]> Git Repo - linux.git/blame - mm/slab.h
thermal: intel: menlow: Get rid of this driver
[linux.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
d122019b
MWO
8/* Reuses the bits in struct page */
9struct slab {
10 unsigned long __page_flags;
401fb12c
VB
11
12#if defined(CONFIG_SLAB)
13
130d4df5 14 struct kmem_cache *slab_cache;
d122019b 15 union {
130d4df5
VB
16 struct {
17 struct list_head slab_list;
18 void *freelist; /* array of free object indexes */
19 void *s_mem; /* first object */
20 };
401fb12c
VB
21 struct rcu_head rcu_head;
22 };
401fb12c
VB
23 unsigned int active;
24
25#elif defined(CONFIG_SLUB)
26
401fb12c 27 struct kmem_cache *slab_cache;
d122019b 28 union {
401fb12c 29 struct {
130d4df5
VB
30 union {
31 struct list_head slab_list;
32#ifdef CONFIG_SLUB_CPU_PARTIAL
33 struct {
34 struct slab *next;
35 int slabs; /* Nr of slabs left */
36 };
37#endif
38 };
39 /* Double-word boundary */
40 void *freelist; /* first free object */
41 union {
42 unsigned long counters;
43 struct {
44 unsigned inuse:16;
45 unsigned objects:15;
46 unsigned frozen:1;
47 };
48 };
d122019b 49 };
130d4df5 50 struct rcu_head rcu_head;
d122019b 51 };
401fb12c
VB
52 unsigned int __unused;
53
401fb12c
VB
54#else
55#error "Unexpected slab allocator configured"
56#endif
d122019b 57
d122019b
MWO
58 atomic_t __page_refcount;
59#ifdef CONFIG_MEMCG
60 unsigned long memcg_data;
61#endif
62};
63
64#define SLAB_MATCH(pg, sl) \
65 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
66SLAB_MATCH(flags, __page_flags);
130d4df5 67SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
d122019b
MWO
68SLAB_MATCH(_refcount, __page_refcount);
69#ifdef CONFIG_MEMCG
70SLAB_MATCH(memcg_data, memcg_data);
71#endif
72#undef SLAB_MATCH
73static_assert(sizeof(struct slab) <= sizeof(struct page));
130d4df5
VB
74#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_SLUB)
75static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *)));
76#endif
d122019b
MWO
77
78/**
79 * folio_slab - Converts from folio to slab.
80 * @folio: The folio.
81 *
82 * Currently struct slab is a different representation of a folio where
83 * folio_test_slab() is true.
84 *
85 * Return: The slab which contains this folio.
86 */
87#define folio_slab(folio) (_Generic((folio), \
88 const struct folio *: (const struct slab *)(folio), \
89 struct folio *: (struct slab *)(folio)))
90
91/**
92 * slab_folio - The folio allocated for a slab
93 * @slab: The slab.
94 *
95 * Slabs are allocated as folios that contain the individual objects and are
96 * using some fields in the first struct page of the folio - those fields are
97 * now accessed by struct slab. It is occasionally necessary to convert back to
98 * a folio in order to communicate with the rest of the mm. Please use this
99 * helper function instead of casting yourself, as the implementation may change
100 * in the future.
101 */
102#define slab_folio(s) (_Generic((s), \
103 const struct slab *: (const struct folio *)s, \
104 struct slab *: (struct folio *)s))
105
106/**
107 * page_slab - Converts from first struct page to slab.
108 * @p: The first (either head of compound or single) page of slab.
109 *
110 * A temporary wrapper to convert struct page to struct slab in situations where
111 * we know the page is the compound head, or single order-0 page.
112 *
113 * Long-term ideally everything would work with struct slab directly or go
114 * through folio to struct slab.
115 *
116 * Return: The slab which contains this page
117 */
118#define page_slab(p) (_Generic((p), \
119 const struct page *: (const struct slab *)(p), \
120 struct page *: (struct slab *)(p)))
121
122/**
123 * slab_page - The first struct page allocated for a slab
124 * @slab: The slab.
125 *
126 * A convenience wrapper for converting slab to the first struct page of the
127 * underlying folio, to communicate with code not yet converted to folio or
128 * struct slab.
129 */
130#define slab_page(s) folio_page(slab_folio(s), 0)
131
132/*
133 * If network-based swap is enabled, sl*b must keep track of whether pages
134 * were allocated from pfmemalloc reserves.
135 */
136static inline bool slab_test_pfmemalloc(const struct slab *slab)
137{
138 return folio_test_active((struct folio *)slab_folio(slab));
139}
140
141static inline void slab_set_pfmemalloc(struct slab *slab)
142{
143 folio_set_active(slab_folio(slab));
144}
145
146static inline void slab_clear_pfmemalloc(struct slab *slab)
147{
148 folio_clear_active(slab_folio(slab));
149}
150
151static inline void __slab_clear_pfmemalloc(struct slab *slab)
152{
153 __folio_clear_active(slab_folio(slab));
154}
155
156static inline void *slab_address(const struct slab *slab)
157{
158 return folio_address(slab_folio(slab));
159}
160
161static inline int slab_nid(const struct slab *slab)
162{
163 return folio_nid(slab_folio(slab));
164}
165
166static inline pg_data_t *slab_pgdat(const struct slab *slab)
167{
168 return folio_pgdat(slab_folio(slab));
169}
170
171static inline struct slab *virt_to_slab(const void *addr)
172{
173 struct folio *folio = virt_to_folio(addr);
174
175 if (!folio_test_slab(folio))
176 return NULL;
177
178 return folio_slab(folio);
179}
180
181static inline int slab_order(const struct slab *slab)
182{
183 return folio_order((struct folio *)slab_folio(slab));
184}
185
186static inline size_t slab_size(const struct slab *slab)
187{
188 return PAGE_SIZE << slab_order(slab);
189}
190
07f361b2
JK
191#ifdef CONFIG_SLAB
192#include <linux/slab_def.h>
193#endif
194
195#ifdef CONFIG_SLUB
196#include <linux/slub_def.h>
197#endif
198
199#include <linux/memcontrol.h>
11c7aec2 200#include <linux/fault-inject.h>
11c7aec2
JDB
201#include <linux/kasan.h>
202#include <linux/kmemleak.h>
7c00fce9 203#include <linux/random.h>
d92a8cfc 204#include <linux/sched/mm.h>
88f2ef73 205#include <linux/list_lru.h>
07f361b2 206
97d06609
CL
207/*
208 * State of the slab allocator.
209 *
210 * This is used to describe the states of the allocator during bootup.
211 * Allocators use this to gradually bootstrap themselves. Most allocators
212 * have the problem that the structures used for managing slab caches are
213 * allocated from slab caches themselves.
214 */
215enum slab_state {
216 DOWN, /* No slab functionality yet */
217 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 218 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
219 UP, /* Slab caches usable but not all extras yet */
220 FULL /* Everything is working */
221};
222
223extern enum slab_state slab_state;
224
18004c5d
CL
225/* The slab cache mutex protects the management structures during changes */
226extern struct mutex slab_mutex;
9b030cb8
CL
227
228/* The list of all slab caches on the system */
18004c5d
CL
229extern struct list_head slab_caches;
230
9b030cb8
CL
231/* The slab cache that manages slab cache information */
232extern struct kmem_cache *kmem_cache;
233
af3b5f87
VB
234/* A table of kmalloc cache names and sizes */
235extern const struct kmalloc_info_struct {
cb5d9fb3 236 const char *name[NR_KMALLOC_TYPES];
55de8b9c 237 unsigned int size;
af3b5f87
VB
238} kmalloc_info[];
239
f97d5f63 240/* Kmalloc array related functions */
34cc6990 241void setup_kmalloc_cache_index_table(void);
d50112ed 242void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
243
244/* Find the kmalloc slab corresponding for a certain size */
245struct kmem_cache *kmalloc_slab(size_t, gfp_t);
ed4cd17e
HY
246
247void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
248 int node, size_t orig_size,
249 unsigned long caller);
250void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
f97d5f63 251
44405099 252gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 253
9b030cb8 254/* Functions provided by the slab allocators */
d50112ed 255int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 256
55de8b9c
AD
257struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
258 slab_flags_t flags, unsigned int useroffset,
259 unsigned int usersize);
45530c44 260extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
261 unsigned int size, slab_flags_t flags,
262 unsigned int useroffset, unsigned int usersize);
45530c44 263
423c929c 264int slab_unmergeable(struct kmem_cache *s);
f4957d5b 265struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 266 slab_flags_t flags, const char *name, void (*ctor)(void *));
2633d7a0 267struct kmem_cache *
f4957d5b 268__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 269 slab_flags_t flags, void (*ctor)(void *));
423c929c 270
0293d1fd 271slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 272 slab_flags_t flags, const char *name);
cbb79694 273
bb944290
FT
274static inline bool is_kmalloc_cache(struct kmem_cache *s)
275{
bb944290 276 return (s->flags & SLAB_KMALLOC);
bb944290 277}
cbb79694 278
d8843922 279/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
280#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
281 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 282 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
283
284#if defined(CONFIG_DEBUG_SLAB)
285#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286#elif defined(CONFIG_SLUB_DEBUG)
287#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 288 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
289#else
290#define SLAB_DEBUG_FLAGS (0)
291#endif
292
293#if defined(CONFIG_SLAB)
294#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 295 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 296 SLAB_ACCOUNT)
d8843922
GC
297#elif defined(CONFIG_SLUB)
298#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
6cd6d33c
FT
299 SLAB_TEMPORARY | SLAB_ACCOUNT | \
300 SLAB_NO_USER_FLAGS | SLAB_KMALLOC)
d8843922 301#else
34dbc3aa 302#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
d8843922
GC
303#endif
304
e70954fd 305/* Common flags available with current configuration */
d8843922
GC
306#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
307
e70954fd
TG
308/* Common flags permitted for kmem_cache_create */
309#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
310 SLAB_RED_ZONE | \
311 SLAB_POISON | \
312 SLAB_STORE_USER | \
313 SLAB_TRACE | \
314 SLAB_CONSISTENCY_CHECKS | \
315 SLAB_MEM_SPREAD | \
316 SLAB_NOLEAKTRACE | \
317 SLAB_RECLAIM_ACCOUNT | \
318 SLAB_TEMPORARY | \
a285909f 319 SLAB_ACCOUNT | \
6cd6d33c 320 SLAB_KMALLOC | \
a285909f 321 SLAB_NO_USER_FLAGS)
e70954fd 322
f9e13c0a 323bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 324int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 325void __kmem_cache_release(struct kmem_cache *);
c9fc5864 326int __kmem_cache_shrink(struct kmem_cache *);
41a21285 327void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 328
b7454ad3
GC
329struct seq_file;
330struct file;
b7454ad3 331
0d7561c6
GC
332struct slabinfo {
333 unsigned long active_objs;
334 unsigned long num_objs;
335 unsigned long active_slabs;
336 unsigned long num_slabs;
337 unsigned long shared_avail;
338 unsigned int limit;
339 unsigned int batchcount;
340 unsigned int shared;
341 unsigned int objects_per_slab;
342 unsigned int cache_order;
343};
344
345void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
346void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
347ssize_t slabinfo_write(struct file *file, const char __user *buffer,
348 size_t count, loff_t *ppos);
ba6c496e 349
1a984c4e 350static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
6cea1d56
RG
351{
352 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 353 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
354}
355
e42f174e
VB
356#ifdef CONFIG_SLUB_DEBUG
357#ifdef CONFIG_SLUB_DEBUG_ON
358DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
359#else
360DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
361#endif
362extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 363long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
364static inline bool __slub_debug_enabled(void)
365{
366 return static_branch_unlikely(&slub_debug_enabled);
367}
e42f174e
VB
368#else
369static inline void print_tracking(struct kmem_cache *s, void *object)
370{
371}
0d4a062a
ME
372static inline bool __slub_debug_enabled(void)
373{
374 return false;
375}
e42f174e
VB
376#endif
377
378/*
379 * Returns true if any of the specified slub_debug flags is enabled for the
380 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
381 * the static key.
382 */
383static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
384{
0d4a062a
ME
385 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
386 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
387 if (__slub_debug_enabled())
e42f174e 388 return s->flags & flags;
e42f174e
VB
389 return false;
390}
391
84c07d11 392#ifdef CONFIG_MEMCG_KMEM
4b5f8d9a
VB
393/*
394 * slab_objcgs - get the object cgroups vector associated with a slab
395 * @slab: a pointer to the slab struct
396 *
397 * Returns a pointer to the object cgroups vector associated with the slab,
398 * or NULL if no such vector has been associated yet.
399 */
400static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
401{
402 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
403
404 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
405 slab_page(slab));
406 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
407
408 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
409}
410
411int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
412 gfp_t gfp, bool new_slab);
fdbcb2a6
WL
413void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
414 enum node_stat_item idx, int nr);
286e04b8 415
4b5f8d9a 416static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8 417{
4b5f8d9a
VB
418 kfree(slab_objcgs(slab));
419 slab->memcg_data = 0;
286e04b8
RG
420}
421
f2fe7b09
RG
422static inline size_t obj_full_size(struct kmem_cache *s)
423{
424 /*
425 * For each accounted object there is an extra space which is used
426 * to store obj_cgroup membership. Charge it too.
427 */
428 return s->size + sizeof(struct obj_cgroup *);
429}
430
becaba65
RG
431/*
432 * Returns false if the allocation should fail.
433 */
434static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 435 struct list_lru *lru,
becaba65
RG
436 struct obj_cgroup **objcgp,
437 size_t objects, gfp_t flags)
f2fe7b09 438{
9855609b
RG
439 struct obj_cgroup *objcg;
440
f7a449f7 441 if (!memcg_kmem_online())
becaba65
RG
442 return true;
443
444 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
445 return true;
446
9855609b
RG
447 objcg = get_obj_cgroup_from_current();
448 if (!objcg)
becaba65 449 return true;
9855609b 450
88f2ef73
MS
451 if (lru) {
452 int ret;
453 struct mem_cgroup *memcg;
454
455 memcg = get_mem_cgroup_from_objcg(objcg);
456 ret = memcg_list_lru_alloc(memcg, lru, flags);
457 css_put(&memcg->css);
458
459 if (ret)
460 goto out;
f2fe7b09
RG
461 }
462
88f2ef73
MS
463 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
464 goto out;
465
becaba65
RG
466 *objcgp = objcg;
467 return true;
88f2ef73
MS
468out:
469 obj_cgroup_put(objcg);
470 return false;
f2fe7b09
RG
471}
472
964d4bd3
RG
473static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
474 struct obj_cgroup *objcg,
10befea9
RG
475 gfp_t flags, size_t size,
476 void **p)
964d4bd3 477{
4b5f8d9a 478 struct slab *slab;
964d4bd3
RG
479 unsigned long off;
480 size_t i;
481
f7a449f7 482 if (!memcg_kmem_online() || !objcg)
10befea9
RG
483 return;
484
964d4bd3
RG
485 for (i = 0; i < size; i++) {
486 if (likely(p[i])) {
4b5f8d9a 487 slab = virt_to_slab(p[i]);
10befea9 488
4b5f8d9a
VB
489 if (!slab_objcgs(slab) &&
490 memcg_alloc_slab_cgroups(slab, s, flags,
2e9bd483 491 false)) {
10befea9
RG
492 obj_cgroup_uncharge(objcg, obj_full_size(s));
493 continue;
494 }
495
4b5f8d9a 496 off = obj_to_index(s, slab, p[i]);
964d4bd3 497 obj_cgroup_get(objcg);
4b5f8d9a
VB
498 slab_objcgs(slab)[off] = objcg;
499 mod_objcg_state(objcg, slab_pgdat(slab),
f2fe7b09
RG
500 cache_vmstat_idx(s), obj_full_size(s));
501 } else {
502 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
503 }
504 }
505 obj_cgroup_put(objcg);
964d4bd3
RG
506}
507
b77d5b1b 508static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
d1b2cf6c 509 void **p, int objects)
964d4bd3 510{
270c6a71 511 struct obj_cgroup **objcgs;
d1b2cf6c 512 int i;
964d4bd3 513
f7a449f7 514 if (!memcg_kmem_online())
10befea9
RG
515 return;
516
b77d5b1b
MS
517 objcgs = slab_objcgs(slab);
518 if (!objcgs)
519 return;
f2fe7b09 520
b77d5b1b
MS
521 for (i = 0; i < objects; i++) {
522 struct obj_cgroup *objcg;
523 unsigned int off;
10befea9 524
4b5f8d9a 525 off = obj_to_index(s, slab, p[i]);
270c6a71 526 objcg = objcgs[off];
d1b2cf6c
BR
527 if (!objcg)
528 continue;
f2fe7b09 529
270c6a71 530 objcgs[off] = NULL;
d1b2cf6c 531 obj_cgroup_uncharge(objcg, obj_full_size(s));
4b5f8d9a 532 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
d1b2cf6c
BR
533 -obj_full_size(s));
534 obj_cgroup_put(objcg);
535 }
964d4bd3
RG
536}
537
84c07d11 538#else /* CONFIG_MEMCG_KMEM */
4b5f8d9a
VB
539static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
540{
541 return NULL;
542}
543
9855609b 544static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
545{
546 return NULL;
547}
548
4b5f8d9a 549static inline int memcg_alloc_slab_cgroups(struct slab *slab,
2e9bd483 550 struct kmem_cache *s, gfp_t gfp,
4b5f8d9a 551 bool new_slab)
286e04b8
RG
552{
553 return 0;
554}
555
4b5f8d9a 556static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8
RG
557{
558}
559
becaba65 560static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 561 struct list_lru *lru,
becaba65
RG
562 struct obj_cgroup **objcgp,
563 size_t objects, gfp_t flags)
f2fe7b09 564{
becaba65 565 return true;
f2fe7b09
RG
566}
567
964d4bd3
RG
568static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
569 struct obj_cgroup *objcg,
10befea9
RG
570 gfp_t flags, size_t size,
571 void **p)
964d4bd3
RG
572{
573}
574
b77d5b1b 575static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
d1b2cf6c 576 void **p, int objects)
964d4bd3
RG
577{
578}
84c07d11 579#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 580
a64b5378
KC
581static inline struct kmem_cache *virt_to_cache(const void *obj)
582{
82c1775d 583 struct slab *slab;
a64b5378 584
82c1775d
MWO
585 slab = virt_to_slab(obj);
586 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
a64b5378
KC
587 __func__))
588 return NULL;
82c1775d 589 return slab->slab_cache;
a64b5378
KC
590}
591
b918653b
MWO
592static __always_inline void account_slab(struct slab *slab, int order,
593 struct kmem_cache *s, gfp_t gfp)
6cea1d56 594{
f7a449f7 595 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
4b5f8d9a 596 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2e9bd483 597
b918653b 598 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 599 PAGE_SIZE << order);
6cea1d56
RG
600}
601
b918653b
MWO
602static __always_inline void unaccount_slab(struct slab *slab, int order,
603 struct kmem_cache *s)
6cea1d56 604{
f7a449f7 605 if (memcg_kmem_online())
4b5f8d9a 606 memcg_free_slab_cgroups(slab);
9855609b 607
b918653b 608 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 609 -(PAGE_SIZE << order));
6cea1d56
RG
610}
611
e42f174e
VB
612static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
613{
614 struct kmem_cache *cachep;
615
616 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
617 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
618 return s;
619
620 cachep = virt_to_cache(x);
10befea9 621 if (WARN(cachep && cachep != s,
e42f174e
VB
622 "%s: Wrong slab cache. %s but object is from %s\n",
623 __func__, s->name, cachep->name))
624 print_tracking(cachep, x);
625 return cachep;
626}
d6a71648
HY
627
628void free_large_kmalloc(struct folio *folio, void *object);
629
8dfa9d55
HY
630size_t __ksize(const void *objp);
631
11c7aec2
JDB
632static inline size_t slab_ksize(const struct kmem_cache *s)
633{
634#ifndef CONFIG_SLUB
635 return s->object_size;
636
637#else /* CONFIG_SLUB */
638# ifdef CONFIG_SLUB_DEBUG
639 /*
640 * Debugging requires use of the padding between object
641 * and whatever may come after it.
642 */
643 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
644 return s->object_size;
645# endif
80a9201a
AP
646 if (s->flags & SLAB_KASAN)
647 return s->object_size;
11c7aec2
JDB
648 /*
649 * If we have the need to store the freelist pointer
650 * back there or track user information then we can
651 * only use the space before that information.
652 */
5f0d5a3a 653 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
654 return s->inuse;
655 /*
656 * Else we can use all the padding etc for the allocation
657 */
658 return s->size;
659#endif
660}
661
662static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 663 struct list_lru *lru,
964d4bd3
RG
664 struct obj_cgroup **objcgp,
665 size_t size, gfp_t flags)
11c7aec2
JDB
666{
667 flags &= gfp_allowed_mask;
d92a8cfc 668
95d6c701 669 might_alloc(flags);
11c7aec2 670
fab9963a 671 if (should_failslab(s, flags))
11c7aec2
JDB
672 return NULL;
673
88f2ef73 674 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
becaba65 675 return NULL;
45264778
VD
676
677 return s;
11c7aec2
JDB
678}
679
964d4bd3 680static inline void slab_post_alloc_hook(struct kmem_cache *s,
da844b78 681 struct obj_cgroup *objcg, gfp_t flags,
9ce67395
FT
682 size_t size, void **p, bool init,
683 unsigned int orig_size)
11c7aec2 684{
9ce67395 685 unsigned int zero_size = s->object_size;
11c7aec2
JDB
686 size_t i;
687
688 flags &= gfp_allowed_mask;
da844b78 689
9ce67395
FT
690 /*
691 * For kmalloc object, the allocated memory size(object_size) is likely
692 * larger than the requested size(orig_size). If redzone check is
693 * enabled for the extra space, don't zero it, as it will be redzoned
694 * soon. The redzone operation for this extra space could be seen as a
695 * replacement of current poisoning under certain debug option, and
696 * won't break other sanity checks.
697 */
698 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
699 (s->flags & SLAB_KMALLOC))
700 zero_size = orig_size;
701
da844b78
AK
702 /*
703 * As memory initialization might be integrated into KASAN,
704 * kasan_slab_alloc and initialization memset must be
705 * kept together to avoid discrepancies in behavior.
706 *
707 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
708 */
11c7aec2 709 for (i = 0; i < size; i++) {
da844b78
AK
710 p[i] = kasan_slab_alloc(s, p[i], flags, init);
711 if (p[i] && init && !kasan_has_integrated_init())
9ce67395 712 memset(p[i], 0, zero_size);
53128245 713 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 714 s->flags, flags);
68ef169a 715 kmsan_slab_alloc(s, p[i], flags);
11c7aec2 716 }
45264778 717
becaba65 718 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
719}
720
ca34956b
CL
721/*
722 * The slab lists for all objects.
723 */
724struct kmem_cache_node {
ca34956b 725#ifdef CONFIG_SLAB
b539ce9f 726 raw_spinlock_t list_lock;
ca34956b
CL
727 struct list_head slabs_partial; /* partial list first, better asm code */
728 struct list_head slabs_full;
729 struct list_head slabs_free;
bf00bd34
DR
730 unsigned long total_slabs; /* length of all slab lists */
731 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
732 unsigned long free_objects;
733 unsigned int free_limit;
734 unsigned int colour_next; /* Per-node cache coloring */
735 struct array_cache *shared; /* shared per node */
c8522a3a 736 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
737 unsigned long next_reap; /* updated without locking */
738 int free_touched; /* updated without locking */
739#endif
740
741#ifdef CONFIG_SLUB
b539ce9f 742 spinlock_t list_lock;
ca34956b
CL
743 unsigned long nr_partial;
744 struct list_head partial;
745#ifdef CONFIG_SLUB_DEBUG
746 atomic_long_t nr_slabs;
747 atomic_long_t total_objects;
748 struct list_head full;
749#endif
750#endif
751
752};
e25839f6 753
44c5356f
CL
754static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
755{
756 return s->node[node];
757}
758
759/*
760 * Iterator over all nodes. The body will be executed for each node that has
761 * a kmem_cache_node structure allocated (which is true for all online nodes)
762 */
763#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
764 for (__node = 0; __node < nr_node_ids; __node++) \
765 if ((__n = get_node(__s, __node)))
44c5356f 766
44c5356f 767
852d8be0
YS
768#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
769void dump_unreclaimable_slab(void);
770#else
771static inline void dump_unreclaimable_slab(void)
772{
773}
774#endif
775
55834c59
AP
776void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
777
7c00fce9
TG
778#ifdef CONFIG_SLAB_FREELIST_RANDOM
779int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
780 gfp_t gfp);
781void cache_random_seq_destroy(struct kmem_cache *cachep);
782#else
783static inline int cache_random_seq_create(struct kmem_cache *cachep,
784 unsigned int count, gfp_t gfp)
785{
786 return 0;
787}
788static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
789#endif /* CONFIG_SLAB_FREELIST_RANDOM */
790
6471384a
AP
791static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
792{
51cba1eb
KC
793 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
794 &init_on_alloc)) {
6471384a
AP
795 if (c->ctor)
796 return false;
797 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
798 return flags & __GFP_ZERO;
799 return true;
800 }
801 return flags & __GFP_ZERO;
802}
803
804static inline bool slab_want_init_on_free(struct kmem_cache *c)
805{
51cba1eb
KC
806 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
807 &init_on_free))
6471384a
AP
808 return !(c->ctor ||
809 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
810 return false;
811}
812
64dd6849
FM
813#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
814void debugfs_slab_release(struct kmem_cache *);
815#else
816static inline void debugfs_slab_release(struct kmem_cache *s) { }
817#endif
818
5bb1bb35 819#ifdef CONFIG_PRINTK
8e7f37f2
PM
820#define KS_ADDRS_COUNT 16
821struct kmem_obj_info {
822 void *kp_ptr;
7213230a 823 struct slab *kp_slab;
8e7f37f2
PM
824 void *kp_objp;
825 unsigned long kp_data_offset;
826 struct kmem_cache *kp_slab_cache;
827 void *kp_ret;
828 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 829 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2 830};
2dfe63e6 831void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
5bb1bb35 832#endif
8e7f37f2 833
0b3eb091
MWO
834#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
835void __check_heap_object(const void *ptr, unsigned long n,
836 const struct slab *slab, bool to_user);
837#else
838static inline
839void __check_heap_object(const void *ptr, unsigned long n,
840 const struct slab *slab, bool to_user)
841{
842}
843#endif
844
946fa0db
FT
845#ifdef CONFIG_SLUB_DEBUG
846void skip_orig_size_check(struct kmem_cache *s, const void *object);
847#endif
848
5240ab40 849#endif /* MM_SLAB_H */
This page took 0.675876 seconds and 4 git commands to generate.