]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX | |
3 | * operating system. INET is implemented using the BSD Socket | |
4 | * interface as the means of communication with the user level. | |
5 | * | |
6 | * Implementation of the Transmission Control Protocol(TCP). | |
7 | * | |
8 | * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ | |
9 | * | |
10 | * Authors: Ross Biro, <[email protected]> | |
11 | * Fred N. van Kempen, <[email protected]> | |
12 | * Mark Evans, <[email protected]> | |
13 | * Corey Minyard <[email protected]> | |
14 | * Florian La Roche, <[email protected]> | |
15 | * Charles Hedrick, <[email protected]> | |
16 | * Linus Torvalds, <[email protected]> | |
17 | * Alan Cox, <[email protected]> | |
18 | * Matthew Dillon, <[email protected]> | |
19 | * Arnt Gulbrandsen, <[email protected]> | |
20 | * Jorge Cwik, <[email protected]> | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Changes: Pedro Roque : Retransmit queue handled by TCP. | |
25 | * : Fragmentation on mtu decrease | |
26 | * : Segment collapse on retransmit | |
27 | * : AF independence | |
28 | * | |
29 | * Linus Torvalds : send_delayed_ack | |
30 | * David S. Miller : Charge memory using the right skb | |
31 | * during syn/ack processing. | |
32 | * David S. Miller : Output engine completely rewritten. | |
33 | * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. | |
34 | * Cacophonix Gaul : draft-minshall-nagle-01 | |
35 | * J Hadi Salim : ECN support | |
36 | * | |
37 | */ | |
38 | ||
39 | #include <net/tcp.h> | |
40 | ||
41 | #include <linux/compiler.h> | |
42 | #include <linux/module.h> | |
43 | #include <linux/smp_lock.h> | |
44 | ||
45 | /* People can turn this off for buggy TCP's found in printers etc. */ | |
46 | int sysctl_tcp_retrans_collapse = 1; | |
47 | ||
48 | /* This limits the percentage of the congestion window which we | |
49 | * will allow a single TSO frame to consume. Building TSO frames | |
50 | * which are too large can cause TCP streams to be bursty. | |
51 | */ | |
52 | int sysctl_tcp_tso_win_divisor = 8; | |
53 | ||
54 | static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, | |
55 | struct sk_buff *skb) | |
56 | { | |
57 | sk->sk_send_head = skb->next; | |
58 | if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) | |
59 | sk->sk_send_head = NULL; | |
60 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | |
61 | tcp_packets_out_inc(sk, tp, skb); | |
62 | } | |
63 | ||
64 | /* SND.NXT, if window was not shrunk. | |
65 | * If window has been shrunk, what should we make? It is not clear at all. | |
66 | * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( | |
67 | * Anything in between SND.UNA...SND.UNA+SND.WND also can be already | |
68 | * invalid. OK, let's make this for now: | |
69 | */ | |
70 | static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) | |
71 | { | |
72 | if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) | |
73 | return tp->snd_nxt; | |
74 | else | |
75 | return tp->snd_una+tp->snd_wnd; | |
76 | } | |
77 | ||
78 | /* Calculate mss to advertise in SYN segment. | |
79 | * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: | |
80 | * | |
81 | * 1. It is independent of path mtu. | |
82 | * 2. Ideally, it is maximal possible segment size i.e. 65535-40. | |
83 | * 3. For IPv4 it is reasonable to calculate it from maximal MTU of | |
84 | * attached devices, because some buggy hosts are confused by | |
85 | * large MSS. | |
86 | * 4. We do not make 3, we advertise MSS, calculated from first | |
87 | * hop device mtu, but allow to raise it to ip_rt_min_advmss. | |
88 | * This may be overridden via information stored in routing table. | |
89 | * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, | |
90 | * probably even Jumbo". | |
91 | */ | |
92 | static __u16 tcp_advertise_mss(struct sock *sk) | |
93 | { | |
94 | struct tcp_sock *tp = tcp_sk(sk); | |
95 | struct dst_entry *dst = __sk_dst_get(sk); | |
96 | int mss = tp->advmss; | |
97 | ||
98 | if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { | |
99 | mss = dst_metric(dst, RTAX_ADVMSS); | |
100 | tp->advmss = mss; | |
101 | } | |
102 | ||
103 | return (__u16)mss; | |
104 | } | |
105 | ||
106 | /* RFC2861. Reset CWND after idle period longer RTO to "restart window". | |
107 | * This is the first part of cwnd validation mechanism. */ | |
108 | static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst) | |
109 | { | |
110 | s32 delta = tcp_time_stamp - tp->lsndtime; | |
111 | u32 restart_cwnd = tcp_init_cwnd(tp, dst); | |
112 | u32 cwnd = tp->snd_cwnd; | |
113 | ||
114 | if (tcp_is_vegas(tp)) | |
115 | tcp_vegas_enable(tp); | |
116 | ||
117 | tp->snd_ssthresh = tcp_current_ssthresh(tp); | |
118 | restart_cwnd = min(restart_cwnd, cwnd); | |
119 | ||
120 | while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd) | |
121 | cwnd >>= 1; | |
122 | tp->snd_cwnd = max(cwnd, restart_cwnd); | |
123 | tp->snd_cwnd_stamp = tcp_time_stamp; | |
124 | tp->snd_cwnd_used = 0; | |
125 | } | |
126 | ||
127 | static inline void tcp_event_data_sent(struct tcp_sock *tp, | |
128 | struct sk_buff *skb, struct sock *sk) | |
129 | { | |
130 | u32 now = tcp_time_stamp; | |
131 | ||
132 | if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto) | |
133 | tcp_cwnd_restart(tp, __sk_dst_get(sk)); | |
134 | ||
135 | tp->lsndtime = now; | |
136 | ||
137 | /* If it is a reply for ato after last received | |
138 | * packet, enter pingpong mode. | |
139 | */ | |
140 | if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato) | |
141 | tp->ack.pingpong = 1; | |
142 | } | |
143 | ||
144 | static __inline__ void tcp_event_ack_sent(struct sock *sk) | |
145 | { | |
146 | struct tcp_sock *tp = tcp_sk(sk); | |
147 | ||
148 | tcp_dec_quickack_mode(tp); | |
149 | tcp_clear_xmit_timer(sk, TCP_TIME_DACK); | |
150 | } | |
151 | ||
152 | /* Determine a window scaling and initial window to offer. | |
153 | * Based on the assumption that the given amount of space | |
154 | * will be offered. Store the results in the tp structure. | |
155 | * NOTE: for smooth operation initial space offering should | |
156 | * be a multiple of mss if possible. We assume here that mss >= 1. | |
157 | * This MUST be enforced by all callers. | |
158 | */ | |
159 | void tcp_select_initial_window(int __space, __u32 mss, | |
160 | __u32 *rcv_wnd, __u32 *window_clamp, | |
161 | int wscale_ok, __u8 *rcv_wscale) | |
162 | { | |
163 | unsigned int space = (__space < 0 ? 0 : __space); | |
164 | ||
165 | /* If no clamp set the clamp to the max possible scaled window */ | |
166 | if (*window_clamp == 0) | |
167 | (*window_clamp) = (65535 << 14); | |
168 | space = min(*window_clamp, space); | |
169 | ||
170 | /* Quantize space offering to a multiple of mss if possible. */ | |
171 | if (space > mss) | |
172 | space = (space / mss) * mss; | |
173 | ||
174 | /* NOTE: offering an initial window larger than 32767 | |
175 | * will break some buggy TCP stacks. We try to be nice. | |
176 | * If we are not window scaling, then this truncates | |
177 | * our initial window offering to 32k. There should also | |
178 | * be a sysctl option to stop being nice. | |
179 | */ | |
180 | (*rcv_wnd) = min(space, MAX_TCP_WINDOW); | |
181 | (*rcv_wscale) = 0; | |
182 | if (wscale_ok) { | |
183 | /* Set window scaling on max possible window | |
184 | * See RFC1323 for an explanation of the limit to 14 | |
185 | */ | |
186 | space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); | |
187 | while (space > 65535 && (*rcv_wscale) < 14) { | |
188 | space >>= 1; | |
189 | (*rcv_wscale)++; | |
190 | } | |
191 | } | |
192 | ||
193 | /* Set initial window to value enough for senders, | |
194 | * following RFC1414. Senders, not following this RFC, | |
195 | * will be satisfied with 2. | |
196 | */ | |
197 | if (mss > (1<<*rcv_wscale)) { | |
198 | int init_cwnd = 4; | |
199 | if (mss > 1460*3) | |
200 | init_cwnd = 2; | |
201 | else if (mss > 1460) | |
202 | init_cwnd = 3; | |
203 | if (*rcv_wnd > init_cwnd*mss) | |
204 | *rcv_wnd = init_cwnd*mss; | |
205 | } | |
206 | ||
207 | /* Set the clamp no higher than max representable value */ | |
208 | (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); | |
209 | } | |
210 | ||
211 | /* Chose a new window to advertise, update state in tcp_sock for the | |
212 | * socket, and return result with RFC1323 scaling applied. The return | |
213 | * value can be stuffed directly into th->window for an outgoing | |
214 | * frame. | |
215 | */ | |
216 | static __inline__ u16 tcp_select_window(struct sock *sk) | |
217 | { | |
218 | struct tcp_sock *tp = tcp_sk(sk); | |
219 | u32 cur_win = tcp_receive_window(tp); | |
220 | u32 new_win = __tcp_select_window(sk); | |
221 | ||
222 | /* Never shrink the offered window */ | |
223 | if(new_win < cur_win) { | |
224 | /* Danger Will Robinson! | |
225 | * Don't update rcv_wup/rcv_wnd here or else | |
226 | * we will not be able to advertise a zero | |
227 | * window in time. --DaveM | |
228 | * | |
229 | * Relax Will Robinson. | |
230 | */ | |
231 | new_win = cur_win; | |
232 | } | |
233 | tp->rcv_wnd = new_win; | |
234 | tp->rcv_wup = tp->rcv_nxt; | |
235 | ||
236 | /* Make sure we do not exceed the maximum possible | |
237 | * scaled window. | |
238 | */ | |
239 | if (!tp->rx_opt.rcv_wscale) | |
240 | new_win = min(new_win, MAX_TCP_WINDOW); | |
241 | else | |
242 | new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); | |
243 | ||
244 | /* RFC1323 scaling applied */ | |
245 | new_win >>= tp->rx_opt.rcv_wscale; | |
246 | ||
247 | /* If we advertise zero window, disable fast path. */ | |
248 | if (new_win == 0) | |
249 | tp->pred_flags = 0; | |
250 | ||
251 | return new_win; | |
252 | } | |
253 | ||
254 | ||
255 | /* This routine actually transmits TCP packets queued in by | |
256 | * tcp_do_sendmsg(). This is used by both the initial | |
257 | * transmission and possible later retransmissions. | |
258 | * All SKB's seen here are completely headerless. It is our | |
259 | * job to build the TCP header, and pass the packet down to | |
260 | * IP so it can do the same plus pass the packet off to the | |
261 | * device. | |
262 | * | |
263 | * We are working here with either a clone of the original | |
264 | * SKB, or a fresh unique copy made by the retransmit engine. | |
265 | */ | |
266 | static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) | |
267 | { | |
268 | if (skb != NULL) { | |
269 | struct inet_sock *inet = inet_sk(sk); | |
270 | struct tcp_sock *tp = tcp_sk(sk); | |
271 | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); | |
272 | int tcp_header_size = tp->tcp_header_len; | |
273 | struct tcphdr *th; | |
274 | int sysctl_flags; | |
275 | int err; | |
276 | ||
277 | BUG_ON(!tcp_skb_pcount(skb)); | |
278 | ||
279 | #define SYSCTL_FLAG_TSTAMPS 0x1 | |
280 | #define SYSCTL_FLAG_WSCALE 0x2 | |
281 | #define SYSCTL_FLAG_SACK 0x4 | |
282 | ||
283 | sysctl_flags = 0; | |
284 | if (tcb->flags & TCPCB_FLAG_SYN) { | |
285 | tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; | |
286 | if(sysctl_tcp_timestamps) { | |
287 | tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; | |
288 | sysctl_flags |= SYSCTL_FLAG_TSTAMPS; | |
289 | } | |
290 | if(sysctl_tcp_window_scaling) { | |
291 | tcp_header_size += TCPOLEN_WSCALE_ALIGNED; | |
292 | sysctl_flags |= SYSCTL_FLAG_WSCALE; | |
293 | } | |
294 | if(sysctl_tcp_sack) { | |
295 | sysctl_flags |= SYSCTL_FLAG_SACK; | |
296 | if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) | |
297 | tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; | |
298 | } | |
299 | } else if (tp->rx_opt.eff_sacks) { | |
300 | /* A SACK is 2 pad bytes, a 2 byte header, plus | |
301 | * 2 32-bit sequence numbers for each SACK block. | |
302 | */ | |
303 | tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + | |
304 | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | |
305 | } | |
306 | ||
307 | /* | |
308 | * If the connection is idle and we are restarting, | |
309 | * then we don't want to do any Vegas calculations | |
310 | * until we get fresh RTT samples. So when we | |
311 | * restart, we reset our Vegas state to a clean | |
312 | * slate. After we get acks for this flight of | |
313 | * packets, _then_ we can make Vegas calculations | |
314 | * again. | |
315 | */ | |
316 | if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0) | |
317 | tcp_vegas_enable(tp); | |
318 | ||
319 | th = (struct tcphdr *) skb_push(skb, tcp_header_size); | |
320 | skb->h.th = th; | |
321 | skb_set_owner_w(skb, sk); | |
322 | ||
323 | /* Build TCP header and checksum it. */ | |
324 | th->source = inet->sport; | |
325 | th->dest = inet->dport; | |
326 | th->seq = htonl(tcb->seq); | |
327 | th->ack_seq = htonl(tp->rcv_nxt); | |
328 | *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags); | |
329 | if (tcb->flags & TCPCB_FLAG_SYN) { | |
330 | /* RFC1323: The window in SYN & SYN/ACK segments | |
331 | * is never scaled. | |
332 | */ | |
333 | th->window = htons(tp->rcv_wnd); | |
334 | } else { | |
335 | th->window = htons(tcp_select_window(sk)); | |
336 | } | |
337 | th->check = 0; | |
338 | th->urg_ptr = 0; | |
339 | ||
340 | if (tp->urg_mode && | |
341 | between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { | |
342 | th->urg_ptr = htons(tp->snd_up-tcb->seq); | |
343 | th->urg = 1; | |
344 | } | |
345 | ||
346 | if (tcb->flags & TCPCB_FLAG_SYN) { | |
347 | tcp_syn_build_options((__u32 *)(th + 1), | |
348 | tcp_advertise_mss(sk), | |
349 | (sysctl_flags & SYSCTL_FLAG_TSTAMPS), | |
350 | (sysctl_flags & SYSCTL_FLAG_SACK), | |
351 | (sysctl_flags & SYSCTL_FLAG_WSCALE), | |
352 | tp->rx_opt.rcv_wscale, | |
353 | tcb->when, | |
354 | tp->rx_opt.ts_recent); | |
355 | } else { | |
356 | tcp_build_and_update_options((__u32 *)(th + 1), | |
357 | tp, tcb->when); | |
358 | ||
359 | TCP_ECN_send(sk, tp, skb, tcp_header_size); | |
360 | } | |
361 | tp->af_specific->send_check(sk, th, skb->len, skb); | |
362 | ||
363 | if (tcb->flags & TCPCB_FLAG_ACK) | |
364 | tcp_event_ack_sent(sk); | |
365 | ||
366 | if (skb->len != tcp_header_size) | |
367 | tcp_event_data_sent(tp, skb, sk); | |
368 | ||
369 | TCP_INC_STATS(TCP_MIB_OUTSEGS); | |
370 | ||
371 | err = tp->af_specific->queue_xmit(skb, 0); | |
372 | if (err <= 0) | |
373 | return err; | |
374 | ||
375 | tcp_enter_cwr(tp); | |
376 | ||
377 | /* NET_XMIT_CN is special. It does not guarantee, | |
378 | * that this packet is lost. It tells that device | |
379 | * is about to start to drop packets or already | |
380 | * drops some packets of the same priority and | |
381 | * invokes us to send less aggressively. | |
382 | */ | |
383 | return err == NET_XMIT_CN ? 0 : err; | |
384 | } | |
385 | return -ENOBUFS; | |
386 | #undef SYSCTL_FLAG_TSTAMPS | |
387 | #undef SYSCTL_FLAG_WSCALE | |
388 | #undef SYSCTL_FLAG_SACK | |
389 | } | |
390 | ||
391 | ||
392 | /* This routine just queue's the buffer | |
393 | * | |
394 | * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, | |
395 | * otherwise socket can stall. | |
396 | */ | |
397 | static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) | |
398 | { | |
399 | struct tcp_sock *tp = tcp_sk(sk); | |
400 | ||
401 | /* Advance write_seq and place onto the write_queue. */ | |
402 | tp->write_seq = TCP_SKB_CB(skb)->end_seq; | |
403 | skb_header_release(skb); | |
404 | __skb_queue_tail(&sk->sk_write_queue, skb); | |
405 | sk_charge_skb(sk, skb); | |
406 | ||
407 | /* Queue it, remembering where we must start sending. */ | |
408 | if (sk->sk_send_head == NULL) | |
409 | sk->sk_send_head = skb; | |
410 | } | |
411 | ||
412 | static inline void tcp_tso_set_push(struct sk_buff *skb) | |
413 | { | |
414 | /* Force push to be on for any TSO frames to workaround | |
415 | * problems with busted implementations like Mac OS-X that | |
416 | * hold off socket receive wakeups until push is seen. | |
417 | */ | |
418 | if (tcp_skb_pcount(skb) > 1) | |
419 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | |
420 | } | |
421 | ||
422 | /* Send _single_ skb sitting at the send head. This function requires | |
423 | * true push pending frames to setup probe timer etc. | |
424 | */ | |
425 | void tcp_push_one(struct sock *sk, unsigned cur_mss) | |
426 | { | |
427 | struct tcp_sock *tp = tcp_sk(sk); | |
428 | struct sk_buff *skb = sk->sk_send_head; | |
429 | ||
430 | if (tcp_snd_test(tp, skb, cur_mss, TCP_NAGLE_PUSH)) { | |
431 | /* Send it out now. */ | |
432 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
433 | tcp_tso_set_push(skb); | |
434 | if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) { | |
435 | sk->sk_send_head = NULL; | |
436 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | |
437 | tcp_packets_out_inc(sk, tp, skb); | |
438 | return; | |
439 | } | |
440 | } | |
441 | } | |
442 | ||
443 | void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_std) | |
444 | { | |
445 | if (skb->len <= mss_std) { | |
446 | /* Avoid the costly divide in the normal | |
447 | * non-TSO case. | |
448 | */ | |
449 | skb_shinfo(skb)->tso_segs = 1; | |
450 | skb_shinfo(skb)->tso_size = 0; | |
451 | } else { | |
452 | unsigned int factor; | |
453 | ||
454 | factor = skb->len + (mss_std - 1); | |
455 | factor /= mss_std; | |
456 | skb_shinfo(skb)->tso_segs = factor; | |
457 | skb_shinfo(skb)->tso_size = mss_std; | |
458 | } | |
459 | } | |
460 | ||
461 | /* Function to create two new TCP segments. Shrinks the given segment | |
462 | * to the specified size and appends a new segment with the rest of the | |
463 | * packet to the list. This won't be called frequently, I hope. | |
464 | * Remember, these are still headerless SKBs at this point. | |
465 | */ | |
466 | static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len) | |
467 | { | |
468 | struct tcp_sock *tp = tcp_sk(sk); | |
469 | struct sk_buff *buff; | |
470 | int nsize; | |
471 | u16 flags; | |
472 | ||
473 | nsize = skb_headlen(skb) - len; | |
474 | if (nsize < 0) | |
475 | nsize = 0; | |
476 | ||
477 | if (skb_cloned(skb) && | |
478 | skb_is_nonlinear(skb) && | |
479 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | |
480 | return -ENOMEM; | |
481 | ||
482 | /* Get a new skb... force flag on. */ | |
483 | buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); | |
484 | if (buff == NULL) | |
485 | return -ENOMEM; /* We'll just try again later. */ | |
486 | sk_charge_skb(sk, buff); | |
487 | ||
488 | /* Correct the sequence numbers. */ | |
489 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | |
490 | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | |
491 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | |
492 | ||
493 | /* PSH and FIN should only be set in the second packet. */ | |
494 | flags = TCP_SKB_CB(skb)->flags; | |
495 | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); | |
496 | TCP_SKB_CB(buff)->flags = flags; | |
497 | TCP_SKB_CB(buff)->sacked = | |
498 | (TCP_SKB_CB(skb)->sacked & | |
499 | (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL)); | |
500 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; | |
501 | ||
502 | if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { | |
503 | /* Copy and checksum data tail into the new buffer. */ | |
504 | buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), | |
505 | nsize, 0); | |
506 | ||
507 | skb_trim(skb, len); | |
508 | ||
509 | skb->csum = csum_block_sub(skb->csum, buff->csum, len); | |
510 | } else { | |
511 | skb->ip_summed = CHECKSUM_HW; | |
512 | skb_split(skb, buff, len); | |
513 | } | |
514 | ||
515 | buff->ip_summed = skb->ip_summed; | |
516 | ||
517 | /* Looks stupid, but our code really uses when of | |
518 | * skbs, which it never sent before. --ANK | |
519 | */ | |
520 | TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; | |
521 | ||
522 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | |
523 | tp->lost_out -= tcp_skb_pcount(skb); | |
524 | tp->left_out -= tcp_skb_pcount(skb); | |
525 | } | |
526 | ||
527 | /* Fix up tso_factor for both original and new SKB. */ | |
528 | tcp_set_skb_tso_segs(skb, tp->mss_cache_std); | |
529 | tcp_set_skb_tso_segs(buff, tp->mss_cache_std); | |
530 | ||
531 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | |
532 | tp->lost_out += tcp_skb_pcount(skb); | |
533 | tp->left_out += tcp_skb_pcount(skb); | |
534 | } | |
535 | ||
536 | if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) { | |
537 | tp->lost_out += tcp_skb_pcount(buff); | |
538 | tp->left_out += tcp_skb_pcount(buff); | |
539 | } | |
540 | ||
541 | /* Link BUFF into the send queue. */ | |
542 | __skb_append(skb, buff); | |
543 | ||
544 | return 0; | |
545 | } | |
546 | ||
547 | /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c | |
548 | * eventually). The difference is that pulled data not copied, but | |
549 | * immediately discarded. | |
550 | */ | |
551 | static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) | |
552 | { | |
553 | int i, k, eat; | |
554 | ||
555 | eat = len; | |
556 | k = 0; | |
557 | for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { | |
558 | if (skb_shinfo(skb)->frags[i].size <= eat) { | |
559 | put_page(skb_shinfo(skb)->frags[i].page); | |
560 | eat -= skb_shinfo(skb)->frags[i].size; | |
561 | } else { | |
562 | skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; | |
563 | if (eat) { | |
564 | skb_shinfo(skb)->frags[k].page_offset += eat; | |
565 | skb_shinfo(skb)->frags[k].size -= eat; | |
566 | eat = 0; | |
567 | } | |
568 | k++; | |
569 | } | |
570 | } | |
571 | skb_shinfo(skb)->nr_frags = k; | |
572 | ||
573 | skb->tail = skb->data; | |
574 | skb->data_len -= len; | |
575 | skb->len = skb->data_len; | |
576 | return skb->tail; | |
577 | } | |
578 | ||
579 | int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) | |
580 | { | |
581 | if (skb_cloned(skb) && | |
582 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | |
583 | return -ENOMEM; | |
584 | ||
585 | if (len <= skb_headlen(skb)) { | |
586 | __skb_pull(skb, len); | |
587 | } else { | |
588 | if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) | |
589 | return -ENOMEM; | |
590 | } | |
591 | ||
592 | TCP_SKB_CB(skb)->seq += len; | |
593 | skb->ip_summed = CHECKSUM_HW; | |
594 | ||
595 | skb->truesize -= len; | |
596 | sk->sk_wmem_queued -= len; | |
597 | sk->sk_forward_alloc += len; | |
598 | sock_set_flag(sk, SOCK_QUEUE_SHRUNK); | |
599 | ||
600 | /* Any change of skb->len requires recalculation of tso | |
601 | * factor and mss. | |
602 | */ | |
603 | if (tcp_skb_pcount(skb) > 1) | |
604 | tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); | |
605 | ||
606 | return 0; | |
607 | } | |
608 | ||
609 | /* This function synchronize snd mss to current pmtu/exthdr set. | |
610 | ||
611 | tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts | |
612 | for TCP options, but includes only bare TCP header. | |
613 | ||
614 | tp->rx_opt.mss_clamp is mss negotiated at connection setup. | |
615 | It is minumum of user_mss and mss received with SYN. | |
616 | It also does not include TCP options. | |
617 | ||
618 | tp->pmtu_cookie is last pmtu, seen by this function. | |
619 | ||
620 | tp->mss_cache is current effective sending mss, including | |
621 | all tcp options except for SACKs. It is evaluated, | |
622 | taking into account current pmtu, but never exceeds | |
623 | tp->rx_opt.mss_clamp. | |
624 | ||
625 | NOTE1. rfc1122 clearly states that advertised MSS | |
626 | DOES NOT include either tcp or ip options. | |
627 | ||
628 | NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside | |
629 | this function. --ANK (980731) | |
630 | */ | |
631 | ||
632 | unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) | |
633 | { | |
634 | struct tcp_sock *tp = tcp_sk(sk); | |
635 | int mss_now; | |
636 | ||
637 | /* Calculate base mss without TCP options: | |
638 | It is MMS_S - sizeof(tcphdr) of rfc1122 | |
639 | */ | |
640 | mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); | |
641 | ||
642 | /* Clamp it (mss_clamp does not include tcp options) */ | |
643 | if (mss_now > tp->rx_opt.mss_clamp) | |
644 | mss_now = tp->rx_opt.mss_clamp; | |
645 | ||
646 | /* Now subtract optional transport overhead */ | |
647 | mss_now -= tp->ext_header_len; | |
648 | ||
649 | /* Then reserve room for full set of TCP options and 8 bytes of data */ | |
650 | if (mss_now < 48) | |
651 | mss_now = 48; | |
652 | ||
653 | /* Now subtract TCP options size, not including SACKs */ | |
654 | mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); | |
655 | ||
656 | /* Bound mss with half of window */ | |
657 | if (tp->max_window && mss_now > (tp->max_window>>1)) | |
658 | mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); | |
659 | ||
660 | /* And store cached results */ | |
661 | tp->pmtu_cookie = pmtu; | |
662 | tp->mss_cache = tp->mss_cache_std = mss_now; | |
663 | ||
664 | return mss_now; | |
665 | } | |
666 | ||
667 | /* Compute the current effective MSS, taking SACKs and IP options, | |
668 | * and even PMTU discovery events into account. | |
669 | * | |
670 | * LARGESEND note: !urg_mode is overkill, only frames up to snd_up | |
671 | * cannot be large. However, taking into account rare use of URG, this | |
672 | * is not a big flaw. | |
673 | */ | |
674 | ||
675 | unsigned int tcp_current_mss(struct sock *sk, int large) | |
676 | { | |
677 | struct tcp_sock *tp = tcp_sk(sk); | |
678 | struct dst_entry *dst = __sk_dst_get(sk); | |
679 | unsigned int do_large, mss_now; | |
680 | ||
681 | mss_now = tp->mss_cache_std; | |
682 | if (dst) { | |
683 | u32 mtu = dst_mtu(dst); | |
684 | if (mtu != tp->pmtu_cookie) | |
685 | mss_now = tcp_sync_mss(sk, mtu); | |
686 | } | |
687 | ||
688 | do_large = (large && | |
689 | (sk->sk_route_caps & NETIF_F_TSO) && | |
690 | !tp->urg_mode); | |
691 | ||
692 | if (do_large) { | |
693 | unsigned int large_mss, factor, limit; | |
694 | ||
695 | large_mss = 65535 - tp->af_specific->net_header_len - | |
696 | tp->ext_header_len - tp->tcp_header_len; | |
697 | ||
698 | if (tp->max_window && large_mss > (tp->max_window>>1)) | |
699 | large_mss = max((tp->max_window>>1), | |
700 | 68U - tp->tcp_header_len); | |
701 | ||
702 | factor = large_mss / mss_now; | |
703 | ||
704 | /* Always keep large mss multiple of real mss, but | |
705 | * do not exceed 1/tso_win_divisor of the congestion window | |
706 | * so we can keep the ACK clock ticking and minimize | |
707 | * bursting. | |
708 | */ | |
709 | limit = tp->snd_cwnd; | |
710 | if (sysctl_tcp_tso_win_divisor) | |
711 | limit /= sysctl_tcp_tso_win_divisor; | |
712 | limit = max(1U, limit); | |
713 | if (factor > limit) | |
714 | factor = limit; | |
715 | ||
716 | tp->mss_cache = mss_now * factor; | |
717 | ||
718 | mss_now = tp->mss_cache; | |
719 | } | |
720 | ||
721 | if (tp->rx_opt.eff_sacks) | |
722 | mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + | |
723 | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | |
724 | return mss_now; | |
725 | } | |
726 | ||
727 | /* This routine writes packets to the network. It advances the | |
728 | * send_head. This happens as incoming acks open up the remote | |
729 | * window for us. | |
730 | * | |
731 | * Returns 1, if no segments are in flight and we have queued segments, but | |
732 | * cannot send anything now because of SWS or another problem. | |
733 | */ | |
734 | int tcp_write_xmit(struct sock *sk, int nonagle) | |
735 | { | |
736 | struct tcp_sock *tp = tcp_sk(sk); | |
737 | unsigned int mss_now; | |
738 | ||
739 | /* If we are closed, the bytes will have to remain here. | |
740 | * In time closedown will finish, we empty the write queue and all | |
741 | * will be happy. | |
742 | */ | |
743 | if (sk->sk_state != TCP_CLOSE) { | |
744 | struct sk_buff *skb; | |
745 | int sent_pkts = 0; | |
746 | ||
747 | /* Account for SACKS, we may need to fragment due to this. | |
748 | * It is just like the real MSS changing on us midstream. | |
749 | * We also handle things correctly when the user adds some | |
750 | * IP options mid-stream. Silly to do, but cover it. | |
751 | */ | |
752 | mss_now = tcp_current_mss(sk, 1); | |
753 | ||
754 | while ((skb = sk->sk_send_head) && | |
755 | tcp_snd_test(tp, skb, mss_now, | |
756 | tcp_skb_is_last(sk, skb) ? nonagle : | |
757 | TCP_NAGLE_PUSH)) { | |
758 | if (skb->len > mss_now) { | |
759 | if (tcp_fragment(sk, skb, mss_now)) | |
760 | break; | |
761 | } | |
762 | ||
763 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
764 | tcp_tso_set_push(skb); | |
765 | if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))) | |
766 | break; | |
767 | ||
768 | /* Advance the send_head. This one is sent out. | |
769 | * This call will increment packets_out. | |
770 | */ | |
771 | update_send_head(sk, tp, skb); | |
772 | ||
773 | tcp_minshall_update(tp, mss_now, skb); | |
774 | sent_pkts = 1; | |
775 | } | |
776 | ||
777 | if (sent_pkts) { | |
778 | tcp_cwnd_validate(sk, tp); | |
779 | return 0; | |
780 | } | |
781 | ||
782 | return !tp->packets_out && sk->sk_send_head; | |
783 | } | |
784 | return 0; | |
785 | } | |
786 | ||
787 | /* This function returns the amount that we can raise the | |
788 | * usable window based on the following constraints | |
789 | * | |
790 | * 1. The window can never be shrunk once it is offered (RFC 793) | |
791 | * 2. We limit memory per socket | |
792 | * | |
793 | * RFC 1122: | |
794 | * "the suggested [SWS] avoidance algorithm for the receiver is to keep | |
795 | * RECV.NEXT + RCV.WIN fixed until: | |
796 | * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" | |
797 | * | |
798 | * i.e. don't raise the right edge of the window until you can raise | |
799 | * it at least MSS bytes. | |
800 | * | |
801 | * Unfortunately, the recommended algorithm breaks header prediction, | |
802 | * since header prediction assumes th->window stays fixed. | |
803 | * | |
804 | * Strictly speaking, keeping th->window fixed violates the receiver | |
805 | * side SWS prevention criteria. The problem is that under this rule | |
806 | * a stream of single byte packets will cause the right side of the | |
807 | * window to always advance by a single byte. | |
808 | * | |
809 | * Of course, if the sender implements sender side SWS prevention | |
810 | * then this will not be a problem. | |
811 | * | |
812 | * BSD seems to make the following compromise: | |
813 | * | |
814 | * If the free space is less than the 1/4 of the maximum | |
815 | * space available and the free space is less than 1/2 mss, | |
816 | * then set the window to 0. | |
817 | * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] | |
818 | * Otherwise, just prevent the window from shrinking | |
819 | * and from being larger than the largest representable value. | |
820 | * | |
821 | * This prevents incremental opening of the window in the regime | |
822 | * where TCP is limited by the speed of the reader side taking | |
823 | * data out of the TCP receive queue. It does nothing about | |
824 | * those cases where the window is constrained on the sender side | |
825 | * because the pipeline is full. | |
826 | * | |
827 | * BSD also seems to "accidentally" limit itself to windows that are a | |
828 | * multiple of MSS, at least until the free space gets quite small. | |
829 | * This would appear to be a side effect of the mbuf implementation. | |
830 | * Combining these two algorithms results in the observed behavior | |
831 | * of having a fixed window size at almost all times. | |
832 | * | |
833 | * Below we obtain similar behavior by forcing the offered window to | |
834 | * a multiple of the mss when it is feasible to do so. | |
835 | * | |
836 | * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. | |
837 | * Regular options like TIMESTAMP are taken into account. | |
838 | */ | |
839 | u32 __tcp_select_window(struct sock *sk) | |
840 | { | |
841 | struct tcp_sock *tp = tcp_sk(sk); | |
842 | /* MSS for the peer's data. Previous verions used mss_clamp | |
843 | * here. I don't know if the value based on our guesses | |
844 | * of peer's MSS is better for the performance. It's more correct | |
845 | * but may be worse for the performance because of rcv_mss | |
846 | * fluctuations. --SAW 1998/11/1 | |
847 | */ | |
848 | int mss = tp->ack.rcv_mss; | |
849 | int free_space = tcp_space(sk); | |
850 | int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); | |
851 | int window; | |
852 | ||
853 | if (mss > full_space) | |
854 | mss = full_space; | |
855 | ||
856 | if (free_space < full_space/2) { | |
857 | tp->ack.quick = 0; | |
858 | ||
859 | if (tcp_memory_pressure) | |
860 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); | |
861 | ||
862 | if (free_space < mss) | |
863 | return 0; | |
864 | } | |
865 | ||
866 | if (free_space > tp->rcv_ssthresh) | |
867 | free_space = tp->rcv_ssthresh; | |
868 | ||
869 | /* Don't do rounding if we are using window scaling, since the | |
870 | * scaled window will not line up with the MSS boundary anyway. | |
871 | */ | |
872 | window = tp->rcv_wnd; | |
873 | if (tp->rx_opt.rcv_wscale) { | |
874 | window = free_space; | |
875 | ||
876 | /* Advertise enough space so that it won't get scaled away. | |
877 | * Import case: prevent zero window announcement if | |
878 | * 1<<rcv_wscale > mss. | |
879 | */ | |
880 | if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) | |
881 | window = (((window >> tp->rx_opt.rcv_wscale) + 1) | |
882 | << tp->rx_opt.rcv_wscale); | |
883 | } else { | |
884 | /* Get the largest window that is a nice multiple of mss. | |
885 | * Window clamp already applied above. | |
886 | * If our current window offering is within 1 mss of the | |
887 | * free space we just keep it. This prevents the divide | |
888 | * and multiply from happening most of the time. | |
889 | * We also don't do any window rounding when the free space | |
890 | * is too small. | |
891 | */ | |
892 | if (window <= free_space - mss || window > free_space) | |
893 | window = (free_space/mss)*mss; | |
894 | } | |
895 | ||
896 | return window; | |
897 | } | |
898 | ||
899 | /* Attempt to collapse two adjacent SKB's during retransmission. */ | |
900 | static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) | |
901 | { | |
902 | struct tcp_sock *tp = tcp_sk(sk); | |
903 | struct sk_buff *next_skb = skb->next; | |
904 | ||
905 | /* The first test we must make is that neither of these two | |
906 | * SKB's are still referenced by someone else. | |
907 | */ | |
908 | if (!skb_cloned(skb) && !skb_cloned(next_skb)) { | |
909 | int skb_size = skb->len, next_skb_size = next_skb->len; | |
910 | u16 flags = TCP_SKB_CB(skb)->flags; | |
911 | ||
912 | /* Also punt if next skb has been SACK'd. */ | |
913 | if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) | |
914 | return; | |
915 | ||
916 | /* Next skb is out of window. */ | |
917 | if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) | |
918 | return; | |
919 | ||
920 | /* Punt if not enough space exists in the first SKB for | |
921 | * the data in the second, or the total combined payload | |
922 | * would exceed the MSS. | |
923 | */ | |
924 | if ((next_skb_size > skb_tailroom(skb)) || | |
925 | ((skb_size + next_skb_size) > mss_now)) | |
926 | return; | |
927 | ||
928 | BUG_ON(tcp_skb_pcount(skb) != 1 || | |
929 | tcp_skb_pcount(next_skb) != 1); | |
930 | ||
931 | /* Ok. We will be able to collapse the packet. */ | |
932 | __skb_unlink(next_skb, next_skb->list); | |
933 | ||
934 | memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); | |
935 | ||
936 | if (next_skb->ip_summed == CHECKSUM_HW) | |
937 | skb->ip_summed = CHECKSUM_HW; | |
938 | ||
939 | if (skb->ip_summed != CHECKSUM_HW) | |
940 | skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); | |
941 | ||
942 | /* Update sequence range on original skb. */ | |
943 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; | |
944 | ||
945 | /* Merge over control information. */ | |
946 | flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ | |
947 | TCP_SKB_CB(skb)->flags = flags; | |
948 | ||
949 | /* All done, get rid of second SKB and account for it so | |
950 | * packet counting does not break. | |
951 | */ | |
952 | TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); | |
953 | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) | |
954 | tp->retrans_out -= tcp_skb_pcount(next_skb); | |
955 | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { | |
956 | tp->lost_out -= tcp_skb_pcount(next_skb); | |
957 | tp->left_out -= tcp_skb_pcount(next_skb); | |
958 | } | |
959 | /* Reno case is special. Sigh... */ | |
960 | if (!tp->rx_opt.sack_ok && tp->sacked_out) { | |
961 | tcp_dec_pcount_approx(&tp->sacked_out, next_skb); | |
962 | tp->left_out -= tcp_skb_pcount(next_skb); | |
963 | } | |
964 | ||
965 | /* Not quite right: it can be > snd.fack, but | |
966 | * it is better to underestimate fackets. | |
967 | */ | |
968 | tcp_dec_pcount_approx(&tp->fackets_out, next_skb); | |
969 | tcp_packets_out_dec(tp, next_skb); | |
970 | sk_stream_free_skb(sk, next_skb); | |
971 | } | |
972 | } | |
973 | ||
974 | /* Do a simple retransmit without using the backoff mechanisms in | |
975 | * tcp_timer. This is used for path mtu discovery. | |
976 | * The socket is already locked here. | |
977 | */ | |
978 | void tcp_simple_retransmit(struct sock *sk) | |
979 | { | |
980 | struct tcp_sock *tp = tcp_sk(sk); | |
981 | struct sk_buff *skb; | |
982 | unsigned int mss = tcp_current_mss(sk, 0); | |
983 | int lost = 0; | |
984 | ||
985 | sk_stream_for_retrans_queue(skb, sk) { | |
986 | if (skb->len > mss && | |
987 | !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { | |
988 | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | |
989 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | |
990 | tp->retrans_out -= tcp_skb_pcount(skb); | |
991 | } | |
992 | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { | |
993 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | |
994 | tp->lost_out += tcp_skb_pcount(skb); | |
995 | lost = 1; | |
996 | } | |
997 | } | |
998 | } | |
999 | ||
1000 | if (!lost) | |
1001 | return; | |
1002 | ||
1003 | tcp_sync_left_out(tp); | |
1004 | ||
1005 | /* Don't muck with the congestion window here. | |
1006 | * Reason is that we do not increase amount of _data_ | |
1007 | * in network, but units changed and effective | |
1008 | * cwnd/ssthresh really reduced now. | |
1009 | */ | |
1010 | if (tp->ca_state != TCP_CA_Loss) { | |
1011 | tp->high_seq = tp->snd_nxt; | |
1012 | tp->snd_ssthresh = tcp_current_ssthresh(tp); | |
1013 | tp->prior_ssthresh = 0; | |
1014 | tp->undo_marker = 0; | |
1015 | tcp_set_ca_state(tp, TCP_CA_Loss); | |
1016 | } | |
1017 | tcp_xmit_retransmit_queue(sk); | |
1018 | } | |
1019 | ||
1020 | /* This retransmits one SKB. Policy decisions and retransmit queue | |
1021 | * state updates are done by the caller. Returns non-zero if an | |
1022 | * error occurred which prevented the send. | |
1023 | */ | |
1024 | int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) | |
1025 | { | |
1026 | struct tcp_sock *tp = tcp_sk(sk); | |
1027 | unsigned int cur_mss = tcp_current_mss(sk, 0); | |
1028 | int err; | |
1029 | ||
1030 | /* Do not sent more than we queued. 1/4 is reserved for possible | |
1031 | * copying overhead: frgagmentation, tunneling, mangling etc. | |
1032 | */ | |
1033 | if (atomic_read(&sk->sk_wmem_alloc) > | |
1034 | min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) | |
1035 | return -EAGAIN; | |
1036 | ||
1037 | if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { | |
1038 | if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | |
1039 | BUG(); | |
1040 | ||
1041 | if (sk->sk_route_caps & NETIF_F_TSO) { | |
1042 | sk->sk_route_caps &= ~NETIF_F_TSO; | |
1043 | sock_set_flag(sk, SOCK_NO_LARGESEND); | |
1044 | tp->mss_cache = tp->mss_cache_std; | |
1045 | } | |
1046 | ||
1047 | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | |
1048 | return -ENOMEM; | |
1049 | } | |
1050 | ||
1051 | /* If receiver has shrunk his window, and skb is out of | |
1052 | * new window, do not retransmit it. The exception is the | |
1053 | * case, when window is shrunk to zero. In this case | |
1054 | * our retransmit serves as a zero window probe. | |
1055 | */ | |
1056 | if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) | |
1057 | && TCP_SKB_CB(skb)->seq != tp->snd_una) | |
1058 | return -EAGAIN; | |
1059 | ||
1060 | if (skb->len > cur_mss) { | |
1061 | int old_factor = tcp_skb_pcount(skb); | |
1062 | int new_factor; | |
1063 | ||
1064 | if (tcp_fragment(sk, skb, cur_mss)) | |
1065 | return -ENOMEM; /* We'll try again later. */ | |
1066 | ||
1067 | /* New SKB created, account for it. */ | |
1068 | new_factor = tcp_skb_pcount(skb); | |
1069 | tp->packets_out -= old_factor - new_factor; | |
1070 | tp->packets_out += tcp_skb_pcount(skb->next); | |
1071 | } | |
1072 | ||
1073 | /* Collapse two adjacent packets if worthwhile and we can. */ | |
1074 | if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && | |
1075 | (skb->len < (cur_mss >> 1)) && | |
1076 | (skb->next != sk->sk_send_head) && | |
1077 | (skb->next != (struct sk_buff *)&sk->sk_write_queue) && | |
1078 | (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && | |
1079 | (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && | |
1080 | (sysctl_tcp_retrans_collapse != 0)) | |
1081 | tcp_retrans_try_collapse(sk, skb, cur_mss); | |
1082 | ||
1083 | if(tp->af_specific->rebuild_header(sk)) | |
1084 | return -EHOSTUNREACH; /* Routing failure or similar. */ | |
1085 | ||
1086 | /* Some Solaris stacks overoptimize and ignore the FIN on a | |
1087 | * retransmit when old data is attached. So strip it off | |
1088 | * since it is cheap to do so and saves bytes on the network. | |
1089 | */ | |
1090 | if(skb->len > 0 && | |
1091 | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && | |
1092 | tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { | |
1093 | if (!pskb_trim(skb, 0)) { | |
1094 | TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; | |
1095 | skb_shinfo(skb)->tso_segs = 1; | |
1096 | skb_shinfo(skb)->tso_size = 0; | |
1097 | skb->ip_summed = CHECKSUM_NONE; | |
1098 | skb->csum = 0; | |
1099 | } | |
1100 | } | |
1101 | ||
1102 | /* Make a copy, if the first transmission SKB clone we made | |
1103 | * is still in somebody's hands, else make a clone. | |
1104 | */ | |
1105 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1106 | tcp_tso_set_push(skb); | |
1107 | ||
1108 | err = tcp_transmit_skb(sk, (skb_cloned(skb) ? | |
1109 | pskb_copy(skb, GFP_ATOMIC): | |
1110 | skb_clone(skb, GFP_ATOMIC))); | |
1111 | ||
1112 | if (err == 0) { | |
1113 | /* Update global TCP statistics. */ | |
1114 | TCP_INC_STATS(TCP_MIB_RETRANSSEGS); | |
1115 | ||
1116 | tp->total_retrans++; | |
1117 | ||
1118 | #if FASTRETRANS_DEBUG > 0 | |
1119 | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | |
1120 | if (net_ratelimit()) | |
1121 | printk(KERN_DEBUG "retrans_out leaked.\n"); | |
1122 | } | |
1123 | #endif | |
1124 | TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; | |
1125 | tp->retrans_out += tcp_skb_pcount(skb); | |
1126 | ||
1127 | /* Save stamp of the first retransmit. */ | |
1128 | if (!tp->retrans_stamp) | |
1129 | tp->retrans_stamp = TCP_SKB_CB(skb)->when; | |
1130 | ||
1131 | tp->undo_retrans++; | |
1132 | ||
1133 | /* snd_nxt is stored to detect loss of retransmitted segment, | |
1134 | * see tcp_input.c tcp_sacktag_write_queue(). | |
1135 | */ | |
1136 | TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; | |
1137 | } | |
1138 | return err; | |
1139 | } | |
1140 | ||
1141 | /* This gets called after a retransmit timeout, and the initially | |
1142 | * retransmitted data is acknowledged. It tries to continue | |
1143 | * resending the rest of the retransmit queue, until either | |
1144 | * we've sent it all or the congestion window limit is reached. | |
1145 | * If doing SACK, the first ACK which comes back for a timeout | |
1146 | * based retransmit packet might feed us FACK information again. | |
1147 | * If so, we use it to avoid unnecessarily retransmissions. | |
1148 | */ | |
1149 | void tcp_xmit_retransmit_queue(struct sock *sk) | |
1150 | { | |
1151 | struct tcp_sock *tp = tcp_sk(sk); | |
1152 | struct sk_buff *skb; | |
1153 | int packet_cnt = tp->lost_out; | |
1154 | ||
1155 | /* First pass: retransmit lost packets. */ | |
1156 | if (packet_cnt) { | |
1157 | sk_stream_for_retrans_queue(skb, sk) { | |
1158 | __u8 sacked = TCP_SKB_CB(skb)->sacked; | |
1159 | ||
1160 | /* Assume this retransmit will generate | |
1161 | * only one packet for congestion window | |
1162 | * calculation purposes. This works because | |
1163 | * tcp_retransmit_skb() will chop up the | |
1164 | * packet to be MSS sized and all the | |
1165 | * packet counting works out. | |
1166 | */ | |
1167 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | |
1168 | return; | |
1169 | ||
1170 | if (sacked&TCPCB_LOST) { | |
1171 | if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { | |
1172 | if (tcp_retransmit_skb(sk, skb)) | |
1173 | return; | |
1174 | if (tp->ca_state != TCP_CA_Loss) | |
1175 | NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); | |
1176 | else | |
1177 | NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); | |
1178 | ||
1179 | if (skb == | |
1180 | skb_peek(&sk->sk_write_queue)) | |
1181 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | |
1182 | } | |
1183 | ||
1184 | packet_cnt -= tcp_skb_pcount(skb); | |
1185 | if (packet_cnt <= 0) | |
1186 | break; | |
1187 | } | |
1188 | } | |
1189 | } | |
1190 | ||
1191 | /* OK, demanded retransmission is finished. */ | |
1192 | ||
1193 | /* Forward retransmissions are possible only during Recovery. */ | |
1194 | if (tp->ca_state != TCP_CA_Recovery) | |
1195 | return; | |
1196 | ||
1197 | /* No forward retransmissions in Reno are possible. */ | |
1198 | if (!tp->rx_opt.sack_ok) | |
1199 | return; | |
1200 | ||
1201 | /* Yeah, we have to make difficult choice between forward transmission | |
1202 | * and retransmission... Both ways have their merits... | |
1203 | * | |
1204 | * For now we do not retransmit anything, while we have some new | |
1205 | * segments to send. | |
1206 | */ | |
1207 | ||
1208 | if (tcp_may_send_now(sk, tp)) | |
1209 | return; | |
1210 | ||
1211 | packet_cnt = 0; | |
1212 | ||
1213 | sk_stream_for_retrans_queue(skb, sk) { | |
1214 | /* Similar to the retransmit loop above we | |
1215 | * can pretend that the retransmitted SKB | |
1216 | * we send out here will be composed of one | |
1217 | * real MSS sized packet because tcp_retransmit_skb() | |
1218 | * will fragment it if necessary. | |
1219 | */ | |
1220 | if (++packet_cnt > tp->fackets_out) | |
1221 | break; | |
1222 | ||
1223 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | |
1224 | break; | |
1225 | ||
1226 | if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) | |
1227 | continue; | |
1228 | ||
1229 | /* Ok, retransmit it. */ | |
1230 | if (tcp_retransmit_skb(sk, skb)) | |
1231 | break; | |
1232 | ||
1233 | if (skb == skb_peek(&sk->sk_write_queue)) | |
1234 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | |
1235 | ||
1236 | NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); | |
1237 | } | |
1238 | } | |
1239 | ||
1240 | ||
1241 | /* Send a fin. The caller locks the socket for us. This cannot be | |
1242 | * allowed to fail queueing a FIN frame under any circumstances. | |
1243 | */ | |
1244 | void tcp_send_fin(struct sock *sk) | |
1245 | { | |
1246 | struct tcp_sock *tp = tcp_sk(sk); | |
1247 | struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); | |
1248 | int mss_now; | |
1249 | ||
1250 | /* Optimization, tack on the FIN if we have a queue of | |
1251 | * unsent frames. But be careful about outgoing SACKS | |
1252 | * and IP options. | |
1253 | */ | |
1254 | mss_now = tcp_current_mss(sk, 1); | |
1255 | ||
1256 | if (sk->sk_send_head != NULL) { | |
1257 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; | |
1258 | TCP_SKB_CB(skb)->end_seq++; | |
1259 | tp->write_seq++; | |
1260 | } else { | |
1261 | /* Socket is locked, keep trying until memory is available. */ | |
1262 | for (;;) { | |
1263 | skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL); | |
1264 | if (skb) | |
1265 | break; | |
1266 | yield(); | |
1267 | } | |
1268 | ||
1269 | /* Reserve space for headers and prepare control bits. */ | |
1270 | skb_reserve(skb, MAX_TCP_HEADER); | |
1271 | skb->csum = 0; | |
1272 | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); | |
1273 | TCP_SKB_CB(skb)->sacked = 0; | |
1274 | skb_shinfo(skb)->tso_segs = 1; | |
1275 | skb_shinfo(skb)->tso_size = 0; | |
1276 | ||
1277 | /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ | |
1278 | TCP_SKB_CB(skb)->seq = tp->write_seq; | |
1279 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | |
1280 | tcp_queue_skb(sk, skb); | |
1281 | } | |
1282 | __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); | |
1283 | } | |
1284 | ||
1285 | /* We get here when a process closes a file descriptor (either due to | |
1286 | * an explicit close() or as a byproduct of exit()'ing) and there | |
1287 | * was unread data in the receive queue. This behavior is recommended | |
1288 | * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM | |
1289 | */ | |
1290 | void tcp_send_active_reset(struct sock *sk, int priority) | |
1291 | { | |
1292 | struct tcp_sock *tp = tcp_sk(sk); | |
1293 | struct sk_buff *skb; | |
1294 | ||
1295 | /* NOTE: No TCP options attached and we never retransmit this. */ | |
1296 | skb = alloc_skb(MAX_TCP_HEADER, priority); | |
1297 | if (!skb) { | |
1298 | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | |
1299 | return; | |
1300 | } | |
1301 | ||
1302 | /* Reserve space for headers and prepare control bits. */ | |
1303 | skb_reserve(skb, MAX_TCP_HEADER); | |
1304 | skb->csum = 0; | |
1305 | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); | |
1306 | TCP_SKB_CB(skb)->sacked = 0; | |
1307 | skb_shinfo(skb)->tso_segs = 1; | |
1308 | skb_shinfo(skb)->tso_size = 0; | |
1309 | ||
1310 | /* Send it off. */ | |
1311 | TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); | |
1312 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | |
1313 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1314 | if (tcp_transmit_skb(sk, skb)) | |
1315 | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | |
1316 | } | |
1317 | ||
1318 | /* WARNING: This routine must only be called when we have already sent | |
1319 | * a SYN packet that crossed the incoming SYN that caused this routine | |
1320 | * to get called. If this assumption fails then the initial rcv_wnd | |
1321 | * and rcv_wscale values will not be correct. | |
1322 | */ | |
1323 | int tcp_send_synack(struct sock *sk) | |
1324 | { | |
1325 | struct sk_buff* skb; | |
1326 | ||
1327 | skb = skb_peek(&sk->sk_write_queue); | |
1328 | if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { | |
1329 | printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); | |
1330 | return -EFAULT; | |
1331 | } | |
1332 | if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { | |
1333 | if (skb_cloned(skb)) { | |
1334 | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | |
1335 | if (nskb == NULL) | |
1336 | return -ENOMEM; | |
1337 | __skb_unlink(skb, &sk->sk_write_queue); | |
1338 | skb_header_release(nskb); | |
1339 | __skb_queue_head(&sk->sk_write_queue, nskb); | |
1340 | sk_stream_free_skb(sk, skb); | |
1341 | sk_charge_skb(sk, nskb); | |
1342 | skb = nskb; | |
1343 | } | |
1344 | ||
1345 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; | |
1346 | TCP_ECN_send_synack(tcp_sk(sk), skb); | |
1347 | } | |
1348 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1349 | return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); | |
1350 | } | |
1351 | ||
1352 | /* | |
1353 | * Prepare a SYN-ACK. | |
1354 | */ | |
1355 | struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, | |
1356 | struct open_request *req) | |
1357 | { | |
1358 | struct tcp_sock *tp = tcp_sk(sk); | |
1359 | struct tcphdr *th; | |
1360 | int tcp_header_size; | |
1361 | struct sk_buff *skb; | |
1362 | ||
1363 | skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); | |
1364 | if (skb == NULL) | |
1365 | return NULL; | |
1366 | ||
1367 | /* Reserve space for headers. */ | |
1368 | skb_reserve(skb, MAX_TCP_HEADER); | |
1369 | ||
1370 | skb->dst = dst_clone(dst); | |
1371 | ||
1372 | tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + | |
1373 | (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + | |
1374 | (req->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + | |
1375 | /* SACK_PERM is in the place of NOP NOP of TS */ | |
1376 | ((req->sack_ok && !req->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); | |
1377 | skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); | |
1378 | ||
1379 | memset(th, 0, sizeof(struct tcphdr)); | |
1380 | th->syn = 1; | |
1381 | th->ack = 1; | |
1382 | if (dst->dev->features&NETIF_F_TSO) | |
1383 | req->ecn_ok = 0; | |
1384 | TCP_ECN_make_synack(req, th); | |
1385 | th->source = inet_sk(sk)->sport; | |
1386 | th->dest = req->rmt_port; | |
1387 | TCP_SKB_CB(skb)->seq = req->snt_isn; | |
1388 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | |
1389 | TCP_SKB_CB(skb)->sacked = 0; | |
1390 | skb_shinfo(skb)->tso_segs = 1; | |
1391 | skb_shinfo(skb)->tso_size = 0; | |
1392 | th->seq = htonl(TCP_SKB_CB(skb)->seq); | |
1393 | th->ack_seq = htonl(req->rcv_isn + 1); | |
1394 | if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ | |
1395 | __u8 rcv_wscale; | |
1396 | /* Set this up on the first call only */ | |
1397 | req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); | |
1398 | /* tcp_full_space because it is guaranteed to be the first packet */ | |
1399 | tcp_select_initial_window(tcp_full_space(sk), | |
1400 | dst_metric(dst, RTAX_ADVMSS) - (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), | |
1401 | &req->rcv_wnd, | |
1402 | &req->window_clamp, | |
1403 | req->wscale_ok, | |
1404 | &rcv_wscale); | |
1405 | req->rcv_wscale = rcv_wscale; | |
1406 | } | |
1407 | ||
1408 | /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ | |
1409 | th->window = htons(req->rcv_wnd); | |
1410 | ||
1411 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1412 | tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), req->tstamp_ok, | |
1413 | req->sack_ok, req->wscale_ok, req->rcv_wscale, | |
1414 | TCP_SKB_CB(skb)->when, | |
1415 | req->ts_recent); | |
1416 | ||
1417 | skb->csum = 0; | |
1418 | th->doff = (tcp_header_size >> 2); | |
1419 | TCP_INC_STATS(TCP_MIB_OUTSEGS); | |
1420 | return skb; | |
1421 | } | |
1422 | ||
1423 | /* | |
1424 | * Do all connect socket setups that can be done AF independent. | |
1425 | */ | |
1426 | static inline void tcp_connect_init(struct sock *sk) | |
1427 | { | |
1428 | struct dst_entry *dst = __sk_dst_get(sk); | |
1429 | struct tcp_sock *tp = tcp_sk(sk); | |
1430 | __u8 rcv_wscale; | |
1431 | ||
1432 | /* We'll fix this up when we get a response from the other end. | |
1433 | * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. | |
1434 | */ | |
1435 | tp->tcp_header_len = sizeof(struct tcphdr) + | |
1436 | (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); | |
1437 | ||
1438 | /* If user gave his TCP_MAXSEG, record it to clamp */ | |
1439 | if (tp->rx_opt.user_mss) | |
1440 | tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; | |
1441 | tp->max_window = 0; | |
1442 | tcp_sync_mss(sk, dst_mtu(dst)); | |
1443 | ||
1444 | if (!tp->window_clamp) | |
1445 | tp->window_clamp = dst_metric(dst, RTAX_WINDOW); | |
1446 | tp->advmss = dst_metric(dst, RTAX_ADVMSS); | |
1447 | tcp_initialize_rcv_mss(sk); | |
1448 | tcp_ca_init(tp); | |
1449 | ||
1450 | tcp_select_initial_window(tcp_full_space(sk), | |
1451 | tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), | |
1452 | &tp->rcv_wnd, | |
1453 | &tp->window_clamp, | |
1454 | sysctl_tcp_window_scaling, | |
1455 | &rcv_wscale); | |
1456 | ||
1457 | tp->rx_opt.rcv_wscale = rcv_wscale; | |
1458 | tp->rcv_ssthresh = tp->rcv_wnd; | |
1459 | ||
1460 | sk->sk_err = 0; | |
1461 | sock_reset_flag(sk, SOCK_DONE); | |
1462 | tp->snd_wnd = 0; | |
1463 | tcp_init_wl(tp, tp->write_seq, 0); | |
1464 | tp->snd_una = tp->write_seq; | |
1465 | tp->snd_sml = tp->write_seq; | |
1466 | tp->rcv_nxt = 0; | |
1467 | tp->rcv_wup = 0; | |
1468 | tp->copied_seq = 0; | |
1469 | ||
1470 | tp->rto = TCP_TIMEOUT_INIT; | |
1471 | tp->retransmits = 0; | |
1472 | tcp_clear_retrans(tp); | |
1473 | } | |
1474 | ||
1475 | /* | |
1476 | * Build a SYN and send it off. | |
1477 | */ | |
1478 | int tcp_connect(struct sock *sk) | |
1479 | { | |
1480 | struct tcp_sock *tp = tcp_sk(sk); | |
1481 | struct sk_buff *buff; | |
1482 | ||
1483 | tcp_connect_init(sk); | |
1484 | ||
1485 | buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation); | |
1486 | if (unlikely(buff == NULL)) | |
1487 | return -ENOBUFS; | |
1488 | ||
1489 | /* Reserve space for headers. */ | |
1490 | skb_reserve(buff, MAX_TCP_HEADER); | |
1491 | ||
1492 | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; | |
1493 | TCP_ECN_send_syn(sk, tp, buff); | |
1494 | TCP_SKB_CB(buff)->sacked = 0; | |
1495 | skb_shinfo(buff)->tso_segs = 1; | |
1496 | skb_shinfo(buff)->tso_size = 0; | |
1497 | buff->csum = 0; | |
1498 | TCP_SKB_CB(buff)->seq = tp->write_seq++; | |
1499 | TCP_SKB_CB(buff)->end_seq = tp->write_seq; | |
1500 | tp->snd_nxt = tp->write_seq; | |
1501 | tp->pushed_seq = tp->write_seq; | |
1502 | tcp_ca_init(tp); | |
1503 | ||
1504 | /* Send it off. */ | |
1505 | TCP_SKB_CB(buff)->when = tcp_time_stamp; | |
1506 | tp->retrans_stamp = TCP_SKB_CB(buff)->when; | |
1507 | skb_header_release(buff); | |
1508 | __skb_queue_tail(&sk->sk_write_queue, buff); | |
1509 | sk_charge_skb(sk, buff); | |
1510 | tp->packets_out += tcp_skb_pcount(buff); | |
1511 | tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); | |
1512 | TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); | |
1513 | ||
1514 | /* Timer for repeating the SYN until an answer. */ | |
1515 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | |
1516 | return 0; | |
1517 | } | |
1518 | ||
1519 | /* Send out a delayed ack, the caller does the policy checking | |
1520 | * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() | |
1521 | * for details. | |
1522 | */ | |
1523 | void tcp_send_delayed_ack(struct sock *sk) | |
1524 | { | |
1525 | struct tcp_sock *tp = tcp_sk(sk); | |
1526 | int ato = tp->ack.ato; | |
1527 | unsigned long timeout; | |
1528 | ||
1529 | if (ato > TCP_DELACK_MIN) { | |
1530 | int max_ato = HZ/2; | |
1531 | ||
1532 | if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED)) | |
1533 | max_ato = TCP_DELACK_MAX; | |
1534 | ||
1535 | /* Slow path, intersegment interval is "high". */ | |
1536 | ||
1537 | /* If some rtt estimate is known, use it to bound delayed ack. | |
1538 | * Do not use tp->rto here, use results of rtt measurements | |
1539 | * directly. | |
1540 | */ | |
1541 | if (tp->srtt) { | |
1542 | int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); | |
1543 | ||
1544 | if (rtt < max_ato) | |
1545 | max_ato = rtt; | |
1546 | } | |
1547 | ||
1548 | ato = min(ato, max_ato); | |
1549 | } | |
1550 | ||
1551 | /* Stay within the limit we were given */ | |
1552 | timeout = jiffies + ato; | |
1553 | ||
1554 | /* Use new timeout only if there wasn't a older one earlier. */ | |
1555 | if (tp->ack.pending&TCP_ACK_TIMER) { | |
1556 | /* If delack timer was blocked or is about to expire, | |
1557 | * send ACK now. | |
1558 | */ | |
1559 | if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) { | |
1560 | tcp_send_ack(sk); | |
1561 | return; | |
1562 | } | |
1563 | ||
1564 | if (!time_before(timeout, tp->ack.timeout)) | |
1565 | timeout = tp->ack.timeout; | |
1566 | } | |
1567 | tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER; | |
1568 | tp->ack.timeout = timeout; | |
1569 | sk_reset_timer(sk, &tp->delack_timer, timeout); | |
1570 | } | |
1571 | ||
1572 | /* This routine sends an ack and also updates the window. */ | |
1573 | void tcp_send_ack(struct sock *sk) | |
1574 | { | |
1575 | /* If we have been reset, we may not send again. */ | |
1576 | if (sk->sk_state != TCP_CLOSE) { | |
1577 | struct tcp_sock *tp = tcp_sk(sk); | |
1578 | struct sk_buff *buff; | |
1579 | ||
1580 | /* We are not putting this on the write queue, so | |
1581 | * tcp_transmit_skb() will set the ownership to this | |
1582 | * sock. | |
1583 | */ | |
1584 | buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | |
1585 | if (buff == NULL) { | |
1586 | tcp_schedule_ack(tp); | |
1587 | tp->ack.ato = TCP_ATO_MIN; | |
1588 | tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); | |
1589 | return; | |
1590 | } | |
1591 | ||
1592 | /* Reserve space for headers and prepare control bits. */ | |
1593 | skb_reserve(buff, MAX_TCP_HEADER); | |
1594 | buff->csum = 0; | |
1595 | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; | |
1596 | TCP_SKB_CB(buff)->sacked = 0; | |
1597 | skb_shinfo(buff)->tso_segs = 1; | |
1598 | skb_shinfo(buff)->tso_size = 0; | |
1599 | ||
1600 | /* Send it off, this clears delayed acks for us. */ | |
1601 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); | |
1602 | TCP_SKB_CB(buff)->when = tcp_time_stamp; | |
1603 | tcp_transmit_skb(sk, buff); | |
1604 | } | |
1605 | } | |
1606 | ||
1607 | /* This routine sends a packet with an out of date sequence | |
1608 | * number. It assumes the other end will try to ack it. | |
1609 | * | |
1610 | * Question: what should we make while urgent mode? | |
1611 | * 4.4BSD forces sending single byte of data. We cannot send | |
1612 | * out of window data, because we have SND.NXT==SND.MAX... | |
1613 | * | |
1614 | * Current solution: to send TWO zero-length segments in urgent mode: | |
1615 | * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is | |
1616 | * out-of-date with SND.UNA-1 to probe window. | |
1617 | */ | |
1618 | static int tcp_xmit_probe_skb(struct sock *sk, int urgent) | |
1619 | { | |
1620 | struct tcp_sock *tp = tcp_sk(sk); | |
1621 | struct sk_buff *skb; | |
1622 | ||
1623 | /* We don't queue it, tcp_transmit_skb() sets ownership. */ | |
1624 | skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | |
1625 | if (skb == NULL) | |
1626 | return -1; | |
1627 | ||
1628 | /* Reserve space for headers and set control bits. */ | |
1629 | skb_reserve(skb, MAX_TCP_HEADER); | |
1630 | skb->csum = 0; | |
1631 | TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; | |
1632 | TCP_SKB_CB(skb)->sacked = urgent; | |
1633 | skb_shinfo(skb)->tso_segs = 1; | |
1634 | skb_shinfo(skb)->tso_size = 0; | |
1635 | ||
1636 | /* Use a previous sequence. This should cause the other | |
1637 | * end to send an ack. Don't queue or clone SKB, just | |
1638 | * send it. | |
1639 | */ | |
1640 | TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; | |
1641 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | |
1642 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1643 | return tcp_transmit_skb(sk, skb); | |
1644 | } | |
1645 | ||
1646 | int tcp_write_wakeup(struct sock *sk) | |
1647 | { | |
1648 | if (sk->sk_state != TCP_CLOSE) { | |
1649 | struct tcp_sock *tp = tcp_sk(sk); | |
1650 | struct sk_buff *skb; | |
1651 | ||
1652 | if ((skb = sk->sk_send_head) != NULL && | |
1653 | before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { | |
1654 | int err; | |
1655 | unsigned int mss = tcp_current_mss(sk, 0); | |
1656 | unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; | |
1657 | ||
1658 | if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) | |
1659 | tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; | |
1660 | ||
1661 | /* We are probing the opening of a window | |
1662 | * but the window size is != 0 | |
1663 | * must have been a result SWS avoidance ( sender ) | |
1664 | */ | |
1665 | if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || | |
1666 | skb->len > mss) { | |
1667 | seg_size = min(seg_size, mss); | |
1668 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | |
1669 | if (tcp_fragment(sk, skb, seg_size)) | |
1670 | return -1; | |
1671 | /* SWS override triggered forced fragmentation. | |
1672 | * Disable TSO, the connection is too sick. */ | |
1673 | if (sk->sk_route_caps & NETIF_F_TSO) { | |
1674 | sock_set_flag(sk, SOCK_NO_LARGESEND); | |
1675 | sk->sk_route_caps &= ~NETIF_F_TSO; | |
1676 | tp->mss_cache = tp->mss_cache_std; | |
1677 | } | |
1678 | } else if (!tcp_skb_pcount(skb)) | |
1679 | tcp_set_skb_tso_segs(skb, tp->mss_cache_std); | |
1680 | ||
1681 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | |
1682 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | |
1683 | tcp_tso_set_push(skb); | |
1684 | err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); | |
1685 | if (!err) { | |
1686 | update_send_head(sk, tp, skb); | |
1687 | } | |
1688 | return err; | |
1689 | } else { | |
1690 | if (tp->urg_mode && | |
1691 | between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) | |
1692 | tcp_xmit_probe_skb(sk, TCPCB_URG); | |
1693 | return tcp_xmit_probe_skb(sk, 0); | |
1694 | } | |
1695 | } | |
1696 | return -1; | |
1697 | } | |
1698 | ||
1699 | /* A window probe timeout has occurred. If window is not closed send | |
1700 | * a partial packet else a zero probe. | |
1701 | */ | |
1702 | void tcp_send_probe0(struct sock *sk) | |
1703 | { | |
1704 | struct tcp_sock *tp = tcp_sk(sk); | |
1705 | int err; | |
1706 | ||
1707 | err = tcp_write_wakeup(sk); | |
1708 | ||
1709 | if (tp->packets_out || !sk->sk_send_head) { | |
1710 | /* Cancel probe timer, if it is not required. */ | |
1711 | tp->probes_out = 0; | |
1712 | tp->backoff = 0; | |
1713 | return; | |
1714 | } | |
1715 | ||
1716 | if (err <= 0) { | |
1717 | if (tp->backoff < sysctl_tcp_retries2) | |
1718 | tp->backoff++; | |
1719 | tp->probes_out++; | |
1720 | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, | |
1721 | min(tp->rto << tp->backoff, TCP_RTO_MAX)); | |
1722 | } else { | |
1723 | /* If packet was not sent due to local congestion, | |
1724 | * do not backoff and do not remember probes_out. | |
1725 | * Let local senders to fight for local resources. | |
1726 | * | |
1727 | * Use accumulated backoff yet. | |
1728 | */ | |
1729 | if (!tp->probes_out) | |
1730 | tp->probes_out=1; | |
1731 | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, | |
1732 | min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL)); | |
1733 | } | |
1734 | } | |
1735 | ||
1736 | EXPORT_SYMBOL(tcp_connect); | |
1737 | EXPORT_SYMBOL(tcp_make_synack); | |
1738 | EXPORT_SYMBOL(tcp_simple_retransmit); | |
1739 | EXPORT_SYMBOL(tcp_sync_mss); |