]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
6b74ab97 MG |
2 | /* |
3 | * mm_init.c - Memory initialisation verification and debugging | |
4 | * | |
5 | * Copyright 2008 IBM Corporation, 2008 | |
6 | * Author Mel Gorman <[email protected]> | |
7 | * | |
8 | */ | |
9 | #include <linux/kernel.h> | |
10 | #include <linux/init.h> | |
ff7ea79c | 11 | #include <linux/kobject.h> |
b95f1b31 | 12 | #include <linux/export.h> |
917d9290 TC |
13 | #include <linux/memory.h> |
14 | #include <linux/notifier.h> | |
7e18adb4 | 15 | #include <linux/sched.h> |
56f3547b | 16 | #include <linux/mman.h> |
9420f89d MRI |
17 | #include <linux/memblock.h> |
18 | #include <linux/page-isolation.h> | |
19 | #include <linux/padata.h> | |
20 | #include <linux/nmi.h> | |
21 | #include <linux/buffer_head.h> | |
22 | #include <linux/kmemleak.h> | |
b7ec1bf3 MRI |
23 | #include <linux/kfence.h> |
24 | #include <linux/page_ext.h> | |
25 | #include <linux/pti.h> | |
26 | #include <linux/pgtable.h> | |
dcfe378c | 27 | #include <linux/stackdepot.h> |
eb8589b4 MRI |
28 | #include <linux/swap.h> |
29 | #include <linux/cma.h> | |
7ea6ec4c | 30 | #include <linux/crash_dump.h> |
708614e6 | 31 | #include "internal.h" |
d5d2c02a | 32 | #include "slab.h" |
9420f89d | 33 | #include "shuffle.h" |
6b74ab97 | 34 | |
b7ec1bf3 MRI |
35 | #include <asm/setup.h> |
36 | ||
5e9426ab | 37 | #ifdef CONFIG_DEBUG_MEMORY_INIT |
194e8151 | 38 | int __meminitdata mminit_loglevel; |
6b74ab97 | 39 | |
68ad8df4 | 40 | /* The zonelists are simply reported, validation is manual. */ |
0e2342c7 | 41 | void __init mminit_verify_zonelist(void) |
68ad8df4 MG |
42 | { |
43 | int nid; | |
44 | ||
45 | if (mminit_loglevel < MMINIT_VERIFY) | |
46 | return; | |
47 | ||
48 | for_each_online_node(nid) { | |
49 | pg_data_t *pgdat = NODE_DATA(nid); | |
50 | struct zone *zone; | |
51 | struct zoneref *z; | |
52 | struct zonelist *zonelist; | |
53 | int i, listid, zoneid; | |
54 | ||
e46b893d | 55 | BUILD_BUG_ON(MAX_ZONELISTS > 2); |
68ad8df4 MG |
56 | for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) { |
57 | ||
58 | /* Identify the zone and nodelist */ | |
59 | zoneid = i % MAX_NR_ZONES; | |
60 | listid = i / MAX_NR_ZONES; | |
61 | zonelist = &pgdat->node_zonelists[listid]; | |
62 | zone = &pgdat->node_zones[zoneid]; | |
63 | if (!populated_zone(zone)) | |
64 | continue; | |
65 | ||
66 | /* Print information about the zonelist */ | |
67 | printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ", | |
68 | listid > 0 ? "thisnode" : "general", nid, | |
69 | zone->name); | |
70 | ||
71 | /* Iterate the zonelist */ | |
c1093b74 PT |
72 | for_each_zone_zonelist(zone, z, zonelist, zoneid) |
73 | pr_cont("%d:%s ", zone_to_nid(zone), zone->name); | |
1170532b | 74 | pr_cont("\n"); |
68ad8df4 MG |
75 | } |
76 | } | |
77 | } | |
78 | ||
708614e6 MG |
79 | void __init mminit_verify_pageflags_layout(void) |
80 | { | |
81 | int shift, width; | |
82 | unsigned long or_mask, add_mask; | |
83 | ||
daee07bf | 84 | shift = BITS_PER_LONG; |
86fea8b4 | 85 | width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH |
ec1c86b2 | 86 | - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH; |
708614e6 | 87 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths", |
ec1c86b2 | 88 | "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n", |
708614e6 MG |
89 | SECTIONS_WIDTH, |
90 | NODES_WIDTH, | |
91 | ZONES_WIDTH, | |
90572890 | 92 | LAST_CPUPID_WIDTH, |
86fea8b4 | 93 | KASAN_TAG_WIDTH, |
ec1c86b2 YZ |
94 | LRU_GEN_WIDTH, |
95 | LRU_REFS_WIDTH, | |
708614e6 MG |
96 | NR_PAGEFLAGS); |
97 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts", | |
86fea8b4 | 98 | "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n", |
708614e6 | 99 | SECTIONS_SHIFT, |
708614e6 | 100 | NODES_SHIFT, |
a4e1b4c6 | 101 | ZONES_SHIFT, |
86fea8b4 JX |
102 | LAST_CPUPID_SHIFT, |
103 | KASAN_TAG_WIDTH); | |
a4e1b4c6 | 104 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts", |
86fea8b4 | 105 | "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n", |
708614e6 MG |
106 | (unsigned long)SECTIONS_PGSHIFT, |
107 | (unsigned long)NODES_PGSHIFT, | |
a4e1b4c6 | 108 | (unsigned long)ZONES_PGSHIFT, |
86fea8b4 JX |
109 | (unsigned long)LAST_CPUPID_PGSHIFT, |
110 | (unsigned long)KASAN_TAG_PGSHIFT); | |
a4e1b4c6 MG |
111 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid", |
112 | "Node/Zone ID: %lu -> %lu\n", | |
113 | (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT), | |
114 | (unsigned long)ZONEID_PGOFF); | |
708614e6 | 115 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage", |
a4e1b4c6 | 116 | "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n", |
708614e6 MG |
117 | shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0); |
118 | #ifdef NODE_NOT_IN_PAGE_FLAGS | |
119 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", | |
120 | "Node not in page flags"); | |
121 | #endif | |
90572890 | 122 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
a4e1b4c6 | 123 | mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags", |
90572890 | 124 | "Last cpupid not in page flags"); |
a4e1b4c6 | 125 | #endif |
708614e6 MG |
126 | |
127 | if (SECTIONS_WIDTH) { | |
128 | shift -= SECTIONS_WIDTH; | |
129 | BUG_ON(shift != SECTIONS_PGSHIFT); | |
130 | } | |
131 | if (NODES_WIDTH) { | |
132 | shift -= NODES_WIDTH; | |
133 | BUG_ON(shift != NODES_PGSHIFT); | |
134 | } | |
135 | if (ZONES_WIDTH) { | |
136 | shift -= ZONES_WIDTH; | |
137 | BUG_ON(shift != ZONES_PGSHIFT); | |
138 | } | |
139 | ||
140 | /* Check for bitmask overlaps */ | |
141 | or_mask = (ZONES_MASK << ZONES_PGSHIFT) | | |
142 | (NODES_MASK << NODES_PGSHIFT) | | |
143 | (SECTIONS_MASK << SECTIONS_PGSHIFT); | |
144 | add_mask = (ZONES_MASK << ZONES_PGSHIFT) + | |
145 | (NODES_MASK << NODES_PGSHIFT) + | |
146 | (SECTIONS_MASK << SECTIONS_PGSHIFT); | |
147 | BUG_ON(or_mask != add_mask); | |
148 | } | |
149 | ||
6b74ab97 MG |
150 | static __init int set_mminit_loglevel(char *str) |
151 | { | |
152 | get_option(&str, &mminit_loglevel); | |
153 | return 0; | |
154 | } | |
155 | early_param("mminit_loglevel", set_mminit_loglevel); | |
5e9426ab | 156 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ |
ff7ea79c NA |
157 | |
158 | struct kobject *mm_kobj; | |
ff7ea79c | 159 | |
917d9290 TC |
160 | #ifdef CONFIG_SMP |
161 | s32 vm_committed_as_batch = 32; | |
162 | ||
56f3547b | 163 | void mm_compute_batch(int overcommit_policy) |
917d9290 TC |
164 | { |
165 | u64 memsized_batch; | |
166 | s32 nr = num_present_cpus(); | |
167 | s32 batch = max_t(s32, nr*2, 32); | |
56f3547b FT |
168 | unsigned long ram_pages = totalram_pages(); |
169 | ||
170 | /* | |
171 | * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of | |
172 | * (total memory/#cpus), and lift it to 25% for other policies | |
173 | * to easy the possible lock contention for percpu_counter | |
174 | * vm_committed_as, while the max limit is INT_MAX | |
175 | */ | |
176 | if (overcommit_policy == OVERCOMMIT_NEVER) | |
177 | memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX); | |
178 | else | |
179 | memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX); | |
917d9290 TC |
180 | |
181 | vm_committed_as_batch = max_t(s32, memsized_batch, batch); | |
182 | } | |
183 | ||
184 | static int __meminit mm_compute_batch_notifier(struct notifier_block *self, | |
185 | unsigned long action, void *arg) | |
186 | { | |
187 | switch (action) { | |
188 | case MEM_ONLINE: | |
189 | case MEM_OFFLINE: | |
56f3547b | 190 | mm_compute_batch(sysctl_overcommit_memory); |
01359eb2 | 191 | break; |
917d9290 TC |
192 | default: |
193 | break; | |
194 | } | |
195 | return NOTIFY_OK; | |
196 | } | |
197 | ||
917d9290 TC |
198 | static int __init mm_compute_batch_init(void) |
199 | { | |
56f3547b | 200 | mm_compute_batch(sysctl_overcommit_memory); |
1eeaa4fd | 201 | hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI); |
917d9290 TC |
202 | return 0; |
203 | } | |
204 | ||
205 | __initcall(mm_compute_batch_init); | |
206 | ||
207 | #endif | |
208 | ||
ff7ea79c NA |
209 | static int __init mm_sysfs_init(void) |
210 | { | |
211 | mm_kobj = kobject_create_and_add("mm", kernel_kobj); | |
212 | if (!mm_kobj) | |
213 | return -ENOMEM; | |
214 | ||
215 | return 0; | |
216 | } | |
e82cb95d | 217 | postcore_initcall(mm_sysfs_init); |
9420f89d MRI |
218 | |
219 | static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; | |
220 | static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; | |
221 | static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; | |
222 | ||
223 | static unsigned long required_kernelcore __initdata; | |
224 | static unsigned long required_kernelcore_percent __initdata; | |
225 | static unsigned long required_movablecore __initdata; | |
226 | static unsigned long required_movablecore_percent __initdata; | |
227 | ||
228 | static unsigned long nr_kernel_pages __initdata; | |
229 | static unsigned long nr_all_pages __initdata; | |
9420f89d | 230 | |
de57807e | 231 | static bool deferred_struct_pages __meminitdata; |
9420f89d MRI |
232 | |
233 | static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); | |
234 | ||
235 | static int __init cmdline_parse_core(char *p, unsigned long *core, | |
236 | unsigned long *percent) | |
237 | { | |
238 | unsigned long long coremem; | |
239 | char *endptr; | |
240 | ||
241 | if (!p) | |
242 | return -EINVAL; | |
243 | ||
244 | /* Value may be a percentage of total memory, otherwise bytes */ | |
245 | coremem = simple_strtoull(p, &endptr, 0); | |
246 | if (*endptr == '%') { | |
247 | /* Paranoid check for percent values greater than 100 */ | |
248 | WARN_ON(coremem > 100); | |
249 | ||
250 | *percent = coremem; | |
251 | } else { | |
252 | coremem = memparse(p, &p); | |
253 | /* Paranoid check that UL is enough for the coremem value */ | |
254 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | |
255 | ||
256 | *core = coremem >> PAGE_SHIFT; | |
257 | *percent = 0UL; | |
258 | } | |
259 | return 0; | |
260 | } | |
261 | ||
072ba380 KW |
262 | bool mirrored_kernelcore __initdata_memblock; |
263 | ||
9420f89d MRI |
264 | /* |
265 | * kernelcore=size sets the amount of memory for use for allocations that | |
266 | * cannot be reclaimed or migrated. | |
267 | */ | |
268 | static int __init cmdline_parse_kernelcore(char *p) | |
269 | { | |
270 | /* parse kernelcore=mirror */ | |
271 | if (parse_option_str(p, "mirror")) { | |
272 | mirrored_kernelcore = true; | |
273 | return 0; | |
274 | } | |
275 | ||
276 | return cmdline_parse_core(p, &required_kernelcore, | |
277 | &required_kernelcore_percent); | |
278 | } | |
279 | early_param("kernelcore", cmdline_parse_kernelcore); | |
280 | ||
281 | /* | |
282 | * movablecore=size sets the amount of memory for use for allocations that | |
283 | * can be reclaimed or migrated. | |
284 | */ | |
285 | static int __init cmdline_parse_movablecore(char *p) | |
286 | { | |
287 | return cmdline_parse_core(p, &required_movablecore, | |
288 | &required_movablecore_percent); | |
289 | } | |
290 | early_param("movablecore", cmdline_parse_movablecore); | |
291 | ||
292 | /* | |
293 | * early_calculate_totalpages() | |
294 | * Sum pages in active regions for movable zone. | |
295 | * Populate N_MEMORY for calculating usable_nodes. | |
296 | */ | |
297 | static unsigned long __init early_calculate_totalpages(void) | |
298 | { | |
299 | unsigned long totalpages = 0; | |
300 | unsigned long start_pfn, end_pfn; | |
301 | int i, nid; | |
302 | ||
303 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
304 | unsigned long pages = end_pfn - start_pfn; | |
305 | ||
306 | totalpages += pages; | |
307 | if (pages) | |
308 | node_set_state(nid, N_MEMORY); | |
309 | } | |
310 | return totalpages; | |
311 | } | |
312 | ||
313 | /* | |
314 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
315 | * assumption is made that zones within a node are ordered in monotonic | |
316 | * increasing memory addresses so that the "highest" populated zone is used | |
317 | */ | |
318 | static void __init find_usable_zone_for_movable(void) | |
319 | { | |
320 | int zone_index; | |
321 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
322 | if (zone_index == ZONE_MOVABLE) | |
323 | continue; | |
324 | ||
325 | if (arch_zone_highest_possible_pfn[zone_index] > | |
326 | arch_zone_lowest_possible_pfn[zone_index]) | |
327 | break; | |
328 | } | |
329 | ||
330 | VM_BUG_ON(zone_index == -1); | |
331 | movable_zone = zone_index; | |
332 | } | |
333 | ||
334 | /* | |
335 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
336 | * is spread evenly between nodes as long as the nodes have enough | |
337 | * memory. When they don't, some nodes will have more kernelcore than | |
338 | * others | |
339 | */ | |
340 | static void __init find_zone_movable_pfns_for_nodes(void) | |
341 | { | |
342 | int i, nid; | |
343 | unsigned long usable_startpfn; | |
344 | unsigned long kernelcore_node, kernelcore_remaining; | |
345 | /* save the state before borrow the nodemask */ | |
346 | nodemask_t saved_node_state = node_states[N_MEMORY]; | |
347 | unsigned long totalpages = early_calculate_totalpages(); | |
348 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); | |
349 | struct memblock_region *r; | |
350 | ||
351 | /* Need to find movable_zone earlier when movable_node is specified. */ | |
352 | find_usable_zone_for_movable(); | |
353 | ||
354 | /* | |
355 | * If movable_node is specified, ignore kernelcore and movablecore | |
356 | * options. | |
357 | */ | |
358 | if (movable_node_is_enabled()) { | |
359 | for_each_mem_region(r) { | |
360 | if (!memblock_is_hotpluggable(r)) | |
361 | continue; | |
362 | ||
363 | nid = memblock_get_region_node(r); | |
364 | ||
365 | usable_startpfn = PFN_DOWN(r->base); | |
366 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | |
367 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
368 | usable_startpfn; | |
369 | } | |
370 | ||
371 | goto out2; | |
372 | } | |
373 | ||
374 | /* | |
375 | * If kernelcore=mirror is specified, ignore movablecore option | |
376 | */ | |
377 | if (mirrored_kernelcore) { | |
378 | bool mem_below_4gb_not_mirrored = false; | |
379 | ||
0db31d63 MW |
380 | if (!memblock_has_mirror()) { |
381 | pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n"); | |
382 | goto out; | |
383 | } | |
384 | ||
7ea6ec4c MW |
385 | if (is_kdump_kernel()) { |
386 | pr_warn("The system is under kdump, ignore kernelcore=mirror.\n"); | |
387 | goto out; | |
388 | } | |
389 | ||
9420f89d MRI |
390 | for_each_mem_region(r) { |
391 | if (memblock_is_mirror(r)) | |
392 | continue; | |
393 | ||
394 | nid = memblock_get_region_node(r); | |
395 | ||
396 | usable_startpfn = memblock_region_memory_base_pfn(r); | |
397 | ||
398 | if (usable_startpfn < PHYS_PFN(SZ_4G)) { | |
399 | mem_below_4gb_not_mirrored = true; | |
400 | continue; | |
401 | } | |
402 | ||
403 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | |
404 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
405 | usable_startpfn; | |
406 | } | |
407 | ||
408 | if (mem_below_4gb_not_mirrored) | |
409 | pr_warn("This configuration results in unmirrored kernel memory.\n"); | |
410 | ||
411 | goto out2; | |
412 | } | |
413 | ||
414 | /* | |
415 | * If kernelcore=nn% or movablecore=nn% was specified, calculate the | |
416 | * amount of necessary memory. | |
417 | */ | |
418 | if (required_kernelcore_percent) | |
419 | required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / | |
420 | 10000UL; | |
421 | if (required_movablecore_percent) | |
422 | required_movablecore = (totalpages * 100 * required_movablecore_percent) / | |
423 | 10000UL; | |
424 | ||
425 | /* | |
426 | * If movablecore= was specified, calculate what size of | |
427 | * kernelcore that corresponds so that memory usable for | |
428 | * any allocation type is evenly spread. If both kernelcore | |
429 | * and movablecore are specified, then the value of kernelcore | |
430 | * will be used for required_kernelcore if it's greater than | |
431 | * what movablecore would have allowed. | |
432 | */ | |
433 | if (required_movablecore) { | |
434 | unsigned long corepages; | |
435 | ||
436 | /* | |
437 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
438 | * was requested by the user | |
439 | */ | |
440 | required_movablecore = | |
441 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
442 | required_movablecore = min(totalpages, required_movablecore); | |
443 | corepages = totalpages - required_movablecore; | |
444 | ||
445 | required_kernelcore = max(required_kernelcore, corepages); | |
446 | } | |
447 | ||
448 | /* | |
449 | * If kernelcore was not specified or kernelcore size is larger | |
450 | * than totalpages, there is no ZONE_MOVABLE. | |
451 | */ | |
452 | if (!required_kernelcore || required_kernelcore >= totalpages) | |
453 | goto out; | |
454 | ||
455 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
456 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | |
457 | ||
458 | restart: | |
459 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
460 | kernelcore_node = required_kernelcore / usable_nodes; | |
461 | for_each_node_state(nid, N_MEMORY) { | |
462 | unsigned long start_pfn, end_pfn; | |
463 | ||
464 | /* | |
465 | * Recalculate kernelcore_node if the division per node | |
466 | * now exceeds what is necessary to satisfy the requested | |
467 | * amount of memory for the kernel | |
468 | */ | |
469 | if (required_kernelcore < kernelcore_node) | |
470 | kernelcore_node = required_kernelcore / usable_nodes; | |
471 | ||
472 | /* | |
473 | * As the map is walked, we track how much memory is usable | |
474 | * by the kernel using kernelcore_remaining. When it is | |
475 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
476 | */ | |
477 | kernelcore_remaining = kernelcore_node; | |
478 | ||
479 | /* Go through each range of PFNs within this node */ | |
480 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | |
481 | unsigned long size_pages; | |
482 | ||
483 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); | |
484 | if (start_pfn >= end_pfn) | |
485 | continue; | |
486 | ||
487 | /* Account for what is only usable for kernelcore */ | |
488 | if (start_pfn < usable_startpfn) { | |
489 | unsigned long kernel_pages; | |
490 | kernel_pages = min(end_pfn, usable_startpfn) | |
491 | - start_pfn; | |
492 | ||
493 | kernelcore_remaining -= min(kernel_pages, | |
494 | kernelcore_remaining); | |
495 | required_kernelcore -= min(kernel_pages, | |
496 | required_kernelcore); | |
497 | ||
498 | /* Continue if range is now fully accounted */ | |
499 | if (end_pfn <= usable_startpfn) { | |
500 | ||
501 | /* | |
502 | * Push zone_movable_pfn to the end so | |
503 | * that if we have to rebalance | |
504 | * kernelcore across nodes, we will | |
505 | * not double account here | |
506 | */ | |
507 | zone_movable_pfn[nid] = end_pfn; | |
508 | continue; | |
509 | } | |
510 | start_pfn = usable_startpfn; | |
511 | } | |
512 | ||
513 | /* | |
514 | * The usable PFN range for ZONE_MOVABLE is from | |
515 | * start_pfn->end_pfn. Calculate size_pages as the | |
516 | * number of pages used as kernelcore | |
517 | */ | |
518 | size_pages = end_pfn - start_pfn; | |
519 | if (size_pages > kernelcore_remaining) | |
520 | size_pages = kernelcore_remaining; | |
521 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
522 | ||
523 | /* | |
524 | * Some kernelcore has been met, update counts and | |
525 | * break if the kernelcore for this node has been | |
526 | * satisfied | |
527 | */ | |
528 | required_kernelcore -= min(required_kernelcore, | |
529 | size_pages); | |
530 | kernelcore_remaining -= size_pages; | |
531 | if (!kernelcore_remaining) | |
532 | break; | |
533 | } | |
534 | } | |
535 | ||
536 | /* | |
537 | * If there is still required_kernelcore, we do another pass with one | |
538 | * less node in the count. This will push zone_movable_pfn[nid] further | |
539 | * along on the nodes that still have memory until kernelcore is | |
540 | * satisfied | |
541 | */ | |
542 | usable_nodes--; | |
543 | if (usable_nodes && required_kernelcore > usable_nodes) | |
544 | goto restart; | |
545 | ||
546 | out2: | |
547 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | |
548 | for (nid = 0; nid < MAX_NUMNODES; nid++) { | |
549 | unsigned long start_pfn, end_pfn; | |
550 | ||
551 | zone_movable_pfn[nid] = | |
552 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
553 | ||
554 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
555 | if (zone_movable_pfn[nid] >= end_pfn) | |
556 | zone_movable_pfn[nid] = 0; | |
557 | } | |
558 | ||
559 | out: | |
560 | /* restore the node_state */ | |
561 | node_states[N_MEMORY] = saved_node_state; | |
562 | } | |
563 | ||
fde1c4ec | 564 | void __meminit __init_single_page(struct page *page, unsigned long pfn, |
9420f89d MRI |
565 | unsigned long zone, int nid) |
566 | { | |
567 | mm_zero_struct_page(page); | |
568 | set_page_links(page, zone, nid, pfn); | |
569 | init_page_count(page); | |
570 | page_mapcount_reset(page); | |
571 | page_cpupid_reset_last(page); | |
572 | page_kasan_tag_reset(page); | |
573 | ||
574 | INIT_LIST_HEAD(&page->lru); | |
575 | #ifdef WANT_PAGE_VIRTUAL | |
576 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
577 | if (!is_highmem_idx(zone)) | |
578 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | |
579 | #endif | |
580 | } | |
581 | ||
582 | #ifdef CONFIG_NUMA | |
583 | /* | |
584 | * During memory init memblocks map pfns to nids. The search is expensive and | |
585 | * this caches recent lookups. The implementation of __early_pfn_to_nid | |
586 | * treats start/end as pfns. | |
587 | */ | |
588 | struct mminit_pfnnid_cache { | |
589 | unsigned long last_start; | |
590 | unsigned long last_end; | |
591 | int last_nid; | |
592 | }; | |
593 | ||
594 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; | |
595 | ||
596 | /* | |
597 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
598 | */ | |
599 | static int __meminit __early_pfn_to_nid(unsigned long pfn, | |
600 | struct mminit_pfnnid_cache *state) | |
601 | { | |
602 | unsigned long start_pfn, end_pfn; | |
603 | int nid; | |
604 | ||
605 | if (state->last_start <= pfn && pfn < state->last_end) | |
606 | return state->last_nid; | |
607 | ||
608 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); | |
609 | if (nid != NUMA_NO_NODE) { | |
610 | state->last_start = start_pfn; | |
611 | state->last_end = end_pfn; | |
612 | state->last_nid = nid; | |
613 | } | |
614 | ||
615 | return nid; | |
616 | } | |
617 | ||
618 | int __meminit early_pfn_to_nid(unsigned long pfn) | |
619 | { | |
620 | static DEFINE_SPINLOCK(early_pfn_lock); | |
621 | int nid; | |
622 | ||
623 | spin_lock(&early_pfn_lock); | |
624 | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); | |
625 | if (nid < 0) | |
626 | nid = first_online_node; | |
627 | spin_unlock(&early_pfn_lock); | |
628 | ||
629 | return nid; | |
630 | } | |
534ef4e1 MRI |
631 | |
632 | int hashdist = HASHDIST_DEFAULT; | |
633 | ||
634 | static int __init set_hashdist(char *str) | |
635 | { | |
636 | if (!str) | |
637 | return 0; | |
638 | hashdist = simple_strtoul(str, &str, 0); | |
639 | return 1; | |
640 | } | |
641 | __setup("hashdist=", set_hashdist); | |
642 | ||
643 | static inline void fixup_hashdist(void) | |
644 | { | |
645 | if (num_node_state(N_MEMORY) == 1) | |
646 | hashdist = 0; | |
647 | } | |
648 | #else | |
649 | static inline void fixup_hashdist(void) {} | |
9420f89d MRI |
650 | #endif /* CONFIG_NUMA */ |
651 | ||
652 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
653 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) | |
654 | { | |
655 | pgdat->first_deferred_pfn = ULONG_MAX; | |
656 | } | |
657 | ||
658 | /* Returns true if the struct page for the pfn is initialised */ | |
61167ad5 | 659 | static inline bool __meminit early_page_initialised(unsigned long pfn, int nid) |
9420f89d | 660 | { |
9420f89d MRI |
661 | if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) |
662 | return false; | |
663 | ||
664 | return true; | |
665 | } | |
666 | ||
667 | /* | |
668 | * Returns true when the remaining initialisation should be deferred until | |
669 | * later in the boot cycle when it can be parallelised. | |
670 | */ | |
671 | static bool __meminit | |
672 | defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | |
673 | { | |
674 | static unsigned long prev_end_pfn, nr_initialised; | |
675 | ||
676 | if (early_page_ext_enabled()) | |
677 | return false; | |
678 | /* | |
679 | * prev_end_pfn static that contains the end of previous zone | |
680 | * No need to protect because called very early in boot before smp_init. | |
681 | */ | |
682 | if (prev_end_pfn != end_pfn) { | |
683 | prev_end_pfn = end_pfn; | |
684 | nr_initialised = 0; | |
685 | } | |
686 | ||
687 | /* Always populate low zones for address-constrained allocations */ | |
688 | if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) | |
689 | return false; | |
690 | ||
691 | if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) | |
692 | return true; | |
693 | /* | |
694 | * We start only with one section of pages, more pages are added as | |
695 | * needed until the rest of deferred pages are initialized. | |
696 | */ | |
697 | nr_initialised++; | |
698 | if ((nr_initialised > PAGES_PER_SECTION) && | |
699 | (pfn & (PAGES_PER_SECTION - 1)) == 0) { | |
700 | NODE_DATA(nid)->first_deferred_pfn = pfn; | |
701 | return true; | |
702 | } | |
703 | return false; | |
704 | } | |
705 | ||
61167ad5 | 706 | static void __meminit init_reserved_page(unsigned long pfn, int nid) |
9420f89d MRI |
707 | { |
708 | pg_data_t *pgdat; | |
61167ad5 | 709 | int zid; |
9420f89d | 710 | |
61167ad5 | 711 | if (early_page_initialised(pfn, nid)) |
9420f89d MRI |
712 | return; |
713 | ||
9420f89d MRI |
714 | pgdat = NODE_DATA(nid); |
715 | ||
716 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
717 | struct zone *zone = &pgdat->node_zones[zid]; | |
718 | ||
719 | if (zone_spans_pfn(zone, pfn)) | |
720 | break; | |
721 | } | |
722 | __init_single_page(pfn_to_page(pfn), pfn, zid, nid); | |
723 | } | |
724 | #else | |
725 | static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} | |
726 | ||
61167ad5 | 727 | static inline bool early_page_initialised(unsigned long pfn, int nid) |
9420f89d MRI |
728 | { |
729 | return true; | |
730 | } | |
731 | ||
732 | static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) | |
733 | { | |
734 | return false; | |
735 | } | |
736 | ||
61167ad5 | 737 | static inline void init_reserved_page(unsigned long pfn, int nid) |
9420f89d MRI |
738 | { |
739 | } | |
740 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
741 | ||
742 | /* | |
743 | * Initialised pages do not have PageReserved set. This function is | |
744 | * called for each range allocated by the bootmem allocator and | |
745 | * marks the pages PageReserved. The remaining valid pages are later | |
746 | * sent to the buddy page allocator. | |
747 | */ | |
61167ad5 YD |
748 | void __meminit reserve_bootmem_region(phys_addr_t start, |
749 | phys_addr_t end, int nid) | |
9420f89d MRI |
750 | { |
751 | unsigned long start_pfn = PFN_DOWN(start); | |
752 | unsigned long end_pfn = PFN_UP(end); | |
753 | ||
754 | for (; start_pfn < end_pfn; start_pfn++) { | |
755 | if (pfn_valid(start_pfn)) { | |
756 | struct page *page = pfn_to_page(start_pfn); | |
757 | ||
61167ad5 | 758 | init_reserved_page(start_pfn, nid); |
9420f89d MRI |
759 | |
760 | /* Avoid false-positive PageTail() */ | |
761 | INIT_LIST_HEAD(&page->lru); | |
762 | ||
763 | /* | |
764 | * no need for atomic set_bit because the struct | |
765 | * page is not visible yet so nobody should | |
766 | * access it yet. | |
767 | */ | |
768 | __SetPageReserved(page); | |
769 | } | |
770 | } | |
771 | } | |
772 | ||
773 | /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ | |
774 | static bool __meminit | |
775 | overlap_memmap_init(unsigned long zone, unsigned long *pfn) | |
776 | { | |
777 | static struct memblock_region *r; | |
778 | ||
779 | if (mirrored_kernelcore && zone == ZONE_MOVABLE) { | |
780 | if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { | |
781 | for_each_mem_region(r) { | |
782 | if (*pfn < memblock_region_memory_end_pfn(r)) | |
783 | break; | |
784 | } | |
785 | } | |
786 | if (*pfn >= memblock_region_memory_base_pfn(r) && | |
787 | memblock_is_mirror(r)) { | |
788 | *pfn = memblock_region_memory_end_pfn(r); | |
789 | return true; | |
790 | } | |
791 | } | |
792 | return false; | |
793 | } | |
794 | ||
795 | /* | |
796 | * Only struct pages that correspond to ranges defined by memblock.memory | |
797 | * are zeroed and initialized by going through __init_single_page() during | |
798 | * memmap_init_zone_range(). | |
799 | * | |
800 | * But, there could be struct pages that correspond to holes in | |
801 | * memblock.memory. This can happen because of the following reasons: | |
802 | * - physical memory bank size is not necessarily the exact multiple of the | |
803 | * arbitrary section size | |
804 | * - early reserved memory may not be listed in memblock.memory | |
ecf5dd1f | 805 | * - non-memory regions covered by the contigious flatmem mapping |
9420f89d MRI |
806 | * - memory layouts defined with memmap= kernel parameter may not align |
807 | * nicely with memmap sections | |
808 | * | |
809 | * Explicitly initialize those struct pages so that: | |
810 | * - PG_Reserved is set | |
811 | * - zone and node links point to zone and node that span the page if the | |
812 | * hole is in the middle of a zone | |
813 | * - zone and node links point to adjacent zone/node if the hole falls on | |
814 | * the zone boundary; the pages in such holes will be prepended to the | |
815 | * zone/node above the hole except for the trailing pages in the last | |
816 | * section that will be appended to the zone/node below. | |
817 | */ | |
818 | static void __init init_unavailable_range(unsigned long spfn, | |
819 | unsigned long epfn, | |
820 | int zone, int node) | |
821 | { | |
822 | unsigned long pfn; | |
823 | u64 pgcnt = 0; | |
824 | ||
825 | for (pfn = spfn; pfn < epfn; pfn++) { | |
826 | if (!pfn_valid(pageblock_start_pfn(pfn))) { | |
827 | pfn = pageblock_end_pfn(pfn) - 1; | |
828 | continue; | |
829 | } | |
830 | __init_single_page(pfn_to_page(pfn), pfn, zone, node); | |
831 | __SetPageReserved(pfn_to_page(pfn)); | |
832 | pgcnt++; | |
833 | } | |
834 | ||
835 | if (pgcnt) | |
01846c6c | 836 | pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n", |
9420f89d MRI |
837 | node, zone_names[zone], pgcnt); |
838 | } | |
839 | ||
840 | /* | |
841 | * Initially all pages are reserved - free ones are freed | |
842 | * up by memblock_free_all() once the early boot process is | |
843 | * done. Non-atomic initialization, single-pass. | |
844 | * | |
845 | * All aligned pageblocks are initialized to the specified migratetype | |
846 | * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related | |
847 | * zone stats (e.g., nr_isolate_pageblock) are touched. | |
848 | */ | |
849 | void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, | |
850 | unsigned long start_pfn, unsigned long zone_end_pfn, | |
851 | enum meminit_context context, | |
852 | struct vmem_altmap *altmap, int migratetype) | |
853 | { | |
854 | unsigned long pfn, end_pfn = start_pfn + size; | |
855 | struct page *page; | |
856 | ||
857 | if (highest_memmap_pfn < end_pfn - 1) | |
858 | highest_memmap_pfn = end_pfn - 1; | |
859 | ||
860 | #ifdef CONFIG_ZONE_DEVICE | |
861 | /* | |
862 | * Honor reservation requested by the driver for this ZONE_DEVICE | |
863 | * memory. We limit the total number of pages to initialize to just | |
864 | * those that might contain the memory mapping. We will defer the | |
865 | * ZONE_DEVICE page initialization until after we have released | |
866 | * the hotplug lock. | |
867 | */ | |
868 | if (zone == ZONE_DEVICE) { | |
869 | if (!altmap) | |
870 | return; | |
871 | ||
872 | if (start_pfn == altmap->base_pfn) | |
873 | start_pfn += altmap->reserve; | |
874 | end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | |
875 | } | |
876 | #endif | |
877 | ||
878 | for (pfn = start_pfn; pfn < end_pfn; ) { | |
879 | /* | |
880 | * There can be holes in boot-time mem_map[]s handed to this | |
881 | * function. They do not exist on hotplugged memory. | |
882 | */ | |
883 | if (context == MEMINIT_EARLY) { | |
884 | if (overlap_memmap_init(zone, &pfn)) | |
885 | continue; | |
886 | if (defer_init(nid, pfn, zone_end_pfn)) { | |
887 | deferred_struct_pages = true; | |
888 | break; | |
889 | } | |
890 | } | |
891 | ||
892 | page = pfn_to_page(pfn); | |
893 | __init_single_page(page, pfn, zone, nid); | |
894 | if (context == MEMINIT_HOTPLUG) | |
895 | __SetPageReserved(page); | |
896 | ||
897 | /* | |
898 | * Usually, we want to mark the pageblock MIGRATE_MOVABLE, | |
899 | * such that unmovable allocations won't be scattered all | |
900 | * over the place during system boot. | |
901 | */ | |
902 | if (pageblock_aligned(pfn)) { | |
903 | set_pageblock_migratetype(page, migratetype); | |
904 | cond_resched(); | |
905 | } | |
906 | pfn++; | |
907 | } | |
908 | } | |
909 | ||
910 | static void __init memmap_init_zone_range(struct zone *zone, | |
911 | unsigned long start_pfn, | |
912 | unsigned long end_pfn, | |
913 | unsigned long *hole_pfn) | |
914 | { | |
915 | unsigned long zone_start_pfn = zone->zone_start_pfn; | |
916 | unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; | |
917 | int nid = zone_to_nid(zone), zone_id = zone_idx(zone); | |
918 | ||
919 | start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); | |
920 | end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); | |
921 | ||
922 | if (start_pfn >= end_pfn) | |
923 | return; | |
924 | ||
925 | memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, | |
926 | zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); | |
927 | ||
928 | if (*hole_pfn < start_pfn) | |
929 | init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); | |
930 | ||
931 | *hole_pfn = end_pfn; | |
932 | } | |
933 | ||
934 | static void __init memmap_init(void) | |
935 | { | |
936 | unsigned long start_pfn, end_pfn; | |
937 | unsigned long hole_pfn = 0; | |
938 | int i, j, zone_id = 0, nid; | |
939 | ||
940 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
941 | struct pglist_data *node = NODE_DATA(nid); | |
942 | ||
943 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
944 | struct zone *zone = node->node_zones + j; | |
945 | ||
946 | if (!populated_zone(zone)) | |
947 | continue; | |
948 | ||
949 | memmap_init_zone_range(zone, start_pfn, end_pfn, | |
950 | &hole_pfn); | |
951 | zone_id = j; | |
952 | } | |
953 | } | |
954 | ||
955 | #ifdef CONFIG_SPARSEMEM | |
956 | /* | |
957 | * Initialize the memory map for hole in the range [memory_end, | |
958 | * section_end]. | |
959 | * Append the pages in this hole to the highest zone in the last | |
960 | * node. | |
961 | * The call to init_unavailable_range() is outside the ifdef to | |
962 | * silence the compiler warining about zone_id set but not used; | |
963 | * for FLATMEM it is a nop anyway | |
964 | */ | |
965 | end_pfn = round_up(end_pfn, PAGES_PER_SECTION); | |
966 | if (hole_pfn < end_pfn) | |
967 | #endif | |
968 | init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); | |
969 | } | |
970 | ||
971 | #ifdef CONFIG_ZONE_DEVICE | |
972 | static void __ref __init_zone_device_page(struct page *page, unsigned long pfn, | |
973 | unsigned long zone_idx, int nid, | |
974 | struct dev_pagemap *pgmap) | |
975 | { | |
976 | ||
977 | __init_single_page(page, pfn, zone_idx, nid); | |
978 | ||
979 | /* | |
980 | * Mark page reserved as it will need to wait for onlining | |
981 | * phase for it to be fully associated with a zone. | |
982 | * | |
983 | * We can use the non-atomic __set_bit operation for setting | |
984 | * the flag as we are still initializing the pages. | |
985 | */ | |
986 | __SetPageReserved(page); | |
987 | ||
988 | /* | |
989 | * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer | |
990 | * and zone_device_data. It is a bug if a ZONE_DEVICE page is | |
991 | * ever freed or placed on a driver-private list. | |
992 | */ | |
993 | page->pgmap = pgmap; | |
994 | page->zone_device_data = NULL; | |
995 | ||
996 | /* | |
997 | * Mark the block movable so that blocks are reserved for | |
998 | * movable at startup. This will force kernel allocations | |
999 | * to reserve their blocks rather than leaking throughout | |
1000 | * the address space during boot when many long-lived | |
1001 | * kernel allocations are made. | |
1002 | * | |
1003 | * Please note that MEMINIT_HOTPLUG path doesn't clear memmap | |
1004 | * because this is done early in section_activate() | |
1005 | */ | |
1006 | if (pageblock_aligned(pfn)) { | |
1007 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
1008 | cond_resched(); | |
1009 | } | |
1010 | ||
1011 | /* | |
1012 | * ZONE_DEVICE pages are released directly to the driver page allocator | |
1013 | * which will set the page count to 1 when allocating the page. | |
1014 | */ | |
1015 | if (pgmap->type == MEMORY_DEVICE_PRIVATE || | |
1016 | pgmap->type == MEMORY_DEVICE_COHERENT) | |
1017 | set_page_count(page, 0); | |
1018 | } | |
1019 | ||
1020 | /* | |
1021 | * With compound page geometry and when struct pages are stored in ram most | |
1022 | * tail pages are reused. Consequently, the amount of unique struct pages to | |
1023 | * initialize is a lot smaller that the total amount of struct pages being | |
1024 | * mapped. This is a paired / mild layering violation with explicit knowledge | |
1025 | * of how the sparse_vmemmap internals handle compound pages in the lack | |
1026 | * of an altmap. See vmemmap_populate_compound_pages(). | |
1027 | */ | |
1028 | static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap, | |
87a7ae75 | 1029 | struct dev_pagemap *pgmap) |
9420f89d | 1030 | { |
87a7ae75 AK |
1031 | if (!vmemmap_can_optimize(altmap, pgmap)) |
1032 | return pgmap_vmemmap_nr(pgmap); | |
1033 | ||
c1a6c536 | 1034 | return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page)); |
9420f89d MRI |
1035 | } |
1036 | ||
1037 | static void __ref memmap_init_compound(struct page *head, | |
1038 | unsigned long head_pfn, | |
1039 | unsigned long zone_idx, int nid, | |
1040 | struct dev_pagemap *pgmap, | |
1041 | unsigned long nr_pages) | |
1042 | { | |
1043 | unsigned long pfn, end_pfn = head_pfn + nr_pages; | |
1044 | unsigned int order = pgmap->vmemmap_shift; | |
1045 | ||
1046 | __SetPageHead(head); | |
1047 | for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) { | |
1048 | struct page *page = pfn_to_page(pfn); | |
1049 | ||
1050 | __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); | |
1051 | prep_compound_tail(head, pfn - head_pfn); | |
1052 | set_page_count(page, 0); | |
1053 | ||
1054 | /* | |
1055 | * The first tail page stores important compound page info. | |
1056 | * Call prep_compound_head() after the first tail page has | |
1057 | * been initialized, to not have the data overwritten. | |
1058 | */ | |
1059 | if (pfn == head_pfn + 1) | |
1060 | prep_compound_head(head, order); | |
1061 | } | |
1062 | } | |
1063 | ||
1064 | void __ref memmap_init_zone_device(struct zone *zone, | |
1065 | unsigned long start_pfn, | |
1066 | unsigned long nr_pages, | |
1067 | struct dev_pagemap *pgmap) | |
1068 | { | |
1069 | unsigned long pfn, end_pfn = start_pfn + nr_pages; | |
1070 | struct pglist_data *pgdat = zone->zone_pgdat; | |
1071 | struct vmem_altmap *altmap = pgmap_altmap(pgmap); | |
1072 | unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap); | |
1073 | unsigned long zone_idx = zone_idx(zone); | |
1074 | unsigned long start = jiffies; | |
1075 | int nid = pgdat->node_id; | |
1076 | ||
1077 | if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE)) | |
1078 | return; | |
1079 | ||
1080 | /* | |
1081 | * The call to memmap_init should have already taken care | |
1082 | * of the pages reserved for the memmap, so we can just jump to | |
1083 | * the end of that region and start processing the device pages. | |
1084 | */ | |
1085 | if (altmap) { | |
1086 | start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); | |
1087 | nr_pages = end_pfn - start_pfn; | |
1088 | } | |
1089 | ||
1090 | for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) { | |
1091 | struct page *page = pfn_to_page(pfn); | |
1092 | ||
1093 | __init_zone_device_page(page, pfn, zone_idx, nid, pgmap); | |
1094 | ||
1095 | if (pfns_per_compound == 1) | |
1096 | continue; | |
1097 | ||
1098 | memmap_init_compound(page, pfn, zone_idx, nid, pgmap, | |
87a7ae75 | 1099 | compound_nr_pages(altmap, pgmap)); |
9420f89d MRI |
1100 | } |
1101 | ||
dd31bad2 | 1102 | pr_debug("%s initialised %lu pages in %ums\n", __func__, |
9420f89d MRI |
1103 | nr_pages, jiffies_to_msecs(jiffies - start)); |
1104 | } | |
1105 | #endif | |
1106 | ||
1107 | /* | |
1108 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
1109 | * because it is sized independent of architecture. Unlike the other zones, | |
1110 | * the starting point for ZONE_MOVABLE is not fixed. It may be different | |
1111 | * in each node depending on the size of each node and how evenly kernelcore | |
1112 | * is distributed. This helper function adjusts the zone ranges | |
1113 | * provided by the architecture for a given node by using the end of the | |
1114 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
1115 | * zones within a node are in order of monotonic increases memory addresses | |
1116 | */ | |
1117 | static void __init adjust_zone_range_for_zone_movable(int nid, | |
1118 | unsigned long zone_type, | |
9420f89d MRI |
1119 | unsigned long node_end_pfn, |
1120 | unsigned long *zone_start_pfn, | |
1121 | unsigned long *zone_end_pfn) | |
1122 | { | |
1123 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
1124 | if (zone_movable_pfn[nid]) { | |
1125 | /* Size ZONE_MOVABLE */ | |
1126 | if (zone_type == ZONE_MOVABLE) { | |
1127 | *zone_start_pfn = zone_movable_pfn[nid]; | |
1128 | *zone_end_pfn = min(node_end_pfn, | |
1129 | arch_zone_highest_possible_pfn[movable_zone]); | |
1130 | ||
1131 | /* Adjust for ZONE_MOVABLE starting within this range */ | |
1132 | } else if (!mirrored_kernelcore && | |
1133 | *zone_start_pfn < zone_movable_pfn[nid] && | |
1134 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
1135 | *zone_end_pfn = zone_movable_pfn[nid]; | |
1136 | ||
1137 | /* Check if this whole range is within ZONE_MOVABLE */ | |
1138 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
1139 | *zone_start_pfn = *zone_end_pfn; | |
1140 | } | |
1141 | } | |
1142 | ||
1143 | /* | |
1144 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
1145 | * then all holes in the requested range will be accounted for. | |
1146 | */ | |
1147 | unsigned long __init __absent_pages_in_range(int nid, | |
1148 | unsigned long range_start_pfn, | |
1149 | unsigned long range_end_pfn) | |
1150 | { | |
1151 | unsigned long nr_absent = range_end_pfn - range_start_pfn; | |
1152 | unsigned long start_pfn, end_pfn; | |
1153 | int i; | |
1154 | ||
1155 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | |
1156 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
1157 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
1158 | nr_absent -= end_pfn - start_pfn; | |
1159 | } | |
1160 | return nr_absent; | |
1161 | } | |
1162 | ||
1163 | /** | |
1164 | * absent_pages_in_range - Return number of page frames in holes within a range | |
1165 | * @start_pfn: The start PFN to start searching for holes | |
1166 | * @end_pfn: The end PFN to stop searching for holes | |
1167 | * | |
1168 | * Return: the number of pages frames in memory holes within a range. | |
1169 | */ | |
1170 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
1171 | unsigned long end_pfn) | |
1172 | { | |
1173 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
1174 | } | |
1175 | ||
1176 | /* Return the number of page frames in holes in a zone on a node */ | |
1177 | static unsigned long __init zone_absent_pages_in_node(int nid, | |
1178 | unsigned long zone_type, | |
1c2d252f HX |
1179 | unsigned long zone_start_pfn, |
1180 | unsigned long zone_end_pfn) | |
9420f89d | 1181 | { |
9420f89d MRI |
1182 | unsigned long nr_absent; |
1183 | ||
1c2d252f HX |
1184 | /* zone is empty, we don't have any absent pages */ |
1185 | if (zone_start_pfn == zone_end_pfn) | |
9420f89d MRI |
1186 | return 0; |
1187 | ||
9420f89d MRI |
1188 | nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
1189 | ||
1190 | /* | |
1191 | * ZONE_MOVABLE handling. | |
1192 | * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages | |
1193 | * and vice versa. | |
1194 | */ | |
1195 | if (mirrored_kernelcore && zone_movable_pfn[nid]) { | |
1196 | unsigned long start_pfn, end_pfn; | |
1197 | struct memblock_region *r; | |
1198 | ||
1199 | for_each_mem_region(r) { | |
1200 | start_pfn = clamp(memblock_region_memory_base_pfn(r), | |
1201 | zone_start_pfn, zone_end_pfn); | |
1202 | end_pfn = clamp(memblock_region_memory_end_pfn(r), | |
1203 | zone_start_pfn, zone_end_pfn); | |
1204 | ||
1205 | if (zone_type == ZONE_MOVABLE && | |
1206 | memblock_is_mirror(r)) | |
1207 | nr_absent += end_pfn - start_pfn; | |
1208 | ||
1209 | if (zone_type == ZONE_NORMAL && | |
1210 | !memblock_is_mirror(r)) | |
1211 | nr_absent += end_pfn - start_pfn; | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | return nr_absent; | |
1216 | } | |
1217 | ||
1218 | /* | |
1219 | * Return the number of pages a zone spans in a node, including holes | |
1220 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
1221 | */ | |
1222 | static unsigned long __init zone_spanned_pages_in_node(int nid, | |
1223 | unsigned long zone_type, | |
1224 | unsigned long node_start_pfn, | |
1225 | unsigned long node_end_pfn, | |
1226 | unsigned long *zone_start_pfn, | |
1227 | unsigned long *zone_end_pfn) | |
1228 | { | |
1229 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | |
1230 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9420f89d MRI |
1231 | |
1232 | /* Get the start and end of the zone */ | |
1233 | *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | |
1234 | *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
0792e47d HX |
1235 | adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn, |
1236 | zone_start_pfn, zone_end_pfn); | |
9420f89d MRI |
1237 | |
1238 | /* Check that this node has pages within the zone's required range */ | |
1239 | if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) | |
1240 | return 0; | |
1241 | ||
1242 | /* Move the zone boundaries inside the node if necessary */ | |
1243 | *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); | |
1244 | *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); | |
1245 | ||
1246 | /* Return the spanned pages */ | |
1247 | return *zone_end_pfn - *zone_start_pfn; | |
1248 | } | |
1249 | ||
ba1b67c7 HX |
1250 | static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat) |
1251 | { | |
1252 | struct zone *z; | |
1253 | ||
1254 | for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) { | |
1255 | z->zone_start_pfn = 0; | |
1256 | z->spanned_pages = 0; | |
1257 | z->present_pages = 0; | |
1258 | #if defined(CONFIG_MEMORY_HOTPLUG) | |
1259 | z->present_early_pages = 0; | |
1260 | #endif | |
1261 | } | |
1262 | ||
1263 | pgdat->node_spanned_pages = 0; | |
1264 | pgdat->node_present_pages = 0; | |
1265 | pr_debug("On node %d totalpages: 0\n", pgdat->node_id); | |
1266 | } | |
1267 | ||
8ad41849 BH |
1268 | static void __init calc_nr_kernel_pages(void) |
1269 | { | |
1270 | unsigned long start_pfn, end_pfn; | |
1271 | phys_addr_t start_addr, end_addr; | |
1272 | u64 u; | |
1273 | #ifdef CONFIG_HIGHMEM | |
1274 | unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]; | |
1275 | #endif | |
1276 | ||
1277 | for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) { | |
1278 | start_pfn = PFN_UP(start_addr); | |
1279 | end_pfn = PFN_DOWN(end_addr); | |
1280 | ||
1281 | if (start_pfn < end_pfn) { | |
1282 | nr_all_pages += end_pfn - start_pfn; | |
1283 | #ifdef CONFIG_HIGHMEM | |
1284 | start_pfn = clamp(start_pfn, 0, high_zone_low); | |
1285 | end_pfn = clamp(end_pfn, 0, high_zone_low); | |
1286 | #endif | |
1287 | nr_kernel_pages += end_pfn - start_pfn; | |
1288 | } | |
1289 | } | |
1290 | } | |
1291 | ||
9420f89d MRI |
1292 | static void __init calculate_node_totalpages(struct pglist_data *pgdat, |
1293 | unsigned long node_start_pfn, | |
1294 | unsigned long node_end_pfn) | |
1295 | { | |
1296 | unsigned long realtotalpages = 0, totalpages = 0; | |
1297 | enum zone_type i; | |
1298 | ||
1299 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1300 | struct zone *zone = pgdat->node_zones + i; | |
1301 | unsigned long zone_start_pfn, zone_end_pfn; | |
1302 | unsigned long spanned, absent; | |
1c2d252f | 1303 | unsigned long real_size; |
9420f89d MRI |
1304 | |
1305 | spanned = zone_spanned_pages_in_node(pgdat->node_id, i, | |
1306 | node_start_pfn, | |
1307 | node_end_pfn, | |
1308 | &zone_start_pfn, | |
1309 | &zone_end_pfn); | |
1310 | absent = zone_absent_pages_in_node(pgdat->node_id, i, | |
1c2d252f HX |
1311 | zone_start_pfn, |
1312 | zone_end_pfn); | |
9420f89d | 1313 | |
1c2d252f | 1314 | real_size = spanned - absent; |
9420f89d | 1315 | |
1c2d252f | 1316 | if (spanned) |
9420f89d MRI |
1317 | zone->zone_start_pfn = zone_start_pfn; |
1318 | else | |
1319 | zone->zone_start_pfn = 0; | |
1c2d252f | 1320 | zone->spanned_pages = spanned; |
9420f89d MRI |
1321 | zone->present_pages = real_size; |
1322 | #if defined(CONFIG_MEMORY_HOTPLUG) | |
1323 | zone->present_early_pages = real_size; | |
1324 | #endif | |
1325 | ||
1c2d252f | 1326 | totalpages += spanned; |
9420f89d MRI |
1327 | realtotalpages += real_size; |
1328 | } | |
1329 | ||
1330 | pgdat->node_spanned_pages = totalpages; | |
1331 | pgdat->node_present_pages = realtotalpages; | |
1332 | pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | |
1333 | } | |
1334 | ||
9420f89d MRI |
1335 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1336 | static void pgdat_init_split_queue(struct pglist_data *pgdat) | |
1337 | { | |
1338 | struct deferred_split *ds_queue = &pgdat->deferred_split_queue; | |
1339 | ||
1340 | spin_lock_init(&ds_queue->split_queue_lock); | |
1341 | INIT_LIST_HEAD(&ds_queue->split_queue); | |
1342 | ds_queue->split_queue_len = 0; | |
1343 | } | |
1344 | #else | |
1345 | static void pgdat_init_split_queue(struct pglist_data *pgdat) {} | |
1346 | #endif | |
1347 | ||
1348 | #ifdef CONFIG_COMPACTION | |
1349 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) | |
1350 | { | |
1351 | init_waitqueue_head(&pgdat->kcompactd_wait); | |
1352 | } | |
1353 | #else | |
1354 | static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} | |
1355 | #endif | |
1356 | ||
1357 | static void __meminit pgdat_init_internals(struct pglist_data *pgdat) | |
1358 | { | |
1359 | int i; | |
1360 | ||
1361 | pgdat_resize_init(pgdat); | |
1362 | pgdat_kswapd_lock_init(pgdat); | |
1363 | ||
1364 | pgdat_init_split_queue(pgdat); | |
1365 | pgdat_init_kcompactd(pgdat); | |
1366 | ||
1367 | init_waitqueue_head(&pgdat->kswapd_wait); | |
1368 | init_waitqueue_head(&pgdat->pfmemalloc_wait); | |
1369 | ||
1370 | for (i = 0; i < NR_VMSCAN_THROTTLE; i++) | |
1371 | init_waitqueue_head(&pgdat->reclaim_wait[i]); | |
1372 | ||
1373 | pgdat_page_ext_init(pgdat); | |
1374 | lruvec_init(&pgdat->__lruvec); | |
1375 | } | |
1376 | ||
1377 | static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, | |
1378 | unsigned long remaining_pages) | |
1379 | { | |
1380 | atomic_long_set(&zone->managed_pages, remaining_pages); | |
1381 | zone_set_nid(zone, nid); | |
1382 | zone->name = zone_names[idx]; | |
1383 | zone->zone_pgdat = NODE_DATA(nid); | |
1384 | spin_lock_init(&zone->lock); | |
1385 | zone_seqlock_init(zone); | |
1386 | zone_pcp_init(zone); | |
1387 | } | |
1388 | ||
1389 | static void __meminit zone_init_free_lists(struct zone *zone) | |
1390 | { | |
1391 | unsigned int order, t; | |
1392 | for_each_migratetype_order(order, t) { | |
1393 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1394 | zone->free_area[order].nr_free = 0; | |
1395 | } | |
dcdfdd40 KS |
1396 | |
1397 | #ifdef CONFIG_UNACCEPTED_MEMORY | |
1398 | INIT_LIST_HEAD(&zone->unaccepted_pages); | |
1399 | #endif | |
9420f89d MRI |
1400 | } |
1401 | ||
1402 | void __meminit init_currently_empty_zone(struct zone *zone, | |
1403 | unsigned long zone_start_pfn, | |
1404 | unsigned long size) | |
1405 | { | |
1406 | struct pglist_data *pgdat = zone->zone_pgdat; | |
1407 | int zone_idx = zone_idx(zone) + 1; | |
1408 | ||
1409 | if (zone_idx > pgdat->nr_zones) | |
1410 | pgdat->nr_zones = zone_idx; | |
1411 | ||
1412 | zone->zone_start_pfn = zone_start_pfn; | |
1413 | ||
1414 | mminit_dprintk(MMINIT_TRACE, "memmap_init", | |
1415 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
1416 | pgdat->node_id, | |
1417 | (unsigned long)zone_idx(zone), | |
1418 | zone_start_pfn, (zone_start_pfn + size)); | |
1419 | ||
1420 | zone_init_free_lists(zone); | |
1421 | zone->initialized = 1; | |
1422 | } | |
1423 | ||
1424 | #ifndef CONFIG_SPARSEMEM | |
1425 | /* | |
1426 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
1427 | * Start by making sure zonesize is a multiple of pageblock_order by rounding | |
1428 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
1429 | * round what is now in bits to nearest long in bits, then return it in | |
1430 | * bytes. | |
1431 | */ | |
1432 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) | |
1433 | { | |
1434 | unsigned long usemapsize; | |
1435 | ||
1436 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); | |
1437 | usemapsize = roundup(zonesize, pageblock_nr_pages); | |
1438 | usemapsize = usemapsize >> pageblock_order; | |
1439 | usemapsize *= NR_PAGEBLOCK_BITS; | |
daee07bf | 1440 | usemapsize = roundup(usemapsize, BITS_PER_LONG); |
9420f89d | 1441 | |
daee07bf | 1442 | return usemapsize / BITS_PER_BYTE; |
9420f89d MRI |
1443 | } |
1444 | ||
1445 | static void __ref setup_usemap(struct zone *zone) | |
1446 | { | |
1447 | unsigned long usemapsize = usemap_size(zone->zone_start_pfn, | |
1448 | zone->spanned_pages); | |
1449 | zone->pageblock_flags = NULL; | |
1450 | if (usemapsize) { | |
1451 | zone->pageblock_flags = | |
1452 | memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, | |
1453 | zone_to_nid(zone)); | |
1454 | if (!zone->pageblock_flags) | |
1455 | panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", | |
1456 | usemapsize, zone->name, zone_to_nid(zone)); | |
1457 | } | |
1458 | } | |
1459 | #else | |
1460 | static inline void setup_usemap(struct zone *zone) {} | |
1461 | #endif /* CONFIG_SPARSEMEM */ | |
1462 | ||
1463 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | |
1464 | ||
1465 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ | |
1466 | void __init set_pageblock_order(void) | |
1467 | { | |
5e0a760b | 1468 | unsigned int order = MAX_PAGE_ORDER; |
9420f89d MRI |
1469 | |
1470 | /* Check that pageblock_nr_pages has not already been setup */ | |
1471 | if (pageblock_order) | |
1472 | return; | |
1473 | ||
1474 | /* Don't let pageblocks exceed the maximum allocation granularity. */ | |
1475 | if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order) | |
1476 | order = HUGETLB_PAGE_ORDER; | |
1477 | ||
1478 | /* | |
1479 | * Assume the largest contiguous order of interest is a huge page. | |
e99fb98d | 1480 | * This value may be variable depending on boot parameters on powerpc. |
9420f89d MRI |
1481 | */ |
1482 | pageblock_order = order; | |
1483 | } | |
1484 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
1485 | ||
1486 | /* | |
1487 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
1488 | * is unused as pageblock_order is set at compile-time. See | |
1489 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
1490 | * the kernel config | |
1491 | */ | |
1492 | void __init set_pageblock_order(void) | |
1493 | { | |
1494 | } | |
1495 | ||
1496 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
1497 | ||
1498 | /* | |
1499 | * Set up the zone data structures | |
1500 | * - init pgdat internals | |
1501 | * - init all zones belonging to this node | |
1502 | * | |
1503 | * NOTE: this function is only called during memory hotplug | |
1504 | */ | |
1505 | #ifdef CONFIG_MEMORY_HOTPLUG | |
1506 | void __ref free_area_init_core_hotplug(struct pglist_data *pgdat) | |
1507 | { | |
1508 | int nid = pgdat->node_id; | |
1509 | enum zone_type z; | |
1510 | int cpu; | |
1511 | ||
1512 | pgdat_init_internals(pgdat); | |
1513 | ||
1514 | if (pgdat->per_cpu_nodestats == &boot_nodestats) | |
1515 | pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); | |
1516 | ||
1517 | /* | |
1518 | * Reset the nr_zones, order and highest_zoneidx before reuse. | |
1519 | * Note that kswapd will init kswapd_highest_zoneidx properly | |
1520 | * when it starts in the near future. | |
1521 | */ | |
1522 | pgdat->nr_zones = 0; | |
1523 | pgdat->kswapd_order = 0; | |
1524 | pgdat->kswapd_highest_zoneidx = 0; | |
1525 | pgdat->node_start_pfn = 0; | |
32b6a4a1 HX |
1526 | pgdat->node_present_pages = 0; |
1527 | ||
9420f89d MRI |
1528 | for_each_online_cpu(cpu) { |
1529 | struct per_cpu_nodestat *p; | |
1530 | ||
1531 | p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); | |
1532 | memset(p, 0, sizeof(*p)); | |
1533 | } | |
1534 | ||
32b6a4a1 HX |
1535 | /* |
1536 | * When memory is hot-added, all the memory is in offline state. So | |
1537 | * clear all zones' present_pages and managed_pages because they will | |
1538 | * be updated in online_pages() and offline_pages(). | |
1539 | */ | |
1540 | for (z = 0; z < MAX_NR_ZONES; z++) { | |
1541 | struct zone *zone = pgdat->node_zones + z; | |
1542 | ||
1543 | zone->present_pages = 0; | |
1544 | zone_init_internals(zone, z, nid, 0); | |
1545 | } | |
9420f89d MRI |
1546 | } |
1547 | #endif | |
1548 | ||
9420f89d MRI |
1549 | static void __init free_area_init_core(struct pglist_data *pgdat) |
1550 | { | |
1551 | enum zone_type j; | |
1552 | int nid = pgdat->node_id; | |
1553 | ||
1554 | pgdat_init_internals(pgdat); | |
1555 | pgdat->per_cpu_nodestats = &boot_nodestats; | |
1556 | ||
1557 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
1558 | struct zone *zone = pgdat->node_zones + j; | |
0ac5e785 | 1559 | unsigned long size = zone->spanned_pages; |
9420f89d MRI |
1560 | |
1561 | /* | |
0ac5e785 BH |
1562 | * Initialize zone->managed_pages as 0 , it will be reset |
1563 | * when memblock allocator frees pages into buddy system. | |
9420f89d | 1564 | */ |
0ac5e785 | 1565 | zone_init_internals(zone, j, nid, zone->present_pages); |
9420f89d MRI |
1566 | |
1567 | if (!size) | |
1568 | continue; | |
1569 | ||
9420f89d MRI |
1570 | setup_usemap(zone); |
1571 | init_currently_empty_zone(zone, zone->zone_start_pfn, size); | |
1572 | } | |
1573 | } | |
1574 | ||
1575 | void __init *memmap_alloc(phys_addr_t size, phys_addr_t align, | |
1576 | phys_addr_t min_addr, int nid, bool exact_nid) | |
1577 | { | |
1578 | void *ptr; | |
1579 | ||
1580 | if (exact_nid) | |
1581 | ptr = memblock_alloc_exact_nid_raw(size, align, min_addr, | |
1582 | MEMBLOCK_ALLOC_ACCESSIBLE, | |
1583 | nid); | |
1584 | else | |
1585 | ptr = memblock_alloc_try_nid_raw(size, align, min_addr, | |
1586 | MEMBLOCK_ALLOC_ACCESSIBLE, | |
1587 | nid); | |
1588 | ||
1589 | if (ptr && size > 0) | |
1590 | page_init_poison(ptr, size); | |
1591 | ||
1592 | return ptr; | |
1593 | } | |
1594 | ||
1595 | #ifdef CONFIG_FLATMEM | |
1596 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | |
1597 | { | |
e99fb98d KW |
1598 | unsigned long start, offset, size, end; |
1599 | struct page *map; | |
9420f89d MRI |
1600 | |
1601 | /* Skip empty nodes */ | |
1602 | if (!pgdat->node_spanned_pages) | |
1603 | return; | |
1604 | ||
1605 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | |
1606 | offset = pgdat->node_start_pfn - start; | |
9420f89d | 1607 | /* |
5e0a760b | 1608 | * The zone's endpoints aren't required to be MAX_PAGE_ORDER |
e99fb98d KW |
1609 | * aligned but the node_mem_map endpoints must be in order |
1610 | * for the buddy allocator to function correctly. | |
9420f89d | 1611 | */ |
e99fb98d KW |
1612 | end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES); |
1613 | size = (end - start) * sizeof(struct page); | |
1614 | map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT, | |
1615 | pgdat->node_id, false); | |
1616 | if (!map) | |
1617 | panic("Failed to allocate %ld bytes for node %d memory map\n", | |
1618 | size, pgdat->node_id); | |
1619 | pgdat->node_mem_map = map + offset; | |
1620 | pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
1621 | __func__, pgdat->node_id, (unsigned long)pgdat, | |
1622 | (unsigned long)pgdat->node_mem_map); | |
1623 | #ifndef CONFIG_NUMA | |
1624 | /* the global mem_map is just set as node 0's */ | |
9420f89d MRI |
1625 | if (pgdat == NODE_DATA(0)) { |
1626 | mem_map = NODE_DATA(0)->node_mem_map; | |
1627 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | |
1628 | mem_map -= offset; | |
1629 | } | |
1630 | #endif | |
1631 | } | |
1632 | #else | |
1633 | static inline void alloc_node_mem_map(struct pglist_data *pgdat) { } | |
1634 | #endif /* CONFIG_FLATMEM */ | |
1635 | ||
1636 | /** | |
1637 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
1638 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | |
1639 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
1640 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
1641 | * | |
1642 | * It returns the start and end page frame of a node based on information | |
1643 | * provided by memblock_set_node(). If called for a node | |
3a29280a | 1644 | * with no available memory, the start and end PFNs will be 0. |
9420f89d MRI |
1645 | */ |
1646 | void __init get_pfn_range_for_nid(unsigned int nid, | |
1647 | unsigned long *start_pfn, unsigned long *end_pfn) | |
1648 | { | |
1649 | unsigned long this_start_pfn, this_end_pfn; | |
1650 | int i; | |
1651 | ||
1652 | *start_pfn = -1UL; | |
1653 | *end_pfn = 0; | |
1654 | ||
1655 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { | |
1656 | *start_pfn = min(*start_pfn, this_start_pfn); | |
1657 | *end_pfn = max(*end_pfn, this_end_pfn); | |
1658 | } | |
1659 | ||
1660 | if (*start_pfn == -1UL) | |
1661 | *start_pfn = 0; | |
1662 | } | |
1663 | ||
1664 | static void __init free_area_init_node(int nid) | |
1665 | { | |
1666 | pg_data_t *pgdat = NODE_DATA(nid); | |
1667 | unsigned long start_pfn = 0; | |
1668 | unsigned long end_pfn = 0; | |
1669 | ||
1670 | /* pg_data_t should be reset to zero when it's allocated */ | |
1671 | WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); | |
1672 | ||
1673 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
1674 | ||
1675 | pgdat->node_id = nid; | |
1676 | pgdat->node_start_pfn = start_pfn; | |
1677 | pgdat->per_cpu_nodestats = NULL; | |
1678 | ||
1679 | if (start_pfn != end_pfn) { | |
1680 | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, | |
1681 | (u64)start_pfn << PAGE_SHIFT, | |
1682 | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | |
ba1b67c7 HX |
1683 | |
1684 | calculate_node_totalpages(pgdat, start_pfn, end_pfn); | |
9420f89d MRI |
1685 | } else { |
1686 | pr_info("Initmem setup node %d as memoryless\n", nid); | |
9420f89d | 1687 | |
ba1b67c7 HX |
1688 | reset_memoryless_node_totalpages(pgdat); |
1689 | } | |
9420f89d MRI |
1690 | |
1691 | alloc_node_mem_map(pgdat); | |
1692 | pgdat_set_deferred_range(pgdat); | |
1693 | ||
1694 | free_area_init_core(pgdat); | |
1695 | lru_gen_init_pgdat(pgdat); | |
1696 | } | |
1697 | ||
1698 | /* Any regular or high memory on that node ? */ | |
b894da04 | 1699 | static void __init check_for_memory(pg_data_t *pgdat) |
9420f89d MRI |
1700 | { |
1701 | enum zone_type zone_type; | |
1702 | ||
1703 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | |
1704 | struct zone *zone = &pgdat->node_zones[zone_type]; | |
1705 | if (populated_zone(zone)) { | |
1706 | if (IS_ENABLED(CONFIG_HIGHMEM)) | |
91ff4d75 | 1707 | node_set_state(pgdat->node_id, N_HIGH_MEMORY); |
9420f89d | 1708 | if (zone_type <= ZONE_NORMAL) |
91ff4d75 | 1709 | node_set_state(pgdat->node_id, N_NORMAL_MEMORY); |
9420f89d MRI |
1710 | break; |
1711 | } | |
1712 | } | |
1713 | } | |
1714 | ||
1715 | #if MAX_NUMNODES > 1 | |
1716 | /* | |
1717 | * Figure out the number of possible node ids. | |
1718 | */ | |
1719 | void __init setup_nr_node_ids(void) | |
1720 | { | |
1721 | unsigned int highest; | |
1722 | ||
1723 | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); | |
1724 | nr_node_ids = highest + 1; | |
1725 | } | |
1726 | #endif | |
1727 | ||
9420f89d MRI |
1728 | /* |
1729 | * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For | |
1730 | * such cases we allow max_zone_pfn sorted in the descending order | |
1731 | */ | |
5f300fd5 | 1732 | static bool arch_has_descending_max_zone_pfns(void) |
9420f89d | 1733 | { |
5f300fd5 | 1734 | return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40); |
9420f89d MRI |
1735 | } |
1736 | ||
1737 | /** | |
1738 | * free_area_init - Initialise all pg_data_t and zone data | |
1739 | * @max_zone_pfn: an array of max PFNs for each zone | |
1740 | * | |
1741 | * This will call free_area_init_node() for each active node in the system. | |
1742 | * Using the page ranges provided by memblock_set_node(), the size of each | |
1743 | * zone in each node and their holes is calculated. If the maximum PFN | |
1744 | * between two adjacent zones match, it is assumed that the zone is empty. | |
1745 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
1746 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
1747 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
1748 | * at arch_max_dma_pfn. | |
1749 | */ | |
1750 | void __init free_area_init(unsigned long *max_zone_pfn) | |
1751 | { | |
1752 | unsigned long start_pfn, end_pfn; | |
1753 | int i, nid, zone; | |
1754 | bool descending; | |
1755 | ||
1756 | /* Record where the zone boundaries are */ | |
1757 | memset(arch_zone_lowest_possible_pfn, 0, | |
1758 | sizeof(arch_zone_lowest_possible_pfn)); | |
1759 | memset(arch_zone_highest_possible_pfn, 0, | |
1760 | sizeof(arch_zone_highest_possible_pfn)); | |
1761 | ||
1762 | start_pfn = PHYS_PFN(memblock_start_of_DRAM()); | |
1763 | descending = arch_has_descending_max_zone_pfns(); | |
1764 | ||
1765 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1766 | if (descending) | |
1767 | zone = MAX_NR_ZONES - i - 1; | |
1768 | else | |
1769 | zone = i; | |
1770 | ||
1771 | if (zone == ZONE_MOVABLE) | |
1772 | continue; | |
1773 | ||
1774 | end_pfn = max(max_zone_pfn[zone], start_pfn); | |
1775 | arch_zone_lowest_possible_pfn[zone] = start_pfn; | |
1776 | arch_zone_highest_possible_pfn[zone] = end_pfn; | |
1777 | ||
1778 | start_pfn = end_pfn; | |
1779 | } | |
1780 | ||
1781 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
1782 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
1783 | find_zone_movable_pfns_for_nodes(); | |
1784 | ||
1785 | /* Print out the zone ranges */ | |
1786 | pr_info("Zone ranges:\n"); | |
1787 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1788 | if (i == ZONE_MOVABLE) | |
1789 | continue; | |
1790 | pr_info(" %-8s ", zone_names[i]); | |
1791 | if (arch_zone_lowest_possible_pfn[i] == | |
1792 | arch_zone_highest_possible_pfn[i]) | |
1793 | pr_cont("empty\n"); | |
1794 | else | |
1795 | pr_cont("[mem %#018Lx-%#018Lx]\n", | |
1796 | (u64)arch_zone_lowest_possible_pfn[i] | |
1797 | << PAGE_SHIFT, | |
1798 | ((u64)arch_zone_highest_possible_pfn[i] | |
1799 | << PAGE_SHIFT) - 1); | |
1800 | } | |
1801 | ||
1802 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
1803 | pr_info("Movable zone start for each node\n"); | |
1804 | for (i = 0; i < MAX_NUMNODES; i++) { | |
1805 | if (zone_movable_pfn[i]) | |
1806 | pr_info(" Node %d: %#018Lx\n", i, | |
1807 | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | |
1808 | } | |
1809 | ||
1810 | /* | |
1811 | * Print out the early node map, and initialize the | |
1812 | * subsection-map relative to active online memory ranges to | |
1813 | * enable future "sub-section" extensions of the memory map. | |
1814 | */ | |
1815 | pr_info("Early memory node ranges\n"); | |
1816 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
1817 | pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, | |
1818 | (u64)start_pfn << PAGE_SHIFT, | |
1819 | ((u64)end_pfn << PAGE_SHIFT) - 1); | |
1820 | subsection_map_init(start_pfn, end_pfn - start_pfn); | |
1821 | } | |
1822 | ||
1823 | /* Initialise every node */ | |
1824 | mminit_verify_pageflags_layout(); | |
1825 | setup_nr_node_ids(); | |
e3d9b45f HX |
1826 | set_pageblock_order(); |
1827 | ||
9420f89d MRI |
1828 | for_each_node(nid) { |
1829 | pg_data_t *pgdat; | |
1830 | ||
1831 | if (!node_online(nid)) { | |
9420f89d MRI |
1832 | /* Allocator not initialized yet */ |
1833 | pgdat = arch_alloc_nodedata(nid); | |
1834 | if (!pgdat) | |
1835 | panic("Cannot allocate %zuB for node %d.\n", | |
1836 | sizeof(*pgdat), nid); | |
1837 | arch_refresh_nodedata(nid, pgdat); | |
837c2ba5 | 1838 | free_area_init_node(nid); |
9420f89d MRI |
1839 | |
1840 | /* | |
1841 | * We do not want to confuse userspace by sysfs | |
1842 | * files/directories for node without any memory | |
1843 | * attached to it, so this node is not marked as | |
1844 | * N_MEMORY and not marked online so that no sysfs | |
1845 | * hierarchy will be created via register_one_node for | |
1846 | * it. The pgdat will get fully initialized by | |
1847 | * hotadd_init_pgdat() when memory is hotplugged into | |
1848 | * this node. | |
1849 | */ | |
1850 | continue; | |
1851 | } | |
1852 | ||
1853 | pgdat = NODE_DATA(nid); | |
1854 | free_area_init_node(nid); | |
1855 | ||
1856 | /* Any memory on that node */ | |
1857 | if (pgdat->node_present_pages) | |
1858 | node_set_state(nid, N_MEMORY); | |
91ff4d75 | 1859 | check_for_memory(pgdat); |
9420f89d MRI |
1860 | } |
1861 | ||
0ac5e785 | 1862 | calc_nr_kernel_pages(); |
9420f89d | 1863 | memmap_init(); |
534ef4e1 MRI |
1864 | |
1865 | /* disable hash distribution for systems with a single node */ | |
1866 | fixup_hashdist(); | |
9420f89d MRI |
1867 | } |
1868 | ||
1869 | /** | |
1870 | * node_map_pfn_alignment - determine the maximum internode alignment | |
1871 | * | |
1872 | * This function should be called after node map is populated and sorted. | |
1873 | * It calculates the maximum power of two alignment which can distinguish | |
1874 | * all the nodes. | |
1875 | * | |
1876 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
1877 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
1878 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
1879 | * shifted, 1GiB is enough and this function will indicate so. | |
1880 | * | |
1881 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
1882 | * model has fine enough granularity to avoid incorrect mapping for the | |
1883 | * populated node map. | |
1884 | * | |
1885 | * Return: the determined alignment in pfn's. 0 if there is no alignment | |
1886 | * requirement (single node). | |
1887 | */ | |
1888 | unsigned long __init node_map_pfn_alignment(void) | |
1889 | { | |
1890 | unsigned long accl_mask = 0, last_end = 0; | |
1891 | unsigned long start, end, mask; | |
1892 | int last_nid = NUMA_NO_NODE; | |
1893 | int i, nid; | |
1894 | ||
1895 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { | |
1896 | if (!start || last_nid < 0 || last_nid == nid) { | |
1897 | last_nid = nid; | |
1898 | last_end = end; | |
1899 | continue; | |
1900 | } | |
1901 | ||
1902 | /* | |
1903 | * Start with a mask granular enough to pin-point to the | |
1904 | * start pfn and tick off bits one-by-one until it becomes | |
1905 | * too coarse to separate the current node from the last. | |
1906 | */ | |
1907 | mask = ~((1 << __ffs(start)) - 1); | |
1908 | while (mask && last_end <= (start & (mask << 1))) | |
1909 | mask <<= 1; | |
1910 | ||
1911 | /* accumulate all internode masks */ | |
1912 | accl_mask |= mask; | |
1913 | } | |
1914 | ||
1915 | /* convert mask to number of pages */ | |
1916 | return ~accl_mask + 1; | |
1917 | } | |
1918 | ||
1919 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
1920 | static void __init deferred_free_range(unsigned long pfn, | |
1921 | unsigned long nr_pages) | |
1922 | { | |
1923 | struct page *page; | |
1924 | unsigned long i; | |
1925 | ||
1926 | if (!nr_pages) | |
1927 | return; | |
1928 | ||
1929 | page = pfn_to_page(pfn); | |
1930 | ||
1931 | /* Free a large naturally-aligned chunk if possible */ | |
3f6dac0f KS |
1932 | if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) { |
1933 | for (i = 0; i < nr_pages; i += pageblock_nr_pages) | |
1934 | set_pageblock_migratetype(page + i, MIGRATE_MOVABLE); | |
5e0a760b | 1935 | __free_pages_core(page, MAX_PAGE_ORDER); |
9420f89d MRI |
1936 | return; |
1937 | } | |
1938 | ||
5e0a760b | 1939 | /* Accept chunks smaller than MAX_PAGE_ORDER upfront */ |
dcdfdd40 KS |
1940 | accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages)); |
1941 | ||
9420f89d MRI |
1942 | for (i = 0; i < nr_pages; i++, page++, pfn++) { |
1943 | if (pageblock_aligned(pfn)) | |
1944 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
1945 | __free_pages_core(page, 0); | |
1946 | } | |
1947 | } | |
1948 | ||
1949 | /* Completion tracking for deferred_init_memmap() threads */ | |
1950 | static atomic_t pgdat_init_n_undone __initdata; | |
1951 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | |
1952 | ||
1953 | static inline void __init pgdat_init_report_one_done(void) | |
1954 | { | |
1955 | if (atomic_dec_and_test(&pgdat_init_n_undone)) | |
1956 | complete(&pgdat_init_all_done_comp); | |
1957 | } | |
1958 | ||
1959 | /* | |
1960 | * Returns true if page needs to be initialized or freed to buddy allocator. | |
1961 | * | |
5e0a760b KS |
1962 | * We check if a current MAX_PAGE_ORDER block is valid by only checking the |
1963 | * validity of the head pfn. | |
9420f89d MRI |
1964 | */ |
1965 | static inline bool __init deferred_pfn_valid(unsigned long pfn) | |
1966 | { | |
3f6dac0f | 1967 | if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn)) |
9420f89d MRI |
1968 | return false; |
1969 | return true; | |
1970 | } | |
1971 | ||
1972 | /* | |
1973 | * Free pages to buddy allocator. Try to free aligned pages in | |
3f6dac0f | 1974 | * MAX_ORDER_NR_PAGES sizes. |
9420f89d MRI |
1975 | */ |
1976 | static void __init deferred_free_pages(unsigned long pfn, | |
1977 | unsigned long end_pfn) | |
1978 | { | |
1979 | unsigned long nr_free = 0; | |
1980 | ||
1981 | for (; pfn < end_pfn; pfn++) { | |
1982 | if (!deferred_pfn_valid(pfn)) { | |
1983 | deferred_free_range(pfn - nr_free, nr_free); | |
1984 | nr_free = 0; | |
3f6dac0f | 1985 | } else if (IS_MAX_ORDER_ALIGNED(pfn)) { |
9420f89d MRI |
1986 | deferred_free_range(pfn - nr_free, nr_free); |
1987 | nr_free = 1; | |
1988 | } else { | |
1989 | nr_free++; | |
1990 | } | |
1991 | } | |
1992 | /* Free the last block of pages to allocator */ | |
1993 | deferred_free_range(pfn - nr_free, nr_free); | |
1994 | } | |
1995 | ||
1996 | /* | |
1997 | * Initialize struct pages. We minimize pfn page lookups and scheduler checks | |
3f6dac0f | 1998 | * by performing it only once every MAX_ORDER_NR_PAGES. |
9420f89d MRI |
1999 | * Return number of pages initialized. |
2000 | */ | |
2001 | static unsigned long __init deferred_init_pages(struct zone *zone, | |
2002 | unsigned long pfn, | |
2003 | unsigned long end_pfn) | |
2004 | { | |
2005 | int nid = zone_to_nid(zone); | |
2006 | unsigned long nr_pages = 0; | |
2007 | int zid = zone_idx(zone); | |
2008 | struct page *page = NULL; | |
2009 | ||
2010 | for (; pfn < end_pfn; pfn++) { | |
2011 | if (!deferred_pfn_valid(pfn)) { | |
2012 | page = NULL; | |
2013 | continue; | |
3f6dac0f | 2014 | } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) { |
9420f89d MRI |
2015 | page = pfn_to_page(pfn); |
2016 | } else { | |
2017 | page++; | |
2018 | } | |
2019 | __init_single_page(page, pfn, zid, nid); | |
2020 | nr_pages++; | |
2021 | } | |
2022 | return (nr_pages); | |
2023 | } | |
2024 | ||
2025 | /* | |
2026 | * This function is meant to pre-load the iterator for the zone init. | |
2027 | * Specifically it walks through the ranges until we are caught up to the | |
2028 | * first_init_pfn value and exits there. If we never encounter the value we | |
2029 | * return false indicating there are no valid ranges left. | |
2030 | */ | |
2031 | static bool __init | |
2032 | deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, | |
2033 | unsigned long *spfn, unsigned long *epfn, | |
2034 | unsigned long first_init_pfn) | |
2035 | { | |
2036 | u64 j; | |
2037 | ||
2038 | /* | |
2039 | * Start out by walking through the ranges in this zone that have | |
2040 | * already been initialized. We don't need to do anything with them | |
2041 | * so we just need to flush them out of the system. | |
2042 | */ | |
2043 | for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { | |
2044 | if (*epfn <= first_init_pfn) | |
2045 | continue; | |
2046 | if (*spfn < first_init_pfn) | |
2047 | *spfn = first_init_pfn; | |
2048 | *i = j; | |
2049 | return true; | |
2050 | } | |
2051 | ||
2052 | return false; | |
2053 | } | |
2054 | ||
2055 | /* | |
2056 | * Initialize and free pages. We do it in two loops: first we initialize | |
2057 | * struct page, then free to buddy allocator, because while we are | |
2058 | * freeing pages we can access pages that are ahead (computing buddy | |
2059 | * page in __free_one_page()). | |
2060 | * | |
2061 | * In order to try and keep some memory in the cache we have the loop | |
2062 | * broken along max page order boundaries. This way we will not cause | |
2063 | * any issues with the buddy page computation. | |
2064 | */ | |
2065 | static unsigned long __init | |
2066 | deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, | |
2067 | unsigned long *end_pfn) | |
2068 | { | |
2069 | unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); | |
2070 | unsigned long spfn = *start_pfn, epfn = *end_pfn; | |
2071 | unsigned long nr_pages = 0; | |
2072 | u64 j = *i; | |
2073 | ||
2074 | /* First we loop through and initialize the page values */ | |
2075 | for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { | |
2076 | unsigned long t; | |
2077 | ||
2078 | if (mo_pfn <= *start_pfn) | |
2079 | break; | |
2080 | ||
2081 | t = min(mo_pfn, *end_pfn); | |
2082 | nr_pages += deferred_init_pages(zone, *start_pfn, t); | |
2083 | ||
2084 | if (mo_pfn < *end_pfn) { | |
2085 | *start_pfn = mo_pfn; | |
2086 | break; | |
2087 | } | |
2088 | } | |
2089 | ||
2090 | /* Reset values and now loop through freeing pages as needed */ | |
2091 | swap(j, *i); | |
2092 | ||
2093 | for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { | |
2094 | unsigned long t; | |
2095 | ||
2096 | if (mo_pfn <= spfn) | |
2097 | break; | |
2098 | ||
2099 | t = min(mo_pfn, epfn); | |
2100 | deferred_free_pages(spfn, t); | |
2101 | ||
2102 | if (mo_pfn <= epfn) | |
2103 | break; | |
2104 | } | |
2105 | ||
2106 | return nr_pages; | |
2107 | } | |
2108 | ||
2109 | static void __init | |
2110 | deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, | |
2111 | void *arg) | |
2112 | { | |
2113 | unsigned long spfn, epfn; | |
2114 | struct zone *zone = arg; | |
2115 | u64 i; | |
2116 | ||
2117 | deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); | |
2118 | ||
2119 | /* | |
5e0a760b KS |
2120 | * Initialize and free pages in MAX_PAGE_ORDER sized increments so that |
2121 | * we can avoid introducing any issues with the buddy allocator. | |
9420f89d MRI |
2122 | */ |
2123 | while (spfn < end_pfn) { | |
2124 | deferred_init_maxorder(&i, zone, &spfn, &epfn); | |
2125 | cond_resched(); | |
2126 | } | |
2127 | } | |
2128 | ||
2129 | /* An arch may override for more concurrency. */ | |
2130 | __weak int __init | |
2131 | deferred_page_init_max_threads(const struct cpumask *node_cpumask) | |
2132 | { | |
2133 | return 1; | |
2134 | } | |
2135 | ||
2136 | /* Initialise remaining memory on a node */ | |
2137 | static int __init deferred_init_memmap(void *data) | |
2138 | { | |
2139 | pg_data_t *pgdat = data; | |
2140 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); | |
2141 | unsigned long spfn = 0, epfn = 0; | |
2142 | unsigned long first_init_pfn, flags; | |
2143 | unsigned long start = jiffies; | |
2144 | struct zone *zone; | |
2145 | int zid, max_threads; | |
2146 | u64 i; | |
2147 | ||
2148 | /* Bind memory initialisation thread to a local node if possible */ | |
2149 | if (!cpumask_empty(cpumask)) | |
2150 | set_cpus_allowed_ptr(current, cpumask); | |
2151 | ||
2152 | pgdat_resize_lock(pgdat, &flags); | |
2153 | first_init_pfn = pgdat->first_deferred_pfn; | |
2154 | if (first_init_pfn == ULONG_MAX) { | |
2155 | pgdat_resize_unlock(pgdat, &flags); | |
2156 | pgdat_init_report_one_done(); | |
2157 | return 0; | |
2158 | } | |
2159 | ||
2160 | /* Sanity check boundaries */ | |
2161 | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | |
2162 | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | |
2163 | pgdat->first_deferred_pfn = ULONG_MAX; | |
2164 | ||
2165 | /* | |
2166 | * Once we unlock here, the zone cannot be grown anymore, thus if an | |
2167 | * interrupt thread must allocate this early in boot, zone must be | |
2168 | * pre-grown prior to start of deferred page initialization. | |
2169 | */ | |
2170 | pgdat_resize_unlock(pgdat, &flags); | |
2171 | ||
2172 | /* Only the highest zone is deferred so find it */ | |
2173 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
2174 | zone = pgdat->node_zones + zid; | |
2175 | if (first_init_pfn < zone_end_pfn(zone)) | |
2176 | break; | |
2177 | } | |
2178 | ||
2179 | /* If the zone is empty somebody else may have cleared out the zone */ | |
2180 | if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | |
2181 | first_init_pfn)) | |
2182 | goto zone_empty; | |
2183 | ||
2184 | max_threads = deferred_page_init_max_threads(cpumask); | |
2185 | ||
2186 | while (spfn < epfn) { | |
2187 | unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); | |
2188 | struct padata_mt_job job = { | |
2189 | .thread_fn = deferred_init_memmap_chunk, | |
2190 | .fn_arg = zone, | |
2191 | .start = spfn, | |
2192 | .size = epfn_align - spfn, | |
2193 | .align = PAGES_PER_SECTION, | |
2194 | .min_chunk = PAGES_PER_SECTION, | |
2195 | .max_threads = max_threads, | |
eb522866 | 2196 | .numa_aware = false, |
9420f89d MRI |
2197 | }; |
2198 | ||
2199 | padata_do_multithreaded(&job); | |
2200 | deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | |
2201 | epfn_align); | |
2202 | } | |
2203 | zone_empty: | |
2204 | /* Sanity check that the next zone really is unpopulated */ | |
2205 | WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | |
2206 | ||
2207 | pr_info("node %d deferred pages initialised in %ums\n", | |
2208 | pgdat->node_id, jiffies_to_msecs(jiffies - start)); | |
2209 | ||
2210 | pgdat_init_report_one_done(); | |
2211 | return 0; | |
2212 | } | |
2213 | ||
2214 | /* | |
2215 | * If this zone has deferred pages, try to grow it by initializing enough | |
2216 | * deferred pages to satisfy the allocation specified by order, rounded up to | |
2217 | * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments | |
2218 | * of SECTION_SIZE bytes by initializing struct pages in increments of | |
2219 | * PAGES_PER_SECTION * sizeof(struct page) bytes. | |
2220 | * | |
2221 | * Return true when zone was grown, otherwise return false. We return true even | |
2222 | * when we grow less than requested, to let the caller decide if there are | |
2223 | * enough pages to satisfy the allocation. | |
2224 | * | |
2225 | * Note: We use noinline because this function is needed only during boot, and | |
2226 | * it is called from a __ref function _deferred_grow_zone. This way we are | |
2227 | * making sure that it is not inlined into permanent text section. | |
2228 | */ | |
2229 | bool __init deferred_grow_zone(struct zone *zone, unsigned int order) | |
2230 | { | |
2231 | unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); | |
2232 | pg_data_t *pgdat = zone->zone_pgdat; | |
2233 | unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; | |
2234 | unsigned long spfn, epfn, flags; | |
2235 | unsigned long nr_pages = 0; | |
2236 | u64 i; | |
2237 | ||
2238 | /* Only the last zone may have deferred pages */ | |
2239 | if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) | |
2240 | return false; | |
2241 | ||
2242 | pgdat_resize_lock(pgdat, &flags); | |
2243 | ||
2244 | /* | |
2245 | * If someone grew this zone while we were waiting for spinlock, return | |
2246 | * true, as there might be enough pages already. | |
2247 | */ | |
2248 | if (first_deferred_pfn != pgdat->first_deferred_pfn) { | |
2249 | pgdat_resize_unlock(pgdat, &flags); | |
2250 | return true; | |
2251 | } | |
2252 | ||
2253 | /* If the zone is empty somebody else may have cleared out the zone */ | |
2254 | if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, | |
2255 | first_deferred_pfn)) { | |
2256 | pgdat->first_deferred_pfn = ULONG_MAX; | |
2257 | pgdat_resize_unlock(pgdat, &flags); | |
2258 | /* Retry only once. */ | |
2259 | return first_deferred_pfn != ULONG_MAX; | |
2260 | } | |
2261 | ||
2262 | /* | |
5e0a760b | 2263 | * Initialize and free pages in MAX_PAGE_ORDER sized increments so |
9420f89d MRI |
2264 | * that we can avoid introducing any issues with the buddy |
2265 | * allocator. | |
2266 | */ | |
2267 | while (spfn < epfn) { | |
2268 | /* update our first deferred PFN for this section */ | |
2269 | first_deferred_pfn = spfn; | |
2270 | ||
2271 | nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); | |
2272 | touch_nmi_watchdog(); | |
2273 | ||
2274 | /* We should only stop along section boundaries */ | |
2275 | if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) | |
2276 | continue; | |
2277 | ||
2278 | /* If our quota has been met we can stop here */ | |
2279 | if (nr_pages >= nr_pages_needed) | |
2280 | break; | |
2281 | } | |
2282 | ||
2283 | pgdat->first_deferred_pfn = spfn; | |
2284 | pgdat_resize_unlock(pgdat, &flags); | |
2285 | ||
2286 | return nr_pages > 0; | |
2287 | } | |
2288 | ||
2289 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
2290 | ||
2291 | #ifdef CONFIG_CMA | |
2292 | void __init init_cma_reserved_pageblock(struct page *page) | |
2293 | { | |
2294 | unsigned i = pageblock_nr_pages; | |
2295 | struct page *p = page; | |
2296 | ||
2297 | do { | |
2298 | __ClearPageReserved(p); | |
2299 | set_page_count(p, 0); | |
2300 | } while (++p, --i); | |
2301 | ||
2302 | set_pageblock_migratetype(page, MIGRATE_CMA); | |
2303 | set_page_refcounted(page); | |
2304 | __free_pages(page, pageblock_order); | |
2305 | ||
2306 | adjust_managed_page_count(page, pageblock_nr_pages); | |
2307 | page_zone(page)->cma_pages += pageblock_nr_pages; | |
2308 | } | |
2309 | #endif | |
2310 | ||
904d5857 KW |
2311 | void set_zone_contiguous(struct zone *zone) |
2312 | { | |
2313 | unsigned long block_start_pfn = zone->zone_start_pfn; | |
2314 | unsigned long block_end_pfn; | |
2315 | ||
2316 | block_end_pfn = pageblock_end_pfn(block_start_pfn); | |
2317 | for (; block_start_pfn < zone_end_pfn(zone); | |
2318 | block_start_pfn = block_end_pfn, | |
2319 | block_end_pfn += pageblock_nr_pages) { | |
2320 | ||
2321 | block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); | |
2322 | ||
2323 | if (!__pageblock_pfn_to_page(block_start_pfn, | |
2324 | block_end_pfn, zone)) | |
2325 | return; | |
2326 | cond_resched(); | |
2327 | } | |
2328 | ||
2329 | /* We confirm that there is no hole */ | |
2330 | zone->contiguous = true; | |
2331 | } | |
2332 | ||
9420f89d MRI |
2333 | void __init page_alloc_init_late(void) |
2334 | { | |
2335 | struct zone *zone; | |
2336 | int nid; | |
2337 | ||
2338 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT | |
2339 | ||
2340 | /* There will be num_node_state(N_MEMORY) threads */ | |
2341 | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | |
2342 | for_each_node_state(nid, N_MEMORY) { | |
2343 | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); | |
2344 | } | |
2345 | ||
2346 | /* Block until all are initialised */ | |
2347 | wait_for_completion(&pgdat_init_all_done_comp); | |
2348 | ||
2349 | /* | |
2350 | * We initialized the rest of the deferred pages. Permanently disable | |
2351 | * on-demand struct page initialization. | |
2352 | */ | |
2353 | static_branch_disable(&deferred_pages); | |
2354 | ||
2355 | /* Reinit limits that are based on free pages after the kernel is up */ | |
2356 | files_maxfiles_init(); | |
2357 | #endif | |
2358 | ||
2359 | buffer_init(); | |
2360 | ||
2361 | /* Discard memblock private memory */ | |
2362 | memblock_discard(); | |
2363 | ||
2364 | for_each_node_state(nid, N_MEMORY) | |
2365 | shuffle_free_memory(NODE_DATA(nid)); | |
2366 | ||
2367 | for_each_populated_zone(zone) | |
2368 | set_zone_contiguous(zone); | |
de57807e MRI |
2369 | |
2370 | /* Initialize page ext after all struct pages are initialized. */ | |
2371 | if (deferred_struct_pages) | |
2372 | page_ext_init(); | |
e95d372c KW |
2373 | |
2374 | page_alloc_sysctl_init(); | |
9420f89d MRI |
2375 | } |
2376 | ||
9420f89d MRI |
2377 | /* |
2378 | * Adaptive scale is meant to reduce sizes of hash tables on large memory | |
2379 | * machines. As memory size is increased the scale is also increased but at | |
2380 | * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory | |
2381 | * quadruples the scale is increased by one, which means the size of hash table | |
2382 | * only doubles, instead of quadrupling as well. | |
2383 | * Because 32-bit systems cannot have large physical memory, where this scaling | |
2384 | * makes sense, it is disabled on such platforms. | |
2385 | */ | |
2386 | #if __BITS_PER_LONG > 32 | |
2387 | #define ADAPT_SCALE_BASE (64ul << 30) | |
2388 | #define ADAPT_SCALE_SHIFT 2 | |
2389 | #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) | |
2390 | #endif | |
2391 | ||
2392 | /* | |
2393 | * allocate a large system hash table from bootmem | |
2394 | * - it is assumed that the hash table must contain an exact power-of-2 | |
2395 | * quantity of entries | |
2396 | * - limit is the number of hash buckets, not the total allocation size | |
2397 | */ | |
2398 | void *__init alloc_large_system_hash(const char *tablename, | |
2399 | unsigned long bucketsize, | |
2400 | unsigned long numentries, | |
2401 | int scale, | |
2402 | int flags, | |
2403 | unsigned int *_hash_shift, | |
2404 | unsigned int *_hash_mask, | |
2405 | unsigned long low_limit, | |
2406 | unsigned long high_limit) | |
2407 | { | |
2408 | unsigned long long max = high_limit; | |
2409 | unsigned long log2qty, size; | |
2410 | void *table; | |
2411 | gfp_t gfp_flags; | |
2412 | bool virt; | |
2413 | bool huge; | |
2414 | ||
2415 | /* allow the kernel cmdline to have a say */ | |
2416 | if (!numentries) { | |
2417 | /* round applicable memory size up to nearest megabyte */ | |
2418 | numentries = nr_kernel_pages; | |
9420f89d MRI |
2419 | |
2420 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | |
2421 | if (PAGE_SIZE < SZ_1M) | |
2422 | numentries = round_up(numentries, SZ_1M / PAGE_SIZE); | |
2423 | ||
2424 | #if __BITS_PER_LONG > 32 | |
2425 | if (!high_limit) { | |
2426 | unsigned long adapt; | |
2427 | ||
2428 | for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; | |
2429 | adapt <<= ADAPT_SCALE_SHIFT) | |
2430 | scale++; | |
2431 | } | |
2432 | #endif | |
2433 | ||
2434 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
2435 | if (scale > PAGE_SHIFT) | |
2436 | numentries >>= (scale - PAGE_SHIFT); | |
2437 | else | |
2438 | numentries <<= (PAGE_SHIFT - scale); | |
2439 | ||
3fade62b | 2440 | if (unlikely((numentries * bucketsize) < PAGE_SIZE)) |
9420f89d MRI |
2441 | numentries = PAGE_SIZE / bucketsize; |
2442 | } | |
2443 | numentries = roundup_pow_of_two(numentries); | |
2444 | ||
2445 | /* limit allocation size to 1/16 total memory by default */ | |
2446 | if (max == 0) { | |
2447 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
2448 | do_div(max, bucketsize); | |
2449 | } | |
2450 | max = min(max, 0x80000000ULL); | |
2451 | ||
2452 | if (numentries < low_limit) | |
2453 | numentries = low_limit; | |
2454 | if (numentries > max) | |
2455 | numentries = max; | |
2456 | ||
2457 | log2qty = ilog2(numentries); | |
2458 | ||
2459 | gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; | |
2460 | do { | |
2461 | virt = false; | |
2462 | size = bucketsize << log2qty; | |
2463 | if (flags & HASH_EARLY) { | |
2464 | if (flags & HASH_ZERO) | |
2465 | table = memblock_alloc(size, SMP_CACHE_BYTES); | |
2466 | else | |
2467 | table = memblock_alloc_raw(size, | |
2468 | SMP_CACHE_BYTES); | |
5e0a760b | 2469 | } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) { |
9420f89d MRI |
2470 | table = vmalloc_huge(size, gfp_flags); |
2471 | virt = true; | |
2472 | if (table) | |
2473 | huge = is_vm_area_hugepages(table); | |
2474 | } else { | |
2475 | /* | |
2476 | * If bucketsize is not a power-of-two, we may free | |
2477 | * some pages at the end of hash table which | |
2478 | * alloc_pages_exact() automatically does | |
2479 | */ | |
2480 | table = alloc_pages_exact(size, gfp_flags); | |
2481 | kmemleak_alloc(table, size, 1, gfp_flags); | |
2482 | } | |
2483 | } while (!table && size > PAGE_SIZE && --log2qty); | |
2484 | ||
2485 | if (!table) | |
2486 | panic("Failed to allocate %s hash table\n", tablename); | |
2487 | ||
2488 | pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", | |
2489 | tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, | |
2490 | virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); | |
2491 | ||
2492 | if (_hash_shift) | |
2493 | *_hash_shift = log2qty; | |
2494 | if (_hash_mask) | |
2495 | *_hash_mask = (1 << log2qty) - 1; | |
2496 | ||
2497 | return table; | |
2498 | } | |
2499 | ||
9420f89d MRI |
2500 | void __init memblock_free_pages(struct page *page, unsigned long pfn, |
2501 | unsigned int order) | |
2502 | { | |
61167ad5 YD |
2503 | if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) { |
2504 | int nid = early_pfn_to_nid(pfn); | |
2505 | ||
2506 | if (!early_page_initialised(pfn, nid)) | |
2507 | return; | |
2508 | } | |
2509 | ||
9420f89d MRI |
2510 | if (!kmsan_memblock_free_pages(page, order)) { |
2511 | /* KMSAN will take care of these pages. */ | |
2512 | return; | |
2513 | } | |
d224eb02 SB |
2514 | |
2515 | /* pages were reserved and not allocated */ | |
2516 | if (mem_alloc_profiling_enabled()) { | |
2517 | union codetag_ref *ref = get_page_tag_ref(page); | |
2518 | ||
2519 | if (ref) { | |
2520 | set_codetag_empty(ref); | |
2521 | put_page_tag_ref(ref); | |
2522 | } | |
2523 | } | |
2524 | ||
9420f89d MRI |
2525 | __free_pages_core(page, order); |
2526 | } | |
b7ec1bf3 | 2527 | |
5e7d5da2 KW |
2528 | DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); |
2529 | EXPORT_SYMBOL(init_on_alloc); | |
2530 | ||
2531 | DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); | |
2532 | EXPORT_SYMBOL(init_on_free); | |
2533 | ||
f2fc4b44 MRI |
2534 | static bool _init_on_alloc_enabled_early __read_mostly |
2535 | = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); | |
2536 | static int __init early_init_on_alloc(char *buf) | |
2537 | { | |
2538 | ||
2539 | return kstrtobool(buf, &_init_on_alloc_enabled_early); | |
2540 | } | |
2541 | early_param("init_on_alloc", early_init_on_alloc); | |
2542 | ||
2543 | static bool _init_on_free_enabled_early __read_mostly | |
2544 | = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); | |
2545 | static int __init early_init_on_free(char *buf) | |
2546 | { | |
2547 | return kstrtobool(buf, &_init_on_free_enabled_early); | |
2548 | } | |
2549 | early_param("init_on_free", early_init_on_free); | |
2550 | ||
2551 | DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); | |
2552 | ||
2553 | /* | |
2554 | * Enable static keys related to various memory debugging and hardening options. | |
2555 | * Some override others, and depend on early params that are evaluated in the | |
2556 | * order of appearance. So we need to first gather the full picture of what was | |
2557 | * enabled, and then make decisions. | |
2558 | */ | |
2559 | static void __init mem_debugging_and_hardening_init(void) | |
2560 | { | |
2561 | bool page_poisoning_requested = false; | |
2562 | bool want_check_pages = false; | |
2563 | ||
2564 | #ifdef CONFIG_PAGE_POISONING | |
2565 | /* | |
2566 | * Page poisoning is debug page alloc for some arches. If | |
2567 | * either of those options are enabled, enable poisoning. | |
2568 | */ | |
2569 | if (page_poisoning_enabled() || | |
2570 | (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && | |
2571 | debug_pagealloc_enabled())) { | |
2572 | static_branch_enable(&_page_poisoning_enabled); | |
2573 | page_poisoning_requested = true; | |
2574 | want_check_pages = true; | |
2575 | } | |
2576 | #endif | |
2577 | ||
2578 | if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) && | |
2579 | page_poisoning_requested) { | |
2580 | pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " | |
2581 | "will take precedence over init_on_alloc and init_on_free\n"); | |
2582 | _init_on_alloc_enabled_early = false; | |
2583 | _init_on_free_enabled_early = false; | |
2584 | } | |
2585 | ||
2586 | if (_init_on_alloc_enabled_early) { | |
2587 | want_check_pages = true; | |
2588 | static_branch_enable(&init_on_alloc); | |
2589 | } else { | |
2590 | static_branch_disable(&init_on_alloc); | |
2591 | } | |
2592 | ||
2593 | if (_init_on_free_enabled_early) { | |
2594 | want_check_pages = true; | |
2595 | static_branch_enable(&init_on_free); | |
2596 | } else { | |
2597 | static_branch_disable(&init_on_free); | |
2598 | } | |
2599 | ||
2600 | if (IS_ENABLED(CONFIG_KMSAN) && | |
2601 | (_init_on_alloc_enabled_early || _init_on_free_enabled_early)) | |
2602 | pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n"); | |
2603 | ||
2604 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
2605 | if (debug_pagealloc_enabled()) { | |
2606 | want_check_pages = true; | |
2607 | static_branch_enable(&_debug_pagealloc_enabled); | |
2608 | ||
2609 | if (debug_guardpage_minorder()) | |
2610 | static_branch_enable(&_debug_guardpage_enabled); | |
2611 | } | |
2612 | #endif | |
2613 | ||
2614 | /* | |
2615 | * Any page debugging or hardening option also enables sanity checking | |
2616 | * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's | |
2617 | * enabled already. | |
2618 | */ | |
2619 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages) | |
2620 | static_branch_enable(&check_pages_enabled); | |
2621 | } | |
2622 | ||
b7ec1bf3 MRI |
2623 | /* Report memory auto-initialization states for this boot. */ |
2624 | static void __init report_meminit(void) | |
2625 | { | |
2626 | const char *stack; | |
2627 | ||
2628 | if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN)) | |
2629 | stack = "all(pattern)"; | |
2630 | else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO)) | |
2631 | stack = "all(zero)"; | |
2632 | else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL)) | |
2633 | stack = "byref_all(zero)"; | |
2634 | else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF)) | |
2635 | stack = "byref(zero)"; | |
2636 | else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER)) | |
2637 | stack = "__user(zero)"; | |
2638 | else | |
2639 | stack = "off"; | |
2640 | ||
2641 | pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n", | |
2642 | stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off", | |
2643 | want_init_on_free() ? "on" : "off"); | |
2644 | if (want_init_on_free()) | |
2645 | pr_info("mem auto-init: clearing system memory may take some time...\n"); | |
2646 | } | |
2647 | ||
eb8589b4 MRI |
2648 | static void __init mem_init_print_info(void) |
2649 | { | |
2650 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
2651 | unsigned long init_code_size, init_data_size; | |
2652 | ||
2653 | physpages = get_num_physpages(); | |
2654 | codesize = _etext - _stext; | |
2655 | datasize = _edata - _sdata; | |
2656 | rosize = __end_rodata - __start_rodata; | |
2657 | bss_size = __bss_stop - __bss_start; | |
2658 | init_data_size = __init_end - __init_begin; | |
2659 | init_code_size = _einittext - _sinittext; | |
2660 | ||
2661 | /* | |
2662 | * Detect special cases and adjust section sizes accordingly: | |
2663 | * 1) .init.* may be embedded into .data sections | |
2664 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
2665 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
2666 | * 3) .rodata.* may be embedded into .text or .data sections. | |
2667 | */ | |
2668 | #define adj_init_size(start, end, size, pos, adj) \ | |
2669 | do { \ | |
2670 | if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \ | |
2671 | size -= adj; \ | |
2672 | } while (0) | |
2673 | ||
2674 | adj_init_size(__init_begin, __init_end, init_data_size, | |
2675 | _sinittext, init_code_size); | |
2676 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
2677 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
2678 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
2679 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
2680 | ||
2681 | #undef adj_init_size | |
2682 | ||
2683 | pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" | |
2684 | #ifdef CONFIG_HIGHMEM | |
2685 | ", %luK highmem" | |
2686 | #endif | |
2687 | ")\n", | |
2688 | K(nr_free_pages()), K(physpages), | |
2689 | codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K, | |
2690 | (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K, | |
2691 | K(physpages - totalram_pages() - totalcma_pages), | |
2692 | K(totalcma_pages) | |
2693 | #ifdef CONFIG_HIGHMEM | |
2694 | , K(totalhigh_pages()) | |
2695 | #endif | |
2696 | ); | |
2697 | } | |
2698 | ||
b7ec1bf3 MRI |
2699 | /* |
2700 | * Set up kernel memory allocators | |
2701 | */ | |
2702 | void __init mm_core_init(void) | |
2703 | { | |
2704 | /* Initializations relying on SMP setup */ | |
2705 | build_all_zonelists(NULL); | |
2706 | page_alloc_init_cpuhp(); | |
2707 | ||
2708 | /* | |
2709 | * page_ext requires contiguous pages, | |
5e0a760b | 2710 | * bigger than MAX_PAGE_ORDER unless SPARSEMEM. |
b7ec1bf3 MRI |
2711 | */ |
2712 | page_ext_init_flatmem(); | |
f2fc4b44 | 2713 | mem_debugging_and_hardening_init(); |
cabdf74e | 2714 | kfence_alloc_pool_and_metadata(); |
b7ec1bf3 MRI |
2715 | report_meminit(); |
2716 | kmsan_init_shadow(); | |
2717 | stack_depot_early_init(); | |
2718 | mem_init(); | |
2719 | mem_init_print_info(); | |
2720 | kmem_cache_init(); | |
2721 | /* | |
2722 | * page_owner must be initialized after buddy is ready, and also after | |
2723 | * slab is ready so that stack_depot_init() works properly | |
2724 | */ | |
2725 | page_ext_init_flatmem_late(); | |
2726 | kmemleak_init(); | |
4cd1e9ed MRI |
2727 | ptlock_cache_init(); |
2728 | pgtable_cache_init(); | |
b7ec1bf3 MRI |
2729 | debug_objects_mem_init(); |
2730 | vmalloc_init(); | |
2731 | /* If no deferred init page_ext now, as vmap is fully initialized */ | |
2732 | if (!deferred_struct_pages) | |
2733 | page_ext_init(); | |
2734 | /* Should be run before the first non-init thread is created */ | |
2735 | init_espfix_bsp(); | |
2736 | /* Should be run after espfix64 is set up. */ | |
2737 | pti_init(); | |
2738 | kmsan_init_runtime(); | |
2739 | mm_cache_init(); | |
2740 | } |