]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <[email protected]> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <[email protected]> | |
8 | * | |
2e72b634 KS |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
8cdea7c0 BS |
13 | * This program is free software; you can redistribute it and/or modify |
14 | * it under the terms of the GNU General Public License as published by | |
15 | * the Free Software Foundation; either version 2 of the License, or | |
16 | * (at your option) any later version. | |
17 | * | |
18 | * This program is distributed in the hope that it will be useful, | |
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
21 | * GNU General Public License for more details. | |
22 | */ | |
23 | ||
24 | #include <linux/res_counter.h> | |
25 | #include <linux/memcontrol.h> | |
26 | #include <linux/cgroup.h> | |
78fb7466 | 27 | #include <linux/mm.h> |
4ffef5fe | 28 | #include <linux/hugetlb.h> |
d13d1443 | 29 | #include <linux/pagemap.h> |
d52aa412 | 30 | #include <linux/smp.h> |
8a9f3ccd | 31 | #include <linux/page-flags.h> |
66e1707b | 32 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
33 | #include <linux/bit_spinlock.h> |
34 | #include <linux/rcupdate.h> | |
e222432b | 35 | #include <linux/limits.h> |
8c7c6e34 | 36 | #include <linux/mutex.h> |
f64c3f54 | 37 | #include <linux/rbtree.h> |
b6ac57d5 | 38 | #include <linux/slab.h> |
66e1707b | 39 | #include <linux/swap.h> |
02491447 | 40 | #include <linux/swapops.h> |
66e1707b | 41 | #include <linux/spinlock.h> |
2e72b634 KS |
42 | #include <linux/eventfd.h> |
43 | #include <linux/sort.h> | |
66e1707b | 44 | #include <linux/fs.h> |
d2ceb9b7 | 45 | #include <linux/seq_file.h> |
33327948 | 46 | #include <linux/vmalloc.h> |
b69408e8 | 47 | #include <linux/mm_inline.h> |
52d4b9ac | 48 | #include <linux/page_cgroup.h> |
cdec2e42 | 49 | #include <linux/cpu.h> |
158e0a2d | 50 | #include <linux/oom.h> |
08e552c6 | 51 | #include "internal.h" |
8cdea7c0 | 52 | |
8697d331 BS |
53 | #include <asm/uaccess.h> |
54 | ||
cc8e970c KM |
55 | #include <trace/events/vmscan.h> |
56 | ||
a181b0e8 | 57 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
a181b0e8 | 58 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
4b3bde4c | 59 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
8cdea7c0 | 60 | |
c077719b | 61 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
338c8431 | 62 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
c077719b | 63 | int do_swap_account __read_mostly; |
a42c390c MH |
64 | |
65 | /* for remember boot option*/ | |
66 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED | |
67 | static int really_do_swap_account __initdata = 1; | |
68 | #else | |
69 | static int really_do_swap_account __initdata = 0; | |
70 | #endif | |
71 | ||
c077719b KH |
72 | #else |
73 | #define do_swap_account (0) | |
74 | #endif | |
75 | ||
76 | ||
d52aa412 KH |
77 | /* |
78 | * Statistics for memory cgroup. | |
79 | */ | |
80 | enum mem_cgroup_stat_index { | |
81 | /* | |
82 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | |
83 | */ | |
84 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ | |
d69b042f | 85 | MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ |
d8046582 | 86 | MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ |
0c3e73e8 | 87 | MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ |
711d3d2c | 88 | MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ |
32047e2a | 89 | MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ |
d52aa412 KH |
90 | MEM_CGROUP_STAT_NSTATS, |
91 | }; | |
92 | ||
e9f8974f JW |
93 | enum mem_cgroup_events_index { |
94 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ | |
95 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ | |
96 | MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */ | |
97 | MEM_CGROUP_EVENTS_NSTATS, | |
98 | }; | |
7a159cc9 JW |
99 | /* |
100 | * Per memcg event counter is incremented at every pagein/pageout. With THP, | |
101 | * it will be incremated by the number of pages. This counter is used for | |
102 | * for trigger some periodic events. This is straightforward and better | |
103 | * than using jiffies etc. to handle periodic memcg event. | |
104 | */ | |
105 | enum mem_cgroup_events_target { | |
106 | MEM_CGROUP_TARGET_THRESH, | |
107 | MEM_CGROUP_TARGET_SOFTLIMIT, | |
108 | MEM_CGROUP_NTARGETS, | |
109 | }; | |
110 | #define THRESHOLDS_EVENTS_TARGET (128) | |
111 | #define SOFTLIMIT_EVENTS_TARGET (1024) | |
e9f8974f | 112 | |
d52aa412 | 113 | struct mem_cgroup_stat_cpu { |
7a159cc9 | 114 | long count[MEM_CGROUP_STAT_NSTATS]; |
e9f8974f | 115 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; |
7a159cc9 | 116 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
d52aa412 KH |
117 | }; |
118 | ||
6d12e2d8 KH |
119 | /* |
120 | * per-zone information in memory controller. | |
121 | */ | |
6d12e2d8 | 122 | struct mem_cgroup_per_zone { |
072c56c1 KH |
123 | /* |
124 | * spin_lock to protect the per cgroup LRU | |
125 | */ | |
b69408e8 CL |
126 | struct list_head lists[NR_LRU_LISTS]; |
127 | unsigned long count[NR_LRU_LISTS]; | |
3e2f41f1 KM |
128 | |
129 | struct zone_reclaim_stat reclaim_stat; | |
f64c3f54 BS |
130 | struct rb_node tree_node; /* RB tree node */ |
131 | unsigned long long usage_in_excess;/* Set to the value by which */ | |
132 | /* the soft limit is exceeded*/ | |
133 | bool on_tree; | |
4e416953 BS |
134 | struct mem_cgroup *mem; /* Back pointer, we cannot */ |
135 | /* use container_of */ | |
6d12e2d8 KH |
136 | }; |
137 | /* Macro for accessing counter */ | |
138 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) | |
139 | ||
140 | struct mem_cgroup_per_node { | |
141 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
142 | }; | |
143 | ||
144 | struct mem_cgroup_lru_info { | |
145 | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | |
146 | }; | |
147 | ||
f64c3f54 BS |
148 | /* |
149 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
150 | * their hierarchy representation | |
151 | */ | |
152 | ||
153 | struct mem_cgroup_tree_per_zone { | |
154 | struct rb_root rb_root; | |
155 | spinlock_t lock; | |
156 | }; | |
157 | ||
158 | struct mem_cgroup_tree_per_node { | |
159 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | |
160 | }; | |
161 | ||
162 | struct mem_cgroup_tree { | |
163 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
164 | }; | |
165 | ||
166 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
167 | ||
2e72b634 KS |
168 | struct mem_cgroup_threshold { |
169 | struct eventfd_ctx *eventfd; | |
170 | u64 threshold; | |
171 | }; | |
172 | ||
9490ff27 | 173 | /* For threshold */ |
2e72b634 KS |
174 | struct mem_cgroup_threshold_ary { |
175 | /* An array index points to threshold just below usage. */ | |
5407a562 | 176 | int current_threshold; |
2e72b634 KS |
177 | /* Size of entries[] */ |
178 | unsigned int size; | |
179 | /* Array of thresholds */ | |
180 | struct mem_cgroup_threshold entries[0]; | |
181 | }; | |
2c488db2 KS |
182 | |
183 | struct mem_cgroup_thresholds { | |
184 | /* Primary thresholds array */ | |
185 | struct mem_cgroup_threshold_ary *primary; | |
186 | /* | |
187 | * Spare threshold array. | |
188 | * This is needed to make mem_cgroup_unregister_event() "never fail". | |
189 | * It must be able to store at least primary->size - 1 entries. | |
190 | */ | |
191 | struct mem_cgroup_threshold_ary *spare; | |
192 | }; | |
193 | ||
9490ff27 KH |
194 | /* for OOM */ |
195 | struct mem_cgroup_eventfd_list { | |
196 | struct list_head list; | |
197 | struct eventfd_ctx *eventfd; | |
198 | }; | |
2e72b634 | 199 | |
2e72b634 | 200 | static void mem_cgroup_threshold(struct mem_cgroup *mem); |
9490ff27 | 201 | static void mem_cgroup_oom_notify(struct mem_cgroup *mem); |
2e72b634 | 202 | |
8cdea7c0 BS |
203 | /* |
204 | * The memory controller data structure. The memory controller controls both | |
205 | * page cache and RSS per cgroup. We would eventually like to provide | |
206 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
207 | * to help the administrator determine what knobs to tune. | |
208 | * | |
209 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
8a9f3ccd BS |
210 | * we hit the water mark. May be even add a low water mark, such that |
211 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
212 | * a feature that will be implemented much later in the future. | |
8cdea7c0 BS |
213 | */ |
214 | struct mem_cgroup { | |
215 | struct cgroup_subsys_state css; | |
216 | /* | |
217 | * the counter to account for memory usage | |
218 | */ | |
219 | struct res_counter res; | |
8c7c6e34 KH |
220 | /* |
221 | * the counter to account for mem+swap usage. | |
222 | */ | |
223 | struct res_counter memsw; | |
78fb7466 PE |
224 | /* |
225 | * Per cgroup active and inactive list, similar to the | |
226 | * per zone LRU lists. | |
78fb7466 | 227 | */ |
6d12e2d8 | 228 | struct mem_cgroup_lru_info info; |
6d61ef40 | 229 | /* |
af901ca1 | 230 | * While reclaiming in a hierarchy, we cache the last child we |
04046e1a | 231 | * reclaimed from. |
6d61ef40 | 232 | */ |
04046e1a | 233 | int last_scanned_child; |
18f59ea7 BS |
234 | /* |
235 | * Should the accounting and control be hierarchical, per subtree? | |
236 | */ | |
237 | bool use_hierarchy; | |
867578cb | 238 | atomic_t oom_lock; |
8c7c6e34 | 239 | atomic_t refcnt; |
14797e23 | 240 | |
a7885eb8 | 241 | unsigned int swappiness; |
3c11ecf4 KH |
242 | /* OOM-Killer disable */ |
243 | int oom_kill_disable; | |
a7885eb8 | 244 | |
22a668d7 KH |
245 | /* set when res.limit == memsw.limit */ |
246 | bool memsw_is_minimum; | |
247 | ||
2e72b634 KS |
248 | /* protect arrays of thresholds */ |
249 | struct mutex thresholds_lock; | |
250 | ||
251 | /* thresholds for memory usage. RCU-protected */ | |
2c488db2 | 252 | struct mem_cgroup_thresholds thresholds; |
907860ed | 253 | |
2e72b634 | 254 | /* thresholds for mem+swap usage. RCU-protected */ |
2c488db2 | 255 | struct mem_cgroup_thresholds memsw_thresholds; |
907860ed | 256 | |
9490ff27 KH |
257 | /* For oom notifier event fd */ |
258 | struct list_head oom_notify; | |
259 | ||
7dc74be0 DN |
260 | /* |
261 | * Should we move charges of a task when a task is moved into this | |
262 | * mem_cgroup ? And what type of charges should we move ? | |
263 | */ | |
264 | unsigned long move_charge_at_immigrate; | |
d52aa412 | 265 | /* |
c62b1a3b | 266 | * percpu counter. |
d52aa412 | 267 | */ |
c62b1a3b | 268 | struct mem_cgroup_stat_cpu *stat; |
711d3d2c KH |
269 | /* |
270 | * used when a cpu is offlined or other synchronizations | |
271 | * See mem_cgroup_read_stat(). | |
272 | */ | |
273 | struct mem_cgroup_stat_cpu nocpu_base; | |
274 | spinlock_t pcp_counter_lock; | |
8cdea7c0 BS |
275 | }; |
276 | ||
7dc74be0 DN |
277 | /* Stuffs for move charges at task migration. */ |
278 | /* | |
279 | * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a | |
280 | * left-shifted bitmap of these types. | |
281 | */ | |
282 | enum move_type { | |
4ffef5fe | 283 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
87946a72 | 284 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
7dc74be0 DN |
285 | NR_MOVE_TYPE, |
286 | }; | |
287 | ||
4ffef5fe DN |
288 | /* "mc" and its members are protected by cgroup_mutex */ |
289 | static struct move_charge_struct { | |
b1dd693e | 290 | spinlock_t lock; /* for from, to */ |
4ffef5fe DN |
291 | struct mem_cgroup *from; |
292 | struct mem_cgroup *to; | |
293 | unsigned long precharge; | |
854ffa8d | 294 | unsigned long moved_charge; |
483c30b5 | 295 | unsigned long moved_swap; |
8033b97c DN |
296 | struct task_struct *moving_task; /* a task moving charges */ |
297 | wait_queue_head_t waitq; /* a waitq for other context */ | |
298 | } mc = { | |
2bd9bb20 | 299 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
8033b97c DN |
300 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
301 | }; | |
4ffef5fe | 302 | |
90254a65 DN |
303 | static bool move_anon(void) |
304 | { | |
305 | return test_bit(MOVE_CHARGE_TYPE_ANON, | |
306 | &mc.to->move_charge_at_immigrate); | |
307 | } | |
308 | ||
87946a72 DN |
309 | static bool move_file(void) |
310 | { | |
311 | return test_bit(MOVE_CHARGE_TYPE_FILE, | |
312 | &mc.to->move_charge_at_immigrate); | |
313 | } | |
314 | ||
4e416953 BS |
315 | /* |
316 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
317 | * limit reclaim to prevent infinite loops, if they ever occur. | |
318 | */ | |
319 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) | |
320 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) | |
321 | ||
217bc319 KH |
322 | enum charge_type { |
323 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
324 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | |
4f98a2fe | 325 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ |
c05555b5 | 326 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
d13d1443 | 327 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
8a9478ca | 328 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
c05555b5 KH |
329 | NR_CHARGE_TYPE, |
330 | }; | |
331 | ||
8c7c6e34 KH |
332 | /* for encoding cft->private value on file */ |
333 | #define _MEM (0) | |
334 | #define _MEMSWAP (1) | |
9490ff27 | 335 | #define _OOM_TYPE (2) |
8c7c6e34 KH |
336 | #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) |
337 | #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) | |
338 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | |
9490ff27 KH |
339 | /* Used for OOM nofiier */ |
340 | #define OOM_CONTROL (0) | |
8c7c6e34 | 341 | |
75822b44 BS |
342 | /* |
343 | * Reclaim flags for mem_cgroup_hierarchical_reclaim | |
344 | */ | |
345 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 | |
346 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | |
347 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 | |
348 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | |
4e416953 BS |
349 | #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2 |
350 | #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT) | |
75822b44 | 351 | |
8c7c6e34 KH |
352 | static void mem_cgroup_get(struct mem_cgroup *mem); |
353 | static void mem_cgroup_put(struct mem_cgroup *mem); | |
7bcc1bb1 | 354 | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); |
cdec2e42 | 355 | static void drain_all_stock_async(void); |
8c7c6e34 | 356 | |
f64c3f54 BS |
357 | static struct mem_cgroup_per_zone * |
358 | mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) | |
359 | { | |
360 | return &mem->info.nodeinfo[nid]->zoneinfo[zid]; | |
361 | } | |
362 | ||
d324236b WF |
363 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) |
364 | { | |
365 | return &mem->css; | |
366 | } | |
367 | ||
f64c3f54 | 368 | static struct mem_cgroup_per_zone * |
97a6c37b | 369 | page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page) |
f64c3f54 | 370 | { |
97a6c37b JW |
371 | int nid = page_to_nid(page); |
372 | int zid = page_zonenum(page); | |
f64c3f54 | 373 | |
f64c3f54 BS |
374 | return mem_cgroup_zoneinfo(mem, nid, zid); |
375 | } | |
376 | ||
377 | static struct mem_cgroup_tree_per_zone * | |
378 | soft_limit_tree_node_zone(int nid, int zid) | |
379 | { | |
380 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
381 | } | |
382 | ||
383 | static struct mem_cgroup_tree_per_zone * | |
384 | soft_limit_tree_from_page(struct page *page) | |
385 | { | |
386 | int nid = page_to_nid(page); | |
387 | int zid = page_zonenum(page); | |
388 | ||
389 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
390 | } | |
391 | ||
392 | static void | |
4e416953 | 393 | __mem_cgroup_insert_exceeded(struct mem_cgroup *mem, |
f64c3f54 | 394 | struct mem_cgroup_per_zone *mz, |
ef8745c1 KH |
395 | struct mem_cgroup_tree_per_zone *mctz, |
396 | unsigned long long new_usage_in_excess) | |
f64c3f54 BS |
397 | { |
398 | struct rb_node **p = &mctz->rb_root.rb_node; | |
399 | struct rb_node *parent = NULL; | |
400 | struct mem_cgroup_per_zone *mz_node; | |
401 | ||
402 | if (mz->on_tree) | |
403 | return; | |
404 | ||
ef8745c1 KH |
405 | mz->usage_in_excess = new_usage_in_excess; |
406 | if (!mz->usage_in_excess) | |
407 | return; | |
f64c3f54 BS |
408 | while (*p) { |
409 | parent = *p; | |
410 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | |
411 | tree_node); | |
412 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
413 | p = &(*p)->rb_left; | |
414 | /* | |
415 | * We can't avoid mem cgroups that are over their soft | |
416 | * limit by the same amount | |
417 | */ | |
418 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
419 | p = &(*p)->rb_right; | |
420 | } | |
421 | rb_link_node(&mz->tree_node, parent, p); | |
422 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
423 | mz->on_tree = true; | |
4e416953 BS |
424 | } |
425 | ||
426 | static void | |
427 | __mem_cgroup_remove_exceeded(struct mem_cgroup *mem, | |
428 | struct mem_cgroup_per_zone *mz, | |
429 | struct mem_cgroup_tree_per_zone *mctz) | |
430 | { | |
431 | if (!mz->on_tree) | |
432 | return; | |
433 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
434 | mz->on_tree = false; | |
435 | } | |
436 | ||
f64c3f54 BS |
437 | static void |
438 | mem_cgroup_remove_exceeded(struct mem_cgroup *mem, | |
439 | struct mem_cgroup_per_zone *mz, | |
440 | struct mem_cgroup_tree_per_zone *mctz) | |
441 | { | |
442 | spin_lock(&mctz->lock); | |
4e416953 | 443 | __mem_cgroup_remove_exceeded(mem, mz, mctz); |
f64c3f54 BS |
444 | spin_unlock(&mctz->lock); |
445 | } | |
446 | ||
f64c3f54 BS |
447 | |
448 | static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) | |
449 | { | |
ef8745c1 | 450 | unsigned long long excess; |
f64c3f54 BS |
451 | struct mem_cgroup_per_zone *mz; |
452 | struct mem_cgroup_tree_per_zone *mctz; | |
4e649152 KH |
453 | int nid = page_to_nid(page); |
454 | int zid = page_zonenum(page); | |
f64c3f54 BS |
455 | mctz = soft_limit_tree_from_page(page); |
456 | ||
457 | /* | |
4e649152 KH |
458 | * Necessary to update all ancestors when hierarchy is used. |
459 | * because their event counter is not touched. | |
f64c3f54 | 460 | */ |
4e649152 KH |
461 | for (; mem; mem = parent_mem_cgroup(mem)) { |
462 | mz = mem_cgroup_zoneinfo(mem, nid, zid); | |
ef8745c1 | 463 | excess = res_counter_soft_limit_excess(&mem->res); |
4e649152 KH |
464 | /* |
465 | * We have to update the tree if mz is on RB-tree or | |
466 | * mem is over its softlimit. | |
467 | */ | |
ef8745c1 | 468 | if (excess || mz->on_tree) { |
4e649152 KH |
469 | spin_lock(&mctz->lock); |
470 | /* if on-tree, remove it */ | |
471 | if (mz->on_tree) | |
472 | __mem_cgroup_remove_exceeded(mem, mz, mctz); | |
473 | /* | |
ef8745c1 KH |
474 | * Insert again. mz->usage_in_excess will be updated. |
475 | * If excess is 0, no tree ops. | |
4e649152 | 476 | */ |
ef8745c1 | 477 | __mem_cgroup_insert_exceeded(mem, mz, mctz, excess); |
4e649152 KH |
478 | spin_unlock(&mctz->lock); |
479 | } | |
f64c3f54 BS |
480 | } |
481 | } | |
482 | ||
483 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) | |
484 | { | |
485 | int node, zone; | |
486 | struct mem_cgroup_per_zone *mz; | |
487 | struct mem_cgroup_tree_per_zone *mctz; | |
488 | ||
489 | for_each_node_state(node, N_POSSIBLE) { | |
490 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
491 | mz = mem_cgroup_zoneinfo(mem, node, zone); | |
492 | mctz = soft_limit_tree_node_zone(node, zone); | |
493 | mem_cgroup_remove_exceeded(mem, mz, mctz); | |
494 | } | |
495 | } | |
496 | } | |
497 | ||
4e416953 BS |
498 | static struct mem_cgroup_per_zone * |
499 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
500 | { | |
501 | struct rb_node *rightmost = NULL; | |
26251eaf | 502 | struct mem_cgroup_per_zone *mz; |
4e416953 BS |
503 | |
504 | retry: | |
26251eaf | 505 | mz = NULL; |
4e416953 BS |
506 | rightmost = rb_last(&mctz->rb_root); |
507 | if (!rightmost) | |
508 | goto done; /* Nothing to reclaim from */ | |
509 | ||
510 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | |
511 | /* | |
512 | * Remove the node now but someone else can add it back, | |
513 | * we will to add it back at the end of reclaim to its correct | |
514 | * position in the tree. | |
515 | */ | |
516 | __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); | |
517 | if (!res_counter_soft_limit_excess(&mz->mem->res) || | |
518 | !css_tryget(&mz->mem->css)) | |
519 | goto retry; | |
520 | done: | |
521 | return mz; | |
522 | } | |
523 | ||
524 | static struct mem_cgroup_per_zone * | |
525 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
526 | { | |
527 | struct mem_cgroup_per_zone *mz; | |
528 | ||
529 | spin_lock(&mctz->lock); | |
530 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
531 | spin_unlock(&mctz->lock); | |
532 | return mz; | |
533 | } | |
534 | ||
711d3d2c KH |
535 | /* |
536 | * Implementation Note: reading percpu statistics for memcg. | |
537 | * | |
538 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
539 | * synchronization to implement "quick" read. There are trade-off between | |
540 | * reading cost and precision of value. Then, we may have a chance to implement | |
541 | * a periodic synchronizion of counter in memcg's counter. | |
542 | * | |
543 | * But this _read() function is used for user interface now. The user accounts | |
544 | * memory usage by memory cgroup and he _always_ requires exact value because | |
545 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
546 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
547 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
548 | * | |
549 | * If there are kernel internal actions which can make use of some not-exact | |
550 | * value, and reading all cpu value can be performance bottleneck in some | |
551 | * common workload, threashold and synchonization as vmstat[] should be | |
552 | * implemented. | |
553 | */ | |
7a159cc9 JW |
554 | static long mem_cgroup_read_stat(struct mem_cgroup *mem, |
555 | enum mem_cgroup_stat_index idx) | |
c62b1a3b | 556 | { |
7a159cc9 | 557 | long val = 0; |
c62b1a3b | 558 | int cpu; |
c62b1a3b | 559 | |
711d3d2c KH |
560 | get_online_cpus(); |
561 | for_each_online_cpu(cpu) | |
c62b1a3b | 562 | val += per_cpu(mem->stat->count[idx], cpu); |
711d3d2c KH |
563 | #ifdef CONFIG_HOTPLUG_CPU |
564 | spin_lock(&mem->pcp_counter_lock); | |
565 | val += mem->nocpu_base.count[idx]; | |
566 | spin_unlock(&mem->pcp_counter_lock); | |
567 | #endif | |
568 | put_online_cpus(); | |
c62b1a3b KH |
569 | return val; |
570 | } | |
571 | ||
7a159cc9 | 572 | static long mem_cgroup_local_usage(struct mem_cgroup *mem) |
c62b1a3b | 573 | { |
7a159cc9 | 574 | long ret; |
c62b1a3b KH |
575 | |
576 | ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); | |
577 | ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); | |
578 | return ret; | |
579 | } | |
580 | ||
0c3e73e8 BS |
581 | static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, |
582 | bool charge) | |
583 | { | |
584 | int val = (charge) ? 1 : -1; | |
c62b1a3b | 585 | this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); |
0c3e73e8 BS |
586 | } |
587 | ||
e9f8974f JW |
588 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem, |
589 | enum mem_cgroup_events_index idx) | |
590 | { | |
591 | unsigned long val = 0; | |
592 | int cpu; | |
593 | ||
594 | for_each_online_cpu(cpu) | |
595 | val += per_cpu(mem->stat->events[idx], cpu); | |
596 | #ifdef CONFIG_HOTPLUG_CPU | |
597 | spin_lock(&mem->pcp_counter_lock); | |
598 | val += mem->nocpu_base.events[idx]; | |
599 | spin_unlock(&mem->pcp_counter_lock); | |
600 | #endif | |
601 | return val; | |
602 | } | |
603 | ||
c05555b5 | 604 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, |
e401f176 | 605 | bool file, int nr_pages) |
d52aa412 | 606 | { |
c62b1a3b KH |
607 | preempt_disable(); |
608 | ||
e401f176 KH |
609 | if (file) |
610 | __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages); | |
d52aa412 | 611 | else |
e401f176 | 612 | __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages); |
55e462b0 | 613 | |
e401f176 KH |
614 | /* pagein of a big page is an event. So, ignore page size */ |
615 | if (nr_pages > 0) | |
e9f8974f | 616 | __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
3751d604 | 617 | else { |
e9f8974f | 618 | __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
3751d604 KH |
619 | nr_pages = -nr_pages; /* for event */ |
620 | } | |
e401f176 | 621 | |
e9f8974f | 622 | __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages); |
2e72b634 | 623 | |
c62b1a3b | 624 | preempt_enable(); |
6d12e2d8 KH |
625 | } |
626 | ||
14067bb3 | 627 | static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, |
b69408e8 | 628 | enum lru_list idx) |
6d12e2d8 KH |
629 | { |
630 | int nid, zid; | |
631 | struct mem_cgroup_per_zone *mz; | |
632 | u64 total = 0; | |
633 | ||
634 | for_each_online_node(nid) | |
635 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
636 | mz = mem_cgroup_zoneinfo(mem, nid, zid); | |
637 | total += MEM_CGROUP_ZSTAT(mz, idx); | |
638 | } | |
639 | return total; | |
d52aa412 KH |
640 | } |
641 | ||
7a159cc9 JW |
642 | static bool __memcg_event_check(struct mem_cgroup *mem, int target) |
643 | { | |
644 | unsigned long val, next; | |
645 | ||
646 | val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]); | |
647 | next = this_cpu_read(mem->stat->targets[target]); | |
648 | /* from time_after() in jiffies.h */ | |
649 | return ((long)next - (long)val < 0); | |
650 | } | |
651 | ||
652 | static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target) | |
d2265e6f | 653 | { |
7a159cc9 | 654 | unsigned long val, next; |
d2265e6f | 655 | |
e9f8974f | 656 | val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]); |
d2265e6f | 657 | |
7a159cc9 JW |
658 | switch (target) { |
659 | case MEM_CGROUP_TARGET_THRESH: | |
660 | next = val + THRESHOLDS_EVENTS_TARGET; | |
661 | break; | |
662 | case MEM_CGROUP_TARGET_SOFTLIMIT: | |
663 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
664 | break; | |
665 | default: | |
666 | return; | |
667 | } | |
668 | ||
669 | this_cpu_write(mem->stat->targets[target], next); | |
d2265e6f KH |
670 | } |
671 | ||
672 | /* | |
673 | * Check events in order. | |
674 | * | |
675 | */ | |
676 | static void memcg_check_events(struct mem_cgroup *mem, struct page *page) | |
677 | { | |
678 | /* threshold event is triggered in finer grain than soft limit */ | |
7a159cc9 | 679 | if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) { |
d2265e6f | 680 | mem_cgroup_threshold(mem); |
7a159cc9 JW |
681 | __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH); |
682 | if (unlikely(__memcg_event_check(mem, | |
683 | MEM_CGROUP_TARGET_SOFTLIMIT))){ | |
d2265e6f | 684 | mem_cgroup_update_tree(mem, page); |
7a159cc9 JW |
685 | __mem_cgroup_target_update(mem, |
686 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
687 | } | |
d2265e6f KH |
688 | } |
689 | } | |
690 | ||
d5b69e38 | 691 | static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
8cdea7c0 BS |
692 | { |
693 | return container_of(cgroup_subsys_state(cont, | |
694 | mem_cgroup_subsys_id), struct mem_cgroup, | |
695 | css); | |
696 | } | |
697 | ||
cf475ad2 | 698 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 699 | { |
31a78f23 BS |
700 | /* |
701 | * mm_update_next_owner() may clear mm->owner to NULL | |
702 | * if it races with swapoff, page migration, etc. | |
703 | * So this can be called with p == NULL. | |
704 | */ | |
705 | if (unlikely(!p)) | |
706 | return NULL; | |
707 | ||
78fb7466 PE |
708 | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), |
709 | struct mem_cgroup, css); | |
710 | } | |
711 | ||
54595fe2 KH |
712 | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
713 | { | |
714 | struct mem_cgroup *mem = NULL; | |
0b7f569e KH |
715 | |
716 | if (!mm) | |
717 | return NULL; | |
54595fe2 KH |
718 | /* |
719 | * Because we have no locks, mm->owner's may be being moved to other | |
720 | * cgroup. We use css_tryget() here even if this looks | |
721 | * pessimistic (rather than adding locks here). | |
722 | */ | |
723 | rcu_read_lock(); | |
724 | do { | |
725 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
726 | if (unlikely(!mem)) | |
727 | break; | |
728 | } while (!css_tryget(&mem->css)); | |
729 | rcu_read_unlock(); | |
730 | return mem; | |
731 | } | |
732 | ||
7d74b06f KH |
733 | /* The caller has to guarantee "mem" exists before calling this */ |
734 | static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem) | |
14067bb3 | 735 | { |
711d3d2c KH |
736 | struct cgroup_subsys_state *css; |
737 | int found; | |
738 | ||
739 | if (!mem) /* ROOT cgroup has the smallest ID */ | |
740 | return root_mem_cgroup; /*css_put/get against root is ignored*/ | |
741 | if (!mem->use_hierarchy) { | |
742 | if (css_tryget(&mem->css)) | |
743 | return mem; | |
744 | return NULL; | |
745 | } | |
746 | rcu_read_lock(); | |
747 | /* | |
748 | * searching a memory cgroup which has the smallest ID under given | |
749 | * ROOT cgroup. (ID >= 1) | |
750 | */ | |
751 | css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found); | |
752 | if (css && css_tryget(css)) | |
753 | mem = container_of(css, struct mem_cgroup, css); | |
754 | else | |
755 | mem = NULL; | |
756 | rcu_read_unlock(); | |
757 | return mem; | |
7d74b06f KH |
758 | } |
759 | ||
760 | static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter, | |
761 | struct mem_cgroup *root, | |
762 | bool cond) | |
763 | { | |
764 | int nextid = css_id(&iter->css) + 1; | |
765 | int found; | |
766 | int hierarchy_used; | |
14067bb3 | 767 | struct cgroup_subsys_state *css; |
14067bb3 | 768 | |
7d74b06f | 769 | hierarchy_used = iter->use_hierarchy; |
14067bb3 | 770 | |
7d74b06f | 771 | css_put(&iter->css); |
711d3d2c KH |
772 | /* If no ROOT, walk all, ignore hierarchy */ |
773 | if (!cond || (root && !hierarchy_used)) | |
7d74b06f | 774 | return NULL; |
14067bb3 | 775 | |
711d3d2c KH |
776 | if (!root) |
777 | root = root_mem_cgroup; | |
778 | ||
7d74b06f KH |
779 | do { |
780 | iter = NULL; | |
14067bb3 | 781 | rcu_read_lock(); |
7d74b06f KH |
782 | |
783 | css = css_get_next(&mem_cgroup_subsys, nextid, | |
784 | &root->css, &found); | |
14067bb3 | 785 | if (css && css_tryget(css)) |
7d74b06f | 786 | iter = container_of(css, struct mem_cgroup, css); |
14067bb3 | 787 | rcu_read_unlock(); |
7d74b06f | 788 | /* If css is NULL, no more cgroups will be found */ |
14067bb3 | 789 | nextid = found + 1; |
7d74b06f | 790 | } while (css && !iter); |
14067bb3 | 791 | |
7d74b06f | 792 | return iter; |
14067bb3 | 793 | } |
7d74b06f KH |
794 | /* |
795 | * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please | |
796 | * be careful that "break" loop is not allowed. We have reference count. | |
797 | * Instead of that modify "cond" to be false and "continue" to exit the loop. | |
798 | */ | |
799 | #define for_each_mem_cgroup_tree_cond(iter, root, cond) \ | |
800 | for (iter = mem_cgroup_start_loop(root);\ | |
801 | iter != NULL;\ | |
802 | iter = mem_cgroup_get_next(iter, root, cond)) | |
803 | ||
804 | #define for_each_mem_cgroup_tree(iter, root) \ | |
805 | for_each_mem_cgroup_tree_cond(iter, root, true) | |
806 | ||
711d3d2c KH |
807 | #define for_each_mem_cgroup_all(iter) \ |
808 | for_each_mem_cgroup_tree_cond(iter, NULL, true) | |
809 | ||
14067bb3 | 810 | |
4b3bde4c BS |
811 | static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) |
812 | { | |
813 | return (mem == root_mem_cgroup); | |
814 | } | |
815 | ||
08e552c6 KH |
816 | /* |
817 | * Following LRU functions are allowed to be used without PCG_LOCK. | |
818 | * Operations are called by routine of global LRU independently from memcg. | |
819 | * What we have to take care of here is validness of pc->mem_cgroup. | |
820 | * | |
821 | * Changes to pc->mem_cgroup happens when | |
822 | * 1. charge | |
823 | * 2. moving account | |
824 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | |
825 | * It is added to LRU before charge. | |
826 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | |
827 | * When moving account, the page is not on LRU. It's isolated. | |
828 | */ | |
4f98a2fe | 829 | |
08e552c6 KH |
830 | void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) |
831 | { | |
832 | struct page_cgroup *pc; | |
08e552c6 | 833 | struct mem_cgroup_per_zone *mz; |
6d12e2d8 | 834 | |
f8d66542 | 835 | if (mem_cgroup_disabled()) |
08e552c6 KH |
836 | return; |
837 | pc = lookup_page_cgroup(page); | |
838 | /* can happen while we handle swapcache. */ | |
4b3bde4c | 839 | if (!TestClearPageCgroupAcctLRU(pc)) |
08e552c6 | 840 | return; |
4b3bde4c | 841 | VM_BUG_ON(!pc->mem_cgroup); |
544122e5 KH |
842 | /* |
843 | * We don't check PCG_USED bit. It's cleared when the "page" is finally | |
844 | * removed from global LRU. | |
845 | */ | |
97a6c37b | 846 | mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); |
ece35ca8 KH |
847 | /* huge page split is done under lru_lock. so, we have no races. */ |
848 | MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page); | |
4b3bde4c BS |
849 | if (mem_cgroup_is_root(pc->mem_cgroup)) |
850 | return; | |
851 | VM_BUG_ON(list_empty(&pc->lru)); | |
08e552c6 | 852 | list_del_init(&pc->lru); |
6d12e2d8 KH |
853 | } |
854 | ||
08e552c6 | 855 | void mem_cgroup_del_lru(struct page *page) |
6d12e2d8 | 856 | { |
08e552c6 KH |
857 | mem_cgroup_del_lru_list(page, page_lru(page)); |
858 | } | |
b69408e8 | 859 | |
3f58a829 MK |
860 | /* |
861 | * Writeback is about to end against a page which has been marked for immediate | |
862 | * reclaim. If it still appears to be reclaimable, move it to the tail of the | |
863 | * inactive list. | |
864 | */ | |
865 | void mem_cgroup_rotate_reclaimable_page(struct page *page) | |
866 | { | |
867 | struct mem_cgroup_per_zone *mz; | |
868 | struct page_cgroup *pc; | |
869 | enum lru_list lru = page_lru(page); | |
870 | ||
871 | if (mem_cgroup_disabled()) | |
872 | return; | |
873 | ||
874 | pc = lookup_page_cgroup(page); | |
875 | /* unused or root page is not rotated. */ | |
876 | if (!PageCgroupUsed(pc)) | |
877 | return; | |
878 | /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ | |
879 | smp_rmb(); | |
880 | if (mem_cgroup_is_root(pc->mem_cgroup)) | |
881 | return; | |
97a6c37b | 882 | mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); |
3f58a829 MK |
883 | list_move_tail(&pc->lru, &mz->lists[lru]); |
884 | } | |
885 | ||
08e552c6 KH |
886 | void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) |
887 | { | |
888 | struct mem_cgroup_per_zone *mz; | |
889 | struct page_cgroup *pc; | |
b69408e8 | 890 | |
f8d66542 | 891 | if (mem_cgroup_disabled()) |
08e552c6 | 892 | return; |
6d12e2d8 | 893 | |
08e552c6 | 894 | pc = lookup_page_cgroup(page); |
4b3bde4c | 895 | /* unused or root page is not rotated. */ |
713735b4 JW |
896 | if (!PageCgroupUsed(pc)) |
897 | return; | |
898 | /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ | |
899 | smp_rmb(); | |
900 | if (mem_cgroup_is_root(pc->mem_cgroup)) | |
08e552c6 | 901 | return; |
97a6c37b | 902 | mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); |
08e552c6 | 903 | list_move(&pc->lru, &mz->lists[lru]); |
6d12e2d8 KH |
904 | } |
905 | ||
08e552c6 | 906 | void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) |
66e1707b | 907 | { |
08e552c6 KH |
908 | struct page_cgroup *pc; |
909 | struct mem_cgroup_per_zone *mz; | |
6d12e2d8 | 910 | |
f8d66542 | 911 | if (mem_cgroup_disabled()) |
08e552c6 KH |
912 | return; |
913 | pc = lookup_page_cgroup(page); | |
4b3bde4c | 914 | VM_BUG_ON(PageCgroupAcctLRU(pc)); |
08e552c6 | 915 | if (!PageCgroupUsed(pc)) |
894bc310 | 916 | return; |
713735b4 JW |
917 | /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ |
918 | smp_rmb(); | |
97a6c37b | 919 | mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); |
ece35ca8 KH |
920 | /* huge page split is done under lru_lock. so, we have no races. */ |
921 | MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page); | |
4b3bde4c BS |
922 | SetPageCgroupAcctLRU(pc); |
923 | if (mem_cgroup_is_root(pc->mem_cgroup)) | |
924 | return; | |
08e552c6 KH |
925 | list_add(&pc->lru, &mz->lists[lru]); |
926 | } | |
544122e5 | 927 | |
08e552c6 | 928 | /* |
5a6475a4 KH |
929 | * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed |
930 | * while it's linked to lru because the page may be reused after it's fully | |
931 | * uncharged. To handle that, unlink page_cgroup from LRU when charge it again. | |
932 | * It's done under lock_page and expected that zone->lru_lock isnever held. | |
08e552c6 | 933 | */ |
5a6475a4 | 934 | static void mem_cgroup_lru_del_before_commit(struct page *page) |
08e552c6 | 935 | { |
544122e5 KH |
936 | unsigned long flags; |
937 | struct zone *zone = page_zone(page); | |
938 | struct page_cgroup *pc = lookup_page_cgroup(page); | |
939 | ||
5a6475a4 KH |
940 | /* |
941 | * Doing this check without taking ->lru_lock seems wrong but this | |
942 | * is safe. Because if page_cgroup's USED bit is unset, the page | |
943 | * will not be added to any memcg's LRU. If page_cgroup's USED bit is | |
944 | * set, the commit after this will fail, anyway. | |
945 | * This all charge/uncharge is done under some mutual execustion. | |
946 | * So, we don't need to taking care of changes in USED bit. | |
947 | */ | |
948 | if (likely(!PageLRU(page))) | |
949 | return; | |
950 | ||
544122e5 KH |
951 | spin_lock_irqsave(&zone->lru_lock, flags); |
952 | /* | |
953 | * Forget old LRU when this page_cgroup is *not* used. This Used bit | |
954 | * is guarded by lock_page() because the page is SwapCache. | |
955 | */ | |
956 | if (!PageCgroupUsed(pc)) | |
957 | mem_cgroup_del_lru_list(page, page_lru(page)); | |
958 | spin_unlock_irqrestore(&zone->lru_lock, flags); | |
08e552c6 KH |
959 | } |
960 | ||
5a6475a4 | 961 | static void mem_cgroup_lru_add_after_commit(struct page *page) |
544122e5 KH |
962 | { |
963 | unsigned long flags; | |
964 | struct zone *zone = page_zone(page); | |
965 | struct page_cgroup *pc = lookup_page_cgroup(page); | |
966 | ||
5a6475a4 KH |
967 | /* taking care of that the page is added to LRU while we commit it */ |
968 | if (likely(!PageLRU(page))) | |
969 | return; | |
544122e5 KH |
970 | spin_lock_irqsave(&zone->lru_lock, flags); |
971 | /* link when the page is linked to LRU but page_cgroup isn't */ | |
4b3bde4c | 972 | if (PageLRU(page) && !PageCgroupAcctLRU(pc)) |
544122e5 KH |
973 | mem_cgroup_add_lru_list(page, page_lru(page)); |
974 | spin_unlock_irqrestore(&zone->lru_lock, flags); | |
975 | } | |
976 | ||
977 | ||
08e552c6 KH |
978 | void mem_cgroup_move_lists(struct page *page, |
979 | enum lru_list from, enum lru_list to) | |
980 | { | |
f8d66542 | 981 | if (mem_cgroup_disabled()) |
08e552c6 KH |
982 | return; |
983 | mem_cgroup_del_lru_list(page, from); | |
984 | mem_cgroup_add_lru_list(page, to); | |
66e1707b BS |
985 | } |
986 | ||
4c4a2214 DR |
987 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
988 | { | |
989 | int ret; | |
0b7f569e | 990 | struct mem_cgroup *curr = NULL; |
158e0a2d | 991 | struct task_struct *p; |
4c4a2214 | 992 | |
158e0a2d KH |
993 | p = find_lock_task_mm(task); |
994 | if (!p) | |
995 | return 0; | |
996 | curr = try_get_mem_cgroup_from_mm(p->mm); | |
997 | task_unlock(p); | |
0b7f569e KH |
998 | if (!curr) |
999 | return 0; | |
d31f56db DN |
1000 | /* |
1001 | * We should check use_hierarchy of "mem" not "curr". Because checking | |
1002 | * use_hierarchy of "curr" here make this function true if hierarchy is | |
1003 | * enabled in "curr" and "curr" is a child of "mem" in *cgroup* | |
1004 | * hierarchy(even if use_hierarchy is disabled in "mem"). | |
1005 | */ | |
1006 | if (mem->use_hierarchy) | |
0b7f569e KH |
1007 | ret = css_is_ancestor(&curr->css, &mem->css); |
1008 | else | |
1009 | ret = (curr == mem); | |
1010 | css_put(&curr->css); | |
4c4a2214 DR |
1011 | return ret; |
1012 | } | |
1013 | ||
c772be93 | 1014 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) |
14797e23 KM |
1015 | { |
1016 | unsigned long active; | |
1017 | unsigned long inactive; | |
c772be93 KM |
1018 | unsigned long gb; |
1019 | unsigned long inactive_ratio; | |
14797e23 | 1020 | |
14067bb3 KH |
1021 | inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); |
1022 | active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); | |
14797e23 | 1023 | |
c772be93 KM |
1024 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
1025 | if (gb) | |
1026 | inactive_ratio = int_sqrt(10 * gb); | |
1027 | else | |
1028 | inactive_ratio = 1; | |
1029 | ||
1030 | if (present_pages) { | |
1031 | present_pages[0] = inactive; | |
1032 | present_pages[1] = active; | |
1033 | } | |
1034 | ||
1035 | return inactive_ratio; | |
1036 | } | |
1037 | ||
1038 | int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) | |
1039 | { | |
1040 | unsigned long active; | |
1041 | unsigned long inactive; | |
1042 | unsigned long present_pages[2]; | |
1043 | unsigned long inactive_ratio; | |
1044 | ||
1045 | inactive_ratio = calc_inactive_ratio(memcg, present_pages); | |
1046 | ||
1047 | inactive = present_pages[0]; | |
1048 | active = present_pages[1]; | |
1049 | ||
1050 | if (inactive * inactive_ratio < active) | |
14797e23 KM |
1051 | return 1; |
1052 | ||
1053 | return 0; | |
1054 | } | |
1055 | ||
56e49d21 RR |
1056 | int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) |
1057 | { | |
1058 | unsigned long active; | |
1059 | unsigned long inactive; | |
1060 | ||
1061 | inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); | |
1062 | active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); | |
1063 | ||
1064 | return (active > inactive); | |
1065 | } | |
1066 | ||
a3d8e054 KM |
1067 | unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, |
1068 | struct zone *zone, | |
1069 | enum lru_list lru) | |
1070 | { | |
13d7e3a2 | 1071 | int nid = zone_to_nid(zone); |
a3d8e054 KM |
1072 | int zid = zone_idx(zone); |
1073 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | |
1074 | ||
1075 | return MEM_CGROUP_ZSTAT(mz, lru); | |
1076 | } | |
1077 | ||
3e2f41f1 KM |
1078 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, |
1079 | struct zone *zone) | |
1080 | { | |
13d7e3a2 | 1081 | int nid = zone_to_nid(zone); |
3e2f41f1 KM |
1082 | int zid = zone_idx(zone); |
1083 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | |
1084 | ||
1085 | return &mz->reclaim_stat; | |
1086 | } | |
1087 | ||
1088 | struct zone_reclaim_stat * | |
1089 | mem_cgroup_get_reclaim_stat_from_page(struct page *page) | |
1090 | { | |
1091 | struct page_cgroup *pc; | |
1092 | struct mem_cgroup_per_zone *mz; | |
1093 | ||
1094 | if (mem_cgroup_disabled()) | |
1095 | return NULL; | |
1096 | ||
1097 | pc = lookup_page_cgroup(page); | |
bd112db8 DN |
1098 | if (!PageCgroupUsed(pc)) |
1099 | return NULL; | |
713735b4 JW |
1100 | /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ |
1101 | smp_rmb(); | |
97a6c37b | 1102 | mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); |
3e2f41f1 KM |
1103 | return &mz->reclaim_stat; |
1104 | } | |
1105 | ||
66e1707b BS |
1106 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
1107 | struct list_head *dst, | |
1108 | unsigned long *scanned, int order, | |
1109 | int mode, struct zone *z, | |
1110 | struct mem_cgroup *mem_cont, | |
4f98a2fe | 1111 | int active, int file) |
66e1707b BS |
1112 | { |
1113 | unsigned long nr_taken = 0; | |
1114 | struct page *page; | |
1115 | unsigned long scan; | |
1116 | LIST_HEAD(pc_list); | |
1117 | struct list_head *src; | |
ff7283fa | 1118 | struct page_cgroup *pc, *tmp; |
13d7e3a2 | 1119 | int nid = zone_to_nid(z); |
1ecaab2b KH |
1120 | int zid = zone_idx(z); |
1121 | struct mem_cgroup_per_zone *mz; | |
b7c46d15 | 1122 | int lru = LRU_FILE * file + active; |
2ffebca6 | 1123 | int ret; |
66e1707b | 1124 | |
cf475ad2 | 1125 | BUG_ON(!mem_cont); |
1ecaab2b | 1126 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
b69408e8 | 1127 | src = &mz->lists[lru]; |
66e1707b | 1128 | |
ff7283fa KH |
1129 | scan = 0; |
1130 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | |
436c6541 | 1131 | if (scan >= nr_to_scan) |
ff7283fa | 1132 | break; |
08e552c6 | 1133 | |
52d4b9ac KH |
1134 | if (unlikely(!PageCgroupUsed(pc))) |
1135 | continue; | |
5564e88b | 1136 | |
6b3ae58e | 1137 | page = lookup_cgroup_page(pc); |
5564e88b | 1138 | |
436c6541 | 1139 | if (unlikely(!PageLRU(page))) |
ff7283fa | 1140 | continue; |
ff7283fa | 1141 | |
436c6541 | 1142 | scan++; |
2ffebca6 KH |
1143 | ret = __isolate_lru_page(page, mode, file); |
1144 | switch (ret) { | |
1145 | case 0: | |
66e1707b | 1146 | list_move(&page->lru, dst); |
2ffebca6 | 1147 | mem_cgroup_del_lru(page); |
2c888cfb | 1148 | nr_taken += hpage_nr_pages(page); |
2ffebca6 KH |
1149 | break; |
1150 | case -EBUSY: | |
1151 | /* we don't affect global LRU but rotate in our LRU */ | |
1152 | mem_cgroup_rotate_lru_list(page, page_lru(page)); | |
1153 | break; | |
1154 | default: | |
1155 | break; | |
66e1707b BS |
1156 | } |
1157 | } | |
1158 | ||
66e1707b | 1159 | *scanned = scan; |
cc8e970c KM |
1160 | |
1161 | trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, | |
1162 | 0, 0, 0, mode); | |
1163 | ||
66e1707b BS |
1164 | return nr_taken; |
1165 | } | |
1166 | ||
6d61ef40 BS |
1167 | #define mem_cgroup_from_res_counter(counter, member) \ |
1168 | container_of(counter, struct mem_cgroup, member) | |
1169 | ||
19942822 | 1170 | /** |
9d11ea9f JW |
1171 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
1172 | * @mem: the memory cgroup | |
19942822 | 1173 | * |
9d11ea9f | 1174 | * Returns the maximum amount of memory @mem can be charged with, in |
7ec99d62 | 1175 | * pages. |
19942822 | 1176 | */ |
7ec99d62 | 1177 | static unsigned long mem_cgroup_margin(struct mem_cgroup *mem) |
19942822 | 1178 | { |
9d11ea9f JW |
1179 | unsigned long long margin; |
1180 | ||
1181 | margin = res_counter_margin(&mem->res); | |
1182 | if (do_swap_account) | |
1183 | margin = min(margin, res_counter_margin(&mem->memsw)); | |
7ec99d62 | 1184 | return margin >> PAGE_SHIFT; |
19942822 JW |
1185 | } |
1186 | ||
a7885eb8 KM |
1187 | static unsigned int get_swappiness(struct mem_cgroup *memcg) |
1188 | { | |
1189 | struct cgroup *cgrp = memcg->css.cgroup; | |
a7885eb8 KM |
1190 | |
1191 | /* root ? */ | |
1192 | if (cgrp->parent == NULL) | |
1193 | return vm_swappiness; | |
1194 | ||
bf1ff263 | 1195 | return memcg->swappiness; |
a7885eb8 KM |
1196 | } |
1197 | ||
32047e2a KH |
1198 | static void mem_cgroup_start_move(struct mem_cgroup *mem) |
1199 | { | |
1200 | int cpu; | |
1489ebad KH |
1201 | |
1202 | get_online_cpus(); | |
1203 | spin_lock(&mem->pcp_counter_lock); | |
1204 | for_each_online_cpu(cpu) | |
32047e2a | 1205 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; |
1489ebad KH |
1206 | mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; |
1207 | spin_unlock(&mem->pcp_counter_lock); | |
1208 | put_online_cpus(); | |
32047e2a KH |
1209 | |
1210 | synchronize_rcu(); | |
1211 | } | |
1212 | ||
1213 | static void mem_cgroup_end_move(struct mem_cgroup *mem) | |
1214 | { | |
1215 | int cpu; | |
1216 | ||
1217 | if (!mem) | |
1218 | return; | |
1489ebad KH |
1219 | get_online_cpus(); |
1220 | spin_lock(&mem->pcp_counter_lock); | |
1221 | for_each_online_cpu(cpu) | |
32047e2a | 1222 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; |
1489ebad KH |
1223 | mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; |
1224 | spin_unlock(&mem->pcp_counter_lock); | |
1225 | put_online_cpus(); | |
32047e2a KH |
1226 | } |
1227 | /* | |
1228 | * 2 routines for checking "mem" is under move_account() or not. | |
1229 | * | |
1230 | * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used | |
1231 | * for avoiding race in accounting. If true, | |
1232 | * pc->mem_cgroup may be overwritten. | |
1233 | * | |
1234 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or | |
1235 | * under hierarchy of moving cgroups. This is for | |
1236 | * waiting at hith-memory prressure caused by "move". | |
1237 | */ | |
1238 | ||
1239 | static bool mem_cgroup_stealed(struct mem_cgroup *mem) | |
1240 | { | |
1241 | VM_BUG_ON(!rcu_read_lock_held()); | |
1242 | return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0; | |
1243 | } | |
4b534334 KH |
1244 | |
1245 | static bool mem_cgroup_under_move(struct mem_cgroup *mem) | |
1246 | { | |
2bd9bb20 KH |
1247 | struct mem_cgroup *from; |
1248 | struct mem_cgroup *to; | |
4b534334 | 1249 | bool ret = false; |
2bd9bb20 KH |
1250 | /* |
1251 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1252 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1253 | */ | |
1254 | spin_lock(&mc.lock); | |
1255 | from = mc.from; | |
1256 | to = mc.to; | |
1257 | if (!from) | |
1258 | goto unlock; | |
1259 | if (from == mem || to == mem | |
1260 | || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) | |
1261 | || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css))) | |
1262 | ret = true; | |
1263 | unlock: | |
1264 | spin_unlock(&mc.lock); | |
4b534334 KH |
1265 | return ret; |
1266 | } | |
1267 | ||
1268 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) | |
1269 | { | |
1270 | if (mc.moving_task && current != mc.moving_task) { | |
1271 | if (mem_cgroup_under_move(mem)) { | |
1272 | DEFINE_WAIT(wait); | |
1273 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1274 | /* moving charge context might have finished. */ | |
1275 | if (mc.moving_task) | |
1276 | schedule(); | |
1277 | finish_wait(&mc.waitq, &wait); | |
1278 | return true; | |
1279 | } | |
1280 | } | |
1281 | return false; | |
1282 | } | |
1283 | ||
e222432b | 1284 | /** |
6a6135b6 | 1285 | * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. |
e222432b BS |
1286 | * @memcg: The memory cgroup that went over limit |
1287 | * @p: Task that is going to be killed | |
1288 | * | |
1289 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1290 | * enabled | |
1291 | */ | |
1292 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1293 | { | |
1294 | struct cgroup *task_cgrp; | |
1295 | struct cgroup *mem_cgrp; | |
1296 | /* | |
1297 | * Need a buffer in BSS, can't rely on allocations. The code relies | |
1298 | * on the assumption that OOM is serialized for memory controller. | |
1299 | * If this assumption is broken, revisit this code. | |
1300 | */ | |
1301 | static char memcg_name[PATH_MAX]; | |
1302 | int ret; | |
1303 | ||
d31f56db | 1304 | if (!memcg || !p) |
e222432b BS |
1305 | return; |
1306 | ||
1307 | ||
1308 | rcu_read_lock(); | |
1309 | ||
1310 | mem_cgrp = memcg->css.cgroup; | |
1311 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | |
1312 | ||
1313 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | |
1314 | if (ret < 0) { | |
1315 | /* | |
1316 | * Unfortunately, we are unable to convert to a useful name | |
1317 | * But we'll still print out the usage information | |
1318 | */ | |
1319 | rcu_read_unlock(); | |
1320 | goto done; | |
1321 | } | |
1322 | rcu_read_unlock(); | |
1323 | ||
1324 | printk(KERN_INFO "Task in %s killed", memcg_name); | |
1325 | ||
1326 | rcu_read_lock(); | |
1327 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | |
1328 | if (ret < 0) { | |
1329 | rcu_read_unlock(); | |
1330 | goto done; | |
1331 | } | |
1332 | rcu_read_unlock(); | |
1333 | ||
1334 | /* | |
1335 | * Continues from above, so we don't need an KERN_ level | |
1336 | */ | |
1337 | printk(KERN_CONT " as a result of limit of %s\n", memcg_name); | |
1338 | done: | |
1339 | ||
1340 | printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", | |
1341 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, | |
1342 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | |
1343 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); | |
1344 | printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " | |
1345 | "failcnt %llu\n", | |
1346 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, | |
1347 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | |
1348 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | |
1349 | } | |
1350 | ||
81d39c20 KH |
1351 | /* |
1352 | * This function returns the number of memcg under hierarchy tree. Returns | |
1353 | * 1(self count) if no children. | |
1354 | */ | |
1355 | static int mem_cgroup_count_children(struct mem_cgroup *mem) | |
1356 | { | |
1357 | int num = 0; | |
7d74b06f KH |
1358 | struct mem_cgroup *iter; |
1359 | ||
1360 | for_each_mem_cgroup_tree(iter, mem) | |
1361 | num++; | |
81d39c20 KH |
1362 | return num; |
1363 | } | |
1364 | ||
a63d83f4 DR |
1365 | /* |
1366 | * Return the memory (and swap, if configured) limit for a memcg. | |
1367 | */ | |
1368 | u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) | |
1369 | { | |
1370 | u64 limit; | |
1371 | u64 memsw; | |
1372 | ||
f3e8eb70 JW |
1373 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
1374 | limit += total_swap_pages << PAGE_SHIFT; | |
1375 | ||
a63d83f4 DR |
1376 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
1377 | /* | |
1378 | * If memsw is finite and limits the amount of swap space available | |
1379 | * to this memcg, return that limit. | |
1380 | */ | |
1381 | return min(limit, memsw); | |
1382 | } | |
1383 | ||
6d61ef40 | 1384 | /* |
04046e1a KH |
1385 | * Visit the first child (need not be the first child as per the ordering |
1386 | * of the cgroup list, since we track last_scanned_child) of @mem and use | |
1387 | * that to reclaim free pages from. | |
1388 | */ | |
1389 | static struct mem_cgroup * | |
1390 | mem_cgroup_select_victim(struct mem_cgroup *root_mem) | |
1391 | { | |
1392 | struct mem_cgroup *ret = NULL; | |
1393 | struct cgroup_subsys_state *css; | |
1394 | int nextid, found; | |
1395 | ||
1396 | if (!root_mem->use_hierarchy) { | |
1397 | css_get(&root_mem->css); | |
1398 | ret = root_mem; | |
1399 | } | |
1400 | ||
1401 | while (!ret) { | |
1402 | rcu_read_lock(); | |
1403 | nextid = root_mem->last_scanned_child + 1; | |
1404 | css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, | |
1405 | &found); | |
1406 | if (css && css_tryget(css)) | |
1407 | ret = container_of(css, struct mem_cgroup, css); | |
1408 | ||
1409 | rcu_read_unlock(); | |
1410 | /* Updates scanning parameter */ | |
04046e1a KH |
1411 | if (!css) { |
1412 | /* this means start scan from ID:1 */ | |
1413 | root_mem->last_scanned_child = 0; | |
1414 | } else | |
1415 | root_mem->last_scanned_child = found; | |
04046e1a KH |
1416 | } |
1417 | ||
1418 | return ret; | |
1419 | } | |
1420 | ||
1421 | /* | |
1422 | * Scan the hierarchy if needed to reclaim memory. We remember the last child | |
1423 | * we reclaimed from, so that we don't end up penalizing one child extensively | |
1424 | * based on its position in the children list. | |
6d61ef40 BS |
1425 | * |
1426 | * root_mem is the original ancestor that we've been reclaim from. | |
04046e1a KH |
1427 | * |
1428 | * We give up and return to the caller when we visit root_mem twice. | |
1429 | * (other groups can be removed while we're walking....) | |
81d39c20 KH |
1430 | * |
1431 | * If shrink==true, for avoiding to free too much, this returns immedieately. | |
6d61ef40 BS |
1432 | */ |
1433 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | |
4e416953 | 1434 | struct zone *zone, |
75822b44 BS |
1435 | gfp_t gfp_mask, |
1436 | unsigned long reclaim_options) | |
6d61ef40 | 1437 | { |
04046e1a KH |
1438 | struct mem_cgroup *victim; |
1439 | int ret, total = 0; | |
1440 | int loop = 0; | |
75822b44 BS |
1441 | bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; |
1442 | bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; | |
4e416953 | 1443 | bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; |
9d11ea9f JW |
1444 | unsigned long excess; |
1445 | ||
1446 | excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT; | |
04046e1a | 1447 | |
22a668d7 KH |
1448 | /* If memsw_is_minimum==1, swap-out is of-no-use. */ |
1449 | if (root_mem->memsw_is_minimum) | |
1450 | noswap = true; | |
1451 | ||
4e416953 | 1452 | while (1) { |
04046e1a | 1453 | victim = mem_cgroup_select_victim(root_mem); |
4e416953 | 1454 | if (victim == root_mem) { |
04046e1a | 1455 | loop++; |
cdec2e42 KH |
1456 | if (loop >= 1) |
1457 | drain_all_stock_async(); | |
4e416953 BS |
1458 | if (loop >= 2) { |
1459 | /* | |
1460 | * If we have not been able to reclaim | |
1461 | * anything, it might because there are | |
1462 | * no reclaimable pages under this hierarchy | |
1463 | */ | |
1464 | if (!check_soft || !total) { | |
1465 | css_put(&victim->css); | |
1466 | break; | |
1467 | } | |
1468 | /* | |
25985edc | 1469 | * We want to do more targeted reclaim. |
4e416953 BS |
1470 | * excess >> 2 is not to excessive so as to |
1471 | * reclaim too much, nor too less that we keep | |
1472 | * coming back to reclaim from this cgroup | |
1473 | */ | |
1474 | if (total >= (excess >> 2) || | |
1475 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { | |
1476 | css_put(&victim->css); | |
1477 | break; | |
1478 | } | |
1479 | } | |
1480 | } | |
c62b1a3b | 1481 | if (!mem_cgroup_local_usage(victim)) { |
04046e1a KH |
1482 | /* this cgroup's local usage == 0 */ |
1483 | css_put(&victim->css); | |
6d61ef40 BS |
1484 | continue; |
1485 | } | |
04046e1a | 1486 | /* we use swappiness of local cgroup */ |
4e416953 BS |
1487 | if (check_soft) |
1488 | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, | |
14fec796 | 1489 | noswap, get_swappiness(victim), zone); |
4e416953 BS |
1490 | else |
1491 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, | |
1492 | noswap, get_swappiness(victim)); | |
04046e1a | 1493 | css_put(&victim->css); |
81d39c20 KH |
1494 | /* |
1495 | * At shrinking usage, we can't check we should stop here or | |
1496 | * reclaim more. It's depends on callers. last_scanned_child | |
1497 | * will work enough for keeping fairness under tree. | |
1498 | */ | |
1499 | if (shrink) | |
1500 | return ret; | |
04046e1a | 1501 | total += ret; |
4e416953 | 1502 | if (check_soft) { |
9d11ea9f | 1503 | if (!res_counter_soft_limit_excess(&root_mem->res)) |
4e416953 | 1504 | return total; |
9d11ea9f | 1505 | } else if (mem_cgroup_margin(root_mem)) |
04046e1a | 1506 | return 1 + total; |
6d61ef40 | 1507 | } |
04046e1a | 1508 | return total; |
6d61ef40 BS |
1509 | } |
1510 | ||
867578cb KH |
1511 | /* |
1512 | * Check OOM-Killer is already running under our hierarchy. | |
1513 | * If someone is running, return false. | |
1514 | */ | |
1515 | static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) | |
1516 | { | |
7d74b06f KH |
1517 | int x, lock_count = 0; |
1518 | struct mem_cgroup *iter; | |
a636b327 | 1519 | |
7d74b06f KH |
1520 | for_each_mem_cgroup_tree(iter, mem) { |
1521 | x = atomic_inc_return(&iter->oom_lock); | |
1522 | lock_count = max(x, lock_count); | |
1523 | } | |
867578cb KH |
1524 | |
1525 | if (lock_count == 1) | |
1526 | return true; | |
1527 | return false; | |
a636b327 | 1528 | } |
0b7f569e | 1529 | |
7d74b06f | 1530 | static int mem_cgroup_oom_unlock(struct mem_cgroup *mem) |
0b7f569e | 1531 | { |
7d74b06f KH |
1532 | struct mem_cgroup *iter; |
1533 | ||
867578cb KH |
1534 | /* |
1535 | * When a new child is created while the hierarchy is under oom, | |
1536 | * mem_cgroup_oom_lock() may not be called. We have to use | |
1537 | * atomic_add_unless() here. | |
1538 | */ | |
7d74b06f KH |
1539 | for_each_mem_cgroup_tree(iter, mem) |
1540 | atomic_add_unless(&iter->oom_lock, -1, 0); | |
0b7f569e KH |
1541 | return 0; |
1542 | } | |
1543 | ||
867578cb KH |
1544 | |
1545 | static DEFINE_MUTEX(memcg_oom_mutex); | |
1546 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | |
1547 | ||
dc98df5a KH |
1548 | struct oom_wait_info { |
1549 | struct mem_cgroup *mem; | |
1550 | wait_queue_t wait; | |
1551 | }; | |
1552 | ||
1553 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
1554 | unsigned mode, int sync, void *arg) | |
1555 | { | |
1556 | struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg; | |
1557 | struct oom_wait_info *oom_wait_info; | |
1558 | ||
1559 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
1560 | ||
1561 | if (oom_wait_info->mem == wake_mem) | |
1562 | goto wakeup; | |
1563 | /* if no hierarchy, no match */ | |
1564 | if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy) | |
1565 | return 0; | |
1566 | /* | |
1567 | * Both of oom_wait_info->mem and wake_mem are stable under us. | |
1568 | * Then we can use css_is_ancestor without taking care of RCU. | |
1569 | */ | |
1570 | if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) && | |
1571 | !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css)) | |
1572 | return 0; | |
1573 | ||
1574 | wakeup: | |
1575 | return autoremove_wake_function(wait, mode, sync, arg); | |
1576 | } | |
1577 | ||
1578 | static void memcg_wakeup_oom(struct mem_cgroup *mem) | |
1579 | { | |
1580 | /* for filtering, pass "mem" as argument. */ | |
1581 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem); | |
1582 | } | |
1583 | ||
3c11ecf4 KH |
1584 | static void memcg_oom_recover(struct mem_cgroup *mem) |
1585 | { | |
2bd9bb20 | 1586 | if (mem && atomic_read(&mem->oom_lock)) |
3c11ecf4 KH |
1587 | memcg_wakeup_oom(mem); |
1588 | } | |
1589 | ||
867578cb KH |
1590 | /* |
1591 | * try to call OOM killer. returns false if we should exit memory-reclaim loop. | |
1592 | */ | |
1593 | bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) | |
0b7f569e | 1594 | { |
dc98df5a | 1595 | struct oom_wait_info owait; |
3c11ecf4 | 1596 | bool locked, need_to_kill; |
867578cb | 1597 | |
dc98df5a KH |
1598 | owait.mem = mem; |
1599 | owait.wait.flags = 0; | |
1600 | owait.wait.func = memcg_oom_wake_function; | |
1601 | owait.wait.private = current; | |
1602 | INIT_LIST_HEAD(&owait.wait.task_list); | |
3c11ecf4 | 1603 | need_to_kill = true; |
867578cb KH |
1604 | /* At first, try to OOM lock hierarchy under mem.*/ |
1605 | mutex_lock(&memcg_oom_mutex); | |
1606 | locked = mem_cgroup_oom_lock(mem); | |
1607 | /* | |
1608 | * Even if signal_pending(), we can't quit charge() loop without | |
1609 | * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL | |
1610 | * under OOM is always welcomed, use TASK_KILLABLE here. | |
1611 | */ | |
3c11ecf4 KH |
1612 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
1613 | if (!locked || mem->oom_kill_disable) | |
1614 | need_to_kill = false; | |
1615 | if (locked) | |
9490ff27 | 1616 | mem_cgroup_oom_notify(mem); |
867578cb KH |
1617 | mutex_unlock(&memcg_oom_mutex); |
1618 | ||
3c11ecf4 KH |
1619 | if (need_to_kill) { |
1620 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
867578cb | 1621 | mem_cgroup_out_of_memory(mem, mask); |
3c11ecf4 | 1622 | } else { |
867578cb | 1623 | schedule(); |
dc98df5a | 1624 | finish_wait(&memcg_oom_waitq, &owait.wait); |
867578cb KH |
1625 | } |
1626 | mutex_lock(&memcg_oom_mutex); | |
1627 | mem_cgroup_oom_unlock(mem); | |
dc98df5a | 1628 | memcg_wakeup_oom(mem); |
867578cb KH |
1629 | mutex_unlock(&memcg_oom_mutex); |
1630 | ||
1631 | if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) | |
1632 | return false; | |
1633 | /* Give chance to dying process */ | |
1634 | schedule_timeout(1); | |
1635 | return true; | |
0b7f569e KH |
1636 | } |
1637 | ||
d69b042f BS |
1638 | /* |
1639 | * Currently used to update mapped file statistics, but the routine can be | |
1640 | * generalized to update other statistics as well. | |
32047e2a KH |
1641 | * |
1642 | * Notes: Race condition | |
1643 | * | |
1644 | * We usually use page_cgroup_lock() for accessing page_cgroup member but | |
1645 | * it tends to be costly. But considering some conditions, we doesn't need | |
1646 | * to do so _always_. | |
1647 | * | |
1648 | * Considering "charge", lock_page_cgroup() is not required because all | |
1649 | * file-stat operations happen after a page is attached to radix-tree. There | |
1650 | * are no race with "charge". | |
1651 | * | |
1652 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup | |
1653 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even | |
1654 | * if there are race with "uncharge". Statistics itself is properly handled | |
1655 | * by flags. | |
1656 | * | |
1657 | * Considering "move", this is an only case we see a race. To make the race | |
1658 | * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are | |
1659 | * possibility of race condition. If there is, we take a lock. | |
d69b042f | 1660 | */ |
26174efd | 1661 | |
2a7106f2 GT |
1662 | void mem_cgroup_update_page_stat(struct page *page, |
1663 | enum mem_cgroup_page_stat_item idx, int val) | |
d69b042f BS |
1664 | { |
1665 | struct mem_cgroup *mem; | |
32047e2a KH |
1666 | struct page_cgroup *pc = lookup_page_cgroup(page); |
1667 | bool need_unlock = false; | |
dbd4ea78 | 1668 | unsigned long uninitialized_var(flags); |
d69b042f | 1669 | |
d69b042f BS |
1670 | if (unlikely(!pc)) |
1671 | return; | |
1672 | ||
32047e2a | 1673 | rcu_read_lock(); |
d69b042f | 1674 | mem = pc->mem_cgroup; |
32047e2a KH |
1675 | if (unlikely(!mem || !PageCgroupUsed(pc))) |
1676 | goto out; | |
1677 | /* pc->mem_cgroup is unstable ? */ | |
ca3e0214 | 1678 | if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) { |
32047e2a | 1679 | /* take a lock against to access pc->mem_cgroup */ |
dbd4ea78 | 1680 | move_lock_page_cgroup(pc, &flags); |
32047e2a KH |
1681 | need_unlock = true; |
1682 | mem = pc->mem_cgroup; | |
1683 | if (!mem || !PageCgroupUsed(pc)) | |
1684 | goto out; | |
1685 | } | |
26174efd | 1686 | |
26174efd | 1687 | switch (idx) { |
2a7106f2 | 1688 | case MEMCG_NR_FILE_MAPPED: |
26174efd KH |
1689 | if (val > 0) |
1690 | SetPageCgroupFileMapped(pc); | |
1691 | else if (!page_mapped(page)) | |
0c270f8f | 1692 | ClearPageCgroupFileMapped(pc); |
2a7106f2 | 1693 | idx = MEM_CGROUP_STAT_FILE_MAPPED; |
26174efd KH |
1694 | break; |
1695 | default: | |
1696 | BUG(); | |
8725d541 | 1697 | } |
d69b042f | 1698 | |
2a7106f2 GT |
1699 | this_cpu_add(mem->stat->count[idx], val); |
1700 | ||
32047e2a KH |
1701 | out: |
1702 | if (unlikely(need_unlock)) | |
dbd4ea78 | 1703 | move_unlock_page_cgroup(pc, &flags); |
32047e2a KH |
1704 | rcu_read_unlock(); |
1705 | return; | |
d69b042f | 1706 | } |
2a7106f2 | 1707 | EXPORT_SYMBOL(mem_cgroup_update_page_stat); |
26174efd | 1708 | |
cdec2e42 KH |
1709 | /* |
1710 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
1711 | * TODO: maybe necessary to use big numbers in big irons. | |
1712 | */ | |
7ec99d62 | 1713 | #define CHARGE_BATCH 32U |
cdec2e42 KH |
1714 | struct memcg_stock_pcp { |
1715 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
11c9ea4e | 1716 | unsigned int nr_pages; |
cdec2e42 KH |
1717 | struct work_struct work; |
1718 | }; | |
1719 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
1720 | static atomic_t memcg_drain_count; | |
1721 | ||
1722 | /* | |
11c9ea4e | 1723 | * Try to consume stocked charge on this cpu. If success, one page is consumed |
cdec2e42 KH |
1724 | * from local stock and true is returned. If the stock is 0 or charges from a |
1725 | * cgroup which is not current target, returns false. This stock will be | |
1726 | * refilled. | |
1727 | */ | |
1728 | static bool consume_stock(struct mem_cgroup *mem) | |
1729 | { | |
1730 | struct memcg_stock_pcp *stock; | |
1731 | bool ret = true; | |
1732 | ||
1733 | stock = &get_cpu_var(memcg_stock); | |
11c9ea4e JW |
1734 | if (mem == stock->cached && stock->nr_pages) |
1735 | stock->nr_pages--; | |
cdec2e42 KH |
1736 | else /* need to call res_counter_charge */ |
1737 | ret = false; | |
1738 | put_cpu_var(memcg_stock); | |
1739 | return ret; | |
1740 | } | |
1741 | ||
1742 | /* | |
1743 | * Returns stocks cached in percpu to res_counter and reset cached information. | |
1744 | */ | |
1745 | static void drain_stock(struct memcg_stock_pcp *stock) | |
1746 | { | |
1747 | struct mem_cgroup *old = stock->cached; | |
1748 | ||
11c9ea4e JW |
1749 | if (stock->nr_pages) { |
1750 | unsigned long bytes = stock->nr_pages * PAGE_SIZE; | |
1751 | ||
1752 | res_counter_uncharge(&old->res, bytes); | |
cdec2e42 | 1753 | if (do_swap_account) |
11c9ea4e JW |
1754 | res_counter_uncharge(&old->memsw, bytes); |
1755 | stock->nr_pages = 0; | |
cdec2e42 KH |
1756 | } |
1757 | stock->cached = NULL; | |
cdec2e42 KH |
1758 | } |
1759 | ||
1760 | /* | |
1761 | * This must be called under preempt disabled or must be called by | |
1762 | * a thread which is pinned to local cpu. | |
1763 | */ | |
1764 | static void drain_local_stock(struct work_struct *dummy) | |
1765 | { | |
1766 | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); | |
1767 | drain_stock(stock); | |
1768 | } | |
1769 | ||
1770 | /* | |
1771 | * Cache charges(val) which is from res_counter, to local per_cpu area. | |
320cc51d | 1772 | * This will be consumed by consume_stock() function, later. |
cdec2e42 | 1773 | */ |
11c9ea4e | 1774 | static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages) |
cdec2e42 KH |
1775 | { |
1776 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | |
1777 | ||
1778 | if (stock->cached != mem) { /* reset if necessary */ | |
1779 | drain_stock(stock); | |
1780 | stock->cached = mem; | |
1781 | } | |
11c9ea4e | 1782 | stock->nr_pages += nr_pages; |
cdec2e42 KH |
1783 | put_cpu_var(memcg_stock); |
1784 | } | |
1785 | ||
1786 | /* | |
1787 | * Tries to drain stocked charges in other cpus. This function is asynchronous | |
1788 | * and just put a work per cpu for draining localy on each cpu. Caller can | |
1789 | * expects some charges will be back to res_counter later but cannot wait for | |
1790 | * it. | |
1791 | */ | |
1792 | static void drain_all_stock_async(void) | |
1793 | { | |
1794 | int cpu; | |
1795 | /* This function is for scheduling "drain" in asynchronous way. | |
1796 | * The result of "drain" is not directly handled by callers. Then, | |
1797 | * if someone is calling drain, we don't have to call drain more. | |
1798 | * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if | |
1799 | * there is a race. We just do loose check here. | |
1800 | */ | |
1801 | if (atomic_read(&memcg_drain_count)) | |
1802 | return; | |
1803 | /* Notify other cpus that system-wide "drain" is running */ | |
1804 | atomic_inc(&memcg_drain_count); | |
1805 | get_online_cpus(); | |
1806 | for_each_online_cpu(cpu) { | |
1807 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
1808 | schedule_work_on(cpu, &stock->work); | |
1809 | } | |
1810 | put_online_cpus(); | |
1811 | atomic_dec(&memcg_drain_count); | |
1812 | /* We don't wait for flush_work */ | |
1813 | } | |
1814 | ||
1815 | /* This is a synchronous drain interface. */ | |
1816 | static void drain_all_stock_sync(void) | |
1817 | { | |
1818 | /* called when force_empty is called */ | |
1819 | atomic_inc(&memcg_drain_count); | |
1820 | schedule_on_each_cpu(drain_local_stock); | |
1821 | atomic_dec(&memcg_drain_count); | |
1822 | } | |
1823 | ||
711d3d2c KH |
1824 | /* |
1825 | * This function drains percpu counter value from DEAD cpu and | |
1826 | * move it to local cpu. Note that this function can be preempted. | |
1827 | */ | |
1828 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) | |
1829 | { | |
1830 | int i; | |
1831 | ||
1832 | spin_lock(&mem->pcp_counter_lock); | |
1833 | for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { | |
7a159cc9 | 1834 | long x = per_cpu(mem->stat->count[i], cpu); |
711d3d2c KH |
1835 | |
1836 | per_cpu(mem->stat->count[i], cpu) = 0; | |
1837 | mem->nocpu_base.count[i] += x; | |
1838 | } | |
e9f8974f JW |
1839 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
1840 | unsigned long x = per_cpu(mem->stat->events[i], cpu); | |
1841 | ||
1842 | per_cpu(mem->stat->events[i], cpu) = 0; | |
1843 | mem->nocpu_base.events[i] += x; | |
1844 | } | |
1489ebad KH |
1845 | /* need to clear ON_MOVE value, works as a kind of lock. */ |
1846 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; | |
1847 | spin_unlock(&mem->pcp_counter_lock); | |
1848 | } | |
1849 | ||
1850 | static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu) | |
1851 | { | |
1852 | int idx = MEM_CGROUP_ON_MOVE; | |
1853 | ||
1854 | spin_lock(&mem->pcp_counter_lock); | |
1855 | per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx]; | |
711d3d2c KH |
1856 | spin_unlock(&mem->pcp_counter_lock); |
1857 | } | |
1858 | ||
1859 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, | |
cdec2e42 KH |
1860 | unsigned long action, |
1861 | void *hcpu) | |
1862 | { | |
1863 | int cpu = (unsigned long)hcpu; | |
1864 | struct memcg_stock_pcp *stock; | |
711d3d2c | 1865 | struct mem_cgroup *iter; |
cdec2e42 | 1866 | |
1489ebad KH |
1867 | if ((action == CPU_ONLINE)) { |
1868 | for_each_mem_cgroup_all(iter) | |
1869 | synchronize_mem_cgroup_on_move(iter, cpu); | |
1870 | return NOTIFY_OK; | |
1871 | } | |
1872 | ||
711d3d2c | 1873 | if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) |
cdec2e42 | 1874 | return NOTIFY_OK; |
711d3d2c KH |
1875 | |
1876 | for_each_mem_cgroup_all(iter) | |
1877 | mem_cgroup_drain_pcp_counter(iter, cpu); | |
1878 | ||
cdec2e42 KH |
1879 | stock = &per_cpu(memcg_stock, cpu); |
1880 | drain_stock(stock); | |
1881 | return NOTIFY_OK; | |
1882 | } | |
1883 | ||
4b534334 KH |
1884 | |
1885 | /* See __mem_cgroup_try_charge() for details */ | |
1886 | enum { | |
1887 | CHARGE_OK, /* success */ | |
1888 | CHARGE_RETRY, /* need to retry but retry is not bad */ | |
1889 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | |
1890 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | |
1891 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ | |
1892 | }; | |
1893 | ||
7ec99d62 JW |
1894 | static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, |
1895 | unsigned int nr_pages, bool oom_check) | |
4b534334 | 1896 | { |
7ec99d62 | 1897 | unsigned long csize = nr_pages * PAGE_SIZE; |
4b534334 KH |
1898 | struct mem_cgroup *mem_over_limit; |
1899 | struct res_counter *fail_res; | |
1900 | unsigned long flags = 0; | |
1901 | int ret; | |
1902 | ||
1903 | ret = res_counter_charge(&mem->res, csize, &fail_res); | |
1904 | ||
1905 | if (likely(!ret)) { | |
1906 | if (!do_swap_account) | |
1907 | return CHARGE_OK; | |
1908 | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | |
1909 | if (likely(!ret)) | |
1910 | return CHARGE_OK; | |
1911 | ||
01c88e2d | 1912 | res_counter_uncharge(&mem->res, csize); |
4b534334 KH |
1913 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); |
1914 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | |
1915 | } else | |
1916 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | |
9221edb7 | 1917 | /* |
7ec99d62 JW |
1918 | * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch |
1919 | * of regular pages (CHARGE_BATCH), or a single regular page (1). | |
9221edb7 JW |
1920 | * |
1921 | * Never reclaim on behalf of optional batching, retry with a | |
1922 | * single page instead. | |
1923 | */ | |
7ec99d62 | 1924 | if (nr_pages == CHARGE_BATCH) |
4b534334 KH |
1925 | return CHARGE_RETRY; |
1926 | ||
1927 | if (!(gfp_mask & __GFP_WAIT)) | |
1928 | return CHARGE_WOULDBLOCK; | |
1929 | ||
1930 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | |
19942822 | 1931 | gfp_mask, flags); |
7ec99d62 | 1932 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
19942822 | 1933 | return CHARGE_RETRY; |
4b534334 | 1934 | /* |
19942822 JW |
1935 | * Even though the limit is exceeded at this point, reclaim |
1936 | * may have been able to free some pages. Retry the charge | |
1937 | * before killing the task. | |
1938 | * | |
1939 | * Only for regular pages, though: huge pages are rather | |
1940 | * unlikely to succeed so close to the limit, and we fall back | |
1941 | * to regular pages anyway in case of failure. | |
4b534334 | 1942 | */ |
7ec99d62 | 1943 | if (nr_pages == 1 && ret) |
4b534334 KH |
1944 | return CHARGE_RETRY; |
1945 | ||
1946 | /* | |
1947 | * At task move, charge accounts can be doubly counted. So, it's | |
1948 | * better to wait until the end of task_move if something is going on. | |
1949 | */ | |
1950 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
1951 | return CHARGE_RETRY; | |
1952 | ||
1953 | /* If we don't need to call oom-killer at el, return immediately */ | |
1954 | if (!oom_check) | |
1955 | return CHARGE_NOMEM; | |
1956 | /* check OOM */ | |
1957 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) | |
1958 | return CHARGE_OOM_DIE; | |
1959 | ||
1960 | return CHARGE_RETRY; | |
1961 | } | |
1962 | ||
f817ed48 KH |
1963 | /* |
1964 | * Unlike exported interface, "oom" parameter is added. if oom==true, | |
1965 | * oom-killer can be invoked. | |
8a9f3ccd | 1966 | */ |
f817ed48 | 1967 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
ec168510 | 1968 | gfp_t gfp_mask, |
7ec99d62 JW |
1969 | unsigned int nr_pages, |
1970 | struct mem_cgroup **memcg, | |
1971 | bool oom) | |
8a9f3ccd | 1972 | { |
7ec99d62 | 1973 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
4b534334 KH |
1974 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
1975 | struct mem_cgroup *mem = NULL; | |
1976 | int ret; | |
a636b327 | 1977 | |
867578cb KH |
1978 | /* |
1979 | * Unlike gloval-vm's OOM-kill, we're not in memory shortage | |
1980 | * in system level. So, allow to go ahead dying process in addition to | |
1981 | * MEMDIE process. | |
1982 | */ | |
1983 | if (unlikely(test_thread_flag(TIF_MEMDIE) | |
1984 | || fatal_signal_pending(current))) | |
1985 | goto bypass; | |
a636b327 | 1986 | |
8a9f3ccd | 1987 | /* |
3be91277 HD |
1988 | * We always charge the cgroup the mm_struct belongs to. |
1989 | * The mm_struct's mem_cgroup changes on task migration if the | |
8a9f3ccd BS |
1990 | * thread group leader migrates. It's possible that mm is not |
1991 | * set, if so charge the init_mm (happens for pagecache usage). | |
1992 | */ | |
f75ca962 KH |
1993 | if (!*memcg && !mm) |
1994 | goto bypass; | |
1995 | again: | |
1996 | if (*memcg) { /* css should be a valid one */ | |
4b534334 | 1997 | mem = *memcg; |
f75ca962 KH |
1998 | VM_BUG_ON(css_is_removed(&mem->css)); |
1999 | if (mem_cgroup_is_root(mem)) | |
2000 | goto done; | |
7ec99d62 | 2001 | if (nr_pages == 1 && consume_stock(mem)) |
f75ca962 | 2002 | goto done; |
4b534334 KH |
2003 | css_get(&mem->css); |
2004 | } else { | |
f75ca962 | 2005 | struct task_struct *p; |
54595fe2 | 2006 | |
f75ca962 KH |
2007 | rcu_read_lock(); |
2008 | p = rcu_dereference(mm->owner); | |
f75ca962 | 2009 | /* |
ebb76ce1 KH |
2010 | * Because we don't have task_lock(), "p" can exit. |
2011 | * In that case, "mem" can point to root or p can be NULL with | |
2012 | * race with swapoff. Then, we have small risk of mis-accouning. | |
2013 | * But such kind of mis-account by race always happens because | |
2014 | * we don't have cgroup_mutex(). It's overkill and we allo that | |
2015 | * small race, here. | |
2016 | * (*) swapoff at el will charge against mm-struct not against | |
2017 | * task-struct. So, mm->owner can be NULL. | |
f75ca962 KH |
2018 | */ |
2019 | mem = mem_cgroup_from_task(p); | |
ebb76ce1 | 2020 | if (!mem || mem_cgroup_is_root(mem)) { |
f75ca962 KH |
2021 | rcu_read_unlock(); |
2022 | goto done; | |
2023 | } | |
7ec99d62 | 2024 | if (nr_pages == 1 && consume_stock(mem)) { |
f75ca962 KH |
2025 | /* |
2026 | * It seems dagerous to access memcg without css_get(). | |
2027 | * But considering how consume_stok works, it's not | |
2028 | * necessary. If consume_stock success, some charges | |
2029 | * from this memcg are cached on this cpu. So, we | |
2030 | * don't need to call css_get()/css_tryget() before | |
2031 | * calling consume_stock(). | |
2032 | */ | |
2033 | rcu_read_unlock(); | |
2034 | goto done; | |
2035 | } | |
2036 | /* after here, we may be blocked. we need to get refcnt */ | |
2037 | if (!css_tryget(&mem->css)) { | |
2038 | rcu_read_unlock(); | |
2039 | goto again; | |
2040 | } | |
2041 | rcu_read_unlock(); | |
2042 | } | |
8a9f3ccd | 2043 | |
4b534334 KH |
2044 | do { |
2045 | bool oom_check; | |
7a81b88c | 2046 | |
4b534334 | 2047 | /* If killed, bypass charge */ |
f75ca962 KH |
2048 | if (fatal_signal_pending(current)) { |
2049 | css_put(&mem->css); | |
4b534334 | 2050 | goto bypass; |
f75ca962 | 2051 | } |
6d61ef40 | 2052 | |
4b534334 KH |
2053 | oom_check = false; |
2054 | if (oom && !nr_oom_retries) { | |
2055 | oom_check = true; | |
2056 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
cdec2e42 | 2057 | } |
66e1707b | 2058 | |
7ec99d62 | 2059 | ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check); |
4b534334 KH |
2060 | switch (ret) { |
2061 | case CHARGE_OK: | |
2062 | break; | |
2063 | case CHARGE_RETRY: /* not in OOM situation but retry */ | |
7ec99d62 | 2064 | batch = nr_pages; |
f75ca962 KH |
2065 | css_put(&mem->css); |
2066 | mem = NULL; | |
2067 | goto again; | |
4b534334 | 2068 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ |
f75ca962 | 2069 | css_put(&mem->css); |
4b534334 KH |
2070 | goto nomem; |
2071 | case CHARGE_NOMEM: /* OOM routine works */ | |
f75ca962 KH |
2072 | if (!oom) { |
2073 | css_put(&mem->css); | |
867578cb | 2074 | goto nomem; |
f75ca962 | 2075 | } |
4b534334 KH |
2076 | /* If oom, we never return -ENOMEM */ |
2077 | nr_oom_retries--; | |
2078 | break; | |
2079 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | |
f75ca962 | 2080 | css_put(&mem->css); |
867578cb | 2081 | goto bypass; |
66e1707b | 2082 | } |
4b534334 KH |
2083 | } while (ret != CHARGE_OK); |
2084 | ||
7ec99d62 JW |
2085 | if (batch > nr_pages) |
2086 | refill_stock(mem, batch - nr_pages); | |
f75ca962 | 2087 | css_put(&mem->css); |
0c3e73e8 | 2088 | done: |
f75ca962 | 2089 | *memcg = mem; |
7a81b88c KH |
2090 | return 0; |
2091 | nomem: | |
f75ca962 | 2092 | *memcg = NULL; |
7a81b88c | 2093 | return -ENOMEM; |
867578cb KH |
2094 | bypass: |
2095 | *memcg = NULL; | |
2096 | return 0; | |
7a81b88c | 2097 | } |
8a9f3ccd | 2098 | |
a3032a2c DN |
2099 | /* |
2100 | * Somemtimes we have to undo a charge we got by try_charge(). | |
2101 | * This function is for that and do uncharge, put css's refcnt. | |
2102 | * gotten by try_charge(). | |
2103 | */ | |
854ffa8d | 2104 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, |
e7018b8d | 2105 | unsigned int nr_pages) |
a3032a2c DN |
2106 | { |
2107 | if (!mem_cgroup_is_root(mem)) { | |
e7018b8d JW |
2108 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2109 | ||
2110 | res_counter_uncharge(&mem->res, bytes); | |
a3032a2c | 2111 | if (do_swap_account) |
e7018b8d | 2112 | res_counter_uncharge(&mem->memsw, bytes); |
a3032a2c | 2113 | } |
854ffa8d DN |
2114 | } |
2115 | ||
a3b2d692 KH |
2116 | /* |
2117 | * A helper function to get mem_cgroup from ID. must be called under | |
2118 | * rcu_read_lock(). The caller must check css_is_removed() or some if | |
2119 | * it's concern. (dropping refcnt from swap can be called against removed | |
2120 | * memcg.) | |
2121 | */ | |
2122 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | |
2123 | { | |
2124 | struct cgroup_subsys_state *css; | |
2125 | ||
2126 | /* ID 0 is unused ID */ | |
2127 | if (!id) | |
2128 | return NULL; | |
2129 | css = css_lookup(&mem_cgroup_subsys, id); | |
2130 | if (!css) | |
2131 | return NULL; | |
2132 | return container_of(css, struct mem_cgroup, css); | |
2133 | } | |
2134 | ||
e42d9d5d | 2135 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
b5a84319 | 2136 | { |
e42d9d5d | 2137 | struct mem_cgroup *mem = NULL; |
3c776e64 | 2138 | struct page_cgroup *pc; |
a3b2d692 | 2139 | unsigned short id; |
b5a84319 KH |
2140 | swp_entry_t ent; |
2141 | ||
3c776e64 DN |
2142 | VM_BUG_ON(!PageLocked(page)); |
2143 | ||
3c776e64 | 2144 | pc = lookup_page_cgroup(page); |
c0bd3f63 | 2145 | lock_page_cgroup(pc); |
a3b2d692 | 2146 | if (PageCgroupUsed(pc)) { |
3c776e64 | 2147 | mem = pc->mem_cgroup; |
a3b2d692 KH |
2148 | if (mem && !css_tryget(&mem->css)) |
2149 | mem = NULL; | |
e42d9d5d | 2150 | } else if (PageSwapCache(page)) { |
3c776e64 | 2151 | ent.val = page_private(page); |
a3b2d692 KH |
2152 | id = lookup_swap_cgroup(ent); |
2153 | rcu_read_lock(); | |
2154 | mem = mem_cgroup_lookup(id); | |
2155 | if (mem && !css_tryget(&mem->css)) | |
2156 | mem = NULL; | |
2157 | rcu_read_unlock(); | |
3c776e64 | 2158 | } |
c0bd3f63 | 2159 | unlock_page_cgroup(pc); |
b5a84319 KH |
2160 | return mem; |
2161 | } | |
2162 | ||
ca3e0214 | 2163 | static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, |
5564e88b | 2164 | struct page *page, |
7ec99d62 | 2165 | unsigned int nr_pages, |
ca3e0214 | 2166 | struct page_cgroup *pc, |
7ec99d62 | 2167 | enum charge_type ctype) |
7a81b88c | 2168 | { |
ca3e0214 KH |
2169 | lock_page_cgroup(pc); |
2170 | if (unlikely(PageCgroupUsed(pc))) { | |
2171 | unlock_page_cgroup(pc); | |
e7018b8d | 2172 | __mem_cgroup_cancel_charge(mem, nr_pages); |
ca3e0214 KH |
2173 | return; |
2174 | } | |
2175 | /* | |
2176 | * we don't need page_cgroup_lock about tail pages, becase they are not | |
2177 | * accessed by any other context at this point. | |
2178 | */ | |
8a9f3ccd | 2179 | pc->mem_cgroup = mem; |
261fb61a KH |
2180 | /* |
2181 | * We access a page_cgroup asynchronously without lock_page_cgroup(). | |
2182 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | |
2183 | * is accessed after testing USED bit. To make pc->mem_cgroup visible | |
2184 | * before USED bit, we need memory barrier here. | |
2185 | * See mem_cgroup_add_lru_list(), etc. | |
2186 | */ | |
08e552c6 | 2187 | smp_wmb(); |
4b3bde4c BS |
2188 | switch (ctype) { |
2189 | case MEM_CGROUP_CHARGE_TYPE_CACHE: | |
2190 | case MEM_CGROUP_CHARGE_TYPE_SHMEM: | |
2191 | SetPageCgroupCache(pc); | |
2192 | SetPageCgroupUsed(pc); | |
2193 | break; | |
2194 | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | |
2195 | ClearPageCgroupCache(pc); | |
2196 | SetPageCgroupUsed(pc); | |
2197 | break; | |
2198 | default: | |
2199 | break; | |
2200 | } | |
3be91277 | 2201 | |
ca3e0214 | 2202 | mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages); |
52d4b9ac | 2203 | unlock_page_cgroup(pc); |
430e4863 KH |
2204 | /* |
2205 | * "charge_statistics" updated event counter. Then, check it. | |
2206 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | |
2207 | * if they exceeds softlimit. | |
2208 | */ | |
5564e88b | 2209 | memcg_check_events(mem, page); |
7a81b88c | 2210 | } |
66e1707b | 2211 | |
ca3e0214 KH |
2212 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
2213 | ||
2214 | #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\ | |
2215 | (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION)) | |
2216 | /* | |
2217 | * Because tail pages are not marked as "used", set it. We're under | |
2218 | * zone->lru_lock, 'splitting on pmd' and compund_lock. | |
2219 | */ | |
2220 | void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail) | |
2221 | { | |
2222 | struct page_cgroup *head_pc = lookup_page_cgroup(head); | |
2223 | struct page_cgroup *tail_pc = lookup_page_cgroup(tail); | |
2224 | unsigned long flags; | |
2225 | ||
3d37c4a9 KH |
2226 | if (mem_cgroup_disabled()) |
2227 | return; | |
ca3e0214 | 2228 | /* |
ece35ca8 | 2229 | * We have no races with charge/uncharge but will have races with |
ca3e0214 KH |
2230 | * page state accounting. |
2231 | */ | |
2232 | move_lock_page_cgroup(head_pc, &flags); | |
2233 | ||
2234 | tail_pc->mem_cgroup = head_pc->mem_cgroup; | |
2235 | smp_wmb(); /* see __commit_charge() */ | |
ece35ca8 KH |
2236 | if (PageCgroupAcctLRU(head_pc)) { |
2237 | enum lru_list lru; | |
2238 | struct mem_cgroup_per_zone *mz; | |
2239 | ||
2240 | /* | |
2241 | * LRU flags cannot be copied because we need to add tail | |
2242 | *.page to LRU by generic call and our hook will be called. | |
2243 | * We hold lru_lock, then, reduce counter directly. | |
2244 | */ | |
2245 | lru = page_lru(head); | |
97a6c37b | 2246 | mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head); |
ece35ca8 KH |
2247 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; |
2248 | } | |
ca3e0214 KH |
2249 | tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; |
2250 | move_unlock_page_cgroup(head_pc, &flags); | |
2251 | } | |
2252 | #endif | |
2253 | ||
f817ed48 | 2254 | /** |
de3638d9 | 2255 | * mem_cgroup_move_account - move account of the page |
5564e88b | 2256 | * @page: the page |
7ec99d62 | 2257 | * @nr_pages: number of regular pages (>1 for huge pages) |
f817ed48 KH |
2258 | * @pc: page_cgroup of the page. |
2259 | * @from: mem_cgroup which the page is moved from. | |
2260 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
854ffa8d | 2261 | * @uncharge: whether we should call uncharge and css_put against @from. |
f817ed48 KH |
2262 | * |
2263 | * The caller must confirm following. | |
08e552c6 | 2264 | * - page is not on LRU (isolate_page() is useful.) |
7ec99d62 | 2265 | * - compound_lock is held when nr_pages > 1 |
f817ed48 | 2266 | * |
854ffa8d | 2267 | * This function doesn't do "charge" nor css_get to new cgroup. It should be |
25985edc | 2268 | * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is |
854ffa8d DN |
2269 | * true, this function does "uncharge" from old cgroup, but it doesn't if |
2270 | * @uncharge is false, so a caller should do "uncharge". | |
f817ed48 | 2271 | */ |
7ec99d62 JW |
2272 | static int mem_cgroup_move_account(struct page *page, |
2273 | unsigned int nr_pages, | |
2274 | struct page_cgroup *pc, | |
2275 | struct mem_cgroup *from, | |
2276 | struct mem_cgroup *to, | |
2277 | bool uncharge) | |
f817ed48 | 2278 | { |
de3638d9 JW |
2279 | unsigned long flags; |
2280 | int ret; | |
987eba66 | 2281 | |
f817ed48 | 2282 | VM_BUG_ON(from == to); |
5564e88b | 2283 | VM_BUG_ON(PageLRU(page)); |
de3638d9 JW |
2284 | /* |
2285 | * The page is isolated from LRU. So, collapse function | |
2286 | * will not handle this page. But page splitting can happen. | |
2287 | * Do this check under compound_page_lock(). The caller should | |
2288 | * hold it. | |
2289 | */ | |
2290 | ret = -EBUSY; | |
7ec99d62 | 2291 | if (nr_pages > 1 && !PageTransHuge(page)) |
de3638d9 JW |
2292 | goto out; |
2293 | ||
2294 | lock_page_cgroup(pc); | |
2295 | ||
2296 | ret = -EINVAL; | |
2297 | if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) | |
2298 | goto unlock; | |
2299 | ||
2300 | move_lock_page_cgroup(pc, &flags); | |
f817ed48 | 2301 | |
8725d541 | 2302 | if (PageCgroupFileMapped(pc)) { |
c62b1a3b KH |
2303 | /* Update mapped_file data for mem_cgroup */ |
2304 | preempt_disable(); | |
2305 | __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | |
2306 | __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | |
2307 | preempt_enable(); | |
d69b042f | 2308 | } |
987eba66 | 2309 | mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages); |
854ffa8d DN |
2310 | if (uncharge) |
2311 | /* This is not "cancel", but cancel_charge does all we need. */ | |
e7018b8d | 2312 | __mem_cgroup_cancel_charge(from, nr_pages); |
d69b042f | 2313 | |
854ffa8d | 2314 | /* caller should have done css_get */ |
08e552c6 | 2315 | pc->mem_cgroup = to; |
987eba66 | 2316 | mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages); |
88703267 KH |
2317 | /* |
2318 | * We charges against "to" which may not have any tasks. Then, "to" | |
2319 | * can be under rmdir(). But in current implementation, caller of | |
4ffef5fe | 2320 | * this function is just force_empty() and move charge, so it's |
25985edc | 2321 | * guaranteed that "to" is never removed. So, we don't check rmdir |
4ffef5fe | 2322 | * status here. |
88703267 | 2323 | */ |
de3638d9 JW |
2324 | move_unlock_page_cgroup(pc, &flags); |
2325 | ret = 0; | |
2326 | unlock: | |
57f9fd7d | 2327 | unlock_page_cgroup(pc); |
d2265e6f KH |
2328 | /* |
2329 | * check events | |
2330 | */ | |
5564e88b JW |
2331 | memcg_check_events(to, page); |
2332 | memcg_check_events(from, page); | |
de3638d9 | 2333 | out: |
f817ed48 KH |
2334 | return ret; |
2335 | } | |
2336 | ||
2337 | /* | |
2338 | * move charges to its parent. | |
2339 | */ | |
2340 | ||
5564e88b JW |
2341 | static int mem_cgroup_move_parent(struct page *page, |
2342 | struct page_cgroup *pc, | |
f817ed48 KH |
2343 | struct mem_cgroup *child, |
2344 | gfp_t gfp_mask) | |
2345 | { | |
2346 | struct cgroup *cg = child->css.cgroup; | |
2347 | struct cgroup *pcg = cg->parent; | |
2348 | struct mem_cgroup *parent; | |
7ec99d62 | 2349 | unsigned int nr_pages; |
4be4489f | 2350 | unsigned long uninitialized_var(flags); |
f817ed48 KH |
2351 | int ret; |
2352 | ||
2353 | /* Is ROOT ? */ | |
2354 | if (!pcg) | |
2355 | return -EINVAL; | |
2356 | ||
57f9fd7d DN |
2357 | ret = -EBUSY; |
2358 | if (!get_page_unless_zero(page)) | |
2359 | goto out; | |
2360 | if (isolate_lru_page(page)) | |
2361 | goto put; | |
52dbb905 | 2362 | |
7ec99d62 | 2363 | nr_pages = hpage_nr_pages(page); |
08e552c6 | 2364 | |
f817ed48 | 2365 | parent = mem_cgroup_from_cont(pcg); |
7ec99d62 | 2366 | ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false); |
a636b327 | 2367 | if (ret || !parent) |
57f9fd7d | 2368 | goto put_back; |
f817ed48 | 2369 | |
7ec99d62 | 2370 | if (nr_pages > 1) |
987eba66 KH |
2371 | flags = compound_lock_irqsave(page); |
2372 | ||
7ec99d62 | 2373 | ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true); |
854ffa8d | 2374 | if (ret) |
7ec99d62 | 2375 | __mem_cgroup_cancel_charge(parent, nr_pages); |
8dba474f | 2376 | |
7ec99d62 | 2377 | if (nr_pages > 1) |
987eba66 | 2378 | compound_unlock_irqrestore(page, flags); |
8dba474f | 2379 | put_back: |
08e552c6 | 2380 | putback_lru_page(page); |
57f9fd7d | 2381 | put: |
40d58138 | 2382 | put_page(page); |
57f9fd7d | 2383 | out: |
f817ed48 KH |
2384 | return ret; |
2385 | } | |
2386 | ||
7a81b88c KH |
2387 | /* |
2388 | * Charge the memory controller for page usage. | |
2389 | * Return | |
2390 | * 0 if the charge was successful | |
2391 | * < 0 if the cgroup is over its limit | |
2392 | */ | |
2393 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |
73045c47 | 2394 | gfp_t gfp_mask, enum charge_type ctype) |
7a81b88c | 2395 | { |
73045c47 | 2396 | struct mem_cgroup *mem = NULL; |
7ec99d62 | 2397 | unsigned int nr_pages = 1; |
7a81b88c | 2398 | struct page_cgroup *pc; |
8493ae43 | 2399 | bool oom = true; |
7a81b88c | 2400 | int ret; |
ec168510 | 2401 | |
37c2ac78 | 2402 | if (PageTransHuge(page)) { |
7ec99d62 | 2403 | nr_pages <<= compound_order(page); |
37c2ac78 | 2404 | VM_BUG_ON(!PageTransHuge(page)); |
8493ae43 JW |
2405 | /* |
2406 | * Never OOM-kill a process for a huge page. The | |
2407 | * fault handler will fall back to regular pages. | |
2408 | */ | |
2409 | oom = false; | |
37c2ac78 | 2410 | } |
7a81b88c KH |
2411 | |
2412 | pc = lookup_page_cgroup(page); | |
af4a6621 | 2413 | BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */ |
7a81b88c | 2414 | |
7ec99d62 | 2415 | ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom); |
a636b327 | 2416 | if (ret || !mem) |
7a81b88c KH |
2417 | return ret; |
2418 | ||
7ec99d62 | 2419 | __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype); |
8a9f3ccd | 2420 | return 0; |
8a9f3ccd BS |
2421 | } |
2422 | ||
7a81b88c KH |
2423 | int mem_cgroup_newpage_charge(struct page *page, |
2424 | struct mm_struct *mm, gfp_t gfp_mask) | |
217bc319 | 2425 | { |
f8d66542 | 2426 | if (mem_cgroup_disabled()) |
cede86ac | 2427 | return 0; |
69029cd5 KH |
2428 | /* |
2429 | * If already mapped, we don't have to account. | |
2430 | * If page cache, page->mapping has address_space. | |
2431 | * But page->mapping may have out-of-use anon_vma pointer, | |
2432 | * detecit it by PageAnon() check. newly-mapped-anon's page->mapping | |
2433 | * is NULL. | |
2434 | */ | |
2435 | if (page_mapped(page) || (page->mapping && !PageAnon(page))) | |
2436 | return 0; | |
2437 | if (unlikely(!mm)) | |
2438 | mm = &init_mm; | |
217bc319 | 2439 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
73045c47 | 2440 | MEM_CGROUP_CHARGE_TYPE_MAPPED); |
217bc319 KH |
2441 | } |
2442 | ||
83aae4c7 DN |
2443 | static void |
2444 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | |
2445 | enum charge_type ctype); | |
2446 | ||
5a6475a4 KH |
2447 | static void |
2448 | __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem, | |
2449 | enum charge_type ctype) | |
2450 | { | |
2451 | struct page_cgroup *pc = lookup_page_cgroup(page); | |
2452 | /* | |
2453 | * In some case, SwapCache, FUSE(splice_buf->radixtree), the page | |
2454 | * is already on LRU. It means the page may on some other page_cgroup's | |
2455 | * LRU. Take care of it. | |
2456 | */ | |
2457 | mem_cgroup_lru_del_before_commit(page); | |
2458 | __mem_cgroup_commit_charge(mem, page, 1, pc, ctype); | |
2459 | mem_cgroup_lru_add_after_commit(page); | |
2460 | return; | |
2461 | } | |
2462 | ||
e1a1cd59 BS |
2463 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
2464 | gfp_t gfp_mask) | |
8697d331 | 2465 | { |
5a6475a4 | 2466 | struct mem_cgroup *mem = NULL; |
b5a84319 KH |
2467 | int ret; |
2468 | ||
f8d66542 | 2469 | if (mem_cgroup_disabled()) |
cede86ac | 2470 | return 0; |
52d4b9ac KH |
2471 | if (PageCompound(page)) |
2472 | return 0; | |
accf163e KH |
2473 | /* |
2474 | * Corner case handling. This is called from add_to_page_cache() | |
2475 | * in usual. But some FS (shmem) precharges this page before calling it | |
2476 | * and call add_to_page_cache() with GFP_NOWAIT. | |
2477 | * | |
2478 | * For GFP_NOWAIT case, the page may be pre-charged before calling | |
2479 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | |
2480 | * charge twice. (It works but has to pay a bit larger cost.) | |
b5a84319 KH |
2481 | * And when the page is SwapCache, it should take swap information |
2482 | * into account. This is under lock_page() now. | |
accf163e KH |
2483 | */ |
2484 | if (!(gfp_mask & __GFP_WAIT)) { | |
2485 | struct page_cgroup *pc; | |
2486 | ||
52d4b9ac KH |
2487 | pc = lookup_page_cgroup(page); |
2488 | if (!pc) | |
2489 | return 0; | |
2490 | lock_page_cgroup(pc); | |
2491 | if (PageCgroupUsed(pc)) { | |
2492 | unlock_page_cgroup(pc); | |
accf163e KH |
2493 | return 0; |
2494 | } | |
52d4b9ac | 2495 | unlock_page_cgroup(pc); |
accf163e KH |
2496 | } |
2497 | ||
73045c47 | 2498 | if (unlikely(!mm)) |
8697d331 | 2499 | mm = &init_mm; |
accf163e | 2500 | |
5a6475a4 KH |
2501 | if (page_is_file_cache(page)) { |
2502 | ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true); | |
2503 | if (ret || !mem) | |
2504 | return ret; | |
b5a84319 | 2505 | |
5a6475a4 KH |
2506 | /* |
2507 | * FUSE reuses pages without going through the final | |
2508 | * put that would remove them from the LRU list, make | |
2509 | * sure that they get relinked properly. | |
2510 | */ | |
2511 | __mem_cgroup_commit_charge_lrucare(page, mem, | |
2512 | MEM_CGROUP_CHARGE_TYPE_CACHE); | |
2513 | return ret; | |
2514 | } | |
83aae4c7 DN |
2515 | /* shmem */ |
2516 | if (PageSwapCache(page)) { | |
2517 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); | |
2518 | if (!ret) | |
2519 | __mem_cgroup_commit_charge_swapin(page, mem, | |
2520 | MEM_CGROUP_CHARGE_TYPE_SHMEM); | |
2521 | } else | |
2522 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, | |
73045c47 | 2523 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
b5a84319 | 2524 | |
b5a84319 | 2525 | return ret; |
e8589cc1 KH |
2526 | } |
2527 | ||
54595fe2 KH |
2528 | /* |
2529 | * While swap-in, try_charge -> commit or cancel, the page is locked. | |
2530 | * And when try_charge() successfully returns, one refcnt to memcg without | |
21ae2956 | 2531 | * struct page_cgroup is acquired. This refcnt will be consumed by |
54595fe2 KH |
2532 | * "commit()" or removed by "cancel()" |
2533 | */ | |
8c7c6e34 KH |
2534 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
2535 | struct page *page, | |
2536 | gfp_t mask, struct mem_cgroup **ptr) | |
2537 | { | |
2538 | struct mem_cgroup *mem; | |
54595fe2 | 2539 | int ret; |
8c7c6e34 | 2540 | |
56039efa KH |
2541 | *ptr = NULL; |
2542 | ||
f8d66542 | 2543 | if (mem_cgroup_disabled()) |
8c7c6e34 KH |
2544 | return 0; |
2545 | ||
2546 | if (!do_swap_account) | |
2547 | goto charge_cur_mm; | |
8c7c6e34 KH |
2548 | /* |
2549 | * A racing thread's fault, or swapoff, may have already updated | |
407f9c8b HD |
2550 | * the pte, and even removed page from swap cache: in those cases |
2551 | * do_swap_page()'s pte_same() test will fail; but there's also a | |
2552 | * KSM case which does need to charge the page. | |
8c7c6e34 KH |
2553 | */ |
2554 | if (!PageSwapCache(page)) | |
407f9c8b | 2555 | goto charge_cur_mm; |
e42d9d5d | 2556 | mem = try_get_mem_cgroup_from_page(page); |
54595fe2 KH |
2557 | if (!mem) |
2558 | goto charge_cur_mm; | |
8c7c6e34 | 2559 | *ptr = mem; |
7ec99d62 | 2560 | ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true); |
54595fe2 KH |
2561 | css_put(&mem->css); |
2562 | return ret; | |
8c7c6e34 KH |
2563 | charge_cur_mm: |
2564 | if (unlikely(!mm)) | |
2565 | mm = &init_mm; | |
7ec99d62 | 2566 | return __mem_cgroup_try_charge(mm, mask, 1, ptr, true); |
8c7c6e34 KH |
2567 | } |
2568 | ||
83aae4c7 DN |
2569 | static void |
2570 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | |
2571 | enum charge_type ctype) | |
7a81b88c | 2572 | { |
f8d66542 | 2573 | if (mem_cgroup_disabled()) |
7a81b88c KH |
2574 | return; |
2575 | if (!ptr) | |
2576 | return; | |
88703267 | 2577 | cgroup_exclude_rmdir(&ptr->css); |
5a6475a4 KH |
2578 | |
2579 | __mem_cgroup_commit_charge_lrucare(page, ptr, ctype); | |
8c7c6e34 KH |
2580 | /* |
2581 | * Now swap is on-memory. This means this page may be | |
2582 | * counted both as mem and swap....double count. | |
03f3c433 KH |
2583 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
2584 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | |
2585 | * may call delete_from_swap_cache() before reach here. | |
8c7c6e34 | 2586 | */ |
03f3c433 | 2587 | if (do_swap_account && PageSwapCache(page)) { |
8c7c6e34 | 2588 | swp_entry_t ent = {.val = page_private(page)}; |
a3b2d692 | 2589 | unsigned short id; |
8c7c6e34 | 2590 | struct mem_cgroup *memcg; |
a3b2d692 KH |
2591 | |
2592 | id = swap_cgroup_record(ent, 0); | |
2593 | rcu_read_lock(); | |
2594 | memcg = mem_cgroup_lookup(id); | |
8c7c6e34 | 2595 | if (memcg) { |
a3b2d692 KH |
2596 | /* |
2597 | * This recorded memcg can be obsolete one. So, avoid | |
2598 | * calling css_tryget | |
2599 | */ | |
0c3e73e8 | 2600 | if (!mem_cgroup_is_root(memcg)) |
4e649152 | 2601 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
0c3e73e8 | 2602 | mem_cgroup_swap_statistics(memcg, false); |
8c7c6e34 KH |
2603 | mem_cgroup_put(memcg); |
2604 | } | |
a3b2d692 | 2605 | rcu_read_unlock(); |
8c7c6e34 | 2606 | } |
88703267 KH |
2607 | /* |
2608 | * At swapin, we may charge account against cgroup which has no tasks. | |
2609 | * So, rmdir()->pre_destroy() can be called while we do this charge. | |
2610 | * In that case, we need to call pre_destroy() again. check it here. | |
2611 | */ | |
2612 | cgroup_release_and_wakeup_rmdir(&ptr->css); | |
7a81b88c KH |
2613 | } |
2614 | ||
83aae4c7 DN |
2615 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) |
2616 | { | |
2617 | __mem_cgroup_commit_charge_swapin(page, ptr, | |
2618 | MEM_CGROUP_CHARGE_TYPE_MAPPED); | |
2619 | } | |
2620 | ||
7a81b88c KH |
2621 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) |
2622 | { | |
f8d66542 | 2623 | if (mem_cgroup_disabled()) |
7a81b88c KH |
2624 | return; |
2625 | if (!mem) | |
2626 | return; | |
e7018b8d | 2627 | __mem_cgroup_cancel_charge(mem, 1); |
7a81b88c KH |
2628 | } |
2629 | ||
7ec99d62 JW |
2630 | static void mem_cgroup_do_uncharge(struct mem_cgroup *mem, |
2631 | unsigned int nr_pages, | |
2632 | const enum charge_type ctype) | |
569b846d KH |
2633 | { |
2634 | struct memcg_batch_info *batch = NULL; | |
2635 | bool uncharge_memsw = true; | |
7ec99d62 | 2636 | |
569b846d KH |
2637 | /* If swapout, usage of swap doesn't decrease */ |
2638 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | |
2639 | uncharge_memsw = false; | |
569b846d KH |
2640 | |
2641 | batch = ¤t->memcg_batch; | |
2642 | /* | |
2643 | * In usual, we do css_get() when we remember memcg pointer. | |
2644 | * But in this case, we keep res->usage until end of a series of | |
2645 | * uncharges. Then, it's ok to ignore memcg's refcnt. | |
2646 | */ | |
2647 | if (!batch->memcg) | |
2648 | batch->memcg = mem; | |
3c11ecf4 KH |
2649 | /* |
2650 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. | |
25985edc | 2651 | * In those cases, all pages freed continuously can be expected to be in |
3c11ecf4 KH |
2652 | * the same cgroup and we have chance to coalesce uncharges. |
2653 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | |
2654 | * because we want to do uncharge as soon as possible. | |
2655 | */ | |
2656 | ||
2657 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) | |
2658 | goto direct_uncharge; | |
2659 | ||
7ec99d62 | 2660 | if (nr_pages > 1) |
ec168510 AA |
2661 | goto direct_uncharge; |
2662 | ||
569b846d KH |
2663 | /* |
2664 | * In typical case, batch->memcg == mem. This means we can | |
2665 | * merge a series of uncharges to an uncharge of res_counter. | |
2666 | * If not, we uncharge res_counter ony by one. | |
2667 | */ | |
2668 | if (batch->memcg != mem) | |
2669 | goto direct_uncharge; | |
2670 | /* remember freed charge and uncharge it later */ | |
7ffd4ca7 | 2671 | batch->nr_pages++; |
569b846d | 2672 | if (uncharge_memsw) |
7ffd4ca7 | 2673 | batch->memsw_nr_pages++; |
569b846d KH |
2674 | return; |
2675 | direct_uncharge: | |
7ec99d62 | 2676 | res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE); |
569b846d | 2677 | if (uncharge_memsw) |
7ec99d62 | 2678 | res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE); |
3c11ecf4 KH |
2679 | if (unlikely(batch->memcg != mem)) |
2680 | memcg_oom_recover(mem); | |
569b846d KH |
2681 | return; |
2682 | } | |
7a81b88c | 2683 | |
8a9f3ccd | 2684 | /* |
69029cd5 | 2685 | * uncharge if !page_mapped(page) |
8a9f3ccd | 2686 | */ |
8c7c6e34 | 2687 | static struct mem_cgroup * |
69029cd5 | 2688 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) |
8a9f3ccd | 2689 | { |
8c7c6e34 | 2690 | struct mem_cgroup *mem = NULL; |
7ec99d62 JW |
2691 | unsigned int nr_pages = 1; |
2692 | struct page_cgroup *pc; | |
8a9f3ccd | 2693 | |
f8d66542 | 2694 | if (mem_cgroup_disabled()) |
8c7c6e34 | 2695 | return NULL; |
4077960e | 2696 | |
d13d1443 | 2697 | if (PageSwapCache(page)) |
8c7c6e34 | 2698 | return NULL; |
d13d1443 | 2699 | |
37c2ac78 | 2700 | if (PageTransHuge(page)) { |
7ec99d62 | 2701 | nr_pages <<= compound_order(page); |
37c2ac78 AA |
2702 | VM_BUG_ON(!PageTransHuge(page)); |
2703 | } | |
8697d331 | 2704 | /* |
3c541e14 | 2705 | * Check if our page_cgroup is valid |
8697d331 | 2706 | */ |
52d4b9ac KH |
2707 | pc = lookup_page_cgroup(page); |
2708 | if (unlikely(!pc || !PageCgroupUsed(pc))) | |
8c7c6e34 | 2709 | return NULL; |
b9c565d5 | 2710 | |
52d4b9ac | 2711 | lock_page_cgroup(pc); |
d13d1443 | 2712 | |
8c7c6e34 KH |
2713 | mem = pc->mem_cgroup; |
2714 | ||
d13d1443 KH |
2715 | if (!PageCgroupUsed(pc)) |
2716 | goto unlock_out; | |
2717 | ||
2718 | switch (ctype) { | |
2719 | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | |
8a9478ca | 2720 | case MEM_CGROUP_CHARGE_TYPE_DROP: |
ac39cf8c AM |
2721 | /* See mem_cgroup_prepare_migration() */ |
2722 | if (page_mapped(page) || PageCgroupMigration(pc)) | |
d13d1443 KH |
2723 | goto unlock_out; |
2724 | break; | |
2725 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | |
2726 | if (!PageAnon(page)) { /* Shared memory */ | |
2727 | if (page->mapping && !page_is_file_cache(page)) | |
2728 | goto unlock_out; | |
2729 | } else if (page_mapped(page)) /* Anon */ | |
2730 | goto unlock_out; | |
2731 | break; | |
2732 | default: | |
2733 | break; | |
52d4b9ac | 2734 | } |
d13d1443 | 2735 | |
7ec99d62 | 2736 | mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages); |
04046e1a | 2737 | |
52d4b9ac | 2738 | ClearPageCgroupUsed(pc); |
544122e5 KH |
2739 | /* |
2740 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | |
2741 | * freed from LRU. This is safe because uncharged page is expected not | |
2742 | * to be reused (freed soon). Exception is SwapCache, it's handled by | |
2743 | * special functions. | |
2744 | */ | |
b9c565d5 | 2745 | |
52d4b9ac | 2746 | unlock_page_cgroup(pc); |
f75ca962 KH |
2747 | /* |
2748 | * even after unlock, we have mem->res.usage here and this memcg | |
2749 | * will never be freed. | |
2750 | */ | |
d2265e6f | 2751 | memcg_check_events(mem, page); |
f75ca962 KH |
2752 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
2753 | mem_cgroup_swap_statistics(mem, true); | |
2754 | mem_cgroup_get(mem); | |
2755 | } | |
2756 | if (!mem_cgroup_is_root(mem)) | |
7ec99d62 | 2757 | mem_cgroup_do_uncharge(mem, nr_pages, ctype); |
6d12e2d8 | 2758 | |
8c7c6e34 | 2759 | return mem; |
d13d1443 KH |
2760 | |
2761 | unlock_out: | |
2762 | unlock_page_cgroup(pc); | |
8c7c6e34 | 2763 | return NULL; |
3c541e14 BS |
2764 | } |
2765 | ||
69029cd5 KH |
2766 | void mem_cgroup_uncharge_page(struct page *page) |
2767 | { | |
52d4b9ac KH |
2768 | /* early check. */ |
2769 | if (page_mapped(page)) | |
2770 | return; | |
2771 | if (page->mapping && !PageAnon(page)) | |
2772 | return; | |
69029cd5 KH |
2773 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); |
2774 | } | |
2775 | ||
2776 | void mem_cgroup_uncharge_cache_page(struct page *page) | |
2777 | { | |
2778 | VM_BUG_ON(page_mapped(page)); | |
b7abea96 | 2779 | VM_BUG_ON(page->mapping); |
69029cd5 KH |
2780 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); |
2781 | } | |
2782 | ||
569b846d KH |
2783 | /* |
2784 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | |
2785 | * In that cases, pages are freed continuously and we can expect pages | |
2786 | * are in the same memcg. All these calls itself limits the number of | |
2787 | * pages freed at once, then uncharge_start/end() is called properly. | |
2788 | * This may be called prural(2) times in a context, | |
2789 | */ | |
2790 | ||
2791 | void mem_cgroup_uncharge_start(void) | |
2792 | { | |
2793 | current->memcg_batch.do_batch++; | |
2794 | /* We can do nest. */ | |
2795 | if (current->memcg_batch.do_batch == 1) { | |
2796 | current->memcg_batch.memcg = NULL; | |
7ffd4ca7 JW |
2797 | current->memcg_batch.nr_pages = 0; |
2798 | current->memcg_batch.memsw_nr_pages = 0; | |
569b846d KH |
2799 | } |
2800 | } | |
2801 | ||
2802 | void mem_cgroup_uncharge_end(void) | |
2803 | { | |
2804 | struct memcg_batch_info *batch = ¤t->memcg_batch; | |
2805 | ||
2806 | if (!batch->do_batch) | |
2807 | return; | |
2808 | ||
2809 | batch->do_batch--; | |
2810 | if (batch->do_batch) /* If stacked, do nothing. */ | |
2811 | return; | |
2812 | ||
2813 | if (!batch->memcg) | |
2814 | return; | |
2815 | /* | |
2816 | * This "batch->memcg" is valid without any css_get/put etc... | |
2817 | * bacause we hide charges behind us. | |
2818 | */ | |
7ffd4ca7 JW |
2819 | if (batch->nr_pages) |
2820 | res_counter_uncharge(&batch->memcg->res, | |
2821 | batch->nr_pages * PAGE_SIZE); | |
2822 | if (batch->memsw_nr_pages) | |
2823 | res_counter_uncharge(&batch->memcg->memsw, | |
2824 | batch->memsw_nr_pages * PAGE_SIZE); | |
3c11ecf4 | 2825 | memcg_oom_recover(batch->memcg); |
569b846d KH |
2826 | /* forget this pointer (for sanity check) */ |
2827 | batch->memcg = NULL; | |
2828 | } | |
2829 | ||
e767e056 | 2830 | #ifdef CONFIG_SWAP |
8c7c6e34 | 2831 | /* |
e767e056 | 2832 | * called after __delete_from_swap_cache() and drop "page" account. |
8c7c6e34 KH |
2833 | * memcg information is recorded to swap_cgroup of "ent" |
2834 | */ | |
8a9478ca KH |
2835 | void |
2836 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | |
8c7c6e34 KH |
2837 | { |
2838 | struct mem_cgroup *memcg; | |
8a9478ca KH |
2839 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; |
2840 | ||
2841 | if (!swapout) /* this was a swap cache but the swap is unused ! */ | |
2842 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | |
2843 | ||
2844 | memcg = __mem_cgroup_uncharge_common(page, ctype); | |
8c7c6e34 | 2845 | |
f75ca962 KH |
2846 | /* |
2847 | * record memcg information, if swapout && memcg != NULL, | |
2848 | * mem_cgroup_get() was called in uncharge(). | |
2849 | */ | |
2850 | if (do_swap_account && swapout && memcg) | |
a3b2d692 | 2851 | swap_cgroup_record(ent, css_id(&memcg->css)); |
8c7c6e34 | 2852 | } |
e767e056 | 2853 | #endif |
8c7c6e34 KH |
2854 | |
2855 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | |
2856 | /* | |
2857 | * called from swap_entry_free(). remove record in swap_cgroup and | |
2858 | * uncharge "memsw" account. | |
2859 | */ | |
2860 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | |
d13d1443 | 2861 | { |
8c7c6e34 | 2862 | struct mem_cgroup *memcg; |
a3b2d692 | 2863 | unsigned short id; |
8c7c6e34 KH |
2864 | |
2865 | if (!do_swap_account) | |
2866 | return; | |
2867 | ||
a3b2d692 KH |
2868 | id = swap_cgroup_record(ent, 0); |
2869 | rcu_read_lock(); | |
2870 | memcg = mem_cgroup_lookup(id); | |
8c7c6e34 | 2871 | if (memcg) { |
a3b2d692 KH |
2872 | /* |
2873 | * We uncharge this because swap is freed. | |
2874 | * This memcg can be obsolete one. We avoid calling css_tryget | |
2875 | */ | |
0c3e73e8 | 2876 | if (!mem_cgroup_is_root(memcg)) |
4e649152 | 2877 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
0c3e73e8 | 2878 | mem_cgroup_swap_statistics(memcg, false); |
8c7c6e34 KH |
2879 | mem_cgroup_put(memcg); |
2880 | } | |
a3b2d692 | 2881 | rcu_read_unlock(); |
d13d1443 | 2882 | } |
02491447 DN |
2883 | |
2884 | /** | |
2885 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
2886 | * @entry: swap entry to be moved | |
2887 | * @from: mem_cgroup which the entry is moved from | |
2888 | * @to: mem_cgroup which the entry is moved to | |
483c30b5 | 2889 | * @need_fixup: whether we should fixup res_counters and refcounts. |
02491447 DN |
2890 | * |
2891 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
2892 | * as the mem_cgroup's id of @from. | |
2893 | * | |
2894 | * Returns 0 on success, -EINVAL on failure. | |
2895 | * | |
2896 | * The caller must have charged to @to, IOW, called res_counter_charge() about | |
2897 | * both res and memsw, and called css_get(). | |
2898 | */ | |
2899 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
483c30b5 | 2900 | struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) |
02491447 DN |
2901 | { |
2902 | unsigned short old_id, new_id; | |
2903 | ||
2904 | old_id = css_id(&from->css); | |
2905 | new_id = css_id(&to->css); | |
2906 | ||
2907 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
02491447 | 2908 | mem_cgroup_swap_statistics(from, false); |
483c30b5 | 2909 | mem_cgroup_swap_statistics(to, true); |
02491447 | 2910 | /* |
483c30b5 DN |
2911 | * This function is only called from task migration context now. |
2912 | * It postpones res_counter and refcount handling till the end | |
2913 | * of task migration(mem_cgroup_clear_mc()) for performance | |
2914 | * improvement. But we cannot postpone mem_cgroup_get(to) | |
2915 | * because if the process that has been moved to @to does | |
2916 | * swap-in, the refcount of @to might be decreased to 0. | |
02491447 | 2917 | */ |
02491447 | 2918 | mem_cgroup_get(to); |
483c30b5 DN |
2919 | if (need_fixup) { |
2920 | if (!mem_cgroup_is_root(from)) | |
2921 | res_counter_uncharge(&from->memsw, PAGE_SIZE); | |
2922 | mem_cgroup_put(from); | |
2923 | /* | |
2924 | * we charged both to->res and to->memsw, so we should | |
2925 | * uncharge to->res. | |
2926 | */ | |
2927 | if (!mem_cgroup_is_root(to)) | |
2928 | res_counter_uncharge(&to->res, PAGE_SIZE); | |
483c30b5 | 2929 | } |
02491447 DN |
2930 | return 0; |
2931 | } | |
2932 | return -EINVAL; | |
2933 | } | |
2934 | #else | |
2935 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
483c30b5 | 2936 | struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) |
02491447 DN |
2937 | { |
2938 | return -EINVAL; | |
2939 | } | |
8c7c6e34 | 2940 | #endif |
d13d1443 | 2941 | |
ae41be37 | 2942 | /* |
01b1ae63 KH |
2943 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
2944 | * page belongs to. | |
ae41be37 | 2945 | */ |
ac39cf8c | 2946 | int mem_cgroup_prepare_migration(struct page *page, |
ef6a3c63 | 2947 | struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask) |
ae41be37 | 2948 | { |
e8589cc1 | 2949 | struct mem_cgroup *mem = NULL; |
7ec99d62 | 2950 | struct page_cgroup *pc; |
ac39cf8c | 2951 | enum charge_type ctype; |
e8589cc1 | 2952 | int ret = 0; |
8869b8f6 | 2953 | |
56039efa KH |
2954 | *ptr = NULL; |
2955 | ||
ec168510 | 2956 | VM_BUG_ON(PageTransHuge(page)); |
f8d66542 | 2957 | if (mem_cgroup_disabled()) |
4077960e BS |
2958 | return 0; |
2959 | ||
52d4b9ac KH |
2960 | pc = lookup_page_cgroup(page); |
2961 | lock_page_cgroup(pc); | |
2962 | if (PageCgroupUsed(pc)) { | |
e8589cc1 KH |
2963 | mem = pc->mem_cgroup; |
2964 | css_get(&mem->css); | |
ac39cf8c AM |
2965 | /* |
2966 | * At migrating an anonymous page, its mapcount goes down | |
2967 | * to 0 and uncharge() will be called. But, even if it's fully | |
2968 | * unmapped, migration may fail and this page has to be | |
2969 | * charged again. We set MIGRATION flag here and delay uncharge | |
2970 | * until end_migration() is called | |
2971 | * | |
2972 | * Corner Case Thinking | |
2973 | * A) | |
2974 | * When the old page was mapped as Anon and it's unmap-and-freed | |
2975 | * while migration was ongoing. | |
2976 | * If unmap finds the old page, uncharge() of it will be delayed | |
2977 | * until end_migration(). If unmap finds a new page, it's | |
2978 | * uncharged when it make mapcount to be 1->0. If unmap code | |
2979 | * finds swap_migration_entry, the new page will not be mapped | |
2980 | * and end_migration() will find it(mapcount==0). | |
2981 | * | |
2982 | * B) | |
2983 | * When the old page was mapped but migraion fails, the kernel | |
2984 | * remaps it. A charge for it is kept by MIGRATION flag even | |
2985 | * if mapcount goes down to 0. We can do remap successfully | |
2986 | * without charging it again. | |
2987 | * | |
2988 | * C) | |
2989 | * The "old" page is under lock_page() until the end of | |
2990 | * migration, so, the old page itself will not be swapped-out. | |
2991 | * If the new page is swapped out before end_migraton, our | |
2992 | * hook to usual swap-out path will catch the event. | |
2993 | */ | |
2994 | if (PageAnon(page)) | |
2995 | SetPageCgroupMigration(pc); | |
e8589cc1 | 2996 | } |
52d4b9ac | 2997 | unlock_page_cgroup(pc); |
ac39cf8c AM |
2998 | /* |
2999 | * If the page is not charged at this point, | |
3000 | * we return here. | |
3001 | */ | |
3002 | if (!mem) | |
3003 | return 0; | |
01b1ae63 | 3004 | |
93d5c9be | 3005 | *ptr = mem; |
7ec99d62 | 3006 | ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false); |
ac39cf8c AM |
3007 | css_put(&mem->css);/* drop extra refcnt */ |
3008 | if (ret || *ptr == NULL) { | |
3009 | if (PageAnon(page)) { | |
3010 | lock_page_cgroup(pc); | |
3011 | ClearPageCgroupMigration(pc); | |
3012 | unlock_page_cgroup(pc); | |
3013 | /* | |
3014 | * The old page may be fully unmapped while we kept it. | |
3015 | */ | |
3016 | mem_cgroup_uncharge_page(page); | |
3017 | } | |
3018 | return -ENOMEM; | |
e8589cc1 | 3019 | } |
ac39cf8c AM |
3020 | /* |
3021 | * We charge new page before it's used/mapped. So, even if unlock_page() | |
3022 | * is called before end_migration, we can catch all events on this new | |
3023 | * page. In the case new page is migrated but not remapped, new page's | |
3024 | * mapcount will be finally 0 and we call uncharge in end_migration(). | |
3025 | */ | |
3026 | pc = lookup_page_cgroup(newpage); | |
3027 | if (PageAnon(page)) | |
3028 | ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | |
3029 | else if (page_is_file_cache(page)) | |
3030 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | |
3031 | else | |
3032 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | |
7ec99d62 | 3033 | __mem_cgroup_commit_charge(mem, page, 1, pc, ctype); |
e8589cc1 | 3034 | return ret; |
ae41be37 | 3035 | } |
8869b8f6 | 3036 | |
69029cd5 | 3037 | /* remove redundant charge if migration failed*/ |
01b1ae63 | 3038 | void mem_cgroup_end_migration(struct mem_cgroup *mem, |
50de1dd9 | 3039 | struct page *oldpage, struct page *newpage, bool migration_ok) |
ae41be37 | 3040 | { |
ac39cf8c | 3041 | struct page *used, *unused; |
01b1ae63 | 3042 | struct page_cgroup *pc; |
01b1ae63 KH |
3043 | |
3044 | if (!mem) | |
3045 | return; | |
ac39cf8c | 3046 | /* blocks rmdir() */ |
88703267 | 3047 | cgroup_exclude_rmdir(&mem->css); |
50de1dd9 | 3048 | if (!migration_ok) { |
ac39cf8c AM |
3049 | used = oldpage; |
3050 | unused = newpage; | |
01b1ae63 | 3051 | } else { |
ac39cf8c | 3052 | used = newpage; |
01b1ae63 KH |
3053 | unused = oldpage; |
3054 | } | |
69029cd5 | 3055 | /* |
ac39cf8c AM |
3056 | * We disallowed uncharge of pages under migration because mapcount |
3057 | * of the page goes down to zero, temporarly. | |
3058 | * Clear the flag and check the page should be charged. | |
01b1ae63 | 3059 | */ |
ac39cf8c AM |
3060 | pc = lookup_page_cgroup(oldpage); |
3061 | lock_page_cgroup(pc); | |
3062 | ClearPageCgroupMigration(pc); | |
3063 | unlock_page_cgroup(pc); | |
01b1ae63 | 3064 | |
ac39cf8c AM |
3065 | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); |
3066 | ||
01b1ae63 | 3067 | /* |
ac39cf8c AM |
3068 | * If a page is a file cache, radix-tree replacement is very atomic |
3069 | * and we can skip this check. When it was an Anon page, its mapcount | |
3070 | * goes down to 0. But because we added MIGRATION flage, it's not | |
3071 | * uncharged yet. There are several case but page->mapcount check | |
3072 | * and USED bit check in mem_cgroup_uncharge_page() will do enough | |
3073 | * check. (see prepare_charge() also) | |
69029cd5 | 3074 | */ |
ac39cf8c AM |
3075 | if (PageAnon(used)) |
3076 | mem_cgroup_uncharge_page(used); | |
88703267 | 3077 | /* |
ac39cf8c AM |
3078 | * At migration, we may charge account against cgroup which has no |
3079 | * tasks. | |
88703267 KH |
3080 | * So, rmdir()->pre_destroy() can be called while we do this charge. |
3081 | * In that case, we need to call pre_destroy() again. check it here. | |
3082 | */ | |
3083 | cgroup_release_and_wakeup_rmdir(&mem->css); | |
ae41be37 | 3084 | } |
78fb7466 | 3085 | |
c9b0ed51 | 3086 | /* |
ae3abae6 DN |
3087 | * A call to try to shrink memory usage on charge failure at shmem's swapin. |
3088 | * Calling hierarchical_reclaim is not enough because we should update | |
3089 | * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. | |
3090 | * Moreover considering hierarchy, we should reclaim from the mem_over_limit, | |
3091 | * not from the memcg which this page would be charged to. | |
3092 | * try_charge_swapin does all of these works properly. | |
c9b0ed51 | 3093 | */ |
ae3abae6 | 3094 | int mem_cgroup_shmem_charge_fallback(struct page *page, |
b5a84319 KH |
3095 | struct mm_struct *mm, |
3096 | gfp_t gfp_mask) | |
c9b0ed51 | 3097 | { |
56039efa | 3098 | struct mem_cgroup *mem; |
ae3abae6 | 3099 | int ret; |
c9b0ed51 | 3100 | |
f8d66542 | 3101 | if (mem_cgroup_disabled()) |
cede86ac | 3102 | return 0; |
c9b0ed51 | 3103 | |
ae3abae6 DN |
3104 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); |
3105 | if (!ret) | |
3106 | mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ | |
c9b0ed51 | 3107 | |
ae3abae6 | 3108 | return ret; |
c9b0ed51 KH |
3109 | } |
3110 | ||
f212ad7c DN |
3111 | #ifdef CONFIG_DEBUG_VM |
3112 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) | |
3113 | { | |
3114 | struct page_cgroup *pc; | |
3115 | ||
3116 | pc = lookup_page_cgroup(page); | |
3117 | if (likely(pc) && PageCgroupUsed(pc)) | |
3118 | return pc; | |
3119 | return NULL; | |
3120 | } | |
3121 | ||
3122 | bool mem_cgroup_bad_page_check(struct page *page) | |
3123 | { | |
3124 | if (mem_cgroup_disabled()) | |
3125 | return false; | |
3126 | ||
3127 | return lookup_page_cgroup_used(page) != NULL; | |
3128 | } | |
3129 | ||
3130 | void mem_cgroup_print_bad_page(struct page *page) | |
3131 | { | |
3132 | struct page_cgroup *pc; | |
3133 | ||
3134 | pc = lookup_page_cgroup_used(page); | |
3135 | if (pc) { | |
3136 | int ret = -1; | |
3137 | char *path; | |
3138 | ||
3139 | printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p", | |
3140 | pc, pc->flags, pc->mem_cgroup); | |
3141 | ||
3142 | path = kmalloc(PATH_MAX, GFP_KERNEL); | |
3143 | if (path) { | |
3144 | rcu_read_lock(); | |
3145 | ret = cgroup_path(pc->mem_cgroup->css.cgroup, | |
3146 | path, PATH_MAX); | |
3147 | rcu_read_unlock(); | |
3148 | } | |
3149 | ||
3150 | printk(KERN_CONT "(%s)\n", | |
3151 | (ret < 0) ? "cannot get the path" : path); | |
3152 | kfree(path); | |
3153 | } | |
3154 | } | |
3155 | #endif | |
3156 | ||
8c7c6e34 KH |
3157 | static DEFINE_MUTEX(set_limit_mutex); |
3158 | ||
d38d2a75 | 3159 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
8c7c6e34 | 3160 | unsigned long long val) |
628f4235 | 3161 | { |
81d39c20 | 3162 | int retry_count; |
3c11ecf4 | 3163 | u64 memswlimit, memlimit; |
628f4235 | 3164 | int ret = 0; |
81d39c20 KH |
3165 | int children = mem_cgroup_count_children(memcg); |
3166 | u64 curusage, oldusage; | |
3c11ecf4 | 3167 | int enlarge; |
81d39c20 KH |
3168 | |
3169 | /* | |
3170 | * For keeping hierarchical_reclaim simple, how long we should retry | |
3171 | * is depends on callers. We set our retry-count to be function | |
3172 | * of # of children which we should visit in this loop. | |
3173 | */ | |
3174 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | |
3175 | ||
3176 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | |
628f4235 | 3177 | |
3c11ecf4 | 3178 | enlarge = 0; |
8c7c6e34 | 3179 | while (retry_count) { |
628f4235 KH |
3180 | if (signal_pending(current)) { |
3181 | ret = -EINTR; | |
3182 | break; | |
3183 | } | |
8c7c6e34 KH |
3184 | /* |
3185 | * Rather than hide all in some function, I do this in | |
3186 | * open coded manner. You see what this really does. | |
3187 | * We have to guarantee mem->res.limit < mem->memsw.limit. | |
3188 | */ | |
3189 | mutex_lock(&set_limit_mutex); | |
3190 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
3191 | if (memswlimit < val) { | |
3192 | ret = -EINVAL; | |
3193 | mutex_unlock(&set_limit_mutex); | |
628f4235 KH |
3194 | break; |
3195 | } | |
3c11ecf4 KH |
3196 | |
3197 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
3198 | if (memlimit < val) | |
3199 | enlarge = 1; | |
3200 | ||
8c7c6e34 | 3201 | ret = res_counter_set_limit(&memcg->res, val); |
22a668d7 KH |
3202 | if (!ret) { |
3203 | if (memswlimit == val) | |
3204 | memcg->memsw_is_minimum = true; | |
3205 | else | |
3206 | memcg->memsw_is_minimum = false; | |
3207 | } | |
8c7c6e34 KH |
3208 | mutex_unlock(&set_limit_mutex); |
3209 | ||
3210 | if (!ret) | |
3211 | break; | |
3212 | ||
aa20d489 | 3213 | mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, |
4e416953 | 3214 | MEM_CGROUP_RECLAIM_SHRINK); |
81d39c20 KH |
3215 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
3216 | /* Usage is reduced ? */ | |
3217 | if (curusage >= oldusage) | |
3218 | retry_count--; | |
3219 | else | |
3220 | oldusage = curusage; | |
8c7c6e34 | 3221 | } |
3c11ecf4 KH |
3222 | if (!ret && enlarge) |
3223 | memcg_oom_recover(memcg); | |
14797e23 | 3224 | |
8c7c6e34 KH |
3225 | return ret; |
3226 | } | |
3227 | ||
338c8431 LZ |
3228 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
3229 | unsigned long long val) | |
8c7c6e34 | 3230 | { |
81d39c20 | 3231 | int retry_count; |
3c11ecf4 | 3232 | u64 memlimit, memswlimit, oldusage, curusage; |
81d39c20 KH |
3233 | int children = mem_cgroup_count_children(memcg); |
3234 | int ret = -EBUSY; | |
3c11ecf4 | 3235 | int enlarge = 0; |
8c7c6e34 | 3236 | |
81d39c20 KH |
3237 | /* see mem_cgroup_resize_res_limit */ |
3238 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | |
3239 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | |
8c7c6e34 KH |
3240 | while (retry_count) { |
3241 | if (signal_pending(current)) { | |
3242 | ret = -EINTR; | |
3243 | break; | |
3244 | } | |
3245 | /* | |
3246 | * Rather than hide all in some function, I do this in | |
3247 | * open coded manner. You see what this really does. | |
3248 | * We have to guarantee mem->res.limit < mem->memsw.limit. | |
3249 | */ | |
3250 | mutex_lock(&set_limit_mutex); | |
3251 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
3252 | if (memlimit > val) { | |
3253 | ret = -EINVAL; | |
3254 | mutex_unlock(&set_limit_mutex); | |
3255 | break; | |
3256 | } | |
3c11ecf4 KH |
3257 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
3258 | if (memswlimit < val) | |
3259 | enlarge = 1; | |
8c7c6e34 | 3260 | ret = res_counter_set_limit(&memcg->memsw, val); |
22a668d7 KH |
3261 | if (!ret) { |
3262 | if (memlimit == val) | |
3263 | memcg->memsw_is_minimum = true; | |
3264 | else | |
3265 | memcg->memsw_is_minimum = false; | |
3266 | } | |
8c7c6e34 KH |
3267 | mutex_unlock(&set_limit_mutex); |
3268 | ||
3269 | if (!ret) | |
3270 | break; | |
3271 | ||
4e416953 | 3272 | mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, |
75822b44 BS |
3273 | MEM_CGROUP_RECLAIM_NOSWAP | |
3274 | MEM_CGROUP_RECLAIM_SHRINK); | |
8c7c6e34 | 3275 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
81d39c20 | 3276 | /* Usage is reduced ? */ |
8c7c6e34 | 3277 | if (curusage >= oldusage) |
628f4235 | 3278 | retry_count--; |
81d39c20 KH |
3279 | else |
3280 | oldusage = curusage; | |
628f4235 | 3281 | } |
3c11ecf4 KH |
3282 | if (!ret && enlarge) |
3283 | memcg_oom_recover(memcg); | |
628f4235 KH |
3284 | return ret; |
3285 | } | |
3286 | ||
4e416953 | 3287 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
00918b6a | 3288 | gfp_t gfp_mask) |
4e416953 BS |
3289 | { |
3290 | unsigned long nr_reclaimed = 0; | |
3291 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | |
3292 | unsigned long reclaimed; | |
3293 | int loop = 0; | |
3294 | struct mem_cgroup_tree_per_zone *mctz; | |
ef8745c1 | 3295 | unsigned long long excess; |
4e416953 BS |
3296 | |
3297 | if (order > 0) | |
3298 | return 0; | |
3299 | ||
00918b6a | 3300 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
4e416953 BS |
3301 | /* |
3302 | * This loop can run a while, specially if mem_cgroup's continuously | |
3303 | * keep exceeding their soft limit and putting the system under | |
3304 | * pressure | |
3305 | */ | |
3306 | do { | |
3307 | if (next_mz) | |
3308 | mz = next_mz; | |
3309 | else | |
3310 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
3311 | if (!mz) | |
3312 | break; | |
3313 | ||
3314 | reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, | |
3315 | gfp_mask, | |
3316 | MEM_CGROUP_RECLAIM_SOFT); | |
3317 | nr_reclaimed += reclaimed; | |
3318 | spin_lock(&mctz->lock); | |
3319 | ||
3320 | /* | |
3321 | * If we failed to reclaim anything from this memory cgroup | |
3322 | * it is time to move on to the next cgroup | |
3323 | */ | |
3324 | next_mz = NULL; | |
3325 | if (!reclaimed) { | |
3326 | do { | |
3327 | /* | |
3328 | * Loop until we find yet another one. | |
3329 | * | |
3330 | * By the time we get the soft_limit lock | |
3331 | * again, someone might have aded the | |
3332 | * group back on the RB tree. Iterate to | |
3333 | * make sure we get a different mem. | |
3334 | * mem_cgroup_largest_soft_limit_node returns | |
3335 | * NULL if no other cgroup is present on | |
3336 | * the tree | |
3337 | */ | |
3338 | next_mz = | |
3339 | __mem_cgroup_largest_soft_limit_node(mctz); | |
3340 | if (next_mz == mz) { | |
3341 | css_put(&next_mz->mem->css); | |
3342 | next_mz = NULL; | |
3343 | } else /* next_mz == NULL or other memcg */ | |
3344 | break; | |
3345 | } while (1); | |
3346 | } | |
4e416953 | 3347 | __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); |
ef8745c1 | 3348 | excess = res_counter_soft_limit_excess(&mz->mem->res); |
4e416953 BS |
3349 | /* |
3350 | * One school of thought says that we should not add | |
3351 | * back the node to the tree if reclaim returns 0. | |
3352 | * But our reclaim could return 0, simply because due | |
3353 | * to priority we are exposing a smaller subset of | |
3354 | * memory to reclaim from. Consider this as a longer | |
3355 | * term TODO. | |
3356 | */ | |
ef8745c1 KH |
3357 | /* If excess == 0, no tree ops */ |
3358 | __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); | |
4e416953 BS |
3359 | spin_unlock(&mctz->lock); |
3360 | css_put(&mz->mem->css); | |
3361 | loop++; | |
3362 | /* | |
3363 | * Could not reclaim anything and there are no more | |
3364 | * mem cgroups to try or we seem to be looping without | |
3365 | * reclaiming anything. | |
3366 | */ | |
3367 | if (!nr_reclaimed && | |
3368 | (next_mz == NULL || | |
3369 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
3370 | break; | |
3371 | } while (!nr_reclaimed); | |
3372 | if (next_mz) | |
3373 | css_put(&next_mz->mem->css); | |
3374 | return nr_reclaimed; | |
3375 | } | |
3376 | ||
cc847582 KH |
3377 | /* |
3378 | * This routine traverse page_cgroup in given list and drop them all. | |
cc847582 KH |
3379 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
3380 | */ | |
f817ed48 | 3381 | static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
08e552c6 | 3382 | int node, int zid, enum lru_list lru) |
cc847582 | 3383 | { |
08e552c6 KH |
3384 | struct zone *zone; |
3385 | struct mem_cgroup_per_zone *mz; | |
f817ed48 | 3386 | struct page_cgroup *pc, *busy; |
08e552c6 | 3387 | unsigned long flags, loop; |
072c56c1 | 3388 | struct list_head *list; |
f817ed48 | 3389 | int ret = 0; |
072c56c1 | 3390 | |
08e552c6 KH |
3391 | zone = &NODE_DATA(node)->node_zones[zid]; |
3392 | mz = mem_cgroup_zoneinfo(mem, node, zid); | |
b69408e8 | 3393 | list = &mz->lists[lru]; |
cc847582 | 3394 | |
f817ed48 KH |
3395 | loop = MEM_CGROUP_ZSTAT(mz, lru); |
3396 | /* give some margin against EBUSY etc...*/ | |
3397 | loop += 256; | |
3398 | busy = NULL; | |
3399 | while (loop--) { | |
5564e88b JW |
3400 | struct page *page; |
3401 | ||
f817ed48 | 3402 | ret = 0; |
08e552c6 | 3403 | spin_lock_irqsave(&zone->lru_lock, flags); |
f817ed48 | 3404 | if (list_empty(list)) { |
08e552c6 | 3405 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
52d4b9ac | 3406 | break; |
f817ed48 KH |
3407 | } |
3408 | pc = list_entry(list->prev, struct page_cgroup, lru); | |
3409 | if (busy == pc) { | |
3410 | list_move(&pc->lru, list); | |
648bcc77 | 3411 | busy = NULL; |
08e552c6 | 3412 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 KH |
3413 | continue; |
3414 | } | |
08e552c6 | 3415 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 | 3416 | |
6b3ae58e | 3417 | page = lookup_cgroup_page(pc); |
5564e88b JW |
3418 | |
3419 | ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL); | |
f817ed48 | 3420 | if (ret == -ENOMEM) |
52d4b9ac | 3421 | break; |
f817ed48 KH |
3422 | |
3423 | if (ret == -EBUSY || ret == -EINVAL) { | |
3424 | /* found lock contention or "pc" is obsolete. */ | |
3425 | busy = pc; | |
3426 | cond_resched(); | |
3427 | } else | |
3428 | busy = NULL; | |
cc847582 | 3429 | } |
08e552c6 | 3430 | |
f817ed48 KH |
3431 | if (!ret && !list_empty(list)) |
3432 | return -EBUSY; | |
3433 | return ret; | |
cc847582 KH |
3434 | } |
3435 | ||
3436 | /* | |
3437 | * make mem_cgroup's charge to be 0 if there is no task. | |
3438 | * This enables deleting this mem_cgroup. | |
3439 | */ | |
c1e862c1 | 3440 | static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) |
cc847582 | 3441 | { |
f817ed48 KH |
3442 | int ret; |
3443 | int node, zid, shrink; | |
3444 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
c1e862c1 | 3445 | struct cgroup *cgrp = mem->css.cgroup; |
8869b8f6 | 3446 | |
cc847582 | 3447 | css_get(&mem->css); |
f817ed48 KH |
3448 | |
3449 | shrink = 0; | |
c1e862c1 KH |
3450 | /* should free all ? */ |
3451 | if (free_all) | |
3452 | goto try_to_free; | |
f817ed48 | 3453 | move_account: |
fce66477 | 3454 | do { |
f817ed48 | 3455 | ret = -EBUSY; |
c1e862c1 KH |
3456 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) |
3457 | goto out; | |
3458 | ret = -EINTR; | |
3459 | if (signal_pending(current)) | |
cc847582 | 3460 | goto out; |
52d4b9ac KH |
3461 | /* This is for making all *used* pages to be on LRU. */ |
3462 | lru_add_drain_all(); | |
cdec2e42 | 3463 | drain_all_stock_sync(); |
f817ed48 | 3464 | ret = 0; |
32047e2a | 3465 | mem_cgroup_start_move(mem); |
299b4eaa | 3466 | for_each_node_state(node, N_HIGH_MEMORY) { |
f817ed48 | 3467 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { |
b69408e8 | 3468 | enum lru_list l; |
f817ed48 KH |
3469 | for_each_lru(l) { |
3470 | ret = mem_cgroup_force_empty_list(mem, | |
08e552c6 | 3471 | node, zid, l); |
f817ed48 KH |
3472 | if (ret) |
3473 | break; | |
3474 | } | |
1ecaab2b | 3475 | } |
f817ed48 KH |
3476 | if (ret) |
3477 | break; | |
3478 | } | |
32047e2a | 3479 | mem_cgroup_end_move(mem); |
3c11ecf4 | 3480 | memcg_oom_recover(mem); |
f817ed48 KH |
3481 | /* it seems parent cgroup doesn't have enough mem */ |
3482 | if (ret == -ENOMEM) | |
3483 | goto try_to_free; | |
52d4b9ac | 3484 | cond_resched(); |
fce66477 DN |
3485 | /* "ret" should also be checked to ensure all lists are empty. */ |
3486 | } while (mem->res.usage > 0 || ret); | |
cc847582 KH |
3487 | out: |
3488 | css_put(&mem->css); | |
3489 | return ret; | |
f817ed48 KH |
3490 | |
3491 | try_to_free: | |
c1e862c1 KH |
3492 | /* returns EBUSY if there is a task or if we come here twice. */ |
3493 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | |
f817ed48 KH |
3494 | ret = -EBUSY; |
3495 | goto out; | |
3496 | } | |
c1e862c1 KH |
3497 | /* we call try-to-free pages for make this cgroup empty */ |
3498 | lru_add_drain_all(); | |
f817ed48 KH |
3499 | /* try to free all pages in this cgroup */ |
3500 | shrink = 1; | |
3501 | while (nr_retries && mem->res.usage > 0) { | |
3502 | int progress; | |
c1e862c1 KH |
3503 | |
3504 | if (signal_pending(current)) { | |
3505 | ret = -EINTR; | |
3506 | goto out; | |
3507 | } | |
a7885eb8 KM |
3508 | progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, |
3509 | false, get_swappiness(mem)); | |
c1e862c1 | 3510 | if (!progress) { |
f817ed48 | 3511 | nr_retries--; |
c1e862c1 | 3512 | /* maybe some writeback is necessary */ |
8aa7e847 | 3513 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
c1e862c1 | 3514 | } |
f817ed48 KH |
3515 | |
3516 | } | |
08e552c6 | 3517 | lru_add_drain(); |
f817ed48 | 3518 | /* try move_account...there may be some *locked* pages. */ |
fce66477 | 3519 | goto move_account; |
cc847582 KH |
3520 | } |
3521 | ||
c1e862c1 KH |
3522 | int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) |
3523 | { | |
3524 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | |
3525 | } | |
3526 | ||
3527 | ||
18f59ea7 BS |
3528 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) |
3529 | { | |
3530 | return mem_cgroup_from_cont(cont)->use_hierarchy; | |
3531 | } | |
3532 | ||
3533 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | |
3534 | u64 val) | |
3535 | { | |
3536 | int retval = 0; | |
3537 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | |
3538 | struct cgroup *parent = cont->parent; | |
3539 | struct mem_cgroup *parent_mem = NULL; | |
3540 | ||
3541 | if (parent) | |
3542 | parent_mem = mem_cgroup_from_cont(parent); | |
3543 | ||
3544 | cgroup_lock(); | |
3545 | /* | |
af901ca1 | 3546 | * If parent's use_hierarchy is set, we can't make any modifications |
18f59ea7 BS |
3547 | * in the child subtrees. If it is unset, then the change can |
3548 | * occur, provided the current cgroup has no children. | |
3549 | * | |
3550 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
3551 | * set if there are no children. | |
3552 | */ | |
3553 | if ((!parent_mem || !parent_mem->use_hierarchy) && | |
3554 | (val == 1 || val == 0)) { | |
3555 | if (list_empty(&cont->children)) | |
3556 | mem->use_hierarchy = val; | |
3557 | else | |
3558 | retval = -EBUSY; | |
3559 | } else | |
3560 | retval = -EINVAL; | |
3561 | cgroup_unlock(); | |
3562 | ||
3563 | return retval; | |
3564 | } | |
3565 | ||
0c3e73e8 | 3566 | |
7a159cc9 JW |
3567 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem, |
3568 | enum mem_cgroup_stat_index idx) | |
0c3e73e8 | 3569 | { |
7d74b06f | 3570 | struct mem_cgroup *iter; |
7a159cc9 | 3571 | long val = 0; |
0c3e73e8 | 3572 | |
7a159cc9 | 3573 | /* Per-cpu values can be negative, use a signed accumulator */ |
7d74b06f KH |
3574 | for_each_mem_cgroup_tree(iter, mem) |
3575 | val += mem_cgroup_read_stat(iter, idx); | |
3576 | ||
3577 | if (val < 0) /* race ? */ | |
3578 | val = 0; | |
3579 | return val; | |
0c3e73e8 BS |
3580 | } |
3581 | ||
104f3928 KS |
3582 | static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) |
3583 | { | |
7d74b06f | 3584 | u64 val; |
104f3928 KS |
3585 | |
3586 | if (!mem_cgroup_is_root(mem)) { | |
3587 | if (!swap) | |
3588 | return res_counter_read_u64(&mem->res, RES_USAGE); | |
3589 | else | |
3590 | return res_counter_read_u64(&mem->memsw, RES_USAGE); | |
3591 | } | |
3592 | ||
7a159cc9 JW |
3593 | val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE); |
3594 | val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS); | |
104f3928 | 3595 | |
7d74b06f | 3596 | if (swap) |
7a159cc9 | 3597 | val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT); |
104f3928 KS |
3598 | |
3599 | return val << PAGE_SHIFT; | |
3600 | } | |
3601 | ||
2c3daa72 | 3602 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
8cdea7c0 | 3603 | { |
8c7c6e34 | 3604 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
104f3928 | 3605 | u64 val; |
8c7c6e34 KH |
3606 | int type, name; |
3607 | ||
3608 | type = MEMFILE_TYPE(cft->private); | |
3609 | name = MEMFILE_ATTR(cft->private); | |
3610 | switch (type) { | |
3611 | case _MEM: | |
104f3928 KS |
3612 | if (name == RES_USAGE) |
3613 | val = mem_cgroup_usage(mem, false); | |
3614 | else | |
0c3e73e8 | 3615 | val = res_counter_read_u64(&mem->res, name); |
8c7c6e34 KH |
3616 | break; |
3617 | case _MEMSWAP: | |
104f3928 KS |
3618 | if (name == RES_USAGE) |
3619 | val = mem_cgroup_usage(mem, true); | |
3620 | else | |
0c3e73e8 | 3621 | val = res_counter_read_u64(&mem->memsw, name); |
8c7c6e34 KH |
3622 | break; |
3623 | default: | |
3624 | BUG(); | |
3625 | break; | |
3626 | } | |
3627 | return val; | |
8cdea7c0 | 3628 | } |
628f4235 KH |
3629 | /* |
3630 | * The user of this function is... | |
3631 | * RES_LIMIT. | |
3632 | */ | |
856c13aa PM |
3633 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
3634 | const char *buffer) | |
8cdea7c0 | 3635 | { |
628f4235 | 3636 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
8c7c6e34 | 3637 | int type, name; |
628f4235 KH |
3638 | unsigned long long val; |
3639 | int ret; | |
3640 | ||
8c7c6e34 KH |
3641 | type = MEMFILE_TYPE(cft->private); |
3642 | name = MEMFILE_ATTR(cft->private); | |
3643 | switch (name) { | |
628f4235 | 3644 | case RES_LIMIT: |
4b3bde4c BS |
3645 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
3646 | ret = -EINVAL; | |
3647 | break; | |
3648 | } | |
628f4235 KH |
3649 | /* This function does all necessary parse...reuse it */ |
3650 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
8c7c6e34 KH |
3651 | if (ret) |
3652 | break; | |
3653 | if (type == _MEM) | |
628f4235 | 3654 | ret = mem_cgroup_resize_limit(memcg, val); |
8c7c6e34 KH |
3655 | else |
3656 | ret = mem_cgroup_resize_memsw_limit(memcg, val); | |
628f4235 | 3657 | break; |
296c81d8 BS |
3658 | case RES_SOFT_LIMIT: |
3659 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
3660 | if (ret) | |
3661 | break; | |
3662 | /* | |
3663 | * For memsw, soft limits are hard to implement in terms | |
3664 | * of semantics, for now, we support soft limits for | |
3665 | * control without swap | |
3666 | */ | |
3667 | if (type == _MEM) | |
3668 | ret = res_counter_set_soft_limit(&memcg->res, val); | |
3669 | else | |
3670 | ret = -EINVAL; | |
3671 | break; | |
628f4235 KH |
3672 | default: |
3673 | ret = -EINVAL; /* should be BUG() ? */ | |
3674 | break; | |
3675 | } | |
3676 | return ret; | |
8cdea7c0 BS |
3677 | } |
3678 | ||
fee7b548 KH |
3679 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
3680 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | |
3681 | { | |
3682 | struct cgroup *cgroup; | |
3683 | unsigned long long min_limit, min_memsw_limit, tmp; | |
3684 | ||
3685 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
3686 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
3687 | cgroup = memcg->css.cgroup; | |
3688 | if (!memcg->use_hierarchy) | |
3689 | goto out; | |
3690 | ||
3691 | while (cgroup->parent) { | |
3692 | cgroup = cgroup->parent; | |
3693 | memcg = mem_cgroup_from_cont(cgroup); | |
3694 | if (!memcg->use_hierarchy) | |
3695 | break; | |
3696 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
3697 | min_limit = min(min_limit, tmp); | |
3698 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
3699 | min_memsw_limit = min(min_memsw_limit, tmp); | |
3700 | } | |
3701 | out: | |
3702 | *mem_limit = min_limit; | |
3703 | *memsw_limit = min_memsw_limit; | |
3704 | return; | |
3705 | } | |
3706 | ||
29f2a4da | 3707 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
c84872e1 PE |
3708 | { |
3709 | struct mem_cgroup *mem; | |
8c7c6e34 | 3710 | int type, name; |
c84872e1 PE |
3711 | |
3712 | mem = mem_cgroup_from_cont(cont); | |
8c7c6e34 KH |
3713 | type = MEMFILE_TYPE(event); |
3714 | name = MEMFILE_ATTR(event); | |
3715 | switch (name) { | |
29f2a4da | 3716 | case RES_MAX_USAGE: |
8c7c6e34 KH |
3717 | if (type == _MEM) |
3718 | res_counter_reset_max(&mem->res); | |
3719 | else | |
3720 | res_counter_reset_max(&mem->memsw); | |
29f2a4da PE |
3721 | break; |
3722 | case RES_FAILCNT: | |
8c7c6e34 KH |
3723 | if (type == _MEM) |
3724 | res_counter_reset_failcnt(&mem->res); | |
3725 | else | |
3726 | res_counter_reset_failcnt(&mem->memsw); | |
29f2a4da PE |
3727 | break; |
3728 | } | |
f64c3f54 | 3729 | |
85cc59db | 3730 | return 0; |
c84872e1 PE |
3731 | } |
3732 | ||
7dc74be0 DN |
3733 | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, |
3734 | struct cftype *cft) | |
3735 | { | |
3736 | return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; | |
3737 | } | |
3738 | ||
02491447 | 3739 | #ifdef CONFIG_MMU |
7dc74be0 DN |
3740 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, |
3741 | struct cftype *cft, u64 val) | |
3742 | { | |
3743 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | |
3744 | ||
3745 | if (val >= (1 << NR_MOVE_TYPE)) | |
3746 | return -EINVAL; | |
3747 | /* | |
3748 | * We check this value several times in both in can_attach() and | |
3749 | * attach(), so we need cgroup lock to prevent this value from being | |
3750 | * inconsistent. | |
3751 | */ | |
3752 | cgroup_lock(); | |
3753 | mem->move_charge_at_immigrate = val; | |
3754 | cgroup_unlock(); | |
3755 | ||
3756 | return 0; | |
3757 | } | |
02491447 DN |
3758 | #else |
3759 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | |
3760 | struct cftype *cft, u64 val) | |
3761 | { | |
3762 | return -ENOSYS; | |
3763 | } | |
3764 | #endif | |
7dc74be0 | 3765 | |
14067bb3 KH |
3766 | |
3767 | /* For read statistics */ | |
3768 | enum { | |
3769 | MCS_CACHE, | |
3770 | MCS_RSS, | |
d8046582 | 3771 | MCS_FILE_MAPPED, |
14067bb3 KH |
3772 | MCS_PGPGIN, |
3773 | MCS_PGPGOUT, | |
1dd3a273 | 3774 | MCS_SWAP, |
14067bb3 KH |
3775 | MCS_INACTIVE_ANON, |
3776 | MCS_ACTIVE_ANON, | |
3777 | MCS_INACTIVE_FILE, | |
3778 | MCS_ACTIVE_FILE, | |
3779 | MCS_UNEVICTABLE, | |
3780 | NR_MCS_STAT, | |
3781 | }; | |
3782 | ||
3783 | struct mcs_total_stat { | |
3784 | s64 stat[NR_MCS_STAT]; | |
d2ceb9b7 KH |
3785 | }; |
3786 | ||
14067bb3 KH |
3787 | struct { |
3788 | char *local_name; | |
3789 | char *total_name; | |
3790 | } memcg_stat_strings[NR_MCS_STAT] = { | |
3791 | {"cache", "total_cache"}, | |
3792 | {"rss", "total_rss"}, | |
d69b042f | 3793 | {"mapped_file", "total_mapped_file"}, |
14067bb3 KH |
3794 | {"pgpgin", "total_pgpgin"}, |
3795 | {"pgpgout", "total_pgpgout"}, | |
1dd3a273 | 3796 | {"swap", "total_swap"}, |
14067bb3 KH |
3797 | {"inactive_anon", "total_inactive_anon"}, |
3798 | {"active_anon", "total_active_anon"}, | |
3799 | {"inactive_file", "total_inactive_file"}, | |
3800 | {"active_file", "total_active_file"}, | |
3801 | {"unevictable", "total_unevictable"} | |
3802 | }; | |
3803 | ||
3804 | ||
7d74b06f KH |
3805 | static void |
3806 | mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | |
14067bb3 | 3807 | { |
14067bb3 KH |
3808 | s64 val; |
3809 | ||
3810 | /* per cpu stat */ | |
c62b1a3b | 3811 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); |
14067bb3 | 3812 | s->stat[MCS_CACHE] += val * PAGE_SIZE; |
c62b1a3b | 3813 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); |
14067bb3 | 3814 | s->stat[MCS_RSS] += val * PAGE_SIZE; |
c62b1a3b | 3815 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); |
d8046582 | 3816 | s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; |
e9f8974f | 3817 | val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN); |
14067bb3 | 3818 | s->stat[MCS_PGPGIN] += val; |
e9f8974f | 3819 | val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT); |
14067bb3 | 3820 | s->stat[MCS_PGPGOUT] += val; |
1dd3a273 | 3821 | if (do_swap_account) { |
c62b1a3b | 3822 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); |
1dd3a273 DN |
3823 | s->stat[MCS_SWAP] += val * PAGE_SIZE; |
3824 | } | |
14067bb3 KH |
3825 | |
3826 | /* per zone stat */ | |
3827 | val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); | |
3828 | s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; | |
3829 | val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); | |
3830 | s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; | |
3831 | val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); | |
3832 | s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; | |
3833 | val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); | |
3834 | s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; | |
3835 | val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); | |
3836 | s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; | |
14067bb3 KH |
3837 | } |
3838 | ||
3839 | static void | |
3840 | mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | |
3841 | { | |
7d74b06f KH |
3842 | struct mem_cgroup *iter; |
3843 | ||
3844 | for_each_mem_cgroup_tree(iter, mem) | |
3845 | mem_cgroup_get_local_stat(iter, s); | |
14067bb3 KH |
3846 | } |
3847 | ||
c64745cf PM |
3848 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, |
3849 | struct cgroup_map_cb *cb) | |
d2ceb9b7 | 3850 | { |
d2ceb9b7 | 3851 | struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); |
14067bb3 | 3852 | struct mcs_total_stat mystat; |
d2ceb9b7 KH |
3853 | int i; |
3854 | ||
14067bb3 KH |
3855 | memset(&mystat, 0, sizeof(mystat)); |
3856 | mem_cgroup_get_local_stat(mem_cont, &mystat); | |
d2ceb9b7 | 3857 | |
1dd3a273 DN |
3858 | for (i = 0; i < NR_MCS_STAT; i++) { |
3859 | if (i == MCS_SWAP && !do_swap_account) | |
3860 | continue; | |
14067bb3 | 3861 | cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); |
1dd3a273 | 3862 | } |
7b854121 | 3863 | |
14067bb3 | 3864 | /* Hierarchical information */ |
fee7b548 KH |
3865 | { |
3866 | unsigned long long limit, memsw_limit; | |
3867 | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | |
3868 | cb->fill(cb, "hierarchical_memory_limit", limit); | |
3869 | if (do_swap_account) | |
3870 | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | |
3871 | } | |
7f016ee8 | 3872 | |
14067bb3 KH |
3873 | memset(&mystat, 0, sizeof(mystat)); |
3874 | mem_cgroup_get_total_stat(mem_cont, &mystat); | |
1dd3a273 DN |
3875 | for (i = 0; i < NR_MCS_STAT; i++) { |
3876 | if (i == MCS_SWAP && !do_swap_account) | |
3877 | continue; | |
14067bb3 | 3878 | cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); |
1dd3a273 | 3879 | } |
14067bb3 | 3880 | |
7f016ee8 | 3881 | #ifdef CONFIG_DEBUG_VM |
c772be93 | 3882 | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); |
7f016ee8 KM |
3883 | |
3884 | { | |
3885 | int nid, zid; | |
3886 | struct mem_cgroup_per_zone *mz; | |
3887 | unsigned long recent_rotated[2] = {0, 0}; | |
3888 | unsigned long recent_scanned[2] = {0, 0}; | |
3889 | ||
3890 | for_each_online_node(nid) | |
3891 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
3892 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | |
3893 | ||
3894 | recent_rotated[0] += | |
3895 | mz->reclaim_stat.recent_rotated[0]; | |
3896 | recent_rotated[1] += | |
3897 | mz->reclaim_stat.recent_rotated[1]; | |
3898 | recent_scanned[0] += | |
3899 | mz->reclaim_stat.recent_scanned[0]; | |
3900 | recent_scanned[1] += | |
3901 | mz->reclaim_stat.recent_scanned[1]; | |
3902 | } | |
3903 | cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); | |
3904 | cb->fill(cb, "recent_rotated_file", recent_rotated[1]); | |
3905 | cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); | |
3906 | cb->fill(cb, "recent_scanned_file", recent_scanned[1]); | |
3907 | } | |
3908 | #endif | |
3909 | ||
d2ceb9b7 KH |
3910 | return 0; |
3911 | } | |
3912 | ||
a7885eb8 KM |
3913 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) |
3914 | { | |
3915 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
3916 | ||
3917 | return get_swappiness(memcg); | |
3918 | } | |
3919 | ||
3920 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | |
3921 | u64 val) | |
3922 | { | |
3923 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
3924 | struct mem_cgroup *parent; | |
068b38c1 | 3925 | |
a7885eb8 KM |
3926 | if (val > 100) |
3927 | return -EINVAL; | |
3928 | ||
3929 | if (cgrp->parent == NULL) | |
3930 | return -EINVAL; | |
3931 | ||
3932 | parent = mem_cgroup_from_cont(cgrp->parent); | |
068b38c1 LZ |
3933 | |
3934 | cgroup_lock(); | |
3935 | ||
a7885eb8 KM |
3936 | /* If under hierarchy, only empty-root can set this value */ |
3937 | if ((parent->use_hierarchy) || | |
068b38c1 LZ |
3938 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { |
3939 | cgroup_unlock(); | |
a7885eb8 | 3940 | return -EINVAL; |
068b38c1 | 3941 | } |
a7885eb8 | 3942 | |
a7885eb8 | 3943 | memcg->swappiness = val; |
a7885eb8 | 3944 | |
068b38c1 LZ |
3945 | cgroup_unlock(); |
3946 | ||
a7885eb8 KM |
3947 | return 0; |
3948 | } | |
3949 | ||
2e72b634 KS |
3950 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
3951 | { | |
3952 | struct mem_cgroup_threshold_ary *t; | |
3953 | u64 usage; | |
3954 | int i; | |
3955 | ||
3956 | rcu_read_lock(); | |
3957 | if (!swap) | |
2c488db2 | 3958 | t = rcu_dereference(memcg->thresholds.primary); |
2e72b634 | 3959 | else |
2c488db2 | 3960 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
2e72b634 KS |
3961 | |
3962 | if (!t) | |
3963 | goto unlock; | |
3964 | ||
3965 | usage = mem_cgroup_usage(memcg, swap); | |
3966 | ||
3967 | /* | |
3968 | * current_threshold points to threshold just below usage. | |
3969 | * If it's not true, a threshold was crossed after last | |
3970 | * call of __mem_cgroup_threshold(). | |
3971 | */ | |
5407a562 | 3972 | i = t->current_threshold; |
2e72b634 KS |
3973 | |
3974 | /* | |
3975 | * Iterate backward over array of thresholds starting from | |
3976 | * current_threshold and check if a threshold is crossed. | |
3977 | * If none of thresholds below usage is crossed, we read | |
3978 | * only one element of the array here. | |
3979 | */ | |
3980 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
3981 | eventfd_signal(t->entries[i].eventfd, 1); | |
3982 | ||
3983 | /* i = current_threshold + 1 */ | |
3984 | i++; | |
3985 | ||
3986 | /* | |
3987 | * Iterate forward over array of thresholds starting from | |
3988 | * current_threshold+1 and check if a threshold is crossed. | |
3989 | * If none of thresholds above usage is crossed, we read | |
3990 | * only one element of the array here. | |
3991 | */ | |
3992 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
3993 | eventfd_signal(t->entries[i].eventfd, 1); | |
3994 | ||
3995 | /* Update current_threshold */ | |
5407a562 | 3996 | t->current_threshold = i - 1; |
2e72b634 KS |
3997 | unlock: |
3998 | rcu_read_unlock(); | |
3999 | } | |
4000 | ||
4001 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
4002 | { | |
ad4ca5f4 KS |
4003 | while (memcg) { |
4004 | __mem_cgroup_threshold(memcg, false); | |
4005 | if (do_swap_account) | |
4006 | __mem_cgroup_threshold(memcg, true); | |
4007 | ||
4008 | memcg = parent_mem_cgroup(memcg); | |
4009 | } | |
2e72b634 KS |
4010 | } |
4011 | ||
4012 | static int compare_thresholds(const void *a, const void *b) | |
4013 | { | |
4014 | const struct mem_cgroup_threshold *_a = a; | |
4015 | const struct mem_cgroup_threshold *_b = b; | |
4016 | ||
4017 | return _a->threshold - _b->threshold; | |
4018 | } | |
4019 | ||
7d74b06f | 4020 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem) |
9490ff27 KH |
4021 | { |
4022 | struct mem_cgroup_eventfd_list *ev; | |
4023 | ||
4024 | list_for_each_entry(ev, &mem->oom_notify, list) | |
4025 | eventfd_signal(ev->eventfd, 1); | |
4026 | return 0; | |
4027 | } | |
4028 | ||
4029 | static void mem_cgroup_oom_notify(struct mem_cgroup *mem) | |
4030 | { | |
7d74b06f KH |
4031 | struct mem_cgroup *iter; |
4032 | ||
4033 | for_each_mem_cgroup_tree(iter, mem) | |
4034 | mem_cgroup_oom_notify_cb(iter); | |
9490ff27 KH |
4035 | } |
4036 | ||
4037 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, | |
4038 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | |
2e72b634 KS |
4039 | { |
4040 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
2c488db2 KS |
4041 | struct mem_cgroup_thresholds *thresholds; |
4042 | struct mem_cgroup_threshold_ary *new; | |
2e72b634 KS |
4043 | int type = MEMFILE_TYPE(cft->private); |
4044 | u64 threshold, usage; | |
2c488db2 | 4045 | int i, size, ret; |
2e72b634 KS |
4046 | |
4047 | ret = res_counter_memparse_write_strategy(args, &threshold); | |
4048 | if (ret) | |
4049 | return ret; | |
4050 | ||
4051 | mutex_lock(&memcg->thresholds_lock); | |
2c488db2 | 4052 | |
2e72b634 | 4053 | if (type == _MEM) |
2c488db2 | 4054 | thresholds = &memcg->thresholds; |
2e72b634 | 4055 | else if (type == _MEMSWAP) |
2c488db2 | 4056 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
4057 | else |
4058 | BUG(); | |
4059 | ||
4060 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | |
4061 | ||
4062 | /* Check if a threshold crossed before adding a new one */ | |
2c488db2 | 4063 | if (thresholds->primary) |
2e72b634 KS |
4064 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
4065 | ||
2c488db2 | 4066 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
2e72b634 KS |
4067 | |
4068 | /* Allocate memory for new array of thresholds */ | |
2c488db2 | 4069 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
2e72b634 | 4070 | GFP_KERNEL); |
2c488db2 | 4071 | if (!new) { |
2e72b634 KS |
4072 | ret = -ENOMEM; |
4073 | goto unlock; | |
4074 | } | |
2c488db2 | 4075 | new->size = size; |
2e72b634 KS |
4076 | |
4077 | /* Copy thresholds (if any) to new array */ | |
2c488db2 KS |
4078 | if (thresholds->primary) { |
4079 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
2e72b634 | 4080 | sizeof(struct mem_cgroup_threshold)); |
2c488db2 KS |
4081 | } |
4082 | ||
2e72b634 | 4083 | /* Add new threshold */ |
2c488db2 KS |
4084 | new->entries[size - 1].eventfd = eventfd; |
4085 | new->entries[size - 1].threshold = threshold; | |
2e72b634 KS |
4086 | |
4087 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
2c488db2 | 4088 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
2e72b634 KS |
4089 | compare_thresholds, NULL); |
4090 | ||
4091 | /* Find current threshold */ | |
2c488db2 | 4092 | new->current_threshold = -1; |
2e72b634 | 4093 | for (i = 0; i < size; i++) { |
2c488db2 | 4094 | if (new->entries[i].threshold < usage) { |
2e72b634 | 4095 | /* |
2c488db2 KS |
4096 | * new->current_threshold will not be used until |
4097 | * rcu_assign_pointer(), so it's safe to increment | |
2e72b634 KS |
4098 | * it here. |
4099 | */ | |
2c488db2 | 4100 | ++new->current_threshold; |
2e72b634 KS |
4101 | } |
4102 | } | |
4103 | ||
2c488db2 KS |
4104 | /* Free old spare buffer and save old primary buffer as spare */ |
4105 | kfree(thresholds->spare); | |
4106 | thresholds->spare = thresholds->primary; | |
4107 | ||
4108 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 4109 | |
907860ed | 4110 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
4111 | synchronize_rcu(); |
4112 | ||
2e72b634 KS |
4113 | unlock: |
4114 | mutex_unlock(&memcg->thresholds_lock); | |
4115 | ||
4116 | return ret; | |
4117 | } | |
4118 | ||
907860ed | 4119 | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, |
9490ff27 | 4120 | struct cftype *cft, struct eventfd_ctx *eventfd) |
2e72b634 KS |
4121 | { |
4122 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
2c488db2 KS |
4123 | struct mem_cgroup_thresholds *thresholds; |
4124 | struct mem_cgroup_threshold_ary *new; | |
2e72b634 KS |
4125 | int type = MEMFILE_TYPE(cft->private); |
4126 | u64 usage; | |
2c488db2 | 4127 | int i, j, size; |
2e72b634 KS |
4128 | |
4129 | mutex_lock(&memcg->thresholds_lock); | |
4130 | if (type == _MEM) | |
2c488db2 | 4131 | thresholds = &memcg->thresholds; |
2e72b634 | 4132 | else if (type == _MEMSWAP) |
2c488db2 | 4133 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
4134 | else |
4135 | BUG(); | |
4136 | ||
4137 | /* | |
4138 | * Something went wrong if we trying to unregister a threshold | |
4139 | * if we don't have thresholds | |
4140 | */ | |
4141 | BUG_ON(!thresholds); | |
4142 | ||
4143 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | |
4144 | ||
4145 | /* Check if a threshold crossed before removing */ | |
4146 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
4147 | ||
4148 | /* Calculate new number of threshold */ | |
2c488db2 KS |
4149 | size = 0; |
4150 | for (i = 0; i < thresholds->primary->size; i++) { | |
4151 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
2e72b634 KS |
4152 | size++; |
4153 | } | |
4154 | ||
2c488db2 | 4155 | new = thresholds->spare; |
907860ed | 4156 | |
2e72b634 KS |
4157 | /* Set thresholds array to NULL if we don't have thresholds */ |
4158 | if (!size) { | |
2c488db2 KS |
4159 | kfree(new); |
4160 | new = NULL; | |
907860ed | 4161 | goto swap_buffers; |
2e72b634 KS |
4162 | } |
4163 | ||
2c488db2 | 4164 | new->size = size; |
2e72b634 KS |
4165 | |
4166 | /* Copy thresholds and find current threshold */ | |
2c488db2 KS |
4167 | new->current_threshold = -1; |
4168 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
4169 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
2e72b634 KS |
4170 | continue; |
4171 | ||
2c488db2 KS |
4172 | new->entries[j] = thresholds->primary->entries[i]; |
4173 | if (new->entries[j].threshold < usage) { | |
2e72b634 | 4174 | /* |
2c488db2 | 4175 | * new->current_threshold will not be used |
2e72b634 KS |
4176 | * until rcu_assign_pointer(), so it's safe to increment |
4177 | * it here. | |
4178 | */ | |
2c488db2 | 4179 | ++new->current_threshold; |
2e72b634 KS |
4180 | } |
4181 | j++; | |
4182 | } | |
4183 | ||
907860ed | 4184 | swap_buffers: |
2c488db2 KS |
4185 | /* Swap primary and spare array */ |
4186 | thresholds->spare = thresholds->primary; | |
4187 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 4188 | |
907860ed | 4189 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
4190 | synchronize_rcu(); |
4191 | ||
2e72b634 | 4192 | mutex_unlock(&memcg->thresholds_lock); |
2e72b634 | 4193 | } |
c1e862c1 | 4194 | |
9490ff27 KH |
4195 | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, |
4196 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | |
4197 | { | |
4198 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
4199 | struct mem_cgroup_eventfd_list *event; | |
4200 | int type = MEMFILE_TYPE(cft->private); | |
4201 | ||
4202 | BUG_ON(type != _OOM_TYPE); | |
4203 | event = kmalloc(sizeof(*event), GFP_KERNEL); | |
4204 | if (!event) | |
4205 | return -ENOMEM; | |
4206 | ||
4207 | mutex_lock(&memcg_oom_mutex); | |
4208 | ||
4209 | event->eventfd = eventfd; | |
4210 | list_add(&event->list, &memcg->oom_notify); | |
4211 | ||
4212 | /* already in OOM ? */ | |
4213 | if (atomic_read(&memcg->oom_lock)) | |
4214 | eventfd_signal(eventfd, 1); | |
4215 | mutex_unlock(&memcg_oom_mutex); | |
4216 | ||
4217 | return 0; | |
4218 | } | |
4219 | ||
907860ed | 4220 | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, |
9490ff27 KH |
4221 | struct cftype *cft, struct eventfd_ctx *eventfd) |
4222 | { | |
4223 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | |
4224 | struct mem_cgroup_eventfd_list *ev, *tmp; | |
4225 | int type = MEMFILE_TYPE(cft->private); | |
4226 | ||
4227 | BUG_ON(type != _OOM_TYPE); | |
4228 | ||
4229 | mutex_lock(&memcg_oom_mutex); | |
4230 | ||
4231 | list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) { | |
4232 | if (ev->eventfd == eventfd) { | |
4233 | list_del(&ev->list); | |
4234 | kfree(ev); | |
4235 | } | |
4236 | } | |
4237 | ||
4238 | mutex_unlock(&memcg_oom_mutex); | |
9490ff27 KH |
4239 | } |
4240 | ||
3c11ecf4 KH |
4241 | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, |
4242 | struct cftype *cft, struct cgroup_map_cb *cb) | |
4243 | { | |
4244 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | |
4245 | ||
4246 | cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable); | |
4247 | ||
4248 | if (atomic_read(&mem->oom_lock)) | |
4249 | cb->fill(cb, "under_oom", 1); | |
4250 | else | |
4251 | cb->fill(cb, "under_oom", 0); | |
4252 | return 0; | |
4253 | } | |
4254 | ||
3c11ecf4 KH |
4255 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
4256 | struct cftype *cft, u64 val) | |
4257 | { | |
4258 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | |
4259 | struct mem_cgroup *parent; | |
4260 | ||
4261 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
4262 | if (!cgrp->parent || !((val == 0) || (val == 1))) | |
4263 | return -EINVAL; | |
4264 | ||
4265 | parent = mem_cgroup_from_cont(cgrp->parent); | |
4266 | ||
4267 | cgroup_lock(); | |
4268 | /* oom-kill-disable is a flag for subhierarchy. */ | |
4269 | if ((parent->use_hierarchy) || | |
4270 | (mem->use_hierarchy && !list_empty(&cgrp->children))) { | |
4271 | cgroup_unlock(); | |
4272 | return -EINVAL; | |
4273 | } | |
4274 | mem->oom_kill_disable = val; | |
4d845ebf KH |
4275 | if (!val) |
4276 | memcg_oom_recover(mem); | |
3c11ecf4 KH |
4277 | cgroup_unlock(); |
4278 | return 0; | |
4279 | } | |
4280 | ||
8cdea7c0 BS |
4281 | static struct cftype mem_cgroup_files[] = { |
4282 | { | |
0eea1030 | 4283 | .name = "usage_in_bytes", |
8c7c6e34 | 4284 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
2c3daa72 | 4285 | .read_u64 = mem_cgroup_read, |
9490ff27 KH |
4286 | .register_event = mem_cgroup_usage_register_event, |
4287 | .unregister_event = mem_cgroup_usage_unregister_event, | |
8cdea7c0 | 4288 | }, |
c84872e1 PE |
4289 | { |
4290 | .name = "max_usage_in_bytes", | |
8c7c6e34 | 4291 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
29f2a4da | 4292 | .trigger = mem_cgroup_reset, |
c84872e1 PE |
4293 | .read_u64 = mem_cgroup_read, |
4294 | }, | |
8cdea7c0 | 4295 | { |
0eea1030 | 4296 | .name = "limit_in_bytes", |
8c7c6e34 | 4297 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
856c13aa | 4298 | .write_string = mem_cgroup_write, |
2c3daa72 | 4299 | .read_u64 = mem_cgroup_read, |
8cdea7c0 | 4300 | }, |
296c81d8 BS |
4301 | { |
4302 | .name = "soft_limit_in_bytes", | |
4303 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
4304 | .write_string = mem_cgroup_write, | |
4305 | .read_u64 = mem_cgroup_read, | |
4306 | }, | |
8cdea7c0 BS |
4307 | { |
4308 | .name = "failcnt", | |
8c7c6e34 | 4309 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
29f2a4da | 4310 | .trigger = mem_cgroup_reset, |
2c3daa72 | 4311 | .read_u64 = mem_cgroup_read, |
8cdea7c0 | 4312 | }, |
d2ceb9b7 KH |
4313 | { |
4314 | .name = "stat", | |
c64745cf | 4315 | .read_map = mem_control_stat_show, |
d2ceb9b7 | 4316 | }, |
c1e862c1 KH |
4317 | { |
4318 | .name = "force_empty", | |
4319 | .trigger = mem_cgroup_force_empty_write, | |
4320 | }, | |
18f59ea7 BS |
4321 | { |
4322 | .name = "use_hierarchy", | |
4323 | .write_u64 = mem_cgroup_hierarchy_write, | |
4324 | .read_u64 = mem_cgroup_hierarchy_read, | |
4325 | }, | |
a7885eb8 KM |
4326 | { |
4327 | .name = "swappiness", | |
4328 | .read_u64 = mem_cgroup_swappiness_read, | |
4329 | .write_u64 = mem_cgroup_swappiness_write, | |
4330 | }, | |
7dc74be0 DN |
4331 | { |
4332 | .name = "move_charge_at_immigrate", | |
4333 | .read_u64 = mem_cgroup_move_charge_read, | |
4334 | .write_u64 = mem_cgroup_move_charge_write, | |
4335 | }, | |
9490ff27 KH |
4336 | { |
4337 | .name = "oom_control", | |
3c11ecf4 KH |
4338 | .read_map = mem_cgroup_oom_control_read, |
4339 | .write_u64 = mem_cgroup_oom_control_write, | |
9490ff27 KH |
4340 | .register_event = mem_cgroup_oom_register_event, |
4341 | .unregister_event = mem_cgroup_oom_unregister_event, | |
4342 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | |
4343 | }, | |
8cdea7c0 BS |
4344 | }; |
4345 | ||
8c7c6e34 KH |
4346 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
4347 | static struct cftype memsw_cgroup_files[] = { | |
4348 | { | |
4349 | .name = "memsw.usage_in_bytes", | |
4350 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
4351 | .read_u64 = mem_cgroup_read, | |
9490ff27 KH |
4352 | .register_event = mem_cgroup_usage_register_event, |
4353 | .unregister_event = mem_cgroup_usage_unregister_event, | |
8c7c6e34 KH |
4354 | }, |
4355 | { | |
4356 | .name = "memsw.max_usage_in_bytes", | |
4357 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
4358 | .trigger = mem_cgroup_reset, | |
4359 | .read_u64 = mem_cgroup_read, | |
4360 | }, | |
4361 | { | |
4362 | .name = "memsw.limit_in_bytes", | |
4363 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
4364 | .write_string = mem_cgroup_write, | |
4365 | .read_u64 = mem_cgroup_read, | |
4366 | }, | |
4367 | { | |
4368 | .name = "memsw.failcnt", | |
4369 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
4370 | .trigger = mem_cgroup_reset, | |
4371 | .read_u64 = mem_cgroup_read, | |
4372 | }, | |
4373 | }; | |
4374 | ||
4375 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | |
4376 | { | |
4377 | if (!do_swap_account) | |
4378 | return 0; | |
4379 | return cgroup_add_files(cont, ss, memsw_cgroup_files, | |
4380 | ARRAY_SIZE(memsw_cgroup_files)); | |
4381 | }; | |
4382 | #else | |
4383 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | |
4384 | { | |
4385 | return 0; | |
4386 | } | |
4387 | #endif | |
4388 | ||
6d12e2d8 KH |
4389 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
4390 | { | |
4391 | struct mem_cgroup_per_node *pn; | |
1ecaab2b | 4392 | struct mem_cgroup_per_zone *mz; |
b69408e8 | 4393 | enum lru_list l; |
41e3355d | 4394 | int zone, tmp = node; |
1ecaab2b KH |
4395 | /* |
4396 | * This routine is called against possible nodes. | |
4397 | * But it's BUG to call kmalloc() against offline node. | |
4398 | * | |
4399 | * TODO: this routine can waste much memory for nodes which will | |
4400 | * never be onlined. It's better to use memory hotplug callback | |
4401 | * function. | |
4402 | */ | |
41e3355d KH |
4403 | if (!node_state(node, N_NORMAL_MEMORY)) |
4404 | tmp = -1; | |
17295c88 | 4405 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
6d12e2d8 KH |
4406 | if (!pn) |
4407 | return 1; | |
1ecaab2b | 4408 | |
6d12e2d8 | 4409 | mem->info.nodeinfo[node] = pn; |
1ecaab2b KH |
4410 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
4411 | mz = &pn->zoneinfo[zone]; | |
b69408e8 CL |
4412 | for_each_lru(l) |
4413 | INIT_LIST_HEAD(&mz->lists[l]); | |
f64c3f54 | 4414 | mz->usage_in_excess = 0; |
4e416953 BS |
4415 | mz->on_tree = false; |
4416 | mz->mem = mem; | |
1ecaab2b | 4417 | } |
6d12e2d8 KH |
4418 | return 0; |
4419 | } | |
4420 | ||
1ecaab2b KH |
4421 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
4422 | { | |
4423 | kfree(mem->info.nodeinfo[node]); | |
4424 | } | |
4425 | ||
33327948 KH |
4426 | static struct mem_cgroup *mem_cgroup_alloc(void) |
4427 | { | |
4428 | struct mem_cgroup *mem; | |
c62b1a3b | 4429 | int size = sizeof(struct mem_cgroup); |
33327948 | 4430 | |
c62b1a3b | 4431 | /* Can be very big if MAX_NUMNODES is very big */ |
c8dad2bb | 4432 | if (size < PAGE_SIZE) |
17295c88 | 4433 | mem = kzalloc(size, GFP_KERNEL); |
33327948 | 4434 | else |
17295c88 | 4435 | mem = vzalloc(size); |
33327948 | 4436 | |
e7bbcdf3 DC |
4437 | if (!mem) |
4438 | return NULL; | |
4439 | ||
c62b1a3b | 4440 | mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
d2e61b8d DC |
4441 | if (!mem->stat) |
4442 | goto out_free; | |
711d3d2c | 4443 | spin_lock_init(&mem->pcp_counter_lock); |
33327948 | 4444 | return mem; |
d2e61b8d DC |
4445 | |
4446 | out_free: | |
4447 | if (size < PAGE_SIZE) | |
4448 | kfree(mem); | |
4449 | else | |
4450 | vfree(mem); | |
4451 | return NULL; | |
33327948 KH |
4452 | } |
4453 | ||
8c7c6e34 KH |
4454 | /* |
4455 | * At destroying mem_cgroup, references from swap_cgroup can remain. | |
4456 | * (scanning all at force_empty is too costly...) | |
4457 | * | |
4458 | * Instead of clearing all references at force_empty, we remember | |
4459 | * the number of reference from swap_cgroup and free mem_cgroup when | |
4460 | * it goes down to 0. | |
4461 | * | |
8c7c6e34 KH |
4462 | * Removal of cgroup itself succeeds regardless of refs from swap. |
4463 | */ | |
4464 | ||
a7ba0eef | 4465 | static void __mem_cgroup_free(struct mem_cgroup *mem) |
33327948 | 4466 | { |
08e552c6 KH |
4467 | int node; |
4468 | ||
f64c3f54 | 4469 | mem_cgroup_remove_from_trees(mem); |
04046e1a KH |
4470 | free_css_id(&mem_cgroup_subsys, &mem->css); |
4471 | ||
08e552c6 KH |
4472 | for_each_node_state(node, N_POSSIBLE) |
4473 | free_mem_cgroup_per_zone_info(mem, node); | |
4474 | ||
c62b1a3b KH |
4475 | free_percpu(mem->stat); |
4476 | if (sizeof(struct mem_cgroup) < PAGE_SIZE) | |
33327948 KH |
4477 | kfree(mem); |
4478 | else | |
4479 | vfree(mem); | |
4480 | } | |
4481 | ||
8c7c6e34 KH |
4482 | static void mem_cgroup_get(struct mem_cgroup *mem) |
4483 | { | |
4484 | atomic_inc(&mem->refcnt); | |
4485 | } | |
4486 | ||
483c30b5 | 4487 | static void __mem_cgroup_put(struct mem_cgroup *mem, int count) |
8c7c6e34 | 4488 | { |
483c30b5 | 4489 | if (atomic_sub_and_test(count, &mem->refcnt)) { |
7bcc1bb1 | 4490 | struct mem_cgroup *parent = parent_mem_cgroup(mem); |
a7ba0eef | 4491 | __mem_cgroup_free(mem); |
7bcc1bb1 DN |
4492 | if (parent) |
4493 | mem_cgroup_put(parent); | |
4494 | } | |
8c7c6e34 KH |
4495 | } |
4496 | ||
483c30b5 DN |
4497 | static void mem_cgroup_put(struct mem_cgroup *mem) |
4498 | { | |
4499 | __mem_cgroup_put(mem, 1); | |
4500 | } | |
4501 | ||
7bcc1bb1 DN |
4502 | /* |
4503 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | |
4504 | */ | |
4505 | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) | |
4506 | { | |
4507 | if (!mem->res.parent) | |
4508 | return NULL; | |
4509 | return mem_cgroup_from_res_counter(mem->res.parent, res); | |
4510 | } | |
33327948 | 4511 | |
c077719b KH |
4512 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
4513 | static void __init enable_swap_cgroup(void) | |
4514 | { | |
f8d66542 | 4515 | if (!mem_cgroup_disabled() && really_do_swap_account) |
c077719b KH |
4516 | do_swap_account = 1; |
4517 | } | |
4518 | #else | |
4519 | static void __init enable_swap_cgroup(void) | |
4520 | { | |
4521 | } | |
4522 | #endif | |
4523 | ||
f64c3f54 BS |
4524 | static int mem_cgroup_soft_limit_tree_init(void) |
4525 | { | |
4526 | struct mem_cgroup_tree_per_node *rtpn; | |
4527 | struct mem_cgroup_tree_per_zone *rtpz; | |
4528 | int tmp, node, zone; | |
4529 | ||
4530 | for_each_node_state(node, N_POSSIBLE) { | |
4531 | tmp = node; | |
4532 | if (!node_state(node, N_NORMAL_MEMORY)) | |
4533 | tmp = -1; | |
4534 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | |
4535 | if (!rtpn) | |
4536 | return 1; | |
4537 | ||
4538 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
4539 | ||
4540 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
4541 | rtpz = &rtpn->rb_tree_per_zone[zone]; | |
4542 | rtpz->rb_root = RB_ROOT; | |
4543 | spin_lock_init(&rtpz->lock); | |
4544 | } | |
4545 | } | |
4546 | return 0; | |
4547 | } | |
4548 | ||
0eb253e2 | 4549 | static struct cgroup_subsys_state * __ref |
8cdea7c0 BS |
4550 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) |
4551 | { | |
28dbc4b6 | 4552 | struct mem_cgroup *mem, *parent; |
04046e1a | 4553 | long error = -ENOMEM; |
6d12e2d8 | 4554 | int node; |
8cdea7c0 | 4555 | |
c8dad2bb JB |
4556 | mem = mem_cgroup_alloc(); |
4557 | if (!mem) | |
04046e1a | 4558 | return ERR_PTR(error); |
78fb7466 | 4559 | |
6d12e2d8 KH |
4560 | for_each_node_state(node, N_POSSIBLE) |
4561 | if (alloc_mem_cgroup_per_zone_info(mem, node)) | |
4562 | goto free_out; | |
f64c3f54 | 4563 | |
c077719b | 4564 | /* root ? */ |
28dbc4b6 | 4565 | if (cont->parent == NULL) { |
cdec2e42 | 4566 | int cpu; |
c077719b | 4567 | enable_swap_cgroup(); |
28dbc4b6 | 4568 | parent = NULL; |
4b3bde4c | 4569 | root_mem_cgroup = mem; |
f64c3f54 BS |
4570 | if (mem_cgroup_soft_limit_tree_init()) |
4571 | goto free_out; | |
cdec2e42 KH |
4572 | for_each_possible_cpu(cpu) { |
4573 | struct memcg_stock_pcp *stock = | |
4574 | &per_cpu(memcg_stock, cpu); | |
4575 | INIT_WORK(&stock->work, drain_local_stock); | |
4576 | } | |
711d3d2c | 4577 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); |
18f59ea7 | 4578 | } else { |
28dbc4b6 | 4579 | parent = mem_cgroup_from_cont(cont->parent); |
18f59ea7 | 4580 | mem->use_hierarchy = parent->use_hierarchy; |
3c11ecf4 | 4581 | mem->oom_kill_disable = parent->oom_kill_disable; |
18f59ea7 | 4582 | } |
28dbc4b6 | 4583 | |
18f59ea7 BS |
4584 | if (parent && parent->use_hierarchy) { |
4585 | res_counter_init(&mem->res, &parent->res); | |
4586 | res_counter_init(&mem->memsw, &parent->memsw); | |
7bcc1bb1 DN |
4587 | /* |
4588 | * We increment refcnt of the parent to ensure that we can | |
4589 | * safely access it on res_counter_charge/uncharge. | |
4590 | * This refcnt will be decremented when freeing this | |
4591 | * mem_cgroup(see mem_cgroup_put). | |
4592 | */ | |
4593 | mem_cgroup_get(parent); | |
18f59ea7 BS |
4594 | } else { |
4595 | res_counter_init(&mem->res, NULL); | |
4596 | res_counter_init(&mem->memsw, NULL); | |
4597 | } | |
04046e1a | 4598 | mem->last_scanned_child = 0; |
9490ff27 | 4599 | INIT_LIST_HEAD(&mem->oom_notify); |
6d61ef40 | 4600 | |
a7885eb8 KM |
4601 | if (parent) |
4602 | mem->swappiness = get_swappiness(parent); | |
a7ba0eef | 4603 | atomic_set(&mem->refcnt, 1); |
7dc74be0 | 4604 | mem->move_charge_at_immigrate = 0; |
2e72b634 | 4605 | mutex_init(&mem->thresholds_lock); |
8cdea7c0 | 4606 | return &mem->css; |
6d12e2d8 | 4607 | free_out: |
a7ba0eef | 4608 | __mem_cgroup_free(mem); |
4b3bde4c | 4609 | root_mem_cgroup = NULL; |
04046e1a | 4610 | return ERR_PTR(error); |
8cdea7c0 BS |
4611 | } |
4612 | ||
ec64f515 | 4613 | static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, |
df878fb0 KH |
4614 | struct cgroup *cont) |
4615 | { | |
4616 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | |
ec64f515 KH |
4617 | |
4618 | return mem_cgroup_force_empty(mem, false); | |
df878fb0 KH |
4619 | } |
4620 | ||
8cdea7c0 BS |
4621 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
4622 | struct cgroup *cont) | |
4623 | { | |
c268e994 | 4624 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
c268e994 | 4625 | |
c268e994 | 4626 | mem_cgroup_put(mem); |
8cdea7c0 BS |
4627 | } |
4628 | ||
4629 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | |
4630 | struct cgroup *cont) | |
4631 | { | |
8c7c6e34 KH |
4632 | int ret; |
4633 | ||
4634 | ret = cgroup_add_files(cont, ss, mem_cgroup_files, | |
4635 | ARRAY_SIZE(mem_cgroup_files)); | |
4636 | ||
4637 | if (!ret) | |
4638 | ret = register_memsw_files(cont, ss); | |
4639 | return ret; | |
8cdea7c0 BS |
4640 | } |
4641 | ||
02491447 | 4642 | #ifdef CONFIG_MMU |
7dc74be0 | 4643 | /* Handlers for move charge at task migration. */ |
854ffa8d DN |
4644 | #define PRECHARGE_COUNT_AT_ONCE 256 |
4645 | static int mem_cgroup_do_precharge(unsigned long count) | |
7dc74be0 | 4646 | { |
854ffa8d DN |
4647 | int ret = 0; |
4648 | int batch_count = PRECHARGE_COUNT_AT_ONCE; | |
4ffef5fe DN |
4649 | struct mem_cgroup *mem = mc.to; |
4650 | ||
854ffa8d DN |
4651 | if (mem_cgroup_is_root(mem)) { |
4652 | mc.precharge += count; | |
4653 | /* we don't need css_get for root */ | |
4654 | return ret; | |
4655 | } | |
4656 | /* try to charge at once */ | |
4657 | if (count > 1) { | |
4658 | struct res_counter *dummy; | |
4659 | /* | |
4660 | * "mem" cannot be under rmdir() because we've already checked | |
4661 | * by cgroup_lock_live_cgroup() that it is not removed and we | |
4662 | * are still under the same cgroup_mutex. So we can postpone | |
4663 | * css_get(). | |
4664 | */ | |
4665 | if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy)) | |
4666 | goto one_by_one; | |
4667 | if (do_swap_account && res_counter_charge(&mem->memsw, | |
4668 | PAGE_SIZE * count, &dummy)) { | |
4669 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); | |
4670 | goto one_by_one; | |
4671 | } | |
4672 | mc.precharge += count; | |
854ffa8d DN |
4673 | return ret; |
4674 | } | |
4675 | one_by_one: | |
4676 | /* fall back to one by one charge */ | |
4677 | while (count--) { | |
4678 | if (signal_pending(current)) { | |
4679 | ret = -EINTR; | |
4680 | break; | |
4681 | } | |
4682 | if (!batch_count--) { | |
4683 | batch_count = PRECHARGE_COUNT_AT_ONCE; | |
4684 | cond_resched(); | |
4685 | } | |
7ec99d62 | 4686 | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false); |
854ffa8d DN |
4687 | if (ret || !mem) |
4688 | /* mem_cgroup_clear_mc() will do uncharge later */ | |
4689 | return -ENOMEM; | |
4690 | mc.precharge++; | |
4691 | } | |
4ffef5fe DN |
4692 | return ret; |
4693 | } | |
4694 | ||
4695 | /** | |
4696 | * is_target_pte_for_mc - check a pte whether it is valid for move charge | |
4697 | * @vma: the vma the pte to be checked belongs | |
4698 | * @addr: the address corresponding to the pte to be checked | |
4699 | * @ptent: the pte to be checked | |
02491447 | 4700 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
4ffef5fe DN |
4701 | * |
4702 | * Returns | |
4703 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
4704 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
4705 | * move charge. if @target is not NULL, the page is stored in target->page | |
4706 | * with extra refcnt got(Callers should handle it). | |
02491447 DN |
4707 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a |
4708 | * target for charge migration. if @target is not NULL, the entry is stored | |
4709 | * in target->ent. | |
4ffef5fe DN |
4710 | * |
4711 | * Called with pte lock held. | |
4712 | */ | |
4ffef5fe DN |
4713 | union mc_target { |
4714 | struct page *page; | |
02491447 | 4715 | swp_entry_t ent; |
4ffef5fe DN |
4716 | }; |
4717 | ||
4ffef5fe DN |
4718 | enum mc_target_type { |
4719 | MC_TARGET_NONE, /* not used */ | |
4720 | MC_TARGET_PAGE, | |
02491447 | 4721 | MC_TARGET_SWAP, |
4ffef5fe DN |
4722 | }; |
4723 | ||
90254a65 DN |
4724 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
4725 | unsigned long addr, pte_t ptent) | |
4ffef5fe | 4726 | { |
90254a65 | 4727 | struct page *page = vm_normal_page(vma, addr, ptent); |
4ffef5fe | 4728 | |
90254a65 DN |
4729 | if (!page || !page_mapped(page)) |
4730 | return NULL; | |
4731 | if (PageAnon(page)) { | |
4732 | /* we don't move shared anon */ | |
4733 | if (!move_anon() || page_mapcount(page) > 2) | |
4734 | return NULL; | |
87946a72 DN |
4735 | } else if (!move_file()) |
4736 | /* we ignore mapcount for file pages */ | |
90254a65 DN |
4737 | return NULL; |
4738 | if (!get_page_unless_zero(page)) | |
4739 | return NULL; | |
4740 | ||
4741 | return page; | |
4742 | } | |
4743 | ||
4744 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
4745 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4746 | { | |
4747 | int usage_count; | |
4748 | struct page *page = NULL; | |
4749 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
4750 | ||
4751 | if (!move_anon() || non_swap_entry(ent)) | |
4752 | return NULL; | |
4753 | usage_count = mem_cgroup_count_swap_user(ent, &page); | |
4754 | if (usage_count > 1) { /* we don't move shared anon */ | |
02491447 DN |
4755 | if (page) |
4756 | put_page(page); | |
90254a65 | 4757 | return NULL; |
02491447 | 4758 | } |
90254a65 DN |
4759 | if (do_swap_account) |
4760 | entry->val = ent.val; | |
4761 | ||
4762 | return page; | |
4763 | } | |
4764 | ||
87946a72 DN |
4765 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
4766 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4767 | { | |
4768 | struct page *page = NULL; | |
4769 | struct inode *inode; | |
4770 | struct address_space *mapping; | |
4771 | pgoff_t pgoff; | |
4772 | ||
4773 | if (!vma->vm_file) /* anonymous vma */ | |
4774 | return NULL; | |
4775 | if (!move_file()) | |
4776 | return NULL; | |
4777 | ||
4778 | inode = vma->vm_file->f_path.dentry->d_inode; | |
4779 | mapping = vma->vm_file->f_mapping; | |
4780 | if (pte_none(ptent)) | |
4781 | pgoff = linear_page_index(vma, addr); | |
4782 | else /* pte_file(ptent) is true */ | |
4783 | pgoff = pte_to_pgoff(ptent); | |
4784 | ||
4785 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
4786 | if (!mapping_cap_swap_backed(mapping)) { /* normal file */ | |
4787 | page = find_get_page(mapping, pgoff); | |
4788 | } else { /* shmem/tmpfs file. we should take account of swap too. */ | |
4789 | swp_entry_t ent; | |
4790 | mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent); | |
4791 | if (do_swap_account) | |
4792 | entry->val = ent.val; | |
4793 | } | |
4794 | ||
4795 | return page; | |
4796 | } | |
4797 | ||
90254a65 DN |
4798 | static int is_target_pte_for_mc(struct vm_area_struct *vma, |
4799 | unsigned long addr, pte_t ptent, union mc_target *target) | |
4800 | { | |
4801 | struct page *page = NULL; | |
4802 | struct page_cgroup *pc; | |
4803 | int ret = 0; | |
4804 | swp_entry_t ent = { .val = 0 }; | |
4805 | ||
4806 | if (pte_present(ptent)) | |
4807 | page = mc_handle_present_pte(vma, addr, ptent); | |
4808 | else if (is_swap_pte(ptent)) | |
4809 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | |
87946a72 DN |
4810 | else if (pte_none(ptent) || pte_file(ptent)) |
4811 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | |
90254a65 DN |
4812 | |
4813 | if (!page && !ent.val) | |
4814 | return 0; | |
02491447 DN |
4815 | if (page) { |
4816 | pc = lookup_page_cgroup(page); | |
4817 | /* | |
4818 | * Do only loose check w/o page_cgroup lock. | |
4819 | * mem_cgroup_move_account() checks the pc is valid or not under | |
4820 | * the lock. | |
4821 | */ | |
4822 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | |
4823 | ret = MC_TARGET_PAGE; | |
4824 | if (target) | |
4825 | target->page = page; | |
4826 | } | |
4827 | if (!ret || !target) | |
4828 | put_page(page); | |
4829 | } | |
90254a65 DN |
4830 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
4831 | if (ent.val && !ret && | |
7f0f1546 KH |
4832 | css_id(&mc.from->css) == lookup_swap_cgroup(ent)) { |
4833 | ret = MC_TARGET_SWAP; | |
4834 | if (target) | |
4835 | target->ent = ent; | |
4ffef5fe | 4836 | } |
4ffef5fe DN |
4837 | return ret; |
4838 | } | |
4839 | ||
4840 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | |
4841 | unsigned long addr, unsigned long end, | |
4842 | struct mm_walk *walk) | |
4843 | { | |
4844 | struct vm_area_struct *vma = walk->private; | |
4845 | pte_t *pte; | |
4846 | spinlock_t *ptl; | |
4847 | ||
03319327 DH |
4848 | split_huge_page_pmd(walk->mm, pmd); |
4849 | ||
4ffef5fe DN |
4850 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
4851 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
4852 | if (is_target_pte_for_mc(vma, addr, *pte, NULL)) | |
4853 | mc.precharge++; /* increment precharge temporarily */ | |
4854 | pte_unmap_unlock(pte - 1, ptl); | |
4855 | cond_resched(); | |
4856 | ||
7dc74be0 DN |
4857 | return 0; |
4858 | } | |
4859 | ||
4ffef5fe DN |
4860 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
4861 | { | |
4862 | unsigned long precharge; | |
4863 | struct vm_area_struct *vma; | |
4864 | ||
dfe076b0 | 4865 | down_read(&mm->mmap_sem); |
4ffef5fe DN |
4866 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
4867 | struct mm_walk mem_cgroup_count_precharge_walk = { | |
4868 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
4869 | .mm = mm, | |
4870 | .private = vma, | |
4871 | }; | |
4872 | if (is_vm_hugetlb_page(vma)) | |
4873 | continue; | |
4ffef5fe DN |
4874 | walk_page_range(vma->vm_start, vma->vm_end, |
4875 | &mem_cgroup_count_precharge_walk); | |
4876 | } | |
dfe076b0 | 4877 | up_read(&mm->mmap_sem); |
4ffef5fe DN |
4878 | |
4879 | precharge = mc.precharge; | |
4880 | mc.precharge = 0; | |
4881 | ||
4882 | return precharge; | |
4883 | } | |
4884 | ||
4ffef5fe DN |
4885 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
4886 | { | |
dfe076b0 DN |
4887 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
4888 | ||
4889 | VM_BUG_ON(mc.moving_task); | |
4890 | mc.moving_task = current; | |
4891 | return mem_cgroup_do_precharge(precharge); | |
4ffef5fe DN |
4892 | } |
4893 | ||
dfe076b0 DN |
4894 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
4895 | static void __mem_cgroup_clear_mc(void) | |
4ffef5fe | 4896 | { |
2bd9bb20 KH |
4897 | struct mem_cgroup *from = mc.from; |
4898 | struct mem_cgroup *to = mc.to; | |
4899 | ||
4ffef5fe | 4900 | /* we must uncharge all the leftover precharges from mc.to */ |
854ffa8d DN |
4901 | if (mc.precharge) { |
4902 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | |
4903 | mc.precharge = 0; | |
4904 | } | |
4905 | /* | |
4906 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
4907 | * we must uncharge here. | |
4908 | */ | |
4909 | if (mc.moved_charge) { | |
4910 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | |
4911 | mc.moved_charge = 0; | |
4ffef5fe | 4912 | } |
483c30b5 DN |
4913 | /* we must fixup refcnts and charges */ |
4914 | if (mc.moved_swap) { | |
483c30b5 DN |
4915 | /* uncharge swap account from the old cgroup */ |
4916 | if (!mem_cgroup_is_root(mc.from)) | |
4917 | res_counter_uncharge(&mc.from->memsw, | |
4918 | PAGE_SIZE * mc.moved_swap); | |
4919 | __mem_cgroup_put(mc.from, mc.moved_swap); | |
4920 | ||
4921 | if (!mem_cgroup_is_root(mc.to)) { | |
4922 | /* | |
4923 | * we charged both to->res and to->memsw, so we should | |
4924 | * uncharge to->res. | |
4925 | */ | |
4926 | res_counter_uncharge(&mc.to->res, | |
4927 | PAGE_SIZE * mc.moved_swap); | |
483c30b5 DN |
4928 | } |
4929 | /* we've already done mem_cgroup_get(mc.to) */ | |
483c30b5 DN |
4930 | mc.moved_swap = 0; |
4931 | } | |
dfe076b0 DN |
4932 | memcg_oom_recover(from); |
4933 | memcg_oom_recover(to); | |
4934 | wake_up_all(&mc.waitq); | |
4935 | } | |
4936 | ||
4937 | static void mem_cgroup_clear_mc(void) | |
4938 | { | |
4939 | struct mem_cgroup *from = mc.from; | |
4940 | ||
4941 | /* | |
4942 | * we must clear moving_task before waking up waiters at the end of | |
4943 | * task migration. | |
4944 | */ | |
4945 | mc.moving_task = NULL; | |
4946 | __mem_cgroup_clear_mc(); | |
2bd9bb20 | 4947 | spin_lock(&mc.lock); |
4ffef5fe DN |
4948 | mc.from = NULL; |
4949 | mc.to = NULL; | |
2bd9bb20 | 4950 | spin_unlock(&mc.lock); |
32047e2a | 4951 | mem_cgroup_end_move(from); |
4ffef5fe DN |
4952 | } |
4953 | ||
7dc74be0 DN |
4954 | static int mem_cgroup_can_attach(struct cgroup_subsys *ss, |
4955 | struct cgroup *cgroup, | |
4956 | struct task_struct *p, | |
4957 | bool threadgroup) | |
4958 | { | |
4959 | int ret = 0; | |
4960 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup); | |
4961 | ||
4962 | if (mem->move_charge_at_immigrate) { | |
4963 | struct mm_struct *mm; | |
4964 | struct mem_cgroup *from = mem_cgroup_from_task(p); | |
4965 | ||
4966 | VM_BUG_ON(from == mem); | |
4967 | ||
4968 | mm = get_task_mm(p); | |
4969 | if (!mm) | |
4970 | return 0; | |
7dc74be0 | 4971 | /* We move charges only when we move a owner of the mm */ |
4ffef5fe DN |
4972 | if (mm->owner == p) { |
4973 | VM_BUG_ON(mc.from); | |
4974 | VM_BUG_ON(mc.to); | |
4975 | VM_BUG_ON(mc.precharge); | |
854ffa8d | 4976 | VM_BUG_ON(mc.moved_charge); |
483c30b5 | 4977 | VM_BUG_ON(mc.moved_swap); |
32047e2a | 4978 | mem_cgroup_start_move(from); |
2bd9bb20 | 4979 | spin_lock(&mc.lock); |
4ffef5fe DN |
4980 | mc.from = from; |
4981 | mc.to = mem; | |
2bd9bb20 | 4982 | spin_unlock(&mc.lock); |
dfe076b0 | 4983 | /* We set mc.moving_task later */ |
4ffef5fe DN |
4984 | |
4985 | ret = mem_cgroup_precharge_mc(mm); | |
4986 | if (ret) | |
4987 | mem_cgroup_clear_mc(); | |
dfe076b0 DN |
4988 | } |
4989 | mmput(mm); | |
7dc74be0 DN |
4990 | } |
4991 | return ret; | |
4992 | } | |
4993 | ||
4994 | static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, | |
4995 | struct cgroup *cgroup, | |
4996 | struct task_struct *p, | |
4997 | bool threadgroup) | |
4998 | { | |
4ffef5fe | 4999 | mem_cgroup_clear_mc(); |
7dc74be0 DN |
5000 | } |
5001 | ||
4ffef5fe DN |
5002 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
5003 | unsigned long addr, unsigned long end, | |
5004 | struct mm_walk *walk) | |
7dc74be0 | 5005 | { |
4ffef5fe DN |
5006 | int ret = 0; |
5007 | struct vm_area_struct *vma = walk->private; | |
5008 | pte_t *pte; | |
5009 | spinlock_t *ptl; | |
5010 | ||
03319327 | 5011 | split_huge_page_pmd(walk->mm, pmd); |
4ffef5fe DN |
5012 | retry: |
5013 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
5014 | for (; addr != end; addr += PAGE_SIZE) { | |
5015 | pte_t ptent = *(pte++); | |
5016 | union mc_target target; | |
5017 | int type; | |
5018 | struct page *page; | |
5019 | struct page_cgroup *pc; | |
02491447 | 5020 | swp_entry_t ent; |
4ffef5fe DN |
5021 | |
5022 | if (!mc.precharge) | |
5023 | break; | |
5024 | ||
5025 | type = is_target_pte_for_mc(vma, addr, ptent, &target); | |
5026 | switch (type) { | |
5027 | case MC_TARGET_PAGE: | |
5028 | page = target.page; | |
5029 | if (isolate_lru_page(page)) | |
5030 | goto put; | |
5031 | pc = lookup_page_cgroup(page); | |
7ec99d62 JW |
5032 | if (!mem_cgroup_move_account(page, 1, pc, |
5033 | mc.from, mc.to, false)) { | |
4ffef5fe | 5034 | mc.precharge--; |
854ffa8d DN |
5035 | /* we uncharge from mc.from later. */ |
5036 | mc.moved_charge++; | |
4ffef5fe DN |
5037 | } |
5038 | putback_lru_page(page); | |
5039 | put: /* is_target_pte_for_mc() gets the page */ | |
5040 | put_page(page); | |
5041 | break; | |
02491447 DN |
5042 | case MC_TARGET_SWAP: |
5043 | ent = target.ent; | |
483c30b5 DN |
5044 | if (!mem_cgroup_move_swap_account(ent, |
5045 | mc.from, mc.to, false)) { | |
02491447 | 5046 | mc.precharge--; |
483c30b5 DN |
5047 | /* we fixup refcnts and charges later. */ |
5048 | mc.moved_swap++; | |
5049 | } | |
02491447 | 5050 | break; |
4ffef5fe DN |
5051 | default: |
5052 | break; | |
5053 | } | |
5054 | } | |
5055 | pte_unmap_unlock(pte - 1, ptl); | |
5056 | cond_resched(); | |
5057 | ||
5058 | if (addr != end) { | |
5059 | /* | |
5060 | * We have consumed all precharges we got in can_attach(). | |
5061 | * We try charge one by one, but don't do any additional | |
5062 | * charges to mc.to if we have failed in charge once in attach() | |
5063 | * phase. | |
5064 | */ | |
854ffa8d | 5065 | ret = mem_cgroup_do_precharge(1); |
4ffef5fe DN |
5066 | if (!ret) |
5067 | goto retry; | |
5068 | } | |
5069 | ||
5070 | return ret; | |
5071 | } | |
5072 | ||
5073 | static void mem_cgroup_move_charge(struct mm_struct *mm) | |
5074 | { | |
5075 | struct vm_area_struct *vma; | |
5076 | ||
5077 | lru_add_drain_all(); | |
dfe076b0 DN |
5078 | retry: |
5079 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | |
5080 | /* | |
5081 | * Someone who are holding the mmap_sem might be waiting in | |
5082 | * waitq. So we cancel all extra charges, wake up all waiters, | |
5083 | * and retry. Because we cancel precharges, we might not be able | |
5084 | * to move enough charges, but moving charge is a best-effort | |
5085 | * feature anyway, so it wouldn't be a big problem. | |
5086 | */ | |
5087 | __mem_cgroup_clear_mc(); | |
5088 | cond_resched(); | |
5089 | goto retry; | |
5090 | } | |
4ffef5fe DN |
5091 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
5092 | int ret; | |
5093 | struct mm_walk mem_cgroup_move_charge_walk = { | |
5094 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
5095 | .mm = mm, | |
5096 | .private = vma, | |
5097 | }; | |
5098 | if (is_vm_hugetlb_page(vma)) | |
5099 | continue; | |
4ffef5fe DN |
5100 | ret = walk_page_range(vma->vm_start, vma->vm_end, |
5101 | &mem_cgroup_move_charge_walk); | |
5102 | if (ret) | |
5103 | /* | |
5104 | * means we have consumed all precharges and failed in | |
5105 | * doing additional charge. Just abandon here. | |
5106 | */ | |
5107 | break; | |
5108 | } | |
dfe076b0 | 5109 | up_read(&mm->mmap_sem); |
7dc74be0 DN |
5110 | } |
5111 | ||
67e465a7 BS |
5112 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
5113 | struct cgroup *cont, | |
5114 | struct cgroup *old_cont, | |
be367d09 BB |
5115 | struct task_struct *p, |
5116 | bool threadgroup) | |
67e465a7 | 5117 | { |
dfe076b0 DN |
5118 | struct mm_struct *mm; |
5119 | ||
5120 | if (!mc.to) | |
4ffef5fe DN |
5121 | /* no need to move charge */ |
5122 | return; | |
5123 | ||
dfe076b0 DN |
5124 | mm = get_task_mm(p); |
5125 | if (mm) { | |
5126 | mem_cgroup_move_charge(mm); | |
5127 | mmput(mm); | |
5128 | } | |
4ffef5fe | 5129 | mem_cgroup_clear_mc(); |
67e465a7 | 5130 | } |
5cfb80a7 DN |
5131 | #else /* !CONFIG_MMU */ |
5132 | static int mem_cgroup_can_attach(struct cgroup_subsys *ss, | |
5133 | struct cgroup *cgroup, | |
5134 | struct task_struct *p, | |
5135 | bool threadgroup) | |
5136 | { | |
5137 | return 0; | |
5138 | } | |
5139 | static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, | |
5140 | struct cgroup *cgroup, | |
5141 | struct task_struct *p, | |
5142 | bool threadgroup) | |
5143 | { | |
5144 | } | |
5145 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | |
5146 | struct cgroup *cont, | |
5147 | struct cgroup *old_cont, | |
5148 | struct task_struct *p, | |
5149 | bool threadgroup) | |
5150 | { | |
5151 | } | |
5152 | #endif | |
67e465a7 | 5153 | |
8cdea7c0 BS |
5154 | struct cgroup_subsys mem_cgroup_subsys = { |
5155 | .name = "memory", | |
5156 | .subsys_id = mem_cgroup_subsys_id, | |
5157 | .create = mem_cgroup_create, | |
df878fb0 | 5158 | .pre_destroy = mem_cgroup_pre_destroy, |
8cdea7c0 BS |
5159 | .destroy = mem_cgroup_destroy, |
5160 | .populate = mem_cgroup_populate, | |
7dc74be0 DN |
5161 | .can_attach = mem_cgroup_can_attach, |
5162 | .cancel_attach = mem_cgroup_cancel_attach, | |
67e465a7 | 5163 | .attach = mem_cgroup_move_task, |
6d12e2d8 | 5164 | .early_init = 0, |
04046e1a | 5165 | .use_id = 1, |
8cdea7c0 | 5166 | }; |
c077719b KH |
5167 | |
5168 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | |
a42c390c MH |
5169 | static int __init enable_swap_account(char *s) |
5170 | { | |
5171 | /* consider enabled if no parameter or 1 is given */ | |
a2c8990a | 5172 | if (!strcmp(s, "1")) |
a42c390c | 5173 | really_do_swap_account = 1; |
a2c8990a | 5174 | else if (!strcmp(s, "0")) |
a42c390c MH |
5175 | really_do_swap_account = 0; |
5176 | return 1; | |
5177 | } | |
a2c8990a | 5178 | __setup("swapaccount=", enable_swap_account); |
c077719b | 5179 | |
c077719b | 5180 | #endif |