]> Git Repo - linux.git/blame - mm/util.c
mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page()
[linux.git] / mm / util.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
16d69265 2#include <linux/mm.h>
30992c97
MM
3#include <linux/slab.h>
4#include <linux/string.h>
3b32123d 5#include <linux/compiler.h>
b95f1b31 6#include <linux/export.h>
96840aa0 7#include <linux/err.h>
3b8f14b4 8#include <linux/sched.h>
6e84f315 9#include <linux/sched/mm.h>
79eb597c 10#include <linux/sched/signal.h>
68db0cf1 11#include <linux/sched/task_stack.h>
eb36c587 12#include <linux/security.h>
9800339b 13#include <linux/swap.h>
33806f06 14#include <linux/swapops.h>
00619bcc
JM
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
39f1f78d 17#include <linux/vmalloc.h>
897ab3e0 18#include <linux/userfaultfd_k.h>
649775be 19#include <linux/elf.h>
67f3977f
AG
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
649775be 22#include <linux/random.h>
67f3977f
AG
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
00619bcc 26
7c0f6ba6 27#include <linux/uaccess.h>
30992c97 28
6038def0 29#include "internal.h"
014bb1de 30#include "swap.h"
6038def0 31
a4bb1e43
AH
32/**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
38void kfree_const(const void *x)
39{
40 if (!is_kernel_rodata((unsigned long)x))
41 kfree(x);
42}
43EXPORT_SYMBOL(kfree_const);
44
30992c97 45/**
30992c97 46 * kstrdup - allocate space for and copy an existing string
30992c97
MM
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
30992c97
MM
51 */
52char *kstrdup(const char *s, gfp_t gfp)
53{
54 size_t len;
55 char *buf;
56
57 if (!s)
58 return NULL;
59
60 len = strlen(s) + 1;
1d2c8eea 61 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
62 if (buf)
63 memcpy(buf, s, len);
64 return buf;
65}
66EXPORT_SYMBOL(kstrdup);
96840aa0 67
a4bb1e43
AH
68/**
69 * kstrdup_const - conditionally duplicate an existing const string
70 * @s: the string to duplicate
71 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
72 *
295a1730
BG
73 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
74 * must not be passed to krealloc().
a862f68a
MR
75 *
76 * Return: source string if it is in .rodata section otherwise
77 * fallback to kstrdup.
a4bb1e43
AH
78 */
79const char *kstrdup_const(const char *s, gfp_t gfp)
80{
81 if (is_kernel_rodata((unsigned long)s))
82 return s;
83
84 return kstrdup(s, gfp);
85}
86EXPORT_SYMBOL(kstrdup_const);
87
1e66df3e
JF
88/**
89 * kstrndup - allocate space for and copy an existing string
90 * @s: the string to duplicate
91 * @max: read at most @max chars from @s
92 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
f3515741
DH
93 *
94 * Note: Use kmemdup_nul() instead if the size is known exactly.
a862f68a
MR
95 *
96 * Return: newly allocated copy of @s or %NULL in case of error
1e66df3e
JF
97 */
98char *kstrndup(const char *s, size_t max, gfp_t gfp)
99{
100 size_t len;
101 char *buf;
102
103 if (!s)
104 return NULL;
105
106 len = strnlen(s, max);
107 buf = kmalloc_track_caller(len+1, gfp);
108 if (buf) {
109 memcpy(buf, s, len);
110 buf[len] = '\0';
111 }
112 return buf;
113}
114EXPORT_SYMBOL(kstrndup);
115
1a2f67b4
AD
116/**
117 * kmemdup - duplicate region of memory
118 *
119 * @src: memory region to duplicate
120 * @len: memory region length
121 * @gfp: GFP mask to use
a862f68a
MR
122 *
123 * Return: newly allocated copy of @src or %NULL in case of error
1a2f67b4
AD
124 */
125void *kmemdup(const void *src, size_t len, gfp_t gfp)
126{
127 void *p;
128
1d2c8eea 129 p = kmalloc_track_caller(len, gfp);
1a2f67b4
AD
130 if (p)
131 memcpy(p, src, len);
132 return p;
133}
134EXPORT_SYMBOL(kmemdup);
135
f3515741
DH
136/**
137 * kmemdup_nul - Create a NUL-terminated string from unterminated data
138 * @s: The data to stringify
139 * @len: The size of the data
140 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
141 *
142 * Return: newly allocated copy of @s with NUL-termination or %NULL in
143 * case of error
f3515741
DH
144 */
145char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
146{
147 char *buf;
148
149 if (!s)
150 return NULL;
151
152 buf = kmalloc_track_caller(len + 1, gfp);
153 if (buf) {
154 memcpy(buf, s, len);
155 buf[len] = '\0';
156 }
157 return buf;
158}
159EXPORT_SYMBOL(kmemdup_nul);
160
610a77e0
LZ
161/**
162 * memdup_user - duplicate memory region from user space
163 *
164 * @src: source address in user space
165 * @len: number of bytes to copy
166 *
a862f68a 167 * Return: an ERR_PTR() on failure. Result is physically
50fd2f29 168 * contiguous, to be freed by kfree().
610a77e0
LZ
169 */
170void *memdup_user(const void __user *src, size_t len)
171{
172 void *p;
173
6c8fcc09 174 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
610a77e0
LZ
175 if (!p)
176 return ERR_PTR(-ENOMEM);
177
178 if (copy_from_user(p, src, len)) {
179 kfree(p);
180 return ERR_PTR(-EFAULT);
181 }
182
183 return p;
184}
185EXPORT_SYMBOL(memdup_user);
186
50fd2f29
AV
187/**
188 * vmemdup_user - duplicate memory region from user space
189 *
190 * @src: source address in user space
191 * @len: number of bytes to copy
192 *
a862f68a 193 * Return: an ERR_PTR() on failure. Result may be not
50fd2f29
AV
194 * physically contiguous. Use kvfree() to free.
195 */
196void *vmemdup_user(const void __user *src, size_t len)
197{
198 void *p;
199
200 p = kvmalloc(len, GFP_USER);
201 if (!p)
202 return ERR_PTR(-ENOMEM);
203
204 if (copy_from_user(p, src, len)) {
205 kvfree(p);
206 return ERR_PTR(-EFAULT);
207 }
208
209 return p;
210}
211EXPORT_SYMBOL(vmemdup_user);
212
b86181f1 213/**
96840aa0 214 * strndup_user - duplicate an existing string from user space
96840aa0
DA
215 * @s: The string to duplicate
216 * @n: Maximum number of bytes to copy, including the trailing NUL.
a862f68a 217 *
e9145521 218 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
96840aa0
DA
219 */
220char *strndup_user(const char __user *s, long n)
221{
222 char *p;
223 long length;
224
225 length = strnlen_user(s, n);
226
227 if (!length)
228 return ERR_PTR(-EFAULT);
229
230 if (length > n)
231 return ERR_PTR(-EINVAL);
232
90d74045 233 p = memdup_user(s, length);
96840aa0 234
90d74045
JL
235 if (IS_ERR(p))
236 return p;
96840aa0
DA
237
238 p[length - 1] = '\0';
239
240 return p;
241}
242EXPORT_SYMBOL(strndup_user);
16d69265 243
e9d408e1
AV
244/**
245 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
246 *
247 * @src: source address in user space
248 * @len: number of bytes to copy
249 *
a862f68a 250 * Return: an ERR_PTR() on failure.
e9d408e1
AV
251 */
252void *memdup_user_nul(const void __user *src, size_t len)
253{
254 char *p;
255
256 /*
257 * Always use GFP_KERNEL, since copy_from_user() can sleep and
258 * cause pagefault, which makes it pointless to use GFP_NOFS
259 * or GFP_ATOMIC.
260 */
261 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
262 if (!p)
263 return ERR_PTR(-ENOMEM);
264
265 if (copy_from_user(p, src, len)) {
266 kfree(p);
267 return ERR_PTR(-EFAULT);
268 }
269 p[len] = '\0';
270
271 return p;
272}
273EXPORT_SYMBOL(memdup_user_nul);
274
b7643757 275/* Check if the vma is being used as a stack by this task */
d17af505 276int vma_is_stack_for_current(struct vm_area_struct *vma)
b7643757 277{
d17af505
AL
278 struct task_struct * __maybe_unused t = current;
279
b7643757
SP
280 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
281}
282
295992fb
CK
283/*
284 * Change backing file, only valid to use during initial VMA setup.
285 */
286void vma_set_file(struct vm_area_struct *vma, struct file *file)
287{
288 /* Changing an anonymous vma with this is illegal */
289 get_file(file);
290 swap(vma->vm_file, file);
291 fput(file);
292}
293EXPORT_SYMBOL(vma_set_file);
294
649775be
AG
295#ifndef STACK_RND_MASK
296#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
297#endif
298
299unsigned long randomize_stack_top(unsigned long stack_top)
300{
301 unsigned long random_variable = 0;
302
303 if (current->flags & PF_RANDOMIZE) {
304 random_variable = get_random_long();
305 random_variable &= STACK_RND_MASK;
306 random_variable <<= PAGE_SHIFT;
307 }
308#ifdef CONFIG_STACK_GROWSUP
309 return PAGE_ALIGN(stack_top) + random_variable;
310#else
311 return PAGE_ALIGN(stack_top) - random_variable;
312#endif
313}
314
5ad7dd88
JD
315/**
316 * randomize_page - Generate a random, page aligned address
317 * @start: The smallest acceptable address the caller will take.
318 * @range: The size of the area, starting at @start, within which the
319 * random address must fall.
320 *
321 * If @start + @range would overflow, @range is capped.
322 *
323 * NOTE: Historical use of randomize_range, which this replaces, presumed that
324 * @start was already page aligned. We now align it regardless.
325 *
326 * Return: A page aligned address within [start, start + range). On error,
327 * @start is returned.
328 */
329unsigned long randomize_page(unsigned long start, unsigned long range)
330{
331 if (!PAGE_ALIGNED(start)) {
332 range -= PAGE_ALIGN(start) - start;
333 start = PAGE_ALIGN(start);
334 }
335
336 if (start > ULONG_MAX - range)
337 range = ULONG_MAX - start;
338
339 range >>= PAGE_SHIFT;
340
341 if (range == 0)
342 return start;
343
344 return start + (get_random_long() % range << PAGE_SHIFT);
345}
346
67f3977f 347#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
723820f3 348unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
e7142bf5
AG
349{
350 /* Is the current task 32bit ? */
351 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
352 return randomize_page(mm->brk, SZ_32M);
353
354 return randomize_page(mm->brk, SZ_1G);
355}
356
67f3977f
AG
357unsigned long arch_mmap_rnd(void)
358{
359 unsigned long rnd;
360
361#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
362 if (is_compat_task())
363 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
364 else
365#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
366 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
367
368 return rnd << PAGE_SHIFT;
369}
67f3977f
AG
370
371static int mmap_is_legacy(struct rlimit *rlim_stack)
372{
373 if (current->personality & ADDR_COMPAT_LAYOUT)
374 return 1;
375
376 if (rlim_stack->rlim_cur == RLIM_INFINITY)
377 return 1;
378
379 return sysctl_legacy_va_layout;
380}
381
382/*
383 * Leave enough space between the mmap area and the stack to honour ulimit in
384 * the face of randomisation.
385 */
386#define MIN_GAP (SZ_128M)
387#define MAX_GAP (STACK_TOP / 6 * 5)
388
389static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
390{
391 unsigned long gap = rlim_stack->rlim_cur;
392 unsigned long pad = stack_guard_gap;
393
394 /* Account for stack randomization if necessary */
395 if (current->flags & PF_RANDOMIZE)
396 pad += (STACK_RND_MASK << PAGE_SHIFT);
397
398 /* Values close to RLIM_INFINITY can overflow. */
399 if (gap + pad > gap)
400 gap += pad;
401
402 if (gap < MIN_GAP)
403 gap = MIN_GAP;
404 else if (gap > MAX_GAP)
405 gap = MAX_GAP;
406
407 return PAGE_ALIGN(STACK_TOP - gap - rnd);
408}
409
410void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
411{
412 unsigned long random_factor = 0UL;
413
414 if (current->flags & PF_RANDOMIZE)
415 random_factor = arch_mmap_rnd();
416
417 if (mmap_is_legacy(rlim_stack)) {
418 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
419 mm->get_unmapped_area = arch_get_unmapped_area;
420 } else {
421 mm->mmap_base = mmap_base(random_factor, rlim_stack);
422 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
423 }
424}
425#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
8f2af155 426void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
16d69265
AM
427{
428 mm->mmap_base = TASK_UNMAPPED_BASE;
429 mm->get_unmapped_area = arch_get_unmapped_area;
16d69265
AM
430}
431#endif
912985dc 432
79eb597c
DJ
433/**
434 * __account_locked_vm - account locked pages to an mm's locked_vm
435 * @mm: mm to account against
436 * @pages: number of pages to account
437 * @inc: %true if @pages should be considered positive, %false if not
438 * @task: task used to check RLIMIT_MEMLOCK
439 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
440 *
441 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
c1e8d7c6 442 * that mmap_lock is held as writer.
79eb597c
DJ
443 *
444 * Return:
445 * * 0 on success
446 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
447 */
448int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
449 struct task_struct *task, bool bypass_rlim)
450{
451 unsigned long locked_vm, limit;
452 int ret = 0;
453
42fc5414 454 mmap_assert_write_locked(mm);
79eb597c
DJ
455
456 locked_vm = mm->locked_vm;
457 if (inc) {
458 if (!bypass_rlim) {
459 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
460 if (locked_vm + pages > limit)
461 ret = -ENOMEM;
462 }
463 if (!ret)
464 mm->locked_vm = locked_vm + pages;
465 } else {
466 WARN_ON_ONCE(pages > locked_vm);
467 mm->locked_vm = locked_vm - pages;
468 }
469
470 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
471 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
472 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
473 ret ? " - exceeded" : "");
474
475 return ret;
476}
477EXPORT_SYMBOL_GPL(__account_locked_vm);
478
479/**
480 * account_locked_vm - account locked pages to an mm's locked_vm
481 * @mm: mm to account against, may be NULL
482 * @pages: number of pages to account
483 * @inc: %true if @pages should be considered positive, %false if not
484 *
485 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
486 *
487 * Return:
488 * * 0 on success, or if mm is NULL
489 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
490 */
491int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
492{
493 int ret;
494
495 if (pages == 0 || !mm)
496 return 0;
497
d8ed45c5 498 mmap_write_lock(mm);
79eb597c
DJ
499 ret = __account_locked_vm(mm, pages, inc, current,
500 capable(CAP_IPC_LOCK));
d8ed45c5 501 mmap_write_unlock(mm);
79eb597c
DJ
502
503 return ret;
504}
505EXPORT_SYMBOL_GPL(account_locked_vm);
506
eb36c587
AV
507unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
508 unsigned long len, unsigned long prot,
9fbeb5ab 509 unsigned long flag, unsigned long pgoff)
eb36c587
AV
510{
511 unsigned long ret;
512 struct mm_struct *mm = current->mm;
41badc15 513 unsigned long populate;
897ab3e0 514 LIST_HEAD(uf);
eb36c587
AV
515
516 ret = security_mmap_file(file, prot, flag);
517 if (!ret) {
d8ed45c5 518 if (mmap_write_lock_killable(mm))
9fbeb5ab 519 return -EINTR;
45e55300
PC
520 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
521 &uf);
d8ed45c5 522 mmap_write_unlock(mm);
897ab3e0 523 userfaultfd_unmap_complete(mm, &uf);
41badc15
ML
524 if (populate)
525 mm_populate(ret, populate);
eb36c587
AV
526 }
527 return ret;
528}
529
530unsigned long vm_mmap(struct file *file, unsigned long addr,
531 unsigned long len, unsigned long prot,
532 unsigned long flag, unsigned long offset)
533{
534 if (unlikely(offset + PAGE_ALIGN(len) < offset))
535 return -EINVAL;
ea53cde0 536 if (unlikely(offset_in_page(offset)))
eb36c587
AV
537 return -EINVAL;
538
9fbeb5ab 539 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
eb36c587
AV
540}
541EXPORT_SYMBOL(vm_mmap);
542
a7c3e901
MH
543/**
544 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
545 * failure, fall back to non-contiguous (vmalloc) allocation.
546 * @size: size of the request.
547 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
548 * @node: numa node to allocate from
549 *
550 * Uses kmalloc to get the memory but if the allocation fails then falls back
551 * to the vmalloc allocator. Use kvfree for freeing the memory.
552 *
a421ef30 553 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
cc965a29
MH
554 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
555 * preferable to the vmalloc fallback, due to visible performance drawbacks.
a7c3e901 556 *
a862f68a 557 * Return: pointer to the allocated memory of %NULL in case of failure
a7c3e901
MH
558 */
559void *kvmalloc_node(size_t size, gfp_t flags, int node)
560{
561 gfp_t kmalloc_flags = flags;
562 void *ret;
563
a7c3e901 564 /*
4f4f2ba9
MH
565 * We want to attempt a large physically contiguous block first because
566 * it is less likely to fragment multiple larger blocks and therefore
567 * contribute to a long term fragmentation less than vmalloc fallback.
568 * However make sure that larger requests are not too disruptive - no
569 * OOM killer and no allocation failure warnings as we have a fallback.
a7c3e901 570 */
6c5ab651
MH
571 if (size > PAGE_SIZE) {
572 kmalloc_flags |= __GFP_NOWARN;
573
cc965a29 574 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
6c5ab651 575 kmalloc_flags |= __GFP_NORETRY;
a421ef30
MH
576
577 /* nofail semantic is implemented by the vmalloc fallback */
578 kmalloc_flags &= ~__GFP_NOFAIL;
6c5ab651 579 }
a7c3e901
MH
580
581 ret = kmalloc_node(size, kmalloc_flags, node);
582
583 /*
584 * It doesn't really make sense to fallback to vmalloc for sub page
585 * requests
586 */
587 if (ret || size <= PAGE_SIZE)
588 return ret;
589
7661809d 590 /* Don't even allow crazy sizes */
0708a0af
DB
591 if (unlikely(size > INT_MAX)) {
592 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7661809d 593 return NULL;
0708a0af 594 }
7661809d 595
9becb688
LT
596 /*
597 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
598 * since the callers already cannot assume anything
599 * about the resulting pointer, and cannot play
600 * protection games.
601 */
602 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
603 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
604 node, __builtin_return_address(0));
a7c3e901
MH
605}
606EXPORT_SYMBOL(kvmalloc_node);
607
ff4dc772 608/**
04b8e946
AM
609 * kvfree() - Free memory.
610 * @addr: Pointer to allocated memory.
ff4dc772 611 *
04b8e946
AM
612 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
613 * It is slightly more efficient to use kfree() or vfree() if you are certain
614 * that you know which one to use.
615 *
52414d33 616 * Context: Either preemptible task context or not-NMI interrupt.
ff4dc772 617 */
39f1f78d
AV
618void kvfree(const void *addr)
619{
620 if (is_vmalloc_addr(addr))
621 vfree(addr);
622 else
623 kfree(addr);
624}
625EXPORT_SYMBOL(kvfree);
626
d4eaa283
WL
627/**
628 * kvfree_sensitive - Free a data object containing sensitive information.
629 * @addr: address of the data object to be freed.
630 * @len: length of the data object.
631 *
632 * Use the special memzero_explicit() function to clear the content of a
633 * kvmalloc'ed object containing sensitive data to make sure that the
634 * compiler won't optimize out the data clearing.
635 */
636void kvfree_sensitive(const void *addr, size_t len)
637{
638 if (likely(!ZERO_OR_NULL_PTR(addr))) {
639 memzero_explicit((void *)addr, len);
640 kvfree(addr);
641 }
642}
643EXPORT_SYMBOL(kvfree_sensitive);
644
de2860f4
DC
645void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
646{
647 void *newp;
648
649 if (oldsize >= newsize)
650 return (void *)p;
651 newp = kvmalloc(newsize, flags);
652 if (!newp)
653 return NULL;
654 memcpy(newp, p, oldsize);
655 kvfree(p);
656 return newp;
657}
658EXPORT_SYMBOL(kvrealloc);
659
a8749a35
PB
660/**
661 * __vmalloc_array - allocate memory for a virtually contiguous array.
662 * @n: number of elements.
663 * @size: element size.
664 * @flags: the type of memory to allocate (see kmalloc).
665 */
666void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
667{
668 size_t bytes;
669
670 if (unlikely(check_mul_overflow(n, size, &bytes)))
671 return NULL;
672 return __vmalloc(bytes, flags);
673}
674EXPORT_SYMBOL(__vmalloc_array);
675
676/**
677 * vmalloc_array - allocate memory for a virtually contiguous array.
678 * @n: number of elements.
679 * @size: element size.
680 */
681void *vmalloc_array(size_t n, size_t size)
682{
683 return __vmalloc_array(n, size, GFP_KERNEL);
684}
685EXPORT_SYMBOL(vmalloc_array);
686
687/**
688 * __vcalloc - allocate and zero memory for a virtually contiguous array.
689 * @n: number of elements.
690 * @size: element size.
691 * @flags: the type of memory to allocate (see kmalloc).
692 */
693void *__vcalloc(size_t n, size_t size, gfp_t flags)
694{
695 return __vmalloc_array(n, size, flags | __GFP_ZERO);
696}
697EXPORT_SYMBOL(__vcalloc);
698
699/**
700 * vcalloc - allocate and zero memory for a virtually contiguous array.
701 * @n: number of elements.
702 * @size: element size.
703 */
704void *vcalloc(size_t n, size_t size)
705{
706 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
707}
708EXPORT_SYMBOL(vcalloc);
709
e39155ea
KS
710/* Neutral page->mapping pointer to address_space or anon_vma or other */
711void *page_rmapping(struct page *page)
712{
64601000 713 return folio_raw_mapping(page_folio(page));
e39155ea
KS
714}
715
dd10ab04
MWO
716/**
717 * folio_mapped - Is this folio mapped into userspace?
718 * @folio: The folio.
719 *
720 * Return: True if any page in this folio is referenced by user page tables.
1aa8aea5 721 */
dd10ab04 722bool folio_mapped(struct folio *folio)
1aa8aea5 723{
dd10ab04 724 long i, nr;
1aa8aea5 725
a1efe484 726 if (!folio_test_large(folio))
dd10ab04
MWO
727 return atomic_read(&folio->_mapcount) >= 0;
728 if (atomic_read(folio_mapcount_ptr(folio)) >= 0)
1aa8aea5 729 return true;
dd10ab04 730 if (folio_test_hugetlb(folio))
1aa8aea5 731 return false;
dd10ab04
MWO
732
733 nr = folio_nr_pages(folio);
734 for (i = 0; i < nr; i++) {
735 if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0)
1aa8aea5
AM
736 return true;
737 }
738 return false;
739}
dd10ab04 740EXPORT_SYMBOL(folio_mapped);
1aa8aea5 741
e05b3453 742struct anon_vma *folio_anon_vma(struct folio *folio)
e39155ea 743{
64601000 744 unsigned long mapping = (unsigned long)folio->mapping;
e39155ea 745
e39155ea
KS
746 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
747 return NULL;
64601000 748 return (void *)(mapping - PAGE_MAPPING_ANON);
e39155ea
KS
749}
750
2f52578f
MWO
751/**
752 * folio_mapping - Find the mapping where this folio is stored.
753 * @folio: The folio.
754 *
755 * For folios which are in the page cache, return the mapping that this
756 * page belongs to. Folios in the swap cache return the swap mapping
757 * this page is stored in (which is different from the mapping for the
758 * swap file or swap device where the data is stored).
759 *
760 * You can call this for folios which aren't in the swap cache or page
761 * cache and it will return NULL.
762 */
763struct address_space *folio_mapping(struct folio *folio)
9800339b 764{
1c290f64
KS
765 struct address_space *mapping;
766
03e5ac2f 767 /* This happens if someone calls flush_dcache_page on slab page */
2f52578f 768 if (unlikely(folio_test_slab(folio)))
03e5ac2f
MP
769 return NULL;
770
2f52578f
MWO
771 if (unlikely(folio_test_swapcache(folio)))
772 return swap_address_space(folio_swap_entry(folio));
e39155ea 773
2f52578f 774 mapping = folio->mapping;
68f2736a 775 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
e39155ea 776 return NULL;
bda807d4 777
68f2736a 778 return mapping;
9800339b 779}
2f52578f 780EXPORT_SYMBOL(folio_mapping);
9800339b 781
b20ce5e0
KS
782/* Slow path of page_mapcount() for compound pages */
783int __page_mapcount(struct page *page)
784{
785 int ret;
786
787 ret = atomic_read(&page->_mapcount) + 1;
dd78fedd
KS
788 /*
789 * For file THP page->_mapcount contains total number of mapping
790 * of the page: no need to look into compound_mapcount.
791 */
792 if (!PageAnon(page) && !PageHuge(page))
793 return ret;
b20ce5e0
KS
794 page = compound_head(page);
795 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
796 if (PageDoubleMap(page))
797 ret--;
798 return ret;
799}
800EXPORT_SYMBOL_GPL(__page_mapcount);
801
4ba1119c
MWO
802/**
803 * folio_mapcount() - Calculate the number of mappings of this folio.
804 * @folio: The folio.
805 *
806 * A large folio tracks both how many times the entire folio is mapped,
807 * and how many times each individual page in the folio is mapped.
808 * This function calculates the total number of times the folio is
809 * mapped.
810 *
811 * Return: The number of times this folio is mapped.
812 */
813int folio_mapcount(struct folio *folio)
814{
815 int i, compound, nr, ret;
816
817 if (likely(!folio_test_large(folio)))
818 return atomic_read(&folio->_mapcount) + 1;
819
820 compound = folio_entire_mapcount(folio);
4ba1119c
MWO
821 if (folio_test_hugetlb(folio))
822 return compound;
823 ret = compound;
2fd86a07 824 nr = folio_nr_pages(folio);
4ba1119c
MWO
825 for (i = 0; i < nr; i++)
826 ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1;
827 /* File pages has compound_mapcount included in _mapcount */
828 if (!folio_test_anon(folio))
829 return ret - compound * nr;
830 if (folio_test_double_map(folio))
831 ret -= nr;
832 return ret;
833}
834
715cbfd6
MWO
835/**
836 * folio_copy - Copy the contents of one folio to another.
837 * @dst: Folio to copy to.
838 * @src: Folio to copy from.
839 *
840 * The bytes in the folio represented by @src are copied to @dst.
841 * Assumes the caller has validated that @dst is at least as large as @src.
842 * Can be called in atomic context for order-0 folios, but if the folio is
843 * larger, it may sleep.
844 */
845void folio_copy(struct folio *dst, struct folio *src)
79789db0 846{
715cbfd6
MWO
847 long i = 0;
848 long nr = folio_nr_pages(src);
79789db0 849
715cbfd6
MWO
850 for (;;) {
851 copy_highpage(folio_page(dst, i), folio_page(src, i));
852 if (++i == nr)
853 break;
79789db0 854 cond_resched();
79789db0
MWO
855 }
856}
857
39a1aa8e
AR
858int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
859int sysctl_overcommit_ratio __read_mostly = 50;
860unsigned long sysctl_overcommit_kbytes __read_mostly;
861int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
862unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
863unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
864
32927393
CH
865int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
866 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
867{
868 int ret;
869
870 ret = proc_dointvec(table, write, buffer, lenp, ppos);
871 if (ret == 0 && write)
872 sysctl_overcommit_kbytes = 0;
873 return ret;
874}
875
56f3547b
FT
876static void sync_overcommit_as(struct work_struct *dummy)
877{
878 percpu_counter_sync(&vm_committed_as);
879}
880
881int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
882 size_t *lenp, loff_t *ppos)
883{
884 struct ctl_table t;
bcbda810 885 int new_policy = -1;
56f3547b
FT
886 int ret;
887
888 /*
889 * The deviation of sync_overcommit_as could be big with loose policy
890 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
891 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
31454980 892 * with the strict "NEVER", and to avoid possible race condition (even
56f3547b
FT
893 * though user usually won't too frequently do the switching to policy
894 * OVERCOMMIT_NEVER), the switch is done in the following order:
895 * 1. changing the batch
896 * 2. sync percpu count on each CPU
897 * 3. switch the policy
898 */
899 if (write) {
900 t = *table;
901 t.data = &new_policy;
902 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
bcbda810 903 if (ret || new_policy == -1)
56f3547b
FT
904 return ret;
905
906 mm_compute_batch(new_policy);
907 if (new_policy == OVERCOMMIT_NEVER)
908 schedule_on_each_cpu(sync_overcommit_as);
909 sysctl_overcommit_memory = new_policy;
910 } else {
911 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
912 }
913
914 return ret;
915}
916
32927393
CH
917int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
918 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
919{
920 int ret;
921
922 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
923 if (ret == 0 && write)
924 sysctl_overcommit_ratio = 0;
925 return ret;
926}
927
00619bcc
JM
928/*
929 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
930 */
931unsigned long vm_commit_limit(void)
932{
49f0ce5f
JM
933 unsigned long allowed;
934
935 if (sysctl_overcommit_kbytes)
936 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
937 else
ca79b0c2 938 allowed = ((totalram_pages() - hugetlb_total_pages())
49f0ce5f
JM
939 * sysctl_overcommit_ratio / 100);
940 allowed += total_swap_pages;
941
942 return allowed;
00619bcc
JM
943}
944
39a1aa8e
AR
945/*
946 * Make sure vm_committed_as in one cacheline and not cacheline shared with
947 * other variables. It can be updated by several CPUs frequently.
948 */
949struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
950
951/*
952 * The global memory commitment made in the system can be a metric
953 * that can be used to drive ballooning decisions when Linux is hosted
954 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
955 * balancing memory across competing virtual machines that are hosted.
956 * Several metrics drive this policy engine including the guest reported
957 * memory commitment.
4e2ee51e
FT
958 *
959 * The time cost of this is very low for small platforms, and for big
960 * platform like a 2S/36C/72T Skylake server, in worst case where
961 * vm_committed_as's spinlock is under severe contention, the time cost
962 * could be about 30~40 microseconds.
39a1aa8e
AR
963 */
964unsigned long vm_memory_committed(void)
965{
4e2ee51e 966 return percpu_counter_sum_positive(&vm_committed_as);
39a1aa8e
AR
967}
968EXPORT_SYMBOL_GPL(vm_memory_committed);
969
970/*
971 * Check that a process has enough memory to allocate a new virtual
972 * mapping. 0 means there is enough memory for the allocation to
973 * succeed and -ENOMEM implies there is not.
974 *
975 * We currently support three overcommit policies, which are set via the
ee65728e 976 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
39a1aa8e
AR
977 *
978 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
979 * Additional code 2002 Jul 20 by Robert Love.
980 *
981 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
982 *
983 * Note this is a helper function intended to be used by LSMs which
984 * wish to use this logic.
985 */
986int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
987{
8c7829b0 988 long allowed;
39a1aa8e 989
39a1aa8e
AR
990 vm_acct_memory(pages);
991
992 /*
993 * Sometimes we want to use more memory than we have
994 */
995 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
996 return 0;
997
998 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
8c7829b0 999 if (pages > totalram_pages() + total_swap_pages)
39a1aa8e 1000 goto error;
8c7829b0 1001 return 0;
39a1aa8e
AR
1002 }
1003
1004 allowed = vm_commit_limit();
1005 /*
1006 * Reserve some for root
1007 */
1008 if (!cap_sys_admin)
1009 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1010
1011 /*
1012 * Don't let a single process grow so big a user can't recover
1013 */
1014 if (mm) {
8c7829b0
JW
1015 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1016
39a1aa8e
AR
1017 allowed -= min_t(long, mm->total_vm / 32, reserve);
1018 }
1019
1020 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1021 return 0;
1022error:
44b414c8
KW
1023 pr_warn_ratelimited("%s: pid: %d, comm: %s, no enough memory for the allocation\n",
1024 __func__, current->pid, current->comm);
39a1aa8e
AR
1025 vm_unacct_memory(pages);
1026
1027 return -ENOMEM;
1028}
1029
a9090253
WR
1030/**
1031 * get_cmdline() - copy the cmdline value to a buffer.
1032 * @task: the task whose cmdline value to copy.
1033 * @buffer: the buffer to copy to.
1034 * @buflen: the length of the buffer. Larger cmdline values are truncated
1035 * to this length.
a862f68a
MR
1036 *
1037 * Return: the size of the cmdline field copied. Note that the copy does
a9090253
WR
1038 * not guarantee an ending NULL byte.
1039 */
1040int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1041{
1042 int res = 0;
1043 unsigned int len;
1044 struct mm_struct *mm = get_task_mm(task);
a3b609ef 1045 unsigned long arg_start, arg_end, env_start, env_end;
a9090253
WR
1046 if (!mm)
1047 goto out;
1048 if (!mm->arg_end)
1049 goto out_mm; /* Shh! No looking before we're done */
1050
bc81426f 1051 spin_lock(&mm->arg_lock);
a3b609ef
MG
1052 arg_start = mm->arg_start;
1053 arg_end = mm->arg_end;
1054 env_start = mm->env_start;
1055 env_end = mm->env_end;
bc81426f 1056 spin_unlock(&mm->arg_lock);
a3b609ef
MG
1057
1058 len = arg_end - arg_start;
a9090253
WR
1059
1060 if (len > buflen)
1061 len = buflen;
1062
f307ab6d 1063 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
a9090253
WR
1064
1065 /*
1066 * If the nul at the end of args has been overwritten, then
1067 * assume application is using setproctitle(3).
1068 */
1069 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1070 len = strnlen(buffer, res);
1071 if (len < res) {
1072 res = len;
1073 } else {
a3b609ef 1074 len = env_end - env_start;
a9090253
WR
1075 if (len > buflen - res)
1076 len = buflen - res;
a3b609ef 1077 res += access_process_vm(task, env_start,
f307ab6d
LS
1078 buffer+res, len,
1079 FOLL_FORCE);
a9090253
WR
1080 res = strnlen(buffer, res);
1081 }
1082 }
1083out_mm:
1084 mmput(mm);
1085out:
1086 return res;
1087}
010c164a 1088
4d1a8a2d 1089int __weak memcmp_pages(struct page *page1, struct page *page2)
010c164a
SL
1090{
1091 char *addr1, *addr2;
1092 int ret;
1093
1094 addr1 = kmap_atomic(page1);
1095 addr2 = kmap_atomic(page2);
1096 ret = memcmp(addr1, addr2, PAGE_SIZE);
1097 kunmap_atomic(addr2);
1098 kunmap_atomic(addr1);
1099 return ret;
1100}
8e7f37f2 1101
5bb1bb35 1102#ifdef CONFIG_PRINTK
8e7f37f2
PM
1103/**
1104 * mem_dump_obj - Print available provenance information
1105 * @object: object for which to find provenance information.
1106 *
1107 * This function uses pr_cont(), so that the caller is expected to have
1108 * printed out whatever preamble is appropriate. The provenance information
1109 * depends on the type of object and on how much debugging is enabled.
1110 * For example, for a slab-cache object, the slab name is printed, and,
1111 * if available, the return address and stack trace from the allocation
e548eaa1 1112 * and last free path of that object.
8e7f37f2
PM
1113 */
1114void mem_dump_obj(void *object)
1115{
2521781c
JP
1116 const char *type;
1117
98f18083
PM
1118 if (kmem_valid_obj(object)) {
1119 kmem_dump_obj(object);
1120 return;
1121 }
2521781c 1122
98f18083
PM
1123 if (vmalloc_dump_obj(object))
1124 return;
2521781c
JP
1125
1126 if (virt_addr_valid(object))
1127 type = "non-slab/vmalloc memory";
1128 else if (object == NULL)
1129 type = "NULL pointer";
1130 else if (object == ZERO_SIZE_PTR)
1131 type = "zero-size pointer";
1132 else
1133 type = "non-paged memory";
1134
1135 pr_cont(" %s\n", type);
8e7f37f2 1136}
0d3dd2c8 1137EXPORT_SYMBOL_GPL(mem_dump_obj);
5bb1bb35 1138#endif
82840451
DH
1139
1140/*
1141 * A driver might set a page logically offline -- PageOffline() -- and
1142 * turn the page inaccessible in the hypervisor; after that, access to page
1143 * content can be fatal.
1144 *
1145 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1146 * pages after checking PageOffline(); however, these PFN walkers can race
1147 * with drivers that set PageOffline().
1148 *
1149 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1150 * synchronize with such drivers, achieving that a page cannot be set
1151 * PageOffline() while frozen.
1152 *
1153 * page_offline_begin()/page_offline_end() is used by drivers that care about
1154 * such races when setting a page PageOffline().
1155 */
1156static DECLARE_RWSEM(page_offline_rwsem);
1157
1158void page_offline_freeze(void)
1159{
1160 down_read(&page_offline_rwsem);
1161}
1162
1163void page_offline_thaw(void)
1164{
1165 up_read(&page_offline_rwsem);
1166}
1167
1168void page_offline_begin(void)
1169{
1170 down_write(&page_offline_rwsem);
1171}
1172EXPORT_SYMBOL(page_offline_begin);
1173
1174void page_offline_end(void)
1175{
1176 up_write(&page_offline_rwsem);
1177}
1178EXPORT_SYMBOL(page_offline_end);
08b0b005
MWO
1179
1180#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1181void flush_dcache_folio(struct folio *folio)
1182{
1183 long i, nr = folio_nr_pages(folio);
1184
1185 for (i = 0; i < nr; i++)
1186 flush_dcache_page(folio_page(folio, i));
1187}
1188EXPORT_SYMBOL(flush_dcache_folio);
1189#endif
This page took 1.327157 seconds and 4 git commands to generate.