pgdat; | |
2176 | unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; | |
2177 | unsigned long spfn, epfn, flags; | |
2178 | unsigned long nr_pages = 0; | |
f1180fd2 | 2179 | u64 i = 0; |
9420f89d MRI |
2180 | |
2181 | /* Only the last zone may have deferred pages */ | |
2182 | if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) | |
2183 | return false; | |
2184 | ||
2185 | pgdat_resize_lock(pgdat, &flags); | |
2186 | ||
2187 | /* | |
2188 | * If someone grew this zone while we were waiting for spinlock, return | |
2189 | * true, as there might be enough pages already. | |
2190 | */ | |
2191 | if (first_deferred_pfn != pgdat->first_deferred_pfn) { | |
2192 | pgdat_resize_unlock(pgdat, &flags); | |
2193 | return true; | |
2194 | } | |
2195 | ||
2196 | /* If the zone is empty somebody else may have cleared out the zone */ | |
2197 | if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | |
2198 | first_deferred_pfn)) { | |
2199 | pgdat->first_deferred_pfn = ULONG_MAX; | |
2200 | pgdat_resize_unlock(pgdat, &flags); | |
2201 | /* Retry only once. */ | |
2202 | return first_deferred_pfn != ULONG_MAX; | |
2203 | } | |
2204 | ||
2205 | /* | |
5e0a760b | 2206 | * Initialize and free pages in MAX_PAGE_ORDER sized increments so |
9420f89d MRI |
2207 | * that we can avoid introducing any issues with the buddy |
2208 | * allocator. | |
2209 | */ | |
2210 | while (spfn < epfn) { | |
2211 | /* update our first deferred PFN for this section */ | |
2212 | first_deferred_pfn = spfn; | |
2213 | ||
2214 | nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); | |
2215 | touch_nmi_watchdog(); | |
2216 | ||
2217 | /* We should only stop along section boundaries */ | |
2218 | if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) | |
2219 | continue; | |
2220 | ||
2221 | /* If our quota has been met we can stop here */ | |
2222 | if (nr_pages >= nr_pages_needed) | |
2223 | break; | |
2224 | } | |
2225 | ||
2226 | pgdat->first_deferred_pfn = spfn; | |
2227 | pgdat_resize_unlock(pgdat, &flags); | |
2228 | ||
2229 | return nr_pages > 0; | |
2230 | } | |
2231 | ||
2232 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
2233 | ||
2234 | #ifdef CONFIG_CMA | |
2235 | void __init init_cma_reserved_pageblock(struct page *page) | |
2236 | { | |
2237 | unsigned i = pageblock_nr_pages; | |
2238 | struct page *p = page; | |
2239 | ||
2240 | do { | |
2241 | __ClearPageReserved(p); | |
2242 | set_page_count(p, 0); | |
2243 | } while (++p, --i); | |
2244 | ||
2245 | set_pageblock_migratetype(page, MIGRATE_CMA); | |
2246 | set_page_refcounted(page); | |
766c163c SB |
2247 | /* pages were reserved and not allocated */ |
2248 | clear_page_tag_ref(page); | |
9420f89d MRI |
2249 | __free_pages(page, pageblock_order); |
2250 | ||
2251 | adjust_managed_page_count(page, pageblock_nr_pages); | |
2252 | page_zone(page)->cma_pages += pageblock_nr_pages; | |
2253 | } | |
2254 | #endif | |
2255 | ||
904d5857 KW |
2256 | void set_zone_contiguous(struct zone *zone) |
2257 | { | |
2258 | unsigned long block_start_pfn = zone->zone_start_pfn; | |
2259 | unsigned long block_end_pfn; | |
2260 | ||
2261 | block_end_pfn = pageblock_end_pfn(block_start_pfn); | |
2262 | for (; block_start_pfn < zone_end_pfn(zone); | |
2263 | block_start_pfn = block_end_pfn, | |
2264 | block_end_pfn += pageblock_nr_pages) { | |
2265 | ||
2266 | block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | |
2267 | ||
2268 | if (!__pageblock_pfn_to_page(block_start_pfn, | |
2269 | block_end_pfn, zone)) | |
2270 | return; | |
2271 | cond_resched(); | |
2272 | } | |
2273 | ||
2274 | /* We confirm that there is no hole */ | |
2275 | zone->contiguous = true; | |
2276 | } | |
2277 | ||
4f66da89 | 2278 | static void __init mem_init_print_info(void); |
9420f89d MRI |
2279 | void __init page_alloc_init_late(void) |
2280 | { | |
2281 | struct zone *zone; | |
2282 | int nid; | |
2283 | ||
2284 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
2285 | ||
2286 | /* There will be num_node_state(N_MEMORY) threads */ | |
2287 | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | |
2288 | for_each_node_state(nid, N_MEMORY) { | |
2289 | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); | |
2290 | } | |
2291 | ||
2292 | /* Block until all are initialised */ | |
2293 | wait_for_completion(&pgdat_init_all_done_comp); | |
2294 | ||
2295 | /* | |
2296 | * We initialized the rest of the deferred pages. Permanently disable | |
2297 | * on-demand struct page initialization. | |
2298 | */ | |
2299 | static_branch_disable(&deferred_pages); | |
2300 | ||
2301 | /* Reinit limits that are based on free pages after the kernel is up */ | |
2302 | files_maxfiles_init(); | |
2303 | #endif | |
2304 | ||
4f66da89 WY |
2305 | /* Accounting of total+free memory is stable at this point. */ |
2306 | mem_init_print_info(); | |
9420f89d MRI |
2307 | buffer_init(); |
2308 | ||
2309 | /* Discard memblock private memory */ | |
2310 | memblock_discard(); | |
2311 | ||
2312 | for_each_node_state(nid, N_MEMORY) | |
2313 | shuffle_free_memory(NODE_DATA(nid)); | |
2314 | ||
2315 | for_each_populated_zone(zone) | |
2316 | set_zone_contiguous(zone); | |
de57807e MRI |
2317 | |
2318 | /* Initialize page ext after all struct pages are initialized. */ | |
2319 | if (deferred_struct_pages) | |
2320 | page_ext_init(); | |
e95d372c KW |
2321 | |
2322 | page_alloc_sysctl_init(); | |
9420f89d MRI |
2323 | } |
2324 | ||
9420f89d MRI |
2325 | /* |
2326 | * Adaptive scale is meant to reduce sizes of hash tables on large memory | |
2327 | * machines. As memory size is increased the scale is also increased but at | |
2328 | * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory | |
2329 | * quadruples the scale is increased by one, which means the size of hash table | |
2330 | * only doubles, instead of quadrupling as well. | |
2331 | * Because 32-bit systems cannot have large physical memory, where this scaling | |
2332 | * makes sense, it is disabled on such platforms. | |
2333 | */ | |
2334 | #if __BITS_PER_LONG > 32 | |
2335 | #define ADAPT_SCALE_BASE (64ul << 30) | |
2336 | #define ADAPT_SCALE_SHIFT 2 | |
2337 | #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) | |
2338 | #endif | |
2339 | ||
2340 | /* | |
2341 | * allocate a large system hash table from bootmem | |
2342 | * - it is assumed that the hash table must contain an exact power-of-2 | |
2343 | * quantity of entries | |
2344 | * - limit is the number of hash buckets, not the total allocation size | |
2345 | */ | |
2346 | void *__init alloc_large_system_hash(const char *tablename, | |
2347 | unsigned long bucketsize, | |
2348 | unsigned long numentries, | |
2349 | int scale, | |
2350 | int flags, | |
2351 | unsigned int *_hash_shift, | |
2352 | unsigned int *_hash_mask, | |
2353 | unsigned long low_limit, | |
2354 | unsigned long high_limit) | |
2355 | { | |
2356 | unsigned long long max = high_limit; | |
2357 | unsigned long log2qty, size; | |
2358 | void *table; | |
2359 | gfp_t gfp_flags; | |
2360 | bool virt; | |
2361 | bool huge; | |
2362 | ||
2363 | /* allow the kernel cmdline to have a say */ | |
2364 | if (!numentries) { | |
2365 | /* round applicable memory size up to nearest megabyte */ | |
2366 | numentries = nr_kernel_pages; | |
9420f89d MRI |
2367 | |
2368 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | |
2369 | if (PAGE_SIZE < SZ_1M) | |
2370 | numentries = round_up(numentries, SZ_1M / PAGE_SIZE); | |
2371 | ||
2372 | #if __BITS_PER_LONG > 32 | |
2373 | if (!high_limit) { | |
2374 | unsigned long adapt; | |
2375 | ||
2376 | for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; | |
2377 | adapt <<= ADAPT_SCALE_SHIFT) | |
2378 | scale++; | |
2379 | } | |
2380 | #endif | |
2381 | ||
2382 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
2383 | if (scale > PAGE_SHIFT) | |
2384 | numentries >>= (scale - PAGE_SHIFT); | |
2385 | else | |
2386 | numentries <<= (PAGE_SHIFT - scale); | |
2387 | ||
3fade62b | 2388 | if (unlikely((numentries * bucketsize) < PAGE_SIZE)) |
9420f89d MRI |
2389 | numentries = PAGE_SIZE / bucketsize; |
2390 | } | |
2391 | numentries = roundup_pow_of_two(numentries); | |
2392 | ||
2393 | /* limit allocation size to 1/16 total memory by default */ | |
2394 | if (max == 0) { | |
2395 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
2396 | do_div(max, bucketsize); | |
2397 | } | |
2398 | max = min(max, 0x80000000ULL); | |
2399 | ||
2400 | if (numentries < low_limit) | |
2401 | numentries = low_limit; | |
2402 | if (numentries > max) | |
2403 | numentries = max; | |
2404 | ||
2405 | log2qty = ilog2(numentries); | |
2406 | ||
2407 | gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; | |
2408 | do { | |
2409 | virt = false; | |
2410 | size = bucketsize << log2qty; | |
2411 | if (flags & HASH_EARLY) { | |
2412 | if (flags & HASH_ZERO) | |
2413 | table = memblock_alloc(size, SMP_CACHE_BYTES); | |
2414 | else | |
2415 | table = memblock_alloc_raw(size, | |
2416 | SMP_CACHE_BYTES); | |
5e0a760b | 2417 | } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) { |
9420f89d MRI |
2418 | table = vmalloc_huge(size, gfp_flags); |
2419 | virt = true; | |
2420 | if (table) | |
2421 | huge = is_vm_area_hugepages(table); | |
2422 | } else { | |
2423 | /* | |
2424 | * If bucketsize is not a power-of-two, we may free | |
2425 | * some pages at the end of hash table which | |
2426 | * alloc_pages_exact() automatically does | |
2427 | */ | |
2428 | table = alloc_pages_exact(size, gfp_flags); | |
2429 | kmemleak_alloc(table, size, 1, gfp_flags); | |
2430 | } | |
2431 | } while (!table && size > PAGE_SIZE && --log2qty); | |
2432 | ||
2433 | if (!table) | |
2434 | panic("Failed to allocate %s hash table\n", tablename); | |
2435 | ||
2436 | pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", | |
2437 | tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, | |
2438 | virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); | |
2439 | ||
2440 | if (_hash_shift) | |
2441 | *_hash_shift = log2qty; | |
2442 | if (_hash_mask) | |
2443 | *_hash_mask = (1 << log2qty) - 1; | |
2444 | ||
2445 | return table; | |
2446 | } | |
2447 | ||
9420f89d MRI |
2448 | void __init memblock_free_pages(struct page *page, unsigned long pfn, |
2449 | unsigned int order) | |
2450 | { | |
61167ad5 YD |
2451 | if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { |
2452 | int nid = early_pfn_to_nid(pfn); | |
2453 | ||
2454 | if (!early_page_initialised(pfn, nid)) | |
2455 | return; | |
2456 | } | |
2457 | ||
9420f89d MRI |
2458 | if (!kmsan_memblock_free_pages(page, order)) { |
2459 | /* KMSAN will take care of these pages. */ | |
2460 | return; | |
2461 | } | |
d224eb02 SB |
2462 | |
2463 | /* pages were reserved and not allocated */ | |
a8fc28da | 2464 | clear_page_tag_ref(page); |
13c52654 | 2465 | __free_pages_core(page, order, MEMINIT_EARLY); |
9420f89d | 2466 | } |
b7ec1bf3 | 2467 | |
5e7d5da2 KW |
2468 | DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); |
2469 | EXPORT_SYMBOL(init_on_alloc); | |
2470 | ||
2471 | DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); | |
2472 | EXPORT_SYMBOL(init_on_free); | |
2473 | ||
f2fc4b44 MRI |
2474 | static bool _init_on_alloc_enabled_early __read_mostly |
2475 | = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); | |
2476 | static int __init early_init_on_alloc(char *buf) | |
2477 | { | |
2478 | ||
2479 | return kstrtobool(buf, &_init_on_alloc_enabled_early); | |
2480 | } | |
2481 | early_param("init_on_alloc", early_init_on_alloc); | |
2482 | ||
2483 | static bool _init_on_free_enabled_early __read_mostly | |
2484 | = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); | |
2485 | static int __init early_init_on_free(char *buf) | |
2486 | { | |
2487 | return kstrtobool(buf, &_init_on_free_enabled_early); | |
2488 | } | |
2489 | early_param("init_on_free", early_init_on_free); | |
2490 | ||
2491 | DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); | |
2492 | ||
2493 | /* | |
2494 | * Enable static keys related to various memory debugging and hardening options. | |
2495 | * Some override others, and depend on early params that are evaluated in the | |
2496 | * order of appearance. So we need to first gather the full picture of what was | |
2497 | * enabled, and then make decisions. | |
2498 | */ | |
2499 | static void __init mem_debugging_and_hardening_init(void) | |
2500 | { | |
2501 | bool page_poisoning_requested = false; | |
2502 | bool want_check_pages = false; | |
2503 | ||
2504 | #ifdef CONFIG_PAGE_POISONING | |
2505 | /* | |
2506 | * Page poisoning is debug page alloc for some arches. If | |
2507 | * either of those options are enabled, enable poisoning. | |
2508 | */ | |
2509 | if (page_poisoning_enabled() || | |
2510 | (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && | |
2511 | debug_pagealloc_enabled())) { | |
2512 | static_branch_enable(&_page_poisoning_enabled); | |
2513 | page_poisoning_requested = true; | |
2514 | want_check_pages = true; | |
2515 | } | |
2516 | #endif | |
2517 | ||
384a746b | 2518 | if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && |
f2fc4b44 MRI |
2519 | page_poisoning_requested) { |
2520 | pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " | |
384a746b | 2521 | "will take precedence over init_on_alloc and init_on_free\n"); |
f2fc4b44 MRI |
2522 | _init_on_alloc_enabled_early = false; |
2523 | _init_on_free_enabled_early = false; | |
2524 | } | |
2525 | ||
2526 | if (_init_on_alloc_enabled_early) { | |
2527 | want_check_pages = true; | |
2528 | static_branch_enable(&init_on_alloc); | |
2529 | } else { | |
2530 | static_branch_disable(&init_on_alloc); | |
2531 | } | |
2532 | ||
2533 | if (_init_on_free_enabled_early) { | |
2534 | want_check_pages = true; | |
2535 | static_branch_enable(&init_on_free); | |
2536 | } else { | |
2537 | static_branch_disable(&init_on_free); | |
2538 | } | |
2539 | ||
384a746b DH |
2540 | if (IS_ENABLED(CONFIG_KMSAN) && |
2541 | (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) | |
2542 | pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); | |
f2fc4b44 MRI |
2543 | |
2544 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
2545 | if (debug_pagealloc_enabled()) { | |
2546 | want_check_pages = true; | |
2547 | static_branch_enable(&_debug_pagealloc_enabled); | |
2548 | ||
2549 | if (debug_guardpage_minorder()) | |
2550 | static_branch_enable(&_debug_guardpage_enabled); | |
2551 | } | |
2552 | #endif | |
2553 | ||
2554 | /* | |
2555 | * Any page debugging or hardening option also enables sanity checking | |
2556 | * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's | |
2557 | * enabled already. | |
2558 | */ | |
2559 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) | |
2560 | static_branch_enable(&check_pages_enabled); | |
2561 | } | |
2562 | ||
b7ec1bf3 MRI |
2563 | /* Report memory auto-initialization states for this boot. */ |
2564 | static void __init report_meminit(void) | |
2565 | { | |
2566 | const char *stack; | |
2567 | ||
2568 | if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) | |
2569 | stack = "all(pattern)"; | |
2570 | else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) | |
2571 | stack = "all(zero)"; | |
2572 | else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) | |
2573 | stack = "byref_all(zero)"; | |
2574 | else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) | |
2575 | stack = "byref(zero)"; | |
2576 | else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) | |
2577 | stack = "__user(zero)"; | |
2578 | else | |
2579 | stack = "off"; | |
2580 | ||
384a746b | 2581 | pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", |
b7ec1bf3 | 2582 | stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", |
384a746b | 2583 | want_init_on_free() ? "on" : "off"); |
b7ec1bf3 MRI |
2584 | if (want_init_on_free()) |
2585 | pr_info("mem auto-init: clearing system memory may take some time...\n"); | |
2586 | } | |
2587 | ||
eb8589b4 MRI |
2588 | static void __init mem_init_print_info(void) |
2589 | { | |
2590 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
2591 | unsigned long init_code_size, init_data_size; | |
2592 | ||
2593 | physpages = get_num_physpages(); | |
2594 | codesize = _etext - _stext; | |
2595 | datasize = _edata - _sdata; | |
2596 | rosize = __end_rodata - __start_rodata; | |
2597 | bss_size = __bss_stop - __bss_start; | |
2598 | init_data_size = __init_end - __init_begin; | |
2599 | init_code_size = _einittext - _sinittext; | |
2600 | ||
2601 | /* | |
2602 | * Detect special cases and adjust section sizes accordingly: | |
2603 | * 1) .init.* may be embedded into .data sections | |
2604 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
2605 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
2606 | * 3) .rodata.* may be embedded into .text or .data sections. | |
2607 | */ | |
2608 | #define adj_init_size(start, end, size, pos, adj) \ | |
2609 | do { \ | |
2610 | if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ | |
2611 | size -= adj; \ | |
2612 | } while (0) | |
2613 | ||
2614 | adj_init_size(__init_begin, __init_end, init_data_size, | |
2615 | _sinittext, init_code_size); | |
2616 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
2617 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
2618 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
2619 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
2620 | ||
2621 | #undef adj_init_size | |
2622 | ||
2623 | pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" | |
2624 | #ifdef CONFIG_HIGHMEM | |
2625 | ", %luK highmem" | |
2626 | #endif | |
2627 | ")\n", | |
2628 | K(nr_free_pages()), K(physpages), | |
2629 | codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, | |
2630 | (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, | |
2631 | K(physpages - totalram_pages() - totalcma_pages), | |
2632 | K(totalcma_pages) | |
2633 | #ifdef CONFIG_HIGHMEM | |
2634 | , K(totalhigh_pages()) | |
2635 | #endif | |
2636 | ); | |
2637 | } | |
2638 | ||
b7ec1bf3 MRI |
2639 | /* |
2640 | * Set up kernel memory allocators | |
2641 | */ | |
2642 | void __init mm_core_init(void) | |
2643 | { | |
2644 | /* Initializations relying on SMP setup */ | |
64e0ba39 | 2645 | BUILD_BUG_ON(MAX_ZONELISTS > 2); |
b7ec1bf3 MRI |
2646 | build_all_zonelists(NULL); |
2647 | page_alloc_init_cpuhp(); | |
2648 | ||
2649 | /* | |
2650 | * page_ext requires contiguous pages, | |
5e0a760b | 2651 | * bigger than MAX_PAGE_ORDER unless SPARSEMEM. |
b7ec1bf3 MRI |
2652 | */ |
2653 | page_ext_init_flatmem(); | |
f2fc4b44 | 2654 | mem_debugging_and_hardening_init(); |
cabdf74e | 2655 | kfence_alloc_pool_and_metadata(); |
b7ec1bf3 MRI |
2656 | report_meminit(); |
2657 | kmsan_init_shadow(); | |
2658 | stack_depot_early_init(); | |
2659 | mem_init(); | |
b7ec1bf3 MRI |
2660 | kmem_cache_init(); |
2661 | /* | |
2662 | * page_owner must be initialized after buddy is ready, and also after | |
2663 | * slab is ready so that stack_depot_init() works properly | |
2664 | */ | |
2665 | page_ext_init_flatmem_late(); | |
2666 | kmemleak_init(); | |
4cd1e9ed MRI |
2667 | ptlock_cache_init(); |
2668 | pgtable_cache_init(); | |
b7ec1bf3 MRI |
2669 | debug_objects_mem_init(); |
2670 | vmalloc_init(); | |
2671 | /* If no deferred init page_ext now, as vmap is fully initialized */ | |
2672 | if (!deferred_struct_pages) | |
2673 | page_ext_init(); | |
2674 | /* Should be run before the first non-init thread is created */ | |
2675 | init_espfix_bsp(); | |
2676 | /* Should be run after espfix64 is set up. */ | |
2677 | pti_init(); | |
2678 | kmsan_init_runtime(); | |
2679 | mm_cache_init(); | |
f6bec26c | 2680 | execmem_init(); |
b7ec1bf3 | 2681 | } |