]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/vmscan.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | * | |
7 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
8 | * kswapd added: 7.1.96 sct | |
9 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
10 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
11 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
12 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
13 | */ | |
14 | ||
b1de0d13 MH |
15 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
16 | ||
1da177e4 | 17 | #include <linux/mm.h> |
5b3cc15a | 18 | #include <linux/sched/mm.h> |
1da177e4 | 19 | #include <linux/module.h> |
5a0e3ad6 | 20 | #include <linux/gfp.h> |
1da177e4 LT |
21 | #include <linux/kernel_stat.h> |
22 | #include <linux/swap.h> | |
23 | #include <linux/pagemap.h> | |
24 | #include <linux/init.h> | |
25 | #include <linux/highmem.h> | |
70ddf637 | 26 | #include <linux/vmpressure.h> |
e129b5c2 | 27 | #include <linux/vmstat.h> |
1da177e4 LT |
28 | #include <linux/file.h> |
29 | #include <linux/writeback.h> | |
30 | #include <linux/blkdev.h> | |
31 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
32 | buffer_heads_over_limit */ | |
33 | #include <linux/mm_inline.h> | |
1da177e4 LT |
34 | #include <linux/backing-dev.h> |
35 | #include <linux/rmap.h> | |
36 | #include <linux/topology.h> | |
37 | #include <linux/cpu.h> | |
38 | #include <linux/cpuset.h> | |
3e7d3449 | 39 | #include <linux/compaction.h> |
1da177e4 LT |
40 | #include <linux/notifier.h> |
41 | #include <linux/rwsem.h> | |
248a0301 | 42 | #include <linux/delay.h> |
3218ae14 | 43 | #include <linux/kthread.h> |
7dfb7103 | 44 | #include <linux/freezer.h> |
66e1707b | 45 | #include <linux/memcontrol.h> |
873b4771 | 46 | #include <linux/delayacct.h> |
af936a16 | 47 | #include <linux/sysctl.h> |
929bea7c | 48 | #include <linux/oom.h> |
268bb0ce | 49 | #include <linux/prefetch.h> |
b1de0d13 | 50 | #include <linux/printk.h> |
f9fe48be | 51 | #include <linux/dax.h> |
1da177e4 LT |
52 | |
53 | #include <asm/tlbflush.h> | |
54 | #include <asm/div64.h> | |
55 | ||
56 | #include <linux/swapops.h> | |
117aad1e | 57 | #include <linux/balloon_compaction.h> |
1da177e4 | 58 | |
0f8053a5 NP |
59 | #include "internal.h" |
60 | ||
33906bc5 MG |
61 | #define CREATE_TRACE_POINTS |
62 | #include <trace/events/vmscan.h> | |
63 | ||
1da177e4 | 64 | struct scan_control { |
22fba335 KM |
65 | /* How many pages shrink_list() should reclaim */ |
66 | unsigned long nr_to_reclaim; | |
67 | ||
1da177e4 | 68 | /* This context's GFP mask */ |
6daa0e28 | 69 | gfp_t gfp_mask; |
1da177e4 | 70 | |
ee814fe2 | 71 | /* Allocation order */ |
5ad333eb | 72 | int order; |
66e1707b | 73 | |
ee814fe2 JW |
74 | /* |
75 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
76 | * are scanned. | |
77 | */ | |
78 | nodemask_t *nodemask; | |
9e3b2f8c | 79 | |
f16015fb JW |
80 | /* |
81 | * The memory cgroup that hit its limit and as a result is the | |
82 | * primary target of this reclaim invocation. | |
83 | */ | |
84 | struct mem_cgroup *target_mem_cgroup; | |
66e1707b | 85 | |
ee814fe2 JW |
86 | /* Scan (total_size >> priority) pages at once */ |
87 | int priority; | |
88 | ||
b2e18757 MG |
89 | /* The highest zone to isolate pages for reclaim from */ |
90 | enum zone_type reclaim_idx; | |
91 | ||
1276ad68 | 92 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ |
ee814fe2 JW |
93 | unsigned int may_writepage:1; |
94 | ||
95 | /* Can mapped pages be reclaimed? */ | |
96 | unsigned int may_unmap:1; | |
97 | ||
98 | /* Can pages be swapped as part of reclaim? */ | |
99 | unsigned int may_swap:1; | |
100 | ||
d6622f63 YX |
101 | /* |
102 | * Cgroups are not reclaimed below their configured memory.low, | |
103 | * unless we threaten to OOM. If any cgroups are skipped due to | |
104 | * memory.low and nothing was reclaimed, go back for memory.low. | |
105 | */ | |
106 | unsigned int memcg_low_reclaim:1; | |
107 | unsigned int memcg_low_skipped:1; | |
241994ed | 108 | |
ee814fe2 JW |
109 | unsigned int hibernation_mode:1; |
110 | ||
111 | /* One of the zones is ready for compaction */ | |
112 | unsigned int compaction_ready:1; | |
113 | ||
114 | /* Incremented by the number of inactive pages that were scanned */ | |
115 | unsigned long nr_scanned; | |
116 | ||
117 | /* Number of pages freed so far during a call to shrink_zones() */ | |
118 | unsigned long nr_reclaimed; | |
d108c772 AR |
119 | |
120 | struct { | |
121 | unsigned int dirty; | |
122 | unsigned int unqueued_dirty; | |
123 | unsigned int congested; | |
124 | unsigned int writeback; | |
125 | unsigned int immediate; | |
126 | unsigned int file_taken; | |
127 | unsigned int taken; | |
128 | } nr; | |
1da177e4 LT |
129 | }; |
130 | ||
1da177e4 LT |
131 | #ifdef ARCH_HAS_PREFETCH |
132 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
133 | do { \ | |
134 | if ((_page)->lru.prev != _base) { \ | |
135 | struct page *prev; \ | |
136 | \ | |
137 | prev = lru_to_page(&(_page->lru)); \ | |
138 | prefetch(&prev->_field); \ | |
139 | } \ | |
140 | } while (0) | |
141 | #else | |
142 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
143 | #endif | |
144 | ||
145 | #ifdef ARCH_HAS_PREFETCHW | |
146 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
147 | do { \ | |
148 | if ((_page)->lru.prev != _base) { \ | |
149 | struct page *prev; \ | |
150 | \ | |
151 | prev = lru_to_page(&(_page->lru)); \ | |
152 | prefetchw(&prev->_field); \ | |
153 | } \ | |
154 | } while (0) | |
155 | #else | |
156 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
157 | #endif | |
158 | ||
159 | /* | |
160 | * From 0 .. 100. Higher means more swappy. | |
161 | */ | |
162 | int vm_swappiness = 60; | |
d0480be4 WSH |
163 | /* |
164 | * The total number of pages which are beyond the high watermark within all | |
165 | * zones. | |
166 | */ | |
167 | unsigned long vm_total_pages; | |
1da177e4 LT |
168 | |
169 | static LIST_HEAD(shrinker_list); | |
170 | static DECLARE_RWSEM(shrinker_rwsem); | |
171 | ||
c255a458 | 172 | #ifdef CONFIG_MEMCG |
89b5fae5 JW |
173 | static bool global_reclaim(struct scan_control *sc) |
174 | { | |
f16015fb | 175 | return !sc->target_mem_cgroup; |
89b5fae5 | 176 | } |
97c9341f TH |
177 | |
178 | /** | |
179 | * sane_reclaim - is the usual dirty throttling mechanism operational? | |
180 | * @sc: scan_control in question | |
181 | * | |
182 | * The normal page dirty throttling mechanism in balance_dirty_pages() is | |
183 | * completely broken with the legacy memcg and direct stalling in | |
184 | * shrink_page_list() is used for throttling instead, which lacks all the | |
185 | * niceties such as fairness, adaptive pausing, bandwidth proportional | |
186 | * allocation and configurability. | |
187 | * | |
188 | * This function tests whether the vmscan currently in progress can assume | |
189 | * that the normal dirty throttling mechanism is operational. | |
190 | */ | |
191 | static bool sane_reclaim(struct scan_control *sc) | |
192 | { | |
193 | struct mem_cgroup *memcg = sc->target_mem_cgroup; | |
194 | ||
195 | if (!memcg) | |
196 | return true; | |
197 | #ifdef CONFIG_CGROUP_WRITEBACK | |
69234ace | 198 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
97c9341f TH |
199 | return true; |
200 | #endif | |
201 | return false; | |
202 | } | |
e3c1ac58 AR |
203 | |
204 | static void set_memcg_congestion(pg_data_t *pgdat, | |
205 | struct mem_cgroup *memcg, | |
206 | bool congested) | |
207 | { | |
208 | struct mem_cgroup_per_node *mn; | |
209 | ||
210 | if (!memcg) | |
211 | return; | |
212 | ||
213 | mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | |
214 | WRITE_ONCE(mn->congested, congested); | |
215 | } | |
216 | ||
217 | static bool memcg_congested(pg_data_t *pgdat, | |
218 | struct mem_cgroup *memcg) | |
219 | { | |
220 | struct mem_cgroup_per_node *mn; | |
221 | ||
222 | mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | |
223 | return READ_ONCE(mn->congested); | |
224 | ||
225 | } | |
91a45470 | 226 | #else |
89b5fae5 JW |
227 | static bool global_reclaim(struct scan_control *sc) |
228 | { | |
229 | return true; | |
230 | } | |
97c9341f TH |
231 | |
232 | static bool sane_reclaim(struct scan_control *sc) | |
233 | { | |
234 | return true; | |
235 | } | |
e3c1ac58 AR |
236 | |
237 | static inline void set_memcg_congestion(struct pglist_data *pgdat, | |
238 | struct mem_cgroup *memcg, bool congested) | |
239 | { | |
240 | } | |
241 | ||
242 | static inline bool memcg_congested(struct pglist_data *pgdat, | |
243 | struct mem_cgroup *memcg) | |
244 | { | |
245 | return false; | |
246 | ||
247 | } | |
91a45470 KH |
248 | #endif |
249 | ||
5a1c84b4 MG |
250 | /* |
251 | * This misses isolated pages which are not accounted for to save counters. | |
252 | * As the data only determines if reclaim or compaction continues, it is | |
253 | * not expected that isolated pages will be a dominating factor. | |
254 | */ | |
255 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
256 | { | |
257 | unsigned long nr; | |
258 | ||
259 | nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + | |
260 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); | |
261 | if (get_nr_swap_pages() > 0) | |
262 | nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + | |
263 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); | |
264 | ||
265 | return nr; | |
266 | } | |
267 | ||
fd538803 MH |
268 | /** |
269 | * lruvec_lru_size - Returns the number of pages on the given LRU list. | |
270 | * @lruvec: lru vector | |
271 | * @lru: lru to use | |
272 | * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) | |
273 | */ | |
274 | unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) | |
c9f299d9 | 275 | { |
fd538803 MH |
276 | unsigned long lru_size; |
277 | int zid; | |
278 | ||
c3c787e8 | 279 | if (!mem_cgroup_disabled()) |
fd538803 MH |
280 | lru_size = mem_cgroup_get_lru_size(lruvec, lru); |
281 | else | |
282 | lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); | |
a3d8e054 | 283 | |
fd538803 MH |
284 | for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { |
285 | struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; | |
286 | unsigned long size; | |
c9f299d9 | 287 | |
fd538803 MH |
288 | if (!managed_zone(zone)) |
289 | continue; | |
290 | ||
291 | if (!mem_cgroup_disabled()) | |
292 | size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); | |
293 | else | |
294 | size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], | |
295 | NR_ZONE_LRU_BASE + lru); | |
296 | lru_size -= min(size, lru_size); | |
297 | } | |
298 | ||
299 | return lru_size; | |
b4536f0c | 300 | |
b4536f0c MH |
301 | } |
302 | ||
1da177e4 | 303 | /* |
1d3d4437 | 304 | * Add a shrinker callback to be called from the vm. |
1da177e4 | 305 | */ |
8e04944f | 306 | int prealloc_shrinker(struct shrinker *shrinker) |
1da177e4 | 307 | { |
1d3d4437 GC |
308 | size_t size = sizeof(*shrinker->nr_deferred); |
309 | ||
1d3d4437 GC |
310 | if (shrinker->flags & SHRINKER_NUMA_AWARE) |
311 | size *= nr_node_ids; | |
312 | ||
313 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); | |
314 | if (!shrinker->nr_deferred) | |
315 | return -ENOMEM; | |
8e04944f TH |
316 | return 0; |
317 | } | |
318 | ||
319 | void free_prealloced_shrinker(struct shrinker *shrinker) | |
320 | { | |
321 | kfree(shrinker->nr_deferred); | |
322 | shrinker->nr_deferred = NULL; | |
323 | } | |
1d3d4437 | 324 | |
8e04944f TH |
325 | void register_shrinker_prepared(struct shrinker *shrinker) |
326 | { | |
8e1f936b RR |
327 | down_write(&shrinker_rwsem); |
328 | list_add_tail(&shrinker->list, &shrinker_list); | |
329 | up_write(&shrinker_rwsem); | |
8e04944f TH |
330 | } |
331 | ||
332 | int register_shrinker(struct shrinker *shrinker) | |
333 | { | |
334 | int err = prealloc_shrinker(shrinker); | |
335 | ||
336 | if (err) | |
337 | return err; | |
338 | register_shrinker_prepared(shrinker); | |
1d3d4437 | 339 | return 0; |
1da177e4 | 340 | } |
8e1f936b | 341 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
342 | |
343 | /* | |
344 | * Remove one | |
345 | */ | |
8e1f936b | 346 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 | 347 | { |
bb422a73 TH |
348 | if (!shrinker->nr_deferred) |
349 | return; | |
1da177e4 LT |
350 | down_write(&shrinker_rwsem); |
351 | list_del(&shrinker->list); | |
352 | up_write(&shrinker_rwsem); | |
ae393321 | 353 | kfree(shrinker->nr_deferred); |
bb422a73 | 354 | shrinker->nr_deferred = NULL; |
1da177e4 | 355 | } |
8e1f936b | 356 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 LT |
357 | |
358 | #define SHRINK_BATCH 128 | |
1d3d4437 | 359 | |
cb731d6c | 360 | static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, |
9092c71b | 361 | struct shrinker *shrinker, int priority) |
1d3d4437 GC |
362 | { |
363 | unsigned long freed = 0; | |
364 | unsigned long long delta; | |
365 | long total_scan; | |
d5bc5fd3 | 366 | long freeable; |
1d3d4437 GC |
367 | long nr; |
368 | long new_nr; | |
369 | int nid = shrinkctl->nid; | |
370 | long batch_size = shrinker->batch ? shrinker->batch | |
371 | : SHRINK_BATCH; | |
5f33a080 | 372 | long scanned = 0, next_deferred; |
1d3d4437 | 373 | |
d5bc5fd3 VD |
374 | freeable = shrinker->count_objects(shrinker, shrinkctl); |
375 | if (freeable == 0) | |
1d3d4437 GC |
376 | return 0; |
377 | ||
378 | /* | |
379 | * copy the current shrinker scan count into a local variable | |
380 | * and zero it so that other concurrent shrinker invocations | |
381 | * don't also do this scanning work. | |
382 | */ | |
383 | nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); | |
384 | ||
385 | total_scan = nr; | |
9092c71b JB |
386 | delta = freeable >> priority; |
387 | delta *= 4; | |
388 | do_div(delta, shrinker->seeks); | |
1d3d4437 GC |
389 | total_scan += delta; |
390 | if (total_scan < 0) { | |
8612c663 | 391 | pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", |
a0b02131 | 392 | shrinker->scan_objects, total_scan); |
d5bc5fd3 | 393 | total_scan = freeable; |
5f33a080 SL |
394 | next_deferred = nr; |
395 | } else | |
396 | next_deferred = total_scan; | |
1d3d4437 GC |
397 | |
398 | /* | |
399 | * We need to avoid excessive windup on filesystem shrinkers | |
400 | * due to large numbers of GFP_NOFS allocations causing the | |
401 | * shrinkers to return -1 all the time. This results in a large | |
402 | * nr being built up so when a shrink that can do some work | |
403 | * comes along it empties the entire cache due to nr >>> | |
d5bc5fd3 | 404 | * freeable. This is bad for sustaining a working set in |
1d3d4437 GC |
405 | * memory. |
406 | * | |
407 | * Hence only allow the shrinker to scan the entire cache when | |
408 | * a large delta change is calculated directly. | |
409 | */ | |
d5bc5fd3 VD |
410 | if (delta < freeable / 4) |
411 | total_scan = min(total_scan, freeable / 2); | |
1d3d4437 GC |
412 | |
413 | /* | |
414 | * Avoid risking looping forever due to too large nr value: | |
415 | * never try to free more than twice the estimate number of | |
416 | * freeable entries. | |
417 | */ | |
d5bc5fd3 VD |
418 | if (total_scan > freeable * 2) |
419 | total_scan = freeable * 2; | |
1d3d4437 GC |
420 | |
421 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, | |
9092c71b | 422 | freeable, delta, total_scan, priority); |
1d3d4437 | 423 | |
0b1fb40a VD |
424 | /* |
425 | * Normally, we should not scan less than batch_size objects in one | |
426 | * pass to avoid too frequent shrinker calls, but if the slab has less | |
427 | * than batch_size objects in total and we are really tight on memory, | |
428 | * we will try to reclaim all available objects, otherwise we can end | |
429 | * up failing allocations although there are plenty of reclaimable | |
430 | * objects spread over several slabs with usage less than the | |
431 | * batch_size. | |
432 | * | |
433 | * We detect the "tight on memory" situations by looking at the total | |
434 | * number of objects we want to scan (total_scan). If it is greater | |
d5bc5fd3 | 435 | * than the total number of objects on slab (freeable), we must be |
0b1fb40a VD |
436 | * scanning at high prio and therefore should try to reclaim as much as |
437 | * possible. | |
438 | */ | |
439 | while (total_scan >= batch_size || | |
d5bc5fd3 | 440 | total_scan >= freeable) { |
a0b02131 | 441 | unsigned long ret; |
0b1fb40a | 442 | unsigned long nr_to_scan = min(batch_size, total_scan); |
1d3d4437 | 443 | |
0b1fb40a | 444 | shrinkctl->nr_to_scan = nr_to_scan; |
d460acb5 | 445 | shrinkctl->nr_scanned = nr_to_scan; |
a0b02131 DC |
446 | ret = shrinker->scan_objects(shrinker, shrinkctl); |
447 | if (ret == SHRINK_STOP) | |
448 | break; | |
449 | freed += ret; | |
1d3d4437 | 450 | |
d460acb5 CW |
451 | count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); |
452 | total_scan -= shrinkctl->nr_scanned; | |
453 | scanned += shrinkctl->nr_scanned; | |
1d3d4437 GC |
454 | |
455 | cond_resched(); | |
456 | } | |
457 | ||
5f33a080 SL |
458 | if (next_deferred >= scanned) |
459 | next_deferred -= scanned; | |
460 | else | |
461 | next_deferred = 0; | |
1d3d4437 GC |
462 | /* |
463 | * move the unused scan count back into the shrinker in a | |
464 | * manner that handles concurrent updates. If we exhausted the | |
465 | * scan, there is no need to do an update. | |
466 | */ | |
5f33a080 SL |
467 | if (next_deferred > 0) |
468 | new_nr = atomic_long_add_return(next_deferred, | |
1d3d4437 GC |
469 | &shrinker->nr_deferred[nid]); |
470 | else | |
471 | new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); | |
472 | ||
df9024a8 | 473 | trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); |
1d3d4437 | 474 | return freed; |
1495f230 YH |
475 | } |
476 | ||
6b4f7799 | 477 | /** |
cb731d6c | 478 | * shrink_slab - shrink slab caches |
6b4f7799 JW |
479 | * @gfp_mask: allocation context |
480 | * @nid: node whose slab caches to target | |
cb731d6c | 481 | * @memcg: memory cgroup whose slab caches to target |
9092c71b | 482 | * @priority: the reclaim priority |
1da177e4 | 483 | * |
6b4f7799 | 484 | * Call the shrink functions to age shrinkable caches. |
1da177e4 | 485 | * |
6b4f7799 JW |
486 | * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, |
487 | * unaware shrinkers will receive a node id of 0 instead. | |
1da177e4 | 488 | * |
cb731d6c VD |
489 | * @memcg specifies the memory cgroup to target. If it is not NULL, |
490 | * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan | |
0fc9f58a VD |
491 | * objects from the memory cgroup specified. Otherwise, only unaware |
492 | * shrinkers are called. | |
cb731d6c | 493 | * |
9092c71b JB |
494 | * @priority is sc->priority, we take the number of objects and >> by priority |
495 | * in order to get the scan target. | |
b15e0905 | 496 | * |
6b4f7799 | 497 | * Returns the number of reclaimed slab objects. |
1da177e4 | 498 | */ |
cb731d6c VD |
499 | static unsigned long shrink_slab(gfp_t gfp_mask, int nid, |
500 | struct mem_cgroup *memcg, | |
9092c71b | 501 | int priority) |
1da177e4 LT |
502 | { |
503 | struct shrinker *shrinker; | |
24f7c6b9 | 504 | unsigned long freed = 0; |
1da177e4 | 505 | |
0fc9f58a | 506 | if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) |
cb731d6c VD |
507 | return 0; |
508 | ||
e830c63a | 509 | if (!down_read_trylock(&shrinker_rwsem)) |
f06590bd | 510 | goto out; |
1da177e4 LT |
511 | |
512 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
6b4f7799 JW |
513 | struct shrink_control sc = { |
514 | .gfp_mask = gfp_mask, | |
515 | .nid = nid, | |
cb731d6c | 516 | .memcg = memcg, |
6b4f7799 | 517 | }; |
ec97097b | 518 | |
0fc9f58a VD |
519 | /* |
520 | * If kernel memory accounting is disabled, we ignore | |
521 | * SHRINKER_MEMCG_AWARE flag and call all shrinkers | |
522 | * passing NULL for memcg. | |
523 | */ | |
524 | if (memcg_kmem_enabled() && | |
525 | !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) | |
cb731d6c VD |
526 | continue; |
527 | ||
6b4f7799 JW |
528 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) |
529 | sc.nid = 0; | |
1da177e4 | 530 | |
9092c71b | 531 | freed += do_shrink_slab(&sc, shrinker, priority); |
e496612c MK |
532 | /* |
533 | * Bail out if someone want to register a new shrinker to | |
534 | * prevent the regsitration from being stalled for long periods | |
535 | * by parallel ongoing shrinking. | |
536 | */ | |
537 | if (rwsem_is_contended(&shrinker_rwsem)) { | |
538 | freed = freed ? : 1; | |
539 | break; | |
540 | } | |
1da177e4 | 541 | } |
6b4f7799 | 542 | |
1da177e4 | 543 | up_read(&shrinker_rwsem); |
f06590bd MK |
544 | out: |
545 | cond_resched(); | |
24f7c6b9 | 546 | return freed; |
1da177e4 LT |
547 | } |
548 | ||
cb731d6c VD |
549 | void drop_slab_node(int nid) |
550 | { | |
551 | unsigned long freed; | |
552 | ||
553 | do { | |
554 | struct mem_cgroup *memcg = NULL; | |
555 | ||
556 | freed = 0; | |
557 | do { | |
9092c71b | 558 | freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); |
cb731d6c VD |
559 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); |
560 | } while (freed > 10); | |
561 | } | |
562 | ||
563 | void drop_slab(void) | |
564 | { | |
565 | int nid; | |
566 | ||
567 | for_each_online_node(nid) | |
568 | drop_slab_node(nid); | |
569 | } | |
570 | ||
1da177e4 LT |
571 | static inline int is_page_cache_freeable(struct page *page) |
572 | { | |
ceddc3a5 JW |
573 | /* |
574 | * A freeable page cache page is referenced only by the caller | |
575 | * that isolated the page, the page cache radix tree and | |
576 | * optional buffer heads at page->private. | |
577 | */ | |
bd4c82c2 YH |
578 | int radix_pins = PageTransHuge(page) && PageSwapCache(page) ? |
579 | HPAGE_PMD_NR : 1; | |
580 | return page_count(page) - page_has_private(page) == 1 + radix_pins; | |
1da177e4 LT |
581 | } |
582 | ||
703c2708 | 583 | static int may_write_to_inode(struct inode *inode, struct scan_control *sc) |
1da177e4 | 584 | { |
930d9152 | 585 | if (current->flags & PF_SWAPWRITE) |
1da177e4 | 586 | return 1; |
703c2708 | 587 | if (!inode_write_congested(inode)) |
1da177e4 | 588 | return 1; |
703c2708 | 589 | if (inode_to_bdi(inode) == current->backing_dev_info) |
1da177e4 LT |
590 | return 1; |
591 | return 0; | |
592 | } | |
593 | ||
594 | /* | |
595 | * We detected a synchronous write error writing a page out. Probably | |
596 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
597 | * fsync(), msync() or close(). | |
598 | * | |
599 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
600 | * prevents it from being freed up. But we have a ref on the page and once | |
601 | * that page is locked, the mapping is pinned. | |
602 | * | |
603 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
604 | * __GFP_FS. | |
605 | */ | |
606 | static void handle_write_error(struct address_space *mapping, | |
607 | struct page *page, int error) | |
608 | { | |
7eaceacc | 609 | lock_page(page); |
3e9f45bd GC |
610 | if (page_mapping(page) == mapping) |
611 | mapping_set_error(mapping, error); | |
1da177e4 LT |
612 | unlock_page(page); |
613 | } | |
614 | ||
04e62a29 CL |
615 | /* possible outcome of pageout() */ |
616 | typedef enum { | |
617 | /* failed to write page out, page is locked */ | |
618 | PAGE_KEEP, | |
619 | /* move page to the active list, page is locked */ | |
620 | PAGE_ACTIVATE, | |
621 | /* page has been sent to the disk successfully, page is unlocked */ | |
622 | PAGE_SUCCESS, | |
623 | /* page is clean and locked */ | |
624 | PAGE_CLEAN, | |
625 | } pageout_t; | |
626 | ||
1da177e4 | 627 | /* |
1742f19f AM |
628 | * pageout is called by shrink_page_list() for each dirty page. |
629 | * Calls ->writepage(). | |
1da177e4 | 630 | */ |
c661b078 | 631 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
7d3579e8 | 632 | struct scan_control *sc) |
1da177e4 LT |
633 | { |
634 | /* | |
635 | * If the page is dirty, only perform writeback if that write | |
636 | * will be non-blocking. To prevent this allocation from being | |
637 | * stalled by pagecache activity. But note that there may be | |
638 | * stalls if we need to run get_block(). We could test | |
639 | * PagePrivate for that. | |
640 | * | |
8174202b | 641 | * If this process is currently in __generic_file_write_iter() against |
1da177e4 LT |
642 | * this page's queue, we can perform writeback even if that |
643 | * will block. | |
644 | * | |
645 | * If the page is swapcache, write it back even if that would | |
646 | * block, for some throttling. This happens by accident, because | |
647 | * swap_backing_dev_info is bust: it doesn't reflect the | |
648 | * congestion state of the swapdevs. Easy to fix, if needed. | |
1da177e4 LT |
649 | */ |
650 | if (!is_page_cache_freeable(page)) | |
651 | return PAGE_KEEP; | |
652 | if (!mapping) { | |
653 | /* | |
654 | * Some data journaling orphaned pages can have | |
655 | * page->mapping == NULL while being dirty with clean buffers. | |
656 | */ | |
266cf658 | 657 | if (page_has_private(page)) { |
1da177e4 LT |
658 | if (try_to_free_buffers(page)) { |
659 | ClearPageDirty(page); | |
b1de0d13 | 660 | pr_info("%s: orphaned page\n", __func__); |
1da177e4 LT |
661 | return PAGE_CLEAN; |
662 | } | |
663 | } | |
664 | return PAGE_KEEP; | |
665 | } | |
666 | if (mapping->a_ops->writepage == NULL) | |
667 | return PAGE_ACTIVATE; | |
703c2708 | 668 | if (!may_write_to_inode(mapping->host, sc)) |
1da177e4 LT |
669 | return PAGE_KEEP; |
670 | ||
671 | if (clear_page_dirty_for_io(page)) { | |
672 | int res; | |
673 | struct writeback_control wbc = { | |
674 | .sync_mode = WB_SYNC_NONE, | |
675 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
676 | .range_start = 0, |
677 | .range_end = LLONG_MAX, | |
1da177e4 LT |
678 | .for_reclaim = 1, |
679 | }; | |
680 | ||
681 | SetPageReclaim(page); | |
682 | res = mapping->a_ops->writepage(page, &wbc); | |
683 | if (res < 0) | |
684 | handle_write_error(mapping, page, res); | |
994fc28c | 685 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
686 | ClearPageReclaim(page); |
687 | return PAGE_ACTIVATE; | |
688 | } | |
c661b078 | 689 | |
1da177e4 LT |
690 | if (!PageWriteback(page)) { |
691 | /* synchronous write or broken a_ops? */ | |
692 | ClearPageReclaim(page); | |
693 | } | |
3aa23851 | 694 | trace_mm_vmscan_writepage(page); |
c4a25635 | 695 | inc_node_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
696 | return PAGE_SUCCESS; |
697 | } | |
698 | ||
699 | return PAGE_CLEAN; | |
700 | } | |
701 | ||
a649fd92 | 702 | /* |
e286781d NP |
703 | * Same as remove_mapping, but if the page is removed from the mapping, it |
704 | * gets returned with a refcount of 0. | |
a649fd92 | 705 | */ |
a528910e JW |
706 | static int __remove_mapping(struct address_space *mapping, struct page *page, |
707 | bool reclaimed) | |
49d2e9cc | 708 | { |
c4843a75 | 709 | unsigned long flags; |
bd4c82c2 | 710 | int refcount; |
c4843a75 | 711 | |
28e4d965 NP |
712 | BUG_ON(!PageLocked(page)); |
713 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc | 714 | |
b93b0163 | 715 | xa_lock_irqsave(&mapping->i_pages, flags); |
49d2e9cc | 716 | /* |
0fd0e6b0 NP |
717 | * The non racy check for a busy page. |
718 | * | |
719 | * Must be careful with the order of the tests. When someone has | |
720 | * a ref to the page, it may be possible that they dirty it then | |
721 | * drop the reference. So if PageDirty is tested before page_count | |
722 | * here, then the following race may occur: | |
723 | * | |
724 | * get_user_pages(&page); | |
725 | * [user mapping goes away] | |
726 | * write_to(page); | |
727 | * !PageDirty(page) [good] | |
728 | * SetPageDirty(page); | |
729 | * put_page(page); | |
730 | * !page_count(page) [good, discard it] | |
731 | * | |
732 | * [oops, our write_to data is lost] | |
733 | * | |
734 | * Reversing the order of the tests ensures such a situation cannot | |
735 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
0139aa7b | 736 | * load is not satisfied before that of page->_refcount. |
0fd0e6b0 NP |
737 | * |
738 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
b93b0163 | 739 | * and thus under the i_pages lock, then this ordering is not required. |
49d2e9cc | 740 | */ |
bd4c82c2 YH |
741 | if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) |
742 | refcount = 1 + HPAGE_PMD_NR; | |
743 | else | |
744 | refcount = 2; | |
745 | if (!page_ref_freeze(page, refcount)) | |
49d2e9cc | 746 | goto cannot_free; |
e286781d NP |
747 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
748 | if (unlikely(PageDirty(page))) { | |
bd4c82c2 | 749 | page_ref_unfreeze(page, refcount); |
49d2e9cc | 750 | goto cannot_free; |
e286781d | 751 | } |
49d2e9cc CL |
752 | |
753 | if (PageSwapCache(page)) { | |
754 | swp_entry_t swap = { .val = page_private(page) }; | |
0a31bc97 | 755 | mem_cgroup_swapout(page, swap); |
49d2e9cc | 756 | __delete_from_swap_cache(page); |
b93b0163 | 757 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
75f6d6d2 | 758 | put_swap_page(page, swap); |
e286781d | 759 | } else { |
6072d13c | 760 | void (*freepage)(struct page *); |
a528910e | 761 | void *shadow = NULL; |
6072d13c LT |
762 | |
763 | freepage = mapping->a_ops->freepage; | |
a528910e JW |
764 | /* |
765 | * Remember a shadow entry for reclaimed file cache in | |
766 | * order to detect refaults, thus thrashing, later on. | |
767 | * | |
768 | * But don't store shadows in an address space that is | |
769 | * already exiting. This is not just an optizimation, | |
770 | * inode reclaim needs to empty out the radix tree or | |
771 | * the nodes are lost. Don't plant shadows behind its | |
772 | * back. | |
f9fe48be RZ |
773 | * |
774 | * We also don't store shadows for DAX mappings because the | |
775 | * only page cache pages found in these are zero pages | |
776 | * covering holes, and because we don't want to mix DAX | |
777 | * exceptional entries and shadow exceptional entries in the | |
b93b0163 | 778 | * same address_space. |
a528910e JW |
779 | */ |
780 | if (reclaimed && page_is_file_cache(page) && | |
f9fe48be | 781 | !mapping_exiting(mapping) && !dax_mapping(mapping)) |
a528910e | 782 | shadow = workingset_eviction(mapping, page); |
62cccb8c | 783 | __delete_from_page_cache(page, shadow); |
b93b0163 | 784 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
6072d13c LT |
785 | |
786 | if (freepage != NULL) | |
787 | freepage(page); | |
49d2e9cc CL |
788 | } |
789 | ||
49d2e9cc CL |
790 | return 1; |
791 | ||
792 | cannot_free: | |
b93b0163 | 793 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
49d2e9cc CL |
794 | return 0; |
795 | } | |
796 | ||
e286781d NP |
797 | /* |
798 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
799 | * someone else has a ref on the page, abort and return 0. If it was | |
800 | * successfully detached, return 1. Assumes the caller has a single ref on | |
801 | * this page. | |
802 | */ | |
803 | int remove_mapping(struct address_space *mapping, struct page *page) | |
804 | { | |
a528910e | 805 | if (__remove_mapping(mapping, page, false)) { |
e286781d NP |
806 | /* |
807 | * Unfreezing the refcount with 1 rather than 2 effectively | |
808 | * drops the pagecache ref for us without requiring another | |
809 | * atomic operation. | |
810 | */ | |
fe896d18 | 811 | page_ref_unfreeze(page, 1); |
e286781d NP |
812 | return 1; |
813 | } | |
814 | return 0; | |
815 | } | |
816 | ||
894bc310 LS |
817 | /** |
818 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
819 | * @page: page to be put back to appropriate lru list | |
820 | * | |
821 | * Add previously isolated @page to appropriate LRU list. | |
822 | * Page may still be unevictable for other reasons. | |
823 | * | |
824 | * lru_lock must not be held, interrupts must be enabled. | |
825 | */ | |
894bc310 LS |
826 | void putback_lru_page(struct page *page) |
827 | { | |
9c4e6b1a | 828 | lru_cache_add(page); |
894bc310 LS |
829 | put_page(page); /* drop ref from isolate */ |
830 | } | |
831 | ||
dfc8d636 JW |
832 | enum page_references { |
833 | PAGEREF_RECLAIM, | |
834 | PAGEREF_RECLAIM_CLEAN, | |
64574746 | 835 | PAGEREF_KEEP, |
dfc8d636 JW |
836 | PAGEREF_ACTIVATE, |
837 | }; | |
838 | ||
839 | static enum page_references page_check_references(struct page *page, | |
840 | struct scan_control *sc) | |
841 | { | |
64574746 | 842 | int referenced_ptes, referenced_page; |
dfc8d636 | 843 | unsigned long vm_flags; |
dfc8d636 | 844 | |
c3ac9a8a JW |
845 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
846 | &vm_flags); | |
64574746 | 847 | referenced_page = TestClearPageReferenced(page); |
dfc8d636 | 848 | |
dfc8d636 JW |
849 | /* |
850 | * Mlock lost the isolation race with us. Let try_to_unmap() | |
851 | * move the page to the unevictable list. | |
852 | */ | |
853 | if (vm_flags & VM_LOCKED) | |
854 | return PAGEREF_RECLAIM; | |
855 | ||
64574746 | 856 | if (referenced_ptes) { |
e4898273 | 857 | if (PageSwapBacked(page)) |
64574746 JW |
858 | return PAGEREF_ACTIVATE; |
859 | /* | |
860 | * All mapped pages start out with page table | |
861 | * references from the instantiating fault, so we need | |
862 | * to look twice if a mapped file page is used more | |
863 | * than once. | |
864 | * | |
865 | * Mark it and spare it for another trip around the | |
866 | * inactive list. Another page table reference will | |
867 | * lead to its activation. | |
868 | * | |
869 | * Note: the mark is set for activated pages as well | |
870 | * so that recently deactivated but used pages are | |
871 | * quickly recovered. | |
872 | */ | |
873 | SetPageReferenced(page); | |
874 | ||
34dbc67a | 875 | if (referenced_page || referenced_ptes > 1) |
64574746 JW |
876 | return PAGEREF_ACTIVATE; |
877 | ||
c909e993 KK |
878 | /* |
879 | * Activate file-backed executable pages after first usage. | |
880 | */ | |
881 | if (vm_flags & VM_EXEC) | |
882 | return PAGEREF_ACTIVATE; | |
883 | ||
64574746 JW |
884 | return PAGEREF_KEEP; |
885 | } | |
dfc8d636 JW |
886 | |
887 | /* Reclaim if clean, defer dirty pages to writeback */ | |
2e30244a | 888 | if (referenced_page && !PageSwapBacked(page)) |
64574746 JW |
889 | return PAGEREF_RECLAIM_CLEAN; |
890 | ||
891 | return PAGEREF_RECLAIM; | |
dfc8d636 JW |
892 | } |
893 | ||
e2be15f6 MG |
894 | /* Check if a page is dirty or under writeback */ |
895 | static void page_check_dirty_writeback(struct page *page, | |
896 | bool *dirty, bool *writeback) | |
897 | { | |
b4597226 MG |
898 | struct address_space *mapping; |
899 | ||
e2be15f6 MG |
900 | /* |
901 | * Anonymous pages are not handled by flushers and must be written | |
902 | * from reclaim context. Do not stall reclaim based on them | |
903 | */ | |
802a3a92 SL |
904 | if (!page_is_file_cache(page) || |
905 | (PageAnon(page) && !PageSwapBacked(page))) { | |
e2be15f6 MG |
906 | *dirty = false; |
907 | *writeback = false; | |
908 | return; | |
909 | } | |
910 | ||
911 | /* By default assume that the page flags are accurate */ | |
912 | *dirty = PageDirty(page); | |
913 | *writeback = PageWriteback(page); | |
b4597226 MG |
914 | |
915 | /* Verify dirty/writeback state if the filesystem supports it */ | |
916 | if (!page_has_private(page)) | |
917 | return; | |
918 | ||
919 | mapping = page_mapping(page); | |
920 | if (mapping && mapping->a_ops->is_dirty_writeback) | |
921 | mapping->a_ops->is_dirty_writeback(page, dirty, writeback); | |
e2be15f6 MG |
922 | } |
923 | ||
1da177e4 | 924 | /* |
1742f19f | 925 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 926 | */ |
1742f19f | 927 | static unsigned long shrink_page_list(struct list_head *page_list, |
599d0c95 | 928 | struct pglist_data *pgdat, |
f84f6e2b | 929 | struct scan_control *sc, |
02c6de8d | 930 | enum ttu_flags ttu_flags, |
3c710c1a | 931 | struct reclaim_stat *stat, |
02c6de8d | 932 | bool force_reclaim) |
1da177e4 LT |
933 | { |
934 | LIST_HEAD(ret_pages); | |
abe4c3b5 | 935 | LIST_HEAD(free_pages); |
1da177e4 | 936 | int pgactivate = 0; |
3c710c1a MH |
937 | unsigned nr_unqueued_dirty = 0; |
938 | unsigned nr_dirty = 0; | |
939 | unsigned nr_congested = 0; | |
940 | unsigned nr_reclaimed = 0; | |
941 | unsigned nr_writeback = 0; | |
942 | unsigned nr_immediate = 0; | |
5bccd166 MH |
943 | unsigned nr_ref_keep = 0; |
944 | unsigned nr_unmap_fail = 0; | |
1da177e4 LT |
945 | |
946 | cond_resched(); | |
947 | ||
1da177e4 LT |
948 | while (!list_empty(page_list)) { |
949 | struct address_space *mapping; | |
950 | struct page *page; | |
951 | int may_enter_fs; | |
02c6de8d | 952 | enum page_references references = PAGEREF_RECLAIM_CLEAN; |
e2be15f6 | 953 | bool dirty, writeback; |
1da177e4 LT |
954 | |
955 | cond_resched(); | |
956 | ||
957 | page = lru_to_page(page_list); | |
958 | list_del(&page->lru); | |
959 | ||
529ae9aa | 960 | if (!trylock_page(page)) |
1da177e4 LT |
961 | goto keep; |
962 | ||
309381fe | 963 | VM_BUG_ON_PAGE(PageActive(page), page); |
1da177e4 LT |
964 | |
965 | sc->nr_scanned++; | |
80e43426 | 966 | |
39b5f29a | 967 | if (unlikely(!page_evictable(page))) |
ad6b6704 | 968 | goto activate_locked; |
894bc310 | 969 | |
a6dc60f8 | 970 | if (!sc->may_unmap && page_mapped(page)) |
80e43426 CL |
971 | goto keep_locked; |
972 | ||
1da177e4 | 973 | /* Double the slab pressure for mapped and swapcache pages */ |
802a3a92 SL |
974 | if ((page_mapped(page) || PageSwapCache(page)) && |
975 | !(PageAnon(page) && !PageSwapBacked(page))) | |
1da177e4 LT |
976 | sc->nr_scanned++; |
977 | ||
c661b078 AW |
978 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
979 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
980 | ||
e2be15f6 | 981 | /* |
894befec | 982 | * The number of dirty pages determines if a node is marked |
e2be15f6 MG |
983 | * reclaim_congested which affects wait_iff_congested. kswapd |
984 | * will stall and start writing pages if the tail of the LRU | |
985 | * is all dirty unqueued pages. | |
986 | */ | |
987 | page_check_dirty_writeback(page, &dirty, &writeback); | |
988 | if (dirty || writeback) | |
989 | nr_dirty++; | |
990 | ||
991 | if (dirty && !writeback) | |
992 | nr_unqueued_dirty++; | |
993 | ||
d04e8acd MG |
994 | /* |
995 | * Treat this page as congested if the underlying BDI is or if | |
996 | * pages are cycling through the LRU so quickly that the | |
997 | * pages marked for immediate reclaim are making it to the | |
998 | * end of the LRU a second time. | |
999 | */ | |
e2be15f6 | 1000 | mapping = page_mapping(page); |
1da58ee2 | 1001 | if (((dirty || writeback) && mapping && |
703c2708 | 1002 | inode_write_congested(mapping->host)) || |
d04e8acd | 1003 | (writeback && PageReclaim(page))) |
e2be15f6 MG |
1004 | nr_congested++; |
1005 | ||
283aba9f MG |
1006 | /* |
1007 | * If a page at the tail of the LRU is under writeback, there | |
1008 | * are three cases to consider. | |
1009 | * | |
1010 | * 1) If reclaim is encountering an excessive number of pages | |
1011 | * under writeback and this page is both under writeback and | |
1012 | * PageReclaim then it indicates that pages are being queued | |
1013 | * for IO but are being recycled through the LRU before the | |
1014 | * IO can complete. Waiting on the page itself risks an | |
1015 | * indefinite stall if it is impossible to writeback the | |
1016 | * page due to IO error or disconnected storage so instead | |
b1a6f21e MG |
1017 | * note that the LRU is being scanned too quickly and the |
1018 | * caller can stall after page list has been processed. | |
283aba9f | 1019 | * |
97c9341f | 1020 | * 2) Global or new memcg reclaim encounters a page that is |
ecf5fc6e MH |
1021 | * not marked for immediate reclaim, or the caller does not |
1022 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, | |
1023 | * not to fs). In this case mark the page for immediate | |
97c9341f | 1024 | * reclaim and continue scanning. |
283aba9f | 1025 | * |
ecf5fc6e MH |
1026 | * Require may_enter_fs because we would wait on fs, which |
1027 | * may not have submitted IO yet. And the loop driver might | |
283aba9f MG |
1028 | * enter reclaim, and deadlock if it waits on a page for |
1029 | * which it is needed to do the write (loop masks off | |
1030 | * __GFP_IO|__GFP_FS for this reason); but more thought | |
1031 | * would probably show more reasons. | |
1032 | * | |
7fadc820 | 1033 | * 3) Legacy memcg encounters a page that is already marked |
283aba9f MG |
1034 | * PageReclaim. memcg does not have any dirty pages |
1035 | * throttling so we could easily OOM just because too many | |
1036 | * pages are in writeback and there is nothing else to | |
1037 | * reclaim. Wait for the writeback to complete. | |
c55e8d03 JW |
1038 | * |
1039 | * In cases 1) and 2) we activate the pages to get them out of | |
1040 | * the way while we continue scanning for clean pages on the | |
1041 | * inactive list and refilling from the active list. The | |
1042 | * observation here is that waiting for disk writes is more | |
1043 | * expensive than potentially causing reloads down the line. | |
1044 | * Since they're marked for immediate reclaim, they won't put | |
1045 | * memory pressure on the cache working set any longer than it | |
1046 | * takes to write them to disk. | |
283aba9f | 1047 | */ |
c661b078 | 1048 | if (PageWriteback(page)) { |
283aba9f MG |
1049 | /* Case 1 above */ |
1050 | if (current_is_kswapd() && | |
1051 | PageReclaim(page) && | |
599d0c95 | 1052 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { |
b1a6f21e | 1053 | nr_immediate++; |
c55e8d03 | 1054 | goto activate_locked; |
283aba9f MG |
1055 | |
1056 | /* Case 2 above */ | |
97c9341f | 1057 | } else if (sane_reclaim(sc) || |
ecf5fc6e | 1058 | !PageReclaim(page) || !may_enter_fs) { |
c3b94f44 HD |
1059 | /* |
1060 | * This is slightly racy - end_page_writeback() | |
1061 | * might have just cleared PageReclaim, then | |
1062 | * setting PageReclaim here end up interpreted | |
1063 | * as PageReadahead - but that does not matter | |
1064 | * enough to care. What we do want is for this | |
1065 | * page to have PageReclaim set next time memcg | |
1066 | * reclaim reaches the tests above, so it will | |
1067 | * then wait_on_page_writeback() to avoid OOM; | |
1068 | * and it's also appropriate in global reclaim. | |
1069 | */ | |
1070 | SetPageReclaim(page); | |
e62e384e | 1071 | nr_writeback++; |
c55e8d03 | 1072 | goto activate_locked; |
283aba9f MG |
1073 | |
1074 | /* Case 3 above */ | |
1075 | } else { | |
7fadc820 | 1076 | unlock_page(page); |
283aba9f | 1077 | wait_on_page_writeback(page); |
7fadc820 HD |
1078 | /* then go back and try same page again */ |
1079 | list_add_tail(&page->lru, page_list); | |
1080 | continue; | |
e62e384e | 1081 | } |
c661b078 | 1082 | } |
1da177e4 | 1083 | |
02c6de8d MK |
1084 | if (!force_reclaim) |
1085 | references = page_check_references(page, sc); | |
1086 | ||
dfc8d636 JW |
1087 | switch (references) { |
1088 | case PAGEREF_ACTIVATE: | |
1da177e4 | 1089 | goto activate_locked; |
64574746 | 1090 | case PAGEREF_KEEP: |
5bccd166 | 1091 | nr_ref_keep++; |
64574746 | 1092 | goto keep_locked; |
dfc8d636 JW |
1093 | case PAGEREF_RECLAIM: |
1094 | case PAGEREF_RECLAIM_CLEAN: | |
1095 | ; /* try to reclaim the page below */ | |
1096 | } | |
1da177e4 | 1097 | |
1da177e4 LT |
1098 | /* |
1099 | * Anonymous process memory has backing store? | |
1100 | * Try to allocate it some swap space here. | |
802a3a92 | 1101 | * Lazyfree page could be freed directly |
1da177e4 | 1102 | */ |
bd4c82c2 YH |
1103 | if (PageAnon(page) && PageSwapBacked(page)) { |
1104 | if (!PageSwapCache(page)) { | |
1105 | if (!(sc->gfp_mask & __GFP_IO)) | |
1106 | goto keep_locked; | |
1107 | if (PageTransHuge(page)) { | |
1108 | /* cannot split THP, skip it */ | |
1109 | if (!can_split_huge_page(page, NULL)) | |
1110 | goto activate_locked; | |
1111 | /* | |
1112 | * Split pages without a PMD map right | |
1113 | * away. Chances are some or all of the | |
1114 | * tail pages can be freed without IO. | |
1115 | */ | |
1116 | if (!compound_mapcount(page) && | |
1117 | split_huge_page_to_list(page, | |
1118 | page_list)) | |
1119 | goto activate_locked; | |
1120 | } | |
1121 | if (!add_to_swap(page)) { | |
1122 | if (!PageTransHuge(page)) | |
1123 | goto activate_locked; | |
1124 | /* Fallback to swap normal pages */ | |
1125 | if (split_huge_page_to_list(page, | |
1126 | page_list)) | |
1127 | goto activate_locked; | |
fe490cc0 YH |
1128 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1129 | count_vm_event(THP_SWPOUT_FALLBACK); | |
1130 | #endif | |
bd4c82c2 YH |
1131 | if (!add_to_swap(page)) |
1132 | goto activate_locked; | |
1133 | } | |
0f074658 | 1134 | |
bd4c82c2 | 1135 | may_enter_fs = 1; |
1da177e4 | 1136 | |
bd4c82c2 YH |
1137 | /* Adding to swap updated mapping */ |
1138 | mapping = page_mapping(page); | |
1139 | } | |
7751b2da KS |
1140 | } else if (unlikely(PageTransHuge(page))) { |
1141 | /* Split file THP */ | |
1142 | if (split_huge_page_to_list(page, page_list)) | |
1143 | goto keep_locked; | |
e2be15f6 | 1144 | } |
1da177e4 LT |
1145 | |
1146 | /* | |
1147 | * The page is mapped into the page tables of one or more | |
1148 | * processes. Try to unmap it here. | |
1149 | */ | |
802a3a92 | 1150 | if (page_mapped(page)) { |
bd4c82c2 YH |
1151 | enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; |
1152 | ||
1153 | if (unlikely(PageTransHuge(page))) | |
1154 | flags |= TTU_SPLIT_HUGE_PMD; | |
1155 | if (!try_to_unmap(page, flags)) { | |
5bccd166 | 1156 | nr_unmap_fail++; |
1da177e4 | 1157 | goto activate_locked; |
1da177e4 LT |
1158 | } |
1159 | } | |
1160 | ||
1161 | if (PageDirty(page)) { | |
ee72886d | 1162 | /* |
4eda4823 JW |
1163 | * Only kswapd can writeback filesystem pages |
1164 | * to avoid risk of stack overflow. But avoid | |
1165 | * injecting inefficient single-page IO into | |
1166 | * flusher writeback as much as possible: only | |
1167 | * write pages when we've encountered many | |
1168 | * dirty pages, and when we've already scanned | |
1169 | * the rest of the LRU for clean pages and see | |
1170 | * the same dirty pages again (PageReclaim). | |
ee72886d | 1171 | */ |
f84f6e2b | 1172 | if (page_is_file_cache(page) && |
4eda4823 JW |
1173 | (!current_is_kswapd() || !PageReclaim(page) || |
1174 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { | |
49ea7eb6 MG |
1175 | /* |
1176 | * Immediately reclaim when written back. | |
1177 | * Similar in principal to deactivate_page() | |
1178 | * except we already have the page isolated | |
1179 | * and know it's dirty | |
1180 | */ | |
c4a25635 | 1181 | inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); |
49ea7eb6 MG |
1182 | SetPageReclaim(page); |
1183 | ||
c55e8d03 | 1184 | goto activate_locked; |
ee72886d MG |
1185 | } |
1186 | ||
dfc8d636 | 1187 | if (references == PAGEREF_RECLAIM_CLEAN) |
1da177e4 | 1188 | goto keep_locked; |
4dd4b920 | 1189 | if (!may_enter_fs) |
1da177e4 | 1190 | goto keep_locked; |
52a8363e | 1191 | if (!sc->may_writepage) |
1da177e4 LT |
1192 | goto keep_locked; |
1193 | ||
d950c947 MG |
1194 | /* |
1195 | * Page is dirty. Flush the TLB if a writable entry | |
1196 | * potentially exists to avoid CPU writes after IO | |
1197 | * starts and then write it out here. | |
1198 | */ | |
1199 | try_to_unmap_flush_dirty(); | |
7d3579e8 | 1200 | switch (pageout(page, mapping, sc)) { |
1da177e4 LT |
1201 | case PAGE_KEEP: |
1202 | goto keep_locked; | |
1203 | case PAGE_ACTIVATE: | |
1204 | goto activate_locked; | |
1205 | case PAGE_SUCCESS: | |
7d3579e8 | 1206 | if (PageWriteback(page)) |
41ac1999 | 1207 | goto keep; |
7d3579e8 | 1208 | if (PageDirty(page)) |
1da177e4 | 1209 | goto keep; |
7d3579e8 | 1210 | |
1da177e4 LT |
1211 | /* |
1212 | * A synchronous write - probably a ramdisk. Go | |
1213 | * ahead and try to reclaim the page. | |
1214 | */ | |
529ae9aa | 1215 | if (!trylock_page(page)) |
1da177e4 LT |
1216 | goto keep; |
1217 | if (PageDirty(page) || PageWriteback(page)) | |
1218 | goto keep_locked; | |
1219 | mapping = page_mapping(page); | |
1220 | case PAGE_CLEAN: | |
1221 | ; /* try to free the page below */ | |
1222 | } | |
1223 | } | |
1224 | ||
1225 | /* | |
1226 | * If the page has buffers, try to free the buffer mappings | |
1227 | * associated with this page. If we succeed we try to free | |
1228 | * the page as well. | |
1229 | * | |
1230 | * We do this even if the page is PageDirty(). | |
1231 | * try_to_release_page() does not perform I/O, but it is | |
1232 | * possible for a page to have PageDirty set, but it is actually | |
1233 | * clean (all its buffers are clean). This happens if the | |
1234 | * buffers were written out directly, with submit_bh(). ext3 | |
894bc310 | 1235 | * will do this, as well as the blockdev mapping. |
1da177e4 LT |
1236 | * try_to_release_page() will discover that cleanness and will |
1237 | * drop the buffers and mark the page clean - it can be freed. | |
1238 | * | |
1239 | * Rarely, pages can have buffers and no ->mapping. These are | |
1240 | * the pages which were not successfully invalidated in | |
1241 | * truncate_complete_page(). We try to drop those buffers here | |
1242 | * and if that worked, and the page is no longer mapped into | |
1243 | * process address space (page_count == 1) it can be freed. | |
1244 | * Otherwise, leave the page on the LRU so it is swappable. | |
1245 | */ | |
266cf658 | 1246 | if (page_has_private(page)) { |
1da177e4 LT |
1247 | if (!try_to_release_page(page, sc->gfp_mask)) |
1248 | goto activate_locked; | |
e286781d NP |
1249 | if (!mapping && page_count(page) == 1) { |
1250 | unlock_page(page); | |
1251 | if (put_page_testzero(page)) | |
1252 | goto free_it; | |
1253 | else { | |
1254 | /* | |
1255 | * rare race with speculative reference. | |
1256 | * the speculative reference will free | |
1257 | * this page shortly, so we may | |
1258 | * increment nr_reclaimed here (and | |
1259 | * leave it off the LRU). | |
1260 | */ | |
1261 | nr_reclaimed++; | |
1262 | continue; | |
1263 | } | |
1264 | } | |
1da177e4 LT |
1265 | } |
1266 | ||
802a3a92 SL |
1267 | if (PageAnon(page) && !PageSwapBacked(page)) { |
1268 | /* follow __remove_mapping for reference */ | |
1269 | if (!page_ref_freeze(page, 1)) | |
1270 | goto keep_locked; | |
1271 | if (PageDirty(page)) { | |
1272 | page_ref_unfreeze(page, 1); | |
1273 | goto keep_locked; | |
1274 | } | |
1da177e4 | 1275 | |
802a3a92 | 1276 | count_vm_event(PGLAZYFREED); |
2262185c | 1277 | count_memcg_page_event(page, PGLAZYFREED); |
802a3a92 SL |
1278 | } else if (!mapping || !__remove_mapping(mapping, page, true)) |
1279 | goto keep_locked; | |
a978d6f5 NP |
1280 | /* |
1281 | * At this point, we have no other references and there is | |
1282 | * no way to pick any more up (removed from LRU, removed | |
1283 | * from pagecache). Can use non-atomic bitops now (and | |
1284 | * we obviously don't have to worry about waking up a process | |
1285 | * waiting on the page lock, because there are no references. | |
1286 | */ | |
48c935ad | 1287 | __ClearPageLocked(page); |
e286781d | 1288 | free_it: |
05ff5137 | 1289 | nr_reclaimed++; |
abe4c3b5 MG |
1290 | |
1291 | /* | |
1292 | * Is there need to periodically free_page_list? It would | |
1293 | * appear not as the counts should be low | |
1294 | */ | |
bd4c82c2 YH |
1295 | if (unlikely(PageTransHuge(page))) { |
1296 | mem_cgroup_uncharge(page); | |
1297 | (*get_compound_page_dtor(page))(page); | |
1298 | } else | |
1299 | list_add(&page->lru, &free_pages); | |
1da177e4 LT |
1300 | continue; |
1301 | ||
1302 | activate_locked: | |
68a22394 | 1303 | /* Not a candidate for swapping, so reclaim swap space. */ |
ad6b6704 MK |
1304 | if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || |
1305 | PageMlocked(page))) | |
a2c43eed | 1306 | try_to_free_swap(page); |
309381fe | 1307 | VM_BUG_ON_PAGE(PageActive(page), page); |
ad6b6704 MK |
1308 | if (!PageMlocked(page)) { |
1309 | SetPageActive(page); | |
1310 | pgactivate++; | |
2262185c | 1311 | count_memcg_page_event(page, PGACTIVATE); |
ad6b6704 | 1312 | } |
1da177e4 LT |
1313 | keep_locked: |
1314 | unlock_page(page); | |
1315 | keep: | |
1316 | list_add(&page->lru, &ret_pages); | |
309381fe | 1317 | VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); |
1da177e4 | 1318 | } |
abe4c3b5 | 1319 | |
747db954 | 1320 | mem_cgroup_uncharge_list(&free_pages); |
72b252ae | 1321 | try_to_unmap_flush(); |
2d4894b5 | 1322 | free_unref_page_list(&free_pages); |
abe4c3b5 | 1323 | |
1da177e4 | 1324 | list_splice(&ret_pages, page_list); |
f8891e5e | 1325 | count_vm_events(PGACTIVATE, pgactivate); |
0a31bc97 | 1326 | |
3c710c1a MH |
1327 | if (stat) { |
1328 | stat->nr_dirty = nr_dirty; | |
1329 | stat->nr_congested = nr_congested; | |
1330 | stat->nr_unqueued_dirty = nr_unqueued_dirty; | |
1331 | stat->nr_writeback = nr_writeback; | |
1332 | stat->nr_immediate = nr_immediate; | |
5bccd166 MH |
1333 | stat->nr_activate = pgactivate; |
1334 | stat->nr_ref_keep = nr_ref_keep; | |
1335 | stat->nr_unmap_fail = nr_unmap_fail; | |
3c710c1a | 1336 | } |
05ff5137 | 1337 | return nr_reclaimed; |
1da177e4 LT |
1338 | } |
1339 | ||
02c6de8d MK |
1340 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, |
1341 | struct list_head *page_list) | |
1342 | { | |
1343 | struct scan_control sc = { | |
1344 | .gfp_mask = GFP_KERNEL, | |
1345 | .priority = DEF_PRIORITY, | |
1346 | .may_unmap = 1, | |
1347 | }; | |
3c710c1a | 1348 | unsigned long ret; |
02c6de8d MK |
1349 | struct page *page, *next; |
1350 | LIST_HEAD(clean_pages); | |
1351 | ||
1352 | list_for_each_entry_safe(page, next, page_list, lru) { | |
117aad1e | 1353 | if (page_is_file_cache(page) && !PageDirty(page) && |
b1123ea6 | 1354 | !__PageMovable(page)) { |
02c6de8d MK |
1355 | ClearPageActive(page); |
1356 | list_move(&page->lru, &clean_pages); | |
1357 | } | |
1358 | } | |
1359 | ||
599d0c95 | 1360 | ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, |
a128ca71 | 1361 | TTU_IGNORE_ACCESS, NULL, true); |
02c6de8d | 1362 | list_splice(&clean_pages, page_list); |
599d0c95 | 1363 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); |
02c6de8d MK |
1364 | return ret; |
1365 | } | |
1366 | ||
5ad333eb AW |
1367 | /* |
1368 | * Attempt to remove the specified page from its LRU. Only take this page | |
1369 | * if it is of the appropriate PageActive status. Pages which are being | |
1370 | * freed elsewhere are also ignored. | |
1371 | * | |
1372 | * page: page to consider | |
1373 | * mode: one of the LRU isolation modes defined above | |
1374 | * | |
1375 | * returns 0 on success, -ve errno on failure. | |
1376 | */ | |
f3fd4a61 | 1377 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
5ad333eb AW |
1378 | { |
1379 | int ret = -EINVAL; | |
1380 | ||
1381 | /* Only take pages on the LRU. */ | |
1382 | if (!PageLRU(page)) | |
1383 | return ret; | |
1384 | ||
e46a2879 MK |
1385 | /* Compaction should not handle unevictable pages but CMA can do so */ |
1386 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) | |
894bc310 LS |
1387 | return ret; |
1388 | ||
5ad333eb | 1389 | ret = -EBUSY; |
08e552c6 | 1390 | |
c8244935 MG |
1391 | /* |
1392 | * To minimise LRU disruption, the caller can indicate that it only | |
1393 | * wants to isolate pages it will be able to operate on without | |
1394 | * blocking - clean pages for the most part. | |
1395 | * | |
c8244935 MG |
1396 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages |
1397 | * that it is possible to migrate without blocking | |
1398 | */ | |
1276ad68 | 1399 | if (mode & ISOLATE_ASYNC_MIGRATE) { |
c8244935 MG |
1400 | /* All the caller can do on PageWriteback is block */ |
1401 | if (PageWriteback(page)) | |
1402 | return ret; | |
1403 | ||
1404 | if (PageDirty(page)) { | |
1405 | struct address_space *mapping; | |
69d763fc | 1406 | bool migrate_dirty; |
c8244935 | 1407 | |
c8244935 MG |
1408 | /* |
1409 | * Only pages without mappings or that have a | |
1410 | * ->migratepage callback are possible to migrate | |
69d763fc MG |
1411 | * without blocking. However, we can be racing with |
1412 | * truncation so it's necessary to lock the page | |
1413 | * to stabilise the mapping as truncation holds | |
1414 | * the page lock until after the page is removed | |
1415 | * from the page cache. | |
c8244935 | 1416 | */ |
69d763fc MG |
1417 | if (!trylock_page(page)) |
1418 | return ret; | |
1419 | ||
c8244935 | 1420 | mapping = page_mapping(page); |
145e1a71 | 1421 | migrate_dirty = !mapping || mapping->a_ops->migratepage; |
69d763fc MG |
1422 | unlock_page(page); |
1423 | if (!migrate_dirty) | |
c8244935 MG |
1424 | return ret; |
1425 | } | |
1426 | } | |
39deaf85 | 1427 | |
f80c0673 MK |
1428 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
1429 | return ret; | |
1430 | ||
5ad333eb AW |
1431 | if (likely(get_page_unless_zero(page))) { |
1432 | /* | |
1433 | * Be careful not to clear PageLRU until after we're | |
1434 | * sure the page is not being freed elsewhere -- the | |
1435 | * page release code relies on it. | |
1436 | */ | |
1437 | ClearPageLRU(page); | |
1438 | ret = 0; | |
1439 | } | |
1440 | ||
1441 | return ret; | |
1442 | } | |
1443 | ||
7ee36a14 MG |
1444 | |
1445 | /* | |
1446 | * Update LRU sizes after isolating pages. The LRU size updates must | |
1447 | * be complete before mem_cgroup_update_lru_size due to a santity check. | |
1448 | */ | |
1449 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, | |
b4536f0c | 1450 | enum lru_list lru, unsigned long *nr_zone_taken) |
7ee36a14 | 1451 | { |
7ee36a14 MG |
1452 | int zid; |
1453 | ||
7ee36a14 MG |
1454 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
1455 | if (!nr_zone_taken[zid]) | |
1456 | continue; | |
1457 | ||
1458 | __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | |
7ee36a14 | 1459 | #ifdef CONFIG_MEMCG |
b4536f0c | 1460 | mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); |
7ee36a14 | 1461 | #endif |
b4536f0c MH |
1462 | } |
1463 | ||
7ee36a14 MG |
1464 | } |
1465 | ||
1da177e4 | 1466 | /* |
a52633d8 | 1467 | * zone_lru_lock is heavily contended. Some of the functions that |
1da177e4 LT |
1468 | * shrink the lists perform better by taking out a batch of pages |
1469 | * and working on them outside the LRU lock. | |
1470 | * | |
1471 | * For pagecache intensive workloads, this function is the hottest | |
1472 | * spot in the kernel (apart from copy_*_user functions). | |
1473 | * | |
1474 | * Appropriate locks must be held before calling this function. | |
1475 | * | |
791b48b6 | 1476 | * @nr_to_scan: The number of eligible pages to look through on the list. |
5dc35979 | 1477 | * @lruvec: The LRU vector to pull pages from. |
1da177e4 | 1478 | * @dst: The temp list to put pages on to. |
f626012d | 1479 | * @nr_scanned: The number of pages that were scanned. |
fe2c2a10 | 1480 | * @sc: The scan_control struct for this reclaim session |
5ad333eb | 1481 | * @mode: One of the LRU isolation modes |
3cb99451 | 1482 | * @lru: LRU list id for isolating |
1da177e4 LT |
1483 | * |
1484 | * returns how many pages were moved onto *@dst. | |
1485 | */ | |
69e05944 | 1486 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
5dc35979 | 1487 | struct lruvec *lruvec, struct list_head *dst, |
fe2c2a10 | 1488 | unsigned long *nr_scanned, struct scan_control *sc, |
3cb99451 | 1489 | isolate_mode_t mode, enum lru_list lru) |
1da177e4 | 1490 | { |
75b00af7 | 1491 | struct list_head *src = &lruvec->lists[lru]; |
69e05944 | 1492 | unsigned long nr_taken = 0; |
599d0c95 | 1493 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; |
7cc30fcf | 1494 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; |
3db65812 | 1495 | unsigned long skipped = 0; |
791b48b6 | 1496 | unsigned long scan, total_scan, nr_pages; |
b2e18757 | 1497 | LIST_HEAD(pages_skipped); |
1da177e4 | 1498 | |
791b48b6 MK |
1499 | scan = 0; |
1500 | for (total_scan = 0; | |
1501 | scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); | |
1502 | total_scan++) { | |
5ad333eb | 1503 | struct page *page; |
5ad333eb | 1504 | |
1da177e4 LT |
1505 | page = lru_to_page(src); |
1506 | prefetchw_prev_lru_page(page, src, flags); | |
1507 | ||
309381fe | 1508 | VM_BUG_ON_PAGE(!PageLRU(page), page); |
8d438f96 | 1509 | |
b2e18757 MG |
1510 | if (page_zonenum(page) > sc->reclaim_idx) { |
1511 | list_move(&page->lru, &pages_skipped); | |
7cc30fcf | 1512 | nr_skipped[page_zonenum(page)]++; |
b2e18757 MG |
1513 | continue; |
1514 | } | |
1515 | ||
791b48b6 MK |
1516 | /* |
1517 | * Do not count skipped pages because that makes the function | |
1518 | * return with no isolated pages if the LRU mostly contains | |
1519 | * ineligible pages. This causes the VM to not reclaim any | |
1520 | * pages, triggering a premature OOM. | |
1521 | */ | |
1522 | scan++; | |
f3fd4a61 | 1523 | switch (__isolate_lru_page(page, mode)) { |
5ad333eb | 1524 | case 0: |
599d0c95 MG |
1525 | nr_pages = hpage_nr_pages(page); |
1526 | nr_taken += nr_pages; | |
1527 | nr_zone_taken[page_zonenum(page)] += nr_pages; | |
5ad333eb | 1528 | list_move(&page->lru, dst); |
5ad333eb AW |
1529 | break; |
1530 | ||
1531 | case -EBUSY: | |
1532 | /* else it is being freed elsewhere */ | |
1533 | list_move(&page->lru, src); | |
1534 | continue; | |
46453a6e | 1535 | |
5ad333eb AW |
1536 | default: |
1537 | BUG(); | |
1538 | } | |
1da177e4 LT |
1539 | } |
1540 | ||
b2e18757 MG |
1541 | /* |
1542 | * Splice any skipped pages to the start of the LRU list. Note that | |
1543 | * this disrupts the LRU order when reclaiming for lower zones but | |
1544 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX | |
1545 | * scanning would soon rescan the same pages to skip and put the | |
1546 | * system at risk of premature OOM. | |
1547 | */ | |
7cc30fcf MG |
1548 | if (!list_empty(&pages_skipped)) { |
1549 | int zid; | |
1550 | ||
3db65812 | 1551 | list_splice(&pages_skipped, src); |
7cc30fcf MG |
1552 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
1553 | if (!nr_skipped[zid]) | |
1554 | continue; | |
1555 | ||
1556 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); | |
1265e3a6 | 1557 | skipped += nr_skipped[zid]; |
7cc30fcf MG |
1558 | } |
1559 | } | |
791b48b6 | 1560 | *nr_scanned = total_scan; |
1265e3a6 | 1561 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, |
791b48b6 | 1562 | total_scan, skipped, nr_taken, mode, lru); |
b4536f0c | 1563 | update_lru_sizes(lruvec, lru, nr_zone_taken); |
1da177e4 LT |
1564 | return nr_taken; |
1565 | } | |
1566 | ||
62695a84 NP |
1567 | /** |
1568 | * isolate_lru_page - tries to isolate a page from its LRU list | |
1569 | * @page: page to isolate from its LRU list | |
1570 | * | |
1571 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
1572 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
1573 | * | |
1574 | * Returns 0 if the page was removed from an LRU list. | |
1575 | * Returns -EBUSY if the page was not on an LRU list. | |
1576 | * | |
1577 | * The returned page will have PageLRU() cleared. If it was found on | |
894bc310 LS |
1578 | * the active list, it will have PageActive set. If it was found on |
1579 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
1580 | * may need to be cleared by the caller before letting the page go. | |
62695a84 NP |
1581 | * |
1582 | * The vmstat statistic corresponding to the list on which the page was | |
1583 | * found will be decremented. | |
1584 | * | |
1585 | * Restrictions: | |
a5d09bed | 1586 | * |
62695a84 NP |
1587 | * (1) Must be called with an elevated refcount on the page. This is a |
1588 | * fundamentnal difference from isolate_lru_pages (which is called | |
1589 | * without a stable reference). | |
1590 | * (2) the lru_lock must not be held. | |
1591 | * (3) interrupts must be enabled. | |
1592 | */ | |
1593 | int isolate_lru_page(struct page *page) | |
1594 | { | |
1595 | int ret = -EBUSY; | |
1596 | ||
309381fe | 1597 | VM_BUG_ON_PAGE(!page_count(page), page); |
cf2a82ee | 1598 | WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); |
0c917313 | 1599 | |
62695a84 NP |
1600 | if (PageLRU(page)) { |
1601 | struct zone *zone = page_zone(page); | |
fa9add64 | 1602 | struct lruvec *lruvec; |
62695a84 | 1603 | |
a52633d8 | 1604 | spin_lock_irq(zone_lru_lock(zone)); |
599d0c95 | 1605 | lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); |
0c917313 | 1606 | if (PageLRU(page)) { |
894bc310 | 1607 | int lru = page_lru(page); |
0c917313 | 1608 | get_page(page); |
62695a84 | 1609 | ClearPageLRU(page); |
fa9add64 HD |
1610 | del_page_from_lru_list(page, lruvec, lru); |
1611 | ret = 0; | |
62695a84 | 1612 | } |
a52633d8 | 1613 | spin_unlock_irq(zone_lru_lock(zone)); |
62695a84 NP |
1614 | } |
1615 | return ret; | |
1616 | } | |
1617 | ||
35cd7815 | 1618 | /* |
d37dd5dc FW |
1619 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
1620 | * then get resheduled. When there are massive number of tasks doing page | |
1621 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | |
1622 | * the LRU list will go small and be scanned faster than necessary, leading to | |
1623 | * unnecessary swapping, thrashing and OOM. | |
35cd7815 | 1624 | */ |
599d0c95 | 1625 | static int too_many_isolated(struct pglist_data *pgdat, int file, |
35cd7815 RR |
1626 | struct scan_control *sc) |
1627 | { | |
1628 | unsigned long inactive, isolated; | |
1629 | ||
1630 | if (current_is_kswapd()) | |
1631 | return 0; | |
1632 | ||
97c9341f | 1633 | if (!sane_reclaim(sc)) |
35cd7815 RR |
1634 | return 0; |
1635 | ||
1636 | if (file) { | |
599d0c95 MG |
1637 | inactive = node_page_state(pgdat, NR_INACTIVE_FILE); |
1638 | isolated = node_page_state(pgdat, NR_ISOLATED_FILE); | |
35cd7815 | 1639 | } else { |
599d0c95 MG |
1640 | inactive = node_page_state(pgdat, NR_INACTIVE_ANON); |
1641 | isolated = node_page_state(pgdat, NR_ISOLATED_ANON); | |
35cd7815 RR |
1642 | } |
1643 | ||
3cf23841 FW |
1644 | /* |
1645 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
1646 | * won't get blocked by normal direct-reclaimers, forming a circular | |
1647 | * deadlock. | |
1648 | */ | |
d0164adc | 1649 | if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
3cf23841 FW |
1650 | inactive >>= 3; |
1651 | ||
35cd7815 RR |
1652 | return isolated > inactive; |
1653 | } | |
1654 | ||
66635629 | 1655 | static noinline_for_stack void |
75b00af7 | 1656 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
66635629 | 1657 | { |
27ac81d8 | 1658 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
599d0c95 | 1659 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
3f79768f | 1660 | LIST_HEAD(pages_to_free); |
66635629 | 1661 | |
66635629 MG |
1662 | /* |
1663 | * Put back any unfreeable pages. | |
1664 | */ | |
66635629 | 1665 | while (!list_empty(page_list)) { |
3f79768f | 1666 | struct page *page = lru_to_page(page_list); |
66635629 | 1667 | int lru; |
3f79768f | 1668 | |
309381fe | 1669 | VM_BUG_ON_PAGE(PageLRU(page), page); |
66635629 | 1670 | list_del(&page->lru); |
39b5f29a | 1671 | if (unlikely(!page_evictable(page))) { |
599d0c95 | 1672 | spin_unlock_irq(&pgdat->lru_lock); |
66635629 | 1673 | putback_lru_page(page); |
599d0c95 | 1674 | spin_lock_irq(&pgdat->lru_lock); |
66635629 MG |
1675 | continue; |
1676 | } | |
fa9add64 | 1677 | |
599d0c95 | 1678 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
fa9add64 | 1679 | |
7a608572 | 1680 | SetPageLRU(page); |
66635629 | 1681 | lru = page_lru(page); |
fa9add64 HD |
1682 | add_page_to_lru_list(page, lruvec, lru); |
1683 | ||
66635629 MG |
1684 | if (is_active_lru(lru)) { |
1685 | int file = is_file_lru(lru); | |
9992af10 RR |
1686 | int numpages = hpage_nr_pages(page); |
1687 | reclaim_stat->recent_rotated[file] += numpages; | |
66635629 | 1688 | } |
2bcf8879 HD |
1689 | if (put_page_testzero(page)) { |
1690 | __ClearPageLRU(page); | |
1691 | __ClearPageActive(page); | |
fa9add64 | 1692 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1693 | |
1694 | if (unlikely(PageCompound(page))) { | |
599d0c95 | 1695 | spin_unlock_irq(&pgdat->lru_lock); |
747db954 | 1696 | mem_cgroup_uncharge(page); |
2bcf8879 | 1697 | (*get_compound_page_dtor(page))(page); |
599d0c95 | 1698 | spin_lock_irq(&pgdat->lru_lock); |
2bcf8879 HD |
1699 | } else |
1700 | list_add(&page->lru, &pages_to_free); | |
66635629 MG |
1701 | } |
1702 | } | |
66635629 | 1703 | |
3f79768f HD |
1704 | /* |
1705 | * To save our caller's stack, now use input list for pages to free. | |
1706 | */ | |
1707 | list_splice(&pages_to_free, page_list); | |
66635629 MG |
1708 | } |
1709 | ||
399ba0b9 N |
1710 | /* |
1711 | * If a kernel thread (such as nfsd for loop-back mounts) services | |
1712 | * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. | |
1713 | * In that case we should only throttle if the backing device it is | |
1714 | * writing to is congested. In other cases it is safe to throttle. | |
1715 | */ | |
1716 | static int current_may_throttle(void) | |
1717 | { | |
1718 | return !(current->flags & PF_LESS_THROTTLE) || | |
1719 | current->backing_dev_info == NULL || | |
1720 | bdi_write_congested(current->backing_dev_info); | |
1721 | } | |
1722 | ||
1da177e4 | 1723 | /* |
b2e18757 | 1724 | * shrink_inactive_list() is a helper for shrink_node(). It returns the number |
1742f19f | 1725 | * of reclaimed pages |
1da177e4 | 1726 | */ |
66635629 | 1727 | static noinline_for_stack unsigned long |
1a93be0e | 1728 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
9e3b2f8c | 1729 | struct scan_control *sc, enum lru_list lru) |
1da177e4 LT |
1730 | { |
1731 | LIST_HEAD(page_list); | |
e247dbce | 1732 | unsigned long nr_scanned; |
05ff5137 | 1733 | unsigned long nr_reclaimed = 0; |
e247dbce | 1734 | unsigned long nr_taken; |
3c710c1a | 1735 | struct reclaim_stat stat = {}; |
f3fd4a61 | 1736 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1737 | int file = is_file_lru(lru); |
599d0c95 | 1738 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
1a93be0e | 1739 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
db73ee0d | 1740 | bool stalled = false; |
78dc583d | 1741 | |
599d0c95 | 1742 | while (unlikely(too_many_isolated(pgdat, file, sc))) { |
db73ee0d MH |
1743 | if (stalled) |
1744 | return 0; | |
1745 | ||
1746 | /* wait a bit for the reclaimer. */ | |
1747 | msleep(100); | |
1748 | stalled = true; | |
35cd7815 RR |
1749 | |
1750 | /* We are about to die and free our memory. Return now. */ | |
1751 | if (fatal_signal_pending(current)) | |
1752 | return SWAP_CLUSTER_MAX; | |
1753 | } | |
1754 | ||
1da177e4 | 1755 | lru_add_drain(); |
f80c0673 MK |
1756 | |
1757 | if (!sc->may_unmap) | |
61317289 | 1758 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1759 | |
599d0c95 | 1760 | spin_lock_irq(&pgdat->lru_lock); |
b35ea17b | 1761 | |
5dc35979 KK |
1762 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
1763 | &nr_scanned, sc, isolate_mode, lru); | |
95d918fc | 1764 | |
599d0c95 | 1765 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); |
9d5e6a9f | 1766 | reclaim_stat->recent_scanned[file] += nr_taken; |
95d918fc | 1767 | |
2262185c RG |
1768 | if (current_is_kswapd()) { |
1769 | if (global_reclaim(sc)) | |
599d0c95 | 1770 | __count_vm_events(PGSCAN_KSWAPD, nr_scanned); |
2262185c RG |
1771 | count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, |
1772 | nr_scanned); | |
1773 | } else { | |
1774 | if (global_reclaim(sc)) | |
599d0c95 | 1775 | __count_vm_events(PGSCAN_DIRECT, nr_scanned); |
2262185c RG |
1776 | count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, |
1777 | nr_scanned); | |
e247dbce | 1778 | } |
599d0c95 | 1779 | spin_unlock_irq(&pgdat->lru_lock); |
b35ea17b | 1780 | |
d563c050 | 1781 | if (nr_taken == 0) |
66635629 | 1782 | return 0; |
5ad333eb | 1783 | |
a128ca71 | 1784 | nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, |
3c710c1a | 1785 | &stat, false); |
c661b078 | 1786 | |
599d0c95 | 1787 | spin_lock_irq(&pgdat->lru_lock); |
3f79768f | 1788 | |
2262185c RG |
1789 | if (current_is_kswapd()) { |
1790 | if (global_reclaim(sc)) | |
599d0c95 | 1791 | __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); |
2262185c RG |
1792 | count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, |
1793 | nr_reclaimed); | |
1794 | } else { | |
1795 | if (global_reclaim(sc)) | |
599d0c95 | 1796 | __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); |
2262185c RG |
1797 | count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, |
1798 | nr_reclaimed); | |
904249aa | 1799 | } |
a74609fa | 1800 | |
27ac81d8 | 1801 | putback_inactive_pages(lruvec, &page_list); |
3f79768f | 1802 | |
599d0c95 | 1803 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); |
3f79768f | 1804 | |
599d0c95 | 1805 | spin_unlock_irq(&pgdat->lru_lock); |
3f79768f | 1806 | |
747db954 | 1807 | mem_cgroup_uncharge_list(&page_list); |
2d4894b5 | 1808 | free_unref_page_list(&page_list); |
e11da5b4 | 1809 | |
1c610d5f AR |
1810 | /* |
1811 | * If dirty pages are scanned that are not queued for IO, it | |
1812 | * implies that flushers are not doing their job. This can | |
1813 | * happen when memory pressure pushes dirty pages to the end of | |
1814 | * the LRU before the dirty limits are breached and the dirty | |
1815 | * data has expired. It can also happen when the proportion of | |
1816 | * dirty pages grows not through writes but through memory | |
1817 | * pressure reclaiming all the clean cache. And in some cases, | |
1818 | * the flushers simply cannot keep up with the allocation | |
1819 | * rate. Nudge the flusher threads in case they are asleep. | |
1820 | */ | |
1821 | if (stat.nr_unqueued_dirty == nr_taken) | |
1822 | wakeup_flusher_threads(WB_REASON_VMSCAN); | |
1823 | ||
d108c772 AR |
1824 | sc->nr.dirty += stat.nr_dirty; |
1825 | sc->nr.congested += stat.nr_congested; | |
1826 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | |
1827 | sc->nr.writeback += stat.nr_writeback; | |
1828 | sc->nr.immediate += stat.nr_immediate; | |
1829 | sc->nr.taken += nr_taken; | |
1830 | if (file) | |
1831 | sc->nr.file_taken += nr_taken; | |
8e950282 | 1832 | |
599d0c95 | 1833 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, |
d51d1e64 | 1834 | nr_scanned, nr_reclaimed, &stat, sc->priority, file); |
05ff5137 | 1835 | return nr_reclaimed; |
1da177e4 LT |
1836 | } |
1837 | ||
1838 | /* | |
1839 | * This moves pages from the active list to the inactive list. | |
1840 | * | |
1841 | * We move them the other way if the page is referenced by one or more | |
1842 | * processes, from rmap. | |
1843 | * | |
1844 | * If the pages are mostly unmapped, the processing is fast and it is | |
a52633d8 | 1845 | * appropriate to hold zone_lru_lock across the whole operation. But if |
1da177e4 | 1846 | * the pages are mapped, the processing is slow (page_referenced()) so we |
a52633d8 | 1847 | * should drop zone_lru_lock around each page. It's impossible to balance |
1da177e4 LT |
1848 | * this, so instead we remove the pages from the LRU while processing them. |
1849 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1850 | * nobody will play with that bit on a non-LRU page. | |
1851 | * | |
0139aa7b | 1852 | * The downside is that we have to touch page->_refcount against each page. |
1da177e4 | 1853 | * But we had to alter page->flags anyway. |
9d998b4f MH |
1854 | * |
1855 | * Returns the number of pages moved to the given lru. | |
1da177e4 | 1856 | */ |
1cfb419b | 1857 | |
9d998b4f | 1858 | static unsigned move_active_pages_to_lru(struct lruvec *lruvec, |
3eb4140f | 1859 | struct list_head *list, |
2bcf8879 | 1860 | struct list_head *pages_to_free, |
3eb4140f WF |
1861 | enum lru_list lru) |
1862 | { | |
599d0c95 | 1863 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
3eb4140f | 1864 | struct page *page; |
fa9add64 | 1865 | int nr_pages; |
9d998b4f | 1866 | int nr_moved = 0; |
3eb4140f | 1867 | |
3eb4140f WF |
1868 | while (!list_empty(list)) { |
1869 | page = lru_to_page(list); | |
599d0c95 | 1870 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
3eb4140f | 1871 | |
309381fe | 1872 | VM_BUG_ON_PAGE(PageLRU(page), page); |
3eb4140f WF |
1873 | SetPageLRU(page); |
1874 | ||
fa9add64 | 1875 | nr_pages = hpage_nr_pages(page); |
599d0c95 | 1876 | update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); |
925b7673 | 1877 | list_move(&page->lru, &lruvec->lists[lru]); |
3eb4140f | 1878 | |
2bcf8879 HD |
1879 | if (put_page_testzero(page)) { |
1880 | __ClearPageLRU(page); | |
1881 | __ClearPageActive(page); | |
fa9add64 | 1882 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1883 | |
1884 | if (unlikely(PageCompound(page))) { | |
599d0c95 | 1885 | spin_unlock_irq(&pgdat->lru_lock); |
747db954 | 1886 | mem_cgroup_uncharge(page); |
2bcf8879 | 1887 | (*get_compound_page_dtor(page))(page); |
599d0c95 | 1888 | spin_lock_irq(&pgdat->lru_lock); |
2bcf8879 HD |
1889 | } else |
1890 | list_add(&page->lru, pages_to_free); | |
9d998b4f MH |
1891 | } else { |
1892 | nr_moved += nr_pages; | |
3eb4140f WF |
1893 | } |
1894 | } | |
9d5e6a9f | 1895 | |
2262185c | 1896 | if (!is_active_lru(lru)) { |
f0958906 | 1897 | __count_vm_events(PGDEACTIVATE, nr_moved); |
2262185c RG |
1898 | count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, |
1899 | nr_moved); | |
1900 | } | |
9d998b4f MH |
1901 | |
1902 | return nr_moved; | |
3eb4140f | 1903 | } |
1cfb419b | 1904 | |
f626012d | 1905 | static void shrink_active_list(unsigned long nr_to_scan, |
1a93be0e | 1906 | struct lruvec *lruvec, |
f16015fb | 1907 | struct scan_control *sc, |
9e3b2f8c | 1908 | enum lru_list lru) |
1da177e4 | 1909 | { |
44c241f1 | 1910 | unsigned long nr_taken; |
f626012d | 1911 | unsigned long nr_scanned; |
6fe6b7e3 | 1912 | unsigned long vm_flags; |
1da177e4 | 1913 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
8cab4754 | 1914 | LIST_HEAD(l_active); |
b69408e8 | 1915 | LIST_HEAD(l_inactive); |
1da177e4 | 1916 | struct page *page; |
1a93be0e | 1917 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
9d998b4f MH |
1918 | unsigned nr_deactivate, nr_activate; |
1919 | unsigned nr_rotated = 0; | |
f3fd4a61 | 1920 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1921 | int file = is_file_lru(lru); |
599d0c95 | 1922 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
1da177e4 LT |
1923 | |
1924 | lru_add_drain(); | |
f80c0673 MK |
1925 | |
1926 | if (!sc->may_unmap) | |
61317289 | 1927 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1928 | |
599d0c95 | 1929 | spin_lock_irq(&pgdat->lru_lock); |
925b7673 | 1930 | |
5dc35979 KK |
1931 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
1932 | &nr_scanned, sc, isolate_mode, lru); | |
89b5fae5 | 1933 | |
599d0c95 | 1934 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); |
b7c46d15 | 1935 | reclaim_stat->recent_scanned[file] += nr_taken; |
1cfb419b | 1936 | |
599d0c95 | 1937 | __count_vm_events(PGREFILL, nr_scanned); |
2262185c | 1938 | count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); |
9d5e6a9f | 1939 | |
599d0c95 | 1940 | spin_unlock_irq(&pgdat->lru_lock); |
1da177e4 | 1941 | |
1da177e4 LT |
1942 | while (!list_empty(&l_hold)) { |
1943 | cond_resched(); | |
1944 | page = lru_to_page(&l_hold); | |
1945 | list_del(&page->lru); | |
7e9cd484 | 1946 | |
39b5f29a | 1947 | if (unlikely(!page_evictable(page))) { |
894bc310 LS |
1948 | putback_lru_page(page); |
1949 | continue; | |
1950 | } | |
1951 | ||
cc715d99 MG |
1952 | if (unlikely(buffer_heads_over_limit)) { |
1953 | if (page_has_private(page) && trylock_page(page)) { | |
1954 | if (page_has_private(page)) | |
1955 | try_to_release_page(page, 0); | |
1956 | unlock_page(page); | |
1957 | } | |
1958 | } | |
1959 | ||
c3ac9a8a JW |
1960 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
1961 | &vm_flags)) { | |
9992af10 | 1962 | nr_rotated += hpage_nr_pages(page); |
8cab4754 WF |
1963 | /* |
1964 | * Identify referenced, file-backed active pages and | |
1965 | * give them one more trip around the active list. So | |
1966 | * that executable code get better chances to stay in | |
1967 | * memory under moderate memory pressure. Anon pages | |
1968 | * are not likely to be evicted by use-once streaming | |
1969 | * IO, plus JVM can create lots of anon VM_EXEC pages, | |
1970 | * so we ignore them here. | |
1971 | */ | |
41e20983 | 1972 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
8cab4754 WF |
1973 | list_add(&page->lru, &l_active); |
1974 | continue; | |
1975 | } | |
1976 | } | |
7e9cd484 | 1977 | |
5205e56e | 1978 | ClearPageActive(page); /* we are de-activating */ |
1da177e4 LT |
1979 | list_add(&page->lru, &l_inactive); |
1980 | } | |
1981 | ||
b555749a | 1982 | /* |
8cab4754 | 1983 | * Move pages back to the lru list. |
b555749a | 1984 | */ |
599d0c95 | 1985 | spin_lock_irq(&pgdat->lru_lock); |
556adecb | 1986 | /* |
8cab4754 WF |
1987 | * Count referenced pages from currently used mappings as rotated, |
1988 | * even though only some of them are actually re-activated. This | |
1989 | * helps balance scan pressure between file and anonymous pages in | |
7c0db9e9 | 1990 | * get_scan_count. |
7e9cd484 | 1991 | */ |
b7c46d15 | 1992 | reclaim_stat->recent_rotated[file] += nr_rotated; |
556adecb | 1993 | |
9d998b4f MH |
1994 | nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
1995 | nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); | |
599d0c95 MG |
1996 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); |
1997 | spin_unlock_irq(&pgdat->lru_lock); | |
2bcf8879 | 1998 | |
747db954 | 1999 | mem_cgroup_uncharge_list(&l_hold); |
2d4894b5 | 2000 | free_unref_page_list(&l_hold); |
9d998b4f MH |
2001 | trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, |
2002 | nr_deactivate, nr_rotated, sc->priority, file); | |
1da177e4 LT |
2003 | } |
2004 | ||
59dc76b0 RR |
2005 | /* |
2006 | * The inactive anon list should be small enough that the VM never has | |
2007 | * to do too much work. | |
14797e23 | 2008 | * |
59dc76b0 RR |
2009 | * The inactive file list should be small enough to leave most memory |
2010 | * to the established workingset on the scan-resistant active list, | |
2011 | * but large enough to avoid thrashing the aggregate readahead window. | |
56e49d21 | 2012 | * |
59dc76b0 RR |
2013 | * Both inactive lists should also be large enough that each inactive |
2014 | * page has a chance to be referenced again before it is reclaimed. | |
56e49d21 | 2015 | * |
2a2e4885 JW |
2016 | * If that fails and refaulting is observed, the inactive list grows. |
2017 | * | |
59dc76b0 | 2018 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages |
3a50d14d | 2019 | * on this LRU, maintained by the pageout code. An inactive_ratio |
59dc76b0 | 2020 | * of 3 means 3:1 or 25% of the pages are kept on the inactive list. |
56e49d21 | 2021 | * |
59dc76b0 RR |
2022 | * total target max |
2023 | * memory ratio inactive | |
2024 | * ------------------------------------- | |
2025 | * 10MB 1 5MB | |
2026 | * 100MB 1 50MB | |
2027 | * 1GB 3 250MB | |
2028 | * 10GB 10 0.9GB | |
2029 | * 100GB 31 3GB | |
2030 | * 1TB 101 10GB | |
2031 | * 10TB 320 32GB | |
56e49d21 | 2032 | */ |
f8d1a311 | 2033 | static bool inactive_list_is_low(struct lruvec *lruvec, bool file, |
2a2e4885 JW |
2034 | struct mem_cgroup *memcg, |
2035 | struct scan_control *sc, bool actual_reclaim) | |
56e49d21 | 2036 | { |
fd538803 | 2037 | enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; |
2a2e4885 JW |
2038 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
2039 | enum lru_list inactive_lru = file * LRU_FILE; | |
2040 | unsigned long inactive, active; | |
2041 | unsigned long inactive_ratio; | |
2042 | unsigned long refaults; | |
59dc76b0 | 2043 | unsigned long gb; |
e3790144 | 2044 | |
59dc76b0 RR |
2045 | /* |
2046 | * If we don't have swap space, anonymous page deactivation | |
2047 | * is pointless. | |
2048 | */ | |
2049 | if (!file && !total_swap_pages) | |
2050 | return false; | |
56e49d21 | 2051 | |
fd538803 MH |
2052 | inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); |
2053 | active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); | |
f8d1a311 | 2054 | |
2a2e4885 | 2055 | if (memcg) |
ccda7f43 | 2056 | refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); |
b39415b2 | 2057 | else |
2a2e4885 JW |
2058 | refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); |
2059 | ||
2060 | /* | |
2061 | * When refaults are being observed, it means a new workingset | |
2062 | * is being established. Disable active list protection to get | |
2063 | * rid of the stale workingset quickly. | |
2064 | */ | |
2065 | if (file && actual_reclaim && lruvec->refaults != refaults) { | |
2066 | inactive_ratio = 0; | |
2067 | } else { | |
2068 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | |
2069 | if (gb) | |
2070 | inactive_ratio = int_sqrt(10 * gb); | |
2071 | else | |
2072 | inactive_ratio = 1; | |
2073 | } | |
59dc76b0 | 2074 | |
2a2e4885 JW |
2075 | if (actual_reclaim) |
2076 | trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, | |
2077 | lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, | |
2078 | lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, | |
2079 | inactive_ratio, file); | |
fd538803 | 2080 | |
59dc76b0 | 2081 | return inactive * inactive_ratio < active; |
b39415b2 RR |
2082 | } |
2083 | ||
4f98a2fe | 2084 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
2a2e4885 JW |
2085 | struct lruvec *lruvec, struct mem_cgroup *memcg, |
2086 | struct scan_control *sc) | |
b69408e8 | 2087 | { |
b39415b2 | 2088 | if (is_active_lru(lru)) { |
2a2e4885 JW |
2089 | if (inactive_list_is_low(lruvec, is_file_lru(lru), |
2090 | memcg, sc, true)) | |
1a93be0e | 2091 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
556adecb RR |
2092 | return 0; |
2093 | } | |
2094 | ||
1a93be0e | 2095 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
4f98a2fe RR |
2096 | } |
2097 | ||
9a265114 JW |
2098 | enum scan_balance { |
2099 | SCAN_EQUAL, | |
2100 | SCAN_FRACT, | |
2101 | SCAN_ANON, | |
2102 | SCAN_FILE, | |
2103 | }; | |
2104 | ||
4f98a2fe RR |
2105 | /* |
2106 | * Determine how aggressively the anon and file LRU lists should be | |
2107 | * scanned. The relative value of each set of LRU lists is determined | |
2108 | * by looking at the fraction of the pages scanned we did rotate back | |
2109 | * onto the active list instead of evict. | |
2110 | * | |
be7bd59d WL |
2111 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
2112 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
4f98a2fe | 2113 | */ |
33377678 | 2114 | static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, |
6b4f7799 JW |
2115 | struct scan_control *sc, unsigned long *nr, |
2116 | unsigned long *lru_pages) | |
4f98a2fe | 2117 | { |
33377678 | 2118 | int swappiness = mem_cgroup_swappiness(memcg); |
9a265114 JW |
2119 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
2120 | u64 fraction[2]; | |
2121 | u64 denominator = 0; /* gcc */ | |
599d0c95 | 2122 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
4f98a2fe | 2123 | unsigned long anon_prio, file_prio; |
9a265114 | 2124 | enum scan_balance scan_balance; |
0bf1457f | 2125 | unsigned long anon, file; |
4f98a2fe | 2126 | unsigned long ap, fp; |
4111304d | 2127 | enum lru_list lru; |
76a33fc3 SL |
2128 | |
2129 | /* If we have no swap space, do not bother scanning anon pages. */ | |
d8b38438 | 2130 | if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { |
9a265114 | 2131 | scan_balance = SCAN_FILE; |
76a33fc3 SL |
2132 | goto out; |
2133 | } | |
4f98a2fe | 2134 | |
10316b31 JW |
2135 | /* |
2136 | * Global reclaim will swap to prevent OOM even with no | |
2137 | * swappiness, but memcg users want to use this knob to | |
2138 | * disable swapping for individual groups completely when | |
2139 | * using the memory controller's swap limit feature would be | |
2140 | * too expensive. | |
2141 | */ | |
02695175 | 2142 | if (!global_reclaim(sc) && !swappiness) { |
9a265114 | 2143 | scan_balance = SCAN_FILE; |
10316b31 JW |
2144 | goto out; |
2145 | } | |
2146 | ||
2147 | /* | |
2148 | * Do not apply any pressure balancing cleverness when the | |
2149 | * system is close to OOM, scan both anon and file equally | |
2150 | * (unless the swappiness setting disagrees with swapping). | |
2151 | */ | |
02695175 | 2152 | if (!sc->priority && swappiness) { |
9a265114 | 2153 | scan_balance = SCAN_EQUAL; |
10316b31 JW |
2154 | goto out; |
2155 | } | |
2156 | ||
62376251 JW |
2157 | /* |
2158 | * Prevent the reclaimer from falling into the cache trap: as | |
2159 | * cache pages start out inactive, every cache fault will tip | |
2160 | * the scan balance towards the file LRU. And as the file LRU | |
2161 | * shrinks, so does the window for rotation from references. | |
2162 | * This means we have a runaway feedback loop where a tiny | |
2163 | * thrashing file LRU becomes infinitely more attractive than | |
2164 | * anon pages. Try to detect this based on file LRU size. | |
2165 | */ | |
2166 | if (global_reclaim(sc)) { | |
599d0c95 MG |
2167 | unsigned long pgdatfile; |
2168 | unsigned long pgdatfree; | |
2169 | int z; | |
2170 | unsigned long total_high_wmark = 0; | |
2ab051e1 | 2171 | |
599d0c95 MG |
2172 | pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); |
2173 | pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + | |
2174 | node_page_state(pgdat, NR_INACTIVE_FILE); | |
2175 | ||
2176 | for (z = 0; z < MAX_NR_ZONES; z++) { | |
2177 | struct zone *zone = &pgdat->node_zones[z]; | |
6aa303de | 2178 | if (!managed_zone(zone)) |
599d0c95 MG |
2179 | continue; |
2180 | ||
2181 | total_high_wmark += high_wmark_pages(zone); | |
2182 | } | |
62376251 | 2183 | |
599d0c95 | 2184 | if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { |
06226226 DR |
2185 | /* |
2186 | * Force SCAN_ANON if there are enough inactive | |
2187 | * anonymous pages on the LRU in eligible zones. | |
2188 | * Otherwise, the small LRU gets thrashed. | |
2189 | */ | |
2190 | if (!inactive_list_is_low(lruvec, false, memcg, sc, false) && | |
2191 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) | |
2192 | >> sc->priority) { | |
2193 | scan_balance = SCAN_ANON; | |
2194 | goto out; | |
2195 | } | |
62376251 JW |
2196 | } |
2197 | } | |
2198 | ||
7c5bd705 | 2199 | /* |
316bda0e VD |
2200 | * If there is enough inactive page cache, i.e. if the size of the |
2201 | * inactive list is greater than that of the active list *and* the | |
2202 | * inactive list actually has some pages to scan on this priority, we | |
2203 | * do not reclaim anything from the anonymous working set right now. | |
2204 | * Without the second condition we could end up never scanning an | |
2205 | * lruvec even if it has plenty of old anonymous pages unless the | |
2206 | * system is under heavy pressure. | |
7c5bd705 | 2207 | */ |
2a2e4885 | 2208 | if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && |
71ab6cfe | 2209 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { |
9a265114 | 2210 | scan_balance = SCAN_FILE; |
7c5bd705 JW |
2211 | goto out; |
2212 | } | |
2213 | ||
9a265114 JW |
2214 | scan_balance = SCAN_FRACT; |
2215 | ||
58c37f6e KM |
2216 | /* |
2217 | * With swappiness at 100, anonymous and file have the same priority. | |
2218 | * This scanning priority is essentially the inverse of IO cost. | |
2219 | */ | |
02695175 | 2220 | anon_prio = swappiness; |
75b00af7 | 2221 | file_prio = 200 - anon_prio; |
58c37f6e | 2222 | |
4f98a2fe RR |
2223 | /* |
2224 | * OK, so we have swap space and a fair amount of page cache | |
2225 | * pages. We use the recently rotated / recently scanned | |
2226 | * ratios to determine how valuable each cache is. | |
2227 | * | |
2228 | * Because workloads change over time (and to avoid overflow) | |
2229 | * we keep these statistics as a floating average, which ends | |
2230 | * up weighing recent references more than old ones. | |
2231 | * | |
2232 | * anon in [0], file in [1] | |
2233 | */ | |
2ab051e1 | 2234 | |
fd538803 MH |
2235 | anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + |
2236 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); | |
2237 | file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + | |
2238 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); | |
2ab051e1 | 2239 | |
599d0c95 | 2240 | spin_lock_irq(&pgdat->lru_lock); |
6e901571 | 2241 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
6e901571 KM |
2242 | reclaim_stat->recent_scanned[0] /= 2; |
2243 | reclaim_stat->recent_rotated[0] /= 2; | |
4f98a2fe RR |
2244 | } |
2245 | ||
6e901571 | 2246 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
6e901571 KM |
2247 | reclaim_stat->recent_scanned[1] /= 2; |
2248 | reclaim_stat->recent_rotated[1] /= 2; | |
4f98a2fe RR |
2249 | } |
2250 | ||
4f98a2fe | 2251 | /* |
00d8089c RR |
2252 | * The amount of pressure on anon vs file pages is inversely |
2253 | * proportional to the fraction of recently scanned pages on | |
2254 | * each list that were recently referenced and in active use. | |
4f98a2fe | 2255 | */ |
fe35004f | 2256 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
6e901571 | 2257 | ap /= reclaim_stat->recent_rotated[0] + 1; |
4f98a2fe | 2258 | |
fe35004f | 2259 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
6e901571 | 2260 | fp /= reclaim_stat->recent_rotated[1] + 1; |
599d0c95 | 2261 | spin_unlock_irq(&pgdat->lru_lock); |
4f98a2fe | 2262 | |
76a33fc3 SL |
2263 | fraction[0] = ap; |
2264 | fraction[1] = fp; | |
2265 | denominator = ap + fp + 1; | |
2266 | out: | |
688035f7 JW |
2267 | *lru_pages = 0; |
2268 | for_each_evictable_lru(lru) { | |
2269 | int file = is_file_lru(lru); | |
2270 | unsigned long size; | |
2271 | unsigned long scan; | |
6b4f7799 | 2272 | |
688035f7 JW |
2273 | size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); |
2274 | scan = size >> sc->priority; | |
2275 | /* | |
2276 | * If the cgroup's already been deleted, make sure to | |
2277 | * scrape out the remaining cache. | |
2278 | */ | |
2279 | if (!scan && !mem_cgroup_online(memcg)) | |
2280 | scan = min(size, SWAP_CLUSTER_MAX); | |
6b4f7799 | 2281 | |
688035f7 JW |
2282 | switch (scan_balance) { |
2283 | case SCAN_EQUAL: | |
2284 | /* Scan lists relative to size */ | |
2285 | break; | |
2286 | case SCAN_FRACT: | |
9a265114 | 2287 | /* |
688035f7 JW |
2288 | * Scan types proportional to swappiness and |
2289 | * their relative recent reclaim efficiency. | |
9a265114 | 2290 | */ |
688035f7 JW |
2291 | scan = div64_u64(scan * fraction[file], |
2292 | denominator); | |
2293 | break; | |
2294 | case SCAN_FILE: | |
2295 | case SCAN_ANON: | |
2296 | /* Scan one type exclusively */ | |
2297 | if ((scan_balance == SCAN_FILE) != file) { | |
2298 | size = 0; | |
2299 | scan = 0; | |
2300 | } | |
2301 | break; | |
2302 | default: | |
2303 | /* Look ma, no brain */ | |
2304 | BUG(); | |
9a265114 | 2305 | } |
688035f7 JW |
2306 | |
2307 | *lru_pages += size; | |
2308 | nr[lru] = scan; | |
76a33fc3 | 2309 | } |
6e08a369 | 2310 | } |
4f98a2fe | 2311 | |
9b4f98cd | 2312 | /* |
a9dd0a83 | 2313 | * This is a basic per-node page freer. Used by both kswapd and direct reclaim. |
9b4f98cd | 2314 | */ |
a9dd0a83 | 2315 | static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, |
33377678 | 2316 | struct scan_control *sc, unsigned long *lru_pages) |
9b4f98cd | 2317 | { |
ef8f2327 | 2318 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); |
9b4f98cd | 2319 | unsigned long nr[NR_LRU_LISTS]; |
e82e0561 | 2320 | unsigned long targets[NR_LRU_LISTS]; |
9b4f98cd JW |
2321 | unsigned long nr_to_scan; |
2322 | enum lru_list lru; | |
2323 | unsigned long nr_reclaimed = 0; | |
2324 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
2325 | struct blk_plug plug; | |
1a501907 | 2326 | bool scan_adjusted; |
9b4f98cd | 2327 | |
33377678 | 2328 | get_scan_count(lruvec, memcg, sc, nr, lru_pages); |
9b4f98cd | 2329 | |
e82e0561 MG |
2330 | /* Record the original scan target for proportional adjustments later */ |
2331 | memcpy(targets, nr, sizeof(nr)); | |
2332 | ||
1a501907 MG |
2333 | /* |
2334 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | |
2335 | * event that can occur when there is little memory pressure e.g. | |
2336 | * multiple streaming readers/writers. Hence, we do not abort scanning | |
2337 | * when the requested number of pages are reclaimed when scanning at | |
2338 | * DEF_PRIORITY on the assumption that the fact we are direct | |
2339 | * reclaiming implies that kswapd is not keeping up and it is best to | |
2340 | * do a batch of work at once. For memcg reclaim one check is made to | |
2341 | * abort proportional reclaim if either the file or anon lru has already | |
2342 | * dropped to zero at the first pass. | |
2343 | */ | |
2344 | scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && | |
2345 | sc->priority == DEF_PRIORITY); | |
2346 | ||
9b4f98cd JW |
2347 | blk_start_plug(&plug); |
2348 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
2349 | nr[LRU_INACTIVE_FILE]) { | |
e82e0561 MG |
2350 | unsigned long nr_anon, nr_file, percentage; |
2351 | unsigned long nr_scanned; | |
2352 | ||
9b4f98cd JW |
2353 | for_each_evictable_lru(lru) { |
2354 | if (nr[lru]) { | |
2355 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
2356 | nr[lru] -= nr_to_scan; | |
2357 | ||
2358 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
2a2e4885 | 2359 | lruvec, memcg, sc); |
9b4f98cd JW |
2360 | } |
2361 | } | |
e82e0561 | 2362 | |
bd041733 MH |
2363 | cond_resched(); |
2364 | ||
e82e0561 MG |
2365 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) |
2366 | continue; | |
2367 | ||
e82e0561 MG |
2368 | /* |
2369 | * For kswapd and memcg, reclaim at least the number of pages | |
1a501907 | 2370 | * requested. Ensure that the anon and file LRUs are scanned |
e82e0561 MG |
2371 | * proportionally what was requested by get_scan_count(). We |
2372 | * stop reclaiming one LRU and reduce the amount scanning | |
2373 | * proportional to the original scan target. | |
2374 | */ | |
2375 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | |
2376 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | |
2377 | ||
1a501907 MG |
2378 | /* |
2379 | * It's just vindictive to attack the larger once the smaller | |
2380 | * has gone to zero. And given the way we stop scanning the | |
2381 | * smaller below, this makes sure that we only make one nudge | |
2382 | * towards proportionality once we've got nr_to_reclaim. | |
2383 | */ | |
2384 | if (!nr_file || !nr_anon) | |
2385 | break; | |
2386 | ||
e82e0561 MG |
2387 | if (nr_file > nr_anon) { |
2388 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | |
2389 | targets[LRU_ACTIVE_ANON] + 1; | |
2390 | lru = LRU_BASE; | |
2391 | percentage = nr_anon * 100 / scan_target; | |
2392 | } else { | |
2393 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | |
2394 | targets[LRU_ACTIVE_FILE] + 1; | |
2395 | lru = LRU_FILE; | |
2396 | percentage = nr_file * 100 / scan_target; | |
2397 | } | |
2398 | ||
2399 | /* Stop scanning the smaller of the LRU */ | |
2400 | nr[lru] = 0; | |
2401 | nr[lru + LRU_ACTIVE] = 0; | |
2402 | ||
2403 | /* | |
2404 | * Recalculate the other LRU scan count based on its original | |
2405 | * scan target and the percentage scanning already complete | |
2406 | */ | |
2407 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | |
2408 | nr_scanned = targets[lru] - nr[lru]; | |
2409 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2410 | nr[lru] -= min(nr[lru], nr_scanned); | |
2411 | ||
2412 | lru += LRU_ACTIVE; | |
2413 | nr_scanned = targets[lru] - nr[lru]; | |
2414 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2415 | nr[lru] -= min(nr[lru], nr_scanned); | |
2416 | ||
2417 | scan_adjusted = true; | |
9b4f98cd JW |
2418 | } |
2419 | blk_finish_plug(&plug); | |
2420 | sc->nr_reclaimed += nr_reclaimed; | |
2421 | ||
2422 | /* | |
2423 | * Even if we did not try to evict anon pages at all, we want to | |
2424 | * rebalance the anon lru active/inactive ratio. | |
2425 | */ | |
2a2e4885 | 2426 | if (inactive_list_is_low(lruvec, false, memcg, sc, true)) |
9b4f98cd JW |
2427 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
2428 | sc, LRU_ACTIVE_ANON); | |
9b4f98cd JW |
2429 | } |
2430 | ||
23b9da55 | 2431 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
9e3b2f8c | 2432 | static bool in_reclaim_compaction(struct scan_control *sc) |
23b9da55 | 2433 | { |
d84da3f9 | 2434 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
23b9da55 | 2435 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
9e3b2f8c | 2436 | sc->priority < DEF_PRIORITY - 2)) |
23b9da55 MG |
2437 | return true; |
2438 | ||
2439 | return false; | |
2440 | } | |
2441 | ||
3e7d3449 | 2442 | /* |
23b9da55 MG |
2443 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
2444 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
2445 | * true if more pages should be reclaimed such that when the page allocator | |
2446 | * calls try_to_compact_zone() that it will have enough free pages to succeed. | |
2447 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
3e7d3449 | 2448 | */ |
a9dd0a83 | 2449 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, |
3e7d3449 MG |
2450 | unsigned long nr_reclaimed, |
2451 | unsigned long nr_scanned, | |
2452 | struct scan_control *sc) | |
2453 | { | |
2454 | unsigned long pages_for_compaction; | |
2455 | unsigned long inactive_lru_pages; | |
a9dd0a83 | 2456 | int z; |
3e7d3449 MG |
2457 | |
2458 | /* If not in reclaim/compaction mode, stop */ | |
9e3b2f8c | 2459 | if (!in_reclaim_compaction(sc)) |
3e7d3449 MG |
2460 | return false; |
2461 | ||
2876592f | 2462 | /* Consider stopping depending on scan and reclaim activity */ |
dcda9b04 | 2463 | if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { |
2876592f | 2464 | /* |
dcda9b04 | 2465 | * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the |
2876592f MG |
2466 | * full LRU list has been scanned and we are still failing |
2467 | * to reclaim pages. This full LRU scan is potentially | |
dcda9b04 | 2468 | * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed |
2876592f MG |
2469 | */ |
2470 | if (!nr_reclaimed && !nr_scanned) | |
2471 | return false; | |
2472 | } else { | |
2473 | /* | |
dcda9b04 | 2474 | * For non-__GFP_RETRY_MAYFAIL allocations which can presumably |
2876592f MG |
2475 | * fail without consequence, stop if we failed to reclaim |
2476 | * any pages from the last SWAP_CLUSTER_MAX number of | |
2477 | * pages that were scanned. This will return to the | |
2478 | * caller faster at the risk reclaim/compaction and | |
2479 | * the resulting allocation attempt fails | |
2480 | */ | |
2481 | if (!nr_reclaimed) | |
2482 | return false; | |
2483 | } | |
3e7d3449 MG |
2484 | |
2485 | /* | |
2486 | * If we have not reclaimed enough pages for compaction and the | |
2487 | * inactive lists are large enough, continue reclaiming | |
2488 | */ | |
9861a62c | 2489 | pages_for_compaction = compact_gap(sc->order); |
a9dd0a83 | 2490 | inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); |
ec8acf20 | 2491 | if (get_nr_swap_pages() > 0) |
a9dd0a83 | 2492 | inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); |
3e7d3449 MG |
2493 | if (sc->nr_reclaimed < pages_for_compaction && |
2494 | inactive_lru_pages > pages_for_compaction) | |
2495 | return true; | |
2496 | ||
2497 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
a9dd0a83 MG |
2498 | for (z = 0; z <= sc->reclaim_idx; z++) { |
2499 | struct zone *zone = &pgdat->node_zones[z]; | |
6aa303de | 2500 | if (!managed_zone(zone)) |
a9dd0a83 MG |
2501 | continue; |
2502 | ||
2503 | switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { | |
cf378319 | 2504 | case COMPACT_SUCCESS: |
a9dd0a83 MG |
2505 | case COMPACT_CONTINUE: |
2506 | return false; | |
2507 | default: | |
2508 | /* check next zone */ | |
2509 | ; | |
2510 | } | |
3e7d3449 | 2511 | } |
a9dd0a83 | 2512 | return true; |
3e7d3449 MG |
2513 | } |
2514 | ||
e3c1ac58 AR |
2515 | static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) |
2516 | { | |
2517 | return test_bit(PGDAT_CONGESTED, &pgdat->flags) || | |
2518 | (memcg && memcg_congested(pgdat, memcg)); | |
2519 | } | |
2520 | ||
970a39a3 | 2521 | static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) |
1da177e4 | 2522 | { |
cb731d6c | 2523 | struct reclaim_state *reclaim_state = current->reclaim_state; |
f0fdc5e8 | 2524 | unsigned long nr_reclaimed, nr_scanned; |
2344d7e4 | 2525 | bool reclaimable = false; |
1da177e4 | 2526 | |
9b4f98cd JW |
2527 | do { |
2528 | struct mem_cgroup *root = sc->target_mem_cgroup; | |
2529 | struct mem_cgroup_reclaim_cookie reclaim = { | |
ef8f2327 | 2530 | .pgdat = pgdat, |
9b4f98cd JW |
2531 | .priority = sc->priority, |
2532 | }; | |
a9dd0a83 | 2533 | unsigned long node_lru_pages = 0; |
694fbc0f | 2534 | struct mem_cgroup *memcg; |
3e7d3449 | 2535 | |
d108c772 AR |
2536 | memset(&sc->nr, 0, sizeof(sc->nr)); |
2537 | ||
9b4f98cd JW |
2538 | nr_reclaimed = sc->nr_reclaimed; |
2539 | nr_scanned = sc->nr_scanned; | |
1da177e4 | 2540 | |
694fbc0f AM |
2541 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
2542 | do { | |
6b4f7799 | 2543 | unsigned long lru_pages; |
8e8ae645 | 2544 | unsigned long reclaimed; |
cb731d6c | 2545 | unsigned long scanned; |
5660048c | 2546 | |
241994ed | 2547 | if (mem_cgroup_low(root, memcg)) { |
d6622f63 YX |
2548 | if (!sc->memcg_low_reclaim) { |
2549 | sc->memcg_low_skipped = 1; | |
241994ed | 2550 | continue; |
d6622f63 | 2551 | } |
e27be240 | 2552 | memcg_memory_event(memcg, MEMCG_LOW); |
241994ed JW |
2553 | } |
2554 | ||
8e8ae645 | 2555 | reclaimed = sc->nr_reclaimed; |
cb731d6c | 2556 | scanned = sc->nr_scanned; |
a9dd0a83 MG |
2557 | shrink_node_memcg(pgdat, memcg, sc, &lru_pages); |
2558 | node_lru_pages += lru_pages; | |
f16015fb | 2559 | |
b5afba29 | 2560 | if (memcg) |
a9dd0a83 | 2561 | shrink_slab(sc->gfp_mask, pgdat->node_id, |
9092c71b | 2562 | memcg, sc->priority); |
cb731d6c | 2563 | |
8e8ae645 JW |
2564 | /* Record the group's reclaim efficiency */ |
2565 | vmpressure(sc->gfp_mask, memcg, false, | |
2566 | sc->nr_scanned - scanned, | |
2567 | sc->nr_reclaimed - reclaimed); | |
2568 | ||
9b4f98cd | 2569 | /* |
a394cb8e MH |
2570 | * Direct reclaim and kswapd have to scan all memory |
2571 | * cgroups to fulfill the overall scan target for the | |
a9dd0a83 | 2572 | * node. |
a394cb8e MH |
2573 | * |
2574 | * Limit reclaim, on the other hand, only cares about | |
2575 | * nr_to_reclaim pages to be reclaimed and it will | |
2576 | * retry with decreasing priority if one round over the | |
2577 | * whole hierarchy is not sufficient. | |
9b4f98cd | 2578 | */ |
a394cb8e MH |
2579 | if (!global_reclaim(sc) && |
2580 | sc->nr_reclaimed >= sc->nr_to_reclaim) { | |
9b4f98cd JW |
2581 | mem_cgroup_iter_break(root, memcg); |
2582 | break; | |
2583 | } | |
241994ed | 2584 | } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); |
70ddf637 | 2585 | |
b2e18757 | 2586 | if (global_reclaim(sc)) |
a9dd0a83 | 2587 | shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, |
9092c71b | 2588 | sc->priority); |
cb731d6c VD |
2589 | |
2590 | if (reclaim_state) { | |
2591 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | |
2592 | reclaim_state->reclaimed_slab = 0; | |
6b4f7799 JW |
2593 | } |
2594 | ||
8e8ae645 JW |
2595 | /* Record the subtree's reclaim efficiency */ |
2596 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | |
70ddf637 AV |
2597 | sc->nr_scanned - nr_scanned, |
2598 | sc->nr_reclaimed - nr_reclaimed); | |
2599 | ||
2344d7e4 JW |
2600 | if (sc->nr_reclaimed - nr_reclaimed) |
2601 | reclaimable = true; | |
2602 | ||
e3c1ac58 AR |
2603 | if (current_is_kswapd()) { |
2604 | /* | |
2605 | * If reclaim is isolating dirty pages under writeback, | |
2606 | * it implies that the long-lived page allocation rate | |
2607 | * is exceeding the page laundering rate. Either the | |
2608 | * global limits are not being effective at throttling | |
2609 | * processes due to the page distribution throughout | |
2610 | * zones or there is heavy usage of a slow backing | |
2611 | * device. The only option is to throttle from reclaim | |
2612 | * context which is not ideal as there is no guarantee | |
2613 | * the dirtying process is throttled in the same way | |
2614 | * balance_dirty_pages() manages. | |
2615 | * | |
2616 | * Once a node is flagged PGDAT_WRITEBACK, kswapd will | |
2617 | * count the number of pages under pages flagged for | |
2618 | * immediate reclaim and stall if any are encountered | |
2619 | * in the nr_immediate check below. | |
2620 | */ | |
2621 | if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) | |
2622 | set_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
d108c772 | 2623 | |
d108c772 AR |
2624 | /* |
2625 | * Tag a node as congested if all the dirty pages | |
2626 | * scanned were backed by a congested BDI and | |
2627 | * wait_iff_congested will stall. | |
2628 | */ | |
2629 | if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) | |
2630 | set_bit(PGDAT_CONGESTED, &pgdat->flags); | |
2631 | ||
2632 | /* Allow kswapd to start writing pages during reclaim.*/ | |
2633 | if (sc->nr.unqueued_dirty == sc->nr.file_taken) | |
2634 | set_bit(PGDAT_DIRTY, &pgdat->flags); | |
2635 | ||
2636 | /* | |
2637 | * If kswapd scans pages marked marked for immediate | |
2638 | * reclaim and under writeback (nr_immediate), it | |
2639 | * implies that pages are cycling through the LRU | |
2640 | * faster than they are written so also forcibly stall. | |
2641 | */ | |
2642 | if (sc->nr.immediate) | |
2643 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
2644 | } | |
2645 | ||
e3c1ac58 AR |
2646 | /* |
2647 | * Legacy memcg will stall in page writeback so avoid forcibly | |
2648 | * stalling in wait_iff_congested(). | |
2649 | */ | |
2650 | if (!global_reclaim(sc) && sane_reclaim(sc) && | |
2651 | sc->nr.dirty && sc->nr.dirty == sc->nr.congested) | |
2652 | set_memcg_congestion(pgdat, root, true); | |
2653 | ||
d108c772 AR |
2654 | /* |
2655 | * Stall direct reclaim for IO completions if underlying BDIs | |
2656 | * and node is congested. Allow kswapd to continue until it | |
2657 | * starts encountering unqueued dirty pages or cycling through | |
2658 | * the LRU too quickly. | |
2659 | */ | |
2660 | if (!sc->hibernation_mode && !current_is_kswapd() && | |
e3c1ac58 AR |
2661 | current_may_throttle() && pgdat_memcg_congested(pgdat, root)) |
2662 | wait_iff_congested(BLK_RW_ASYNC, HZ/10); | |
d108c772 | 2663 | |
a9dd0a83 | 2664 | } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, |
9b4f98cd | 2665 | sc->nr_scanned - nr_scanned, sc)); |
2344d7e4 | 2666 | |
c73322d0 JW |
2667 | /* |
2668 | * Kswapd gives up on balancing particular nodes after too | |
2669 | * many failures to reclaim anything from them and goes to | |
2670 | * sleep. On reclaim progress, reset the failure counter. A | |
2671 | * successful direct reclaim run will revive a dormant kswapd. | |
2672 | */ | |
2673 | if (reclaimable) | |
2674 | pgdat->kswapd_failures = 0; | |
2675 | ||
2344d7e4 | 2676 | return reclaimable; |
f16015fb JW |
2677 | } |
2678 | ||
53853e2d | 2679 | /* |
fdd4c614 VB |
2680 | * Returns true if compaction should go ahead for a costly-order request, or |
2681 | * the allocation would already succeed without compaction. Return false if we | |
2682 | * should reclaim first. | |
53853e2d | 2683 | */ |
4f588331 | 2684 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) |
fe4b1b24 | 2685 | { |
31483b6a | 2686 | unsigned long watermark; |
fdd4c614 | 2687 | enum compact_result suitable; |
fe4b1b24 | 2688 | |
fdd4c614 VB |
2689 | suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); |
2690 | if (suitable == COMPACT_SUCCESS) | |
2691 | /* Allocation should succeed already. Don't reclaim. */ | |
2692 | return true; | |
2693 | if (suitable == COMPACT_SKIPPED) | |
2694 | /* Compaction cannot yet proceed. Do reclaim. */ | |
2695 | return false; | |
fe4b1b24 | 2696 | |
53853e2d | 2697 | /* |
fdd4c614 VB |
2698 | * Compaction is already possible, but it takes time to run and there |
2699 | * are potentially other callers using the pages just freed. So proceed | |
2700 | * with reclaim to make a buffer of free pages available to give | |
2701 | * compaction a reasonable chance of completing and allocating the page. | |
2702 | * Note that we won't actually reclaim the whole buffer in one attempt | |
2703 | * as the target watermark in should_continue_reclaim() is lower. But if | |
2704 | * we are already above the high+gap watermark, don't reclaim at all. | |
53853e2d | 2705 | */ |
fdd4c614 | 2706 | watermark = high_wmark_pages(zone) + compact_gap(sc->order); |
fe4b1b24 | 2707 | |
fdd4c614 | 2708 | return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); |
fe4b1b24 MG |
2709 | } |
2710 | ||
1da177e4 LT |
2711 | /* |
2712 | * This is the direct reclaim path, for page-allocating processes. We only | |
2713 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
2714 | * request. | |
2715 | * | |
1da177e4 LT |
2716 | * If a zone is deemed to be full of pinned pages then just give it a light |
2717 | * scan then give up on it. | |
2718 | */ | |
0a0337e0 | 2719 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
1da177e4 | 2720 | { |
dd1a239f | 2721 | struct zoneref *z; |
54a6eb5c | 2722 | struct zone *zone; |
0608f43d AM |
2723 | unsigned long nr_soft_reclaimed; |
2724 | unsigned long nr_soft_scanned; | |
619d0d76 | 2725 | gfp_t orig_mask; |
79dafcdc | 2726 | pg_data_t *last_pgdat = NULL; |
1cfb419b | 2727 | |
cc715d99 MG |
2728 | /* |
2729 | * If the number of buffer_heads in the machine exceeds the maximum | |
2730 | * allowed level, force direct reclaim to scan the highmem zone as | |
2731 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
2732 | */ | |
619d0d76 | 2733 | orig_mask = sc->gfp_mask; |
b2e18757 | 2734 | if (buffer_heads_over_limit) { |
cc715d99 | 2735 | sc->gfp_mask |= __GFP_HIGHMEM; |
4f588331 | 2736 | sc->reclaim_idx = gfp_zone(sc->gfp_mask); |
b2e18757 | 2737 | } |
cc715d99 | 2738 | |
d4debc66 | 2739 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
b2e18757 | 2740 | sc->reclaim_idx, sc->nodemask) { |
1cfb419b KH |
2741 | /* |
2742 | * Take care memory controller reclaiming has small influence | |
2743 | * to global LRU. | |
2744 | */ | |
89b5fae5 | 2745 | if (global_reclaim(sc)) { |
344736f2 VD |
2746 | if (!cpuset_zone_allowed(zone, |
2747 | GFP_KERNEL | __GFP_HARDWALL)) | |
1cfb419b | 2748 | continue; |
65ec02cb | 2749 | |
0b06496a JW |
2750 | /* |
2751 | * If we already have plenty of memory free for | |
2752 | * compaction in this zone, don't free any more. | |
2753 | * Even though compaction is invoked for any | |
2754 | * non-zero order, only frequent costly order | |
2755 | * reclamation is disruptive enough to become a | |
2756 | * noticeable problem, like transparent huge | |
2757 | * page allocations. | |
2758 | */ | |
2759 | if (IS_ENABLED(CONFIG_COMPACTION) && | |
2760 | sc->order > PAGE_ALLOC_COSTLY_ORDER && | |
4f588331 | 2761 | compaction_ready(zone, sc)) { |
0b06496a JW |
2762 | sc->compaction_ready = true; |
2763 | continue; | |
e0887c19 | 2764 | } |
0b06496a | 2765 | |
79dafcdc MG |
2766 | /* |
2767 | * Shrink each node in the zonelist once. If the | |
2768 | * zonelist is ordered by zone (not the default) then a | |
2769 | * node may be shrunk multiple times but in that case | |
2770 | * the user prefers lower zones being preserved. | |
2771 | */ | |
2772 | if (zone->zone_pgdat == last_pgdat) | |
2773 | continue; | |
2774 | ||
0608f43d AM |
2775 | /* |
2776 | * This steals pages from memory cgroups over softlimit | |
2777 | * and returns the number of reclaimed pages and | |
2778 | * scanned pages. This works for global memory pressure | |
2779 | * and balancing, not for a memcg's limit. | |
2780 | */ | |
2781 | nr_soft_scanned = 0; | |
ef8f2327 | 2782 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, |
0608f43d AM |
2783 | sc->order, sc->gfp_mask, |
2784 | &nr_soft_scanned); | |
2785 | sc->nr_reclaimed += nr_soft_reclaimed; | |
2786 | sc->nr_scanned += nr_soft_scanned; | |
ac34a1a3 | 2787 | /* need some check for avoid more shrink_zone() */ |
1cfb419b | 2788 | } |
408d8544 | 2789 | |
79dafcdc MG |
2790 | /* See comment about same check for global reclaim above */ |
2791 | if (zone->zone_pgdat == last_pgdat) | |
2792 | continue; | |
2793 | last_pgdat = zone->zone_pgdat; | |
970a39a3 | 2794 | shrink_node(zone->zone_pgdat, sc); |
1da177e4 | 2795 | } |
e0c23279 | 2796 | |
619d0d76 WY |
2797 | /* |
2798 | * Restore to original mask to avoid the impact on the caller if we | |
2799 | * promoted it to __GFP_HIGHMEM. | |
2800 | */ | |
2801 | sc->gfp_mask = orig_mask; | |
1da177e4 | 2802 | } |
4f98a2fe | 2803 | |
2a2e4885 JW |
2804 | static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) |
2805 | { | |
2806 | struct mem_cgroup *memcg; | |
2807 | ||
2808 | memcg = mem_cgroup_iter(root_memcg, NULL, NULL); | |
2809 | do { | |
2810 | unsigned long refaults; | |
2811 | struct lruvec *lruvec; | |
2812 | ||
2813 | if (memcg) | |
ccda7f43 | 2814 | refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); |
2a2e4885 JW |
2815 | else |
2816 | refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); | |
2817 | ||
2818 | lruvec = mem_cgroup_lruvec(pgdat, memcg); | |
2819 | lruvec->refaults = refaults; | |
2820 | } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); | |
2821 | } | |
2822 | ||
1da177e4 LT |
2823 | /* |
2824 | * This is the main entry point to direct page reclaim. | |
2825 | * | |
2826 | * If a full scan of the inactive list fails to free enough memory then we | |
2827 | * are "out of memory" and something needs to be killed. | |
2828 | * | |
2829 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
2830 | * high - the zone may be full of dirty or under-writeback pages, which this | |
5b0830cb JA |
2831 | * caller can't do much about. We kick the writeback threads and take explicit |
2832 | * naps in the hope that some of these pages can be written. But if the | |
2833 | * allocating task holds filesystem locks which prevent writeout this might not | |
2834 | * work, and the allocation attempt will fail. | |
a41f24ea NA |
2835 | * |
2836 | * returns: 0, if no pages reclaimed | |
2837 | * else, the number of pages reclaimed | |
1da177e4 | 2838 | */ |
dac1d27b | 2839 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
3115cd91 | 2840 | struct scan_control *sc) |
1da177e4 | 2841 | { |
241994ed | 2842 | int initial_priority = sc->priority; |
2a2e4885 JW |
2843 | pg_data_t *last_pgdat; |
2844 | struct zoneref *z; | |
2845 | struct zone *zone; | |
241994ed | 2846 | retry: |
873b4771 KK |
2847 | delayacct_freepages_start(); |
2848 | ||
89b5fae5 | 2849 | if (global_reclaim(sc)) |
7cc30fcf | 2850 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); |
1da177e4 | 2851 | |
9e3b2f8c | 2852 | do { |
70ddf637 AV |
2853 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, |
2854 | sc->priority); | |
66e1707b | 2855 | sc->nr_scanned = 0; |
0a0337e0 | 2856 | shrink_zones(zonelist, sc); |
c6a8a8c5 | 2857 | |
bb21c7ce | 2858 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
0b06496a JW |
2859 | break; |
2860 | ||
2861 | if (sc->compaction_ready) | |
2862 | break; | |
1da177e4 | 2863 | |
0e50ce3b MK |
2864 | /* |
2865 | * If we're getting trouble reclaiming, start doing | |
2866 | * writepage even in laptop mode. | |
2867 | */ | |
2868 | if (sc->priority < DEF_PRIORITY - 2) | |
2869 | sc->may_writepage = 1; | |
0b06496a | 2870 | } while (--sc->priority >= 0); |
bb21c7ce | 2871 | |
2a2e4885 JW |
2872 | last_pgdat = NULL; |
2873 | for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, | |
2874 | sc->nodemask) { | |
2875 | if (zone->zone_pgdat == last_pgdat) | |
2876 | continue; | |
2877 | last_pgdat = zone->zone_pgdat; | |
2878 | snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); | |
e3c1ac58 | 2879 | set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); |
2a2e4885 JW |
2880 | } |
2881 | ||
873b4771 KK |
2882 | delayacct_freepages_end(); |
2883 | ||
bb21c7ce KM |
2884 | if (sc->nr_reclaimed) |
2885 | return sc->nr_reclaimed; | |
2886 | ||
0cee34fd | 2887 | /* Aborted reclaim to try compaction? don't OOM, then */ |
0b06496a | 2888 | if (sc->compaction_ready) |
7335084d MG |
2889 | return 1; |
2890 | ||
241994ed | 2891 | /* Untapped cgroup reserves? Don't OOM, retry. */ |
d6622f63 | 2892 | if (sc->memcg_low_skipped) { |
241994ed | 2893 | sc->priority = initial_priority; |
d6622f63 YX |
2894 | sc->memcg_low_reclaim = 1; |
2895 | sc->memcg_low_skipped = 0; | |
241994ed JW |
2896 | goto retry; |
2897 | } | |
2898 | ||
bb21c7ce | 2899 | return 0; |
1da177e4 LT |
2900 | } |
2901 | ||
c73322d0 | 2902 | static bool allow_direct_reclaim(pg_data_t *pgdat) |
5515061d MG |
2903 | { |
2904 | struct zone *zone; | |
2905 | unsigned long pfmemalloc_reserve = 0; | |
2906 | unsigned long free_pages = 0; | |
2907 | int i; | |
2908 | bool wmark_ok; | |
2909 | ||
c73322d0 JW |
2910 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) |
2911 | return true; | |
2912 | ||
5515061d MG |
2913 | for (i = 0; i <= ZONE_NORMAL; i++) { |
2914 | zone = &pgdat->node_zones[i]; | |
d450abd8 JW |
2915 | if (!managed_zone(zone)) |
2916 | continue; | |
2917 | ||
2918 | if (!zone_reclaimable_pages(zone)) | |
675becce MG |
2919 | continue; |
2920 | ||
5515061d MG |
2921 | pfmemalloc_reserve += min_wmark_pages(zone); |
2922 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
2923 | } | |
2924 | ||
675becce MG |
2925 | /* If there are no reserves (unexpected config) then do not throttle */ |
2926 | if (!pfmemalloc_reserve) | |
2927 | return true; | |
2928 | ||
5515061d MG |
2929 | wmark_ok = free_pages > pfmemalloc_reserve / 2; |
2930 | ||
2931 | /* kswapd must be awake if processes are being throttled */ | |
2932 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
38087d9b | 2933 | pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, |
5515061d MG |
2934 | (enum zone_type)ZONE_NORMAL); |
2935 | wake_up_interruptible(&pgdat->kswapd_wait); | |
2936 | } | |
2937 | ||
2938 | return wmark_ok; | |
2939 | } | |
2940 | ||
2941 | /* | |
2942 | * Throttle direct reclaimers if backing storage is backed by the network | |
2943 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
2944 | * depleted. kswapd will continue to make progress and wake the processes | |
50694c28 MG |
2945 | * when the low watermark is reached. |
2946 | * | |
2947 | * Returns true if a fatal signal was delivered during throttling. If this | |
2948 | * happens, the page allocator should not consider triggering the OOM killer. | |
5515061d | 2949 | */ |
50694c28 | 2950 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
5515061d MG |
2951 | nodemask_t *nodemask) |
2952 | { | |
675becce | 2953 | struct zoneref *z; |
5515061d | 2954 | struct zone *zone; |
675becce | 2955 | pg_data_t *pgdat = NULL; |
5515061d MG |
2956 | |
2957 | /* | |
2958 | * Kernel threads should not be throttled as they may be indirectly | |
2959 | * responsible for cleaning pages necessary for reclaim to make forward | |
2960 | * progress. kjournald for example may enter direct reclaim while | |
2961 | * committing a transaction where throttling it could forcing other | |
2962 | * processes to block on log_wait_commit(). | |
2963 | */ | |
2964 | if (current->flags & PF_KTHREAD) | |
50694c28 MG |
2965 | goto out; |
2966 | ||
2967 | /* | |
2968 | * If a fatal signal is pending, this process should not throttle. | |
2969 | * It should return quickly so it can exit and free its memory | |
2970 | */ | |
2971 | if (fatal_signal_pending(current)) | |
2972 | goto out; | |
5515061d | 2973 | |
675becce MG |
2974 | /* |
2975 | * Check if the pfmemalloc reserves are ok by finding the first node | |
2976 | * with a usable ZONE_NORMAL or lower zone. The expectation is that | |
2977 | * GFP_KERNEL will be required for allocating network buffers when | |
2978 | * swapping over the network so ZONE_HIGHMEM is unusable. | |
2979 | * | |
2980 | * Throttling is based on the first usable node and throttled processes | |
2981 | * wait on a queue until kswapd makes progress and wakes them. There | |
2982 | * is an affinity then between processes waking up and where reclaim | |
2983 | * progress has been made assuming the process wakes on the same node. | |
2984 | * More importantly, processes running on remote nodes will not compete | |
2985 | * for remote pfmemalloc reserves and processes on different nodes | |
2986 | * should make reasonable progress. | |
2987 | */ | |
2988 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
17636faa | 2989 | gfp_zone(gfp_mask), nodemask) { |
675becce MG |
2990 | if (zone_idx(zone) > ZONE_NORMAL) |
2991 | continue; | |
2992 | ||
2993 | /* Throttle based on the first usable node */ | |
2994 | pgdat = zone->zone_pgdat; | |
c73322d0 | 2995 | if (allow_direct_reclaim(pgdat)) |
675becce MG |
2996 | goto out; |
2997 | break; | |
2998 | } | |
2999 | ||
3000 | /* If no zone was usable by the allocation flags then do not throttle */ | |
3001 | if (!pgdat) | |
50694c28 | 3002 | goto out; |
5515061d | 3003 | |
68243e76 MG |
3004 | /* Account for the throttling */ |
3005 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
3006 | ||
5515061d MG |
3007 | /* |
3008 | * If the caller cannot enter the filesystem, it's possible that it | |
3009 | * is due to the caller holding an FS lock or performing a journal | |
3010 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
3011 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
3012 | * blocked waiting on the same lock. Instead, throttle for up to a | |
3013 | * second before continuing. | |
3014 | */ | |
3015 | if (!(gfp_mask & __GFP_FS)) { | |
3016 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
c73322d0 | 3017 | allow_direct_reclaim(pgdat), HZ); |
50694c28 MG |
3018 | |
3019 | goto check_pending; | |
5515061d MG |
3020 | } |
3021 | ||
3022 | /* Throttle until kswapd wakes the process */ | |
3023 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
c73322d0 | 3024 | allow_direct_reclaim(pgdat)); |
50694c28 MG |
3025 | |
3026 | check_pending: | |
3027 | if (fatal_signal_pending(current)) | |
3028 | return true; | |
3029 | ||
3030 | out: | |
3031 | return false; | |
5515061d MG |
3032 | } |
3033 | ||
dac1d27b | 3034 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
327c0e96 | 3035 | gfp_t gfp_mask, nodemask_t *nodemask) |
66e1707b | 3036 | { |
33906bc5 | 3037 | unsigned long nr_reclaimed; |
66e1707b | 3038 | struct scan_control sc = { |
ee814fe2 | 3039 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
f2f43e56 | 3040 | .gfp_mask = current_gfp_context(gfp_mask), |
b2e18757 | 3041 | .reclaim_idx = gfp_zone(gfp_mask), |
ee814fe2 JW |
3042 | .order = order, |
3043 | .nodemask = nodemask, | |
3044 | .priority = DEF_PRIORITY, | |
66e1707b | 3045 | .may_writepage = !laptop_mode, |
a6dc60f8 | 3046 | .may_unmap = 1, |
2e2e4259 | 3047 | .may_swap = 1, |
66e1707b BS |
3048 | }; |
3049 | ||
5515061d | 3050 | /* |
50694c28 MG |
3051 | * Do not enter reclaim if fatal signal was delivered while throttled. |
3052 | * 1 is returned so that the page allocator does not OOM kill at this | |
3053 | * point. | |
5515061d | 3054 | */ |
f2f43e56 | 3055 | if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) |
5515061d MG |
3056 | return 1; |
3057 | ||
33906bc5 MG |
3058 | trace_mm_vmscan_direct_reclaim_begin(order, |
3059 | sc.may_writepage, | |
f2f43e56 | 3060 | sc.gfp_mask, |
e5146b12 | 3061 | sc.reclaim_idx); |
33906bc5 | 3062 | |
3115cd91 | 3063 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
33906bc5 MG |
3064 | |
3065 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
3066 | ||
3067 | return nr_reclaimed; | |
66e1707b BS |
3068 | } |
3069 | ||
c255a458 | 3070 | #ifdef CONFIG_MEMCG |
66e1707b | 3071 | |
a9dd0a83 | 3072 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, |
4e416953 | 3073 | gfp_t gfp_mask, bool noswap, |
ef8f2327 | 3074 | pg_data_t *pgdat, |
0ae5e89c | 3075 | unsigned long *nr_scanned) |
4e416953 BS |
3076 | { |
3077 | struct scan_control sc = { | |
b8f5c566 | 3078 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
ee814fe2 | 3079 | .target_mem_cgroup = memcg, |
4e416953 BS |
3080 | .may_writepage = !laptop_mode, |
3081 | .may_unmap = 1, | |
b2e18757 | 3082 | .reclaim_idx = MAX_NR_ZONES - 1, |
4e416953 | 3083 | .may_swap = !noswap, |
4e416953 | 3084 | }; |
6b4f7799 | 3085 | unsigned long lru_pages; |
0ae5e89c | 3086 | |
4e416953 BS |
3087 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
3088 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
bdce6d9e | 3089 | |
9e3b2f8c | 3090 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
bdce6d9e | 3091 | sc.may_writepage, |
e5146b12 MG |
3092 | sc.gfp_mask, |
3093 | sc.reclaim_idx); | |
bdce6d9e | 3094 | |
4e416953 BS |
3095 | /* |
3096 | * NOTE: Although we can get the priority field, using it | |
3097 | * here is not a good idea, since it limits the pages we can scan. | |
a9dd0a83 | 3098 | * if we don't reclaim here, the shrink_node from balance_pgdat |
4e416953 BS |
3099 | * will pick up pages from other mem cgroup's as well. We hack |
3100 | * the priority and make it zero. | |
3101 | */ | |
ef8f2327 | 3102 | shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); |
bdce6d9e KM |
3103 | |
3104 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
3105 | ||
0ae5e89c | 3106 | *nr_scanned = sc.nr_scanned; |
4e416953 BS |
3107 | return sc.nr_reclaimed; |
3108 | } | |
3109 | ||
72835c86 | 3110 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
b70a2a21 | 3111 | unsigned long nr_pages, |
a7885eb8 | 3112 | gfp_t gfp_mask, |
b70a2a21 | 3113 | bool may_swap) |
66e1707b | 3114 | { |
4e416953 | 3115 | struct zonelist *zonelist; |
bdce6d9e | 3116 | unsigned long nr_reclaimed; |
889976db | 3117 | int nid; |
499118e9 | 3118 | unsigned int noreclaim_flag; |
66e1707b | 3119 | struct scan_control sc = { |
b70a2a21 | 3120 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
7dea19f9 | 3121 | .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | |
a09ed5e0 | 3122 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), |
b2e18757 | 3123 | .reclaim_idx = MAX_NR_ZONES - 1, |
ee814fe2 JW |
3124 | .target_mem_cgroup = memcg, |
3125 | .priority = DEF_PRIORITY, | |
3126 | .may_writepage = !laptop_mode, | |
3127 | .may_unmap = 1, | |
b70a2a21 | 3128 | .may_swap = may_swap, |
a09ed5e0 | 3129 | }; |
66e1707b | 3130 | |
889976db YH |
3131 | /* |
3132 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't | |
3133 | * take care of from where we get pages. So the node where we start the | |
3134 | * scan does not need to be the current node. | |
3135 | */ | |
72835c86 | 3136 | nid = mem_cgroup_select_victim_node(memcg); |
889976db | 3137 | |
c9634cf0 | 3138 | zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; |
bdce6d9e KM |
3139 | |
3140 | trace_mm_vmscan_memcg_reclaim_begin(0, | |
3141 | sc.may_writepage, | |
e5146b12 MG |
3142 | sc.gfp_mask, |
3143 | sc.reclaim_idx); | |
bdce6d9e | 3144 | |
499118e9 | 3145 | noreclaim_flag = memalloc_noreclaim_save(); |
3115cd91 | 3146 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
499118e9 | 3147 | memalloc_noreclaim_restore(noreclaim_flag); |
bdce6d9e KM |
3148 | |
3149 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
3150 | ||
3151 | return nr_reclaimed; | |
66e1707b BS |
3152 | } |
3153 | #endif | |
3154 | ||
1d82de61 | 3155 | static void age_active_anon(struct pglist_data *pgdat, |
ef8f2327 | 3156 | struct scan_control *sc) |
f16015fb | 3157 | { |
b95a2f2d | 3158 | struct mem_cgroup *memcg; |
f16015fb | 3159 | |
b95a2f2d JW |
3160 | if (!total_swap_pages) |
3161 | return; | |
3162 | ||
3163 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
3164 | do { | |
ef8f2327 | 3165 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); |
b95a2f2d | 3166 | |
2a2e4885 | 3167 | if (inactive_list_is_low(lruvec, false, memcg, sc, true)) |
1a93be0e | 3168 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
9e3b2f8c | 3169 | sc, LRU_ACTIVE_ANON); |
b95a2f2d JW |
3170 | |
3171 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
3172 | } while (memcg); | |
f16015fb JW |
3173 | } |
3174 | ||
e716f2eb MG |
3175 | /* |
3176 | * Returns true if there is an eligible zone balanced for the request order | |
3177 | * and classzone_idx | |
3178 | */ | |
3179 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) | |
60cefed4 | 3180 | { |
e716f2eb MG |
3181 | int i; |
3182 | unsigned long mark = -1; | |
3183 | struct zone *zone; | |
60cefed4 | 3184 | |
e716f2eb MG |
3185 | for (i = 0; i <= classzone_idx; i++) { |
3186 | zone = pgdat->node_zones + i; | |
6256c6b4 | 3187 | |
e716f2eb MG |
3188 | if (!managed_zone(zone)) |
3189 | continue; | |
3190 | ||
3191 | mark = high_wmark_pages(zone); | |
3192 | if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) | |
3193 | return true; | |
3194 | } | |
3195 | ||
3196 | /* | |
3197 | * If a node has no populated zone within classzone_idx, it does not | |
3198 | * need balancing by definition. This can happen if a zone-restricted | |
3199 | * allocation tries to wake a remote kswapd. | |
3200 | */ | |
3201 | if (mark == -1) | |
3202 | return true; | |
3203 | ||
3204 | return false; | |
60cefed4 JW |
3205 | } |
3206 | ||
631b6e08 MG |
3207 | /* Clear pgdat state for congested, dirty or under writeback. */ |
3208 | static void clear_pgdat_congested(pg_data_t *pgdat) | |
3209 | { | |
3210 | clear_bit(PGDAT_CONGESTED, &pgdat->flags); | |
3211 | clear_bit(PGDAT_DIRTY, &pgdat->flags); | |
3212 | clear_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
3213 | } | |
3214 | ||
5515061d MG |
3215 | /* |
3216 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
3217 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
3218 | * | |
3219 | * Returns true if kswapd is ready to sleep | |
3220 | */ | |
d9f21d42 | 3221 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) |
f50de2d3 | 3222 | { |
5515061d | 3223 | /* |
9e5e3661 | 3224 | * The throttled processes are normally woken up in balance_pgdat() as |
c73322d0 | 3225 | * soon as allow_direct_reclaim() is true. But there is a potential |
9e5e3661 VB |
3226 | * race between when kswapd checks the watermarks and a process gets |
3227 | * throttled. There is also a potential race if processes get | |
3228 | * throttled, kswapd wakes, a large process exits thereby balancing the | |
3229 | * zones, which causes kswapd to exit balance_pgdat() before reaching | |
3230 | * the wake up checks. If kswapd is going to sleep, no process should | |
3231 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | |
3232 | * the wake up is premature, processes will wake kswapd and get | |
3233 | * throttled again. The difference from wake ups in balance_pgdat() is | |
3234 | * that here we are under prepare_to_wait(). | |
5515061d | 3235 | */ |
9e5e3661 VB |
3236 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) |
3237 | wake_up_all(&pgdat->pfmemalloc_wait); | |
f50de2d3 | 3238 | |
c73322d0 JW |
3239 | /* Hopeless node, leave it to direct reclaim */ |
3240 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
3241 | return true; | |
3242 | ||
e716f2eb MG |
3243 | if (pgdat_balanced(pgdat, order, classzone_idx)) { |
3244 | clear_pgdat_congested(pgdat); | |
3245 | return true; | |
1d82de61 MG |
3246 | } |
3247 | ||
333b0a45 | 3248 | return false; |
f50de2d3 MG |
3249 | } |
3250 | ||
75485363 | 3251 | /* |
1d82de61 MG |
3252 | * kswapd shrinks a node of pages that are at or below the highest usable |
3253 | * zone that is currently unbalanced. | |
b8e83b94 MG |
3254 | * |
3255 | * Returns true if kswapd scanned at least the requested number of pages to | |
283aba9f MG |
3256 | * reclaim or if the lack of progress was due to pages under writeback. |
3257 | * This is used to determine if the scanning priority needs to be raised. | |
75485363 | 3258 | */ |
1d82de61 | 3259 | static bool kswapd_shrink_node(pg_data_t *pgdat, |
accf6242 | 3260 | struct scan_control *sc) |
75485363 | 3261 | { |
1d82de61 MG |
3262 | struct zone *zone; |
3263 | int z; | |
75485363 | 3264 | |
1d82de61 MG |
3265 | /* Reclaim a number of pages proportional to the number of zones */ |
3266 | sc->nr_to_reclaim = 0; | |
970a39a3 | 3267 | for (z = 0; z <= sc->reclaim_idx; z++) { |
1d82de61 | 3268 | zone = pgdat->node_zones + z; |
6aa303de | 3269 | if (!managed_zone(zone)) |
1d82de61 | 3270 | continue; |
7c954f6d | 3271 | |
1d82de61 MG |
3272 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); |
3273 | } | |
7c954f6d MG |
3274 | |
3275 | /* | |
1d82de61 MG |
3276 | * Historically care was taken to put equal pressure on all zones but |
3277 | * now pressure is applied based on node LRU order. | |
7c954f6d | 3278 | */ |
970a39a3 | 3279 | shrink_node(pgdat, sc); |
283aba9f | 3280 | |
7c954f6d | 3281 | /* |
1d82de61 MG |
3282 | * Fragmentation may mean that the system cannot be rebalanced for |
3283 | * high-order allocations. If twice the allocation size has been | |
3284 | * reclaimed then recheck watermarks only at order-0 to prevent | |
3285 | * excessive reclaim. Assume that a process requested a high-order | |
3286 | * can direct reclaim/compact. | |
7c954f6d | 3287 | */ |
9861a62c | 3288 | if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) |
1d82de61 | 3289 | sc->order = 0; |
7c954f6d | 3290 | |
b8e83b94 | 3291 | return sc->nr_scanned >= sc->nr_to_reclaim; |
75485363 MG |
3292 | } |
3293 | ||
1da177e4 | 3294 | /* |
1d82de61 MG |
3295 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones |
3296 | * that are eligible for use by the caller until at least one zone is | |
3297 | * balanced. | |
1da177e4 | 3298 | * |
1d82de61 | 3299 | * Returns the order kswapd finished reclaiming at. |
1da177e4 LT |
3300 | * |
3301 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
41858966 | 3302 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
1d82de61 MG |
3303 | * found to have free_pages <= high_wmark_pages(zone), any page is that zone |
3304 | * or lower is eligible for reclaim until at least one usable zone is | |
3305 | * balanced. | |
1da177e4 | 3306 | */ |
accf6242 | 3307 | static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) |
1da177e4 | 3308 | { |
1da177e4 | 3309 | int i; |
0608f43d AM |
3310 | unsigned long nr_soft_reclaimed; |
3311 | unsigned long nr_soft_scanned; | |
1d82de61 | 3312 | struct zone *zone; |
179e9639 AM |
3313 | struct scan_control sc = { |
3314 | .gfp_mask = GFP_KERNEL, | |
ee814fe2 | 3315 | .order = order, |
b8e83b94 | 3316 | .priority = DEF_PRIORITY, |
ee814fe2 | 3317 | .may_writepage = !laptop_mode, |
a6dc60f8 | 3318 | .may_unmap = 1, |
2e2e4259 | 3319 | .may_swap = 1, |
179e9639 | 3320 | }; |
f8891e5e | 3321 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 3322 | |
9e3b2f8c | 3323 | do { |
c73322d0 | 3324 | unsigned long nr_reclaimed = sc.nr_reclaimed; |
b8e83b94 MG |
3325 | bool raise_priority = true; |
3326 | ||
84c7a777 | 3327 | sc.reclaim_idx = classzone_idx; |
1da177e4 | 3328 | |
86c79f6b | 3329 | /* |
84c7a777 MG |
3330 | * If the number of buffer_heads exceeds the maximum allowed |
3331 | * then consider reclaiming from all zones. This has a dual | |
3332 | * purpose -- on 64-bit systems it is expected that | |
3333 | * buffer_heads are stripped during active rotation. On 32-bit | |
3334 | * systems, highmem pages can pin lowmem memory and shrinking | |
3335 | * buffers can relieve lowmem pressure. Reclaim may still not | |
3336 | * go ahead if all eligible zones for the original allocation | |
3337 | * request are balanced to avoid excessive reclaim from kswapd. | |
86c79f6b MG |
3338 | */ |
3339 | if (buffer_heads_over_limit) { | |
3340 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { | |
3341 | zone = pgdat->node_zones + i; | |
6aa303de | 3342 | if (!managed_zone(zone)) |
86c79f6b | 3343 | continue; |
cc715d99 | 3344 | |
970a39a3 | 3345 | sc.reclaim_idx = i; |
e1dbeda6 | 3346 | break; |
1da177e4 | 3347 | } |
1da177e4 | 3348 | } |
dafcb73e | 3349 | |
86c79f6b | 3350 | /* |
e716f2eb MG |
3351 | * Only reclaim if there are no eligible zones. Note that |
3352 | * sc.reclaim_idx is not used as buffer_heads_over_limit may | |
3353 | * have adjusted it. | |
86c79f6b | 3354 | */ |
e716f2eb MG |
3355 | if (pgdat_balanced(pgdat, sc.order, classzone_idx)) |
3356 | goto out; | |
e1dbeda6 | 3357 | |
1d82de61 MG |
3358 | /* |
3359 | * Do some background aging of the anon list, to give | |
3360 | * pages a chance to be referenced before reclaiming. All | |
3361 | * pages are rotated regardless of classzone as this is | |
3362 | * about consistent aging. | |
3363 | */ | |
ef8f2327 | 3364 | age_active_anon(pgdat, &sc); |
1d82de61 | 3365 | |
b7ea3c41 MG |
3366 | /* |
3367 | * If we're getting trouble reclaiming, start doing writepage | |
3368 | * even in laptop mode. | |
3369 | */ | |
047d72c3 | 3370 | if (sc.priority < DEF_PRIORITY - 2) |
b7ea3c41 MG |
3371 | sc.may_writepage = 1; |
3372 | ||
1d82de61 MG |
3373 | /* Call soft limit reclaim before calling shrink_node. */ |
3374 | sc.nr_scanned = 0; | |
3375 | nr_soft_scanned = 0; | |
ef8f2327 | 3376 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, |
1d82de61 MG |
3377 | sc.gfp_mask, &nr_soft_scanned); |
3378 | sc.nr_reclaimed += nr_soft_reclaimed; | |
3379 | ||
1da177e4 | 3380 | /* |
1d82de61 MG |
3381 | * There should be no need to raise the scanning priority if |
3382 | * enough pages are already being scanned that that high | |
3383 | * watermark would be met at 100% efficiency. | |
1da177e4 | 3384 | */ |
970a39a3 | 3385 | if (kswapd_shrink_node(pgdat, &sc)) |
1d82de61 | 3386 | raise_priority = false; |
5515061d MG |
3387 | |
3388 | /* | |
3389 | * If the low watermark is met there is no need for processes | |
3390 | * to be throttled on pfmemalloc_wait as they should not be | |
3391 | * able to safely make forward progress. Wake them | |
3392 | */ | |
3393 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
c73322d0 | 3394 | allow_direct_reclaim(pgdat)) |
cfc51155 | 3395 | wake_up_all(&pgdat->pfmemalloc_wait); |
5515061d | 3396 | |
b8e83b94 MG |
3397 | /* Check if kswapd should be suspending */ |
3398 | if (try_to_freeze() || kthread_should_stop()) | |
3399 | break; | |
8357376d | 3400 | |
73ce02e9 | 3401 | /* |
b8e83b94 MG |
3402 | * Raise priority if scanning rate is too low or there was no |
3403 | * progress in reclaiming pages | |
73ce02e9 | 3404 | */ |
c73322d0 JW |
3405 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; |
3406 | if (raise_priority || !nr_reclaimed) | |
b8e83b94 | 3407 | sc.priority--; |
1d82de61 | 3408 | } while (sc.priority >= 1); |
1da177e4 | 3409 | |
c73322d0 JW |
3410 | if (!sc.nr_reclaimed) |
3411 | pgdat->kswapd_failures++; | |
3412 | ||
b8e83b94 | 3413 | out: |
2a2e4885 | 3414 | snapshot_refaults(NULL, pgdat); |
0abdee2b | 3415 | /* |
1d82de61 MG |
3416 | * Return the order kswapd stopped reclaiming at as |
3417 | * prepare_kswapd_sleep() takes it into account. If another caller | |
3418 | * entered the allocator slow path while kswapd was awake, order will | |
3419 | * remain at the higher level. | |
0abdee2b | 3420 | */ |
1d82de61 | 3421 | return sc.order; |
1da177e4 LT |
3422 | } |
3423 | ||
e716f2eb MG |
3424 | /* |
3425 | * pgdat->kswapd_classzone_idx is the highest zone index that a recent | |
3426 | * allocation request woke kswapd for. When kswapd has not woken recently, | |
3427 | * the value is MAX_NR_ZONES which is not a valid index. This compares a | |
3428 | * given classzone and returns it or the highest classzone index kswapd | |
3429 | * was recently woke for. | |
3430 | */ | |
3431 | static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, | |
3432 | enum zone_type classzone_idx) | |
3433 | { | |
3434 | if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) | |
3435 | return classzone_idx; | |
3436 | ||
3437 | return max(pgdat->kswapd_classzone_idx, classzone_idx); | |
3438 | } | |
3439 | ||
38087d9b MG |
3440 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, |
3441 | unsigned int classzone_idx) | |
f0bc0a60 KM |
3442 | { |
3443 | long remaining = 0; | |
3444 | DEFINE_WAIT(wait); | |
3445 | ||
3446 | if (freezing(current) || kthread_should_stop()) | |
3447 | return; | |
3448 | ||
3449 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
3450 | ||
333b0a45 SG |
3451 | /* |
3452 | * Try to sleep for a short interval. Note that kcompactd will only be | |
3453 | * woken if it is possible to sleep for a short interval. This is | |
3454 | * deliberate on the assumption that if reclaim cannot keep an | |
3455 | * eligible zone balanced that it's also unlikely that compaction will | |
3456 | * succeed. | |
3457 | */ | |
d9f21d42 | 3458 | if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { |
fd901c95 VB |
3459 | /* |
3460 | * Compaction records what page blocks it recently failed to | |
3461 | * isolate pages from and skips them in the future scanning. | |
3462 | * When kswapd is going to sleep, it is reasonable to assume | |
3463 | * that pages and compaction may succeed so reset the cache. | |
3464 | */ | |
3465 | reset_isolation_suitable(pgdat); | |
3466 | ||
3467 | /* | |
3468 | * We have freed the memory, now we should compact it to make | |
3469 | * allocation of the requested order possible. | |
3470 | */ | |
38087d9b | 3471 | wakeup_kcompactd(pgdat, alloc_order, classzone_idx); |
fd901c95 | 3472 | |
f0bc0a60 | 3473 | remaining = schedule_timeout(HZ/10); |
38087d9b MG |
3474 | |
3475 | /* | |
3476 | * If woken prematurely then reset kswapd_classzone_idx and | |
3477 | * order. The values will either be from a wakeup request or | |
3478 | * the previous request that slept prematurely. | |
3479 | */ | |
3480 | if (remaining) { | |
e716f2eb | 3481 | pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); |
38087d9b MG |
3482 | pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); |
3483 | } | |
3484 | ||
f0bc0a60 KM |
3485 | finish_wait(&pgdat->kswapd_wait, &wait); |
3486 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
3487 | } | |
3488 | ||
3489 | /* | |
3490 | * After a short sleep, check if it was a premature sleep. If not, then | |
3491 | * go fully to sleep until explicitly woken up. | |
3492 | */ | |
d9f21d42 MG |
3493 | if (!remaining && |
3494 | prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { | |
f0bc0a60 KM |
3495 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
3496 | ||
3497 | /* | |
3498 | * vmstat counters are not perfectly accurate and the estimated | |
3499 | * value for counters such as NR_FREE_PAGES can deviate from the | |
3500 | * true value by nr_online_cpus * threshold. To avoid the zone | |
3501 | * watermarks being breached while under pressure, we reduce the | |
3502 | * per-cpu vmstat threshold while kswapd is awake and restore | |
3503 | * them before going back to sleep. | |
3504 | */ | |
3505 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
1c7e7f6c AK |
3506 | |
3507 | if (!kthread_should_stop()) | |
3508 | schedule(); | |
3509 | ||
f0bc0a60 KM |
3510 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
3511 | } else { | |
3512 | if (remaining) | |
3513 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
3514 | else | |
3515 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
3516 | } | |
3517 | finish_wait(&pgdat->kswapd_wait, &wait); | |
3518 | } | |
3519 | ||
1da177e4 LT |
3520 | /* |
3521 | * The background pageout daemon, started as a kernel thread | |
4f98a2fe | 3522 | * from the init process. |
1da177e4 LT |
3523 | * |
3524 | * This basically trickles out pages so that we have _some_ | |
3525 | * free memory available even if there is no other activity | |
3526 | * that frees anything up. This is needed for things like routing | |
3527 | * etc, where we otherwise might have all activity going on in | |
3528 | * asynchronous contexts that cannot page things out. | |
3529 | * | |
3530 | * If there are applications that are active memory-allocators | |
3531 | * (most normal use), this basically shouldn't matter. | |
3532 | */ | |
3533 | static int kswapd(void *p) | |
3534 | { | |
e716f2eb MG |
3535 | unsigned int alloc_order, reclaim_order; |
3536 | unsigned int classzone_idx = MAX_NR_ZONES - 1; | |
1da177e4 LT |
3537 | pg_data_t *pgdat = (pg_data_t*)p; |
3538 | struct task_struct *tsk = current; | |
f0bc0a60 | 3539 | |
1da177e4 LT |
3540 | struct reclaim_state reclaim_state = { |
3541 | .reclaimed_slab = 0, | |
3542 | }; | |
a70f7302 | 3543 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
1da177e4 | 3544 | |
174596a0 | 3545 | if (!cpumask_empty(cpumask)) |
c5f59f08 | 3546 | set_cpus_allowed_ptr(tsk, cpumask); |
1da177e4 LT |
3547 | current->reclaim_state = &reclaim_state; |
3548 | ||
3549 | /* | |
3550 | * Tell the memory management that we're a "memory allocator", | |
3551 | * and that if we need more memory we should get access to it | |
3552 | * regardless (see "__alloc_pages()"). "kswapd" should | |
3553 | * never get caught in the normal page freeing logic. | |
3554 | * | |
3555 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
3556 | * you need a small amount of memory in order to be able to | |
3557 | * page out something else, and this flag essentially protects | |
3558 | * us from recursively trying to free more memory as we're | |
3559 | * trying to free the first piece of memory in the first place). | |
3560 | */ | |
930d9152 | 3561 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
83144186 | 3562 | set_freezable(); |
1da177e4 | 3563 | |
e716f2eb MG |
3564 | pgdat->kswapd_order = 0; |
3565 | pgdat->kswapd_classzone_idx = MAX_NR_ZONES; | |
1da177e4 | 3566 | for ( ; ; ) { |
6f6313d4 | 3567 | bool ret; |
3e1d1d28 | 3568 | |
e716f2eb MG |
3569 | alloc_order = reclaim_order = pgdat->kswapd_order; |
3570 | classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); | |
3571 | ||
38087d9b MG |
3572 | kswapd_try_sleep: |
3573 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, | |
3574 | classzone_idx); | |
215ddd66 | 3575 | |
38087d9b MG |
3576 | /* Read the new order and classzone_idx */ |
3577 | alloc_order = reclaim_order = pgdat->kswapd_order; | |
e716f2eb | 3578 | classzone_idx = kswapd_classzone_idx(pgdat, 0); |
38087d9b | 3579 | pgdat->kswapd_order = 0; |
e716f2eb | 3580 | pgdat->kswapd_classzone_idx = MAX_NR_ZONES; |
1da177e4 | 3581 | |
8fe23e05 DR |
3582 | ret = try_to_freeze(); |
3583 | if (kthread_should_stop()) | |
3584 | break; | |
3585 | ||
3586 | /* | |
3587 | * We can speed up thawing tasks if we don't call balance_pgdat | |
3588 | * after returning from the refrigerator | |
3589 | */ | |
38087d9b MG |
3590 | if (ret) |
3591 | continue; | |
3592 | ||
3593 | /* | |
3594 | * Reclaim begins at the requested order but if a high-order | |
3595 | * reclaim fails then kswapd falls back to reclaiming for | |
3596 | * order-0. If that happens, kswapd will consider sleeping | |
3597 | * for the order it finished reclaiming at (reclaim_order) | |
3598 | * but kcompactd is woken to compact for the original | |
3599 | * request (alloc_order). | |
3600 | */ | |
e5146b12 MG |
3601 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, |
3602 | alloc_order); | |
d92a8cfc | 3603 | fs_reclaim_acquire(GFP_KERNEL); |
38087d9b | 3604 | reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); |
d92a8cfc | 3605 | fs_reclaim_release(GFP_KERNEL); |
38087d9b MG |
3606 | if (reclaim_order < alloc_order) |
3607 | goto kswapd_try_sleep; | |
1da177e4 | 3608 | } |
b0a8cc58 | 3609 | |
71abdc15 | 3610 | tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); |
b0a8cc58 | 3611 | current->reclaim_state = NULL; |
71abdc15 | 3612 | |
1da177e4 LT |
3613 | return 0; |
3614 | } | |
3615 | ||
3616 | /* | |
5ecd9d40 DR |
3617 | * A zone is low on free memory or too fragmented for high-order memory. If |
3618 | * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's | |
3619 | * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim | |
3620 | * has failed or is not needed, still wake up kcompactd if only compaction is | |
3621 | * needed. | |
1da177e4 | 3622 | */ |
5ecd9d40 DR |
3623 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, |
3624 | enum zone_type classzone_idx) | |
1da177e4 LT |
3625 | { |
3626 | pg_data_t *pgdat; | |
3627 | ||
6aa303de | 3628 | if (!managed_zone(zone)) |
1da177e4 LT |
3629 | return; |
3630 | ||
5ecd9d40 | 3631 | if (!cpuset_zone_allowed(zone, gfp_flags)) |
1da177e4 | 3632 | return; |
88f5acf8 | 3633 | pgdat = zone->zone_pgdat; |
e716f2eb MG |
3634 | pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, |
3635 | classzone_idx); | |
38087d9b | 3636 | pgdat->kswapd_order = max(pgdat->kswapd_order, order); |
8d0986e2 | 3637 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 3638 | return; |
e1a55637 | 3639 | |
5ecd9d40 DR |
3640 | /* Hopeless node, leave it to direct reclaim if possible */ |
3641 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || | |
3642 | pgdat_balanced(pgdat, order, classzone_idx)) { | |
3643 | /* | |
3644 | * There may be plenty of free memory available, but it's too | |
3645 | * fragmented for high-order allocations. Wake up kcompactd | |
3646 | * and rely on compaction_suitable() to determine if it's | |
3647 | * needed. If it fails, it will defer subsequent attempts to | |
3648 | * ratelimit its work. | |
3649 | */ | |
3650 | if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) | |
3651 | wakeup_kcompactd(pgdat, order, classzone_idx); | |
e716f2eb | 3652 | return; |
5ecd9d40 | 3653 | } |
88f5acf8 | 3654 | |
5ecd9d40 DR |
3655 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, |
3656 | gfp_flags); | |
8d0986e2 | 3657 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
3658 | } |
3659 | ||
c6f37f12 | 3660 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 3661 | /* |
7b51755c | 3662 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
d6277db4 RW |
3663 | * freed pages. |
3664 | * | |
3665 | * Rather than trying to age LRUs the aim is to preserve the overall | |
3666 | * LRU order by reclaiming preferentially | |
3667 | * inactive > active > active referenced > active mapped | |
1da177e4 | 3668 | */ |
7b51755c | 3669 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
1da177e4 | 3670 | { |
d6277db4 | 3671 | struct reclaim_state reclaim_state; |
d6277db4 | 3672 | struct scan_control sc = { |
ee814fe2 | 3673 | .nr_to_reclaim = nr_to_reclaim, |
7b51755c | 3674 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
b2e18757 | 3675 | .reclaim_idx = MAX_NR_ZONES - 1, |
ee814fe2 | 3676 | .priority = DEF_PRIORITY, |
d6277db4 | 3677 | .may_writepage = 1, |
ee814fe2 JW |
3678 | .may_unmap = 1, |
3679 | .may_swap = 1, | |
7b51755c | 3680 | .hibernation_mode = 1, |
1da177e4 | 3681 | }; |
a09ed5e0 | 3682 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); |
7b51755c KM |
3683 | struct task_struct *p = current; |
3684 | unsigned long nr_reclaimed; | |
499118e9 | 3685 | unsigned int noreclaim_flag; |
1da177e4 | 3686 | |
499118e9 | 3687 | noreclaim_flag = memalloc_noreclaim_save(); |
d92a8cfc | 3688 | fs_reclaim_acquire(sc.gfp_mask); |
7b51755c KM |
3689 | reclaim_state.reclaimed_slab = 0; |
3690 | p->reclaim_state = &reclaim_state; | |
d6277db4 | 3691 | |
3115cd91 | 3692 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
d979677c | 3693 | |
7b51755c | 3694 | p->reclaim_state = NULL; |
d92a8cfc | 3695 | fs_reclaim_release(sc.gfp_mask); |
499118e9 | 3696 | memalloc_noreclaim_restore(noreclaim_flag); |
d6277db4 | 3697 | |
7b51755c | 3698 | return nr_reclaimed; |
1da177e4 | 3699 | } |
c6f37f12 | 3700 | #endif /* CONFIG_HIBERNATION */ |
1da177e4 | 3701 | |
1da177e4 LT |
3702 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
3703 | not required for correctness. So if the last cpu in a node goes | |
3704 | away, we get changed to run anywhere: as the first one comes back, | |
3705 | restore their cpu bindings. */ | |
517bbed9 | 3706 | static int kswapd_cpu_online(unsigned int cpu) |
1da177e4 | 3707 | { |
58c0a4a7 | 3708 | int nid; |
1da177e4 | 3709 | |
517bbed9 SAS |
3710 | for_each_node_state(nid, N_MEMORY) { |
3711 | pg_data_t *pgdat = NODE_DATA(nid); | |
3712 | const struct cpumask *mask; | |
a70f7302 | 3713 | |
517bbed9 | 3714 | mask = cpumask_of_node(pgdat->node_id); |
c5f59f08 | 3715 | |
517bbed9 SAS |
3716 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
3717 | /* One of our CPUs online: restore mask */ | |
3718 | set_cpus_allowed_ptr(pgdat->kswapd, mask); | |
1da177e4 | 3719 | } |
517bbed9 | 3720 | return 0; |
1da177e4 | 3721 | } |
1da177e4 | 3722 | |
3218ae14 YG |
3723 | /* |
3724 | * This kswapd start function will be called by init and node-hot-add. | |
3725 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
3726 | */ | |
3727 | int kswapd_run(int nid) | |
3728 | { | |
3729 | pg_data_t *pgdat = NODE_DATA(nid); | |
3730 | int ret = 0; | |
3731 | ||
3732 | if (pgdat->kswapd) | |
3733 | return 0; | |
3734 | ||
3735 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
3736 | if (IS_ERR(pgdat->kswapd)) { | |
3737 | /* failure at boot is fatal */ | |
c6202adf | 3738 | BUG_ON(system_state < SYSTEM_RUNNING); |
d5dc0ad9 GS |
3739 | pr_err("Failed to start kswapd on node %d\n", nid); |
3740 | ret = PTR_ERR(pgdat->kswapd); | |
d72515b8 | 3741 | pgdat->kswapd = NULL; |
3218ae14 YG |
3742 | } |
3743 | return ret; | |
3744 | } | |
3745 | ||
8fe23e05 | 3746 | /* |
d8adde17 | 3747 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
bfc8c901 | 3748 | * hold mem_hotplug_begin/end(). |
8fe23e05 DR |
3749 | */ |
3750 | void kswapd_stop(int nid) | |
3751 | { | |
3752 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
3753 | ||
d8adde17 | 3754 | if (kswapd) { |
8fe23e05 | 3755 | kthread_stop(kswapd); |
d8adde17 JL |
3756 | NODE_DATA(nid)->kswapd = NULL; |
3757 | } | |
8fe23e05 DR |
3758 | } |
3759 | ||
1da177e4 LT |
3760 | static int __init kswapd_init(void) |
3761 | { | |
517bbed9 | 3762 | int nid, ret; |
69e05944 | 3763 | |
1da177e4 | 3764 | swap_setup(); |
48fb2e24 | 3765 | for_each_node_state(nid, N_MEMORY) |
3218ae14 | 3766 | kswapd_run(nid); |
517bbed9 SAS |
3767 | ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, |
3768 | "mm/vmscan:online", kswapd_cpu_online, | |
3769 | NULL); | |
3770 | WARN_ON(ret < 0); | |
1da177e4 LT |
3771 | return 0; |
3772 | } | |
3773 | ||
3774 | module_init(kswapd_init) | |
9eeff239 CL |
3775 | |
3776 | #ifdef CONFIG_NUMA | |
3777 | /* | |
a5f5f91d | 3778 | * Node reclaim mode |
9eeff239 | 3779 | * |
a5f5f91d | 3780 | * If non-zero call node_reclaim when the number of free pages falls below |
9eeff239 | 3781 | * the watermarks. |
9eeff239 | 3782 | */ |
a5f5f91d | 3783 | int node_reclaim_mode __read_mostly; |
9eeff239 | 3784 | |
1b2ffb78 | 3785 | #define RECLAIM_OFF 0 |
7d03431c | 3786 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
1b2ffb78 | 3787 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
95bbc0c7 | 3788 | #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ |
1b2ffb78 | 3789 | |
a92f7126 | 3790 | /* |
a5f5f91d | 3791 | * Priority for NODE_RECLAIM. This determines the fraction of pages |
a92f7126 CL |
3792 | * of a node considered for each zone_reclaim. 4 scans 1/16th of |
3793 | * a zone. | |
3794 | */ | |
a5f5f91d | 3795 | #define NODE_RECLAIM_PRIORITY 4 |
a92f7126 | 3796 | |
9614634f | 3797 | /* |
a5f5f91d | 3798 | * Percentage of pages in a zone that must be unmapped for node_reclaim to |
9614634f CL |
3799 | * occur. |
3800 | */ | |
3801 | int sysctl_min_unmapped_ratio = 1; | |
3802 | ||
0ff38490 CL |
3803 | /* |
3804 | * If the number of slab pages in a zone grows beyond this percentage then | |
3805 | * slab reclaim needs to occur. | |
3806 | */ | |
3807 | int sysctl_min_slab_ratio = 5; | |
3808 | ||
11fb9989 | 3809 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) |
90afa5de | 3810 | { |
11fb9989 MG |
3811 | unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); |
3812 | unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + | |
3813 | node_page_state(pgdat, NR_ACTIVE_FILE); | |
90afa5de MG |
3814 | |
3815 | /* | |
3816 | * It's possible for there to be more file mapped pages than | |
3817 | * accounted for by the pages on the file LRU lists because | |
3818 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
3819 | */ | |
3820 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
3821 | } | |
3822 | ||
3823 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
a5f5f91d | 3824 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) |
90afa5de | 3825 | { |
d031a157 AM |
3826 | unsigned long nr_pagecache_reclaimable; |
3827 | unsigned long delta = 0; | |
90afa5de MG |
3828 | |
3829 | /* | |
95bbc0c7 | 3830 | * If RECLAIM_UNMAP is set, then all file pages are considered |
90afa5de | 3831 | * potentially reclaimable. Otherwise, we have to worry about |
11fb9989 | 3832 | * pages like swapcache and node_unmapped_file_pages() provides |
90afa5de MG |
3833 | * a better estimate |
3834 | */ | |
a5f5f91d MG |
3835 | if (node_reclaim_mode & RECLAIM_UNMAP) |
3836 | nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); | |
90afa5de | 3837 | else |
a5f5f91d | 3838 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); |
90afa5de MG |
3839 | |
3840 | /* If we can't clean pages, remove dirty pages from consideration */ | |
a5f5f91d MG |
3841 | if (!(node_reclaim_mode & RECLAIM_WRITE)) |
3842 | delta += node_page_state(pgdat, NR_FILE_DIRTY); | |
90afa5de MG |
3843 | |
3844 | /* Watch for any possible underflows due to delta */ | |
3845 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
3846 | delta = nr_pagecache_reclaimable; | |
3847 | ||
3848 | return nr_pagecache_reclaimable - delta; | |
3849 | } | |
3850 | ||
9eeff239 | 3851 | /* |
a5f5f91d | 3852 | * Try to free up some pages from this node through reclaim. |
9eeff239 | 3853 | */ |
a5f5f91d | 3854 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 3855 | { |
7fb2d46d | 3856 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 3857 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
3858 | struct task_struct *p = current; |
3859 | struct reclaim_state reclaim_state; | |
499118e9 | 3860 | unsigned int noreclaim_flag; |
179e9639 | 3861 | struct scan_control sc = { |
62b726c1 | 3862 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
f2f43e56 | 3863 | .gfp_mask = current_gfp_context(gfp_mask), |
bd2f6199 | 3864 | .order = order, |
a5f5f91d MG |
3865 | .priority = NODE_RECLAIM_PRIORITY, |
3866 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), | |
3867 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), | |
ee814fe2 | 3868 | .may_swap = 1, |
f2f43e56 | 3869 | .reclaim_idx = gfp_zone(gfp_mask), |
179e9639 | 3870 | }; |
9eeff239 | 3871 | |
9eeff239 | 3872 | cond_resched(); |
d4f7796e | 3873 | /* |
95bbc0c7 | 3874 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP |
d4f7796e | 3875 | * and we also need to be able to write out pages for RECLAIM_WRITE |
95bbc0c7 | 3876 | * and RECLAIM_UNMAP. |
d4f7796e | 3877 | */ |
499118e9 VB |
3878 | noreclaim_flag = memalloc_noreclaim_save(); |
3879 | p->flags |= PF_SWAPWRITE; | |
d92a8cfc | 3880 | fs_reclaim_acquire(sc.gfp_mask); |
9eeff239 CL |
3881 | reclaim_state.reclaimed_slab = 0; |
3882 | p->reclaim_state = &reclaim_state; | |
c84db23c | 3883 | |
a5f5f91d | 3884 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { |
0ff38490 | 3885 | /* |
894befec | 3886 | * Free memory by calling shrink node with increasing |
0ff38490 CL |
3887 | * priorities until we have enough memory freed. |
3888 | */ | |
0ff38490 | 3889 | do { |
970a39a3 | 3890 | shrink_node(pgdat, &sc); |
9e3b2f8c | 3891 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); |
0ff38490 | 3892 | } |
c84db23c | 3893 | |
9eeff239 | 3894 | p->reclaim_state = NULL; |
d92a8cfc | 3895 | fs_reclaim_release(gfp_mask); |
499118e9 VB |
3896 | current->flags &= ~PF_SWAPWRITE; |
3897 | memalloc_noreclaim_restore(noreclaim_flag); | |
a79311c1 | 3898 | return sc.nr_reclaimed >= nr_pages; |
9eeff239 | 3899 | } |
179e9639 | 3900 | |
a5f5f91d | 3901 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
179e9639 | 3902 | { |
d773ed6b | 3903 | int ret; |
179e9639 AM |
3904 | |
3905 | /* | |
a5f5f91d | 3906 | * Node reclaim reclaims unmapped file backed pages and |
0ff38490 | 3907 | * slab pages if we are over the defined limits. |
34aa1330 | 3908 | * |
9614634f CL |
3909 | * A small portion of unmapped file backed pages is needed for |
3910 | * file I/O otherwise pages read by file I/O will be immediately | |
a5f5f91d MG |
3911 | * thrown out if the node is overallocated. So we do not reclaim |
3912 | * if less than a specified percentage of the node is used by | |
9614634f | 3913 | * unmapped file backed pages. |
179e9639 | 3914 | */ |
a5f5f91d | 3915 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && |
385386cf | 3916 | node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) |
a5f5f91d | 3917 | return NODE_RECLAIM_FULL; |
179e9639 AM |
3918 | |
3919 | /* | |
d773ed6b | 3920 | * Do not scan if the allocation should not be delayed. |
179e9639 | 3921 | */ |
d0164adc | 3922 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) |
a5f5f91d | 3923 | return NODE_RECLAIM_NOSCAN; |
179e9639 AM |
3924 | |
3925 | /* | |
a5f5f91d | 3926 | * Only run node reclaim on the local node or on nodes that do not |
179e9639 AM |
3927 | * have associated processors. This will favor the local processor |
3928 | * over remote processors and spread off node memory allocations | |
3929 | * as wide as possible. | |
3930 | */ | |
a5f5f91d MG |
3931 | if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) |
3932 | return NODE_RECLAIM_NOSCAN; | |
d773ed6b | 3933 | |
a5f5f91d MG |
3934 | if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) |
3935 | return NODE_RECLAIM_NOSCAN; | |
fa5e084e | 3936 | |
a5f5f91d MG |
3937 | ret = __node_reclaim(pgdat, gfp_mask, order); |
3938 | clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); | |
d773ed6b | 3939 | |
24cf7251 MG |
3940 | if (!ret) |
3941 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
3942 | ||
d773ed6b | 3943 | return ret; |
179e9639 | 3944 | } |
9eeff239 | 3945 | #endif |
894bc310 | 3946 | |
894bc310 LS |
3947 | /* |
3948 | * page_evictable - test whether a page is evictable | |
3949 | * @page: the page to test | |
894bc310 LS |
3950 | * |
3951 | * Test whether page is evictable--i.e., should be placed on active/inactive | |
39b5f29a | 3952 | * lists vs unevictable list. |
894bc310 LS |
3953 | * |
3954 | * Reasons page might not be evictable: | |
ba9ddf49 | 3955 | * (1) page's mapping marked unevictable |
b291f000 | 3956 | * (2) page is part of an mlocked VMA |
ba9ddf49 | 3957 | * |
894bc310 | 3958 | */ |
39b5f29a | 3959 | int page_evictable(struct page *page) |
894bc310 | 3960 | { |
e92bb4dd YH |
3961 | int ret; |
3962 | ||
3963 | /* Prevent address_space of inode and swap cache from being freed */ | |
3964 | rcu_read_lock(); | |
3965 | ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); | |
3966 | rcu_read_unlock(); | |
3967 | return ret; | |
894bc310 | 3968 | } |
89e004ea | 3969 | |
85046579 | 3970 | #ifdef CONFIG_SHMEM |
89e004ea | 3971 | /** |
24513264 HD |
3972 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list |
3973 | * @pages: array of pages to check | |
3974 | * @nr_pages: number of pages to check | |
89e004ea | 3975 | * |
24513264 | 3976 | * Checks pages for evictability and moves them to the appropriate lru list. |
85046579 HD |
3977 | * |
3978 | * This function is only used for SysV IPC SHM_UNLOCK. | |
89e004ea | 3979 | */ |
24513264 | 3980 | void check_move_unevictable_pages(struct page **pages, int nr_pages) |
89e004ea | 3981 | { |
925b7673 | 3982 | struct lruvec *lruvec; |
785b99fe | 3983 | struct pglist_data *pgdat = NULL; |
24513264 HD |
3984 | int pgscanned = 0; |
3985 | int pgrescued = 0; | |
3986 | int i; | |
89e004ea | 3987 | |
24513264 HD |
3988 | for (i = 0; i < nr_pages; i++) { |
3989 | struct page *page = pages[i]; | |
785b99fe | 3990 | struct pglist_data *pagepgdat = page_pgdat(page); |
89e004ea | 3991 | |
24513264 | 3992 | pgscanned++; |
785b99fe MG |
3993 | if (pagepgdat != pgdat) { |
3994 | if (pgdat) | |
3995 | spin_unlock_irq(&pgdat->lru_lock); | |
3996 | pgdat = pagepgdat; | |
3997 | spin_lock_irq(&pgdat->lru_lock); | |
24513264 | 3998 | } |
785b99fe | 3999 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
89e004ea | 4000 | |
24513264 HD |
4001 | if (!PageLRU(page) || !PageUnevictable(page)) |
4002 | continue; | |
89e004ea | 4003 | |
39b5f29a | 4004 | if (page_evictable(page)) { |
24513264 HD |
4005 | enum lru_list lru = page_lru_base_type(page); |
4006 | ||
309381fe | 4007 | VM_BUG_ON_PAGE(PageActive(page), page); |
24513264 | 4008 | ClearPageUnevictable(page); |
fa9add64 HD |
4009 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
4010 | add_page_to_lru_list(page, lruvec, lru); | |
24513264 | 4011 | pgrescued++; |
89e004ea | 4012 | } |
24513264 | 4013 | } |
89e004ea | 4014 | |
785b99fe | 4015 | if (pgdat) { |
24513264 HD |
4016 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); |
4017 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
785b99fe | 4018 | spin_unlock_irq(&pgdat->lru_lock); |
89e004ea | 4019 | } |
89e004ea | 4020 | } |
85046579 | 4021 | #endif /* CONFIG_SHMEM */ |