]>
Commit | Line | Data |
---|---|---|
a5356aef YNG |
1 | // SPDX-License-Identifier: GPL-2.0+ |
2 | ||
3 | /* | |
4 | * NXP FlexSPI(FSPI) controller driver. | |
5 | * | |
6 | * Copyright 2019 NXP. | |
7 | * | |
8 | * FlexSPI is a flexsible SPI host controller which supports two SPI | |
9 | * channels and up to 4 external devices. Each channel supports | |
10 | * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional | |
11 | * data lines). | |
12 | * | |
13 | * FlexSPI controller is driven by the LUT(Look-up Table) registers | |
14 | * LUT registers are a look-up-table for sequences of instructions. | |
15 | * A valid sequence consists of four LUT registers. | |
16 | * Maximum 32 LUT sequences can be programmed simultaneously. | |
17 | * | |
18 | * LUTs are being created at run-time based on the commands passed | |
19 | * from the spi-mem framework, thus using single LUT index. | |
20 | * | |
21 | * Software triggered Flash read/write access by IP Bus. | |
22 | * | |
23 | * Memory mapped read access by AHB Bus. | |
24 | * | |
25 | * Based on SPI MEM interface and spi-fsl-qspi.c driver. | |
26 | * | |
27 | * Author: | |
28 | * Yogesh Narayan Gaur <[email protected]> | |
ce6f0697 | 29 | * Boris Brezillon <[email protected]> |
a5356aef YNG |
30 | * Frieder Schrempf <[email protected]> |
31 | */ | |
32 | ||
33 | #include <linux/bitops.h> | |
34 | #include <linux/clk.h> | |
35 | #include <linux/completion.h> | |
36 | #include <linux/delay.h> | |
37 | #include <linux/err.h> | |
38 | #include <linux/errno.h> | |
39 | #include <linux/interrupt.h> | |
40 | #include <linux/io.h> | |
41 | #include <linux/iopoll.h> | |
42 | #include <linux/jiffies.h> | |
43 | #include <linux/kernel.h> | |
44 | #include <linux/module.h> | |
45 | #include <linux/mutex.h> | |
46 | #include <linux/of.h> | |
47 | #include <linux/of_device.h> | |
48 | #include <linux/platform_device.h> | |
49 | #include <linux/pm_qos.h> | |
50 | #include <linux/sizes.h> | |
51 | ||
52 | #include <linux/spi/spi.h> | |
53 | #include <linux/spi/spi-mem.h> | |
54 | ||
55 | /* | |
56 | * The driver only uses one single LUT entry, that is updated on | |
57 | * each call of exec_op(). Index 0 is preset at boot with a basic | |
58 | * read operation, so let's use the last entry (31). | |
59 | */ | |
60 | #define SEQID_LUT 31 | |
61 | ||
62 | /* Registers used by the driver */ | |
63 | #define FSPI_MCR0 0x00 | |
64 | #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) | |
65 | #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) | |
66 | #define FSPI_MCR0_LEARN_EN BIT(15) | |
67 | #define FSPI_MCR0_SCRFRUN_EN BIT(14) | |
68 | #define FSPI_MCR0_OCTCOMB_EN BIT(13) | |
69 | #define FSPI_MCR0_DOZE_EN BIT(12) | |
70 | #define FSPI_MCR0_HSEN BIT(11) | |
71 | #define FSPI_MCR0_SERCLKDIV BIT(8) | |
72 | #define FSPI_MCR0_ATDF_EN BIT(7) | |
73 | #define FSPI_MCR0_ARDF_EN BIT(6) | |
74 | #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) | |
75 | #define FSPI_MCR0_END_CFG(x) ((x) << 2) | |
76 | #define FSPI_MCR0_MDIS BIT(1) | |
77 | #define FSPI_MCR0_SWRST BIT(0) | |
78 | ||
79 | #define FSPI_MCR1 0x04 | |
80 | #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) | |
81 | #define FSPI_MCR1_AHB_TIMEOUT(x) (x) | |
82 | ||
83 | #define FSPI_MCR2 0x08 | |
84 | #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) | |
85 | #define FSPI_MCR2_SAMEDEVICEEN BIT(15) | |
86 | #define FSPI_MCR2_CLRLRPHS BIT(14) | |
87 | #define FSPI_MCR2_ABRDATSZ BIT(8) | |
88 | #define FSPI_MCR2_ABRLEARN BIT(7) | |
89 | #define FSPI_MCR2_ABR_READ BIT(6) | |
90 | #define FSPI_MCR2_ABRWRITE BIT(5) | |
91 | #define FSPI_MCR2_ABRDUMMY BIT(4) | |
92 | #define FSPI_MCR2_ABR_MODE BIT(3) | |
93 | #define FSPI_MCR2_ABRCADDR BIT(2) | |
94 | #define FSPI_MCR2_ABRRADDR BIT(1) | |
95 | #define FSPI_MCR2_ABR_CMD BIT(0) | |
96 | ||
97 | #define FSPI_AHBCR 0x0c | |
98 | #define FSPI_AHBCR_RDADDROPT BIT(6) | |
99 | #define FSPI_AHBCR_PREF_EN BIT(5) | |
100 | #define FSPI_AHBCR_BUFF_EN BIT(4) | |
101 | #define FSPI_AHBCR_CACH_EN BIT(3) | |
102 | #define FSPI_AHBCR_CLRTXBUF BIT(2) | |
103 | #define FSPI_AHBCR_CLRRXBUF BIT(1) | |
104 | #define FSPI_AHBCR_PAR_EN BIT(0) | |
105 | ||
106 | #define FSPI_INTEN 0x10 | |
107 | #define FSPI_INTEN_SCLKSBWR BIT(9) | |
108 | #define FSPI_INTEN_SCLKSBRD BIT(8) | |
109 | #define FSPI_INTEN_DATALRNFL BIT(7) | |
110 | #define FSPI_INTEN_IPTXWE BIT(6) | |
111 | #define FSPI_INTEN_IPRXWA BIT(5) | |
112 | #define FSPI_INTEN_AHBCMDERR BIT(4) | |
113 | #define FSPI_INTEN_IPCMDERR BIT(3) | |
114 | #define FSPI_INTEN_AHBCMDGE BIT(2) | |
115 | #define FSPI_INTEN_IPCMDGE BIT(1) | |
116 | #define FSPI_INTEN_IPCMDDONE BIT(0) | |
117 | ||
118 | #define FSPI_INTR 0x14 | |
119 | #define FSPI_INTR_SCLKSBWR BIT(9) | |
120 | #define FSPI_INTR_SCLKSBRD BIT(8) | |
121 | #define FSPI_INTR_DATALRNFL BIT(7) | |
122 | #define FSPI_INTR_IPTXWE BIT(6) | |
123 | #define FSPI_INTR_IPRXWA BIT(5) | |
124 | #define FSPI_INTR_AHBCMDERR BIT(4) | |
125 | #define FSPI_INTR_IPCMDERR BIT(3) | |
126 | #define FSPI_INTR_AHBCMDGE BIT(2) | |
127 | #define FSPI_INTR_IPCMDGE BIT(1) | |
128 | #define FSPI_INTR_IPCMDDONE BIT(0) | |
129 | ||
130 | #define FSPI_LUTKEY 0x18 | |
131 | #define FSPI_LUTKEY_VALUE 0x5AF05AF0 | |
132 | ||
133 | #define FSPI_LCKCR 0x1C | |
134 | ||
135 | #define FSPI_LCKER_LOCK 0x1 | |
136 | #define FSPI_LCKER_UNLOCK 0x2 | |
137 | ||
138 | #define FSPI_BUFXCR_INVALID_MSTRID 0xE | |
139 | #define FSPI_AHBRX_BUF0CR0 0x20 | |
140 | #define FSPI_AHBRX_BUF1CR0 0x24 | |
141 | #define FSPI_AHBRX_BUF2CR0 0x28 | |
142 | #define FSPI_AHBRX_BUF3CR0 0x2C | |
143 | #define FSPI_AHBRX_BUF4CR0 0x30 | |
144 | #define FSPI_AHBRX_BUF5CR0 0x34 | |
145 | #define FSPI_AHBRX_BUF6CR0 0x38 | |
146 | #define FSPI_AHBRX_BUF7CR0 0x3C | |
147 | #define FSPI_AHBRXBUF0CR7_PREF BIT(31) | |
148 | ||
149 | #define FSPI_AHBRX_BUF0CR1 0x40 | |
150 | #define FSPI_AHBRX_BUF1CR1 0x44 | |
151 | #define FSPI_AHBRX_BUF2CR1 0x48 | |
152 | #define FSPI_AHBRX_BUF3CR1 0x4C | |
153 | #define FSPI_AHBRX_BUF4CR1 0x50 | |
154 | #define FSPI_AHBRX_BUF5CR1 0x54 | |
155 | #define FSPI_AHBRX_BUF6CR1 0x58 | |
156 | #define FSPI_AHBRX_BUF7CR1 0x5C | |
157 | ||
158 | #define FSPI_FLSHA1CR0 0x60 | |
159 | #define FSPI_FLSHA2CR0 0x64 | |
160 | #define FSPI_FLSHB1CR0 0x68 | |
161 | #define FSPI_FLSHB2CR0 0x6C | |
162 | #define FSPI_FLSHXCR0_SZ_KB 10 | |
163 | #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) | |
164 | ||
165 | #define FSPI_FLSHA1CR1 0x70 | |
166 | #define FSPI_FLSHA2CR1 0x74 | |
167 | #define FSPI_FLSHB1CR1 0x78 | |
168 | #define FSPI_FLSHB2CR1 0x7C | |
169 | #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) | |
170 | #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) | |
171 | #define FSPI_FLSHXCR1_WA BIT(10) | |
172 | #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) | |
173 | #define FSPI_FLSHXCR1_TCSS(x) (x) | |
174 | ||
175 | #define FSPI_FLSHA1CR2 0x80 | |
176 | #define FSPI_FLSHA2CR2 0x84 | |
177 | #define FSPI_FLSHB1CR2 0x88 | |
178 | #define FSPI_FLSHB2CR2 0x8C | |
179 | #define FSPI_FLSHXCR2_CLRINSP BIT(24) | |
180 | #define FSPI_FLSHXCR2_AWRWAIT BIT(16) | |
181 | #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 | |
182 | #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 | |
183 | #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 | |
184 | #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 | |
185 | ||
186 | #define FSPI_IPCR0 0xA0 | |
187 | ||
188 | #define FSPI_IPCR1 0xA4 | |
189 | #define FSPI_IPCR1_IPAREN BIT(31) | |
190 | #define FSPI_IPCR1_SEQNUM_SHIFT 24 | |
191 | #define FSPI_IPCR1_SEQID_SHIFT 16 | |
192 | #define FSPI_IPCR1_IDATSZ(x) (x) | |
193 | ||
194 | #define FSPI_IPCMD 0xB0 | |
195 | #define FSPI_IPCMD_TRG BIT(0) | |
196 | ||
197 | #define FSPI_DLPR 0xB4 | |
198 | ||
199 | #define FSPI_IPRXFCR 0xB8 | |
200 | #define FSPI_IPRXFCR_CLR BIT(0) | |
201 | #define FSPI_IPRXFCR_DMA_EN BIT(1) | |
202 | #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) | |
203 | ||
204 | #define FSPI_IPTXFCR 0xBC | |
205 | #define FSPI_IPTXFCR_CLR BIT(0) | |
206 | #define FSPI_IPTXFCR_DMA_EN BIT(1) | |
207 | #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) | |
208 | ||
209 | #define FSPI_DLLACR 0xC0 | |
210 | #define FSPI_DLLACR_OVRDEN BIT(8) | |
211 | ||
212 | #define FSPI_DLLBCR 0xC4 | |
213 | #define FSPI_DLLBCR_OVRDEN BIT(8) | |
214 | ||
215 | #define FSPI_STS0 0xE0 | |
216 | #define FSPI_STS0_DLPHB(x) ((x) << 8) | |
217 | #define FSPI_STS0_DLPHA(x) ((x) << 4) | |
218 | #define FSPI_STS0_CMD_SRC(x) ((x) << 2) | |
219 | #define FSPI_STS0_ARB_IDLE BIT(1) | |
220 | #define FSPI_STS0_SEQ_IDLE BIT(0) | |
221 | ||
222 | #define FSPI_STS1 0xE4 | |
223 | #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) | |
224 | #define FSPI_STS1_IP_ERRID(x) ((x) << 16) | |
225 | #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) | |
226 | #define FSPI_STS1_AHB_ERRID(x) (x) | |
227 | ||
228 | #define FSPI_AHBSPNST 0xEC | |
229 | #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) | |
230 | #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) | |
231 | #define FSPI_AHBSPNST_ACTIVE BIT(0) | |
232 | ||
233 | #define FSPI_IPRXFSTS 0xF0 | |
234 | #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) | |
235 | #define FSPI_IPRXFSTS_FILL(x) (x) | |
236 | ||
237 | #define FSPI_IPTXFSTS 0xF4 | |
238 | #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) | |
239 | #define FSPI_IPTXFSTS_FILL(x) (x) | |
240 | ||
241 | #define FSPI_RFDR 0x100 | |
242 | #define FSPI_TFDR 0x180 | |
243 | ||
244 | #define FSPI_LUT_BASE 0x200 | |
245 | #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) | |
246 | #define FSPI_LUT_REG(idx) \ | |
247 | (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) | |
248 | ||
249 | /* register map end */ | |
250 | ||
251 | /* Instruction set for the LUT register. */ | |
252 | #define LUT_STOP 0x00 | |
253 | #define LUT_CMD 0x01 | |
254 | #define LUT_ADDR 0x02 | |
255 | #define LUT_CADDR_SDR 0x03 | |
256 | #define LUT_MODE 0x04 | |
257 | #define LUT_MODE2 0x05 | |
258 | #define LUT_MODE4 0x06 | |
259 | #define LUT_MODE8 0x07 | |
260 | #define LUT_NXP_WRITE 0x08 | |
261 | #define LUT_NXP_READ 0x09 | |
262 | #define LUT_LEARN_SDR 0x0A | |
263 | #define LUT_DATSZ_SDR 0x0B | |
264 | #define LUT_DUMMY 0x0C | |
265 | #define LUT_DUMMY_RWDS_SDR 0x0D | |
266 | #define LUT_JMP_ON_CS 0x1F | |
267 | #define LUT_CMD_DDR 0x21 | |
268 | #define LUT_ADDR_DDR 0x22 | |
269 | #define LUT_CADDR_DDR 0x23 | |
270 | #define LUT_MODE_DDR 0x24 | |
271 | #define LUT_MODE2_DDR 0x25 | |
272 | #define LUT_MODE4_DDR 0x26 | |
273 | #define LUT_MODE8_DDR 0x27 | |
274 | #define LUT_WRITE_DDR 0x28 | |
275 | #define LUT_READ_DDR 0x29 | |
276 | #define LUT_LEARN_DDR 0x2A | |
277 | #define LUT_DATSZ_DDR 0x2B | |
278 | #define LUT_DUMMY_DDR 0x2C | |
279 | #define LUT_DUMMY_RWDS_DDR 0x2D | |
280 | ||
281 | /* | |
282 | * Calculate number of required PAD bits for LUT register. | |
283 | * | |
284 | * The pad stands for the number of IO lines [0:7]. | |
285 | * For example, the octal read needs eight IO lines, | |
286 | * so you should use LUT_PAD(8). This macro | |
287 | * returns 3 i.e. use eight (2^3) IP lines for read. | |
288 | */ | |
289 | #define LUT_PAD(x) (fls(x) - 1) | |
290 | ||
291 | /* | |
292 | * Macro for constructing the LUT entries with the following | |
293 | * register layout: | |
294 | * | |
295 | * --------------------------------------------------- | |
296 | * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | | |
297 | * --------------------------------------------------- | |
298 | */ | |
299 | #define PAD_SHIFT 8 | |
300 | #define INSTR_SHIFT 10 | |
301 | #define OPRND_SHIFT 16 | |
302 | ||
303 | /* Macros for constructing the LUT register. */ | |
304 | #define LUT_DEF(idx, ins, pad, opr) \ | |
305 | ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ | |
306 | (opr)) << (((idx) % 2) * OPRND_SHIFT)) | |
307 | ||
308 | #define POLL_TOUT 5000 | |
309 | #define NXP_FSPI_MAX_CHIPSELECT 4 | |
310 | ||
311 | struct nxp_fspi_devtype_data { | |
312 | unsigned int rxfifo; | |
313 | unsigned int txfifo; | |
314 | unsigned int ahb_buf_size; | |
315 | unsigned int quirks; | |
316 | bool little_endian; | |
317 | }; | |
318 | ||
319 | static const struct nxp_fspi_devtype_data lx2160a_data = { | |
320 | .rxfifo = SZ_512, /* (64 * 64 bits) */ | |
321 | .txfifo = SZ_1K, /* (128 * 64 bits) */ | |
322 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ | |
323 | .quirks = 0, | |
324 | .little_endian = true, /* little-endian */ | |
325 | }; | |
326 | ||
327 | struct nxp_fspi { | |
328 | void __iomem *iobase; | |
329 | void __iomem *ahb_addr; | |
330 | u32 memmap_phy; | |
331 | u32 memmap_phy_size; | |
332 | struct clk *clk, *clk_en; | |
333 | struct device *dev; | |
334 | struct completion c; | |
335 | const struct nxp_fspi_devtype_data *devtype_data; | |
336 | struct mutex lock; | |
337 | struct pm_qos_request pm_qos_req; | |
338 | int selected; | |
339 | }; | |
340 | ||
341 | /* | |
342 | * R/W functions for big- or little-endian registers: | |
343 | * The FSPI controller's endianness is independent of | |
344 | * the CPU core's endianness. So far, although the CPU | |
345 | * core is little-endian the FSPI controller can use | |
346 | * big-endian or little-endian. | |
347 | */ | |
348 | static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) | |
349 | { | |
350 | if (f->devtype_data->little_endian) | |
351 | iowrite32(val, addr); | |
352 | else | |
353 | iowrite32be(val, addr); | |
354 | } | |
355 | ||
356 | static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) | |
357 | { | |
358 | if (f->devtype_data->little_endian) | |
359 | return ioread32(addr); | |
360 | else | |
361 | return ioread32be(addr); | |
362 | } | |
363 | ||
364 | static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) | |
365 | { | |
366 | struct nxp_fspi *f = dev_id; | |
367 | u32 reg; | |
368 | ||
369 | /* clear interrupt */ | |
370 | reg = fspi_readl(f, f->iobase + FSPI_INTR); | |
371 | fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); | |
372 | ||
373 | if (reg & FSPI_INTR_IPCMDDONE) | |
374 | complete(&f->c); | |
375 | ||
376 | return IRQ_HANDLED; | |
377 | } | |
378 | ||
379 | static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) | |
380 | { | |
381 | switch (width) { | |
382 | case 1: | |
383 | case 2: | |
384 | case 4: | |
385 | case 8: | |
386 | return 0; | |
387 | } | |
388 | ||
389 | return -ENOTSUPP; | |
390 | } | |
391 | ||
392 | static bool nxp_fspi_supports_op(struct spi_mem *mem, | |
393 | const struct spi_mem_op *op) | |
394 | { | |
395 | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); | |
396 | int ret; | |
397 | ||
398 | ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); | |
399 | ||
400 | if (op->addr.nbytes) | |
401 | ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); | |
402 | ||
403 | if (op->dummy.nbytes) | |
404 | ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); | |
405 | ||
406 | if (op->data.nbytes) | |
407 | ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); | |
408 | ||
409 | if (ret) | |
410 | return false; | |
411 | ||
412 | /* | |
413 | * The number of address bytes should be equal to or less than 4 bytes. | |
414 | */ | |
415 | if (op->addr.nbytes > 4) | |
416 | return false; | |
417 | ||
418 | /* | |
419 | * If requested address value is greater than controller assigned | |
420 | * memory mapped space, return error as it didn't fit in the range | |
421 | * of assigned address space. | |
422 | */ | |
423 | if (op->addr.val >= f->memmap_phy_size) | |
424 | return false; | |
425 | ||
426 | /* Max 64 dummy clock cycles supported */ | |
427 | if (op->dummy.buswidth && | |
428 | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) | |
429 | return false; | |
430 | ||
431 | /* Max data length, check controller limits and alignment */ | |
432 | if (op->data.dir == SPI_MEM_DATA_IN && | |
433 | (op->data.nbytes > f->devtype_data->ahb_buf_size || | |
434 | (op->data.nbytes > f->devtype_data->rxfifo - 4 && | |
435 | !IS_ALIGNED(op->data.nbytes, 8)))) | |
436 | return false; | |
437 | ||
438 | if (op->data.dir == SPI_MEM_DATA_OUT && | |
439 | op->data.nbytes > f->devtype_data->txfifo) | |
440 | return false; | |
441 | ||
442 | return true; | |
443 | } | |
444 | ||
445 | /* Instead of busy looping invoke readl_poll_timeout functionality. */ | |
446 | static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, | |
447 | u32 mask, u32 delay_us, | |
448 | u32 timeout_us, bool c) | |
449 | { | |
450 | u32 reg; | |
451 | ||
452 | if (!f->devtype_data->little_endian) | |
453 | mask = (u32)cpu_to_be32(mask); | |
454 | ||
455 | if (c) | |
456 | return readl_poll_timeout(base, reg, (reg & mask), | |
457 | delay_us, timeout_us); | |
458 | else | |
459 | return readl_poll_timeout(base, reg, !(reg & mask), | |
460 | delay_us, timeout_us); | |
461 | } | |
462 | ||
463 | /* | |
464 | * If the slave device content being changed by Write/Erase, need to | |
465 | * invalidate the AHB buffer. This can be achieved by doing the reset | |
466 | * of controller after setting MCR0[SWRESET] bit. | |
467 | */ | |
468 | static inline void nxp_fspi_invalid(struct nxp_fspi *f) | |
469 | { | |
470 | u32 reg; | |
471 | int ret; | |
472 | ||
473 | reg = fspi_readl(f, f->iobase + FSPI_MCR0); | |
474 | fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); | |
475 | ||
476 | /* w1c register, wait unit clear */ | |
477 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | |
478 | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | |
479 | WARN_ON(ret); | |
480 | } | |
481 | ||
482 | static void nxp_fspi_prepare_lut(struct nxp_fspi *f, | |
483 | const struct spi_mem_op *op) | |
484 | { | |
485 | void __iomem *base = f->iobase; | |
486 | u32 lutval[4] = {}; | |
487 | int lutidx = 1, i; | |
488 | ||
489 | /* cmd */ | |
490 | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), | |
491 | op->cmd.opcode); | |
492 | ||
493 | /* addr bytes */ | |
494 | if (op->addr.nbytes) { | |
495 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, | |
496 | LUT_PAD(op->addr.buswidth), | |
497 | op->addr.nbytes * 8); | |
498 | lutidx++; | |
499 | } | |
500 | ||
501 | /* dummy bytes, if needed */ | |
502 | if (op->dummy.nbytes) { | |
503 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, | |
504 | /* | |
505 | * Due to FlexSPI controller limitation number of PAD for dummy | |
506 | * buswidth needs to be programmed as equal to data buswidth. | |
507 | */ | |
508 | LUT_PAD(op->data.buswidth), | |
509 | op->dummy.nbytes * 8 / | |
510 | op->dummy.buswidth); | |
511 | lutidx++; | |
512 | } | |
513 | ||
514 | /* read/write data bytes */ | |
515 | if (op->data.nbytes) { | |
516 | lutval[lutidx / 2] |= LUT_DEF(lutidx, | |
517 | op->data.dir == SPI_MEM_DATA_IN ? | |
518 | LUT_NXP_READ : LUT_NXP_WRITE, | |
519 | LUT_PAD(op->data.buswidth), | |
520 | 0); | |
521 | lutidx++; | |
522 | } | |
523 | ||
524 | /* stop condition. */ | |
525 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); | |
526 | ||
527 | /* unlock LUT */ | |
528 | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | |
529 | fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); | |
530 | ||
531 | /* fill LUT */ | |
532 | for (i = 0; i < ARRAY_SIZE(lutval); i++) | |
533 | fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); | |
534 | ||
535 | dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", | |
536 | op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); | |
537 | ||
538 | /* lock LUT */ | |
539 | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | |
540 | fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); | |
541 | } | |
542 | ||
543 | static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) | |
544 | { | |
545 | int ret; | |
546 | ||
547 | ret = clk_prepare_enable(f->clk_en); | |
548 | if (ret) | |
549 | return ret; | |
550 | ||
551 | ret = clk_prepare_enable(f->clk); | |
552 | if (ret) { | |
553 | clk_disable_unprepare(f->clk_en); | |
554 | return ret; | |
555 | } | |
556 | ||
557 | return 0; | |
558 | } | |
559 | ||
560 | static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) | |
561 | { | |
562 | clk_disable_unprepare(f->clk); | |
563 | clk_disable_unprepare(f->clk_en); | |
564 | } | |
565 | ||
566 | /* | |
567 | * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 | |
568 | * register and start base address of the slave device. | |
569 | * | |
570 | * (Higher address) | |
571 | * -------- <-- FLSHB2CR0 | |
572 | * | B2 | | |
573 | * | | | |
574 | * B2 start address --> -------- <-- FLSHB1CR0 | |
575 | * | B1 | | |
576 | * | | | |
577 | * B1 start address --> -------- <-- FLSHA2CR0 | |
578 | * | A2 | | |
579 | * | | | |
580 | * A2 start address --> -------- <-- FLSHA1CR0 | |
581 | * | A1 | | |
582 | * | | | |
583 | * A1 start address --> -------- (Lower address) | |
584 | * | |
585 | * | |
586 | * Start base address defines the starting address range for given CS and | |
587 | * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. | |
588 | * | |
589 | * But, different targets are having different combinations of number of CS, | |
590 | * some targets only have single CS or two CS covering controller's full | |
591 | * memory mapped space area. | |
592 | * Thus, implementation is being done as independent of the size and number | |
593 | * of the connected slave device. | |
594 | * Assign controller memory mapped space size as the size to the connected | |
595 | * slave device. | |
596 | * Mark FLSHxxCR0 as zero initially and then assign value only to the selected | |
597 | * chip-select Flash configuration register. | |
598 | * | |
599 | * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the | |
600 | * memory mapped size of the controller. | |
601 | * Value for rest of the CS FLSHxxCR0 register would be zero. | |
602 | * | |
603 | */ | |
604 | static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) | |
605 | { | |
606 | unsigned long rate = spi->max_speed_hz; | |
607 | int ret; | |
608 | uint64_t size_kb; | |
609 | ||
610 | /* | |
611 | * Return, if previously selected slave device is same as current | |
612 | * requested slave device. | |
613 | */ | |
614 | if (f->selected == spi->chip_select) | |
615 | return; | |
616 | ||
617 | /* Reset FLSHxxCR0 registers */ | |
618 | fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); | |
619 | fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); | |
620 | fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); | |
621 | fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); | |
622 | ||
623 | /* Assign controller memory mapped space as size, KBytes, of flash. */ | |
624 | size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); | |
625 | ||
626 | fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + | |
627 | 4 * spi->chip_select); | |
628 | ||
629 | dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select); | |
630 | ||
631 | nxp_fspi_clk_disable_unprep(f); | |
632 | ||
633 | ret = clk_set_rate(f->clk, rate); | |
634 | if (ret) | |
635 | return; | |
636 | ||
637 | ret = nxp_fspi_clk_prep_enable(f); | |
638 | if (ret) | |
639 | return; | |
640 | ||
641 | f->selected = spi->chip_select; | |
642 | } | |
643 | ||
644 | static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) | |
645 | { | |
646 | u32 len = op->data.nbytes; | |
647 | ||
648 | /* Read out the data directly from the AHB buffer. */ | |
649 | memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); | |
650 | } | |
651 | ||
652 | static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, | |
653 | const struct spi_mem_op *op) | |
654 | { | |
655 | void __iomem *base = f->iobase; | |
656 | int i, ret; | |
657 | u8 *buf = (u8 *) op->data.buf.out; | |
658 | ||
659 | /* clear the TX FIFO. */ | |
660 | fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); | |
661 | ||
662 | /* | |
663 | * Default value of water mark level is 8 bytes, hence in single | |
664 | * write request controller can write max 8 bytes of data. | |
665 | */ | |
666 | ||
667 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { | |
668 | /* Wait for TXFIFO empty */ | |
669 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
670 | FSPI_INTR_IPTXWE, 0, | |
671 | POLL_TOUT, true); | |
672 | WARN_ON(ret); | |
673 | ||
674 | fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); | |
675 | fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); | |
676 | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | |
677 | } | |
678 | ||
679 | if (i < op->data.nbytes) { | |
680 | u32 data = 0; | |
681 | int j; | |
682 | /* Wait for TXFIFO empty */ | |
683 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
684 | FSPI_INTR_IPTXWE, 0, | |
685 | POLL_TOUT, true); | |
686 | WARN_ON(ret); | |
687 | ||
688 | for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { | |
689 | memcpy(&data, buf + i + j, 4); | |
690 | fspi_writel(f, data, base + FSPI_TFDR + j); | |
691 | } | |
692 | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | |
693 | } | |
694 | } | |
695 | ||
696 | static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, | |
697 | const struct spi_mem_op *op) | |
698 | { | |
699 | void __iomem *base = f->iobase; | |
700 | int i, ret; | |
701 | int len = op->data.nbytes; | |
702 | u8 *buf = (u8 *) op->data.buf.in; | |
703 | ||
704 | /* | |
705 | * Default value of water mark level is 8 bytes, hence in single | |
706 | * read request controller can read max 8 bytes of data. | |
707 | */ | |
708 | for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { | |
709 | /* Wait for RXFIFO available */ | |
710 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
711 | FSPI_INTR_IPRXWA, 0, | |
712 | POLL_TOUT, true); | |
713 | WARN_ON(ret); | |
714 | ||
715 | *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); | |
716 | *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); | |
717 | /* move the FIFO pointer */ | |
718 | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | |
719 | } | |
720 | ||
721 | if (i < len) { | |
722 | u32 tmp; | |
723 | int size, j; | |
724 | ||
725 | buf = op->data.buf.in + i; | |
726 | /* Wait for RXFIFO available */ | |
727 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
728 | FSPI_INTR_IPRXWA, 0, | |
729 | POLL_TOUT, true); | |
730 | WARN_ON(ret); | |
731 | ||
732 | len = op->data.nbytes - i; | |
733 | for (j = 0; j < op->data.nbytes - i; j += 4) { | |
734 | tmp = fspi_readl(f, base + FSPI_RFDR + j); | |
735 | size = min(len, 4); | |
736 | memcpy(buf + j, &tmp, size); | |
737 | len -= size; | |
738 | } | |
739 | } | |
740 | ||
741 | /* invalid the RXFIFO */ | |
742 | fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); | |
743 | /* move the FIFO pointer */ | |
744 | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | |
745 | } | |
746 | ||
747 | static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) | |
748 | { | |
749 | void __iomem *base = f->iobase; | |
750 | int seqnum = 0; | |
751 | int err = 0; | |
752 | u32 reg; | |
753 | ||
754 | reg = fspi_readl(f, base + FSPI_IPRXFCR); | |
755 | /* invalid RXFIFO first */ | |
756 | reg &= ~FSPI_IPRXFCR_DMA_EN; | |
757 | reg = reg | FSPI_IPRXFCR_CLR; | |
758 | fspi_writel(f, reg, base + FSPI_IPRXFCR); | |
759 | ||
760 | init_completion(&f->c); | |
761 | ||
762 | fspi_writel(f, op->addr.val, base + FSPI_IPCR0); | |
763 | /* | |
764 | * Always start the sequence at the same index since we update | |
765 | * the LUT at each exec_op() call. And also specify the DATA | |
766 | * length, since it's has not been specified in the LUT. | |
767 | */ | |
768 | fspi_writel(f, op->data.nbytes | | |
769 | (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | | |
770 | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), | |
771 | base + FSPI_IPCR1); | |
772 | ||
773 | /* Trigger the LUT now. */ | |
774 | fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); | |
775 | ||
776 | /* Wait for the interrupt. */ | |
777 | if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) | |
778 | err = -ETIMEDOUT; | |
779 | ||
780 | /* Invoke IP data read, if request is of data read. */ | |
781 | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) | |
782 | nxp_fspi_read_rxfifo(f, op); | |
783 | ||
784 | return err; | |
785 | } | |
786 | ||
787 | static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) | |
788 | { | |
789 | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); | |
790 | int err = 0; | |
791 | ||
792 | mutex_lock(&f->lock); | |
793 | ||
794 | /* Wait for controller being ready. */ | |
795 | err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, | |
796 | FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); | |
797 | WARN_ON(err); | |
798 | ||
799 | nxp_fspi_select_mem(f, mem->spi); | |
800 | ||
801 | nxp_fspi_prepare_lut(f, op); | |
802 | /* | |
803 | * If we have large chunks of data, we read them through the AHB bus | |
804 | * by accessing the mapped memory. In all other cases we use | |
805 | * IP commands to access the flash. | |
806 | */ | |
807 | if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && | |
808 | op->data.dir == SPI_MEM_DATA_IN) { | |
809 | nxp_fspi_read_ahb(f, op); | |
810 | } else { | |
811 | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) | |
812 | nxp_fspi_fill_txfifo(f, op); | |
813 | ||
814 | err = nxp_fspi_do_op(f, op); | |
815 | } | |
816 | ||
817 | /* Invalidate the data in the AHB buffer. */ | |
818 | nxp_fspi_invalid(f); | |
819 | ||
820 | mutex_unlock(&f->lock); | |
821 | ||
822 | return err; | |
823 | } | |
824 | ||
825 | static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) | |
826 | { | |
827 | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); | |
828 | ||
829 | if (op->data.dir == SPI_MEM_DATA_OUT) { | |
830 | if (op->data.nbytes > f->devtype_data->txfifo) | |
831 | op->data.nbytes = f->devtype_data->txfifo; | |
832 | } else { | |
833 | if (op->data.nbytes > f->devtype_data->ahb_buf_size) | |
834 | op->data.nbytes = f->devtype_data->ahb_buf_size; | |
835 | else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) | |
836 | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); | |
837 | } | |
838 | ||
839 | return 0; | |
840 | } | |
841 | ||
842 | static int nxp_fspi_default_setup(struct nxp_fspi *f) | |
843 | { | |
844 | void __iomem *base = f->iobase; | |
845 | int ret, i; | |
846 | u32 reg; | |
847 | ||
848 | /* disable and unprepare clock to avoid glitch pass to controller */ | |
849 | nxp_fspi_clk_disable_unprep(f); | |
850 | ||
851 | /* the default frequency, we will change it later if necessary. */ | |
852 | ret = clk_set_rate(f->clk, 20000000); | |
853 | if (ret) | |
854 | return ret; | |
855 | ||
856 | ret = nxp_fspi_clk_prep_enable(f); | |
857 | if (ret) | |
858 | return ret; | |
859 | ||
860 | /* Reset the module */ | |
861 | /* w1c register, wait unit clear */ | |
862 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | |
863 | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | |
864 | WARN_ON(ret); | |
865 | ||
866 | /* Disable the module */ | |
867 | fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); | |
868 | ||
869 | /* Reset the DLL register to default value */ | |
870 | fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); | |
871 | fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); | |
872 | ||
873 | /* enable module */ | |
874 | fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF), | |
875 | base + FSPI_MCR0); | |
876 | ||
877 | /* | |
878 | * Disable same device enable bit and configure all slave devices | |
879 | * independently. | |
880 | */ | |
881 | reg = fspi_readl(f, f->iobase + FSPI_MCR2); | |
882 | reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); | |
883 | fspi_writel(f, reg, base + FSPI_MCR2); | |
884 | ||
885 | /* AHB configuration for access buffer 0~7. */ | |
886 | for (i = 0; i < 7; i++) | |
887 | fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); | |
888 | ||
889 | /* | |
890 | * Set ADATSZ with the maximum AHB buffer size to improve the read | |
891 | * performance. | |
892 | */ | |
893 | fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | | |
894 | FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); | |
895 | ||
896 | /* prefetch and no start address alignment limitation */ | |
897 | fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, | |
898 | base + FSPI_AHBCR); | |
899 | ||
900 | /* AHB Read - Set lut sequence ID for all CS. */ | |
901 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); | |
902 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); | |
903 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); | |
904 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); | |
905 | ||
906 | f->selected = -1; | |
907 | ||
908 | /* enable the interrupt */ | |
909 | fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); | |
910 | ||
911 | return 0; | |
912 | } | |
913 | ||
914 | static const char *nxp_fspi_get_name(struct spi_mem *mem) | |
915 | { | |
916 | struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); | |
917 | struct device *dev = &mem->spi->dev; | |
918 | const char *name; | |
919 | ||
920 | // Set custom name derived from the platform_device of the controller. | |
921 | if (of_get_available_child_count(f->dev->of_node) == 1) | |
922 | return dev_name(f->dev); | |
923 | ||
924 | name = devm_kasprintf(dev, GFP_KERNEL, | |
925 | "%s-%d", dev_name(f->dev), | |
926 | mem->spi->chip_select); | |
927 | ||
928 | if (!name) { | |
929 | dev_err(dev, "failed to get memory for custom flash name\n"); | |
930 | return ERR_PTR(-ENOMEM); | |
931 | } | |
932 | ||
933 | return name; | |
934 | } | |
935 | ||
936 | static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { | |
937 | .adjust_op_size = nxp_fspi_adjust_op_size, | |
938 | .supports_op = nxp_fspi_supports_op, | |
939 | .exec_op = nxp_fspi_exec_op, | |
940 | .get_name = nxp_fspi_get_name, | |
941 | }; | |
942 | ||
943 | static int nxp_fspi_probe(struct platform_device *pdev) | |
944 | { | |
945 | struct spi_controller *ctlr; | |
946 | struct device *dev = &pdev->dev; | |
947 | struct device_node *np = dev->of_node; | |
948 | struct resource *res; | |
949 | struct nxp_fspi *f; | |
950 | int ret; | |
951 | ||
952 | ctlr = spi_alloc_master(&pdev->dev, sizeof(*f)); | |
953 | if (!ctlr) | |
954 | return -ENOMEM; | |
955 | ||
b3281794 YNG |
956 | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | |
957 | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; | |
a5356aef YNG |
958 | |
959 | f = spi_controller_get_devdata(ctlr); | |
960 | f->dev = dev; | |
961 | f->devtype_data = of_device_get_match_data(dev); | |
962 | if (!f->devtype_data) { | |
963 | ret = -ENODEV; | |
964 | goto err_put_ctrl; | |
965 | } | |
966 | ||
967 | platform_set_drvdata(pdev, f); | |
968 | ||
969 | /* find the resources - configuration register address space */ | |
970 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base"); | |
971 | f->iobase = devm_ioremap_resource(dev, res); | |
972 | if (IS_ERR(f->iobase)) { | |
973 | ret = PTR_ERR(f->iobase); | |
974 | goto err_put_ctrl; | |
975 | } | |
976 | ||
977 | /* find the resources - controller memory mapped space */ | |
978 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap"); | |
979 | f->ahb_addr = devm_ioremap_resource(dev, res); | |
980 | if (IS_ERR(f->ahb_addr)) { | |
981 | ret = PTR_ERR(f->ahb_addr); | |
982 | goto err_put_ctrl; | |
983 | } | |
984 | ||
985 | /* assign memory mapped starting address and mapped size. */ | |
986 | f->memmap_phy = res->start; | |
987 | f->memmap_phy_size = resource_size(res); | |
988 | ||
989 | /* find the clocks */ | |
990 | f->clk_en = devm_clk_get(dev, "fspi_en"); | |
991 | if (IS_ERR(f->clk_en)) { | |
992 | ret = PTR_ERR(f->clk_en); | |
993 | goto err_put_ctrl; | |
994 | } | |
995 | ||
996 | f->clk = devm_clk_get(dev, "fspi"); | |
997 | if (IS_ERR(f->clk)) { | |
998 | ret = PTR_ERR(f->clk); | |
999 | goto err_put_ctrl; | |
1000 | } | |
1001 | ||
1002 | ret = nxp_fspi_clk_prep_enable(f); | |
1003 | if (ret) { | |
1004 | dev_err(dev, "can not enable the clock\n"); | |
1005 | goto err_put_ctrl; | |
1006 | } | |
1007 | ||
1008 | /* find the irq */ | |
1009 | ret = platform_get_irq(pdev, 0); | |
1010 | if (ret < 0) { | |
1011 | dev_err(dev, "failed to get the irq: %d\n", ret); | |
1012 | goto err_disable_clk; | |
1013 | } | |
1014 | ||
1015 | ret = devm_request_irq(dev, ret, | |
1016 | nxp_fspi_irq_handler, 0, pdev->name, f); | |
1017 | if (ret) { | |
1018 | dev_err(dev, "failed to request irq: %d\n", ret); | |
1019 | goto err_disable_clk; | |
1020 | } | |
1021 | ||
1022 | mutex_init(&f->lock); | |
1023 | ||
1024 | ctlr->bus_num = -1; | |
1025 | ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; | |
1026 | ctlr->mem_ops = &nxp_fspi_mem_ops; | |
1027 | ||
1028 | nxp_fspi_default_setup(f); | |
1029 | ||
1030 | ctlr->dev.of_node = np; | |
1031 | ||
1032 | ret = spi_register_controller(ctlr); | |
1033 | if (ret) | |
1034 | goto err_destroy_mutex; | |
1035 | ||
1036 | return 0; | |
1037 | ||
1038 | err_destroy_mutex: | |
1039 | mutex_destroy(&f->lock); | |
1040 | ||
1041 | err_disable_clk: | |
1042 | nxp_fspi_clk_disable_unprep(f); | |
1043 | ||
1044 | err_put_ctrl: | |
1045 | spi_controller_put(ctlr); | |
1046 | ||
1047 | dev_err(dev, "NXP FSPI probe failed\n"); | |
1048 | return ret; | |
1049 | } | |
1050 | ||
1051 | static int nxp_fspi_remove(struct platform_device *pdev) | |
1052 | { | |
1053 | struct nxp_fspi *f = platform_get_drvdata(pdev); | |
1054 | ||
1055 | /* disable the hardware */ | |
1056 | fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); | |
1057 | ||
1058 | nxp_fspi_clk_disable_unprep(f); | |
1059 | ||
1060 | mutex_destroy(&f->lock); | |
1061 | ||
1062 | return 0; | |
1063 | } | |
1064 | ||
1065 | static int nxp_fspi_suspend(struct device *dev) | |
1066 | { | |
1067 | return 0; | |
1068 | } | |
1069 | ||
1070 | static int nxp_fspi_resume(struct device *dev) | |
1071 | { | |
1072 | struct nxp_fspi *f = dev_get_drvdata(dev); | |
1073 | ||
1074 | nxp_fspi_default_setup(f); | |
1075 | ||
1076 | return 0; | |
1077 | } | |
1078 | ||
1079 | static const struct of_device_id nxp_fspi_dt_ids[] = { | |
1080 | { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, | |
1081 | { /* sentinel */ } | |
1082 | }; | |
1083 | MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); | |
1084 | ||
1085 | static const struct dev_pm_ops nxp_fspi_pm_ops = { | |
1086 | .suspend = nxp_fspi_suspend, | |
1087 | .resume = nxp_fspi_resume, | |
1088 | }; | |
1089 | ||
1090 | static struct platform_driver nxp_fspi_driver = { | |
1091 | .driver = { | |
1092 | .name = "nxp-fspi", | |
1093 | .of_match_table = nxp_fspi_dt_ids, | |
1094 | .pm = &nxp_fspi_pm_ops, | |
1095 | }, | |
1096 | .probe = nxp_fspi_probe, | |
1097 | .remove = nxp_fspi_remove, | |
1098 | }; | |
1099 | module_platform_driver(nxp_fspi_driver); | |
1100 | ||
1101 | MODULE_DESCRIPTION("NXP FSPI Controller Driver"); | |
1102 | MODULE_AUTHOR("NXP Semiconductor"); | |
1103 | MODULE_AUTHOR("Yogesh Narayan Gaur <[email protected]>"); | |
ce6f0697 | 1104 | MODULE_AUTHOR("Boris Brezillon <[email protected]>"); |
a5356aef | 1105 | MODULE_AUTHOR("Frieder Schrempf <[email protected]>"); |
ce6f0697 | 1106 | MODULE_LICENSE("GPL v2"); |