]>
Commit | Line | Data |
---|---|---|
d475c634 MW |
1 | /* |
2 | * fs/dax.c - Direct Access filesystem code | |
3 | * Copyright (c) 2013-2014 Intel Corporation | |
4 | * Author: Matthew Wilcox <[email protected]> | |
5 | * Author: Ross Zwisler <[email protected]> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify it | |
8 | * under the terms and conditions of the GNU General Public License, | |
9 | * version 2, as published by the Free Software Foundation. | |
10 | * | |
11 | * This program is distributed in the hope it will be useful, but WITHOUT | |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
14 | * more details. | |
15 | */ | |
16 | ||
17 | #include <linux/atomic.h> | |
18 | #include <linux/blkdev.h> | |
19 | #include <linux/buffer_head.h> | |
d77e92e2 | 20 | #include <linux/dax.h> |
d475c634 MW |
21 | #include <linux/fs.h> |
22 | #include <linux/genhd.h> | |
f7ca90b1 MW |
23 | #include <linux/highmem.h> |
24 | #include <linux/memcontrol.h> | |
25 | #include <linux/mm.h> | |
d475c634 | 26 | #include <linux/mutex.h> |
9973c98e | 27 | #include <linux/pagevec.h> |
2765cfbb | 28 | #include <linux/pmem.h> |
289c6aed | 29 | #include <linux/sched.h> |
d475c634 | 30 | #include <linux/uio.h> |
f7ca90b1 | 31 | #include <linux/vmstat.h> |
34c0fd54 | 32 | #include <linux/pfn_t.h> |
0e749e54 | 33 | #include <linux/sizes.h> |
d475c634 | 34 | |
e4b27491 N |
35 | #define RADIX_DAX_MASK 0xf |
36 | #define RADIX_DAX_SHIFT 4 | |
37 | #define RADIX_DAX_PTE (0x4 | RADIX_TREE_EXCEPTIONAL_ENTRY) | |
38 | #define RADIX_DAX_PMD (0x8 | RADIX_TREE_EXCEPTIONAL_ENTRY) | |
39 | #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_MASK) | |
40 | #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT)) | |
41 | #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \ | |
42 | RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE))) | |
43 | ||
b2e0d162 DW |
44 | static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) |
45 | { | |
46 | struct request_queue *q = bdev->bd_queue; | |
47 | long rc = -EIO; | |
48 | ||
49 | dax->addr = (void __pmem *) ERR_PTR(-EIO); | |
50 | if (blk_queue_enter(q, true) != 0) | |
51 | return rc; | |
52 | ||
53 | rc = bdev_direct_access(bdev, dax); | |
54 | if (rc < 0) { | |
55 | dax->addr = (void __pmem *) ERR_PTR(rc); | |
56 | blk_queue_exit(q); | |
57 | return rc; | |
58 | } | |
59 | return rc; | |
60 | } | |
61 | ||
62 | static void dax_unmap_atomic(struct block_device *bdev, | |
63 | const struct blk_dax_ctl *dax) | |
64 | { | |
65 | if (IS_ERR(dax->addr)) | |
66 | return; | |
67 | blk_queue_exit(bdev->bd_queue); | |
68 | } | |
69 | ||
d1a5f2b4 DW |
70 | struct page *read_dax_sector(struct block_device *bdev, sector_t n) |
71 | { | |
72 | struct page *page = alloc_pages(GFP_KERNEL, 0); | |
73 | struct blk_dax_ctl dax = { | |
74 | .size = PAGE_SIZE, | |
75 | .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), | |
76 | }; | |
77 | long rc; | |
78 | ||
79 | if (!page) | |
80 | return ERR_PTR(-ENOMEM); | |
81 | ||
82 | rc = dax_map_atomic(bdev, &dax); | |
83 | if (rc < 0) | |
84 | return ERR_PTR(rc); | |
85 | memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); | |
86 | dax_unmap_atomic(bdev, &dax); | |
87 | return page; | |
88 | } | |
89 | ||
1ca19157 | 90 | /* |
20a90f58 | 91 | * dax_clear_sectors() is called from within transaction context from XFS, |
1ca19157 DC |
92 | * and hence this means the stack from this point must follow GFP_NOFS |
93 | * semantics for all operations. | |
94 | */ | |
20a90f58 | 95 | int dax_clear_sectors(struct block_device *bdev, sector_t _sector, long _size) |
289c6aed | 96 | { |
b2e0d162 | 97 | struct blk_dax_ctl dax = { |
20a90f58 | 98 | .sector = _sector, |
b2e0d162 DW |
99 | .size = _size, |
100 | }; | |
289c6aed MW |
101 | |
102 | might_sleep(); | |
103 | do { | |
0e749e54 | 104 | long count, sz; |
289c6aed | 105 | |
b2e0d162 | 106 | count = dax_map_atomic(bdev, &dax); |
289c6aed MW |
107 | if (count < 0) |
108 | return count; | |
0e749e54 | 109 | sz = min_t(long, count, SZ_128K); |
b2e0d162 DW |
110 | clear_pmem(dax.addr, sz); |
111 | dax.size -= sz; | |
112 | dax.sector += sz / 512; | |
113 | dax_unmap_atomic(bdev, &dax); | |
0e749e54 | 114 | cond_resched(); |
b2e0d162 | 115 | } while (dax.size); |
289c6aed | 116 | |
2765cfbb | 117 | wmb_pmem(); |
289c6aed MW |
118 | return 0; |
119 | } | |
20a90f58 | 120 | EXPORT_SYMBOL_GPL(dax_clear_sectors); |
289c6aed | 121 | |
2765cfbb | 122 | /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */ |
e2e05394 RZ |
123 | static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first, |
124 | loff_t pos, loff_t end) | |
d475c634 MW |
125 | { |
126 | loff_t final = end - pos + first; /* The final byte of the buffer */ | |
127 | ||
128 | if (first > 0) | |
e2e05394 | 129 | clear_pmem(addr, first); |
d475c634 | 130 | if (final < size) |
e2e05394 | 131 | clear_pmem(addr + final, size - final); |
d475c634 MW |
132 | } |
133 | ||
134 | static bool buffer_written(struct buffer_head *bh) | |
135 | { | |
136 | return buffer_mapped(bh) && !buffer_unwritten(bh); | |
137 | } | |
138 | ||
139 | /* | |
140 | * When ext4 encounters a hole, it returns without modifying the buffer_head | |
141 | * which means that we can't trust b_size. To cope with this, we set b_state | |
142 | * to 0 before calling get_block and, if any bit is set, we know we can trust | |
143 | * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is | |
144 | * and would save us time calling get_block repeatedly. | |
145 | */ | |
146 | static bool buffer_size_valid(struct buffer_head *bh) | |
147 | { | |
148 | return bh->b_state != 0; | |
149 | } | |
150 | ||
b2e0d162 DW |
151 | |
152 | static sector_t to_sector(const struct buffer_head *bh, | |
153 | const struct inode *inode) | |
154 | { | |
155 | sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9); | |
156 | ||
157 | return sector; | |
158 | } | |
159 | ||
a95cd631 OS |
160 | static ssize_t dax_io(struct inode *inode, struct iov_iter *iter, |
161 | loff_t start, loff_t end, get_block_t get_block, | |
162 | struct buffer_head *bh) | |
d475c634 | 163 | { |
b2e0d162 DW |
164 | loff_t pos = start, max = start, bh_max = start; |
165 | bool hole = false, need_wmb = false; | |
166 | struct block_device *bdev = NULL; | |
167 | int rw = iov_iter_rw(iter), rc; | |
168 | long map_len = 0; | |
169 | struct blk_dax_ctl dax = { | |
170 | .addr = (void __pmem *) ERR_PTR(-EIO), | |
171 | }; | |
172 | ||
173 | if (rw == READ) | |
d475c634 MW |
174 | end = min(end, i_size_read(inode)); |
175 | ||
176 | while (pos < end) { | |
2765cfbb | 177 | size_t len; |
d475c634 MW |
178 | if (pos == max) { |
179 | unsigned blkbits = inode->i_blkbits; | |
e94f5a22 JM |
180 | long page = pos >> PAGE_SHIFT; |
181 | sector_t block = page << (PAGE_SHIFT - blkbits); | |
d475c634 MW |
182 | unsigned first = pos - (block << blkbits); |
183 | long size; | |
184 | ||
185 | if (pos == bh_max) { | |
186 | bh->b_size = PAGE_ALIGN(end - pos); | |
187 | bh->b_state = 0; | |
b2e0d162 DW |
188 | rc = get_block(inode, block, bh, rw == WRITE); |
189 | if (rc) | |
d475c634 MW |
190 | break; |
191 | if (!buffer_size_valid(bh)) | |
192 | bh->b_size = 1 << blkbits; | |
193 | bh_max = pos - first + bh->b_size; | |
b2e0d162 | 194 | bdev = bh->b_bdev; |
d475c634 MW |
195 | } else { |
196 | unsigned done = bh->b_size - | |
197 | (bh_max - (pos - first)); | |
198 | bh->b_blocknr += done >> blkbits; | |
199 | bh->b_size -= done; | |
200 | } | |
201 | ||
b2e0d162 | 202 | hole = rw == READ && !buffer_written(bh); |
d475c634 | 203 | if (hole) { |
d475c634 MW |
204 | size = bh->b_size - first; |
205 | } else { | |
b2e0d162 DW |
206 | dax_unmap_atomic(bdev, &dax); |
207 | dax.sector = to_sector(bh, inode); | |
208 | dax.size = bh->b_size; | |
209 | map_len = dax_map_atomic(bdev, &dax); | |
210 | if (map_len < 0) { | |
211 | rc = map_len; | |
d475c634 | 212 | break; |
b2e0d162 | 213 | } |
2765cfbb | 214 | if (buffer_unwritten(bh) || buffer_new(bh)) { |
b2e0d162 DW |
215 | dax_new_buf(dax.addr, map_len, first, |
216 | pos, end); | |
2765cfbb RZ |
217 | need_wmb = true; |
218 | } | |
b2e0d162 DW |
219 | dax.addr += first; |
220 | size = map_len - first; | |
d475c634 MW |
221 | } |
222 | max = min(pos + size, end); | |
223 | } | |
224 | ||
2765cfbb | 225 | if (iov_iter_rw(iter) == WRITE) { |
b2e0d162 | 226 | len = copy_from_iter_pmem(dax.addr, max - pos, iter); |
2765cfbb RZ |
227 | need_wmb = true; |
228 | } else if (!hole) | |
b2e0d162 | 229 | len = copy_to_iter((void __force *) dax.addr, max - pos, |
e2e05394 | 230 | iter); |
d475c634 MW |
231 | else |
232 | len = iov_iter_zero(max - pos, iter); | |
233 | ||
cadfbb6e | 234 | if (!len) { |
b2e0d162 | 235 | rc = -EFAULT; |
d475c634 | 236 | break; |
cadfbb6e | 237 | } |
d475c634 MW |
238 | |
239 | pos += len; | |
b2e0d162 DW |
240 | if (!IS_ERR(dax.addr)) |
241 | dax.addr += len; | |
d475c634 MW |
242 | } |
243 | ||
2765cfbb RZ |
244 | if (need_wmb) |
245 | wmb_pmem(); | |
b2e0d162 | 246 | dax_unmap_atomic(bdev, &dax); |
2765cfbb | 247 | |
b2e0d162 | 248 | return (pos == start) ? rc : pos - start; |
d475c634 MW |
249 | } |
250 | ||
251 | /** | |
252 | * dax_do_io - Perform I/O to a DAX file | |
d475c634 MW |
253 | * @iocb: The control block for this I/O |
254 | * @inode: The file which the I/O is directed at | |
255 | * @iter: The addresses to do I/O from or to | |
256 | * @pos: The file offset where the I/O starts | |
257 | * @get_block: The filesystem method used to translate file offsets to blocks | |
258 | * @end_io: A filesystem callback for I/O completion | |
259 | * @flags: See below | |
260 | * | |
261 | * This function uses the same locking scheme as do_blockdev_direct_IO: | |
262 | * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the | |
263 | * caller for writes. For reads, we take and release the i_mutex ourselves. | |
264 | * If DIO_LOCKING is not set, the filesystem takes care of its own locking. | |
265 | * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O | |
266 | * is in progress. | |
267 | */ | |
a95cd631 OS |
268 | ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode, |
269 | struct iov_iter *iter, loff_t pos, get_block_t get_block, | |
270 | dio_iodone_t end_io, int flags) | |
d475c634 MW |
271 | { |
272 | struct buffer_head bh; | |
273 | ssize_t retval = -EINVAL; | |
274 | loff_t end = pos + iov_iter_count(iter); | |
275 | ||
276 | memset(&bh, 0, sizeof(bh)); | |
eab95db6 | 277 | bh.b_bdev = inode->i_sb->s_bdev; |
d475c634 | 278 | |
a95cd631 | 279 | if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) { |
d475c634 | 280 | struct address_space *mapping = inode->i_mapping; |
5955102c | 281 | inode_lock(inode); |
d475c634 MW |
282 | retval = filemap_write_and_wait_range(mapping, pos, end - 1); |
283 | if (retval) { | |
5955102c | 284 | inode_unlock(inode); |
d475c634 MW |
285 | goto out; |
286 | } | |
287 | } | |
288 | ||
289 | /* Protects against truncate */ | |
bbab37dd MW |
290 | if (!(flags & DIO_SKIP_DIO_COUNT)) |
291 | inode_dio_begin(inode); | |
d475c634 | 292 | |
a95cd631 | 293 | retval = dax_io(inode, iter, pos, end, get_block, &bh); |
d475c634 | 294 | |
a95cd631 | 295 | if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) |
5955102c | 296 | inode_unlock(inode); |
d475c634 | 297 | |
187372a3 CH |
298 | if (end_io) { |
299 | int err; | |
300 | ||
301 | err = end_io(iocb, pos, retval, bh.b_private); | |
302 | if (err) | |
303 | retval = err; | |
304 | } | |
d475c634 | 305 | |
bbab37dd MW |
306 | if (!(flags & DIO_SKIP_DIO_COUNT)) |
307 | inode_dio_end(inode); | |
d475c634 MW |
308 | out: |
309 | return retval; | |
310 | } | |
311 | EXPORT_SYMBOL_GPL(dax_do_io); | |
f7ca90b1 MW |
312 | |
313 | /* | |
314 | * The user has performed a load from a hole in the file. Allocating | |
315 | * a new page in the file would cause excessive storage usage for | |
316 | * workloads with sparse files. We allocate a page cache page instead. | |
317 | * We'll kick it out of the page cache if it's ever written to, | |
318 | * otherwise it will simply fall out of the page cache under memory | |
319 | * pressure without ever having been dirtied. | |
320 | */ | |
321 | static int dax_load_hole(struct address_space *mapping, struct page *page, | |
322 | struct vm_fault *vmf) | |
323 | { | |
324 | unsigned long size; | |
325 | struct inode *inode = mapping->host; | |
326 | if (!page) | |
327 | page = find_or_create_page(mapping, vmf->pgoff, | |
328 | GFP_KERNEL | __GFP_ZERO); | |
329 | if (!page) | |
330 | return VM_FAULT_OOM; | |
331 | /* Recheck i_size under page lock to avoid truncate race */ | |
332 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
333 | if (vmf->pgoff >= size) { | |
334 | unlock_page(page); | |
09cbfeaf | 335 | put_page(page); |
f7ca90b1 MW |
336 | return VM_FAULT_SIGBUS; |
337 | } | |
338 | ||
339 | vmf->page = page; | |
340 | return VM_FAULT_LOCKED; | |
341 | } | |
342 | ||
b2e0d162 DW |
343 | static int copy_user_bh(struct page *to, struct inode *inode, |
344 | struct buffer_head *bh, unsigned long vaddr) | |
f7ca90b1 | 345 | { |
b2e0d162 DW |
346 | struct blk_dax_ctl dax = { |
347 | .sector = to_sector(bh, inode), | |
348 | .size = bh->b_size, | |
349 | }; | |
350 | struct block_device *bdev = bh->b_bdev; | |
e2e05394 RZ |
351 | void *vto; |
352 | ||
b2e0d162 DW |
353 | if (dax_map_atomic(bdev, &dax) < 0) |
354 | return PTR_ERR(dax.addr); | |
f7ca90b1 | 355 | vto = kmap_atomic(to); |
b2e0d162 | 356 | copy_user_page(vto, (void __force *)dax.addr, vaddr, to); |
f7ca90b1 | 357 | kunmap_atomic(vto); |
b2e0d162 | 358 | dax_unmap_atomic(bdev, &dax); |
f7ca90b1 MW |
359 | return 0; |
360 | } | |
361 | ||
9973c98e | 362 | #define NO_SECTOR -1 |
09cbfeaf | 363 | #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT)) |
9973c98e RZ |
364 | |
365 | static int dax_radix_entry(struct address_space *mapping, pgoff_t index, | |
366 | sector_t sector, bool pmd_entry, bool dirty) | |
367 | { | |
368 | struct radix_tree_root *page_tree = &mapping->page_tree; | |
369 | pgoff_t pmd_index = DAX_PMD_INDEX(index); | |
370 | int type, error = 0; | |
371 | void *entry; | |
372 | ||
373 | WARN_ON_ONCE(pmd_entry && !dirty); | |
d2b2a28e DM |
374 | if (dirty) |
375 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
9973c98e RZ |
376 | |
377 | spin_lock_irq(&mapping->tree_lock); | |
378 | ||
379 | entry = radix_tree_lookup(page_tree, pmd_index); | |
380 | if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) { | |
381 | index = pmd_index; | |
382 | goto dirty; | |
383 | } | |
384 | ||
385 | entry = radix_tree_lookup(page_tree, index); | |
386 | if (entry) { | |
387 | type = RADIX_DAX_TYPE(entry); | |
388 | if (WARN_ON_ONCE(type != RADIX_DAX_PTE && | |
389 | type != RADIX_DAX_PMD)) { | |
390 | error = -EIO; | |
391 | goto unlock; | |
392 | } | |
393 | ||
394 | if (!pmd_entry || type == RADIX_DAX_PMD) | |
395 | goto dirty; | |
396 | ||
397 | /* | |
398 | * We only insert dirty PMD entries into the radix tree. This | |
399 | * means we don't need to worry about removing a dirty PTE | |
400 | * entry and inserting a clean PMD entry, thus reducing the | |
401 | * range we would flush with a follow-up fsync/msync call. | |
402 | */ | |
403 | radix_tree_delete(&mapping->page_tree, index); | |
404 | mapping->nrexceptional--; | |
405 | } | |
406 | ||
407 | if (sector == NO_SECTOR) { | |
408 | /* | |
409 | * This can happen during correct operation if our pfn_mkwrite | |
410 | * fault raced against a hole punch operation. If this | |
411 | * happens the pte that was hole punched will have been | |
412 | * unmapped and the radix tree entry will have been removed by | |
413 | * the time we are called, but the call will still happen. We | |
414 | * will return all the way up to wp_pfn_shared(), where the | |
415 | * pte_same() check will fail, eventually causing page fault | |
416 | * to be retried by the CPU. | |
417 | */ | |
418 | goto unlock; | |
419 | } | |
420 | ||
421 | error = radix_tree_insert(page_tree, index, | |
422 | RADIX_DAX_ENTRY(sector, pmd_entry)); | |
423 | if (error) | |
424 | goto unlock; | |
425 | ||
426 | mapping->nrexceptional++; | |
427 | dirty: | |
428 | if (dirty) | |
429 | radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); | |
430 | unlock: | |
431 | spin_unlock_irq(&mapping->tree_lock); | |
432 | return error; | |
433 | } | |
434 | ||
435 | static int dax_writeback_one(struct block_device *bdev, | |
436 | struct address_space *mapping, pgoff_t index, void *entry) | |
437 | { | |
438 | struct radix_tree_root *page_tree = &mapping->page_tree; | |
439 | int type = RADIX_DAX_TYPE(entry); | |
440 | struct radix_tree_node *node; | |
441 | struct blk_dax_ctl dax; | |
442 | void **slot; | |
443 | int ret = 0; | |
444 | ||
445 | spin_lock_irq(&mapping->tree_lock); | |
446 | /* | |
447 | * Regular page slots are stabilized by the page lock even | |
448 | * without the tree itself locked. These unlocked entries | |
449 | * need verification under the tree lock. | |
450 | */ | |
451 | if (!__radix_tree_lookup(page_tree, index, &node, &slot)) | |
452 | goto unlock; | |
453 | if (*slot != entry) | |
454 | goto unlock; | |
455 | ||
456 | /* another fsync thread may have already written back this entry */ | |
457 | if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) | |
458 | goto unlock; | |
459 | ||
460 | if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) { | |
461 | ret = -EIO; | |
462 | goto unlock; | |
463 | } | |
464 | ||
465 | dax.sector = RADIX_DAX_SECTOR(entry); | |
466 | dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE); | |
467 | spin_unlock_irq(&mapping->tree_lock); | |
468 | ||
469 | /* | |
470 | * We cannot hold tree_lock while calling dax_map_atomic() because it | |
471 | * eventually calls cond_resched(). | |
472 | */ | |
473 | ret = dax_map_atomic(bdev, &dax); | |
474 | if (ret < 0) | |
475 | return ret; | |
476 | ||
477 | if (WARN_ON_ONCE(ret < dax.size)) { | |
478 | ret = -EIO; | |
479 | goto unmap; | |
480 | } | |
481 | ||
482 | wb_cache_pmem(dax.addr, dax.size); | |
483 | ||
484 | spin_lock_irq(&mapping->tree_lock); | |
485 | radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); | |
486 | spin_unlock_irq(&mapping->tree_lock); | |
487 | unmap: | |
488 | dax_unmap_atomic(bdev, &dax); | |
489 | return ret; | |
490 | ||
491 | unlock: | |
492 | spin_unlock_irq(&mapping->tree_lock); | |
493 | return ret; | |
494 | } | |
495 | ||
496 | /* | |
497 | * Flush the mapping to the persistent domain within the byte range of [start, | |
498 | * end]. This is required by data integrity operations to ensure file data is | |
499 | * on persistent storage prior to completion of the operation. | |
500 | */ | |
7f6d5b52 RZ |
501 | int dax_writeback_mapping_range(struct address_space *mapping, |
502 | struct block_device *bdev, struct writeback_control *wbc) | |
9973c98e RZ |
503 | { |
504 | struct inode *inode = mapping->host; | |
9973c98e RZ |
505 | pgoff_t start_index, end_index, pmd_index; |
506 | pgoff_t indices[PAGEVEC_SIZE]; | |
507 | struct pagevec pvec; | |
508 | bool done = false; | |
509 | int i, ret = 0; | |
510 | void *entry; | |
511 | ||
512 | if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | |
513 | return -EIO; | |
514 | ||
7f6d5b52 RZ |
515 | if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) |
516 | return 0; | |
517 | ||
09cbfeaf KS |
518 | start_index = wbc->range_start >> PAGE_SHIFT; |
519 | end_index = wbc->range_end >> PAGE_SHIFT; | |
9973c98e RZ |
520 | pmd_index = DAX_PMD_INDEX(start_index); |
521 | ||
522 | rcu_read_lock(); | |
523 | entry = radix_tree_lookup(&mapping->page_tree, pmd_index); | |
524 | rcu_read_unlock(); | |
525 | ||
526 | /* see if the start of our range is covered by a PMD entry */ | |
527 | if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) | |
528 | start_index = pmd_index; | |
529 | ||
530 | tag_pages_for_writeback(mapping, start_index, end_index); | |
531 | ||
532 | pagevec_init(&pvec, 0); | |
533 | while (!done) { | |
534 | pvec.nr = find_get_entries_tag(mapping, start_index, | |
535 | PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, | |
536 | pvec.pages, indices); | |
537 | ||
538 | if (pvec.nr == 0) | |
539 | break; | |
540 | ||
541 | for (i = 0; i < pvec.nr; i++) { | |
542 | if (indices[i] > end_index) { | |
543 | done = true; | |
544 | break; | |
545 | } | |
546 | ||
547 | ret = dax_writeback_one(bdev, mapping, indices[i], | |
548 | pvec.pages[i]); | |
549 | if (ret < 0) | |
550 | return ret; | |
551 | } | |
552 | } | |
553 | wmb_pmem(); | |
554 | return 0; | |
555 | } | |
556 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | |
557 | ||
f7ca90b1 MW |
558 | static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh, |
559 | struct vm_area_struct *vma, struct vm_fault *vmf) | |
560 | { | |
f7ca90b1 | 561 | unsigned long vaddr = (unsigned long)vmf->virtual_address; |
b2e0d162 DW |
562 | struct address_space *mapping = inode->i_mapping; |
563 | struct block_device *bdev = bh->b_bdev; | |
564 | struct blk_dax_ctl dax = { | |
565 | .sector = to_sector(bh, inode), | |
566 | .size = bh->b_size, | |
567 | }; | |
f7ca90b1 MW |
568 | pgoff_t size; |
569 | int error; | |
570 | ||
0f90cc66 RZ |
571 | i_mmap_lock_read(mapping); |
572 | ||
f7ca90b1 MW |
573 | /* |
574 | * Check truncate didn't happen while we were allocating a block. | |
575 | * If it did, this block may or may not be still allocated to the | |
576 | * file. We can't tell the filesystem to free it because we can't | |
577 | * take i_mutex here. In the worst case, the file still has blocks | |
578 | * allocated past the end of the file. | |
579 | */ | |
580 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
581 | if (unlikely(vmf->pgoff >= size)) { | |
582 | error = -EIO; | |
583 | goto out; | |
584 | } | |
585 | ||
b2e0d162 DW |
586 | if (dax_map_atomic(bdev, &dax) < 0) { |
587 | error = PTR_ERR(dax.addr); | |
f7ca90b1 MW |
588 | goto out; |
589 | } | |
590 | ||
2765cfbb | 591 | if (buffer_unwritten(bh) || buffer_new(bh)) { |
b2e0d162 | 592 | clear_pmem(dax.addr, PAGE_SIZE); |
2765cfbb RZ |
593 | wmb_pmem(); |
594 | } | |
b2e0d162 | 595 | dax_unmap_atomic(bdev, &dax); |
f7ca90b1 | 596 | |
9973c98e RZ |
597 | error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false, |
598 | vmf->flags & FAULT_FLAG_WRITE); | |
599 | if (error) | |
600 | goto out; | |
601 | ||
01c8f1c4 | 602 | error = vm_insert_mixed(vma, vaddr, dax.pfn); |
f7ca90b1 MW |
603 | |
604 | out: | |
0f90cc66 RZ |
605 | i_mmap_unlock_read(mapping); |
606 | ||
f7ca90b1 MW |
607 | return error; |
608 | } | |
609 | ||
ce5c5d55 DC |
610 | /** |
611 | * __dax_fault - handle a page fault on a DAX file | |
612 | * @vma: The virtual memory area where the fault occurred | |
613 | * @vmf: The description of the fault | |
614 | * @get_block: The filesystem method used to translate file offsets to blocks | |
b2442c5a DC |
615 | * @complete_unwritten: The filesystem method used to convert unwritten blocks |
616 | * to written so the data written to them is exposed. This is required for | |
617 | * required by write faults for filesystems that will return unwritten | |
618 | * extent mappings from @get_block, but it is optional for reads as | |
619 | * dax_insert_mapping() will always zero unwritten blocks. If the fs does | |
620 | * not support unwritten extents, the it should pass NULL. | |
ce5c5d55 DC |
621 | * |
622 | * When a page fault occurs, filesystems may call this helper in their | |
623 | * fault handler for DAX files. __dax_fault() assumes the caller has done all | |
624 | * the necessary locking for the page fault to proceed successfully. | |
625 | */ | |
626 | int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, | |
e842f290 | 627 | get_block_t get_block, dax_iodone_t complete_unwritten) |
f7ca90b1 MW |
628 | { |
629 | struct file *file = vma->vm_file; | |
630 | struct address_space *mapping = file->f_mapping; | |
631 | struct inode *inode = mapping->host; | |
632 | struct page *page; | |
633 | struct buffer_head bh; | |
634 | unsigned long vaddr = (unsigned long)vmf->virtual_address; | |
635 | unsigned blkbits = inode->i_blkbits; | |
636 | sector_t block; | |
637 | pgoff_t size; | |
638 | int error; | |
639 | int major = 0; | |
640 | ||
641 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
642 | if (vmf->pgoff >= size) | |
643 | return VM_FAULT_SIGBUS; | |
644 | ||
645 | memset(&bh, 0, sizeof(bh)); | |
646 | block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits); | |
eab95db6 | 647 | bh.b_bdev = inode->i_sb->s_bdev; |
f7ca90b1 MW |
648 | bh.b_size = PAGE_SIZE; |
649 | ||
650 | repeat: | |
651 | page = find_get_page(mapping, vmf->pgoff); | |
652 | if (page) { | |
653 | if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { | |
09cbfeaf | 654 | put_page(page); |
f7ca90b1 MW |
655 | return VM_FAULT_RETRY; |
656 | } | |
657 | if (unlikely(page->mapping != mapping)) { | |
658 | unlock_page(page); | |
09cbfeaf | 659 | put_page(page); |
f7ca90b1 MW |
660 | goto repeat; |
661 | } | |
662 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
663 | if (unlikely(vmf->pgoff >= size)) { | |
664 | /* | |
665 | * We have a struct page covering a hole in the file | |
666 | * from a read fault and we've raced with a truncate | |
667 | */ | |
668 | error = -EIO; | |
0f90cc66 | 669 | goto unlock_page; |
f7ca90b1 MW |
670 | } |
671 | } | |
672 | ||
673 | error = get_block(inode, block, &bh, 0); | |
674 | if (!error && (bh.b_size < PAGE_SIZE)) | |
675 | error = -EIO; /* fs corruption? */ | |
676 | if (error) | |
0f90cc66 | 677 | goto unlock_page; |
f7ca90b1 | 678 | |
aef39ab1 | 679 | if (!buffer_mapped(&bh) && !vmf->cow_page) { |
f7ca90b1 MW |
680 | if (vmf->flags & FAULT_FLAG_WRITE) { |
681 | error = get_block(inode, block, &bh, 1); | |
682 | count_vm_event(PGMAJFAULT); | |
683 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); | |
684 | major = VM_FAULT_MAJOR; | |
685 | if (!error && (bh.b_size < PAGE_SIZE)) | |
686 | error = -EIO; | |
687 | if (error) | |
0f90cc66 | 688 | goto unlock_page; |
f7ca90b1 MW |
689 | } else { |
690 | return dax_load_hole(mapping, page, vmf); | |
691 | } | |
692 | } | |
693 | ||
694 | if (vmf->cow_page) { | |
695 | struct page *new_page = vmf->cow_page; | |
696 | if (buffer_written(&bh)) | |
b2e0d162 | 697 | error = copy_user_bh(new_page, inode, &bh, vaddr); |
f7ca90b1 MW |
698 | else |
699 | clear_user_highpage(new_page, vaddr); | |
700 | if (error) | |
0f90cc66 | 701 | goto unlock_page; |
f7ca90b1 MW |
702 | vmf->page = page; |
703 | if (!page) { | |
0f90cc66 | 704 | i_mmap_lock_read(mapping); |
f7ca90b1 MW |
705 | /* Check we didn't race with truncate */ |
706 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> | |
707 | PAGE_SHIFT; | |
708 | if (vmf->pgoff >= size) { | |
0f90cc66 | 709 | i_mmap_unlock_read(mapping); |
f7ca90b1 | 710 | error = -EIO; |
0f90cc66 | 711 | goto out; |
f7ca90b1 MW |
712 | } |
713 | } | |
714 | return VM_FAULT_LOCKED; | |
715 | } | |
716 | ||
717 | /* Check we didn't race with a read fault installing a new page */ | |
718 | if (!page && major) | |
719 | page = find_lock_page(mapping, vmf->pgoff); | |
720 | ||
721 | if (page) { | |
722 | unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, | |
09cbfeaf | 723 | PAGE_SIZE, 0); |
f7ca90b1 MW |
724 | delete_from_page_cache(page); |
725 | unlock_page(page); | |
09cbfeaf | 726 | put_page(page); |
9973c98e | 727 | page = NULL; |
f7ca90b1 MW |
728 | } |
729 | ||
e842f290 DC |
730 | /* |
731 | * If we successfully insert the new mapping over an unwritten extent, | |
732 | * we need to ensure we convert the unwritten extent. If there is an | |
733 | * error inserting the mapping, the filesystem needs to leave it as | |
734 | * unwritten to prevent exposure of the stale underlying data to | |
735 | * userspace, but we still need to call the completion function so | |
736 | * the private resources on the mapping buffer can be released. We | |
737 | * indicate what the callback should do via the uptodate variable, same | |
738 | * as for normal BH based IO completions. | |
739 | */ | |
f7ca90b1 | 740 | error = dax_insert_mapping(inode, &bh, vma, vmf); |
b2442c5a DC |
741 | if (buffer_unwritten(&bh)) { |
742 | if (complete_unwritten) | |
743 | complete_unwritten(&bh, !error); | |
744 | else | |
745 | WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE)); | |
746 | } | |
f7ca90b1 MW |
747 | |
748 | out: | |
749 | if (error == -ENOMEM) | |
750 | return VM_FAULT_OOM | major; | |
751 | /* -EBUSY is fine, somebody else faulted on the same PTE */ | |
752 | if ((error < 0) && (error != -EBUSY)) | |
753 | return VM_FAULT_SIGBUS | major; | |
754 | return VM_FAULT_NOPAGE | major; | |
755 | ||
0f90cc66 | 756 | unlock_page: |
f7ca90b1 MW |
757 | if (page) { |
758 | unlock_page(page); | |
09cbfeaf | 759 | put_page(page); |
f7ca90b1 MW |
760 | } |
761 | goto out; | |
762 | } | |
ce5c5d55 | 763 | EXPORT_SYMBOL(__dax_fault); |
f7ca90b1 MW |
764 | |
765 | /** | |
766 | * dax_fault - handle a page fault on a DAX file | |
767 | * @vma: The virtual memory area where the fault occurred | |
768 | * @vmf: The description of the fault | |
769 | * @get_block: The filesystem method used to translate file offsets to blocks | |
770 | * | |
771 | * When a page fault occurs, filesystems may call this helper in their | |
772 | * fault handler for DAX files. | |
773 | */ | |
774 | int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf, | |
e842f290 | 775 | get_block_t get_block, dax_iodone_t complete_unwritten) |
f7ca90b1 MW |
776 | { |
777 | int result; | |
778 | struct super_block *sb = file_inode(vma->vm_file)->i_sb; | |
779 | ||
780 | if (vmf->flags & FAULT_FLAG_WRITE) { | |
781 | sb_start_pagefault(sb); | |
782 | file_update_time(vma->vm_file); | |
783 | } | |
ce5c5d55 | 784 | result = __dax_fault(vma, vmf, get_block, complete_unwritten); |
f7ca90b1 MW |
785 | if (vmf->flags & FAULT_FLAG_WRITE) |
786 | sb_end_pagefault(sb); | |
787 | ||
788 | return result; | |
789 | } | |
790 | EXPORT_SYMBOL_GPL(dax_fault); | |
4c0ccfef | 791 | |
844f35db MW |
792 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
793 | /* | |
794 | * The 'colour' (ie low bits) within a PMD of a page offset. This comes up | |
795 | * more often than one might expect in the below function. | |
796 | */ | |
797 | #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) | |
798 | ||
cbb38e41 DW |
799 | static void __dax_dbg(struct buffer_head *bh, unsigned long address, |
800 | const char *reason, const char *fn) | |
801 | { | |
802 | if (bh) { | |
803 | char bname[BDEVNAME_SIZE]; | |
804 | bdevname(bh->b_bdev, bname); | |
805 | pr_debug("%s: %s addr: %lx dev %s state %lx start %lld " | |
806 | "length %zd fallback: %s\n", fn, current->comm, | |
807 | address, bname, bh->b_state, (u64)bh->b_blocknr, | |
808 | bh->b_size, reason); | |
809 | } else { | |
810 | pr_debug("%s: %s addr: %lx fallback: %s\n", fn, | |
811 | current->comm, address, reason); | |
812 | } | |
813 | } | |
814 | ||
815 | #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd") | |
816 | ||
844f35db MW |
817 | int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, |
818 | pmd_t *pmd, unsigned int flags, get_block_t get_block, | |
819 | dax_iodone_t complete_unwritten) | |
820 | { | |
821 | struct file *file = vma->vm_file; | |
822 | struct address_space *mapping = file->f_mapping; | |
823 | struct inode *inode = mapping->host; | |
824 | struct buffer_head bh; | |
825 | unsigned blkbits = inode->i_blkbits; | |
826 | unsigned long pmd_addr = address & PMD_MASK; | |
827 | bool write = flags & FAULT_FLAG_WRITE; | |
b2e0d162 | 828 | struct block_device *bdev; |
844f35db | 829 | pgoff_t size, pgoff; |
b2e0d162 | 830 | sector_t block; |
9973c98e RZ |
831 | int error, result = 0; |
832 | bool alloc = false; | |
844f35db | 833 | |
c046c321 | 834 | /* dax pmd mappings require pfn_t_devmap() */ |
ee82c9ed DW |
835 | if (!IS_ENABLED(CONFIG_FS_DAX_PMD)) |
836 | return VM_FAULT_FALLBACK; | |
837 | ||
844f35db | 838 | /* Fall back to PTEs if we're going to COW */ |
59bf4fb9 TK |
839 | if (write && !(vma->vm_flags & VM_SHARED)) { |
840 | split_huge_pmd(vma, pmd, address); | |
cbb38e41 | 841 | dax_pmd_dbg(NULL, address, "cow write"); |
844f35db | 842 | return VM_FAULT_FALLBACK; |
59bf4fb9 | 843 | } |
844f35db | 844 | /* If the PMD would extend outside the VMA */ |
cbb38e41 DW |
845 | if (pmd_addr < vma->vm_start) { |
846 | dax_pmd_dbg(NULL, address, "vma start unaligned"); | |
844f35db | 847 | return VM_FAULT_FALLBACK; |
cbb38e41 DW |
848 | } |
849 | if ((pmd_addr + PMD_SIZE) > vma->vm_end) { | |
850 | dax_pmd_dbg(NULL, address, "vma end unaligned"); | |
844f35db | 851 | return VM_FAULT_FALLBACK; |
cbb38e41 | 852 | } |
844f35db | 853 | |
3fdd1b47 | 854 | pgoff = linear_page_index(vma, pmd_addr); |
844f35db MW |
855 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; |
856 | if (pgoff >= size) | |
857 | return VM_FAULT_SIGBUS; | |
858 | /* If the PMD would cover blocks out of the file */ | |
cbb38e41 DW |
859 | if ((pgoff | PG_PMD_COLOUR) >= size) { |
860 | dax_pmd_dbg(NULL, address, | |
861 | "offset + huge page size > file size"); | |
844f35db | 862 | return VM_FAULT_FALLBACK; |
cbb38e41 | 863 | } |
844f35db MW |
864 | |
865 | memset(&bh, 0, sizeof(bh)); | |
d4bbe706 | 866 | bh.b_bdev = inode->i_sb->s_bdev; |
844f35db MW |
867 | block = (sector_t)pgoff << (PAGE_SHIFT - blkbits); |
868 | ||
869 | bh.b_size = PMD_SIZE; | |
9973c98e RZ |
870 | |
871 | if (get_block(inode, block, &bh, 0) != 0) | |
844f35db | 872 | return VM_FAULT_SIGBUS; |
9973c98e RZ |
873 | |
874 | if (!buffer_mapped(&bh) && write) { | |
875 | if (get_block(inode, block, &bh, 1) != 0) | |
876 | return VM_FAULT_SIGBUS; | |
877 | alloc = true; | |
878 | } | |
879 | ||
b2e0d162 | 880 | bdev = bh.b_bdev; |
844f35db MW |
881 | |
882 | /* | |
883 | * If the filesystem isn't willing to tell us the length of a hole, | |
884 | * just fall back to PTEs. Calling get_block 512 times in a loop | |
885 | * would be silly. | |
886 | */ | |
cbb38e41 DW |
887 | if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) { |
888 | dax_pmd_dbg(&bh, address, "allocated block too small"); | |
9973c98e RZ |
889 | return VM_FAULT_FALLBACK; |
890 | } | |
891 | ||
892 | /* | |
893 | * If we allocated new storage, make sure no process has any | |
894 | * zero pages covering this hole | |
895 | */ | |
896 | if (alloc) { | |
897 | loff_t lstart = pgoff << PAGE_SHIFT; | |
898 | loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */ | |
899 | ||
900 | truncate_pagecache_range(inode, lstart, lend); | |
cbb38e41 | 901 | } |
844f35db | 902 | |
de14b9cb | 903 | i_mmap_lock_read(mapping); |
46c043ed | 904 | |
84c4e5e6 MW |
905 | /* |
906 | * If a truncate happened while we were allocating blocks, we may | |
907 | * leave blocks allocated to the file that are beyond EOF. We can't | |
908 | * take i_mutex here, so just leave them hanging; they'll be freed | |
909 | * when the file is deleted. | |
910 | */ | |
844f35db MW |
911 | size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT; |
912 | if (pgoff >= size) { | |
913 | result = VM_FAULT_SIGBUS; | |
914 | goto out; | |
915 | } | |
cbb38e41 | 916 | if ((pgoff | PG_PMD_COLOUR) >= size) { |
de14b9cb RZ |
917 | dax_pmd_dbg(&bh, address, |
918 | "offset + huge page size > file size"); | |
844f35db | 919 | goto fallback; |
cbb38e41 | 920 | } |
844f35db | 921 | |
844f35db | 922 | if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) { |
844f35db | 923 | spinlock_t *ptl; |
d295e341 | 924 | pmd_t entry; |
844f35db | 925 | struct page *zero_page = get_huge_zero_page(); |
d295e341 | 926 | |
cbb38e41 DW |
927 | if (unlikely(!zero_page)) { |
928 | dax_pmd_dbg(&bh, address, "no zero page"); | |
844f35db | 929 | goto fallback; |
cbb38e41 | 930 | } |
844f35db | 931 | |
d295e341 KS |
932 | ptl = pmd_lock(vma->vm_mm, pmd); |
933 | if (!pmd_none(*pmd)) { | |
934 | spin_unlock(ptl); | |
cbb38e41 | 935 | dax_pmd_dbg(&bh, address, "pmd already present"); |
d295e341 KS |
936 | goto fallback; |
937 | } | |
938 | ||
cbb38e41 DW |
939 | dev_dbg(part_to_dev(bdev->bd_part), |
940 | "%s: %s addr: %lx pfn: <zero> sect: %llx\n", | |
941 | __func__, current->comm, address, | |
942 | (unsigned long long) to_sector(&bh, inode)); | |
943 | ||
d295e341 KS |
944 | entry = mk_pmd(zero_page, vma->vm_page_prot); |
945 | entry = pmd_mkhuge(entry); | |
946 | set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry); | |
844f35db | 947 | result = VM_FAULT_NOPAGE; |
d295e341 | 948 | spin_unlock(ptl); |
844f35db | 949 | } else { |
b2e0d162 DW |
950 | struct blk_dax_ctl dax = { |
951 | .sector = to_sector(&bh, inode), | |
952 | .size = PMD_SIZE, | |
953 | }; | |
954 | long length = dax_map_atomic(bdev, &dax); | |
955 | ||
844f35db MW |
956 | if (length < 0) { |
957 | result = VM_FAULT_SIGBUS; | |
958 | goto out; | |
959 | } | |
cbb38e41 DW |
960 | if (length < PMD_SIZE) { |
961 | dax_pmd_dbg(&bh, address, "dax-length too small"); | |
962 | dax_unmap_atomic(bdev, &dax); | |
963 | goto fallback; | |
964 | } | |
965 | if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) { | |
966 | dax_pmd_dbg(&bh, address, "pfn unaligned"); | |
b2e0d162 | 967 | dax_unmap_atomic(bdev, &dax); |
844f35db | 968 | goto fallback; |
b2e0d162 | 969 | } |
844f35db | 970 | |
c046c321 | 971 | if (!pfn_t_devmap(dax.pfn)) { |
b2e0d162 | 972 | dax_unmap_atomic(bdev, &dax); |
cbb38e41 | 973 | dax_pmd_dbg(&bh, address, "pfn not in memmap"); |
152d7bd8 | 974 | goto fallback; |
b2e0d162 | 975 | } |
152d7bd8 | 976 | |
0f90cc66 | 977 | if (buffer_unwritten(&bh) || buffer_new(&bh)) { |
b2e0d162 | 978 | clear_pmem(dax.addr, PMD_SIZE); |
0f90cc66 RZ |
979 | wmb_pmem(); |
980 | count_vm_event(PGMAJFAULT); | |
981 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); | |
982 | result |= VM_FAULT_MAJOR; | |
983 | } | |
b2e0d162 | 984 | dax_unmap_atomic(bdev, &dax); |
0f90cc66 | 985 | |
9973c98e RZ |
986 | /* |
987 | * For PTE faults we insert a radix tree entry for reads, and | |
988 | * leave it clean. Then on the first write we dirty the radix | |
989 | * tree entry via the dax_pfn_mkwrite() path. This sequence | |
990 | * allows the dax_pfn_mkwrite() call to be simpler and avoid a | |
991 | * call into get_block() to translate the pgoff to a sector in | |
992 | * order to be able to create a new radix tree entry. | |
993 | * | |
994 | * The PMD path doesn't have an equivalent to | |
995 | * dax_pfn_mkwrite(), though, so for a read followed by a | |
996 | * write we traverse all the way through __dax_pmd_fault() | |
997 | * twice. This means we can just skip inserting a radix tree | |
998 | * entry completely on the initial read and just wait until | |
999 | * the write to insert a dirty entry. | |
1000 | */ | |
1001 | if (write) { | |
1002 | error = dax_radix_entry(mapping, pgoff, dax.sector, | |
1003 | true, true); | |
1004 | if (error) { | |
1005 | dax_pmd_dbg(&bh, address, | |
1006 | "PMD radix insertion failed"); | |
1007 | goto fallback; | |
1008 | } | |
1009 | } | |
1010 | ||
cbb38e41 DW |
1011 | dev_dbg(part_to_dev(bdev->bd_part), |
1012 | "%s: %s addr: %lx pfn: %lx sect: %llx\n", | |
1013 | __func__, current->comm, address, | |
1014 | pfn_t_to_pfn(dax.pfn), | |
1015 | (unsigned long long) dax.sector); | |
34c0fd54 | 1016 | result |= vmf_insert_pfn_pmd(vma, address, pmd, |
f25748e3 | 1017 | dax.pfn, write); |
844f35db MW |
1018 | } |
1019 | ||
1020 | out: | |
0f90cc66 RZ |
1021 | i_mmap_unlock_read(mapping); |
1022 | ||
844f35db MW |
1023 | if (buffer_unwritten(&bh)) |
1024 | complete_unwritten(&bh, !(result & VM_FAULT_ERROR)); | |
1025 | ||
1026 | return result; | |
1027 | ||
1028 | fallback: | |
1029 | count_vm_event(THP_FAULT_FALLBACK); | |
1030 | result = VM_FAULT_FALLBACK; | |
1031 | goto out; | |
1032 | } | |
1033 | EXPORT_SYMBOL_GPL(__dax_pmd_fault); | |
1034 | ||
1035 | /** | |
1036 | * dax_pmd_fault - handle a PMD fault on a DAX file | |
1037 | * @vma: The virtual memory area where the fault occurred | |
1038 | * @vmf: The description of the fault | |
1039 | * @get_block: The filesystem method used to translate file offsets to blocks | |
1040 | * | |
1041 | * When a page fault occurs, filesystems may call this helper in their | |
1042 | * pmd_fault handler for DAX files. | |
1043 | */ | |
1044 | int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address, | |
1045 | pmd_t *pmd, unsigned int flags, get_block_t get_block, | |
1046 | dax_iodone_t complete_unwritten) | |
1047 | { | |
1048 | int result; | |
1049 | struct super_block *sb = file_inode(vma->vm_file)->i_sb; | |
1050 | ||
1051 | if (flags & FAULT_FLAG_WRITE) { | |
1052 | sb_start_pagefault(sb); | |
1053 | file_update_time(vma->vm_file); | |
1054 | } | |
1055 | result = __dax_pmd_fault(vma, address, pmd, flags, get_block, | |
1056 | complete_unwritten); | |
1057 | if (flags & FAULT_FLAG_WRITE) | |
1058 | sb_end_pagefault(sb); | |
1059 | ||
1060 | return result; | |
1061 | } | |
1062 | EXPORT_SYMBOL_GPL(dax_pmd_fault); | |
dd8a2b6c | 1063 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
844f35db | 1064 | |
0e3b210c BH |
1065 | /** |
1066 | * dax_pfn_mkwrite - handle first write to DAX page | |
1067 | * @vma: The virtual memory area where the fault occurred | |
1068 | * @vmf: The description of the fault | |
0e3b210c BH |
1069 | */ |
1070 | int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) | |
1071 | { | |
9973c98e | 1072 | struct file *file = vma->vm_file; |
30f471fd | 1073 | int error; |
0e3b210c | 1074 | |
9973c98e RZ |
1075 | /* |
1076 | * We pass NO_SECTOR to dax_radix_entry() because we expect that a | |
1077 | * RADIX_DAX_PTE entry already exists in the radix tree from a | |
1078 | * previous call to __dax_fault(). We just want to look up that PTE | |
1079 | * entry using vmf->pgoff and make sure the dirty tag is set. This | |
1080 | * saves us from having to make a call to get_block() here to look | |
1081 | * up the sector. | |
1082 | */ | |
30f471fd RZ |
1083 | error = dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, |
1084 | true); | |
1085 | ||
1086 | if (error == -ENOMEM) | |
1087 | return VM_FAULT_OOM; | |
1088 | if (error) | |
1089 | return VM_FAULT_SIGBUS; | |
0e3b210c BH |
1090 | return VM_FAULT_NOPAGE; |
1091 | } | |
1092 | EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); | |
1093 | ||
4c0ccfef | 1094 | /** |
25726bc1 | 1095 | * dax_zero_page_range - zero a range within a page of a DAX file |
4c0ccfef MW |
1096 | * @inode: The file being truncated |
1097 | * @from: The file offset that is being truncated to | |
25726bc1 | 1098 | * @length: The number of bytes to zero |
4c0ccfef MW |
1099 | * @get_block: The filesystem method used to translate file offsets to blocks |
1100 | * | |
25726bc1 MW |
1101 | * This function can be called by a filesystem when it is zeroing part of a |
1102 | * page in a DAX file. This is intended for hole-punch operations. If | |
1103 | * you are truncating a file, the helper function dax_truncate_page() may be | |
1104 | * more convenient. | |
4c0ccfef | 1105 | * |
ea1754a0 | 1106 | * We work in terms of PAGE_SIZE here for commonality with |
4c0ccfef MW |
1107 | * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem |
1108 | * took care of disposing of the unnecessary blocks. Even if the filesystem | |
1109 | * block size is smaller than PAGE_SIZE, we have to zero the rest of the page | |
25726bc1 | 1110 | * since the file might be mmapped. |
4c0ccfef | 1111 | */ |
25726bc1 MW |
1112 | int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length, |
1113 | get_block_t get_block) | |
4c0ccfef MW |
1114 | { |
1115 | struct buffer_head bh; | |
09cbfeaf KS |
1116 | pgoff_t index = from >> PAGE_SHIFT; |
1117 | unsigned offset = from & (PAGE_SIZE-1); | |
4c0ccfef MW |
1118 | int err; |
1119 | ||
1120 | /* Block boundary? Nothing to do */ | |
1121 | if (!length) | |
1122 | return 0; | |
09cbfeaf | 1123 | BUG_ON((offset + length) > PAGE_SIZE); |
4c0ccfef MW |
1124 | |
1125 | memset(&bh, 0, sizeof(bh)); | |
eab95db6 | 1126 | bh.b_bdev = inode->i_sb->s_bdev; |
09cbfeaf | 1127 | bh.b_size = PAGE_SIZE; |
4c0ccfef MW |
1128 | err = get_block(inode, index, &bh, 0); |
1129 | if (err < 0) | |
1130 | return err; | |
1131 | if (buffer_written(&bh)) { | |
b2e0d162 DW |
1132 | struct block_device *bdev = bh.b_bdev; |
1133 | struct blk_dax_ctl dax = { | |
1134 | .sector = to_sector(&bh, inode), | |
09cbfeaf | 1135 | .size = PAGE_SIZE, |
b2e0d162 DW |
1136 | }; |
1137 | ||
1138 | if (dax_map_atomic(bdev, &dax) < 0) | |
1139 | return PTR_ERR(dax.addr); | |
1140 | clear_pmem(dax.addr + offset, length); | |
2765cfbb | 1141 | wmb_pmem(); |
b2e0d162 | 1142 | dax_unmap_atomic(bdev, &dax); |
4c0ccfef MW |
1143 | } |
1144 | ||
1145 | return 0; | |
1146 | } | |
25726bc1 MW |
1147 | EXPORT_SYMBOL_GPL(dax_zero_page_range); |
1148 | ||
1149 | /** | |
1150 | * dax_truncate_page - handle a partial page being truncated in a DAX file | |
1151 | * @inode: The file being truncated | |
1152 | * @from: The file offset that is being truncated to | |
1153 | * @get_block: The filesystem method used to translate file offsets to blocks | |
1154 | * | |
1155 | * Similar to block_truncate_page(), this function can be called by a | |
1156 | * filesystem when it is truncating a DAX file to handle the partial page. | |
1157 | * | |
ea1754a0 | 1158 | * We work in terms of PAGE_SIZE here for commonality with |
25726bc1 MW |
1159 | * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem |
1160 | * took care of disposing of the unnecessary blocks. Even if the filesystem | |
1161 | * block size is smaller than PAGE_SIZE, we have to zero the rest of the page | |
1162 | * since the file might be mmapped. | |
1163 | */ | |
1164 | int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block) | |
1165 | { | |
09cbfeaf | 1166 | unsigned length = PAGE_ALIGN(from) - from; |
25726bc1 MW |
1167 | return dax_zero_page_range(inode, from, length, get_block); |
1168 | } | |
4c0ccfef | 1169 | EXPORT_SYMBOL_GPL(dax_truncate_page); |