]>
Commit | Line | Data |
---|---|---|
a5356aef YNG |
1 | // SPDX-License-Identifier: GPL-2.0+ |
2 | ||
3 | /* | |
4 | * NXP FlexSPI(FSPI) controller driver. | |
5 | * | |
55ab8487 | 6 | * Copyright 2019-2020 NXP |
7 | * Copyright 2020 Puresoftware Ltd. | |
a5356aef YNG |
8 | * |
9 | * FlexSPI is a flexsible SPI host controller which supports two SPI | |
10 | * channels and up to 4 external devices. Each channel supports | |
11 | * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional | |
12 | * data lines). | |
13 | * | |
14 | * FlexSPI controller is driven by the LUT(Look-up Table) registers | |
15 | * LUT registers are a look-up-table for sequences of instructions. | |
16 | * A valid sequence consists of four LUT registers. | |
17 | * Maximum 32 LUT sequences can be programmed simultaneously. | |
18 | * | |
19 | * LUTs are being created at run-time based on the commands passed | |
20 | * from the spi-mem framework, thus using single LUT index. | |
21 | * | |
22 | * Software triggered Flash read/write access by IP Bus. | |
23 | * | |
24 | * Memory mapped read access by AHB Bus. | |
25 | * | |
26 | * Based on SPI MEM interface and spi-fsl-qspi.c driver. | |
27 | * | |
28 | * Author: | |
29 | * Yogesh Narayan Gaur <[email protected]> | |
ce6f0697 | 30 | * Boris Brezillon <[email protected]> |
a5356aef YNG |
31 | * Frieder Schrempf <[email protected]> |
32 | */ | |
33 | ||
55ab8487 | 34 | #include <linux/acpi.h> |
a5356aef | 35 | #include <linux/bitops.h> |
67a12ae5 | 36 | #include <linux/bitfield.h> |
a5356aef YNG |
37 | #include <linux/clk.h> |
38 | #include <linux/completion.h> | |
39 | #include <linux/delay.h> | |
40 | #include <linux/err.h> | |
41 | #include <linux/errno.h> | |
42 | #include <linux/interrupt.h> | |
43 | #include <linux/io.h> | |
44 | #include <linux/iopoll.h> | |
45 | #include <linux/jiffies.h> | |
46 | #include <linux/kernel.h> | |
47 | #include <linux/module.h> | |
48 | #include <linux/mutex.h> | |
49 | #include <linux/of.h> | |
a5356aef YNG |
50 | #include <linux/platform_device.h> |
51 | #include <linux/pm_qos.h> | |
82ce7d0e | 52 | #include <linux/regmap.h> |
a5356aef | 53 | #include <linux/sizes.h> |
82ce7d0e | 54 | #include <linux/sys_soc.h> |
a5356aef | 55 | |
82ce7d0e | 56 | #include <linux/mfd/syscon.h> |
a5356aef YNG |
57 | #include <linux/spi/spi.h> |
58 | #include <linux/spi/spi-mem.h> | |
59 | ||
60 | /* | |
61 | * The driver only uses one single LUT entry, that is updated on | |
62 | * each call of exec_op(). Index 0 is preset at boot with a basic | |
63 | * read operation, so let's use the last entry (31). | |
64 | */ | |
65 | #define SEQID_LUT 31 | |
66 | ||
67 | /* Registers used by the driver */ | |
68 | #define FSPI_MCR0 0x00 | |
69 | #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) | |
70 | #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) | |
71 | #define FSPI_MCR0_LEARN_EN BIT(15) | |
72 | #define FSPI_MCR0_SCRFRUN_EN BIT(14) | |
73 | #define FSPI_MCR0_OCTCOMB_EN BIT(13) | |
74 | #define FSPI_MCR0_DOZE_EN BIT(12) | |
75 | #define FSPI_MCR0_HSEN BIT(11) | |
76 | #define FSPI_MCR0_SERCLKDIV BIT(8) | |
77 | #define FSPI_MCR0_ATDF_EN BIT(7) | |
78 | #define FSPI_MCR0_ARDF_EN BIT(6) | |
79 | #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) | |
80 | #define FSPI_MCR0_END_CFG(x) ((x) << 2) | |
81 | #define FSPI_MCR0_MDIS BIT(1) | |
82 | #define FSPI_MCR0_SWRST BIT(0) | |
83 | ||
84 | #define FSPI_MCR1 0x04 | |
85 | #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) | |
86 | #define FSPI_MCR1_AHB_TIMEOUT(x) (x) | |
87 | ||
88 | #define FSPI_MCR2 0x08 | |
89 | #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) | |
90 | #define FSPI_MCR2_SAMEDEVICEEN BIT(15) | |
91 | #define FSPI_MCR2_CLRLRPHS BIT(14) | |
92 | #define FSPI_MCR2_ABRDATSZ BIT(8) | |
93 | #define FSPI_MCR2_ABRLEARN BIT(7) | |
94 | #define FSPI_MCR2_ABR_READ BIT(6) | |
95 | #define FSPI_MCR2_ABRWRITE BIT(5) | |
96 | #define FSPI_MCR2_ABRDUMMY BIT(4) | |
97 | #define FSPI_MCR2_ABR_MODE BIT(3) | |
98 | #define FSPI_MCR2_ABRCADDR BIT(2) | |
99 | #define FSPI_MCR2_ABRRADDR BIT(1) | |
100 | #define FSPI_MCR2_ABR_CMD BIT(0) | |
101 | ||
102 | #define FSPI_AHBCR 0x0c | |
103 | #define FSPI_AHBCR_RDADDROPT BIT(6) | |
104 | #define FSPI_AHBCR_PREF_EN BIT(5) | |
105 | #define FSPI_AHBCR_BUFF_EN BIT(4) | |
106 | #define FSPI_AHBCR_CACH_EN BIT(3) | |
107 | #define FSPI_AHBCR_CLRTXBUF BIT(2) | |
108 | #define FSPI_AHBCR_CLRRXBUF BIT(1) | |
109 | #define FSPI_AHBCR_PAR_EN BIT(0) | |
110 | ||
111 | #define FSPI_INTEN 0x10 | |
112 | #define FSPI_INTEN_SCLKSBWR BIT(9) | |
113 | #define FSPI_INTEN_SCLKSBRD BIT(8) | |
114 | #define FSPI_INTEN_DATALRNFL BIT(7) | |
115 | #define FSPI_INTEN_IPTXWE BIT(6) | |
116 | #define FSPI_INTEN_IPRXWA BIT(5) | |
117 | #define FSPI_INTEN_AHBCMDERR BIT(4) | |
118 | #define FSPI_INTEN_IPCMDERR BIT(3) | |
119 | #define FSPI_INTEN_AHBCMDGE BIT(2) | |
120 | #define FSPI_INTEN_IPCMDGE BIT(1) | |
121 | #define FSPI_INTEN_IPCMDDONE BIT(0) | |
122 | ||
123 | #define FSPI_INTR 0x14 | |
124 | #define FSPI_INTR_SCLKSBWR BIT(9) | |
125 | #define FSPI_INTR_SCLKSBRD BIT(8) | |
126 | #define FSPI_INTR_DATALRNFL BIT(7) | |
127 | #define FSPI_INTR_IPTXWE BIT(6) | |
128 | #define FSPI_INTR_IPRXWA BIT(5) | |
129 | #define FSPI_INTR_AHBCMDERR BIT(4) | |
130 | #define FSPI_INTR_IPCMDERR BIT(3) | |
131 | #define FSPI_INTR_AHBCMDGE BIT(2) | |
132 | #define FSPI_INTR_IPCMDGE BIT(1) | |
133 | #define FSPI_INTR_IPCMDDONE BIT(0) | |
134 | ||
135 | #define FSPI_LUTKEY 0x18 | |
136 | #define FSPI_LUTKEY_VALUE 0x5AF05AF0 | |
137 | ||
138 | #define FSPI_LCKCR 0x1C | |
139 | ||
140 | #define FSPI_LCKER_LOCK 0x1 | |
141 | #define FSPI_LCKER_UNLOCK 0x2 | |
142 | ||
143 | #define FSPI_BUFXCR_INVALID_MSTRID 0xE | |
144 | #define FSPI_AHBRX_BUF0CR0 0x20 | |
145 | #define FSPI_AHBRX_BUF1CR0 0x24 | |
146 | #define FSPI_AHBRX_BUF2CR0 0x28 | |
147 | #define FSPI_AHBRX_BUF3CR0 0x2C | |
148 | #define FSPI_AHBRX_BUF4CR0 0x30 | |
149 | #define FSPI_AHBRX_BUF5CR0 0x34 | |
150 | #define FSPI_AHBRX_BUF6CR0 0x38 | |
151 | #define FSPI_AHBRX_BUF7CR0 0x3C | |
152 | #define FSPI_AHBRXBUF0CR7_PREF BIT(31) | |
153 | ||
154 | #define FSPI_AHBRX_BUF0CR1 0x40 | |
155 | #define FSPI_AHBRX_BUF1CR1 0x44 | |
156 | #define FSPI_AHBRX_BUF2CR1 0x48 | |
157 | #define FSPI_AHBRX_BUF3CR1 0x4C | |
158 | #define FSPI_AHBRX_BUF4CR1 0x50 | |
159 | #define FSPI_AHBRX_BUF5CR1 0x54 | |
160 | #define FSPI_AHBRX_BUF6CR1 0x58 | |
161 | #define FSPI_AHBRX_BUF7CR1 0x5C | |
162 | ||
163 | #define FSPI_FLSHA1CR0 0x60 | |
164 | #define FSPI_FLSHA2CR0 0x64 | |
165 | #define FSPI_FLSHB1CR0 0x68 | |
166 | #define FSPI_FLSHB2CR0 0x6C | |
167 | #define FSPI_FLSHXCR0_SZ_KB 10 | |
168 | #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) | |
169 | ||
170 | #define FSPI_FLSHA1CR1 0x70 | |
171 | #define FSPI_FLSHA2CR1 0x74 | |
172 | #define FSPI_FLSHB1CR1 0x78 | |
173 | #define FSPI_FLSHB2CR1 0x7C | |
174 | #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) | |
175 | #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) | |
176 | #define FSPI_FLSHXCR1_WA BIT(10) | |
177 | #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) | |
178 | #define FSPI_FLSHXCR1_TCSS(x) (x) | |
179 | ||
180 | #define FSPI_FLSHA1CR2 0x80 | |
181 | #define FSPI_FLSHA2CR2 0x84 | |
182 | #define FSPI_FLSHB1CR2 0x88 | |
183 | #define FSPI_FLSHB2CR2 0x8C | |
184 | #define FSPI_FLSHXCR2_CLRINSP BIT(24) | |
185 | #define FSPI_FLSHXCR2_AWRWAIT BIT(16) | |
186 | #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 | |
187 | #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 | |
188 | #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 | |
189 | #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 | |
190 | ||
191 | #define FSPI_IPCR0 0xA0 | |
192 | ||
193 | #define FSPI_IPCR1 0xA4 | |
194 | #define FSPI_IPCR1_IPAREN BIT(31) | |
195 | #define FSPI_IPCR1_SEQNUM_SHIFT 24 | |
196 | #define FSPI_IPCR1_SEQID_SHIFT 16 | |
197 | #define FSPI_IPCR1_IDATSZ(x) (x) | |
198 | ||
199 | #define FSPI_IPCMD 0xB0 | |
200 | #define FSPI_IPCMD_TRG BIT(0) | |
201 | ||
202 | #define FSPI_DLPR 0xB4 | |
203 | ||
204 | #define FSPI_IPRXFCR 0xB8 | |
205 | #define FSPI_IPRXFCR_CLR BIT(0) | |
206 | #define FSPI_IPRXFCR_DMA_EN BIT(1) | |
207 | #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) | |
208 | ||
209 | #define FSPI_IPTXFCR 0xBC | |
210 | #define FSPI_IPTXFCR_CLR BIT(0) | |
211 | #define FSPI_IPTXFCR_DMA_EN BIT(1) | |
212 | #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) | |
213 | ||
214 | #define FSPI_DLLACR 0xC0 | |
215 | #define FSPI_DLLACR_OVRDEN BIT(8) | |
99d822b3 HC |
216 | #define FSPI_DLLACR_SLVDLY(x) ((x) << 3) |
217 | #define FSPI_DLLACR_DLLRESET BIT(1) | |
218 | #define FSPI_DLLACR_DLLEN BIT(0) | |
a5356aef YNG |
219 | |
220 | #define FSPI_DLLBCR 0xC4 | |
221 | #define FSPI_DLLBCR_OVRDEN BIT(8) | |
99d822b3 HC |
222 | #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3) |
223 | #define FSPI_DLLBCR_DLLRESET BIT(1) | |
224 | #define FSPI_DLLBCR_DLLEN BIT(0) | |
a5356aef YNG |
225 | |
226 | #define FSPI_STS0 0xE0 | |
227 | #define FSPI_STS0_DLPHB(x) ((x) << 8) | |
228 | #define FSPI_STS0_DLPHA(x) ((x) << 4) | |
229 | #define FSPI_STS0_CMD_SRC(x) ((x) << 2) | |
230 | #define FSPI_STS0_ARB_IDLE BIT(1) | |
231 | #define FSPI_STS0_SEQ_IDLE BIT(0) | |
232 | ||
233 | #define FSPI_STS1 0xE4 | |
234 | #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) | |
235 | #define FSPI_STS1_IP_ERRID(x) ((x) << 16) | |
236 | #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) | |
237 | #define FSPI_STS1_AHB_ERRID(x) (x) | |
238 | ||
99d822b3 HC |
239 | #define FSPI_STS2 0xE8 |
240 | #define FSPI_STS2_BREFLOCK BIT(17) | |
241 | #define FSPI_STS2_BSLVLOCK BIT(16) | |
242 | #define FSPI_STS2_AREFLOCK BIT(1) | |
243 | #define FSPI_STS2_ASLVLOCK BIT(0) | |
244 | #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \ | |
245 | FSPI_STS2_BSLVLOCK | \ | |
246 | FSPI_STS2_AREFLOCK | \ | |
247 | FSPI_STS2_ASLVLOCK) | |
248 | ||
a5356aef YNG |
249 | #define FSPI_AHBSPNST 0xEC |
250 | #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) | |
251 | #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) | |
252 | #define FSPI_AHBSPNST_ACTIVE BIT(0) | |
253 | ||
254 | #define FSPI_IPRXFSTS 0xF0 | |
255 | #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) | |
256 | #define FSPI_IPRXFSTS_FILL(x) (x) | |
257 | ||
258 | #define FSPI_IPTXFSTS 0xF4 | |
259 | #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) | |
260 | #define FSPI_IPTXFSTS_FILL(x) (x) | |
261 | ||
262 | #define FSPI_RFDR 0x100 | |
263 | #define FSPI_TFDR 0x180 | |
264 | ||
265 | #define FSPI_LUT_BASE 0x200 | |
266 | #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) | |
267 | #define FSPI_LUT_REG(idx) \ | |
268 | (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) | |
269 | ||
270 | /* register map end */ | |
271 | ||
272 | /* Instruction set for the LUT register. */ | |
273 | #define LUT_STOP 0x00 | |
274 | #define LUT_CMD 0x01 | |
275 | #define LUT_ADDR 0x02 | |
276 | #define LUT_CADDR_SDR 0x03 | |
277 | #define LUT_MODE 0x04 | |
278 | #define LUT_MODE2 0x05 | |
279 | #define LUT_MODE4 0x06 | |
280 | #define LUT_MODE8 0x07 | |
281 | #define LUT_NXP_WRITE 0x08 | |
282 | #define LUT_NXP_READ 0x09 | |
283 | #define LUT_LEARN_SDR 0x0A | |
284 | #define LUT_DATSZ_SDR 0x0B | |
285 | #define LUT_DUMMY 0x0C | |
286 | #define LUT_DUMMY_RWDS_SDR 0x0D | |
287 | #define LUT_JMP_ON_CS 0x1F | |
288 | #define LUT_CMD_DDR 0x21 | |
289 | #define LUT_ADDR_DDR 0x22 | |
290 | #define LUT_CADDR_DDR 0x23 | |
291 | #define LUT_MODE_DDR 0x24 | |
292 | #define LUT_MODE2_DDR 0x25 | |
293 | #define LUT_MODE4_DDR 0x26 | |
294 | #define LUT_MODE8_DDR 0x27 | |
295 | #define LUT_WRITE_DDR 0x28 | |
296 | #define LUT_READ_DDR 0x29 | |
297 | #define LUT_LEARN_DDR 0x2A | |
298 | #define LUT_DATSZ_DDR 0x2B | |
299 | #define LUT_DUMMY_DDR 0x2C | |
300 | #define LUT_DUMMY_RWDS_DDR 0x2D | |
301 | ||
302 | /* | |
303 | * Calculate number of required PAD bits for LUT register. | |
304 | * | |
305 | * The pad stands for the number of IO lines [0:7]. | |
306 | * For example, the octal read needs eight IO lines, | |
307 | * so you should use LUT_PAD(8). This macro | |
308 | * returns 3 i.e. use eight (2^3) IP lines for read. | |
309 | */ | |
310 | #define LUT_PAD(x) (fls(x) - 1) | |
311 | ||
312 | /* | |
313 | * Macro for constructing the LUT entries with the following | |
314 | * register layout: | |
315 | * | |
316 | * --------------------------------------------------- | |
317 | * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | | |
318 | * --------------------------------------------------- | |
319 | */ | |
320 | #define PAD_SHIFT 8 | |
321 | #define INSTR_SHIFT 10 | |
322 | #define OPRND_SHIFT 16 | |
323 | ||
324 | /* Macros for constructing the LUT register. */ | |
325 | #define LUT_DEF(idx, ins, pad, opr) \ | |
326 | ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ | |
327 | (opr)) << (((idx) % 2) * OPRND_SHIFT)) | |
328 | ||
329 | #define POLL_TOUT 5000 | |
330 | #define NXP_FSPI_MAX_CHIPSELECT 4 | |
d166a735 | 331 | #define NXP_FSPI_MIN_IOMAP SZ_4M |
a5356aef | 332 | |
82ce7d0e | 333 | #define DCFG_RCWSR1 0x100 |
67a12ae5 | 334 | #define SYS_PLL_RAT GENMASK(6, 2) |
82ce7d0e | 335 | |
31e92cbf KS |
336 | /* Access flash memory using IP bus only */ |
337 | #define FSPI_QUIRK_USE_IP_ONLY BIT(0) | |
338 | ||
a5356aef YNG |
339 | struct nxp_fspi_devtype_data { |
340 | unsigned int rxfifo; | |
341 | unsigned int txfifo; | |
342 | unsigned int ahb_buf_size; | |
343 | unsigned int quirks; | |
344 | bool little_endian; | |
345 | }; | |
346 | ||
82ce7d0e | 347 | static struct nxp_fspi_devtype_data lx2160a_data = { |
a5356aef YNG |
348 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
349 | .txfifo = SZ_1K, /* (128 * 64 bits) */ | |
350 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ | |
351 | .quirks = 0, | |
352 | .little_endian = true, /* little-endian */ | |
353 | }; | |
354 | ||
82ce7d0e | 355 | static struct nxp_fspi_devtype_data imx8mm_data = { |
941be8a7 HX |
356 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
357 | .txfifo = SZ_1K, /* (128 * 64 bits) */ | |
358 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ | |
359 | .quirks = 0, | |
360 | .little_endian = true, /* little-endian */ | |
361 | }; | |
362 | ||
82ce7d0e | 363 | static struct nxp_fspi_devtype_data imx8qxp_data = { |
941be8a7 HX |
364 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
365 | .txfifo = SZ_1K, /* (128 * 64 bits) */ | |
366 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ | |
367 | .quirks = 0, | |
368 | .little_endian = true, /* little-endian */ | |
369 | }; | |
370 | ||
82ce7d0e | 371 | static struct nxp_fspi_devtype_data imx8dxl_data = { |
c791e3c3 HX |
372 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
373 | .txfifo = SZ_1K, /* (128 * 64 bits) */ | |
374 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ | |
375 | .quirks = FSPI_QUIRK_USE_IP_ONLY, | |
376 | .little_endian = true, /* little-endian */ | |
377 | }; | |
378 | ||
a5356aef YNG |
379 | struct nxp_fspi { |
380 | void __iomem *iobase; | |
381 | void __iomem *ahb_addr; | |
382 | u32 memmap_phy; | |
383 | u32 memmap_phy_size; | |
d166a735 HX |
384 | u32 memmap_start; |
385 | u32 memmap_len; | |
a5356aef YNG |
386 | struct clk *clk, *clk_en; |
387 | struct device *dev; | |
388 | struct completion c; | |
82ce7d0e | 389 | struct nxp_fspi_devtype_data *devtype_data; |
a5356aef YNG |
390 | struct mutex lock; |
391 | struct pm_qos_request pm_qos_req; | |
392 | int selected; | |
393 | }; | |
394 | ||
31e92cbf KS |
395 | static inline int needs_ip_only(struct nxp_fspi *f) |
396 | { | |
397 | return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; | |
398 | } | |
399 | ||
a5356aef YNG |
400 | /* |
401 | * R/W functions for big- or little-endian registers: | |
402 | * The FSPI controller's endianness is independent of | |
403 | * the CPU core's endianness. So far, although the CPU | |
404 | * core is little-endian the FSPI controller can use | |
405 | * big-endian or little-endian. | |
406 | */ | |
407 | static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) | |
408 | { | |
409 | if (f->devtype_data->little_endian) | |
410 | iowrite32(val, addr); | |
411 | else | |
412 | iowrite32be(val, addr); | |
413 | } | |
414 | ||
415 | static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) | |
416 | { | |
417 | if (f->devtype_data->little_endian) | |
418 | return ioread32(addr); | |
419 | else | |
420 | return ioread32be(addr); | |
421 | } | |
422 | ||
423 | static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) | |
424 | { | |
425 | struct nxp_fspi *f = dev_id; | |
426 | u32 reg; | |
427 | ||
428 | /* clear interrupt */ | |
429 | reg = fspi_readl(f, f->iobase + FSPI_INTR); | |
430 | fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); | |
431 | ||
432 | if (reg & FSPI_INTR_IPCMDDONE) | |
433 | complete(&f->c); | |
434 | ||
435 | return IRQ_HANDLED; | |
436 | } | |
437 | ||
438 | static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) | |
439 | { | |
440 | switch (width) { | |
441 | case 1: | |
442 | case 2: | |
443 | case 4: | |
444 | case 8: | |
445 | return 0; | |
446 | } | |
447 | ||
448 | return -ENOTSUPP; | |
449 | } | |
450 | ||
451 | static bool nxp_fspi_supports_op(struct spi_mem *mem, | |
452 | const struct spi_mem_op *op) | |
453 | { | |
8af8a27b | 454 | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); |
a5356aef YNG |
455 | int ret; |
456 | ||
457 | ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); | |
458 | ||
459 | if (op->addr.nbytes) | |
460 | ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); | |
461 | ||
462 | if (op->dummy.nbytes) | |
463 | ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); | |
464 | ||
465 | if (op->data.nbytes) | |
466 | ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); | |
467 | ||
468 | if (ret) | |
469 | return false; | |
470 | ||
471 | /* | |
472 | * The number of address bytes should be equal to or less than 4 bytes. | |
473 | */ | |
474 | if (op->addr.nbytes > 4) | |
475 | return false; | |
476 | ||
477 | /* | |
478 | * If requested address value is greater than controller assigned | |
479 | * memory mapped space, return error as it didn't fit in the range | |
480 | * of assigned address space. | |
481 | */ | |
482 | if (op->addr.val >= f->memmap_phy_size) | |
483 | return false; | |
484 | ||
485 | /* Max 64 dummy clock cycles supported */ | |
486 | if (op->dummy.buswidth && | |
487 | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) | |
488 | return false; | |
489 | ||
490 | /* Max data length, check controller limits and alignment */ | |
491 | if (op->data.dir == SPI_MEM_DATA_IN && | |
492 | (op->data.nbytes > f->devtype_data->ahb_buf_size || | |
493 | (op->data.nbytes > f->devtype_data->rxfifo - 4 && | |
494 | !IS_ALIGNED(op->data.nbytes, 8)))) | |
495 | return false; | |
496 | ||
497 | if (op->data.dir == SPI_MEM_DATA_OUT && | |
498 | op->data.nbytes > f->devtype_data->txfifo) | |
499 | return false; | |
500 | ||
007773e1 | 501 | return spi_mem_default_supports_op(mem, op); |
a5356aef YNG |
502 | } |
503 | ||
504 | /* Instead of busy looping invoke readl_poll_timeout functionality. */ | |
505 | static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, | |
506 | u32 mask, u32 delay_us, | |
507 | u32 timeout_us, bool c) | |
508 | { | |
509 | u32 reg; | |
510 | ||
511 | if (!f->devtype_data->little_endian) | |
512 | mask = (u32)cpu_to_be32(mask); | |
513 | ||
514 | if (c) | |
515 | return readl_poll_timeout(base, reg, (reg & mask), | |
516 | delay_us, timeout_us); | |
517 | else | |
518 | return readl_poll_timeout(base, reg, !(reg & mask), | |
519 | delay_us, timeout_us); | |
520 | } | |
521 | ||
522 | /* | |
8af8a27b | 523 | * If the target device content being changed by Write/Erase, need to |
a5356aef YNG |
524 | * invalidate the AHB buffer. This can be achieved by doing the reset |
525 | * of controller after setting MCR0[SWRESET] bit. | |
526 | */ | |
527 | static inline void nxp_fspi_invalid(struct nxp_fspi *f) | |
528 | { | |
529 | u32 reg; | |
530 | int ret; | |
531 | ||
532 | reg = fspi_readl(f, f->iobase + FSPI_MCR0); | |
533 | fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); | |
534 | ||
535 | /* w1c register, wait unit clear */ | |
536 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | |
537 | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | |
538 | WARN_ON(ret); | |
539 | } | |
540 | ||
541 | static void nxp_fspi_prepare_lut(struct nxp_fspi *f, | |
542 | const struct spi_mem_op *op) | |
543 | { | |
544 | void __iomem *base = f->iobase; | |
545 | u32 lutval[4] = {}; | |
546 | int lutidx = 1, i; | |
547 | ||
548 | /* cmd */ | |
549 | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), | |
550 | op->cmd.opcode); | |
551 | ||
552 | /* addr bytes */ | |
553 | if (op->addr.nbytes) { | |
554 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, | |
555 | LUT_PAD(op->addr.buswidth), | |
556 | op->addr.nbytes * 8); | |
557 | lutidx++; | |
558 | } | |
559 | ||
560 | /* dummy bytes, if needed */ | |
561 | if (op->dummy.nbytes) { | |
562 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, | |
563 | /* | |
564 | * Due to FlexSPI controller limitation number of PAD for dummy | |
565 | * buswidth needs to be programmed as equal to data buswidth. | |
566 | */ | |
567 | LUT_PAD(op->data.buswidth), | |
568 | op->dummy.nbytes * 8 / | |
569 | op->dummy.buswidth); | |
570 | lutidx++; | |
571 | } | |
572 | ||
573 | /* read/write data bytes */ | |
574 | if (op->data.nbytes) { | |
575 | lutval[lutidx / 2] |= LUT_DEF(lutidx, | |
576 | op->data.dir == SPI_MEM_DATA_IN ? | |
577 | LUT_NXP_READ : LUT_NXP_WRITE, | |
578 | LUT_PAD(op->data.buswidth), | |
579 | 0); | |
580 | lutidx++; | |
581 | } | |
582 | ||
583 | /* stop condition. */ | |
584 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); | |
585 | ||
586 | /* unlock LUT */ | |
587 | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | |
588 | fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); | |
589 | ||
590 | /* fill LUT */ | |
591 | for (i = 0; i < ARRAY_SIZE(lutval); i++) | |
592 | fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); | |
593 | ||
31e92cbf KS |
594 | dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n", |
595 | op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); | |
a5356aef YNG |
596 | |
597 | /* lock LUT */ | |
598 | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | |
599 | fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); | |
600 | } | |
601 | ||
602 | static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) | |
603 | { | |
604 | int ret; | |
605 | ||
4b9ef436 | 606 | if (is_acpi_node(dev_fwnode(f->dev))) |
55ab8487 | 607 | return 0; |
608 | ||
a5356aef YNG |
609 | ret = clk_prepare_enable(f->clk_en); |
610 | if (ret) | |
611 | return ret; | |
612 | ||
613 | ret = clk_prepare_enable(f->clk); | |
614 | if (ret) { | |
615 | clk_disable_unprepare(f->clk_en); | |
616 | return ret; | |
617 | } | |
618 | ||
619 | return 0; | |
620 | } | |
621 | ||
55ab8487 | 622 | static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) |
a5356aef | 623 | { |
4b9ef436 | 624 | if (is_acpi_node(dev_fwnode(f->dev))) |
55ab8487 | 625 | return 0; |
626 | ||
a5356aef YNG |
627 | clk_disable_unprepare(f->clk); |
628 | clk_disable_unprepare(f->clk_en); | |
55ab8487 | 629 | |
630 | return 0; | |
a5356aef YNG |
631 | } |
632 | ||
99d822b3 HC |
633 | static void nxp_fspi_dll_calibration(struct nxp_fspi *f) |
634 | { | |
635 | int ret; | |
636 | ||
637 | /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */ | |
638 | fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR); | |
639 | fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR); | |
640 | fspi_writel(f, 0, f->iobase + FSPI_DLLACR); | |
641 | fspi_writel(f, 0, f->iobase + FSPI_DLLBCR); | |
642 | ||
643 | /* | |
644 | * Enable the DLL calibration mode. | |
645 | * The delay target for slave delay line is: | |
646 | * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock. | |
647 | * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which | |
648 | * means half of clock cycle of reference clock. | |
649 | */ | |
650 | fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF), | |
651 | f->iobase + FSPI_DLLACR); | |
652 | fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF), | |
653 | f->iobase + FSPI_DLLBCR); | |
654 | ||
655 | /* Wait to get REF/SLV lock */ | |
656 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK, | |
657 | 0, POLL_TOUT, true); | |
658 | if (ret) | |
659 | dev_warn(f->dev, "DLL lock failed, please fix it!\n"); | |
660 | } | |
661 | ||
a5356aef YNG |
662 | /* |
663 | * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 | |
8af8a27b | 664 | * register and start base address of the target device. |
a5356aef YNG |
665 | * |
666 | * (Higher address) | |
667 | * -------- <-- FLSHB2CR0 | |
668 | * | B2 | | |
669 | * | | | |
670 | * B2 start address --> -------- <-- FLSHB1CR0 | |
671 | * | B1 | | |
672 | * | | | |
673 | * B1 start address --> -------- <-- FLSHA2CR0 | |
674 | * | A2 | | |
675 | * | | | |
676 | * A2 start address --> -------- <-- FLSHA1CR0 | |
677 | * | A1 | | |
678 | * | | | |
679 | * A1 start address --> -------- (Lower address) | |
680 | * | |
681 | * | |
682 | * Start base address defines the starting address range for given CS and | |
8af8a27b | 683 | * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS. |
a5356aef YNG |
684 | * |
685 | * But, different targets are having different combinations of number of CS, | |
686 | * some targets only have single CS or two CS covering controller's full | |
687 | * memory mapped space area. | |
688 | * Thus, implementation is being done as independent of the size and number | |
8af8a27b | 689 | * of the connected target device. |
a5356aef | 690 | * Assign controller memory mapped space size as the size to the connected |
8af8a27b | 691 | * target device. |
a5356aef YNG |
692 | * Mark FLSHxxCR0 as zero initially and then assign value only to the selected |
693 | * chip-select Flash configuration register. | |
694 | * | |
695 | * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the | |
696 | * memory mapped size of the controller. | |
697 | * Value for rest of the CS FLSHxxCR0 register would be zero. | |
698 | * | |
699 | */ | |
700 | static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) | |
701 | { | |
702 | unsigned long rate = spi->max_speed_hz; | |
703 | int ret; | |
704 | uint64_t size_kb; | |
705 | ||
706 | /* | |
8af8a27b YY |
707 | * Return, if previously selected target device is same as current |
708 | * requested target device. | |
a5356aef | 709 | */ |
9e264f3f | 710 | if (f->selected == spi_get_chipselect(spi, 0)) |
a5356aef YNG |
711 | return; |
712 | ||
713 | /* Reset FLSHxxCR0 registers */ | |
714 | fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); | |
715 | fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); | |
716 | fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); | |
717 | fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); | |
718 | ||
719 | /* Assign controller memory mapped space as size, KBytes, of flash. */ | |
720 | size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); | |
721 | ||
722 | fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + | |
9e264f3f | 723 | 4 * spi_get_chipselect(spi, 0)); |
a5356aef | 724 | |
8af8a27b | 725 | dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0)); |
a5356aef YNG |
726 | |
727 | nxp_fspi_clk_disable_unprep(f); | |
728 | ||
729 | ret = clk_set_rate(f->clk, rate); | |
730 | if (ret) | |
731 | return; | |
732 | ||
733 | ret = nxp_fspi_clk_prep_enable(f); | |
734 | if (ret) | |
735 | return; | |
736 | ||
99d822b3 HC |
737 | /* |
738 | * If clock rate > 100MHz, then switch from DLL override mode to | |
739 | * DLL calibration mode. | |
740 | */ | |
741 | if (rate > 100000000) | |
742 | nxp_fspi_dll_calibration(f); | |
743 | ||
9e264f3f | 744 | f->selected = spi_get_chipselect(spi, 0); |
a5356aef YNG |
745 | } |
746 | ||
d166a735 | 747 | static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) |
a5356aef | 748 | { |
d166a735 | 749 | u32 start = op->addr.val; |
a5356aef YNG |
750 | u32 len = op->data.nbytes; |
751 | ||
d166a735 HX |
752 | /* if necessary, ioremap before AHB read */ |
753 | if ((!f->ahb_addr) || start < f->memmap_start || | |
754 | start + len > f->memmap_start + f->memmap_len) { | |
755 | if (f->ahb_addr) | |
756 | iounmap(f->ahb_addr); | |
757 | ||
758 | f->memmap_start = start; | |
759 | f->memmap_len = len > NXP_FSPI_MIN_IOMAP ? | |
760 | len : NXP_FSPI_MIN_IOMAP; | |
761 | ||
c3aa5cb2 | 762 | f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start, |
d166a735 HX |
763 | f->memmap_len); |
764 | ||
765 | if (!f->ahb_addr) { | |
766 | dev_err(f->dev, "failed to alloc memory\n"); | |
767 | return -ENOMEM; | |
768 | } | |
769 | } | |
770 | ||
a5356aef | 771 | /* Read out the data directly from the AHB buffer. */ |
d166a735 HX |
772 | memcpy_fromio(op->data.buf.in, |
773 | f->ahb_addr + start - f->memmap_start, len); | |
774 | ||
775 | return 0; | |
a5356aef YNG |
776 | } |
777 | ||
778 | static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, | |
779 | const struct spi_mem_op *op) | |
780 | { | |
781 | void __iomem *base = f->iobase; | |
782 | int i, ret; | |
783 | u8 *buf = (u8 *) op->data.buf.out; | |
784 | ||
785 | /* clear the TX FIFO. */ | |
786 | fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); | |
787 | ||
788 | /* | |
789 | * Default value of water mark level is 8 bytes, hence in single | |
790 | * write request controller can write max 8 bytes of data. | |
791 | */ | |
792 | ||
793 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { | |
794 | /* Wait for TXFIFO empty */ | |
795 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
796 | FSPI_INTR_IPTXWE, 0, | |
797 | POLL_TOUT, true); | |
798 | WARN_ON(ret); | |
799 | ||
800 | fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); | |
801 | fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); | |
802 | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | |
803 | } | |
804 | ||
805 | if (i < op->data.nbytes) { | |
806 | u32 data = 0; | |
807 | int j; | |
808 | /* Wait for TXFIFO empty */ | |
809 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
810 | FSPI_INTR_IPTXWE, 0, | |
811 | POLL_TOUT, true); | |
812 | WARN_ON(ret); | |
813 | ||
814 | for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { | |
815 | memcpy(&data, buf + i + j, 4); | |
816 | fspi_writel(f, data, base + FSPI_TFDR + j); | |
817 | } | |
818 | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | |
819 | } | |
820 | } | |
821 | ||
822 | static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, | |
823 | const struct spi_mem_op *op) | |
824 | { | |
825 | void __iomem *base = f->iobase; | |
826 | int i, ret; | |
827 | int len = op->data.nbytes; | |
828 | u8 *buf = (u8 *) op->data.buf.in; | |
829 | ||
830 | /* | |
831 | * Default value of water mark level is 8 bytes, hence in single | |
832 | * read request controller can read max 8 bytes of data. | |
833 | */ | |
834 | for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { | |
835 | /* Wait for RXFIFO available */ | |
836 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
837 | FSPI_INTR_IPRXWA, 0, | |
838 | POLL_TOUT, true); | |
839 | WARN_ON(ret); | |
840 | ||
841 | *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); | |
842 | *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); | |
843 | /* move the FIFO pointer */ | |
844 | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | |
845 | } | |
846 | ||
847 | if (i < len) { | |
848 | u32 tmp; | |
849 | int size, j; | |
850 | ||
851 | buf = op->data.buf.in + i; | |
852 | /* Wait for RXFIFO available */ | |
853 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
854 | FSPI_INTR_IPRXWA, 0, | |
855 | POLL_TOUT, true); | |
856 | WARN_ON(ret); | |
857 | ||
858 | len = op->data.nbytes - i; | |
859 | for (j = 0; j < op->data.nbytes - i; j += 4) { | |
860 | tmp = fspi_readl(f, base + FSPI_RFDR + j); | |
861 | size = min(len, 4); | |
862 | memcpy(buf + j, &tmp, size); | |
863 | len -= size; | |
864 | } | |
865 | } | |
866 | ||
867 | /* invalid the RXFIFO */ | |
868 | fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); | |
869 | /* move the FIFO pointer */ | |
870 | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | |
871 | } | |
872 | ||
873 | static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) | |
874 | { | |
875 | void __iomem *base = f->iobase; | |
876 | int seqnum = 0; | |
877 | int err = 0; | |
878 | u32 reg; | |
879 | ||
880 | reg = fspi_readl(f, base + FSPI_IPRXFCR); | |
881 | /* invalid RXFIFO first */ | |
882 | reg &= ~FSPI_IPRXFCR_DMA_EN; | |
883 | reg = reg | FSPI_IPRXFCR_CLR; | |
884 | fspi_writel(f, reg, base + FSPI_IPRXFCR); | |
885 | ||
886 | init_completion(&f->c); | |
887 | ||
888 | fspi_writel(f, op->addr.val, base + FSPI_IPCR0); | |
889 | /* | |
890 | * Always start the sequence at the same index since we update | |
891 | * the LUT at each exec_op() call. And also specify the DATA | |
892 | * length, since it's has not been specified in the LUT. | |
893 | */ | |
894 | fspi_writel(f, op->data.nbytes | | |
895 | (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | | |
896 | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), | |
897 | base + FSPI_IPCR1); | |
898 | ||
899 | /* Trigger the LUT now. */ | |
900 | fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); | |
901 | ||
902 | /* Wait for the interrupt. */ | |
903 | if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) | |
904 | err = -ETIMEDOUT; | |
905 | ||
906 | /* Invoke IP data read, if request is of data read. */ | |
907 | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) | |
908 | nxp_fspi_read_rxfifo(f, op); | |
909 | ||
910 | return err; | |
911 | } | |
912 | ||
913 | static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) | |
914 | { | |
8af8a27b | 915 | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); |
a5356aef YNG |
916 | int err = 0; |
917 | ||
918 | mutex_lock(&f->lock); | |
919 | ||
920 | /* Wait for controller being ready. */ | |
921 | err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, | |
922 | FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); | |
923 | WARN_ON(err); | |
924 | ||
925 | nxp_fspi_select_mem(f, mem->spi); | |
926 | ||
927 | nxp_fspi_prepare_lut(f, op); | |
928 | /* | |
31e92cbf KS |
929 | * If we have large chunks of data, we read them through the AHB bus by |
930 | * accessing the mapped memory. In all other cases we use IP commands | |
931 | * to access the flash. Read via AHB bus may be corrupted due to | |
932 | * existence of an errata and therefore discard AHB read in such cases. | |
a5356aef YNG |
933 | */ |
934 | if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && | |
31e92cbf KS |
935 | op->data.dir == SPI_MEM_DATA_IN && |
936 | !needs_ip_only(f)) { | |
d166a735 | 937 | err = nxp_fspi_read_ahb(f, op); |
a5356aef YNG |
938 | } else { |
939 | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) | |
940 | nxp_fspi_fill_txfifo(f, op); | |
941 | ||
942 | err = nxp_fspi_do_op(f, op); | |
943 | } | |
944 | ||
945 | /* Invalidate the data in the AHB buffer. */ | |
946 | nxp_fspi_invalid(f); | |
947 | ||
948 | mutex_unlock(&f->lock); | |
949 | ||
950 | return err; | |
951 | } | |
952 | ||
953 | static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) | |
954 | { | |
8af8a27b | 955 | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); |
a5356aef YNG |
956 | |
957 | if (op->data.dir == SPI_MEM_DATA_OUT) { | |
958 | if (op->data.nbytes > f->devtype_data->txfifo) | |
959 | op->data.nbytes = f->devtype_data->txfifo; | |
960 | } else { | |
961 | if (op->data.nbytes > f->devtype_data->ahb_buf_size) | |
962 | op->data.nbytes = f->devtype_data->ahb_buf_size; | |
963 | else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) | |
964 | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); | |
965 | } | |
966 | ||
31e92cbf KS |
967 | /* Limit data bytes to RX FIFO in case of IP read only */ |
968 | if (op->data.dir == SPI_MEM_DATA_IN && | |
969 | needs_ip_only(f) && | |
970 | op->data.nbytes > f->devtype_data->rxfifo) | |
971 | op->data.nbytes = f->devtype_data->rxfifo; | |
972 | ||
a5356aef YNG |
973 | return 0; |
974 | } | |
975 | ||
82ce7d0e KS |
976 | static void erratum_err050568(struct nxp_fspi *f) |
977 | { | |
6c6c49f2 | 978 | static const struct soc_device_attribute ls1028a_soc_attr[] = { |
82ce7d0e KS |
979 | { .family = "QorIQ LS1028A" }, |
980 | { /* sentinel */ } | |
981 | }; | |
82ce7d0e | 982 | struct regmap *map; |
67a12ae5 | 983 | u32 val, sys_pll_ratio; |
82ce7d0e KS |
984 | int ret; |
985 | ||
986 | /* Check for LS1028A family */ | |
987 | if (!soc_device_match(ls1028a_soc_attr)) { | |
988 | dev_dbg(f->dev, "Errata applicable only for LS1028A\n"); | |
989 | return; | |
990 | } | |
991 | ||
82ce7d0e KS |
992 | map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg"); |
993 | if (IS_ERR(map)) { | |
994 | dev_err(f->dev, "No syscon regmap\n"); | |
995 | goto err; | |
996 | } | |
997 | ||
998 | ret = regmap_read(map, DCFG_RCWSR1, &val); | |
999 | if (ret < 0) | |
1000 | goto err; | |
1001 | ||
67a12ae5 MW |
1002 | sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val); |
1003 | dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio); | |
82ce7d0e | 1004 | |
67a12ae5 MW |
1005 | /* Use IP bus only if platform clock is 300MHz */ |
1006 | if (sys_pll_ratio == 3) | |
82ce7d0e KS |
1007 | f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; |
1008 | ||
1009 | return; | |
1010 | ||
1011 | err: | |
1012 | dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n"); | |
1013 | } | |
1014 | ||
a5356aef YNG |
1015 | static int nxp_fspi_default_setup(struct nxp_fspi *f) |
1016 | { | |
1017 | void __iomem *base = f->iobase; | |
1018 | int ret, i; | |
1019 | u32 reg; | |
1020 | ||
1021 | /* disable and unprepare clock to avoid glitch pass to controller */ | |
1022 | nxp_fspi_clk_disable_unprep(f); | |
1023 | ||
1024 | /* the default frequency, we will change it later if necessary. */ | |
1025 | ret = clk_set_rate(f->clk, 20000000); | |
1026 | if (ret) | |
1027 | return ret; | |
1028 | ||
1029 | ret = nxp_fspi_clk_prep_enable(f); | |
1030 | if (ret) | |
1031 | return ret; | |
1032 | ||
82ce7d0e KS |
1033 | /* |
1034 | * ERR050568: Flash access by FlexSPI AHB command may not work with | |
1035 | * platform frequency equal to 300 MHz on LS1028A. | |
1036 | * LS1028A reuses LX2160A compatible entry. Make errata applicable for | |
1037 | * Layerscape LS1028A platform. | |
1038 | */ | |
1039 | if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi")) | |
1040 | erratum_err050568(f); | |
1041 | ||
a5356aef YNG |
1042 | /* Reset the module */ |
1043 | /* w1c register, wait unit clear */ | |
1044 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | |
1045 | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | |
1046 | WARN_ON(ret); | |
1047 | ||
1048 | /* Disable the module */ | |
1049 | fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); | |
1050 | ||
1ab09f1d | 1051 | /* |
8af8a27b | 1052 | * Config the DLL register to default value, enable the target clock delay |
1ab09f1d HC |
1053 | * line delay cell override mode, and use 1 fixed delay cell in DLL delay |
1054 | * chain, this is the suggested setting when clock rate < 100MHz. | |
1055 | */ | |
a5356aef YNG |
1056 | fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); |
1057 | fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); | |
1058 | ||
1059 | /* enable module */ | |
b7461fa5 HX |
1060 | fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | |
1061 | FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, | |
1062 | base + FSPI_MCR0); | |
a5356aef YNG |
1063 | |
1064 | /* | |
8af8a27b | 1065 | * Disable same device enable bit and configure all target devices |
a5356aef YNG |
1066 | * independently. |
1067 | */ | |
1068 | reg = fspi_readl(f, f->iobase + FSPI_MCR2); | |
1069 | reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); | |
1070 | fspi_writel(f, reg, base + FSPI_MCR2); | |
1071 | ||
1072 | /* AHB configuration for access buffer 0~7. */ | |
1073 | for (i = 0; i < 7; i++) | |
1074 | fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); | |
1075 | ||
1076 | /* | |
1077 | * Set ADATSZ with the maximum AHB buffer size to improve the read | |
1078 | * performance. | |
1079 | */ | |
1080 | fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | | |
1081 | FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); | |
1082 | ||
1083 | /* prefetch and no start address alignment limitation */ | |
1084 | fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, | |
1085 | base + FSPI_AHBCR); | |
1086 | ||
18495676 HX |
1087 | /* Reset the FLSHxCR1 registers. */ |
1088 | reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); | |
1089 | fspi_writel(f, reg, base + FSPI_FLSHA1CR1); | |
1090 | fspi_writel(f, reg, base + FSPI_FLSHA2CR1); | |
1091 | fspi_writel(f, reg, base + FSPI_FLSHB1CR1); | |
1092 | fspi_writel(f, reg, base + FSPI_FLSHB2CR1); | |
1093 | ||
a5356aef YNG |
1094 | /* AHB Read - Set lut sequence ID for all CS. */ |
1095 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); | |
1096 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); | |
1097 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); | |
1098 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); | |
1099 | ||
1100 | f->selected = -1; | |
1101 | ||
1102 | /* enable the interrupt */ | |
1103 | fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); | |
1104 | ||
1105 | return 0; | |
1106 | } | |
1107 | ||
1108 | static const char *nxp_fspi_get_name(struct spi_mem *mem) | |
1109 | { | |
8af8a27b | 1110 | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); |
a5356aef YNG |
1111 | struct device *dev = &mem->spi->dev; |
1112 | const char *name; | |
1113 | ||
1114 | // Set custom name derived from the platform_device of the controller. | |
1115 | if (of_get_available_child_count(f->dev->of_node) == 1) | |
1116 | return dev_name(f->dev); | |
1117 | ||
1118 | name = devm_kasprintf(dev, GFP_KERNEL, | |
1119 | "%s-%d", dev_name(f->dev), | |
9e264f3f | 1120 | spi_get_chipselect(mem->spi, 0)); |
a5356aef YNG |
1121 | |
1122 | if (!name) { | |
1123 | dev_err(dev, "failed to get memory for custom flash name\n"); | |
1124 | return ERR_PTR(-ENOMEM); | |
1125 | } | |
1126 | ||
1127 | return name; | |
1128 | } | |
1129 | ||
1130 | static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { | |
1131 | .adjust_op_size = nxp_fspi_adjust_op_size, | |
1132 | .supports_op = nxp_fspi_supports_op, | |
1133 | .exec_op = nxp_fspi_exec_op, | |
1134 | .get_name = nxp_fspi_get_name, | |
1135 | }; | |
1136 | ||
1137 | static int nxp_fspi_probe(struct platform_device *pdev) | |
1138 | { | |
1139 | struct spi_controller *ctlr; | |
1140 | struct device *dev = &pdev->dev; | |
1141 | struct device_node *np = dev->of_node; | |
1142 | struct resource *res; | |
1143 | struct nxp_fspi *f; | |
1144 | int ret; | |
71d80563 | 1145 | u32 reg; |
a5356aef | 1146 | |
8af8a27b | 1147 | ctlr = spi_alloc_host(&pdev->dev, sizeof(*f)); |
a5356aef YNG |
1148 | if (!ctlr) |
1149 | return -ENOMEM; | |
1150 | ||
b3281794 YNG |
1151 | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | |
1152 | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; | |
a5356aef YNG |
1153 | |
1154 | f = spi_controller_get_devdata(ctlr); | |
1155 | f->dev = dev; | |
82ce7d0e | 1156 | f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev); |
a5356aef YNG |
1157 | if (!f->devtype_data) { |
1158 | ret = -ENODEV; | |
1159 | goto err_put_ctrl; | |
1160 | } | |
1161 | ||
1162 | platform_set_drvdata(pdev, f); | |
1163 | ||
1164 | /* find the resources - configuration register address space */ | |
4b9ef436 | 1165 | if (is_acpi_node(dev_fwnode(f->dev))) |
8c8e947b | 1166 | f->iobase = devm_platform_ioremap_resource(pdev, 0); |
55ab8487 | 1167 | else |
8c8e947b | 1168 | f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base"); |
55ab8487 | 1169 | |
a5356aef YNG |
1170 | if (IS_ERR(f->iobase)) { |
1171 | ret = PTR_ERR(f->iobase); | |
1172 | goto err_put_ctrl; | |
1173 | } | |
1174 | ||
1175 | /* find the resources - controller memory mapped space */ | |
4b9ef436 | 1176 | if (is_acpi_node(dev_fwnode(f->dev))) |
55ab8487 | 1177 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
1178 | else | |
1179 | res = platform_get_resource_byname(pdev, | |
1180 | IORESOURCE_MEM, "fspi_mmap"); | |
1181 | ||
1a421eba DC |
1182 | if (!res) { |
1183 | ret = -ENODEV; | |
a5356aef YNG |
1184 | goto err_put_ctrl; |
1185 | } | |
1186 | ||
1187 | /* assign memory mapped starting address and mapped size. */ | |
1188 | f->memmap_phy = res->start; | |
1189 | f->memmap_phy_size = resource_size(res); | |
1190 | ||
1191 | /* find the clocks */ | |
55ab8487 | 1192 | if (dev_of_node(&pdev->dev)) { |
1193 | f->clk_en = devm_clk_get(dev, "fspi_en"); | |
1194 | if (IS_ERR(f->clk_en)) { | |
1195 | ret = PTR_ERR(f->clk_en); | |
1196 | goto err_put_ctrl; | |
1197 | } | |
a5356aef | 1198 | |
55ab8487 | 1199 | f->clk = devm_clk_get(dev, "fspi"); |
1200 | if (IS_ERR(f->clk)) { | |
1201 | ret = PTR_ERR(f->clk); | |
1202 | goto err_put_ctrl; | |
1203 | } | |
a5356aef | 1204 | |
55ab8487 | 1205 | ret = nxp_fspi_clk_prep_enable(f); |
1206 | if (ret) { | |
1207 | dev_err(dev, "can not enable the clock\n"); | |
1208 | goto err_put_ctrl; | |
1209 | } | |
a5356aef YNG |
1210 | } |
1211 | ||
f422316c HC |
1212 | /* Clear potential interrupts */ |
1213 | reg = fspi_readl(f, f->iobase + FSPI_INTR); | |
1214 | if (reg) | |
1215 | fspi_writel(f, reg, f->iobase + FSPI_INTR); | |
1216 | ||
a5356aef YNG |
1217 | /* find the irq */ |
1218 | ret = platform_get_irq(pdev, 0); | |
6b8ac10e | 1219 | if (ret < 0) |
a5356aef | 1220 | goto err_disable_clk; |
a5356aef YNG |
1221 | |
1222 | ret = devm_request_irq(dev, ret, | |
1223 | nxp_fspi_irq_handler, 0, pdev->name, f); | |
1224 | if (ret) { | |
1225 | dev_err(dev, "failed to request irq: %d\n", ret); | |
1226 | goto err_disable_clk; | |
1227 | } | |
1228 | ||
1229 | mutex_init(&f->lock); | |
1230 | ||
1231 | ctlr->bus_num = -1; | |
1232 | ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; | |
1233 | ctlr->mem_ops = &nxp_fspi_mem_ops; | |
1234 | ||
1235 | nxp_fspi_default_setup(f); | |
1236 | ||
1237 | ctlr->dev.of_node = np; | |
1238 | ||
69c23dbf | 1239 | ret = devm_spi_register_controller(&pdev->dev, ctlr); |
a5356aef YNG |
1240 | if (ret) |
1241 | goto err_destroy_mutex; | |
1242 | ||
1243 | return 0; | |
1244 | ||
1245 | err_destroy_mutex: | |
1246 | mutex_destroy(&f->lock); | |
1247 | ||
1248 | err_disable_clk: | |
1249 | nxp_fspi_clk_disable_unprep(f); | |
1250 | ||
1251 | err_put_ctrl: | |
1252 | spi_controller_put(ctlr); | |
1253 | ||
1254 | dev_err(dev, "NXP FSPI probe failed\n"); | |
1255 | return ret; | |
1256 | } | |
1257 | ||
2dd82e32 | 1258 | static void nxp_fspi_remove(struct platform_device *pdev) |
a5356aef YNG |
1259 | { |
1260 | struct nxp_fspi *f = platform_get_drvdata(pdev); | |
1261 | ||
1262 | /* disable the hardware */ | |
1263 | fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); | |
1264 | ||
1265 | nxp_fspi_clk_disable_unprep(f); | |
1266 | ||
1267 | mutex_destroy(&f->lock); | |
1268 | ||
d166a735 HX |
1269 | if (f->ahb_addr) |
1270 | iounmap(f->ahb_addr); | |
a5356aef YNG |
1271 | } |
1272 | ||
1273 | static int nxp_fspi_suspend(struct device *dev) | |
1274 | { | |
1275 | return 0; | |
1276 | } | |
1277 | ||
1278 | static int nxp_fspi_resume(struct device *dev) | |
1279 | { | |
1280 | struct nxp_fspi *f = dev_get_drvdata(dev); | |
1281 | ||
1282 | nxp_fspi_default_setup(f); | |
1283 | ||
1284 | return 0; | |
1285 | } | |
1286 | ||
1287 | static const struct of_device_id nxp_fspi_dt_ids[] = { | |
1288 | { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, | |
941be8a7 | 1289 | { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, |
0467a973 | 1290 | { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, }, |
941be8a7 | 1291 | { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, |
c791e3c3 | 1292 | { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, }, |
a5356aef YNG |
1293 | { /* sentinel */ } |
1294 | }; | |
1295 | MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); | |
1296 | ||
55ab8487 | 1297 | #ifdef CONFIG_ACPI |
1298 | static const struct acpi_device_id nxp_fspi_acpi_ids[] = { | |
1299 | { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, }, | |
1300 | {} | |
1301 | }; | |
1302 | MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); | |
1303 | #endif | |
1304 | ||
a5356aef YNG |
1305 | static const struct dev_pm_ops nxp_fspi_pm_ops = { |
1306 | .suspend = nxp_fspi_suspend, | |
1307 | .resume = nxp_fspi_resume, | |
1308 | }; | |
1309 | ||
1310 | static struct platform_driver nxp_fspi_driver = { | |
1311 | .driver = { | |
1312 | .name = "nxp-fspi", | |
1313 | .of_match_table = nxp_fspi_dt_ids, | |
55ab8487 | 1314 | .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), |
a5356aef YNG |
1315 | .pm = &nxp_fspi_pm_ops, |
1316 | }, | |
1317 | .probe = nxp_fspi_probe, | |
2dd82e32 | 1318 | .remove_new = nxp_fspi_remove, |
a5356aef YNG |
1319 | }; |
1320 | module_platform_driver(nxp_fspi_driver); | |
1321 | ||
1322 | MODULE_DESCRIPTION("NXP FSPI Controller Driver"); | |
1323 | MODULE_AUTHOR("NXP Semiconductor"); | |
1324 | MODULE_AUTHOR("Yogesh Narayan Gaur <[email protected]>"); | |
ce6f0697 | 1325 | MODULE_AUTHOR("Boris Brezillon <[email protected]>"); |
a5356aef | 1326 | MODULE_AUTHOR("Frieder Schrempf <[email protected]>"); |
ce6f0697 | 1327 | MODULE_LICENSE("GPL v2"); |