]>
Commit | Line | Data |
---|---|---|
d475c634 MW |
1 | /* |
2 | * fs/dax.c - Direct Access filesystem code | |
3 | * Copyright (c) 2013-2014 Intel Corporation | |
4 | * Author: Matthew Wilcox <[email protected]> | |
5 | * Author: Ross Zwisler <[email protected]> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify it | |
8 | * under the terms and conditions of the GNU General Public License, | |
9 | * version 2, as published by the Free Software Foundation. | |
10 | * | |
11 | * This program is distributed in the hope it will be useful, but WITHOUT | |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
14 | * more details. | |
15 | */ | |
16 | ||
17 | #include <linux/atomic.h> | |
18 | #include <linux/blkdev.h> | |
19 | #include <linux/buffer_head.h> | |
d77e92e2 | 20 | #include <linux/dax.h> |
d475c634 MW |
21 | #include <linux/fs.h> |
22 | #include <linux/genhd.h> | |
f7ca90b1 MW |
23 | #include <linux/highmem.h> |
24 | #include <linux/memcontrol.h> | |
25 | #include <linux/mm.h> | |
d475c634 | 26 | #include <linux/mutex.h> |
9973c98e | 27 | #include <linux/pagevec.h> |
2765cfbb | 28 | #include <linux/pmem.h> |
289c6aed | 29 | #include <linux/sched.h> |
d475c634 | 30 | #include <linux/uio.h> |
f7ca90b1 | 31 | #include <linux/vmstat.h> |
34c0fd54 | 32 | #include <linux/pfn_t.h> |
0e749e54 | 33 | #include <linux/sizes.h> |
d475c634 | 34 | |
e804315d JK |
35 | /* |
36 | * We use lowest available bit in exceptional entry for locking, other two | |
37 | * bits to determine entry type. In total 3 special bits. | |
38 | */ | |
39 | #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3) | |
40 | #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) | |
41 | #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) | |
42 | #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD) | |
43 | #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK) | |
78a9be0a N |
44 | #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT)) |
45 | #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \ | |
e804315d JK |
46 | RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \ |
47 | RADIX_TREE_EXCEPTIONAL_ENTRY)) | |
e4b27491 | 48 | |
ac401cc7 JK |
49 | /* We choose 4096 entries - same as per-zone page wait tables */ |
50 | #define DAX_WAIT_TABLE_BITS 12 | |
51 | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) | |
52 | ||
53 | wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; | |
54 | ||
55 | static int __init init_dax_wait_table(void) | |
56 | { | |
57 | int i; | |
58 | ||
59 | for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) | |
60 | init_waitqueue_head(wait_table + i); | |
61 | return 0; | |
62 | } | |
63 | fs_initcall(init_dax_wait_table); | |
64 | ||
65 | static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, | |
66 | pgoff_t index) | |
67 | { | |
68 | unsigned long hash = hash_long((unsigned long)mapping ^ index, | |
69 | DAX_WAIT_TABLE_BITS); | |
70 | return wait_table + hash; | |
71 | } | |
78a9be0a | 72 | |
b2e0d162 DW |
73 | static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) |
74 | { | |
75 | struct request_queue *q = bdev->bd_queue; | |
76 | long rc = -EIO; | |
77 | ||
78 | dax->addr = (void __pmem *) ERR_PTR(-EIO); | |
79 | if (blk_queue_enter(q, true) != 0) | |
80 | return rc; | |
81 | ||
82 | rc = bdev_direct_access(bdev, dax); | |
83 | if (rc < 0) { | |
84 | dax->addr = (void __pmem *) ERR_PTR(rc); | |
85 | blk_queue_exit(q); | |
86 | return rc; | |
87 | } | |
88 | return rc; | |
89 | } | |
90 | ||
91 | static void dax_unmap_atomic(struct block_device *bdev, | |
92 | const struct blk_dax_ctl *dax) | |
93 | { | |
94 | if (IS_ERR(dax->addr)) | |
95 | return; | |
96 | blk_queue_exit(bdev->bd_queue); | |
97 | } | |
98 | ||
d1a5f2b4 DW |
99 | struct page *read_dax_sector(struct block_device *bdev, sector_t n) |
100 | { | |
101 | struct page *page = alloc_pages(GFP_KERNEL, 0); | |
102 | struct blk_dax_ctl dax = { | |
103 | .size = PAGE_SIZE, | |
104 | .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), | |
105 | }; | |
106 | long rc; | |
107 | ||
108 | if (!page) | |
109 | return ERR_PTR(-ENOMEM); | |
110 | ||
111 | rc = dax_map_atomic(bdev, &dax); | |
112 | if (rc < 0) | |
113 | return ERR_PTR(rc); | |
114 | memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); | |
115 | dax_unmap_atomic(bdev, &dax); | |
116 | return page; | |
117 | } | |
118 | ||
d475c634 MW |
119 | static bool buffer_written(struct buffer_head *bh) |
120 | { | |
121 | return buffer_mapped(bh) && !buffer_unwritten(bh); | |
122 | } | |
123 | ||
124 | /* | |
125 | * When ext4 encounters a hole, it returns without modifying the buffer_head | |
126 | * which means that we can't trust b_size. To cope with this, we set b_state | |
127 | * to 0 before calling get_block and, if any bit is set, we know we can trust | |
128 | * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is | |
129 | * and would save us time calling get_block repeatedly. | |
130 | */ | |
131 | static bool buffer_size_valid(struct buffer_head *bh) | |
132 | { | |
133 | return bh->b_state != 0; | |
134 | } | |
135 | ||
b2e0d162 DW |
136 | |
137 | static sector_t to_sector(const struct buffer_head *bh, | |
138 | const struct inode *inode) | |
139 | { | |
140 | sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); | |
141 | ||
142 | return sector; | |
143 | } | |
144 | ||
a95cd631 OS |
145 | static ssize_t dax_io(struct inode *inode, struct iov_iter *iter, |
146 | loff_t start, loff_t end, get_block_t get_block, | |
147 | struct buffer_head *bh) | |
d475c634 | 148 | { |
b2e0d162 DW |
149 | loff_t pos = start, max = start, bh_max = start; |
150 | bool hole = false, need_wmb = false; | |
151 | struct block_device *bdev = NULL; | |
152 | int rw = iov_iter_rw(iter), rc; | |
153 | long map_len = 0; | |
154 | struct blk_dax_ctl dax = { | |
155 | .addr = (void __pmem *) ERR_PTR(-EIO), | |
156 | }; | |
069c77bc JK |
157 | unsigned blkbits = inode->i_blkbits; |
158 | sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1) | |
159 | >> blkbits; | |
b2e0d162 DW |
160 | |
161 | if (rw == READ) | |
d475c634 MW |
162 | end = min(end, i_size_read(inode)); |
163 | ||
164 | while (pos < end) { | |
2765cfbb | 165 | size_t len; |
d475c634 | 166 | if (pos == max) { |
e94f5a22 JM |
167 | long page = pos >> PAGE_SHIFT; |
168 | sector_t block = page << (PAGE_SHIFT - blkbits); | |
d475c634 MW |
169 | unsigned first = pos - (block << blkbits); |
170 | long size; | |
171 | ||
172 | if (pos == bh_max) { | |
173 | bh->b_size = PAGE_ALIGN(end - pos); | |
174 | bh->b_state = 0; | |
b2e0d162 DW |
175 | rc = get_block(inode, block, bh, rw == WRITE); |
176 | if (rc) | |
d475c634 MW |
177 | break; |
178 | if (!buffer_size_valid(bh)) | |
179 | bh->b_size = 1 << blkbits; | |
180 | bh_max = pos - first + bh->b_size; | |
b2e0d162 | 181 | bdev = bh->b_bdev; |
069c77bc JK |
182 | /* |
183 | * We allow uninitialized buffers for writes | |
184 | * beyond EOF as those cannot race with faults | |
185 | */ | |
186 | WARN_ON_ONCE( | |
187 | (buffer_new(bh) && block < file_blks) || | |
188 | (rw == WRITE && buffer_unwritten(bh))); | |
d475c634 MW |
189 | } else { |
190 | unsigned done = bh->b_size - | |
191 | (bh_max - (pos - first)); | |
192 | bh->b_blocknr += done >> blkbits; | |
193 | bh->b_size -= done; | |
194 | } | |
195 | ||
b2e0d162 | 196 | hole = rw == READ && !buffer_written(bh); |
d475c634 | 197 | if (hole) { |
d475c634 MW |
198 | size = bh->b_size - first; |
199 | } else { | |
b2e0d162 DW |
200 | dax_unmap_atomic(bdev, &dax); |
201 | dax.sector = to_sector(bh, inode); | |
202 | dax.size = bh->b_size; | |
203 | map_len = dax_map_atomic(bdev, &dax); | |
204 | if (map_len < 0) { | |
205 | rc = map_len; | |
d475c634 | 206 | break; |
b2e0d162 | 207 | } |
b2e0d162 DW |
208 | dax.addr += first; |
209 | size = map_len - first; | |
d475c634 MW |
210 | } |
211 | max = min(pos + size, end); | |
212 | } | |
213 | ||
2765cfbb | 214 | if (iov_iter_rw(iter) == WRITE) { |
b2e0d162 | 215 | len = copy_from_iter_pmem(dax.addr, max - pos, iter); |
2765cfbb RZ |
216 | need_wmb = true; |
217 | } else if (!hole) | |
b2e0d162 | 218 | len = copy_to_iter((void __force *) dax.addr, max - pos, |
e2e05394 | 219 | iter); |
d475c634 MW |
220 | else |
221 | len = iov_iter_zero(max - pos, iter); | |
222 | ||
cadfbb6e | 223 | if (!len) { |
b2e0d162 | 224 | rc = -EFAULT; |
d475c634 | 225 | break; |
cadfbb6e | 226 | } |
d475c634 MW |
227 | |
228 | pos += len; | |
b2e0d162 DW |
229 | if (!IS_ERR(dax.addr)) |
230 | dax.addr += len; | |
d475c634 MW |
231 | } |
232 | ||
2765cfbb RZ |
233 | if (need_wmb) |
234 | wmb_pmem(); | |
b2e0d162 | 235 | dax_unmap_atomic(bdev, &dax); |
2765cfbb | 236 | |
b2e0d162 | 237 | return (pos == start) ? rc : pos - start; |
d475c634 MW |
238 | } |
239 | ||
240 | /** | |
241 | * dax_do_io - Perform I/O to a DAX file | |
d475c634 MW |
242 | * @iocb: The control block for this I/O |
243 | * @inode: The file which the I/O is directed at | |
244 | * @iter: The addresses to do I/O from or to | |
d475c634 MW |
245 | * @get_block: The filesystem method used to translate file offsets to blocks |
246 | * @end_io: A filesystem callback for I/O completion | |
247 | * @flags: See below | |
248 | * | |
249 | * This function uses the same locking scheme as do_blockdev_direct_IO: | |
250 | * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the | |
251 | * caller for writes. For reads, we take and release the i_mutex ourselves. | |
252 | * If DIO_LOCKING is not set, the filesystem takes care of its own locking. | |
253 | * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O | |
254 | * is in progress. | |
255 | */ | |
a95cd631 | 256 | ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode, |
c8b8e32d | 257 | struct iov_iter *iter, get_block_t get_block, |
a95cd631 | 258 | dio_iodone_t end_io, int flags) |
d475c634 MW |
259 | { |
260 | struct buffer_head bh; | |
261 | ssize_t retval = -EINVAL; | |
c8b8e32d | 262 | loff_t pos = iocb->ki_pos; |
d475c634 MW |
263 | loff_t end = pos + iov_iter_count(iter); |
264 | ||
265 | memset(&bh, 0, sizeof(bh)); | |
eab95db6 | 266 | bh.b_bdev = inode->i_sb->s_bdev; |
d475c634 | 267 | |
c3d98e39 | 268 | if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) |
5955102c | 269 | inode_lock(inode); |
d475c634 MW |
270 | |
271 | /* Protects against truncate */ | |
bbab37dd MW |
272 | if (!(flags & DIO_SKIP_DIO_COUNT)) |
273 | inode_dio_begin(inode); | |
d475c634 | 274 | |
a95cd631 | 275 | retval = dax_io(inode, iter, pos, end, get_block, &bh); |
d475c634 | 276 | |
a95cd631 | 277 | if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) |
5955102c | 278 | inode_unlock(inode); |
d475c634 | 279 | |
187372a3 CH |
280 | if (end_io) { |
281 | int err; | |
282 | ||
283 | err = end_io(iocb, pos, retval, bh.b_private); | |
284 | if (err) | |
285 | retval = err; | |
286 | } | |
d475c634 | 287 | |
bbab37dd MW |
288 | if (!(flags & DIO_SKIP_DIO_COUNT)) |
289 | inode_dio_end(inode); | |
d475c634 MW |
290 | return retval; |
291 | } | |
292 | EXPORT_SYMBOL_GPL(dax_do_io); | |
f7ca90b1 | 293 | |
ac401cc7 JK |
294 | /* |
295 | * DAX radix tree locking | |
296 | */ | |
297 | struct exceptional_entry_key { | |
298 | struct address_space *mapping; | |
299 | unsigned long index; | |
300 | }; | |
301 | ||
302 | struct wait_exceptional_entry_queue { | |
303 | wait_queue_t wait; | |
304 | struct exceptional_entry_key key; | |
305 | }; | |
306 | ||
307 | static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, | |
308 | int sync, void *keyp) | |
309 | { | |
310 | struct exceptional_entry_key *key = keyp; | |
311 | struct wait_exceptional_entry_queue *ewait = | |
312 | container_of(wait, struct wait_exceptional_entry_queue, wait); | |
313 | ||
314 | if (key->mapping != ewait->key.mapping || | |
315 | key->index != ewait->key.index) | |
316 | return 0; | |
317 | return autoremove_wake_function(wait, mode, sync, NULL); | |
318 | } | |
319 | ||
320 | /* | |
321 | * Check whether the given slot is locked. The function must be called with | |
322 | * mapping->tree_lock held | |
323 | */ | |
324 | static inline int slot_locked(struct address_space *mapping, void **slot) | |
325 | { | |
326 | unsigned long entry = (unsigned long) | |
327 | radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
328 | return entry & RADIX_DAX_ENTRY_LOCK; | |
329 | } | |
330 | ||
331 | /* | |
332 | * Mark the given slot is locked. The function must be called with | |
333 | * mapping->tree_lock held | |
334 | */ | |
335 | static inline void *lock_slot(struct address_space *mapping, void **slot) | |
336 | { | |
337 | unsigned long entry = (unsigned long) | |
338 | radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
339 | ||
340 | entry |= RADIX_DAX_ENTRY_LOCK; | |
341 | radix_tree_replace_slot(slot, (void *)entry); | |
342 | return (void *)entry; | |
343 | } | |
344 | ||
345 | /* | |
346 | * Mark the given slot is unlocked. The function must be called with | |
347 | * mapping->tree_lock held | |
348 | */ | |
349 | static inline void *unlock_slot(struct address_space *mapping, void **slot) | |
350 | { | |
351 | unsigned long entry = (unsigned long) | |
352 | radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
353 | ||
354 | entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; | |
355 | radix_tree_replace_slot(slot, (void *)entry); | |
356 | return (void *)entry; | |
357 | } | |
358 | ||
359 | /* | |
360 | * Lookup entry in radix tree, wait for it to become unlocked if it is | |
361 | * exceptional entry and return it. The caller must call | |
362 | * put_unlocked_mapping_entry() when he decided not to lock the entry or | |
363 | * put_locked_mapping_entry() when he locked the entry and now wants to | |
364 | * unlock it. | |
365 | * | |
366 | * The function must be called with mapping->tree_lock held. | |
367 | */ | |
368 | static void *get_unlocked_mapping_entry(struct address_space *mapping, | |
369 | pgoff_t index, void ***slotp) | |
370 | { | |
371 | void *ret, **slot; | |
372 | struct wait_exceptional_entry_queue ewait; | |
373 | wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index); | |
374 | ||
375 | init_wait(&ewait.wait); | |
376 | ewait.wait.func = wake_exceptional_entry_func; | |
377 | ewait.key.mapping = mapping; | |
378 | ewait.key.index = index; | |
379 | ||
380 | for (;;) { | |
381 | ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, | |
382 | &slot); | |
383 | if (!ret || !radix_tree_exceptional_entry(ret) || | |
384 | !slot_locked(mapping, slot)) { | |
385 | if (slotp) | |
386 | *slotp = slot; | |
387 | return ret; | |
388 | } | |
389 | prepare_to_wait_exclusive(wq, &ewait.wait, | |
390 | TASK_UNINTERRUPTIBLE); | |
391 | spin_unlock_irq(&mapping->tree_lock); | |
392 | schedule(); | |
393 | finish_wait(wq, &ewait.wait); | |
394 | spin_lock_irq(&mapping->tree_lock); | |
395 | } | |
396 | } | |
397 | ||
398 | /* | |
399 | * Find radix tree entry at given index. If it points to a page, return with | |
400 | * the page locked. If it points to the exceptional entry, return with the | |
401 | * radix tree entry locked. If the radix tree doesn't contain given index, | |
402 | * create empty exceptional entry for the index and return with it locked. | |
403 | * | |
404 | * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For | |
405 | * persistent memory the benefit is doubtful. We can add that later if we can | |
406 | * show it helps. | |
407 | */ | |
408 | static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index) | |
409 | { | |
410 | void *ret, **slot; | |
411 | ||
412 | restart: | |
413 | spin_lock_irq(&mapping->tree_lock); | |
414 | ret = get_unlocked_mapping_entry(mapping, index, &slot); | |
415 | /* No entry for given index? Make sure radix tree is big enough. */ | |
416 | if (!ret) { | |
417 | int err; | |
418 | ||
419 | spin_unlock_irq(&mapping->tree_lock); | |
420 | err = radix_tree_preload( | |
421 | mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); | |
422 | if (err) | |
423 | return ERR_PTR(err); | |
424 | ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | | |
425 | RADIX_DAX_ENTRY_LOCK); | |
426 | spin_lock_irq(&mapping->tree_lock); | |
427 | err = radix_tree_insert(&mapping->page_tree, index, ret); | |
428 | radix_tree_preload_end(); | |
429 | if (err) { | |
430 | spin_unlock_irq(&mapping->tree_lock); | |
431 | /* Someone already created the entry? */ | |
432 | if (err == -EEXIST) | |
433 | goto restart; | |
434 | return ERR_PTR(err); | |
435 | } | |
436 | /* Good, we have inserted empty locked entry into the tree. */ | |
437 | mapping->nrexceptional++; | |
438 | spin_unlock_irq(&mapping->tree_lock); | |
439 | return ret; | |
440 | } | |
441 | /* Normal page in radix tree? */ | |
442 | if (!radix_tree_exceptional_entry(ret)) { | |
443 | struct page *page = ret; | |
444 | ||
445 | get_page(page); | |
446 | spin_unlock_irq(&mapping->tree_lock); | |
447 | lock_page(page); | |
448 | /* Page got truncated? Retry... */ | |
449 | if (unlikely(page->mapping != mapping)) { | |
450 | unlock_page(page); | |
451 | put_page(page); | |
452 | goto restart; | |
453 | } | |
454 | return page; | |
455 | } | |
456 | ret = lock_slot(mapping, slot); | |
457 | spin_unlock_irq(&mapping->tree_lock); | |
458 | return ret; | |
459 | } | |
460 | ||
461 | void dax_wake_mapping_entry_waiter(struct address_space *mapping, | |
462 | pgoff_t index, bool wake_all) | |
463 | { | |
464 | wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index); | |
465 | ||
466 | /* | |
467 | * Checking for locked entry and prepare_to_wait_exclusive() happens | |
468 | * under mapping->tree_lock, ditto for entry handling in our callers. | |
469 | * So at this point all tasks that could have seen our entry locked | |
470 | * must be in the waitqueue and the following check will see them. | |
471 | */ | |
472 | if (waitqueue_active(wq)) { | |
473 | struct exceptional_entry_key key; | |
474 | ||
475 | key.mapping = mapping; | |
476 | key.index = index; | |
477 | __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); | |
478 | } | |
479 | } | |
480 | ||
bc2466e4 | 481 | void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index) |
ac401cc7 JK |
482 | { |
483 | void *ret, **slot; | |
484 | ||
485 | spin_lock_irq(&mapping->tree_lock); | |
486 | ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); | |
487 | if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) || | |
488 | !slot_locked(mapping, slot))) { | |
489 | spin_unlock_irq(&mapping->tree_lock); | |
490 | return; | |
491 | } | |
492 | unlock_slot(mapping, slot); | |
493 | spin_unlock_irq(&mapping->tree_lock); | |
494 | dax_wake_mapping_entry_waiter(mapping, index, false); | |
495 | } | |
496 | ||
497 | static void put_locked_mapping_entry(struct address_space *mapping, | |
498 | pgoff_t index, void *entry) | |
499 | { | |
500 | if (!radix_tree_exceptional_entry(entry)) { | |
501 | unlock_page(entry); | |
502 | put_page(entry); | |
503 | } else { | |
bc2466e4 | 504 | dax_unlock_mapping_entry(mapping, index); |
ac401cc7 JK |
505 | } |
506 | } | |
507 | ||
508 | /* | |
509 | * Called when we are done with radix tree entry we looked up via | |
510 | * get_unlocked_mapping_entry() and which we didn't lock in the end. | |
511 | */ | |
512 | static void put_unlocked_mapping_entry(struct address_space *mapping, | |
513 | pgoff_t index, void *entry) | |
514 | { | |
515 | if (!radix_tree_exceptional_entry(entry)) | |
516 | return; | |
517 | ||
518 | /* We have to wake up next waiter for the radix tree entry lock */ | |
519 | dax_wake_mapping_entry_waiter(mapping, index, false); | |
520 | } | |
521 | ||
522 | /* | |
523 | * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree | |
524 | * entry to get unlocked before deleting it. | |
525 | */ | |
526 | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) | |
527 | { | |
528 | void *entry; | |
529 | ||
530 | spin_lock_irq(&mapping->tree_lock); | |
531 | entry = get_unlocked_mapping_entry(mapping, index, NULL); | |
532 | /* | |
533 | * This gets called from truncate / punch_hole path. As such, the caller | |
534 | * must hold locks protecting against concurrent modifications of the | |
535 | * radix tree (usually fs-private i_mmap_sem for writing). Since the | |
536 | * caller has seen exceptional entry for this index, we better find it | |
537 | * at that index as well... | |
538 | */ | |
539 | if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) { | |
540 | spin_unlock_irq(&mapping->tree_lock); | |
541 | return 0; | |
542 | } | |
543 | radix_tree_delete(&mapping->page_tree, index); | |
544 | mapping->nrexceptional--; | |
545 | spin_unlock_irq(&mapping->tree_lock); | |
546 | dax_wake_mapping_entry_waiter(mapping, index, true); | |
547 | ||
548 | return 1; | |
549 | } | |
550 | ||
f7ca90b1 MW |
551 | /* |
552 | * The user has performed a load from a hole in the file. Allocating | |
553 | * a new page in the file would cause excessive storage usage for | |
554 | * workloads with sparse files. We allocate a page cache page instead. | |
555 | * We'll kick it out of the page cache if it's ever written to, | |
556 | * otherwise it will simply fall out of the page cache under memory | |
557 | * pressure without ever having been dirtied. | |
558 | */ | |
ac401cc7 JK |
559 | static int dax_load_hole(struct address_space *mapping, void *entry, |
560 | struct vm_fault *vmf) | |
f7ca90b1 | 561 | { |
ac401cc7 | 562 | struct page *page; |
f7ca90b1 | 563 | |
ac401cc7 JK |
564 | /* Hole page already exists? Return it... */ |
565 | if (!radix_tree_exceptional_entry(entry)) { | |
566 | vmf->page = entry; | |
567 | return VM_FAULT_LOCKED; | |
568 | } | |
f7ca90b1 | 569 | |
ac401cc7 JK |
570 | /* This will replace locked radix tree entry with a hole page */ |
571 | page = find_or_create_page(mapping, vmf->pgoff, | |
572 | vmf->gfp_mask | __GFP_ZERO); | |
573 | if (!page) { | |
574 | put_locked_mapping_entry(mapping, vmf->pgoff, entry); | |
575 | return VM_FAULT_OOM; | |
576 | } | |
f7ca90b1 MW |
577 | vmf->page = page; |
578 | return VM_FAULT_LOCKED; | |
579 | } | |
580 | ||
b2e0d162 DW |
581 | static int copy_user_bh(struct page *to, struct inode *inode, |
582 | struct buffer_head *bh, unsigned long vaddr) | |
f7ca90b1 | 583 | { |
b2e0d162 DW |
584 | struct blk_dax_ctl dax = { |
585 | .sector = to_sector(bh, inode), | |
586 | .size = bh->b_size, | |
587 | }; | |
588 | struct block_device *bdev = bh->b_bdev; | |
e2e05394 RZ |
589 | void *vto; |
590 | ||
b2e0d162 DW |
591 | if (dax_map_atomic(bdev, &dax) < 0) |
592 | return PTR_ERR(dax.addr); | |
f7ca90b1 | 593 | vto = kmap_atomic(to); |
b2e0d162 | 594 | copy_user_page(vto, (void __force *)dax.addr, vaddr, to); |
f7ca90b1 | 595 | kunmap_atomic(vto); |
b2e0d162 | 596 | dax_unmap_atomic(bdev, &dax); |
f7ca90b1 MW |
597 | return 0; |
598 | } | |
599 | ||
09cbfeaf | 600 | #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT)) |
9973c98e | 601 | |
ac401cc7 JK |
602 | static void *dax_insert_mapping_entry(struct address_space *mapping, |
603 | struct vm_fault *vmf, | |
604 | void *entry, sector_t sector) | |
9973c98e RZ |
605 | { |
606 | struct radix_tree_root *page_tree = &mapping->page_tree; | |
ac401cc7 JK |
607 | int error = 0; |
608 | bool hole_fill = false; | |
609 | void *new_entry; | |
610 | pgoff_t index = vmf->pgoff; | |
9973c98e | 611 | |
ac401cc7 | 612 | if (vmf->flags & FAULT_FLAG_WRITE) |
d2b2a28e | 613 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
9973c98e | 614 | |
ac401cc7 JK |
615 | /* Replacing hole page with block mapping? */ |
616 | if (!radix_tree_exceptional_entry(entry)) { | |
617 | hole_fill = true; | |
618 | /* | |
619 | * Unmap the page now before we remove it from page cache below. | |
620 | * The page is locked so it cannot be faulted in again. | |
621 | */ | |
622 | unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, | |
623 | PAGE_SIZE, 0); | |
624 | error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); | |
625 | if (error) | |
626 | return ERR_PTR(error); | |
9973c98e RZ |
627 | } |
628 | ||
ac401cc7 JK |
629 | spin_lock_irq(&mapping->tree_lock); |
630 | new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) | | |
631 | RADIX_DAX_ENTRY_LOCK); | |
632 | if (hole_fill) { | |
633 | __delete_from_page_cache(entry, NULL); | |
634 | /* Drop pagecache reference */ | |
635 | put_page(entry); | |
636 | error = radix_tree_insert(page_tree, index, new_entry); | |
637 | if (error) { | |
638 | new_entry = ERR_PTR(error); | |
9973c98e RZ |
639 | goto unlock; |
640 | } | |
ac401cc7 JK |
641 | mapping->nrexceptional++; |
642 | } else { | |
643 | void **slot; | |
644 | void *ret; | |
9973c98e | 645 | |
ac401cc7 JK |
646 | ret = __radix_tree_lookup(page_tree, index, NULL, &slot); |
647 | WARN_ON_ONCE(ret != entry); | |
648 | radix_tree_replace_slot(slot, new_entry); | |
9973c98e | 649 | } |
ac401cc7 | 650 | if (vmf->flags & FAULT_FLAG_WRITE) |
9973c98e RZ |
651 | radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); |
652 | unlock: | |
653 | spin_unlock_irq(&mapping->tree_lock); | |
ac401cc7 JK |
654 | if (hole_fill) { |
655 | radix_tree_preload_end(); | |
656 | /* | |
657 | * We don't need hole page anymore, it has been replaced with | |
658 | * locked radix tree entry now. | |
659 | */ | |
660 | if (mapping->a_ops->freepage) | |
661 | mapping->a_ops->freepage(entry); | |
662 | unlock_page(entry); | |
663 | put_page(entry); | |
664 | } | |
665 | return new_entry; | |
9973c98e RZ |
666 | } |
667 | ||
668 | static int dax_writeback_one(struct block_device *bdev, | |
669 | struct address_space *mapping, pgoff_t index, void *entry) | |
670 | { | |
671 | struct radix_tree_root *page_tree = &mapping->page_tree; | |
672 | int type = RADIX_DAX_TYPE(entry); | |
673 | struct radix_tree_node *node; | |
674 | struct blk_dax_ctl dax; | |
675 | void **slot; | |
676 | int ret = 0; | |
677 | ||
678 | spin_lock_irq(&mapping->tree_lock); | |
679 | /* | |
680 | * Regular page slots are stabilized by the page lock even | |
681 | * without the tree itself locked. These unlocked entries | |
682 | * need verification under the tree lock. | |
683 | */ | |
684 | if (!__radix_tree_lookup(page_tree, index, &node, &slot)) | |
685 | goto unlock; | |
686 | if (*slot != entry) | |
687 | goto unlock; | |
688 | ||
689 | /* another fsync thread may have already written back this entry */ | |
690 | if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) | |
691 | goto unlock; | |
692 | ||
693 | if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) { | |
694 | ret = -EIO; | |
695 | goto unlock; | |
696 | } | |
697 | ||
698 | dax.sector = RADIX_DAX_SECTOR(entry); | |
699 | dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE); | |
700 | spin_unlock_irq(&mapping->tree_lock); | |
701 | ||
702 | /* | |
703 | * We cannot hold tree_lock while calling dax_map_atomic() because it | |
704 | * eventually calls cond_resched(). | |
705 | */ | |
706 | ret = dax_map_atomic(bdev, &dax); | |
707 | if (ret < 0) | |
708 | return ret; | |
709 | ||
710 | if (WARN_ON_ONCE(ret < dax.size)) { | |
711 | ret = -EIO; | |
712 | goto unmap; | |
713 | } | |
714 | ||
715 | wb_cache_pmem(dax.addr, dax.size); | |
716 | ||
717 | spin_lock_irq(&mapping->tree_lock); | |
718 | radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); | |
719 | spin_unlock_irq(&mapping->tree_lock); | |
720 | unmap: | |
721 | dax_unmap_atomic(bdev, &dax); | |
722 | return ret; | |
723 | ||
724 | unlock: | |
725 | spin_unlock_irq(&mapping->tree_lock); | |
726 | return ret; | |
727 | } | |
728 | ||
729 | /* | |
730 | * Flush the mapping to the persistent domain within the byte range of [start, | |
731 | * end]. This is required by data integrity operations to ensure file data is | |
732 | * on persistent storage prior to completion of the operation. | |
733 | */ | |
7f6d5b52 RZ |
734 | int dax_writeback_mapping_range(struct address_space *mapping, |
735 | struct block_device *bdev, struct writeback_control *wbc) | |
9973c98e RZ |
736 | { |
737 | struct inode *inode = mapping->host; | |
9973c98e RZ |
738 | pgoff_t start_index, end_index, pmd_index; |
739 | pgoff_t indices[PAGEVEC_SIZE]; | |
740 | struct pagevec pvec; | |
741 | bool done = false; | |
742 | int i, ret = 0; | |
743 | void *entry; | |
744 | ||
745 | if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | |
746 | return -EIO; | |
747 | ||
7f6d5b52 RZ |
748 | if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) |
749 | return 0; | |
750 | ||
09cbfeaf KS |
751 | start_index = wbc->range_start >> PAGE_SHIFT; |
752 | end_index = wbc->range_end >> PAGE_SHIFT; | |
9973c98e RZ |
753 | pmd_index = DAX_PMD_INDEX(start_index); |
754 | ||
755 | rcu_read_lock(); | |
756 | entry = radix_tree_lookup(&mapping->page_tree, pmd_index); | |
757 | rcu_read_unlock(); | |
758 | ||
759 | /* see if the start of our range is covered by a PMD entry */ | |
760 | if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) | |
761 | start_index = pmd_index; | |
762 | ||
763 | tag_pages_for_writeback(mapping, start_index, end_index); | |
764 | ||
765 | pagevec_init(&pvec, 0); | |
766 | while (!done) { | |
767 | pvec.nr = find_get_entries_tag(mapping, start_index, | |
768 | PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, | |
769 | pvec.pages, indices); | |
770 | ||
771 | if (pvec.nr == 0) | |
772 | break; | |
773 | ||
774 | for (i = 0; i < pvec.nr; i++) { | |
775 | if (indices[i] > end_index) { | |
776 | done = true; | |
777 | break; | |
778 | } | |
779 | ||
780 | ret = dax_writeback_one(bdev, mapping, indices[i], | |
781 | pvec.pages[i]); | |
782 | if (ret < 0) | |
783 | return ret; | |
784 | } | |
785 | } | |
786 | wmb_pmem(); | |
787 | return 0; | |
788 | } | |
789 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | |
790 | ||
ac401cc7 JK |
791 | static int dax_insert_mapping(struct address_space *mapping, |
792 | struct buffer_head *bh, void **entryp, | |
f7ca90b1 MW |
793 | struct vm_area_struct *vma, struct vm_fault *vmf) |
794 | { | |
f7ca90b1 | 795 | unsigned long vaddr = (unsigned long)vmf->virtual_address; |
b2e0d162 DW |
796 | struct block_device *bdev = bh->b_bdev; |
797 | struct blk_dax_ctl dax = { | |
ac401cc7 | 798 | .sector = to_sector(bh, mapping->host), |
b2e0d162 DW |
799 | .size = bh->b_size, |
800 | }; | |
ac401cc7 JK |
801 | void *ret; |
802 | void *entry = *entryp; | |
f7ca90b1 | 803 | |
4d9a2c87 JK |
804 | if (dax_map_atomic(bdev, &dax) < 0) |
805 | return PTR_ERR(dax.addr); | |
b2e0d162 | 806 | dax_unmap_atomic(bdev, &dax); |
f7ca90b1 | 807 | |
ac401cc7 | 808 | ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector); |
4d9a2c87 JK |
809 | if (IS_ERR(ret)) |
810 | return PTR_ERR(ret); | |
ac401cc7 | 811 | *entryp = ret; |
9973c98e | 812 | |
4d9a2c87 | 813 | return vm_insert_mixed(vma, vaddr, dax.pfn); |
f7ca90b1 MW |
814 | } |
815 | ||
ce5c5d55 DC |
816 | /** |
817 | * __dax_fault - handle a page fault on a DAX file | |
818 | * @vma: The virtual memory area where the fault occurred | |
819 | * @vmf: The description of the fault | |
820 | * @get_block: The filesystem method used to translate file offsets to blocks | |
821 | * | |
822 | * When a page fault occurs, filesystems may call this helper in their | |
823 | * fault handler for DAX files. __dax_fault() assumes the caller has done all | |
824 | * the necessary locking for the page fault to proceed successfully. | |
825 | */ | |
826 | int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, | |
02fbd139 | 827 | get_block_t get_block) |
f7ca90b1 MW |
828 | { |
829 | struct file *file = vma->vm_file; | |
830 | struct address_space *mapping = file->f_mapping; | |
831 | struct inode *inode = mapping->host; | |
ac401cc7 | 832 | void *entry; |
f7ca90b1 MW |
833 | struct buffer_head bh; |
834 | unsigned long vaddr = (unsigned long)vmf->virtual_address; | |
835 | unsigned blkbits = inode->i_blkbits; | |
836 | sector_t block; | |
837 | pgoff_t size; | |
838 | int error; | |
839 | int major = 0; | |
840 | ||
ac401cc7 JK |
841 | /* |
842 | * Check whether offset isn't beyond end of file now. Caller is supposed | |
843 | * to hold locks serializing us with truncate / punch hole so this is | |
844 | * a reliable test. | |
845 | */ | |
f7ca90b1 MW |
846 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; |
847 | if (vmf->pgoff >= size) | |
848 | return VM_FAULT_SIGBUS; | |
849 | ||
850 | memset(&bh, 0, sizeof(bh)); | |
851 | block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits); | |
eab95db6 | 852 | bh.b_bdev = inode->i_sb->s_bdev; |
f7ca90b1 MW |
853 | bh.b_size = PAGE_SIZE; |
854 | ||
ac401cc7 JK |
855 | entry = grab_mapping_entry(mapping, vmf->pgoff); |
856 | if (IS_ERR(entry)) { | |
857 | error = PTR_ERR(entry); | |
858 | goto out; | |
f7ca90b1 MW |
859 | } |
860 | ||
861 | error = get_block(inode, block, &bh, 0); | |
862 | if (!error && (bh.b_size < PAGE_SIZE)) | |
863 | error = -EIO; /* fs corruption? */ | |
864 | if (error) | |
ac401cc7 | 865 | goto unlock_entry; |
f7ca90b1 MW |
866 | |
867 | if (vmf->cow_page) { | |
868 | struct page *new_page = vmf->cow_page; | |
869 | if (buffer_written(&bh)) | |
b2e0d162 | 870 | error = copy_user_bh(new_page, inode, &bh, vaddr); |
f7ca90b1 MW |
871 | else |
872 | clear_user_highpage(new_page, vaddr); | |
873 | if (error) | |
ac401cc7 JK |
874 | goto unlock_entry; |
875 | if (!radix_tree_exceptional_entry(entry)) { | |
876 | vmf->page = entry; | |
bc2466e4 | 877 | return VM_FAULT_LOCKED; |
ac401cc7 | 878 | } |
bc2466e4 JK |
879 | vmf->entry = entry; |
880 | return VM_FAULT_DAX_LOCKED; | |
f7ca90b1 | 881 | } |
f7ca90b1 | 882 | |
ac401cc7 | 883 | if (!buffer_mapped(&bh)) { |
f7ca90b1 MW |
884 | if (vmf->flags & FAULT_FLAG_WRITE) { |
885 | error = get_block(inode, block, &bh, 1); | |
886 | count_vm_event(PGMAJFAULT); | |
887 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); | |
888 | major = VM_FAULT_MAJOR; | |
889 | if (!error && (bh.b_size < PAGE_SIZE)) | |
890 | error = -EIO; | |
891 | if (error) | |
ac401cc7 | 892 | goto unlock_entry; |
f7ca90b1 | 893 | } else { |
ac401cc7 | 894 | return dax_load_hole(mapping, entry, vmf); |
f7ca90b1 MW |
895 | } |
896 | } | |
897 | ||
02fbd139 | 898 | /* Filesystem should not return unwritten buffers to us! */ |
2b10945c | 899 | WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh)); |
ac401cc7 JK |
900 | error = dax_insert_mapping(mapping, &bh, &entry, vma, vmf); |
901 | unlock_entry: | |
902 | put_locked_mapping_entry(mapping, vmf->pgoff, entry); | |
f7ca90b1 MW |
903 | out: |
904 | if (error == -ENOMEM) | |
905 | return VM_FAULT_OOM | major; | |
906 | /* -EBUSY is fine, somebody else faulted on the same PTE */ | |
907 | if ((error < 0) && (error != -EBUSY)) | |
908 | return VM_FAULT_SIGBUS | major; | |
909 | return VM_FAULT_NOPAGE | major; | |
f7ca90b1 | 910 | } |
ce5c5d55 | 911 | EXPORT_SYMBOL(__dax_fault); |
f7ca90b1 MW |
912 | |
913 | /** | |
914 | * dax_fault - handle a page fault on a DAX file | |
915 | * @vma: The virtual memory area where the fault occurred | |
916 | * @vmf: The description of the fault | |
917 | * @get_block: The filesystem method used to translate file offsets to blocks | |
918 | * | |
919 | * When a page fault occurs, filesystems may call this helper in their | |
920 | * fault handler for DAX files. | |
921 | */ | |
922 | int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, | |
02fbd139 | 923 | get_block_t get_block) |
f7ca90b1 MW |
924 | { |
925 | int result; | |
926 | struct super_block *sb = file_inode(vma->vm_file)->i_sb; | |
927 | ||
928 | if (vmf->flags & FAULT_FLAG_WRITE) { | |
929 | sb_start_pagefault(sb); | |
930 | file_update_time(vma->vm_file); | |
931 | } | |
02fbd139 | 932 | result = __dax_fault(vma, vmf, get_block); |
f7ca90b1 MW |
933 | if (vmf->flags & FAULT_FLAG_WRITE) |
934 | sb_end_pagefault(sb); | |
935 | ||
936 | return result; | |
937 | } | |
938 | EXPORT_SYMBOL_GPL(dax_fault); | |
4c0ccfef | 939 | |
348e967a | 940 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) |
844f35db MW |
941 | /* |
942 | * The 'colour' (ie low bits) within a PMD of a page offset. This comes up | |
943 | * more often than one might expect in the below function. | |
944 | */ | |
945 | #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) | |
946 | ||
cbb38e41 DW |
947 | static void __dax_dbg(struct buffer_head *bh, unsigned long address, |
948 | const char *reason, const char *fn) | |
949 | { | |
950 | if (bh) { | |
951 | char bname[BDEVNAME_SIZE]; | |
952 | bdevname(bh->b_bdev, bname); | |
953 | pr_debug("%s: %s addr: %lx dev %s state %lx start %lld " | |
954 | "length %zd fallback: %s\n", fn, current->comm, | |
955 | address, bname, bh->b_state, (u64)bh->b_blocknr, | |
956 | bh->b_size, reason); | |
957 | } else { | |
958 | pr_debug("%s: %s addr: %lx fallback: %s\n", fn, | |
959 | current->comm, address, reason); | |
960 | } | |
961 | } | |
962 | ||
963 | #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd") | |
964 | ||
844f35db | 965 | int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, |
02fbd139 | 966 | pmd_t *pmd, unsigned int flags, get_block_t get_block) |
844f35db MW |
967 | { |
968 | struct file *file = vma->vm_file; | |
969 | struct address_space *mapping = file->f_mapping; | |
970 | struct inode *inode = mapping->host; | |
971 | struct buffer_head bh; | |
972 | unsigned blkbits = inode->i_blkbits; | |
973 | unsigned long pmd_addr = address & PMD_MASK; | |
974 | bool write = flags & FAULT_FLAG_WRITE; | |
b2e0d162 | 975 | struct block_device *bdev; |
844f35db | 976 | pgoff_t size, pgoff; |
b2e0d162 | 977 | sector_t block; |
ac401cc7 | 978 | int result = 0; |
9973c98e | 979 | bool alloc = false; |
844f35db | 980 | |
c046c321 | 981 | /* dax pmd mappings require pfn_t_devmap() */ |
ee82c9ed DW |
982 | if (!IS_ENABLED(CONFIG_FS_DAX_PMD)) |
983 | return VM_FAULT_FALLBACK; | |
984 | ||
844f35db | 985 | /* Fall back to PTEs if we're going to COW */ |
59bf4fb9 TK |
986 | if (write && !(vma->vm_flags & VM_SHARED)) { |
987 | split_huge_pmd(vma, pmd, address); | |
cbb38e41 | 988 | dax_pmd_dbg(NULL, address, "cow write"); |
844f35db | 989 | return VM_FAULT_FALLBACK; |
59bf4fb9 | 990 | } |
844f35db | 991 | /* If the PMD would extend outside the VMA */ |
cbb38e41 DW |
992 | if (pmd_addr < vma->vm_start) { |
993 | dax_pmd_dbg(NULL, address, "vma start unaligned"); | |
844f35db | 994 | return VM_FAULT_FALLBACK; |
cbb38e41 DW |
995 | } |
996 | if ((pmd_addr + PMD_SIZE) > vma->vm_end) { | |
997 | dax_pmd_dbg(NULL, address, "vma end unaligned"); | |
844f35db | 998 | return VM_FAULT_FALLBACK; |
cbb38e41 | 999 | } |
844f35db | 1000 | |
3fdd1b47 | 1001 | pgoff = linear_page_index(vma, pmd_addr); |
844f35db MW |
1002 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1003 | if (pgoff >= size) | |
1004 | return VM_FAULT_SIGBUS; | |
1005 | /* If the PMD would cover blocks out of the file */ | |
cbb38e41 DW |
1006 | if ((pgoff | PG_PMD_COLOUR) >= size) { |
1007 | dax_pmd_dbg(NULL, address, | |
1008 | "offset + huge page size > file size"); | |
844f35db | 1009 | return VM_FAULT_FALLBACK; |
cbb38e41 | 1010 | } |
844f35db MW |
1011 | |
1012 | memset(&bh, 0, sizeof(bh)); | |
d4bbe706 | 1013 | bh.b_bdev = inode->i_sb->s_bdev; |
844f35db MW |
1014 | block = (sector_t)pgoff << (PAGE_SHIFT - blkbits); |
1015 | ||
1016 | bh.b_size = PMD_SIZE; | |
9973c98e RZ |
1017 | |
1018 | if (get_block(inode, block, &bh, 0) != 0) | |
844f35db | 1019 | return VM_FAULT_SIGBUS; |
9973c98e RZ |
1020 | |
1021 | if (!buffer_mapped(&bh) && write) { | |
1022 | if (get_block(inode, block, &bh, 1) != 0) | |
1023 | return VM_FAULT_SIGBUS; | |
1024 | alloc = true; | |
2b10945c | 1025 | WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh)); |
9973c98e RZ |
1026 | } |
1027 | ||
b2e0d162 | 1028 | bdev = bh.b_bdev; |
844f35db MW |
1029 | |
1030 | /* | |
1031 | * If the filesystem isn't willing to tell us the length of a hole, | |
1032 | * just fall back to PTEs. Calling get_block 512 times in a loop | |
1033 | * would be silly. | |
1034 | */ | |
cbb38e41 DW |
1035 | if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) { |
1036 | dax_pmd_dbg(&bh, address, "allocated block too small"); | |
9973c98e RZ |
1037 | return VM_FAULT_FALLBACK; |
1038 | } | |
1039 | ||
1040 | /* | |
1041 | * If we allocated new storage, make sure no process has any | |
1042 | * zero pages covering this hole | |
1043 | */ | |
1044 | if (alloc) { | |
1045 | loff_t lstart = pgoff << PAGE_SHIFT; | |
1046 | loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */ | |
1047 | ||
1048 | truncate_pagecache_range(inode, lstart, lend); | |
cbb38e41 | 1049 | } |
844f35db | 1050 | |
b9953536 | 1051 | if (!write && !buffer_mapped(&bh)) { |
844f35db | 1052 | spinlock_t *ptl; |
d295e341 | 1053 | pmd_t entry; |
844f35db | 1054 | struct page *zero_page = get_huge_zero_page(); |
d295e341 | 1055 | |
cbb38e41 DW |
1056 | if (unlikely(!zero_page)) { |
1057 | dax_pmd_dbg(&bh, address, "no zero page"); | |
844f35db | 1058 | goto fallback; |
cbb38e41 | 1059 | } |
844f35db | 1060 | |
d295e341 KS |
1061 | ptl = pmd_lock(vma->vm_mm, pmd); |
1062 | if (!pmd_none(*pmd)) { | |
1063 | spin_unlock(ptl); | |
cbb38e41 | 1064 | dax_pmd_dbg(&bh, address, "pmd already present"); |
d295e341 KS |
1065 | goto fallback; |
1066 | } | |
1067 | ||
cbb38e41 DW |
1068 | dev_dbg(part_to_dev(bdev->bd_part), |
1069 | "%s: %s addr: %lx pfn: <zero> sect: %llx\n", | |
1070 | __func__, current->comm, address, | |
1071 | (unsigned long long) to_sector(&bh, inode)); | |
1072 | ||
d295e341 KS |
1073 | entry = mk_pmd(zero_page, vma->vm_page_prot); |
1074 | entry = pmd_mkhuge(entry); | |
1075 | set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry); | |
844f35db | 1076 | result = VM_FAULT_NOPAGE; |
d295e341 | 1077 | spin_unlock(ptl); |
844f35db | 1078 | } else { |
b2e0d162 DW |
1079 | struct blk_dax_ctl dax = { |
1080 | .sector = to_sector(&bh, inode), | |
1081 | .size = PMD_SIZE, | |
1082 | }; | |
1083 | long length = dax_map_atomic(bdev, &dax); | |
1084 | ||
844f35db | 1085 | if (length < 0) { |
8b3db979 DW |
1086 | dax_pmd_dbg(&bh, address, "dax-error fallback"); |
1087 | goto fallback; | |
844f35db | 1088 | } |
cbb38e41 DW |
1089 | if (length < PMD_SIZE) { |
1090 | dax_pmd_dbg(&bh, address, "dax-length too small"); | |
1091 | dax_unmap_atomic(bdev, &dax); | |
1092 | goto fallback; | |
1093 | } | |
1094 | if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) { | |
1095 | dax_pmd_dbg(&bh, address, "pfn unaligned"); | |
b2e0d162 | 1096 | dax_unmap_atomic(bdev, &dax); |
844f35db | 1097 | goto fallback; |
b2e0d162 | 1098 | } |
844f35db | 1099 | |
c046c321 | 1100 | if (!pfn_t_devmap(dax.pfn)) { |
b2e0d162 | 1101 | dax_unmap_atomic(bdev, &dax); |
cbb38e41 | 1102 | dax_pmd_dbg(&bh, address, "pfn not in memmap"); |
152d7bd8 | 1103 | goto fallback; |
b2e0d162 | 1104 | } |
b2e0d162 | 1105 | dax_unmap_atomic(bdev, &dax); |
0f90cc66 | 1106 | |
9973c98e RZ |
1107 | /* |
1108 | * For PTE faults we insert a radix tree entry for reads, and | |
1109 | * leave it clean. Then on the first write we dirty the radix | |
1110 | * tree entry via the dax_pfn_mkwrite() path. This sequence | |
1111 | * allows the dax_pfn_mkwrite() call to be simpler and avoid a | |
1112 | * call into get_block() to translate the pgoff to a sector in | |
1113 | * order to be able to create a new radix tree entry. | |
1114 | * | |
1115 | * The PMD path doesn't have an equivalent to | |
1116 | * dax_pfn_mkwrite(), though, so for a read followed by a | |
1117 | * write we traverse all the way through __dax_pmd_fault() | |
1118 | * twice. This means we can just skip inserting a radix tree | |
1119 | * entry completely on the initial read and just wait until | |
1120 | * the write to insert a dirty entry. | |
1121 | */ | |
1122 | if (write) { | |
ac401cc7 JK |
1123 | /* |
1124 | * We should insert radix-tree entry and dirty it here. | |
1125 | * For now this is broken... | |
1126 | */ | |
9973c98e RZ |
1127 | } |
1128 | ||
cbb38e41 DW |
1129 | dev_dbg(part_to_dev(bdev->bd_part), |
1130 | "%s: %s addr: %lx pfn: %lx sect: %llx\n", | |
1131 | __func__, current->comm, address, | |
1132 | pfn_t_to_pfn(dax.pfn), | |
1133 | (unsigned long long) dax.sector); | |
34c0fd54 | 1134 | result |= vmf_insert_pfn_pmd(vma, address, pmd, |
f25748e3 | 1135 | dax.pfn, write); |
844f35db MW |
1136 | } |
1137 | ||
1138 | out: | |
844f35db MW |
1139 | return result; |
1140 | ||
1141 | fallback: | |
1142 | count_vm_event(THP_FAULT_FALLBACK); | |
1143 | result = VM_FAULT_FALLBACK; | |
1144 | goto out; | |
1145 | } | |
1146 | EXPORT_SYMBOL_GPL(__dax_pmd_fault); | |
1147 | ||
1148 | /** | |
1149 | * dax_pmd_fault - handle a PMD fault on a DAX file | |
1150 | * @vma: The virtual memory area where the fault occurred | |
1151 | * @vmf: The description of the fault | |
1152 | * @get_block: The filesystem method used to translate file offsets to blocks | |
1153 | * | |
1154 | * When a page fault occurs, filesystems may call this helper in their | |
1155 | * pmd_fault handler for DAX files. | |
1156 | */ | |
1157 | int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, | |
02fbd139 | 1158 | pmd_t *pmd, unsigned int flags, get_block_t get_block) |
844f35db MW |
1159 | { |
1160 | int result; | |
1161 | struct super_block *sb = file_inode(vma->vm_file)->i_sb; | |
1162 | ||
1163 | if (flags & FAULT_FLAG_WRITE) { | |
1164 | sb_start_pagefault(sb); | |
1165 | file_update_time(vma->vm_file); | |
1166 | } | |
02fbd139 | 1167 | result = __dax_pmd_fault(vma, address, pmd, flags, get_block); |
844f35db MW |
1168 | if (flags & FAULT_FLAG_WRITE) |
1169 | sb_end_pagefault(sb); | |
1170 | ||
1171 | return result; | |
1172 | } | |
1173 | EXPORT_SYMBOL_GPL(dax_pmd_fault); | |
dd8a2b6c | 1174 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
844f35db | 1175 | |
0e3b210c BH |
1176 | /** |
1177 | * dax_pfn_mkwrite - handle first write to DAX page | |
1178 | * @vma: The virtual memory area where the fault occurred | |
1179 | * @vmf: The description of the fault | |
0e3b210c BH |
1180 | */ |
1181 | int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) | |
1182 | { | |
9973c98e | 1183 | struct file *file = vma->vm_file; |
ac401cc7 JK |
1184 | struct address_space *mapping = file->f_mapping; |
1185 | void *entry; | |
1186 | pgoff_t index = vmf->pgoff; | |
30f471fd | 1187 | |
ac401cc7 JK |
1188 | spin_lock_irq(&mapping->tree_lock); |
1189 | entry = get_unlocked_mapping_entry(mapping, index, NULL); | |
1190 | if (!entry || !radix_tree_exceptional_entry(entry)) | |
1191 | goto out; | |
1192 | radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); | |
1193 | put_unlocked_mapping_entry(mapping, index, entry); | |
1194 | out: | |
1195 | spin_unlock_irq(&mapping->tree_lock); | |
0e3b210c BH |
1196 | return VM_FAULT_NOPAGE; |
1197 | } | |
1198 | EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); | |
1199 | ||
4b0228fa VV |
1200 | static bool dax_range_is_aligned(struct block_device *bdev, |
1201 | unsigned int offset, unsigned int length) | |
1202 | { | |
1203 | unsigned short sector_size = bdev_logical_block_size(bdev); | |
1204 | ||
1205 | if (!IS_ALIGNED(offset, sector_size)) | |
1206 | return false; | |
1207 | if (!IS_ALIGNED(length, sector_size)) | |
1208 | return false; | |
1209 | ||
1210 | return true; | |
1211 | } | |
1212 | ||
679c8bd3 CH |
1213 | int __dax_zero_page_range(struct block_device *bdev, sector_t sector, |
1214 | unsigned int offset, unsigned int length) | |
1215 | { | |
1216 | struct blk_dax_ctl dax = { | |
1217 | .sector = sector, | |
1218 | .size = PAGE_SIZE, | |
1219 | }; | |
1220 | ||
4b0228fa VV |
1221 | if (dax_range_is_aligned(bdev, offset, length)) { |
1222 | sector_t start_sector = dax.sector + (offset >> 9); | |
1223 | ||
1224 | return blkdev_issue_zeroout(bdev, start_sector, | |
1225 | length >> 9, GFP_NOFS, true); | |
1226 | } else { | |
1227 | if (dax_map_atomic(bdev, &dax) < 0) | |
1228 | return PTR_ERR(dax.addr); | |
1229 | clear_pmem(dax.addr + offset, length); | |
1230 | wmb_pmem(); | |
1231 | dax_unmap_atomic(bdev, &dax); | |
1232 | } | |
679c8bd3 CH |
1233 | return 0; |
1234 | } | |
1235 | EXPORT_SYMBOL_GPL(__dax_zero_page_range); | |
1236 | ||
4c0ccfef | 1237 | /** |
25726bc1 | 1238 | * dax_zero_page_range - zero a range within a page of a DAX file |
4c0ccfef MW |
1239 | * @inode: The file being truncated |
1240 | * @from: The file offset that is being truncated to | |
25726bc1 | 1241 | * @length: The number of bytes to zero |
4c0ccfef MW |
1242 | * @get_block: The filesystem method used to translate file offsets to blocks |
1243 | * | |
25726bc1 MW |
1244 | * This function can be called by a filesystem when it is zeroing part of a |
1245 | * page in a DAX file. This is intended for hole-punch operations. If | |
1246 | * you are truncating a file, the helper function dax_truncate_page() may be | |
1247 | * more convenient. | |
4c0ccfef | 1248 | */ |
25726bc1 MW |
1249 | int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length, |
1250 | get_block_t get_block) | |
4c0ccfef MW |
1251 | { |
1252 | struct buffer_head bh; | |
09cbfeaf KS |
1253 | pgoff_t index = from >> PAGE_SHIFT; |
1254 | unsigned offset = from & (PAGE_SIZE-1); | |
4c0ccfef MW |
1255 | int err; |
1256 | ||
1257 | /* Block boundary? Nothing to do */ | |
1258 | if (!length) | |
1259 | return 0; | |
09cbfeaf | 1260 | BUG_ON((offset + length) > PAGE_SIZE); |
4c0ccfef MW |
1261 | |
1262 | memset(&bh, 0, sizeof(bh)); | |
eab95db6 | 1263 | bh.b_bdev = inode->i_sb->s_bdev; |
09cbfeaf | 1264 | bh.b_size = PAGE_SIZE; |
4c0ccfef | 1265 | err = get_block(inode, index, &bh, 0); |
679c8bd3 | 1266 | if (err < 0 || !buffer_written(&bh)) |
4c0ccfef | 1267 | return err; |
4c0ccfef | 1268 | |
679c8bd3 CH |
1269 | return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode), |
1270 | offset, length); | |
4c0ccfef | 1271 | } |
25726bc1 MW |
1272 | EXPORT_SYMBOL_GPL(dax_zero_page_range); |
1273 | ||
1274 | /** | |
1275 | * dax_truncate_page - handle a partial page being truncated in a DAX file | |
1276 | * @inode: The file being truncated | |
1277 | * @from: The file offset that is being truncated to | |
1278 | * @get_block: The filesystem method used to translate file offsets to blocks | |
1279 | * | |
1280 | * Similar to block_truncate_page(), this function can be called by a | |
1281 | * filesystem when it is truncating a DAX file to handle the partial page. | |
25726bc1 MW |
1282 | */ |
1283 | int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block) | |
1284 | { | |
09cbfeaf | 1285 | unsigned length = PAGE_ALIGN(from) - from; |
25726bc1 MW |
1286 | return dax_zero_page_range(inode, from, length, get_block); |
1287 | } | |
4c0ccfef | 1288 | EXPORT_SYMBOL_GPL(dax_truncate_page); |