]> Git Repo - linux.git/blame - mm/vmscan.c
mm/mglru: don't sync disk for each aging cycle
[linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
07f67a8d 29#include <linux/buffer_head.h> /* for buffer_heads_over_limit */
1da177e4 30#include <linux/mm_inline.h>
1da177e4
LT
31#include <linux/backing-dev.h>
32#include <linux/rmap.h>
33#include <linux/topology.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
3e7d3449 36#include <linux/compaction.h>
1da177e4
LT
37#include <linux/notifier.h>
38#include <linux/rwsem.h>
248a0301 39#include <linux/delay.h>
3218ae14 40#include <linux/kthread.h>
7dfb7103 41#include <linux/freezer.h>
66e1707b 42#include <linux/memcontrol.h>
26aa2d19 43#include <linux/migrate.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
91952440 46#include <linux/memory-tiers.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
bd74fdae
YZ
53#include <linux/pagewalk.h>
54#include <linux/shmem_fs.h>
354ed597 55#include <linux/ctype.h>
d6c3af7d 56#include <linux/debugfs.h>
1da177e4
LT
57
58#include <asm/tlbflush.h>
59#include <asm/div64.h>
60
61#include <linux/swapops.h>
117aad1e 62#include <linux/balloon_compaction.h>
c574bbe9 63#include <linux/sched/sysctl.h>
1da177e4 64
0f8053a5 65#include "internal.h"
014bb1de 66#include "swap.h"
0f8053a5 67
33906bc5
MG
68#define CREATE_TRACE_POINTS
69#include <trace/events/vmscan.h>
70
1da177e4 71struct scan_control {
22fba335
KM
72 /* How many pages shrink_list() should reclaim */
73 unsigned long nr_to_reclaim;
74
ee814fe2
JW
75 /*
76 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * are scanned.
78 */
79 nodemask_t *nodemask;
9e3b2f8c 80
f16015fb
JW
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
66e1707b 86
7cf111bc
JW
87 /*
88 * Scan pressure balancing between anon and file LRUs
89 */
90 unsigned long anon_cost;
91 unsigned long file_cost;
92
49fd9b6d 93 /* Can active folios be deactivated as part of reclaim? */
b91ac374
JW
94#define DEACTIVATE_ANON 1
95#define DEACTIVATE_FILE 2
96 unsigned int may_deactivate:2;
97 unsigned int force_deactivate:1;
98 unsigned int skipped_deactivate:1;
99
1276ad68 100 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
101 unsigned int may_writepage:1;
102
49fd9b6d 103 /* Can mapped folios be reclaimed? */
ee814fe2
JW
104 unsigned int may_unmap:1;
105
49fd9b6d 106 /* Can folios be swapped as part of reclaim? */
ee814fe2
JW
107 unsigned int may_swap:1;
108
73b73bac
YA
109 /* Proactive reclaim invoked by userspace through memory.reclaim */
110 unsigned int proactive:1;
111
d6622f63 112 /*
f56ce412
JW
113 * Cgroup memory below memory.low is protected as long as we
114 * don't threaten to OOM. If any cgroup is reclaimed at
115 * reduced force or passed over entirely due to its memory.low
116 * setting (memcg_low_skipped), and nothing is reclaimed as a
117 * result, then go back for one more cycle that reclaims the protected
118 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
119 */
120 unsigned int memcg_low_reclaim:1;
121 unsigned int memcg_low_skipped:1;
241994ed 122
ee814fe2
JW
123 unsigned int hibernation_mode:1;
124
125 /* One of the zones is ready for compaction */
126 unsigned int compaction_ready:1;
127
b91ac374
JW
128 /* There is easily reclaimable cold cache in the current node */
129 unsigned int cache_trim_mode:1;
130
49fd9b6d 131 /* The file folios on the current node are dangerously low */
53138cea
JW
132 unsigned int file_is_tiny:1;
133
26aa2d19
DH
134 /* Always discard instead of demoting to lower tier memory */
135 unsigned int no_demotion:1;
136
f76c8337
YZ
137#ifdef CONFIG_LRU_GEN
138 /* help kswapd make better choices among multiple memcgs */
139 unsigned int memcgs_need_aging:1;
140 unsigned long last_reclaimed;
141#endif
142
bb451fdf
GT
143 /* Allocation order */
144 s8 order;
145
146 /* Scan (total_size >> priority) pages at once */
147 s8 priority;
148
49fd9b6d 149 /* The highest zone to isolate folios for reclaim from */
bb451fdf
GT
150 s8 reclaim_idx;
151
152 /* This context's GFP mask */
153 gfp_t gfp_mask;
154
ee814fe2
JW
155 /* Incremented by the number of inactive pages that were scanned */
156 unsigned long nr_scanned;
157
158 /* Number of pages freed so far during a call to shrink_zones() */
159 unsigned long nr_reclaimed;
d108c772
AR
160
161 struct {
162 unsigned int dirty;
163 unsigned int unqueued_dirty;
164 unsigned int congested;
165 unsigned int writeback;
166 unsigned int immediate;
167 unsigned int file_taken;
168 unsigned int taken;
169 } nr;
e5ca8071
YS
170
171 /* for recording the reclaimed slab by now */
172 struct reclaim_state reclaim_state;
1da177e4
LT
173};
174
1da177e4 175#ifdef ARCH_HAS_PREFETCHW
166e3d32 176#define prefetchw_prev_lru_folio(_folio, _base, _field) \
1da177e4 177 do { \
166e3d32
MWO
178 if ((_folio)->lru.prev != _base) { \
179 struct folio *prev; \
1da177e4 180 \
166e3d32 181 prev = lru_to_folio(&(_folio->lru)); \
1da177e4
LT
182 prefetchw(&prev->_field); \
183 } \
184 } while (0)
185#else
166e3d32 186#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
1da177e4
LT
187#endif
188
189/*
c843966c 190 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
191 */
192int vm_swappiness = 60;
1da177e4 193
0a432dcb
YS
194static void set_task_reclaim_state(struct task_struct *task,
195 struct reclaim_state *rs)
196{
197 /* Check for an overwrite */
198 WARN_ON_ONCE(rs && task->reclaim_state);
199
200 /* Check for the nulling of an already-nulled member */
201 WARN_ON_ONCE(!rs && !task->reclaim_state);
202
203 task->reclaim_state = rs;
204}
205
5035ebc6
RG
206LIST_HEAD(shrinker_list);
207DECLARE_RWSEM(shrinker_rwsem);
1da177e4 208
0a432dcb 209#ifdef CONFIG_MEMCG
a2fb1261 210static int shrinker_nr_max;
2bfd3637 211
3c6f17e6 212/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
213static inline int shrinker_map_size(int nr_items)
214{
215 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
216}
2bfd3637 217
3c6f17e6
YS
218static inline int shrinker_defer_size(int nr_items)
219{
220 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
221}
222
468ab843
YS
223static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
224 int nid)
225{
226 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
227 lockdep_is_held(&shrinker_rwsem));
228}
229
e4262c4f 230static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
231 int map_size, int defer_size,
232 int old_map_size, int old_defer_size)
2bfd3637 233{
e4262c4f 234 struct shrinker_info *new, *old;
2bfd3637
YS
235 struct mem_cgroup_per_node *pn;
236 int nid;
3c6f17e6 237 int size = map_size + defer_size;
2bfd3637 238
2bfd3637
YS
239 for_each_node(nid) {
240 pn = memcg->nodeinfo[nid];
468ab843 241 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
242 /* Not yet online memcg */
243 if (!old)
244 return 0;
245
246 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
247 if (!new)
248 return -ENOMEM;
249
3c6f17e6
YS
250 new->nr_deferred = (atomic_long_t *)(new + 1);
251 new->map = (void *)new->nr_deferred + defer_size;
252
253 /* map: set all old bits, clear all new bits */
254 memset(new->map, (int)0xff, old_map_size);
255 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
256 /* nr_deferred: copy old values, clear all new values */
257 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
258 memset((void *)new->nr_deferred + old_defer_size, 0,
259 defer_size - old_defer_size);
2bfd3637 260
e4262c4f 261 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 262 kvfree_rcu(old, rcu);
2bfd3637
YS
263 }
264
265 return 0;
266}
267
e4262c4f 268void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
269{
270 struct mem_cgroup_per_node *pn;
e4262c4f 271 struct shrinker_info *info;
2bfd3637
YS
272 int nid;
273
2bfd3637
YS
274 for_each_node(nid) {
275 pn = memcg->nodeinfo[nid];
e4262c4f
YS
276 info = rcu_dereference_protected(pn->shrinker_info, true);
277 kvfree(info);
278 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
279 }
280}
281
e4262c4f 282int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 283{
e4262c4f 284 struct shrinker_info *info;
2bfd3637 285 int nid, size, ret = 0;
3c6f17e6 286 int map_size, defer_size = 0;
2bfd3637 287
d27cf2aa 288 down_write(&shrinker_rwsem);
3c6f17e6
YS
289 map_size = shrinker_map_size(shrinker_nr_max);
290 defer_size = shrinker_defer_size(shrinker_nr_max);
291 size = map_size + defer_size;
2bfd3637 292 for_each_node(nid) {
e4262c4f
YS
293 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
294 if (!info) {
295 free_shrinker_info(memcg);
2bfd3637
YS
296 ret = -ENOMEM;
297 break;
298 }
3c6f17e6
YS
299 info->nr_deferred = (atomic_long_t *)(info + 1);
300 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 301 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 302 }
d27cf2aa 303 up_write(&shrinker_rwsem);
2bfd3637
YS
304
305 return ret;
306}
307
3c6f17e6
YS
308static inline bool need_expand(int nr_max)
309{
310 return round_up(nr_max, BITS_PER_LONG) >
311 round_up(shrinker_nr_max, BITS_PER_LONG);
312}
313
e4262c4f 314static int expand_shrinker_info(int new_id)
2bfd3637 315{
3c6f17e6 316 int ret = 0;
a2fb1261 317 int new_nr_max = new_id + 1;
3c6f17e6
YS
318 int map_size, defer_size = 0;
319 int old_map_size, old_defer_size = 0;
2bfd3637
YS
320 struct mem_cgroup *memcg;
321
3c6f17e6 322 if (!need_expand(new_nr_max))
a2fb1261 323 goto out;
2bfd3637 324
2bfd3637 325 if (!root_mem_cgroup)
d27cf2aa
YS
326 goto out;
327
328 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 329
3c6f17e6
YS
330 map_size = shrinker_map_size(new_nr_max);
331 defer_size = shrinker_defer_size(new_nr_max);
332 old_map_size = shrinker_map_size(shrinker_nr_max);
333 old_defer_size = shrinker_defer_size(shrinker_nr_max);
334
2bfd3637
YS
335 memcg = mem_cgroup_iter(NULL, NULL, NULL);
336 do {
3c6f17e6
YS
337 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
338 old_map_size, old_defer_size);
2bfd3637
YS
339 if (ret) {
340 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 341 goto out;
2bfd3637
YS
342 }
343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 344out:
2bfd3637 345 if (!ret)
a2fb1261 346 shrinker_nr_max = new_nr_max;
d27cf2aa 347
2bfd3637
YS
348 return ret;
349}
350
351void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352{
353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 354 struct shrinker_info *info;
2bfd3637
YS
355
356 rcu_read_lock();
e4262c4f 357 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
358 /* Pairs with smp mb in shrink_slab() */
359 smp_mb__before_atomic();
e4262c4f 360 set_bit(shrinker_id, info->map);
2bfd3637
YS
361 rcu_read_unlock();
362 }
363}
364
b4c2b231 365static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
366
367static int prealloc_memcg_shrinker(struct shrinker *shrinker)
368{
369 int id, ret = -ENOMEM;
370
476b30a0
YS
371 if (mem_cgroup_disabled())
372 return -ENOSYS;
373
b4c2b231
KT
374 down_write(&shrinker_rwsem);
375 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 376 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
377 if (id < 0)
378 goto unlock;
379
0a4465d3 380 if (id >= shrinker_nr_max) {
e4262c4f 381 if (expand_shrinker_info(id)) {
0a4465d3
KT
382 idr_remove(&shrinker_idr, id);
383 goto unlock;
384 }
0a4465d3 385 }
b4c2b231
KT
386 shrinker->id = id;
387 ret = 0;
388unlock:
389 up_write(&shrinker_rwsem);
390 return ret;
391}
392
393static void unregister_memcg_shrinker(struct shrinker *shrinker)
394{
395 int id = shrinker->id;
396
397 BUG_ON(id < 0);
398
41ca668a
YS
399 lockdep_assert_held(&shrinker_rwsem);
400
b4c2b231 401 idr_remove(&shrinker_idr, id);
b4c2b231 402}
b4c2b231 403
86750830
YS
404static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
405 struct mem_cgroup *memcg)
406{
407 struct shrinker_info *info;
408
409 info = shrinker_info_protected(memcg, nid);
410 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
411}
412
413static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
414 struct mem_cgroup *memcg)
415{
416 struct shrinker_info *info;
417
418 info = shrinker_info_protected(memcg, nid);
419 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
420}
421
a178015c
YS
422void reparent_shrinker_deferred(struct mem_cgroup *memcg)
423{
424 int i, nid;
425 long nr;
426 struct mem_cgroup *parent;
427 struct shrinker_info *child_info, *parent_info;
428
429 parent = parent_mem_cgroup(memcg);
430 if (!parent)
431 parent = root_mem_cgroup;
432
433 /* Prevent from concurrent shrinker_info expand */
434 down_read(&shrinker_rwsem);
435 for_each_node(nid) {
436 child_info = shrinker_info_protected(memcg, nid);
437 parent_info = shrinker_info_protected(parent, nid);
438 for (i = 0; i < shrinker_nr_max; i++) {
439 nr = atomic_long_read(&child_info->nr_deferred[i]);
440 atomic_long_add(nr, &parent_info->nr_deferred[i]);
441 }
442 }
443 up_read(&shrinker_rwsem);
444}
445
b5ead35e 446static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 447{
b5ead35e 448 return sc->target_mem_cgroup;
89b5fae5 449}
97c9341f
TH
450
451/**
b5ead35e 452 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
453 * @sc: scan_control in question
454 *
455 * The normal page dirty throttling mechanism in balance_dirty_pages() is
456 * completely broken with the legacy memcg and direct stalling in
49fd9b6d 457 * shrink_folio_list() is used for throttling instead, which lacks all the
97c9341f
TH
458 * niceties such as fairness, adaptive pausing, bandwidth proportional
459 * allocation and configurability.
460 *
461 * This function tests whether the vmscan currently in progress can assume
462 * that the normal dirty throttling mechanism is operational.
463 */
b5ead35e 464static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 465{
b5ead35e 466 if (!cgroup_reclaim(sc))
97c9341f
TH
467 return true;
468#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 469 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
470 return true;
471#endif
472 return false;
473}
91a45470 474#else
0a432dcb
YS
475static int prealloc_memcg_shrinker(struct shrinker *shrinker)
476{
476b30a0 477 return -ENOSYS;
0a432dcb
YS
478}
479
480static void unregister_memcg_shrinker(struct shrinker *shrinker)
481{
482}
483
86750830
YS
484static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
485 struct mem_cgroup *memcg)
486{
487 return 0;
488}
489
490static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
491 struct mem_cgroup *memcg)
492{
493 return 0;
494}
495
b5ead35e 496static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 497{
b5ead35e 498 return false;
89b5fae5 499}
97c9341f 500
b5ead35e 501static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
502{
503 return true;
504}
91a45470
KH
505#endif
506
86750830
YS
507static long xchg_nr_deferred(struct shrinker *shrinker,
508 struct shrink_control *sc)
509{
510 int nid = sc->nid;
511
512 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
513 nid = 0;
514
515 if (sc->memcg &&
516 (shrinker->flags & SHRINKER_MEMCG_AWARE))
517 return xchg_nr_deferred_memcg(nid, shrinker,
518 sc->memcg);
519
520 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
521}
522
523
524static long add_nr_deferred(long nr, struct shrinker *shrinker,
525 struct shrink_control *sc)
526{
527 int nid = sc->nid;
528
529 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
530 nid = 0;
531
532 if (sc->memcg &&
533 (shrinker->flags & SHRINKER_MEMCG_AWARE))
534 return add_nr_deferred_memcg(nr, nid, shrinker,
535 sc->memcg);
536
537 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
538}
539
26aa2d19
DH
540static bool can_demote(int nid, struct scan_control *sc)
541{
20b51af1
YH
542 if (!numa_demotion_enabled)
543 return false;
3f1509c5
JW
544 if (sc && sc->no_demotion)
545 return false;
26aa2d19
DH
546 if (next_demotion_node(nid) == NUMA_NO_NODE)
547 return false;
548
20b51af1 549 return true;
26aa2d19
DH
550}
551
a2a36488
KB
552static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
553 int nid,
554 struct scan_control *sc)
555{
556 if (memcg == NULL) {
557 /*
558 * For non-memcg reclaim, is there
559 * space in any swap device?
560 */
561 if (get_nr_swap_pages() > 0)
562 return true;
563 } else {
564 /* Is the memcg below its swap limit? */
565 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
566 return true;
567 }
568
569 /*
570 * The page can not be swapped.
571 *
572 * Can it be reclaimed from this node via demotion?
573 */
574 return can_demote(nid, sc);
575}
576
5a1c84b4 577/*
49fd9b6d 578 * This misses isolated folios which are not accounted for to save counters.
5a1c84b4 579 * As the data only determines if reclaim or compaction continues, it is
49fd9b6d 580 * not expected that isolated folios will be a dominating factor.
5a1c84b4
MG
581 */
582unsigned long zone_reclaimable_pages(struct zone *zone)
583{
584 unsigned long nr;
585
586 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
587 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 588 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
589 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
590 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
591
592 return nr;
593}
594
fd538803
MH
595/**
596 * lruvec_lru_size - Returns the number of pages on the given LRU list.
597 * @lruvec: lru vector
598 * @lru: lru to use
8b3a899a 599 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 600 */
2091339d
YZ
601static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
602 int zone_idx)
c9f299d9 603{
de3b0150 604 unsigned long size = 0;
fd538803
MH
605 int zid;
606
8b3a899a 607 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 608 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 609
fd538803
MH
610 if (!managed_zone(zone))
611 continue;
612
613 if (!mem_cgroup_disabled())
de3b0150 614 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 615 else
de3b0150 616 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 617 }
de3b0150 618 return size;
b4536f0c
MH
619}
620
1da177e4 621/*
1d3d4437 622 * Add a shrinker callback to be called from the vm.
1da177e4 623 */
e33c267a 624static int __prealloc_shrinker(struct shrinker *shrinker)
1da177e4 625{
476b30a0
YS
626 unsigned int size;
627 int err;
628
629 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
630 err = prealloc_memcg_shrinker(shrinker);
631 if (err != -ENOSYS)
632 return err;
1d3d4437 633
476b30a0
YS
634 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
635 }
636
637 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
638 if (shrinker->flags & SHRINKER_NUMA_AWARE)
639 size *= nr_node_ids;
640
641 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
642 if (!shrinker->nr_deferred)
643 return -ENOMEM;
b4c2b231 644
8e04944f
TH
645 return 0;
646}
647
e33c267a
RG
648#ifdef CONFIG_SHRINKER_DEBUG
649int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
650{
651 va_list ap;
652 int err;
653
654 va_start(ap, fmt);
655 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
656 va_end(ap);
657 if (!shrinker->name)
658 return -ENOMEM;
659
660 err = __prealloc_shrinker(shrinker);
14773bfa 661 if (err) {
e33c267a 662 kfree_const(shrinker->name);
14773bfa
TH
663 shrinker->name = NULL;
664 }
e33c267a
RG
665
666 return err;
667}
668#else
669int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
670{
671 return __prealloc_shrinker(shrinker);
672}
673#endif
674
8e04944f
TH
675void free_prealloced_shrinker(struct shrinker *shrinker)
676{
e33c267a
RG
677#ifdef CONFIG_SHRINKER_DEBUG
678 kfree_const(shrinker->name);
14773bfa 679 shrinker->name = NULL;
e33c267a 680#endif
41ca668a
YS
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
682 down_write(&shrinker_rwsem);
b4c2b231 683 unregister_memcg_shrinker(shrinker);
41ca668a 684 up_write(&shrinker_rwsem);
476b30a0 685 return;
41ca668a 686 }
b4c2b231 687
8e04944f
TH
688 kfree(shrinker->nr_deferred);
689 shrinker->nr_deferred = NULL;
690}
1d3d4437 691
8e04944f
TH
692void register_shrinker_prepared(struct shrinker *shrinker)
693{
8e1f936b
RR
694 down_write(&shrinker_rwsem);
695 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 696 shrinker->flags |= SHRINKER_REGISTERED;
5035ebc6 697 shrinker_debugfs_add(shrinker);
8e1f936b 698 up_write(&shrinker_rwsem);
8e04944f
TH
699}
700
e33c267a 701static int __register_shrinker(struct shrinker *shrinker)
8e04944f 702{
e33c267a 703 int err = __prealloc_shrinker(shrinker);
8e04944f
TH
704
705 if (err)
706 return err;
707 register_shrinker_prepared(shrinker);
1d3d4437 708 return 0;
1da177e4 709}
e33c267a
RG
710
711#ifdef CONFIG_SHRINKER_DEBUG
712int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
713{
714 va_list ap;
715 int err;
716
717 va_start(ap, fmt);
718 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
719 va_end(ap);
720 if (!shrinker->name)
721 return -ENOMEM;
722
723 err = __register_shrinker(shrinker);
14773bfa 724 if (err) {
e33c267a 725 kfree_const(shrinker->name);
14773bfa
TH
726 shrinker->name = NULL;
727 }
e33c267a
RG
728 return err;
729}
730#else
731int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
732{
733 return __register_shrinker(shrinker);
734}
735#endif
8e1f936b 736EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
737
738/*
739 * Remove one
740 */
8e1f936b 741void unregister_shrinker(struct shrinker *shrinker)
1da177e4 742{
41ca668a 743 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 744 return;
41ca668a 745
1da177e4
LT
746 down_write(&shrinker_rwsem);
747 list_del(&shrinker->list);
41ca668a
YS
748 shrinker->flags &= ~SHRINKER_REGISTERED;
749 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
750 unregister_memcg_shrinker(shrinker);
5035ebc6 751 shrinker_debugfs_remove(shrinker);
1da177e4 752 up_write(&shrinker_rwsem);
41ca668a 753
ae393321 754 kfree(shrinker->nr_deferred);
bb422a73 755 shrinker->nr_deferred = NULL;
1da177e4 756}
8e1f936b 757EXPORT_SYMBOL(unregister_shrinker);
1da177e4 758
880121be
CK
759/**
760 * synchronize_shrinkers - Wait for all running shrinkers to complete.
761 *
762 * This is equivalent to calling unregister_shrink() and register_shrinker(),
763 * but atomically and with less overhead. This is useful to guarantee that all
764 * shrinker invocations have seen an update, before freeing memory, similar to
765 * rcu.
766 */
767void synchronize_shrinkers(void)
768{
769 down_write(&shrinker_rwsem);
770 up_write(&shrinker_rwsem);
771}
772EXPORT_SYMBOL(synchronize_shrinkers);
773
1da177e4 774#define SHRINK_BATCH 128
1d3d4437 775
cb731d6c 776static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 777 struct shrinker *shrinker, int priority)
1d3d4437
GC
778{
779 unsigned long freed = 0;
780 unsigned long long delta;
781 long total_scan;
d5bc5fd3 782 long freeable;
1d3d4437
GC
783 long nr;
784 long new_nr;
1d3d4437
GC
785 long batch_size = shrinker->batch ? shrinker->batch
786 : SHRINK_BATCH;
5f33a080 787 long scanned = 0, next_deferred;
1d3d4437 788
d5bc5fd3 789 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
790 if (freeable == 0 || freeable == SHRINK_EMPTY)
791 return freeable;
1d3d4437
GC
792
793 /*
794 * copy the current shrinker scan count into a local variable
795 * and zero it so that other concurrent shrinker invocations
796 * don't also do this scanning work.
797 */
86750830 798 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 799
4b85afbd
JW
800 if (shrinker->seeks) {
801 delta = freeable >> priority;
802 delta *= 4;
803 do_div(delta, shrinker->seeks);
804 } else {
805 /*
806 * These objects don't require any IO to create. Trim
807 * them aggressively under memory pressure to keep
808 * them from causing refetches in the IO caches.
809 */
810 delta = freeable / 2;
811 }
172b06c3 812
18bb473e 813 total_scan = nr >> priority;
1d3d4437 814 total_scan += delta;
18bb473e 815 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
816
817 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 818 freeable, delta, total_scan, priority);
1d3d4437 819
0b1fb40a
VD
820 /*
821 * Normally, we should not scan less than batch_size objects in one
822 * pass to avoid too frequent shrinker calls, but if the slab has less
823 * than batch_size objects in total and we are really tight on memory,
824 * we will try to reclaim all available objects, otherwise we can end
825 * up failing allocations although there are plenty of reclaimable
826 * objects spread over several slabs with usage less than the
827 * batch_size.
828 *
829 * We detect the "tight on memory" situations by looking at the total
830 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 831 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
832 * scanning at high prio and therefore should try to reclaim as much as
833 * possible.
834 */
835 while (total_scan >= batch_size ||
d5bc5fd3 836 total_scan >= freeable) {
a0b02131 837 unsigned long ret;
0b1fb40a 838 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 839
0b1fb40a 840 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 841 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
842 ret = shrinker->scan_objects(shrinker, shrinkctl);
843 if (ret == SHRINK_STOP)
844 break;
845 freed += ret;
1d3d4437 846
d460acb5
CW
847 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
848 total_scan -= shrinkctl->nr_scanned;
849 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
850
851 cond_resched();
852 }
853
18bb473e
YS
854 /*
855 * The deferred work is increased by any new work (delta) that wasn't
856 * done, decreased by old deferred work that was done now.
857 *
858 * And it is capped to two times of the freeable items.
859 */
860 next_deferred = max_t(long, (nr + delta - scanned), 0);
861 next_deferred = min(next_deferred, (2 * freeable));
862
1d3d4437
GC
863 /*
864 * move the unused scan count back into the shrinker in a
86750830 865 * manner that handles concurrent updates.
1d3d4437 866 */
86750830 867 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 868
8efb4b59 869 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 870 return freed;
1495f230
YH
871}
872
0a432dcb 873#ifdef CONFIG_MEMCG
b0dedc49
KT
874static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
875 struct mem_cgroup *memcg, int priority)
876{
e4262c4f 877 struct shrinker_info *info;
b8e57efa
KT
878 unsigned long ret, freed = 0;
879 int i;
b0dedc49 880
0a432dcb 881 if (!mem_cgroup_online(memcg))
b0dedc49
KT
882 return 0;
883
884 if (!down_read_trylock(&shrinker_rwsem))
885 return 0;
886
468ab843 887 info = shrinker_info_protected(memcg, nid);
e4262c4f 888 if (unlikely(!info))
b0dedc49
KT
889 goto unlock;
890
e4262c4f 891 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
892 struct shrink_control sc = {
893 .gfp_mask = gfp_mask,
894 .nid = nid,
895 .memcg = memcg,
896 };
897 struct shrinker *shrinker;
898
899 shrinker = idr_find(&shrinker_idr, i);
41ca668a 900 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 901 if (!shrinker)
e4262c4f 902 clear_bit(i, info->map);
b0dedc49
KT
903 continue;
904 }
905
0a432dcb
YS
906 /* Call non-slab shrinkers even though kmem is disabled */
907 if (!memcg_kmem_enabled() &&
908 !(shrinker->flags & SHRINKER_NONSLAB))
909 continue;
910
b0dedc49 911 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 912 if (ret == SHRINK_EMPTY) {
e4262c4f 913 clear_bit(i, info->map);
f90280d6
KT
914 /*
915 * After the shrinker reported that it had no objects to
916 * free, but before we cleared the corresponding bit in
917 * the memcg shrinker map, a new object might have been
918 * added. To make sure, we have the bit set in this
919 * case, we invoke the shrinker one more time and reset
920 * the bit if it reports that it is not empty anymore.
921 * The memory barrier here pairs with the barrier in
2bfd3637 922 * set_shrinker_bit():
f90280d6
KT
923 *
924 * list_lru_add() shrink_slab_memcg()
925 * list_add_tail() clear_bit()
926 * <MB> <MB>
927 * set_bit() do_shrink_slab()
928 */
929 smp_mb__after_atomic();
930 ret = do_shrink_slab(&sc, shrinker, priority);
931 if (ret == SHRINK_EMPTY)
932 ret = 0;
933 else
2bfd3637 934 set_shrinker_bit(memcg, nid, i);
f90280d6 935 }
b0dedc49
KT
936 freed += ret;
937
938 if (rwsem_is_contended(&shrinker_rwsem)) {
939 freed = freed ? : 1;
940 break;
941 }
942 }
943unlock:
944 up_read(&shrinker_rwsem);
945 return freed;
946}
0a432dcb 947#else /* CONFIG_MEMCG */
b0dedc49
KT
948static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
949 struct mem_cgroup *memcg, int priority)
950{
951 return 0;
952}
0a432dcb 953#endif /* CONFIG_MEMCG */
b0dedc49 954
6b4f7799 955/**
cb731d6c 956 * shrink_slab - shrink slab caches
6b4f7799
JW
957 * @gfp_mask: allocation context
958 * @nid: node whose slab caches to target
cb731d6c 959 * @memcg: memory cgroup whose slab caches to target
9092c71b 960 * @priority: the reclaim priority
1da177e4 961 *
6b4f7799 962 * Call the shrink functions to age shrinkable caches.
1da177e4 963 *
6b4f7799
JW
964 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
965 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 966 *
aeed1d32
VD
967 * @memcg specifies the memory cgroup to target. Unaware shrinkers
968 * are called only if it is the root cgroup.
cb731d6c 969 *
9092c71b
JB
970 * @priority is sc->priority, we take the number of objects and >> by priority
971 * in order to get the scan target.
b15e0905 972 *
6b4f7799 973 * Returns the number of reclaimed slab objects.
1da177e4 974 */
cb731d6c
VD
975static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
976 struct mem_cgroup *memcg,
9092c71b 977 int priority)
1da177e4 978{
b8e57efa 979 unsigned long ret, freed = 0;
1da177e4
LT
980 struct shrinker *shrinker;
981
fa1e512f
YS
982 /*
983 * The root memcg might be allocated even though memcg is disabled
984 * via "cgroup_disable=memory" boot parameter. This could make
985 * mem_cgroup_is_root() return false, then just run memcg slab
986 * shrink, but skip global shrink. This may result in premature
987 * oom.
988 */
989 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 990 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 991
e830c63a 992 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 993 goto out;
1da177e4
LT
994
995 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
996 struct shrink_control sc = {
997 .gfp_mask = gfp_mask,
998 .nid = nid,
cb731d6c 999 .memcg = memcg,
6b4f7799 1000 };
ec97097b 1001
9b996468
KT
1002 ret = do_shrink_slab(&sc, shrinker, priority);
1003 if (ret == SHRINK_EMPTY)
1004 ret = 0;
1005 freed += ret;
e496612c
MK
1006 /*
1007 * Bail out if someone want to register a new shrinker to
55b65a57 1008 * prevent the registration from being stalled for long periods
e496612c
MK
1009 * by parallel ongoing shrinking.
1010 */
1011 if (rwsem_is_contended(&shrinker_rwsem)) {
1012 freed = freed ? : 1;
1013 break;
1014 }
1da177e4 1015 }
6b4f7799 1016
1da177e4 1017 up_read(&shrinker_rwsem);
f06590bd
MK
1018out:
1019 cond_resched();
24f7c6b9 1020 return freed;
1da177e4
LT
1021}
1022
e4b424b7 1023static void drop_slab_node(int nid)
cb731d6c
VD
1024{
1025 unsigned long freed;
1399af7e 1026 int shift = 0;
cb731d6c
VD
1027
1028 do {
1029 struct mem_cgroup *memcg = NULL;
1030
069c411d
CZ
1031 if (fatal_signal_pending(current))
1032 return;
1033
cb731d6c 1034 freed = 0;
aeed1d32 1035 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 1036 do {
9092c71b 1037 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 1038 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 1039 } while ((freed >> shift++) > 1);
cb731d6c
VD
1040}
1041
1042void drop_slab(void)
1043{
1044 int nid;
1045
1046 for_each_online_node(nid)
1047 drop_slab_node(nid);
1048}
1049
e0cd5e7f 1050static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 1051{
ceddc3a5 1052 /*
49fd9b6d
MWO
1053 * A freeable page cache folio is referenced only by the caller
1054 * that isolated the folio, the page cache and optional filesystem
1055 * private data at folio->private.
ceddc3a5 1056 */
e0cd5e7f
MWO
1057 return folio_ref_count(folio) - folio_test_private(folio) ==
1058 1 + folio_nr_pages(folio);
1da177e4
LT
1059}
1060
1da177e4 1061/*
e0cd5e7f 1062 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
1063 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1064 * fsync(), msync() or close().
1065 *
1066 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1067 * prevents it from being freed up. But we have a ref on the folio and once
1068 * that folio is locked, the mapping is pinned.
1da177e4 1069 *
e0cd5e7f 1070 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1071 * __GFP_FS.
1072 */
1073static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1074 struct folio *folio, int error)
1da177e4 1075{
e0cd5e7f
MWO
1076 folio_lock(folio);
1077 if (folio_mapping(folio) == mapping)
3e9f45bd 1078 mapping_set_error(mapping, error);
e0cd5e7f 1079 folio_unlock(folio);
1da177e4
LT
1080}
1081
1b4e3f26
MG
1082static bool skip_throttle_noprogress(pg_data_t *pgdat)
1083{
1084 int reclaimable = 0, write_pending = 0;
1085 int i;
1086
1087 /*
1088 * If kswapd is disabled, reschedule if necessary but do not
1089 * throttle as the system is likely near OOM.
1090 */
1091 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1092 return true;
1093
1094 /*
49fd9b6d
MWO
1095 * If there are a lot of dirty/writeback folios then do not
1096 * throttle as throttling will occur when the folios cycle
1b4e3f26
MG
1097 * towards the end of the LRU if still under writeback.
1098 */
1099 for (i = 0; i < MAX_NR_ZONES; i++) {
1100 struct zone *zone = pgdat->node_zones + i;
1101
36c26128 1102 if (!managed_zone(zone))
1b4e3f26
MG
1103 continue;
1104
1105 reclaimable += zone_reclaimable_pages(zone);
1106 write_pending += zone_page_state_snapshot(zone,
1107 NR_ZONE_WRITE_PENDING);
1108 }
1109 if (2 * write_pending <= reclaimable)
1110 return true;
1111
1112 return false;
1113}
1114
c3f4a9a2 1115void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1116{
1117 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1118 long timeout, ret;
8cd7c588
MG
1119 DEFINE_WAIT(wait);
1120
1121 /*
1122 * Do not throttle IO workers, kthreads other than kswapd or
1123 * workqueues. They may be required for reclaim to make
1124 * forward progress (e.g. journalling workqueues or kthreads).
1125 */
1126 if (!current_is_kswapd() &&
b485c6f1
MG
1127 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1128 cond_resched();
8cd7c588 1129 return;
b485c6f1 1130 }
8cd7c588 1131
c3f4a9a2
MG
1132 /*
1133 * These figures are pulled out of thin air.
1134 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1135 * parallel reclaimers which is a short-lived event so the timeout is
1136 * short. Failing to make progress or waiting on writeback are
1137 * potentially long-lived events so use a longer timeout. This is shaky
1138 * logic as a failure to make progress could be due to anything from
49fd9b6d 1139 * writeback to a slow device to excessive referenced folios at the tail
c3f4a9a2
MG
1140 * of the inactive LRU.
1141 */
1142 switch(reason) {
1143 case VMSCAN_THROTTLE_WRITEBACK:
1144 timeout = HZ/10;
1145
1146 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1147 WRITE_ONCE(pgdat->nr_reclaim_start,
1148 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1149 }
1150
1151 break;
1b4e3f26
MG
1152 case VMSCAN_THROTTLE_CONGESTED:
1153 fallthrough;
c3f4a9a2 1154 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1155 if (skip_throttle_noprogress(pgdat)) {
1156 cond_resched();
1157 return;
1158 }
1159
1160 timeout = 1;
1161
c3f4a9a2
MG
1162 break;
1163 case VMSCAN_THROTTLE_ISOLATED:
1164 timeout = HZ/50;
1165 break;
1166 default:
1167 WARN_ON_ONCE(1);
1168 timeout = HZ;
1169 break;
8cd7c588
MG
1170 }
1171
1172 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1173 ret = schedule_timeout(timeout);
1174 finish_wait(wqh, &wait);
d818fca1 1175
c3f4a9a2 1176 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1177 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1178
1179 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1180 jiffies_to_usecs(timeout - ret),
1181 reason);
1182}
1183
1184/*
49fd9b6d
MWO
1185 * Account for folios written if tasks are throttled waiting on dirty
1186 * folios to clean. If enough folios have been cleaned since throttling
8cd7c588
MG
1187 * started then wakeup the throttled tasks.
1188 */
512b7931 1189void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1190 int nr_throttled)
1191{
1192 unsigned long nr_written;
1193
512b7931 1194 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1195
1196 /*
1197 * This is an inaccurate read as the per-cpu deltas may not
1198 * be synchronised. However, given that the system is
1199 * writeback throttled, it is not worth taking the penalty
1200 * of getting an accurate count. At worst, the throttle
1201 * timeout guarantees forward progress.
1202 */
1203 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1204 READ_ONCE(pgdat->nr_reclaim_start);
1205
1206 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1207 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1208}
1209
04e62a29
CL
1210/* possible outcome of pageout() */
1211typedef enum {
49fd9b6d 1212 /* failed to write folio out, folio is locked */
04e62a29 1213 PAGE_KEEP,
49fd9b6d 1214 /* move folio to the active list, folio is locked */
04e62a29 1215 PAGE_ACTIVATE,
49fd9b6d 1216 /* folio has been sent to the disk successfully, folio is unlocked */
04e62a29 1217 PAGE_SUCCESS,
49fd9b6d 1218 /* folio is clean and locked */
04e62a29
CL
1219 PAGE_CLEAN,
1220} pageout_t;
1221
1da177e4 1222/*
49fd9b6d 1223 * pageout is called by shrink_folio_list() for each dirty folio.
1742f19f 1224 * Calls ->writepage().
1da177e4 1225 */
2282679f
N
1226static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1227 struct swap_iocb **plug)
1da177e4
LT
1228{
1229 /*
e0cd5e7f 1230 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1231 * will be non-blocking. To prevent this allocation from being
1232 * stalled by pagecache activity. But note that there may be
1233 * stalls if we need to run get_block(). We could test
1234 * PagePrivate for that.
1235 *
8174202b 1236 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1237 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1238 * will block.
1239 *
e0cd5e7f 1240 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1241 * block, for some throttling. This happens by accident, because
1242 * swap_backing_dev_info is bust: it doesn't reflect the
1243 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1244 */
e0cd5e7f 1245 if (!is_page_cache_freeable(folio))
1da177e4
LT
1246 return PAGE_KEEP;
1247 if (!mapping) {
1248 /*
e0cd5e7f
MWO
1249 * Some data journaling orphaned folios can have
1250 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1251 */
e0cd5e7f 1252 if (folio_test_private(folio)) {
68189fef 1253 if (try_to_free_buffers(folio)) {
e0cd5e7f
MWO
1254 folio_clear_dirty(folio);
1255 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1256 return PAGE_CLEAN;
1257 }
1258 }
1259 return PAGE_KEEP;
1260 }
1261 if (mapping->a_ops->writepage == NULL)
1262 return PAGE_ACTIVATE;
1da177e4 1263
e0cd5e7f 1264 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1265 int res;
1266 struct writeback_control wbc = {
1267 .sync_mode = WB_SYNC_NONE,
1268 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1269 .range_start = 0,
1270 .range_end = LLONG_MAX,
1da177e4 1271 .for_reclaim = 1,
2282679f 1272 .swap_plug = plug,
1da177e4
LT
1273 };
1274
e0cd5e7f
MWO
1275 folio_set_reclaim(folio);
1276 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1277 if (res < 0)
e0cd5e7f 1278 handle_write_error(mapping, folio, res);
994fc28c 1279 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1280 folio_clear_reclaim(folio);
1da177e4
LT
1281 return PAGE_ACTIVATE;
1282 }
c661b078 1283
e0cd5e7f 1284 if (!folio_test_writeback(folio)) {
1da177e4 1285 /* synchronous write or broken a_ops? */
e0cd5e7f 1286 folio_clear_reclaim(folio);
1da177e4 1287 }
e0cd5e7f
MWO
1288 trace_mm_vmscan_write_folio(folio);
1289 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1290 return PAGE_SUCCESS;
1291 }
1292
1293 return PAGE_CLEAN;
1294}
1295
a649fd92 1296/*
49fd9b6d 1297 * Same as remove_mapping, but if the folio is removed from the mapping, it
e286781d 1298 * gets returned with a refcount of 0.
a649fd92 1299 */
be7c07d6 1300static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1301 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1302{
bd4c82c2 1303 int refcount;
aae466b0 1304 void *shadow = NULL;
c4843a75 1305
be7c07d6
MWO
1306 BUG_ON(!folio_test_locked(folio));
1307 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1308
be7c07d6 1309 if (!folio_test_swapcache(folio))
51b8c1fe 1310 spin_lock(&mapping->host->i_lock);
30472509 1311 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1312 /*
49fd9b6d 1313 * The non racy check for a busy folio.
0fd0e6b0
NP
1314 *
1315 * Must be careful with the order of the tests. When someone has
49fd9b6d
MWO
1316 * a ref to the folio, it may be possible that they dirty it then
1317 * drop the reference. So if the dirty flag is tested before the
1318 * refcount here, then the following race may occur:
0fd0e6b0
NP
1319 *
1320 * get_user_pages(&page);
1321 * [user mapping goes away]
1322 * write_to(page);
49fd9b6d
MWO
1323 * !folio_test_dirty(folio) [good]
1324 * folio_set_dirty(folio);
1325 * folio_put(folio);
1326 * !refcount(folio) [good, discard it]
0fd0e6b0
NP
1327 *
1328 * [oops, our write_to data is lost]
1329 *
1330 * Reversing the order of the tests ensures such a situation cannot
49fd9b6d
MWO
1331 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1332 * load is not satisfied before that of folio->_refcount.
0fd0e6b0 1333 *
49fd9b6d 1334 * Note that if the dirty flag is always set via folio_mark_dirty,
b93b0163 1335 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1336 */
be7c07d6
MWO
1337 refcount = 1 + folio_nr_pages(folio);
1338 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1339 goto cannot_free;
49fd9b6d 1340 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1341 if (unlikely(folio_test_dirty(folio))) {
1342 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1343 goto cannot_free;
e286781d 1344 }
49d2e9cc 1345
be7c07d6
MWO
1346 if (folio_test_swapcache(folio)) {
1347 swp_entry_t swap = folio_swap_entry(folio);
ac35a490
YZ
1348
1349 /* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */
aae466b0 1350 if (reclaimed && !mapping_exiting(mapping))
8927f647 1351 shadow = workingset_eviction(folio, target_memcg);
ac35a490 1352 mem_cgroup_swapout(folio, swap);
ceff9d33 1353 __delete_from_swap_cache(folio, swap, shadow);
30472509 1354 xa_unlock_irq(&mapping->i_pages);
4081f744 1355 put_swap_folio(folio, swap);
e286781d 1356 } else {
d2329aa0 1357 void (*free_folio)(struct folio *);
6072d13c 1358
d2329aa0 1359 free_folio = mapping->a_ops->free_folio;
a528910e
JW
1360 /*
1361 * Remember a shadow entry for reclaimed file cache in
1362 * order to detect refaults, thus thrashing, later on.
1363 *
1364 * But don't store shadows in an address space that is
238c3046 1365 * already exiting. This is not just an optimization,
a528910e
JW
1366 * inode reclaim needs to empty out the radix tree or
1367 * the nodes are lost. Don't plant shadows behind its
1368 * back.
f9fe48be
RZ
1369 *
1370 * We also don't store shadows for DAX mappings because the
49fd9b6d 1371 * only page cache folios found in these are zero pages
f9fe48be
RZ
1372 * covering holes, and because we don't want to mix DAX
1373 * exceptional entries and shadow exceptional entries in the
b93b0163 1374 * same address_space.
a528910e 1375 */
be7c07d6 1376 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1377 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1378 shadow = workingset_eviction(folio, target_memcg);
1379 __filemap_remove_folio(folio, shadow);
30472509 1380 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1381 if (mapping_shrinkable(mapping))
1382 inode_add_lru(mapping->host);
1383 spin_unlock(&mapping->host->i_lock);
6072d13c 1384
d2329aa0
MWO
1385 if (free_folio)
1386 free_folio(folio);
49d2e9cc
CL
1387 }
1388
49d2e9cc
CL
1389 return 1;
1390
1391cannot_free:
30472509 1392 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1393 if (!folio_test_swapcache(folio))
51b8c1fe 1394 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1395 return 0;
1396}
1397
5100da38
MWO
1398/**
1399 * remove_mapping() - Attempt to remove a folio from its mapping.
1400 * @mapping: The address space.
1401 * @folio: The folio to remove.
1402 *
1403 * If the folio is dirty, under writeback or if someone else has a ref
1404 * on it, removal will fail.
1405 * Return: The number of pages removed from the mapping. 0 if the folio
1406 * could not be removed.
1407 * Context: The caller should have a single refcount on the folio and
1408 * hold its lock.
e286781d 1409 */
5100da38 1410long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1411{
be7c07d6 1412 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1413 /*
5100da38 1414 * Unfreezing the refcount with 1 effectively
e286781d
NP
1415 * drops the pagecache ref for us without requiring another
1416 * atomic operation.
1417 */
be7c07d6 1418 folio_ref_unfreeze(folio, 1);
5100da38 1419 return folio_nr_pages(folio);
e286781d
NP
1420 }
1421 return 0;
1422}
1423
894bc310 1424/**
ca6d60f3
MWO
1425 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1426 * @folio: Folio to be returned to an LRU list.
894bc310 1427 *
ca6d60f3
MWO
1428 * Add previously isolated @folio to appropriate LRU list.
1429 * The folio may still be unevictable for other reasons.
894bc310 1430 *
ca6d60f3 1431 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1432 */
ca6d60f3 1433void folio_putback_lru(struct folio *folio)
894bc310 1434{
ca6d60f3
MWO
1435 folio_add_lru(folio);
1436 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1437}
1438
49fd9b6d
MWO
1439enum folio_references {
1440 FOLIOREF_RECLAIM,
1441 FOLIOREF_RECLAIM_CLEAN,
1442 FOLIOREF_KEEP,
1443 FOLIOREF_ACTIVATE,
dfc8d636
JW
1444};
1445
49fd9b6d 1446static enum folio_references folio_check_references(struct folio *folio,
dfc8d636
JW
1447 struct scan_control *sc)
1448{
d92013d1 1449 int referenced_ptes, referenced_folio;
dfc8d636 1450 unsigned long vm_flags;
dfc8d636 1451
b3ac0413
MWO
1452 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1453 &vm_flags);
d92013d1 1454 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1455
dfc8d636 1456 /*
d92013d1
MWO
1457 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1458 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1459 */
1460 if (vm_flags & VM_LOCKED)
49fd9b6d 1461 return FOLIOREF_ACTIVATE;
dfc8d636 1462
6d4675e6
MK
1463 /* rmap lock contention: rotate */
1464 if (referenced_ptes == -1)
49fd9b6d 1465 return FOLIOREF_KEEP;
6d4675e6 1466
64574746 1467 if (referenced_ptes) {
64574746 1468 /*
d92013d1 1469 * All mapped folios start out with page table
64574746 1470 * references from the instantiating fault, so we need
9030fb0b 1471 * to look twice if a mapped file/anon folio is used more
64574746
JW
1472 * than once.
1473 *
1474 * Mark it and spare it for another trip around the
1475 * inactive list. Another page table reference will
1476 * lead to its activation.
1477 *
d92013d1
MWO
1478 * Note: the mark is set for activated folios as well
1479 * so that recently deactivated but used folios are
64574746
JW
1480 * quickly recovered.
1481 */
d92013d1 1482 folio_set_referenced(folio);
64574746 1483
d92013d1 1484 if (referenced_folio || referenced_ptes > 1)
49fd9b6d 1485 return FOLIOREF_ACTIVATE;
64574746 1486
c909e993 1487 /*
d92013d1 1488 * Activate file-backed executable folios after first usage.
c909e993 1489 */
f19a27e3 1490 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
49fd9b6d 1491 return FOLIOREF_ACTIVATE;
c909e993 1492
49fd9b6d 1493 return FOLIOREF_KEEP;
64574746 1494 }
dfc8d636 1495
d92013d1 1496 /* Reclaim if clean, defer dirty folios to writeback */
f19a27e3 1497 if (referenced_folio && folio_is_file_lru(folio))
49fd9b6d 1498 return FOLIOREF_RECLAIM_CLEAN;
64574746 1499
49fd9b6d 1500 return FOLIOREF_RECLAIM;
dfc8d636
JW
1501}
1502
49fd9b6d 1503/* Check if a folio is dirty or under writeback */
e20c41b1 1504static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1505 bool *dirty, bool *writeback)
1506{
b4597226
MG
1507 struct address_space *mapping;
1508
e2be15f6 1509 /*
49fd9b6d 1510 * Anonymous folios are not handled by flushers and must be written
32a331a7 1511 * from reclaim context. Do not stall reclaim based on them.
49fd9b6d 1512 * MADV_FREE anonymous folios are put into inactive file list too.
32a331a7
ML
1513 * They could be mistakenly treated as file lru. So further anon
1514 * test is needed.
e2be15f6 1515 */
e20c41b1
MWO
1516 if (!folio_is_file_lru(folio) ||
1517 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1518 *dirty = false;
1519 *writeback = false;
1520 return;
1521 }
1522
e20c41b1
MWO
1523 /* By default assume that the folio flags are accurate */
1524 *dirty = folio_test_dirty(folio);
1525 *writeback = folio_test_writeback(folio);
b4597226
MG
1526
1527 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1528 if (!folio_test_private(folio))
b4597226
MG
1529 return;
1530
e20c41b1 1531 mapping = folio_mapping(folio);
b4597226 1532 if (mapping && mapping->a_ops->is_dirty_writeback)
520f301c 1533 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
e2be15f6
MG
1534}
1535
32008027 1536static struct page *alloc_demote_page(struct page *page, unsigned long private)
26aa2d19 1537{
32008027
JG
1538 struct page *target_page;
1539 nodemask_t *allowed_mask;
1540 struct migration_target_control *mtc;
1541
1542 mtc = (struct migration_target_control *)private;
1543
1544 allowed_mask = mtc->nmask;
1545 /*
1546 * make sure we allocate from the target node first also trying to
1547 * demote or reclaim pages from the target node via kswapd if we are
1548 * low on free memory on target node. If we don't do this and if
1549 * we have free memory on the slower(lower) memtier, we would start
1550 * allocating pages from slower(lower) memory tiers without even forcing
1551 * a demotion of cold pages from the target memtier. This can result
1552 * in the kernel placing hot pages in slower(lower) memory tiers.
1553 */
1554 mtc->nmask = NULL;
1555 mtc->gfp_mask |= __GFP_THISNODE;
1556 target_page = alloc_migration_target(page, (unsigned long)mtc);
1557 if (target_page)
1558 return target_page;
26aa2d19 1559
32008027
JG
1560 mtc->gfp_mask &= ~__GFP_THISNODE;
1561 mtc->nmask = allowed_mask;
1562
1563 return alloc_migration_target(page, (unsigned long)mtc);
26aa2d19
DH
1564}
1565
1566/*
49fd9b6d
MWO
1567 * Take folios on @demote_folios and attempt to demote them to another node.
1568 * Folios which are not demoted are left on @demote_folios.
26aa2d19 1569 */
49fd9b6d 1570static unsigned int demote_folio_list(struct list_head *demote_folios,
26aa2d19
DH
1571 struct pglist_data *pgdat)
1572{
1573 int target_nid = next_demotion_node(pgdat->node_id);
1574 unsigned int nr_succeeded;
32008027
JG
1575 nodemask_t allowed_mask;
1576
1577 struct migration_target_control mtc = {
1578 /*
1579 * Allocate from 'node', or fail quickly and quietly.
1580 * When this happens, 'page' will likely just be discarded
1581 * instead of migrated.
1582 */
1583 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1584 __GFP_NOMEMALLOC | GFP_NOWAIT,
1585 .nid = target_nid,
1586 .nmask = &allowed_mask
1587 };
26aa2d19 1588
49fd9b6d 1589 if (list_empty(demote_folios))
26aa2d19
DH
1590 return 0;
1591
1592 if (target_nid == NUMA_NO_NODE)
1593 return 0;
1594
32008027
JG
1595 node_get_allowed_targets(pgdat, &allowed_mask);
1596
26aa2d19 1597 /* Demotion ignores all cpuset and mempolicy settings */
49fd9b6d 1598 migrate_pages(demote_folios, alloc_demote_page, NULL,
32008027
JG
1599 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1600 &nr_succeeded);
26aa2d19 1601
668e4147
YS
1602 if (current_is_kswapd())
1603 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1604 else
1605 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1606
26aa2d19
DH
1607 return nr_succeeded;
1608}
1609
c28a0e96 1610static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
d791ea67
N
1611{
1612 if (gfp_mask & __GFP_FS)
1613 return true;
c28a0e96 1614 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
d791ea67
N
1615 return false;
1616 /*
1617 * We can "enter_fs" for swap-cache with only __GFP_IO
1618 * providing this isn't SWP_FS_OPS.
1619 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1620 * but that will never affect SWP_FS_OPS, so the data_race
1621 * is safe.
1622 */
b98c359f 1623 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
d791ea67
N
1624}
1625
1da177e4 1626/*
49fd9b6d 1627 * shrink_folio_list() returns the number of reclaimed pages
1da177e4 1628 */
49fd9b6d
MWO
1629static unsigned int shrink_folio_list(struct list_head *folio_list,
1630 struct pglist_data *pgdat, struct scan_control *sc,
1631 struct reclaim_stat *stat, bool ignore_references)
1632{
1633 LIST_HEAD(ret_folios);
1634 LIST_HEAD(free_folios);
1635 LIST_HEAD(demote_folios);
730ec8c0
MS
1636 unsigned int nr_reclaimed = 0;
1637 unsigned int pgactivate = 0;
26aa2d19 1638 bool do_demote_pass;
2282679f 1639 struct swap_iocb *plug = NULL;
1da177e4 1640
060f005f 1641 memset(stat, 0, sizeof(*stat));
1da177e4 1642 cond_resched();
26aa2d19 1643 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1644
26aa2d19 1645retry:
49fd9b6d 1646 while (!list_empty(folio_list)) {
1da177e4 1647 struct address_space *mapping;
be7c07d6 1648 struct folio *folio;
49fd9b6d 1649 enum folio_references references = FOLIOREF_RECLAIM;
d791ea67 1650 bool dirty, writeback;
98879b3b 1651 unsigned int nr_pages;
1da177e4
LT
1652
1653 cond_resched();
1654
49fd9b6d 1655 folio = lru_to_folio(folio_list);
be7c07d6 1656 list_del(&folio->lru);
1da177e4 1657
c28a0e96 1658 if (!folio_trylock(folio))
1da177e4
LT
1659 goto keep;
1660
c28a0e96 1661 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1da177e4 1662
c28a0e96 1663 nr_pages = folio_nr_pages(folio);
98879b3b 1664
c28a0e96 1665 /* Account the number of base pages */
98879b3b 1666 sc->nr_scanned += nr_pages;
80e43426 1667
c28a0e96 1668 if (unlikely(!folio_evictable(folio)))
ad6b6704 1669 goto activate_locked;
894bc310 1670
1bee2c16 1671 if (!sc->may_unmap && folio_mapped(folio))
80e43426
CL
1672 goto keep_locked;
1673
018ee47f
YZ
1674 /* folio_update_gen() tried to promote this page? */
1675 if (lru_gen_enabled() && !ignore_references &&
1676 folio_mapped(folio) && folio_test_referenced(folio))
1677 goto keep_locked;
1678
e2be15f6 1679 /*
894befec 1680 * The number of dirty pages determines if a node is marked
8cd7c588 1681 * reclaim_congested. kswapd will stall and start writing
c28a0e96 1682 * folios if the tail of the LRU is all dirty unqueued folios.
e2be15f6 1683 */
e20c41b1 1684 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1685 if (dirty || writeback)
c79b7b96 1686 stat->nr_dirty += nr_pages;
e2be15f6
MG
1687
1688 if (dirty && !writeback)
c79b7b96 1689 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1690
d04e8acd 1691 /*
c28a0e96
MWO
1692 * Treat this folio as congested if folios are cycling
1693 * through the LRU so quickly that the folios marked
1694 * for immediate reclaim are making it to the end of
1695 * the LRU a second time.
d04e8acd 1696 */
c28a0e96 1697 if (writeback && folio_test_reclaim(folio))
c79b7b96 1698 stat->nr_congested += nr_pages;
e2be15f6 1699
283aba9f 1700 /*
d33e4e14 1701 * If a folio at the tail of the LRU is under writeback, there
283aba9f
MG
1702 * are three cases to consider.
1703 *
c28a0e96
MWO
1704 * 1) If reclaim is encountering an excessive number
1705 * of folios under writeback and this folio has both
1706 * the writeback and reclaim flags set, then it
d33e4e14
MWO
1707 * indicates that folios are being queued for I/O but
1708 * are being recycled through the LRU before the I/O
1709 * can complete. Waiting on the folio itself risks an
1710 * indefinite stall if it is impossible to writeback
1711 * the folio due to I/O error or disconnected storage
1712 * so instead note that the LRU is being scanned too
1713 * quickly and the caller can stall after the folio
1714 * list has been processed.
283aba9f 1715 *
d33e4e14 1716 * 2) Global or new memcg reclaim encounters a folio that is
ecf5fc6e
MH
1717 * not marked for immediate reclaim, or the caller does not
1718 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
d33e4e14 1719 * not to fs). In this case mark the folio for immediate
97c9341f 1720 * reclaim and continue scanning.
283aba9f 1721 *
d791ea67 1722 * Require may_enter_fs() because we would wait on fs, which
d33e4e14
MWO
1723 * may not have submitted I/O yet. And the loop driver might
1724 * enter reclaim, and deadlock if it waits on a folio for
283aba9f
MG
1725 * which it is needed to do the write (loop masks off
1726 * __GFP_IO|__GFP_FS for this reason); but more thought
1727 * would probably show more reasons.
1728 *
d33e4e14
MWO
1729 * 3) Legacy memcg encounters a folio that already has the
1730 * reclaim flag set. memcg does not have any dirty folio
283aba9f 1731 * throttling so we could easily OOM just because too many
d33e4e14 1732 * folios are in writeback and there is nothing else to
283aba9f 1733 * reclaim. Wait for the writeback to complete.
c55e8d03 1734 *
d33e4e14
MWO
1735 * In cases 1) and 2) we activate the folios to get them out of
1736 * the way while we continue scanning for clean folios on the
c55e8d03
JW
1737 * inactive list and refilling from the active list. The
1738 * observation here is that waiting for disk writes is more
1739 * expensive than potentially causing reloads down the line.
1740 * Since they're marked for immediate reclaim, they won't put
1741 * memory pressure on the cache working set any longer than it
1742 * takes to write them to disk.
283aba9f 1743 */
d33e4e14 1744 if (folio_test_writeback(folio)) {
283aba9f
MG
1745 /* Case 1 above */
1746 if (current_is_kswapd() &&
d33e4e14 1747 folio_test_reclaim(folio) &&
599d0c95 1748 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1749 stat->nr_immediate += nr_pages;
c55e8d03 1750 goto activate_locked;
283aba9f
MG
1751
1752 /* Case 2 above */
b5ead35e 1753 } else if (writeback_throttling_sane(sc) ||
d33e4e14 1754 !folio_test_reclaim(folio) ||
c28a0e96 1755 !may_enter_fs(folio, sc->gfp_mask)) {
c3b94f44 1756 /*
d33e4e14 1757 * This is slightly racy -
c28a0e96
MWO
1758 * folio_end_writeback() might have
1759 * just cleared the reclaim flag, then
1760 * setting the reclaim flag here ends up
1761 * interpreted as the readahead flag - but
1762 * that does not matter enough to care.
1763 * What we do want is for this folio to
1764 * have the reclaim flag set next time
1765 * memcg reclaim reaches the tests above,
1766 * so it will then wait for writeback to
1767 * avoid OOM; and it's also appropriate
d33e4e14 1768 * in global reclaim.
c3b94f44 1769 */
d33e4e14 1770 folio_set_reclaim(folio);
c79b7b96 1771 stat->nr_writeback += nr_pages;
c55e8d03 1772 goto activate_locked;
283aba9f
MG
1773
1774 /* Case 3 above */
1775 } else {
d33e4e14
MWO
1776 folio_unlock(folio);
1777 folio_wait_writeback(folio);
1778 /* then go back and try same folio again */
49fd9b6d 1779 list_add_tail(&folio->lru, folio_list);
7fadc820 1780 continue;
e62e384e 1781 }
c661b078 1782 }
1da177e4 1783
8940b34a 1784 if (!ignore_references)
d92013d1 1785 references = folio_check_references(folio, sc);
02c6de8d 1786
dfc8d636 1787 switch (references) {
49fd9b6d 1788 case FOLIOREF_ACTIVATE:
1da177e4 1789 goto activate_locked;
49fd9b6d 1790 case FOLIOREF_KEEP:
98879b3b 1791 stat->nr_ref_keep += nr_pages;
64574746 1792 goto keep_locked;
49fd9b6d
MWO
1793 case FOLIOREF_RECLAIM:
1794 case FOLIOREF_RECLAIM_CLEAN:
c28a0e96 1795 ; /* try to reclaim the folio below */
dfc8d636 1796 }
1da177e4 1797
26aa2d19 1798 /*
c28a0e96 1799 * Before reclaiming the folio, try to relocate
26aa2d19
DH
1800 * its contents to another node.
1801 */
1802 if (do_demote_pass &&
c28a0e96 1803 (thp_migration_supported() || !folio_test_large(folio))) {
49fd9b6d 1804 list_add(&folio->lru, &demote_folios);
c28a0e96 1805 folio_unlock(folio);
26aa2d19
DH
1806 continue;
1807 }
1808
1da177e4
LT
1809 /*
1810 * Anonymous process memory has backing store?
1811 * Try to allocate it some swap space here.
c28a0e96 1812 * Lazyfree folio could be freed directly
1da177e4 1813 */
c28a0e96
MWO
1814 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1815 if (!folio_test_swapcache(folio)) {
bd4c82c2
YH
1816 if (!(sc->gfp_mask & __GFP_IO))
1817 goto keep_locked;
d4b4084a 1818 if (folio_maybe_dma_pinned(folio))
feb889fb 1819 goto keep_locked;
c28a0e96
MWO
1820 if (folio_test_large(folio)) {
1821 /* cannot split folio, skip it */
d4b4084a 1822 if (!can_split_folio(folio, NULL))
bd4c82c2
YH
1823 goto activate_locked;
1824 /*
c28a0e96 1825 * Split folios without a PMD map right
bd4c82c2
YH
1826 * away. Chances are some or all of the
1827 * tail pages can be freed without IO.
1828 */
d4b4084a 1829 if (!folio_entire_mapcount(folio) &&
346cf613 1830 split_folio_to_list(folio,
49fd9b6d 1831 folio_list))
bd4c82c2
YH
1832 goto activate_locked;
1833 }
09c02e56
MWO
1834 if (!add_to_swap(folio)) {
1835 if (!folio_test_large(folio))
98879b3b 1836 goto activate_locked_split;
bd4c82c2 1837 /* Fallback to swap normal pages */
346cf613 1838 if (split_folio_to_list(folio,
49fd9b6d 1839 folio_list))
bd4c82c2 1840 goto activate_locked;
fe490cc0
YH
1841#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1842 count_vm_event(THP_SWPOUT_FALLBACK);
1843#endif
09c02e56 1844 if (!add_to_swap(folio))
98879b3b 1845 goto activate_locked_split;
bd4c82c2 1846 }
bd4c82c2 1847 }
c28a0e96
MWO
1848 } else if (folio_test_swapbacked(folio) &&
1849 folio_test_large(folio)) {
1850 /* Split shmem folio */
49fd9b6d 1851 if (split_folio_to_list(folio, folio_list))
7751b2da 1852 goto keep_locked;
e2be15f6 1853 }
1da177e4 1854
98879b3b 1855 /*
c28a0e96
MWO
1856 * If the folio was split above, the tail pages will make
1857 * their own pass through this function and be accounted
1858 * then.
98879b3b 1859 */
c28a0e96 1860 if ((nr_pages > 1) && !folio_test_large(folio)) {
98879b3b
YS
1861 sc->nr_scanned -= (nr_pages - 1);
1862 nr_pages = 1;
1863 }
1864
1da177e4 1865 /*
1bee2c16 1866 * The folio is mapped into the page tables of one or more
1da177e4
LT
1867 * processes. Try to unmap it here.
1868 */
1bee2c16 1869 if (folio_mapped(folio)) {
013339df 1870 enum ttu_flags flags = TTU_BATCH_FLUSH;
1bee2c16 1871 bool was_swapbacked = folio_test_swapbacked(folio);
bd4c82c2 1872
1bee2c16 1873 if (folio_test_pmd_mappable(folio))
bd4c82c2 1874 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1875
869f7ee6 1876 try_to_unmap(folio, flags);
1bee2c16 1877 if (folio_mapped(folio)) {
98879b3b 1878 stat->nr_unmap_fail += nr_pages;
1bee2c16
MWO
1879 if (!was_swapbacked &&
1880 folio_test_swapbacked(folio))
1f318a9b 1881 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1882 goto activate_locked;
1da177e4
LT
1883 }
1884 }
1885
5441d490 1886 mapping = folio_mapping(folio);
49bd2bf9 1887 if (folio_test_dirty(folio)) {
ee72886d 1888 /*
49bd2bf9 1889 * Only kswapd can writeback filesystem folios
4eda4823 1890 * to avoid risk of stack overflow. But avoid
49bd2bf9 1891 * injecting inefficient single-folio I/O into
4eda4823 1892 * flusher writeback as much as possible: only
49bd2bf9
MWO
1893 * write folios when we've encountered many
1894 * dirty folios, and when we've already scanned
1895 * the rest of the LRU for clean folios and see
1896 * the same dirty folios again (with the reclaim
1897 * flag set).
ee72886d 1898 */
49bd2bf9
MWO
1899 if (folio_is_file_lru(folio) &&
1900 (!current_is_kswapd() ||
1901 !folio_test_reclaim(folio) ||
4eda4823 1902 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1903 /*
1904 * Immediately reclaim when written back.
49bd2bf9
MWO
1905 * Similar in principle to deactivate_page()
1906 * except we already have the folio isolated
49ea7eb6
MG
1907 * and know it's dirty
1908 */
49bd2bf9
MWO
1909 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1910 nr_pages);
1911 folio_set_reclaim(folio);
49ea7eb6 1912
c55e8d03 1913 goto activate_locked;
ee72886d
MG
1914 }
1915
49fd9b6d 1916 if (references == FOLIOREF_RECLAIM_CLEAN)
1da177e4 1917 goto keep_locked;
c28a0e96 1918 if (!may_enter_fs(folio, sc->gfp_mask))
1da177e4 1919 goto keep_locked;
52a8363e 1920 if (!sc->may_writepage)
1da177e4
LT
1921 goto keep_locked;
1922
d950c947 1923 /*
49bd2bf9
MWO
1924 * Folio is dirty. Flush the TLB if a writable entry
1925 * potentially exists to avoid CPU writes after I/O
d950c947
MG
1926 * starts and then write it out here.
1927 */
1928 try_to_unmap_flush_dirty();
2282679f 1929 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1930 case PAGE_KEEP:
1931 goto keep_locked;
1932 case PAGE_ACTIVATE:
1933 goto activate_locked;
1934 case PAGE_SUCCESS:
c79b7b96 1935 stat->nr_pageout += nr_pages;
96f8bf4f 1936
49bd2bf9 1937 if (folio_test_writeback(folio))
41ac1999 1938 goto keep;
49bd2bf9 1939 if (folio_test_dirty(folio))
1da177e4 1940 goto keep;
7d3579e8 1941
1da177e4
LT
1942 /*
1943 * A synchronous write - probably a ramdisk. Go
49bd2bf9 1944 * ahead and try to reclaim the folio.
1da177e4 1945 */
49bd2bf9 1946 if (!folio_trylock(folio))
1da177e4 1947 goto keep;
49bd2bf9
MWO
1948 if (folio_test_dirty(folio) ||
1949 folio_test_writeback(folio))
1da177e4 1950 goto keep_locked;
49bd2bf9 1951 mapping = folio_mapping(folio);
01359eb2 1952 fallthrough;
1da177e4 1953 case PAGE_CLEAN:
49bd2bf9 1954 ; /* try to free the folio below */
1da177e4
LT
1955 }
1956 }
1957
1958 /*
0a36111c
MWO
1959 * If the folio has buffers, try to free the buffer
1960 * mappings associated with this folio. If we succeed
1961 * we try to free the folio as well.
1da177e4 1962 *
0a36111c
MWO
1963 * We do this even if the folio is dirty.
1964 * filemap_release_folio() does not perform I/O, but it
1965 * is possible for a folio to have the dirty flag set,
1966 * but it is actually clean (all its buffers are clean).
1967 * This happens if the buffers were written out directly,
1968 * with submit_bh(). ext3 will do this, as well as
1969 * the blockdev mapping. filemap_release_folio() will
1970 * discover that cleanness and will drop the buffers
1971 * and mark the folio clean - it can be freed.
1da177e4 1972 *
0a36111c
MWO
1973 * Rarely, folios can have buffers and no ->mapping.
1974 * These are the folios which were not successfully
1975 * invalidated in truncate_cleanup_folio(). We try to
1976 * drop those buffers here and if that worked, and the
1977 * folio is no longer mapped into process address space
1978 * (refcount == 1) it can be freed. Otherwise, leave
1979 * the folio on the LRU so it is swappable.
1da177e4 1980 */
0a36111c
MWO
1981 if (folio_has_private(folio)) {
1982 if (!filemap_release_folio(folio, sc->gfp_mask))
1da177e4 1983 goto activate_locked;
0a36111c
MWO
1984 if (!mapping && folio_ref_count(folio) == 1) {
1985 folio_unlock(folio);
1986 if (folio_put_testzero(folio))
e286781d
NP
1987 goto free_it;
1988 else {
1989 /*
1990 * rare race with speculative reference.
1991 * the speculative reference will free
0a36111c 1992 * this folio shortly, so we may
e286781d
NP
1993 * increment nr_reclaimed here (and
1994 * leave it off the LRU).
1995 */
9aafcffc 1996 nr_reclaimed += nr_pages;
e286781d
NP
1997 continue;
1998 }
1999 }
1da177e4
LT
2000 }
2001
64daa5d8 2002 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
802a3a92 2003 /* follow __remove_mapping for reference */
64daa5d8 2004 if (!folio_ref_freeze(folio, 1))
802a3a92 2005 goto keep_locked;
d17be2d9 2006 /*
64daa5d8 2007 * The folio has only one reference left, which is
d17be2d9 2008 * from the isolation. After the caller puts the
64daa5d8
MWO
2009 * folio back on the lru and drops the reference, the
2010 * folio will be freed anyway. It doesn't matter
2011 * which lru it goes on. So we don't bother checking
2012 * the dirty flag here.
d17be2d9 2013 */
64daa5d8
MWO
2014 count_vm_events(PGLAZYFREED, nr_pages);
2015 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
be7c07d6 2016 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 2017 sc->target_mem_cgroup))
802a3a92 2018 goto keep_locked;
9a1ea439 2019
c28a0e96 2020 folio_unlock(folio);
e286781d 2021free_it:
98879b3b 2022 /*
c28a0e96
MWO
2023 * Folio may get swapped out as a whole, need to account
2024 * all pages in it.
98879b3b
YS
2025 */
2026 nr_reclaimed += nr_pages;
abe4c3b5
MG
2027
2028 /*
49fd9b6d 2029 * Is there need to periodically free_folio_list? It would
abe4c3b5
MG
2030 * appear not as the counts should be low
2031 */
c28a0e96 2032 if (unlikely(folio_test_large(folio)))
5375336c 2033 destroy_large_folio(folio);
7ae88534 2034 else
49fd9b6d 2035 list_add(&folio->lru, &free_folios);
1da177e4
LT
2036 continue;
2037
98879b3b
YS
2038activate_locked_split:
2039 /*
2040 * The tail pages that are failed to add into swap cache
2041 * reach here. Fixup nr_scanned and nr_pages.
2042 */
2043 if (nr_pages > 1) {
2044 sc->nr_scanned -= (nr_pages - 1);
2045 nr_pages = 1;
2046 }
1da177e4 2047activate_locked:
68a22394 2048 /* Not a candidate for swapping, so reclaim swap space. */
246b6480 2049 if (folio_test_swapcache(folio) &&
9202d527 2050 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
bdb0ed54 2051 folio_free_swap(folio);
246b6480
MWO
2052 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2053 if (!folio_test_mlocked(folio)) {
2054 int type = folio_is_file_lru(folio);
2055 folio_set_active(folio);
98879b3b 2056 stat->nr_activate[type] += nr_pages;
246b6480 2057 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
ad6b6704 2058 }
1da177e4 2059keep_locked:
c28a0e96 2060 folio_unlock(folio);
1da177e4 2061keep:
49fd9b6d 2062 list_add(&folio->lru, &ret_folios);
c28a0e96
MWO
2063 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2064 folio_test_unevictable(folio), folio);
1da177e4 2065 }
49fd9b6d 2066 /* 'folio_list' is always empty here */
26aa2d19 2067
c28a0e96 2068 /* Migrate folios selected for demotion */
49fd9b6d
MWO
2069 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2070 /* Folios that could not be demoted are still in @demote_folios */
2071 if (!list_empty(&demote_folios)) {
2072 /* Folios which weren't demoted go back on @folio_list for retry: */
2073 list_splice_init(&demote_folios, folio_list);
26aa2d19
DH
2074 do_demote_pass = false;
2075 goto retry;
2076 }
abe4c3b5 2077
98879b3b
YS
2078 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2079
49fd9b6d 2080 mem_cgroup_uncharge_list(&free_folios);
72b252ae 2081 try_to_unmap_flush();
49fd9b6d 2082 free_unref_page_list(&free_folios);
abe4c3b5 2083
49fd9b6d 2084 list_splice(&ret_folios, folio_list);
886cf190 2085 count_vm_events(PGACTIVATE, pgactivate);
060f005f 2086
2282679f
N
2087 if (plug)
2088 swap_write_unplug(plug);
05ff5137 2089 return nr_reclaimed;
1da177e4
LT
2090}
2091
730ec8c0 2092unsigned int reclaim_clean_pages_from_list(struct zone *zone,
49fd9b6d 2093 struct list_head *folio_list)
02c6de8d
MK
2094{
2095 struct scan_control sc = {
2096 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
2097 .may_unmap = 1,
2098 };
1f318a9b 2099 struct reclaim_stat stat;
730ec8c0 2100 unsigned int nr_reclaimed;
b8cecb93
MWO
2101 struct folio *folio, *next;
2102 LIST_HEAD(clean_folios);
2d2b8d2b 2103 unsigned int noreclaim_flag;
02c6de8d 2104
b8cecb93
MWO
2105 list_for_each_entry_safe(folio, next, folio_list, lru) {
2106 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2107 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2108 !folio_test_unevictable(folio)) {
2109 folio_clear_active(folio);
2110 list_move(&folio->lru, &clean_folios);
02c6de8d
MK
2111 }
2112 }
2113
2d2b8d2b
YZ
2114 /*
2115 * We should be safe here since we are only dealing with file pages and
2116 * we are not kswapd and therefore cannot write dirty file pages. But
2117 * call memalloc_noreclaim_save() anyway, just in case these conditions
2118 * change in the future.
2119 */
2120 noreclaim_flag = memalloc_noreclaim_save();
49fd9b6d 2121 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
013339df 2122 &stat, true);
2d2b8d2b
YZ
2123 memalloc_noreclaim_restore(noreclaim_flag);
2124
b8cecb93 2125 list_splice(&clean_folios, folio_list);
2da9f630
NP
2126 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2127 -(long)nr_reclaimed);
1f318a9b
JK
2128 /*
2129 * Since lazyfree pages are isolated from file LRU from the beginning,
2130 * they will rotate back to anonymous LRU in the end if it failed to
2131 * discard so isolated count will be mismatched.
2132 * Compensate the isolated count for both LRU lists.
2133 */
2134 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2135 stat.nr_lazyfree_fail);
2136 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2137 -(long)stat.nr_lazyfree_fail);
1f318a9b 2138 return nr_reclaimed;
02c6de8d
MK
2139}
2140
7ee36a14
MG
2141/*
2142 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2143 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2144 */
2145static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2146 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2147{
7ee36a14
MG
2148 int zid;
2149
7ee36a14
MG
2150 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2151 if (!nr_zone_taken[zid])
2152 continue;
2153
a892cb6b 2154 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2155 }
2156
7ee36a14
MG
2157}
2158
f611fab7 2159/*
15b44736
HD
2160 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2161 *
2162 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2163 * shrink the lists perform better by taking out a batch of pages
2164 * and working on them outside the LRU lock.
2165 *
2166 * For pagecache intensive workloads, this function is the hottest
2167 * spot in the kernel (apart from copy_*_user functions).
2168 *
15b44736 2169 * Lru_lock must be held before calling this function.
1da177e4 2170 *
791b48b6 2171 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2172 * @lruvec: The LRU vector to pull pages from.
1da177e4 2173 * @dst: The temp list to put pages on to.
f626012d 2174 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2175 * @sc: The scan_control struct for this reclaim session
3cb99451 2176 * @lru: LRU list id for isolating
1da177e4
LT
2177 *
2178 * returns how many pages were moved onto *@dst.
2179 */
49fd9b6d 2180static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
5dc35979 2181 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2182 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2183 enum lru_list lru)
1da177e4 2184{
75b00af7 2185 struct list_head *src = &lruvec->lists[lru];
69e05944 2186 unsigned long nr_taken = 0;
599d0c95 2187 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2188 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2189 unsigned long skipped = 0;
791b48b6 2190 unsigned long scan, total_scan, nr_pages;
166e3d32 2191 LIST_HEAD(folios_skipped);
1da177e4 2192
98879b3b 2193 total_scan = 0;
791b48b6 2194 scan = 0;
98879b3b 2195 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2196 struct list_head *move_to = src;
166e3d32 2197 struct folio *folio;
5ad333eb 2198
166e3d32
MWO
2199 folio = lru_to_folio(src);
2200 prefetchw_prev_lru_folio(folio, src, flags);
1da177e4 2201
166e3d32 2202 nr_pages = folio_nr_pages(folio);
98879b3b
YS
2203 total_scan += nr_pages;
2204
166e3d32
MWO
2205 if (folio_zonenum(folio) > sc->reclaim_idx) {
2206 nr_skipped[folio_zonenum(folio)] += nr_pages;
2207 move_to = &folios_skipped;
89f6c88a 2208 goto move;
b2e18757
MG
2209 }
2210
791b48b6 2211 /*
166e3d32
MWO
2212 * Do not count skipped folios because that makes the function
2213 * return with no isolated folios if the LRU mostly contains
2214 * ineligible folios. This causes the VM to not reclaim any
2215 * folios, triggering a premature OOM.
2216 * Account all pages in a folio.
791b48b6 2217 */
98879b3b 2218 scan += nr_pages;
89f6c88a 2219
166e3d32 2220 if (!folio_test_lru(folio))
89f6c88a 2221 goto move;
166e3d32 2222 if (!sc->may_unmap && folio_mapped(folio))
89f6c88a
HD
2223 goto move;
2224
c2135f7c 2225 /*
166e3d32
MWO
2226 * Be careful not to clear the lru flag until after we're
2227 * sure the folio is not being freed elsewhere -- the
2228 * folio release code relies on it.
c2135f7c 2229 */
166e3d32 2230 if (unlikely(!folio_try_get(folio)))
89f6c88a 2231 goto move;
5ad333eb 2232
166e3d32
MWO
2233 if (!folio_test_clear_lru(folio)) {
2234 /* Another thread is already isolating this folio */
2235 folio_put(folio);
89f6c88a 2236 goto move;
5ad333eb 2237 }
c2135f7c
AS
2238
2239 nr_taken += nr_pages;
166e3d32 2240 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
89f6c88a
HD
2241 move_to = dst;
2242move:
166e3d32 2243 list_move(&folio->lru, move_to);
1da177e4
LT
2244 }
2245
b2e18757 2246 /*
166e3d32 2247 * Splice any skipped folios to the start of the LRU list. Note that
b2e18757
MG
2248 * this disrupts the LRU order when reclaiming for lower zones but
2249 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
166e3d32 2250 * scanning would soon rescan the same folios to skip and waste lots
b2cb6826 2251 * of cpu cycles.
b2e18757 2252 */
166e3d32 2253 if (!list_empty(&folios_skipped)) {
7cc30fcf
MG
2254 int zid;
2255
166e3d32 2256 list_splice(&folios_skipped, src);
7cc30fcf
MG
2257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2258 if (!nr_skipped[zid])
2259 continue;
2260
2261 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2262 skipped += nr_skipped[zid];
7cc30fcf
MG
2263 }
2264 }
791b48b6 2265 *nr_scanned = total_scan;
1265e3a6 2266 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2267 total_scan, skipped, nr_taken,
2268 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2269 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2270 return nr_taken;
2271}
2272
62695a84 2273/**
d1d8a3b4
MWO
2274 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2275 * @folio: Folio to isolate from its LRU list.
62695a84 2276 *
d1d8a3b4
MWO
2277 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2278 * corresponding to whatever LRU list the folio was on.
62695a84 2279 *
d1d8a3b4
MWO
2280 * The folio will have its LRU flag cleared. If it was found on the
2281 * active list, it will have the Active flag set. If it was found on the
2282 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2283 * may need to be cleared by the caller before letting the page go.
62695a84 2284 *
d1d8a3b4 2285 * Context:
a5d09bed 2286 *
49fd9b6d
MWO
2287 * (1) Must be called with an elevated refcount on the folio. This is a
2288 * fundamental difference from isolate_lru_folios() (which is called
62695a84 2289 * without a stable reference).
d1d8a3b4
MWO
2290 * (2) The lru_lock must not be held.
2291 * (3) Interrupts must be enabled.
2292 *
2293 * Return: 0 if the folio was removed from an LRU list.
2294 * -EBUSY if the folio was not on an LRU list.
62695a84 2295 */
d1d8a3b4 2296int folio_isolate_lru(struct folio *folio)
62695a84
NP
2297{
2298 int ret = -EBUSY;
2299
d1d8a3b4 2300 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2301
d1d8a3b4 2302 if (folio_test_clear_lru(folio)) {
fa9add64 2303 struct lruvec *lruvec;
62695a84 2304
d1d8a3b4 2305 folio_get(folio);
e809c3fe 2306 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2307 lruvec_del_folio(lruvec, folio);
6168d0da 2308 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2309 ret = 0;
62695a84 2310 }
d25b5bd8 2311
62695a84
NP
2312 return ret;
2313}
2314
35cd7815 2315/*
d37dd5dc 2316 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2317 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2318 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2319 * the LRU list will go small and be scanned faster than necessary, leading to
2320 * unnecessary swapping, thrashing and OOM.
35cd7815 2321 */
599d0c95 2322static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2323 struct scan_control *sc)
2324{
2325 unsigned long inactive, isolated;
d818fca1 2326 bool too_many;
35cd7815
RR
2327
2328 if (current_is_kswapd())
2329 return 0;
2330
b5ead35e 2331 if (!writeback_throttling_sane(sc))
35cd7815
RR
2332 return 0;
2333
2334 if (file) {
599d0c95
MG
2335 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2336 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2337 } else {
599d0c95
MG
2338 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2339 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2340 }
2341
3cf23841
FW
2342 /*
2343 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2344 * won't get blocked by normal direct-reclaimers, forming a circular
2345 * deadlock.
2346 */
d0164adc 2347 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2348 inactive >>= 3;
2349
d818fca1
MG
2350 too_many = isolated > inactive;
2351
2352 /* Wake up tasks throttled due to too_many_isolated. */
2353 if (!too_many)
2354 wake_throttle_isolated(pgdat);
2355
2356 return too_many;
35cd7815
RR
2357}
2358
a222f341 2359/*
49fd9b6d 2360 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
ff00a170 2361 * On return, @list is reused as a list of folios to be freed by the caller.
a222f341
KT
2362 *
2363 * Returns the number of pages moved to the given lruvec.
2364 */
49fd9b6d
MWO
2365static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2366 struct list_head *list)
66635629 2367{
a222f341 2368 int nr_pages, nr_moved = 0;
ff00a170 2369 LIST_HEAD(folios_to_free);
66635629 2370
a222f341 2371 while (!list_empty(list)) {
ff00a170
MWO
2372 struct folio *folio = lru_to_folio(list);
2373
2374 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2375 list_del(&folio->lru);
2376 if (unlikely(!folio_evictable(folio))) {
6168d0da 2377 spin_unlock_irq(&lruvec->lru_lock);
ff00a170 2378 folio_putback_lru(folio);
6168d0da 2379 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2380 continue;
2381 }
fa9add64 2382
3d06afab 2383 /*
ff00a170 2384 * The folio_set_lru needs to be kept here for list integrity.
3d06afab 2385 * Otherwise:
49fd9b6d 2386 * #0 move_folios_to_lru #1 release_pages
ff00a170
MWO
2387 * if (!folio_put_testzero())
2388 * if (folio_put_testzero())
2389 * !lru //skip lru_lock
2390 * folio_set_lru()
2391 * list_add(&folio->lru,)
2392 * list_add(&folio->lru,)
3d06afab 2393 */
ff00a170 2394 folio_set_lru(folio);
a222f341 2395
ff00a170
MWO
2396 if (unlikely(folio_put_testzero(folio))) {
2397 __folio_clear_lru_flags(folio);
2bcf8879 2398
ff00a170 2399 if (unlikely(folio_test_large(folio))) {
6168d0da 2400 spin_unlock_irq(&lruvec->lru_lock);
5375336c 2401 destroy_large_folio(folio);
6168d0da 2402 spin_lock_irq(&lruvec->lru_lock);
2bcf8879 2403 } else
ff00a170 2404 list_add(&folio->lru, &folios_to_free);
3d06afab
AS
2405
2406 continue;
66635629 2407 }
3d06afab 2408
afca9157
AS
2409 /*
2410 * All pages were isolated from the same lruvec (and isolation
2411 * inhibits memcg migration).
2412 */
ff00a170
MWO
2413 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2414 lruvec_add_folio(lruvec, folio);
2415 nr_pages = folio_nr_pages(folio);
3d06afab 2416 nr_moved += nr_pages;
ff00a170 2417 if (folio_test_active(folio))
3d06afab 2418 workingset_age_nonresident(lruvec, nr_pages);
66635629 2419 }
66635629 2420
3f79768f
HD
2421 /*
2422 * To save our caller's stack, now use input list for pages to free.
2423 */
ff00a170 2424 list_splice(&folios_to_free, list);
a222f341
KT
2425
2426 return nr_moved;
66635629
MG
2427}
2428
399ba0b9 2429/*
5829f7db
ML
2430 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2431 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2432 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2433 */
2434static int current_may_throttle(void)
2435{
b9b1335e 2436 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2437}
2438
1da177e4 2439/*
b2e18757 2440 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2441 * of reclaimed pages
1da177e4 2442 */
49fd9b6d
MWO
2443static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2444 struct lruvec *lruvec, struct scan_control *sc,
2445 enum lru_list lru)
1da177e4 2446{
49fd9b6d 2447 LIST_HEAD(folio_list);
e247dbce 2448 unsigned long nr_scanned;
730ec8c0 2449 unsigned int nr_reclaimed = 0;
e247dbce 2450 unsigned long nr_taken;
060f005f 2451 struct reclaim_stat stat;
497a6c1b 2452 bool file = is_file_lru(lru);
f46b7912 2453 enum vm_event_item item;
599d0c95 2454 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2455 bool stalled = false;
78dc583d 2456
599d0c95 2457 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2458 if (stalled)
2459 return 0;
2460
2461 /* wait a bit for the reclaimer. */
db73ee0d 2462 stalled = true;
c3f4a9a2 2463 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2464
2465 /* We are about to die and free our memory. Return now. */
2466 if (fatal_signal_pending(current))
2467 return SWAP_CLUSTER_MAX;
2468 }
2469
1da177e4 2470 lru_add_drain();
f80c0673 2471
6168d0da 2472 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2473
49fd9b6d 2474 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
a9e7c39f 2475 &nr_scanned, sc, lru);
95d918fc 2476
599d0c95 2477 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2478 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2479 if (!cgroup_reclaim(sc))
f46b7912
KT
2480 __count_vm_events(item, nr_scanned);
2481 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2482 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2483
6168d0da 2484 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2485
d563c050 2486 if (nr_taken == 0)
66635629 2487 return 0;
5ad333eb 2488
49fd9b6d 2489 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
c661b078 2490
6168d0da 2491 spin_lock_irq(&lruvec->lru_lock);
49fd9b6d 2492 move_folios_to_lru(lruvec, &folio_list);
497a6c1b
JW
2493
2494 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2495 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2496 if (!cgroup_reclaim(sc))
f46b7912
KT
2497 __count_vm_events(item, nr_reclaimed);
2498 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2499 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2500 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2501
75cc3c91 2502 lru_note_cost(lruvec, file, stat.nr_pageout);
49fd9b6d
MWO
2503 mem_cgroup_uncharge_list(&folio_list);
2504 free_unref_page_list(&folio_list);
e11da5b4 2505
1c610d5f 2506 /*
49fd9b6d 2507 * If dirty folios are scanned that are not queued for IO, it
1c610d5f 2508 * implies that flushers are not doing their job. This can
49fd9b6d 2509 * happen when memory pressure pushes dirty folios to the end of
1c610d5f
AR
2510 * the LRU before the dirty limits are breached and the dirty
2511 * data has expired. It can also happen when the proportion of
49fd9b6d 2512 * dirty folios grows not through writes but through memory
1c610d5f
AR
2513 * pressure reclaiming all the clean cache. And in some cases,
2514 * the flushers simply cannot keep up with the allocation
2515 * rate. Nudge the flusher threads in case they are asleep.
2516 */
2517 if (stat.nr_unqueued_dirty == nr_taken)
2518 wakeup_flusher_threads(WB_REASON_VMSCAN);
2519
d108c772
AR
2520 sc->nr.dirty += stat.nr_dirty;
2521 sc->nr.congested += stat.nr_congested;
2522 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2523 sc->nr.writeback += stat.nr_writeback;
2524 sc->nr.immediate += stat.nr_immediate;
2525 sc->nr.taken += nr_taken;
2526 if (file)
2527 sc->nr.file_taken += nr_taken;
8e950282 2528
599d0c95 2529 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2530 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2531 return nr_reclaimed;
1da177e4
LT
2532}
2533
15b44736 2534/*
07f67a8d 2535 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
15b44736 2536 *
07f67a8d 2537 * We move them the other way if the folio is referenced by one or more
15b44736
HD
2538 * processes.
2539 *
07f67a8d 2540 * If the folios are mostly unmapped, the processing is fast and it is
15b44736 2541 * appropriate to hold lru_lock across the whole operation. But if
07f67a8d
MWO
2542 * the folios are mapped, the processing is slow (folio_referenced()), so
2543 * we should drop lru_lock around each folio. It's impossible to balance
2544 * this, so instead we remove the folios from the LRU while processing them.
2545 * It is safe to rely on the active flag against the non-LRU folios in here
2546 * because nobody will play with that bit on a non-LRU folio.
15b44736 2547 *
07f67a8d
MWO
2548 * The downside is that we have to touch folio->_refcount against each folio.
2549 * But we had to alter folio->flags anyway.
15b44736 2550 */
f626012d 2551static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2552 struct lruvec *lruvec,
f16015fb 2553 struct scan_control *sc,
9e3b2f8c 2554 enum lru_list lru)
1da177e4 2555{
44c241f1 2556 unsigned long nr_taken;
f626012d 2557 unsigned long nr_scanned;
6fe6b7e3 2558 unsigned long vm_flags;
07f67a8d 2559 LIST_HEAD(l_hold); /* The folios which were snipped off */
8cab4754 2560 LIST_HEAD(l_active);
b69408e8 2561 LIST_HEAD(l_inactive);
9d998b4f
MH
2562 unsigned nr_deactivate, nr_activate;
2563 unsigned nr_rotated = 0;
3cb99451 2564 int file = is_file_lru(lru);
599d0c95 2565 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2566
2567 lru_add_drain();
f80c0673 2568
6168d0da 2569 spin_lock_irq(&lruvec->lru_lock);
925b7673 2570
49fd9b6d 2571 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2572 &nr_scanned, sc, lru);
89b5fae5 2573
599d0c95 2574 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2575
912c0572
SB
2576 if (!cgroup_reclaim(sc))
2577 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2578 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2579
6168d0da 2580 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2581
1da177e4 2582 while (!list_empty(&l_hold)) {
b3ac0413 2583 struct folio *folio;
b3ac0413 2584
1da177e4 2585 cond_resched();
b3ac0413
MWO
2586 folio = lru_to_folio(&l_hold);
2587 list_del(&folio->lru);
7e9cd484 2588
07f67a8d
MWO
2589 if (unlikely(!folio_evictable(folio))) {
2590 folio_putback_lru(folio);
894bc310
LS
2591 continue;
2592 }
2593
cc715d99 2594 if (unlikely(buffer_heads_over_limit)) {
36a3b14b
MWO
2595 if (folio_test_private(folio) && folio_trylock(folio)) {
2596 if (folio_test_private(folio))
07f67a8d
MWO
2597 filemap_release_folio(folio, 0);
2598 folio_unlock(folio);
cc715d99
MG
2599 }
2600 }
2601
6d4675e6 2602 /* Referenced or rmap lock contention: rotate */
b3ac0413 2603 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
6d4675e6 2604 &vm_flags) != 0) {
8cab4754 2605 /*
07f67a8d 2606 * Identify referenced, file-backed active folios and
8cab4754
WF
2607 * give them one more trip around the active list. So
2608 * that executable code get better chances to stay in
07f67a8d 2609 * memory under moderate memory pressure. Anon folios
8cab4754 2610 * are not likely to be evicted by use-once streaming
07f67a8d 2611 * IO, plus JVM can create lots of anon VM_EXEC folios,
8cab4754
WF
2612 * so we ignore them here.
2613 */
07f67a8d
MWO
2614 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2615 nr_rotated += folio_nr_pages(folio);
2616 list_add(&folio->lru, &l_active);
8cab4754
WF
2617 continue;
2618 }
2619 }
7e9cd484 2620
07f67a8d
MWO
2621 folio_clear_active(folio); /* we are de-activating */
2622 folio_set_workingset(folio);
2623 list_add(&folio->lru, &l_inactive);
1da177e4
LT
2624 }
2625
b555749a 2626 /*
07f67a8d 2627 * Move folios back to the lru list.
b555749a 2628 */
6168d0da 2629 spin_lock_irq(&lruvec->lru_lock);
556adecb 2630
49fd9b6d
MWO
2631 nr_activate = move_folios_to_lru(lruvec, &l_active);
2632 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
07f67a8d 2633 /* Keep all free folios in l_active list */
f372d89e 2634 list_splice(&l_inactive, &l_active);
9851ac13
KT
2635
2636 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2637 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2638
599d0c95 2639 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2640 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2641
f372d89e
KT
2642 mem_cgroup_uncharge_list(&l_active);
2643 free_unref_page_list(&l_active);
9d998b4f
MH
2644 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2645 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2646}
2647
49fd9b6d 2648static unsigned int reclaim_folio_list(struct list_head *folio_list,
1fe47c0b 2649 struct pglist_data *pgdat)
1a4e58cc 2650{
1a4e58cc 2651 struct reclaim_stat dummy_stat;
1fe47c0b
ML
2652 unsigned int nr_reclaimed;
2653 struct folio *folio;
1a4e58cc
MK
2654 struct scan_control sc = {
2655 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2656 .may_writepage = 1,
2657 .may_unmap = 1,
2658 .may_swap = 1,
26aa2d19 2659 .no_demotion = 1,
1a4e58cc
MK
2660 };
2661
49fd9b6d
MWO
2662 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2663 while (!list_empty(folio_list)) {
2664 folio = lru_to_folio(folio_list);
1fe47c0b
ML
2665 list_del(&folio->lru);
2666 folio_putback_lru(folio);
2667 }
2668
2669 return nr_reclaimed;
2670}
2671
a83f0551 2672unsigned long reclaim_pages(struct list_head *folio_list)
1fe47c0b 2673{
ed657e55 2674 int nid;
1fe47c0b 2675 unsigned int nr_reclaimed = 0;
a83f0551 2676 LIST_HEAD(node_folio_list);
1fe47c0b
ML
2677 unsigned int noreclaim_flag;
2678
a83f0551 2679 if (list_empty(folio_list))
1ae65e27
WY
2680 return nr_reclaimed;
2681
2d2b8d2b
YZ
2682 noreclaim_flag = memalloc_noreclaim_save();
2683
a83f0551 2684 nid = folio_nid(lru_to_folio(folio_list));
1ae65e27 2685 do {
a83f0551 2686 struct folio *folio = lru_to_folio(folio_list);
1a4e58cc 2687
a83f0551
MWO
2688 if (nid == folio_nid(folio)) {
2689 folio_clear_active(folio);
2690 list_move(&folio->lru, &node_folio_list);
1a4e58cc
MK
2691 continue;
2692 }
2693
49fd9b6d 2694 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
a83f0551
MWO
2695 nid = folio_nid(lru_to_folio(folio_list));
2696 } while (!list_empty(folio_list));
1a4e58cc 2697
49fd9b6d 2698 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
1a4e58cc 2699
2d2b8d2b
YZ
2700 memalloc_noreclaim_restore(noreclaim_flag);
2701
1a4e58cc
MK
2702 return nr_reclaimed;
2703}
2704
b91ac374
JW
2705static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2706 struct lruvec *lruvec, struct scan_control *sc)
2707{
2708 if (is_active_lru(lru)) {
2709 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2710 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2711 else
2712 sc->skipped_deactivate = 1;
2713 return 0;
2714 }
2715
2716 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2717}
2718
59dc76b0
RR
2719/*
2720 * The inactive anon list should be small enough that the VM never has
2721 * to do too much work.
14797e23 2722 *
59dc76b0
RR
2723 * The inactive file list should be small enough to leave most memory
2724 * to the established workingset on the scan-resistant active list,
2725 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2726 *
59dc76b0 2727 * Both inactive lists should also be large enough that each inactive
49fd9b6d 2728 * folio has a chance to be referenced again before it is reclaimed.
56e49d21 2729 *
2a2e4885
JW
2730 * If that fails and refaulting is observed, the inactive list grows.
2731 *
49fd9b6d 2732 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
3a50d14d 2733 * on this LRU, maintained by the pageout code. An inactive_ratio
49fd9b6d 2734 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
56e49d21 2735 *
59dc76b0
RR
2736 * total target max
2737 * memory ratio inactive
2738 * -------------------------------------
2739 * 10MB 1 5MB
2740 * 100MB 1 50MB
2741 * 1GB 3 250MB
2742 * 10GB 10 0.9GB
2743 * 100GB 31 3GB
2744 * 1TB 101 10GB
2745 * 10TB 320 32GB
56e49d21 2746 */
b91ac374 2747static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2748{
b91ac374 2749 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2750 unsigned long inactive, active;
2751 unsigned long inactive_ratio;
59dc76b0 2752 unsigned long gb;
e3790144 2753
b91ac374
JW
2754 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2755 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2756
b91ac374 2757 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2758 if (gb)
b91ac374
JW
2759 inactive_ratio = int_sqrt(10 * gb);
2760 else
2761 inactive_ratio = 1;
fd538803 2762
59dc76b0 2763 return inactive * inactive_ratio < active;
b39415b2
RR
2764}
2765
9a265114
JW
2766enum scan_balance {
2767 SCAN_EQUAL,
2768 SCAN_FRACT,
2769 SCAN_ANON,
2770 SCAN_FILE,
2771};
2772
f1e1a7be
YZ
2773static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2774{
2775 unsigned long file;
2776 struct lruvec *target_lruvec;
2777
ac35a490
YZ
2778 if (lru_gen_enabled())
2779 return;
2780
f1e1a7be
YZ
2781 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2782
2783 /*
2784 * Flush the memory cgroup stats, so that we read accurate per-memcg
2785 * lruvec stats for heuristics.
2786 */
2787 mem_cgroup_flush_stats();
2788
2789 /*
2790 * Determine the scan balance between anon and file LRUs.
2791 */
2792 spin_lock_irq(&target_lruvec->lru_lock);
2793 sc->anon_cost = target_lruvec->anon_cost;
2794 sc->file_cost = target_lruvec->file_cost;
2795 spin_unlock_irq(&target_lruvec->lru_lock);
2796
2797 /*
2798 * Target desirable inactive:active list ratios for the anon
2799 * and file LRU lists.
2800 */
2801 if (!sc->force_deactivate) {
2802 unsigned long refaults;
2803
2804 /*
2805 * When refaults are being observed, it means a new
2806 * workingset is being established. Deactivate to get
2807 * rid of any stale active pages quickly.
2808 */
2809 refaults = lruvec_page_state(target_lruvec,
2810 WORKINGSET_ACTIVATE_ANON);
2811 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2812 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2813 sc->may_deactivate |= DEACTIVATE_ANON;
2814 else
2815 sc->may_deactivate &= ~DEACTIVATE_ANON;
2816
2817 refaults = lruvec_page_state(target_lruvec,
2818 WORKINGSET_ACTIVATE_FILE);
2819 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2820 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2821 sc->may_deactivate |= DEACTIVATE_FILE;
2822 else
2823 sc->may_deactivate &= ~DEACTIVATE_FILE;
2824 } else
2825 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2826
2827 /*
2828 * If we have plenty of inactive file pages that aren't
2829 * thrashing, try to reclaim those first before touching
2830 * anonymous pages.
2831 */
2832 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2833 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2834 sc->cache_trim_mode = 1;
2835 else
2836 sc->cache_trim_mode = 0;
2837
2838 /*
2839 * Prevent the reclaimer from falling into the cache trap: as
2840 * cache pages start out inactive, every cache fault will tip
2841 * the scan balance towards the file LRU. And as the file LRU
2842 * shrinks, so does the window for rotation from references.
2843 * This means we have a runaway feedback loop where a tiny
2844 * thrashing file LRU becomes infinitely more attractive than
2845 * anon pages. Try to detect this based on file LRU size.
2846 */
2847 if (!cgroup_reclaim(sc)) {
2848 unsigned long total_high_wmark = 0;
2849 unsigned long free, anon;
2850 int z;
2851
2852 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2853 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2854 node_page_state(pgdat, NR_INACTIVE_FILE);
2855
2856 for (z = 0; z < MAX_NR_ZONES; z++) {
2857 struct zone *zone = &pgdat->node_zones[z];
2858
2859 if (!managed_zone(zone))
2860 continue;
2861
2862 total_high_wmark += high_wmark_pages(zone);
2863 }
2864
2865 /*
2866 * Consider anon: if that's low too, this isn't a
2867 * runaway file reclaim problem, but rather just
2868 * extreme pressure. Reclaim as per usual then.
2869 */
2870 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2871
2872 sc->file_is_tiny =
2873 file + free <= total_high_wmark &&
2874 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2875 anon >> sc->priority;
2876 }
2877}
2878
4f98a2fe
RR
2879/*
2880 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2881 * scanned.
4f98a2fe 2882 *
49fd9b6d
MWO
2883 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2884 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
4f98a2fe 2885 */
afaf07a6
JW
2886static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2887 unsigned long *nr)
4f98a2fe 2888{
a2a36488 2889 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2890 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2891 unsigned long anon_cost, file_cost, total_cost;
33377678 2892 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2893 u64 fraction[ANON_AND_FILE];
9a265114 2894 u64 denominator = 0; /* gcc */
9a265114 2895 enum scan_balance scan_balance;
4f98a2fe 2896 unsigned long ap, fp;
4111304d 2897 enum lru_list lru;
76a33fc3 2898
49fd9b6d 2899 /* If we have no swap space, do not bother scanning anon folios. */
a2a36488 2900 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2901 scan_balance = SCAN_FILE;
76a33fc3
SL
2902 goto out;
2903 }
4f98a2fe 2904
10316b31
JW
2905 /*
2906 * Global reclaim will swap to prevent OOM even with no
2907 * swappiness, but memcg users want to use this knob to
2908 * disable swapping for individual groups completely when
2909 * using the memory controller's swap limit feature would be
2910 * too expensive.
2911 */
b5ead35e 2912 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2913 scan_balance = SCAN_FILE;
10316b31
JW
2914 goto out;
2915 }
2916
2917 /*
2918 * Do not apply any pressure balancing cleverness when the
2919 * system is close to OOM, scan both anon and file equally
2920 * (unless the swappiness setting disagrees with swapping).
2921 */
02695175 2922 if (!sc->priority && swappiness) {
9a265114 2923 scan_balance = SCAN_EQUAL;
10316b31
JW
2924 goto out;
2925 }
2926
62376251 2927 /*
53138cea 2928 * If the system is almost out of file pages, force-scan anon.
62376251 2929 */
b91ac374 2930 if (sc->file_is_tiny) {
53138cea
JW
2931 scan_balance = SCAN_ANON;
2932 goto out;
62376251
JW
2933 }
2934
7c5bd705 2935 /*
b91ac374
JW
2936 * If there is enough inactive page cache, we do not reclaim
2937 * anything from the anonymous working right now.
7c5bd705 2938 */
b91ac374 2939 if (sc->cache_trim_mode) {
9a265114 2940 scan_balance = SCAN_FILE;
7c5bd705
JW
2941 goto out;
2942 }
2943
9a265114 2944 scan_balance = SCAN_FRACT;
58c37f6e 2945 /*
314b57fb
JW
2946 * Calculate the pressure balance between anon and file pages.
2947 *
2948 * The amount of pressure we put on each LRU is inversely
2949 * proportional to the cost of reclaiming each list, as
2950 * determined by the share of pages that are refaulting, times
2951 * the relative IO cost of bringing back a swapped out
2952 * anonymous page vs reloading a filesystem page (swappiness).
2953 *
d483a5dd
JW
2954 * Although we limit that influence to ensure no list gets
2955 * left behind completely: at least a third of the pressure is
2956 * applied, before swappiness.
2957 *
314b57fb 2958 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2959 */
d483a5dd
JW
2960 total_cost = sc->anon_cost + sc->file_cost;
2961 anon_cost = total_cost + sc->anon_cost;
2962 file_cost = total_cost + sc->file_cost;
2963 total_cost = anon_cost + file_cost;
58c37f6e 2964
d483a5dd
JW
2965 ap = swappiness * (total_cost + 1);
2966 ap /= anon_cost + 1;
4f98a2fe 2967
d483a5dd
JW
2968 fp = (200 - swappiness) * (total_cost + 1);
2969 fp /= file_cost + 1;
4f98a2fe 2970
76a33fc3
SL
2971 fraction[0] = ap;
2972 fraction[1] = fp;
a4fe1631 2973 denominator = ap + fp;
76a33fc3 2974out:
688035f7
JW
2975 for_each_evictable_lru(lru) {
2976 int file = is_file_lru(lru);
9783aa99 2977 unsigned long lruvec_size;
f56ce412 2978 unsigned long low, min;
688035f7 2979 unsigned long scan;
9783aa99
CD
2980
2981 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2982 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2983 &min, &low);
9783aa99 2984
f56ce412 2985 if (min || low) {
9783aa99
CD
2986 /*
2987 * Scale a cgroup's reclaim pressure by proportioning
2988 * its current usage to its memory.low or memory.min
2989 * setting.
2990 *
2991 * This is important, as otherwise scanning aggression
2992 * becomes extremely binary -- from nothing as we
2993 * approach the memory protection threshold, to totally
2994 * nominal as we exceed it. This results in requiring
2995 * setting extremely liberal protection thresholds. It
2996 * also means we simply get no protection at all if we
2997 * set it too low, which is not ideal.
1bc63fb1
CD
2998 *
2999 * If there is any protection in place, we reduce scan
3000 * pressure by how much of the total memory used is
3001 * within protection thresholds.
9783aa99 3002 *
9de7ca46
CD
3003 * There is one special case: in the first reclaim pass,
3004 * we skip over all groups that are within their low
3005 * protection. If that fails to reclaim enough pages to
3006 * satisfy the reclaim goal, we come back and override
3007 * the best-effort low protection. However, we still
3008 * ideally want to honor how well-behaved groups are in
3009 * that case instead of simply punishing them all
3010 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
3011 * memory they are using, reducing the scan pressure
3012 * again by how much of the total memory used is under
3013 * hard protection.
9783aa99 3014 */
1bc63fb1 3015 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
3016 unsigned long protection;
3017
3018 /* memory.low scaling, make sure we retry before OOM */
3019 if (!sc->memcg_low_reclaim && low > min) {
3020 protection = low;
3021 sc->memcg_low_skipped = 1;
3022 } else {
3023 protection = min;
3024 }
1bc63fb1
CD
3025
3026 /* Avoid TOCTOU with earlier protection check */
3027 cgroup_size = max(cgroup_size, protection);
3028
3029 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 3030 (cgroup_size + 1);
9783aa99
CD
3031
3032 /*
1bc63fb1 3033 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 3034 * reclaim moving forwards, avoiding decrementing
9de7ca46 3035 * sc->priority further than desirable.
9783aa99 3036 */
1bc63fb1 3037 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
3038 } else {
3039 scan = lruvec_size;
3040 }
3041
3042 scan >>= sc->priority;
6b4f7799 3043
688035f7
JW
3044 /*
3045 * If the cgroup's already been deleted, make sure to
3046 * scrape out the remaining cache.
3047 */
3048 if (!scan && !mem_cgroup_online(memcg))
9783aa99 3049 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 3050
688035f7
JW
3051 switch (scan_balance) {
3052 case SCAN_EQUAL:
3053 /* Scan lists relative to size */
3054 break;
3055 case SCAN_FRACT:
9a265114 3056 /*
688035f7
JW
3057 * Scan types proportional to swappiness and
3058 * their relative recent reclaim efficiency.
76073c64
GS
3059 * Make sure we don't miss the last page on
3060 * the offlined memory cgroups because of a
3061 * round-off error.
9a265114 3062 */
76073c64
GS
3063 scan = mem_cgroup_online(memcg) ?
3064 div64_u64(scan * fraction[file], denominator) :
3065 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 3066 denominator);
688035f7
JW
3067 break;
3068 case SCAN_FILE:
3069 case SCAN_ANON:
3070 /* Scan one type exclusively */
e072bff6 3071 if ((scan_balance == SCAN_FILE) != file)
688035f7 3072 scan = 0;
688035f7
JW
3073 break;
3074 default:
3075 /* Look ma, no brain */
3076 BUG();
9a265114 3077 }
688035f7 3078
688035f7 3079 nr[lru] = scan;
76a33fc3 3080 }
6e08a369 3081}
4f98a2fe 3082
2f368a9f
DH
3083/*
3084 * Anonymous LRU management is a waste if there is
3085 * ultimately no way to reclaim the memory.
3086 */
3087static bool can_age_anon_pages(struct pglist_data *pgdat,
3088 struct scan_control *sc)
3089{
3090 /* Aging the anon LRU is valuable if swap is present: */
3091 if (total_swap_pages > 0)
3092 return true;
3093
3094 /* Also valuable if anon pages can be demoted: */
3095 return can_demote(pgdat->node_id, sc);
3096}
3097
ec1c86b2
YZ
3098#ifdef CONFIG_LRU_GEN
3099
354ed597
YZ
3100#ifdef CONFIG_LRU_GEN_ENABLED
3101DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3102#define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3103#else
3104DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3105#define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3106#endif
3107
ec1c86b2
YZ
3108/******************************************************************************
3109 * shorthand helpers
3110 ******************************************************************************/
3111
ac35a490
YZ
3112#define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3113
3114#define DEFINE_MAX_SEQ(lruvec) \
3115 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3116
3117#define DEFINE_MIN_SEQ(lruvec) \
3118 unsigned long min_seq[ANON_AND_FILE] = { \
3119 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3120 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3121 }
3122
ec1c86b2
YZ
3123#define for_each_gen_type_zone(gen, type, zone) \
3124 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3125 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3126 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3127
bd74fdae 3128static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
ec1c86b2
YZ
3129{
3130 struct pglist_data *pgdat = NODE_DATA(nid);
3131
3132#ifdef CONFIG_MEMCG
3133 if (memcg) {
3134 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3135
3136 /* for hotadd_new_pgdat() */
3137 if (!lruvec->pgdat)
3138 lruvec->pgdat = pgdat;
3139
3140 return lruvec;
3141 }
3142#endif
3143 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3144
3145 return pgdat ? &pgdat->__lruvec : NULL;
3146}
3147
ac35a490
YZ
3148static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3149{
3150 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3151 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3152
3153 if (!can_demote(pgdat->node_id, sc) &&
3154 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3155 return 0;
3156
3157 return mem_cgroup_swappiness(memcg);
3158}
3159
3160static int get_nr_gens(struct lruvec *lruvec, int type)
3161{
3162 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3163}
3164
3165static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3166{
3167 /* see the comment on lru_gen_struct */
3168 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3169 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3170 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3171}
3172
bd74fdae
YZ
3173/******************************************************************************
3174 * mm_struct list
3175 ******************************************************************************/
3176
3177static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3178{
3179 static struct lru_gen_mm_list mm_list = {
3180 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3181 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3182 };
3183
3184#ifdef CONFIG_MEMCG
3185 if (memcg)
3186 return &memcg->mm_list;
3187#endif
3188 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3189
3190 return &mm_list;
3191}
3192
3193void lru_gen_add_mm(struct mm_struct *mm)
3194{
3195 int nid;
3196 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3197 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3198
3199 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3200#ifdef CONFIG_MEMCG
3201 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3202 mm->lru_gen.memcg = memcg;
3203#endif
3204 spin_lock(&mm_list->lock);
3205
3206 for_each_node_state(nid, N_MEMORY) {
3207 struct lruvec *lruvec = get_lruvec(memcg, nid);
3208
3209 if (!lruvec)
3210 continue;
3211
3212 /* the first addition since the last iteration */
3213 if (lruvec->mm_state.tail == &mm_list->fifo)
3214 lruvec->mm_state.tail = &mm->lru_gen.list;
3215 }
3216
3217 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3218
3219 spin_unlock(&mm_list->lock);
3220}
3221
3222void lru_gen_del_mm(struct mm_struct *mm)
3223{
3224 int nid;
3225 struct lru_gen_mm_list *mm_list;
3226 struct mem_cgroup *memcg = NULL;
3227
3228 if (list_empty(&mm->lru_gen.list))
3229 return;
3230
3231#ifdef CONFIG_MEMCG
3232 memcg = mm->lru_gen.memcg;
3233#endif
3234 mm_list = get_mm_list(memcg);
3235
3236 spin_lock(&mm_list->lock);
3237
3238 for_each_node(nid) {
3239 struct lruvec *lruvec = get_lruvec(memcg, nid);
3240
3241 if (!lruvec)
3242 continue;
3243
3244 /* where the last iteration ended (exclusive) */
3245 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3246 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3247
3248 /* where the current iteration continues (inclusive) */
3249 if (lruvec->mm_state.head != &mm->lru_gen.list)
3250 continue;
3251
3252 lruvec->mm_state.head = lruvec->mm_state.head->next;
3253 /* the deletion ends the current iteration */
3254 if (lruvec->mm_state.head == &mm_list->fifo)
3255 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3256 }
3257
3258 list_del_init(&mm->lru_gen.list);
3259
3260 spin_unlock(&mm_list->lock);
3261
3262#ifdef CONFIG_MEMCG
3263 mem_cgroup_put(mm->lru_gen.memcg);
3264 mm->lru_gen.memcg = NULL;
3265#endif
3266}
3267
3268#ifdef CONFIG_MEMCG
3269void lru_gen_migrate_mm(struct mm_struct *mm)
3270{
3271 struct mem_cgroup *memcg;
3272 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3273
3274 VM_WARN_ON_ONCE(task->mm != mm);
3275 lockdep_assert_held(&task->alloc_lock);
3276
3277 /* for mm_update_next_owner() */
3278 if (mem_cgroup_disabled())
3279 return;
3280
3281 rcu_read_lock();
3282 memcg = mem_cgroup_from_task(task);
3283 rcu_read_unlock();
3284 if (memcg == mm->lru_gen.memcg)
3285 return;
3286
3287 VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3288 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3289
3290 lru_gen_del_mm(mm);
3291 lru_gen_add_mm(mm);
3292}
3293#endif
3294
3295/*
3296 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3297 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3298 * bits in a bitmap, k is the number of hash functions and n is the number of
3299 * inserted items.
3300 *
3301 * Page table walkers use one of the two filters to reduce their search space.
3302 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3303 * aging uses the double-buffering technique to flip to the other filter each
3304 * time it produces a new generation. For non-leaf entries that have enough
3305 * leaf entries, the aging carries them over to the next generation in
3306 * walk_pmd_range(); the eviction also report them when walking the rmap
3307 * in lru_gen_look_around().
3308 *
3309 * For future optimizations:
3310 * 1. It's not necessary to keep both filters all the time. The spare one can be
3311 * freed after the RCU grace period and reallocated if needed again.
3312 * 2. And when reallocating, it's worth scaling its size according to the number
3313 * of inserted entries in the other filter, to reduce the memory overhead on
3314 * small systems and false positives on large systems.
3315 * 3. Jenkins' hash function is an alternative to Knuth's.
3316 */
3317#define BLOOM_FILTER_SHIFT 15
3318
3319static inline int filter_gen_from_seq(unsigned long seq)
3320{
3321 return seq % NR_BLOOM_FILTERS;
3322}
3323
3324static void get_item_key(void *item, int *key)
3325{
3326 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3327
3328 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3329
3330 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3331 key[1] = hash >> BLOOM_FILTER_SHIFT;
3332}
3333
3334static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3335{
3336 unsigned long *filter;
3337 int gen = filter_gen_from_seq(seq);
3338
3339 filter = lruvec->mm_state.filters[gen];
3340 if (filter) {
3341 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3342 return;
3343 }
3344
3345 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3346 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3347 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3348}
3349
3350static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3351{
3352 int key[2];
3353 unsigned long *filter;
3354 int gen = filter_gen_from_seq(seq);
3355
3356 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3357 if (!filter)
3358 return;
3359
3360 get_item_key(item, key);
3361
3362 if (!test_bit(key[0], filter))
3363 set_bit(key[0], filter);
3364 if (!test_bit(key[1], filter))
3365 set_bit(key[1], filter);
3366}
3367
3368static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3369{
3370 int key[2];
3371 unsigned long *filter;
3372 int gen = filter_gen_from_seq(seq);
3373
3374 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3375 if (!filter)
3376 return true;
3377
3378 get_item_key(item, key);
3379
3380 return test_bit(key[0], filter) && test_bit(key[1], filter);
3381}
3382
3383static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3384{
3385 int i;
3386 int hist;
3387
3388 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3389
3390 if (walk) {
3391 hist = lru_hist_from_seq(walk->max_seq);
3392
3393 for (i = 0; i < NR_MM_STATS; i++) {
3394 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3395 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3396 walk->mm_stats[i] = 0;
3397 }
3398 }
3399
3400 if (NR_HIST_GENS > 1 && last) {
3401 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3402
3403 for (i = 0; i < NR_MM_STATS; i++)
3404 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3405 }
3406}
3407
3408static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3409{
3410 int type;
3411 unsigned long size = 0;
3412 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3413 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3414
3415 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3416 return true;
3417
3418 clear_bit(key, &mm->lru_gen.bitmap);
3419
3420 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3421 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3422 get_mm_counter(mm, MM_ANONPAGES) +
3423 get_mm_counter(mm, MM_SHMEMPAGES);
3424 }
3425
3426 if (size < MIN_LRU_BATCH)
3427 return true;
3428
3429 return !mmget_not_zero(mm);
3430}
3431
3432static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3433 struct mm_struct **iter)
3434{
3435 bool first = false;
3436 bool last = true;
3437 struct mm_struct *mm = NULL;
3438 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3439 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3440 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3441
3442 /*
3443 * There are four interesting cases for this page table walker:
3444 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3445 * there is nothing left to do.
3446 * 2. It's the first of the current generation, and it needs to reset
3447 * the Bloom filter for the next generation.
3448 * 3. It reaches the end of mm_list, and it needs to increment
3449 * mm_state->seq; the iteration is done.
3450 * 4. It's the last of the current generation, and it needs to reset the
3451 * mm stats counters for the next generation.
3452 */
3453 spin_lock(&mm_list->lock);
3454
3455 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3456 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3457 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3458
3459 if (walk->max_seq <= mm_state->seq) {
3460 if (!*iter)
3461 last = false;
3462 goto done;
3463 }
3464
3465 if (!mm_state->nr_walkers) {
3466 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3467
3468 mm_state->head = mm_list->fifo.next;
3469 first = true;
3470 }
3471
3472 while (!mm && mm_state->head != &mm_list->fifo) {
3473 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3474
3475 mm_state->head = mm_state->head->next;
3476
3477 /* force scan for those added after the last iteration */
3478 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3479 mm_state->tail = mm_state->head;
3480 walk->force_scan = true;
3481 }
3482
3483 if (should_skip_mm(mm, walk))
3484 mm = NULL;
3485 }
3486
3487 if (mm_state->head == &mm_list->fifo)
3488 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3489done:
3490 if (*iter && !mm)
3491 mm_state->nr_walkers--;
3492 if (!*iter && mm)
3493 mm_state->nr_walkers++;
3494
3495 if (mm_state->nr_walkers)
3496 last = false;
3497
3498 if (*iter || last)
3499 reset_mm_stats(lruvec, walk, last);
3500
3501 spin_unlock(&mm_list->lock);
3502
3503 if (mm && first)
3504 reset_bloom_filter(lruvec, walk->max_seq + 1);
3505
3506 if (*iter)
3507 mmput_async(*iter);
3508
3509 *iter = mm;
3510
3511 return last;
3512}
3513
3514static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3515{
3516 bool success = false;
3517 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3518 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3519 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3520
3521 spin_lock(&mm_list->lock);
3522
3523 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3524
3525 if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3526 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3527
3528 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3529 reset_mm_stats(lruvec, NULL, true);
3530 success = true;
3531 }
3532
3533 spin_unlock(&mm_list->lock);
3534
3535 return success;
3536}
3537
ac35a490
YZ
3538/******************************************************************************
3539 * refault feedback loop
3540 ******************************************************************************/
3541
3542/*
3543 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3544 *
3545 * The P term is refaulted/(evicted+protected) from a tier in the generation
3546 * currently being evicted; the I term is the exponential moving average of the
3547 * P term over the generations previously evicted, using the smoothing factor
3548 * 1/2; the D term isn't supported.
3549 *
3550 * The setpoint (SP) is always the first tier of one type; the process variable
3551 * (PV) is either any tier of the other type or any other tier of the same
3552 * type.
3553 *
3554 * The error is the difference between the SP and the PV; the correction is to
3555 * turn off protection when SP>PV or turn on protection when SP<PV.
3556 *
3557 * For future optimizations:
3558 * 1. The D term may discount the other two terms over time so that long-lived
3559 * generations can resist stale information.
3560 */
3561struct ctrl_pos {
3562 unsigned long refaulted;
3563 unsigned long total;
3564 int gain;
3565};
3566
3567static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3568 struct ctrl_pos *pos)
3569{
3570 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3571 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3572
3573 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3574 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3575 pos->total = lrugen->avg_total[type][tier] +
3576 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3577 if (tier)
3578 pos->total += lrugen->protected[hist][type][tier - 1];
3579 pos->gain = gain;
3580}
3581
3582static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3583{
3584 int hist, tier;
3585 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3586 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3587 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3588
3589 lockdep_assert_held(&lruvec->lru_lock);
3590
3591 if (!carryover && !clear)
3592 return;
3593
3594 hist = lru_hist_from_seq(seq);
3595
3596 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3597 if (carryover) {
3598 unsigned long sum;
3599
3600 sum = lrugen->avg_refaulted[type][tier] +
3601 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3602 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3603
3604 sum = lrugen->avg_total[type][tier] +
3605 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3606 if (tier)
3607 sum += lrugen->protected[hist][type][tier - 1];
3608 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3609 }
3610
3611 if (clear) {
3612 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3613 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3614 if (tier)
3615 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3616 }
3617 }
3618}
3619
3620static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3621{
3622 /*
3623 * Return true if the PV has a limited number of refaults or a lower
3624 * refaulted/total than the SP.
3625 */
3626 return pv->refaulted < MIN_LRU_BATCH ||
3627 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3628 (sp->refaulted + 1) * pv->total * pv->gain;
3629}
3630
3631/******************************************************************************
3632 * the aging
3633 ******************************************************************************/
3634
018ee47f
YZ
3635/* promote pages accessed through page tables */
3636static int folio_update_gen(struct folio *folio, int gen)
3637{
3638 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3639
3640 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3641 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3642
3643 do {
3644 /* lru_gen_del_folio() has isolated this page? */
3645 if (!(old_flags & LRU_GEN_MASK)) {
49fd9b6d 3646 /* for shrink_folio_list() */
018ee47f
YZ
3647 new_flags = old_flags | BIT(PG_referenced);
3648 continue;
3649 }
3650
3651 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3652 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3653 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3654
3655 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3656}
3657
ac35a490
YZ
3658/* protect pages accessed multiple times through file descriptors */
3659static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3660{
3661 int type = folio_is_file_lru(folio);
3662 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3663 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3664 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3665
3666 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3667
3668 do {
018ee47f
YZ
3669 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3670 /* folio_update_gen() has promoted this page? */
3671 if (new_gen >= 0 && new_gen != old_gen)
3672 return new_gen;
3673
ac35a490
YZ
3674 new_gen = (old_gen + 1) % MAX_NR_GENS;
3675
3676 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3677 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3678 /* for folio_end_writeback() */
3679 if (reclaiming)
3680 new_flags |= BIT(PG_reclaim);
3681 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3682
3683 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3684
3685 return new_gen;
3686}
3687
bd74fdae
YZ
3688static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3689 int old_gen, int new_gen)
3690{
3691 int type = folio_is_file_lru(folio);
3692 int zone = folio_zonenum(folio);
3693 int delta = folio_nr_pages(folio);
3694
3695 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3696 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3697
3698 walk->batched++;
3699
3700 walk->nr_pages[old_gen][type][zone] -= delta;
3701 walk->nr_pages[new_gen][type][zone] += delta;
3702}
3703
3704static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3705{
3706 int gen, type, zone;
3707 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3708
3709 walk->batched = 0;
3710
3711 for_each_gen_type_zone(gen, type, zone) {
3712 enum lru_list lru = type * LRU_INACTIVE_FILE;
3713 int delta = walk->nr_pages[gen][type][zone];
3714
3715 if (!delta)
3716 continue;
3717
3718 walk->nr_pages[gen][type][zone] = 0;
3719 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3720 lrugen->nr_pages[gen][type][zone] + delta);
3721
3722 if (lru_gen_is_active(lruvec, gen))
3723 lru += LRU_ACTIVE;
3724 __update_lru_size(lruvec, lru, zone, delta);
3725 }
3726}
3727
3728static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3729{
3730 struct address_space *mapping;
3731 struct vm_area_struct *vma = args->vma;
3732 struct lru_gen_mm_walk *walk = args->private;
3733
3734 if (!vma_is_accessible(vma))
3735 return true;
3736
3737 if (is_vm_hugetlb_page(vma))
3738 return true;
3739
3740 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3741 return true;
3742
3743 if (vma == get_gate_vma(vma->vm_mm))
3744 return true;
3745
3746 if (vma_is_anonymous(vma))
3747 return !walk->can_swap;
3748
3749 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3750 return true;
3751
3752 mapping = vma->vm_file->f_mapping;
3753 if (mapping_unevictable(mapping))
3754 return true;
3755
3756 if (shmem_mapping(mapping))
3757 return !walk->can_swap;
3758
3759 /* to exclude special mappings like dax, etc. */
3760 return !mapping->a_ops->read_folio;
3761}
3762
3763/*
3764 * Some userspace memory allocators map many single-page VMAs. Instead of
3765 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3766 * table to reduce zigzags and improve cache performance.
3767 */
3768static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3769 unsigned long *vm_start, unsigned long *vm_end)
3770{
3771 unsigned long start = round_up(*vm_end, size);
3772 unsigned long end = (start | ~mask) + 1;
78ba531f 3773 VMA_ITERATOR(vmi, args->mm, start);
bd74fdae
YZ
3774
3775 VM_WARN_ON_ONCE(mask & size);
3776 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3777
78ba531f 3778 for_each_vma(vmi, args->vma) {
bd74fdae
YZ
3779 if (end && end <= args->vma->vm_start)
3780 return false;
3781
78ba531f 3782 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
bd74fdae 3783 continue;
bd74fdae
YZ
3784
3785 *vm_start = max(start, args->vma->vm_start);
3786 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3787
3788 return true;
3789 }
3790
3791 return false;
3792}
3793
018ee47f
YZ
3794static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3795{
3796 unsigned long pfn = pte_pfn(pte);
3797
3798 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3799
3800 if (!pte_present(pte) || is_zero_pfn(pfn))
3801 return -1;
3802
3803 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3804 return -1;
3805
3806 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3807 return -1;
3808
3809 return pfn;
3810}
3811
bd74fdae
YZ
3812#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3813static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3814{
3815 unsigned long pfn = pmd_pfn(pmd);
3816
3817 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3818
3819 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3820 return -1;
3821
3822 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3823 return -1;
3824
3825 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3826 return -1;
3827
3828 return pfn;
3829}
3830#endif
3831
018ee47f 3832static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
bd74fdae 3833 struct pglist_data *pgdat, bool can_swap)
018ee47f
YZ
3834{
3835 struct folio *folio;
3836
3837 /* try to avoid unnecessary memory loads */
3838 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3839 return NULL;
3840
3841 folio = pfn_folio(pfn);
3842 if (folio_nid(folio) != pgdat->node_id)
3843 return NULL;
3844
3845 if (folio_memcg_rcu(folio) != memcg)
3846 return NULL;
3847
bd74fdae
YZ
3848 /* file VMAs can contain anon pages from COW */
3849 if (!folio_is_file_lru(folio) && !can_swap)
3850 return NULL;
3851
018ee47f
YZ
3852 return folio;
3853}
3854
bd74fdae
YZ
3855static bool suitable_to_scan(int total, int young)
3856{
3857 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3858
3859 /* suitable if the average number of young PTEs per cacheline is >=1 */
3860 return young * n >= total;
3861}
3862
3863static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3864 struct mm_walk *args)
3865{
3866 int i;
3867 pte_t *pte;
3868 spinlock_t *ptl;
3869 unsigned long addr;
3870 int total = 0;
3871 int young = 0;
3872 struct lru_gen_mm_walk *walk = args->private;
3873 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3874 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3875 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3876
3877 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3878
3879 ptl = pte_lockptr(args->mm, pmd);
3880 if (!spin_trylock(ptl))
3881 return false;
3882
3883 arch_enter_lazy_mmu_mode();
3884
3885 pte = pte_offset_map(pmd, start & PMD_MASK);
3886restart:
3887 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3888 unsigned long pfn;
3889 struct folio *folio;
3890
3891 total++;
3892 walk->mm_stats[MM_LEAF_TOTAL]++;
3893
3894 pfn = get_pte_pfn(pte[i], args->vma, addr);
3895 if (pfn == -1)
3896 continue;
3897
3898 if (!pte_young(pte[i])) {
3899 walk->mm_stats[MM_LEAF_OLD]++;
3900 continue;
3901 }
3902
3903 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3904 if (!folio)
3905 continue;
3906
3907 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3908 VM_WARN_ON_ONCE(true);
3909
3910 young++;
3911 walk->mm_stats[MM_LEAF_YOUNG]++;
3912
3913 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3914 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3915 !folio_test_swapcache(folio)))
3916 folio_mark_dirty(folio);
3917
3918 old_gen = folio_update_gen(folio, new_gen);
3919 if (old_gen >= 0 && old_gen != new_gen)
3920 update_batch_size(walk, folio, old_gen, new_gen);
3921 }
3922
3923 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3924 goto restart;
3925
3926 pte_unmap(pte);
3927
3928 arch_leave_lazy_mmu_mode();
3929 spin_unlock(ptl);
3930
3931 return suitable_to_scan(total, young);
3932}
3933
3934#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3935static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3936 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3937{
3938 int i;
3939 pmd_t *pmd;
3940 spinlock_t *ptl;
3941 struct lru_gen_mm_walk *walk = args->private;
3942 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3943 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3944 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3945
3946 VM_WARN_ON_ONCE(pud_leaf(*pud));
3947
3948 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3949 if (*start == -1) {
3950 *start = next;
3951 return;
3952 }
3953
3954 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
3955 if (i && i <= MIN_LRU_BATCH) {
3956 __set_bit(i - 1, bitmap);
3957 return;
3958 }
3959
3960 pmd = pmd_offset(pud, *start);
3961
3962 ptl = pmd_lockptr(args->mm, pmd);
3963 if (!spin_trylock(ptl))
3964 goto done;
3965
3966 arch_enter_lazy_mmu_mode();
3967
3968 do {
3969 unsigned long pfn;
3970 struct folio *folio;
3971 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
3972
3973 pfn = get_pmd_pfn(pmd[i], vma, addr);
3974 if (pfn == -1)
3975 goto next;
3976
3977 if (!pmd_trans_huge(pmd[i])) {
354ed597
YZ
3978 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) &&
3979 get_cap(LRU_GEN_NONLEAF_YOUNG))
bd74fdae
YZ
3980 pmdp_test_and_clear_young(vma, addr, pmd + i);
3981 goto next;
3982 }
3983
3984 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3985 if (!folio)
3986 goto next;
3987
3988 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3989 goto next;
3990
3991 walk->mm_stats[MM_LEAF_YOUNG]++;
3992
3993 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3994 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3995 !folio_test_swapcache(folio)))
3996 folio_mark_dirty(folio);
3997
3998 old_gen = folio_update_gen(folio, new_gen);
3999 if (old_gen >= 0 && old_gen != new_gen)
4000 update_batch_size(walk, folio, old_gen, new_gen);
4001next:
4002 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4003 } while (i <= MIN_LRU_BATCH);
4004
4005 arch_leave_lazy_mmu_mode();
4006 spin_unlock(ptl);
4007done:
4008 *start = -1;
4009 bitmap_zero(bitmap, MIN_LRU_BATCH);
4010}
4011#else
4012static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4013 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4014{
4015}
4016#endif
4017
4018static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4019 struct mm_walk *args)
4020{
4021 int i;
4022 pmd_t *pmd;
4023 unsigned long next;
4024 unsigned long addr;
4025 struct vm_area_struct *vma;
4026 unsigned long pos = -1;
4027 struct lru_gen_mm_walk *walk = args->private;
4028 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4029
4030 VM_WARN_ON_ONCE(pud_leaf(*pud));
4031
4032 /*
4033 * Finish an entire PMD in two passes: the first only reaches to PTE
4034 * tables to avoid taking the PMD lock; the second, if necessary, takes
4035 * the PMD lock to clear the accessed bit in PMD entries.
4036 */
4037 pmd = pmd_offset(pud, start & PUD_MASK);
4038restart:
4039 /* walk_pte_range() may call get_next_vma() */
4040 vma = args->vma;
4041 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4042 pmd_t val = pmd_read_atomic(pmd + i);
4043
4044 /* for pmd_read_atomic() */
4045 barrier();
4046
4047 next = pmd_addr_end(addr, end);
4048
4049 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4050 walk->mm_stats[MM_LEAF_TOTAL]++;
4051 continue;
4052 }
4053
4054#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4055 if (pmd_trans_huge(val)) {
4056 unsigned long pfn = pmd_pfn(val);
4057 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4058
4059 walk->mm_stats[MM_LEAF_TOTAL]++;
4060
4061 if (!pmd_young(val)) {
4062 walk->mm_stats[MM_LEAF_OLD]++;
4063 continue;
4064 }
4065
4066 /* try to avoid unnecessary memory loads */
4067 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4068 continue;
4069
4070 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4071 continue;
4072 }
4073#endif
4074 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4075
4076#ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
354ed597
YZ
4077 if (get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4078 if (!pmd_young(val))
4079 continue;
bd74fdae 4080
354ed597
YZ
4081 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4082 }
bd74fdae
YZ
4083#endif
4084 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4085 continue;
4086
4087 walk->mm_stats[MM_NONLEAF_FOUND]++;
4088
4089 if (!walk_pte_range(&val, addr, next, args))
4090 continue;
4091
4092 walk->mm_stats[MM_NONLEAF_ADDED]++;
4093
4094 /* carry over to the next generation */
4095 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4096 }
4097
4098 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4099
4100 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4101 goto restart;
4102}
4103
4104static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4105 struct mm_walk *args)
4106{
4107 int i;
4108 pud_t *pud;
4109 unsigned long addr;
4110 unsigned long next;
4111 struct lru_gen_mm_walk *walk = args->private;
4112
4113 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4114
4115 pud = pud_offset(p4d, start & P4D_MASK);
4116restart:
4117 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4118 pud_t val = READ_ONCE(pud[i]);
4119
4120 next = pud_addr_end(addr, end);
4121
4122 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4123 continue;
4124
4125 walk_pmd_range(&val, addr, next, args);
4126
4127 /* a racy check to curtail the waiting time */
4128 if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4129 return 1;
4130
4131 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4132 end = (addr | ~PUD_MASK) + 1;
4133 goto done;
4134 }
4135 }
4136
4137 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4138 goto restart;
4139
4140 end = round_up(end, P4D_SIZE);
4141done:
4142 if (!end || !args->vma)
4143 return 1;
4144
4145 walk->next_addr = max(end, args->vma->vm_start);
4146
4147 return -EAGAIN;
4148}
4149
4150static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4151{
4152 static const struct mm_walk_ops mm_walk_ops = {
4153 .test_walk = should_skip_vma,
4154 .p4d_entry = walk_pud_range,
4155 };
4156
4157 int err;
4158 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4159
4160 walk->next_addr = FIRST_USER_ADDRESS;
4161
4162 do {
4163 err = -EBUSY;
4164
4165 /* folio_update_gen() requires stable folio_memcg() */
4166 if (!mem_cgroup_trylock_pages(memcg))
4167 break;
4168
4169 /* the caller might be holding the lock for write */
4170 if (mmap_read_trylock(mm)) {
4171 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4172
4173 mmap_read_unlock(mm);
4174 }
4175
4176 mem_cgroup_unlock_pages();
4177
4178 if (walk->batched) {
4179 spin_lock_irq(&lruvec->lru_lock);
4180 reset_batch_size(lruvec, walk);
4181 spin_unlock_irq(&lruvec->lru_lock);
4182 }
4183
4184 cond_resched();
4185 } while (err == -EAGAIN);
4186}
4187
4188static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4189{
4190 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4191
4192 if (pgdat && current_is_kswapd()) {
4193 VM_WARN_ON_ONCE(walk);
4194
4195 walk = &pgdat->mm_walk;
4196 } else if (!pgdat && !walk) {
4197 VM_WARN_ON_ONCE(current_is_kswapd());
4198
4199 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4200 }
4201
4202 current->reclaim_state->mm_walk = walk;
4203
4204 return walk;
4205}
4206
4207static void clear_mm_walk(void)
4208{
4209 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4210
4211 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4212 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4213
4214 current->reclaim_state->mm_walk = NULL;
4215
4216 if (!current_is_kswapd())
4217 kfree(walk);
4218}
4219
d6c3af7d 4220static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
ac35a490 4221{
d6c3af7d
YZ
4222 int zone;
4223 int remaining = MAX_LRU_BATCH;
ac35a490 4224 struct lru_gen_struct *lrugen = &lruvec->lrugen;
d6c3af7d
YZ
4225 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4226
4227 if (type == LRU_GEN_ANON && !can_swap)
4228 goto done;
4229
4230 /* prevent cold/hot inversion if force_scan is true */
4231 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4232 struct list_head *head = &lrugen->lists[old_gen][type][zone];
4233
4234 while (!list_empty(head)) {
4235 struct folio *folio = lru_to_folio(head);
4236
4237 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4238 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4239 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4240 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
ac35a490 4241
d6c3af7d
YZ
4242 new_gen = folio_inc_gen(lruvec, folio, false);
4243 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4244
4245 if (!--remaining)
4246 return false;
4247 }
4248 }
4249done:
ac35a490
YZ
4250 reset_ctrl_pos(lruvec, type, true);
4251 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
d6c3af7d
YZ
4252
4253 return true;
ac35a490
YZ
4254}
4255
4256static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4257{
4258 int gen, type, zone;
4259 bool success = false;
4260 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4261 DEFINE_MIN_SEQ(lruvec);
4262
4263 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4264
4265 /* find the oldest populated generation */
4266 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4267 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4268 gen = lru_gen_from_seq(min_seq[type]);
4269
4270 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4271 if (!list_empty(&lrugen->lists[gen][type][zone]))
4272 goto next;
4273 }
4274
4275 min_seq[type]++;
4276 }
4277next:
4278 ;
4279 }
4280
4281 /* see the comment on lru_gen_struct */
4282 if (can_swap) {
4283 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4284 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4285 }
4286
4287 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4288 if (min_seq[type] == lrugen->min_seq[type])
4289 continue;
4290
4291 reset_ctrl_pos(lruvec, type, true);
4292 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4293 success = true;
4294 }
4295
4296 return success;
4297}
4298
d6c3af7d 4299static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
ac35a490
YZ
4300{
4301 int prev, next;
4302 int type, zone;
4303 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4304
4305 spin_lock_irq(&lruvec->lru_lock);
4306
4307 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4308
ac35a490
YZ
4309 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4310 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4311 continue;
4312
d6c3af7d 4313 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
ac35a490 4314
d6c3af7d
YZ
4315 while (!inc_min_seq(lruvec, type, can_swap)) {
4316 spin_unlock_irq(&lruvec->lru_lock);
4317 cond_resched();
4318 spin_lock_irq(&lruvec->lru_lock);
4319 }
ac35a490
YZ
4320 }
4321
4322 /*
4323 * Update the active/inactive LRU sizes for compatibility. Both sides of
4324 * the current max_seq need to be covered, since max_seq+1 can overlap
4325 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4326 * overlap, cold/hot inversion happens.
4327 */
4328 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4329 next = lru_gen_from_seq(lrugen->max_seq + 1);
4330
4331 for (type = 0; type < ANON_AND_FILE; type++) {
4332 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4333 enum lru_list lru = type * LRU_INACTIVE_FILE;
4334 long delta = lrugen->nr_pages[prev][type][zone] -
4335 lrugen->nr_pages[next][type][zone];
4336
4337 if (!delta)
4338 continue;
4339
4340 __update_lru_size(lruvec, lru, zone, delta);
4341 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4342 }
4343 }
4344
4345 for (type = 0; type < ANON_AND_FILE; type++)
4346 reset_ctrl_pos(lruvec, type, false);
4347
1332a809 4348 WRITE_ONCE(lrugen->timestamps[next], jiffies);
ac35a490
YZ
4349 /* make sure preceding modifications appear */
4350 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
bd74fdae 4351
ac35a490
YZ
4352 spin_unlock_irq(&lruvec->lru_lock);
4353}
4354
bd74fdae 4355static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
d6c3af7d 4356 struct scan_control *sc, bool can_swap, bool force_scan)
bd74fdae
YZ
4357{
4358 bool success;
4359 struct lru_gen_mm_walk *walk;
4360 struct mm_struct *mm = NULL;
4361 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4362
4363 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4364
4365 /* see the comment in iterate_mm_list() */
4366 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4367 success = false;
4368 goto done;
4369 }
4370
4371 /*
4372 * If the hardware doesn't automatically set the accessed bit, fallback
4373 * to lru_gen_look_around(), which only clears the accessed bit in a
4374 * handful of PTEs. Spreading the work out over a period of time usually
4375 * is less efficient, but it avoids bursty page faults.
4376 */
d6c3af7d 4377 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
bd74fdae
YZ
4378 success = iterate_mm_list_nowalk(lruvec, max_seq);
4379 goto done;
4380 }
4381
4382 walk = set_mm_walk(NULL);
4383 if (!walk) {
4384 success = iterate_mm_list_nowalk(lruvec, max_seq);
4385 goto done;
4386 }
4387
4388 walk->lruvec = lruvec;
4389 walk->max_seq = max_seq;
4390 walk->can_swap = can_swap;
d6c3af7d 4391 walk->force_scan = force_scan;
bd74fdae
YZ
4392
4393 do {
4394 success = iterate_mm_list(lruvec, walk, &mm);
4395 if (mm)
4396 walk_mm(lruvec, mm, walk);
4397
4398 cond_resched();
4399 } while (mm);
4400done:
4401 if (!success) {
4402 if (sc->priority <= DEF_PRIORITY - 2)
4403 wait_event_killable(lruvec->mm_state.wait,
4404 max_seq < READ_ONCE(lrugen->max_seq));
4405
4406 return max_seq < READ_ONCE(lrugen->max_seq);
4407 }
4408
4409 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4410
d6c3af7d 4411 inc_max_seq(lruvec, can_swap, force_scan);
bd74fdae
YZ
4412 /* either this sees any waiters or they will see updated max_seq */
4413 if (wq_has_sleeper(&lruvec->mm_state.wait))
4414 wake_up_all(&lruvec->mm_state.wait);
4415
bd74fdae
YZ
4416 return true;
4417}
4418
ac35a490
YZ
4419static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4420 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4421{
4422 int gen, type, zone;
4423 unsigned long old = 0;
4424 unsigned long young = 0;
4425 unsigned long total = 0;
4426 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4427 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4428
4429 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4430 unsigned long seq;
4431
4432 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4433 unsigned long size = 0;
4434
4435 gen = lru_gen_from_seq(seq);
4436
4437 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4438 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4439
4440 total += size;
4441 if (seq == max_seq)
4442 young += size;
4443 else if (seq + MIN_NR_GENS == max_seq)
4444 old += size;
4445 }
4446 }
4447
4448 /* try to scrape all its memory if this memcg was deleted */
4449 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4450
4451 /*
4452 * The aging tries to be lazy to reduce the overhead, while the eviction
4453 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4454 * ideal number of generations is MIN_NR_GENS+1.
4455 */
4456 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4457 return true;
4458 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4459 return false;
4460
4461 /*
4462 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4463 * of the total number of pages for each generation. A reasonable range
4464 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4465 * aging cares about the upper bound of hot pages, while the eviction
4466 * cares about the lower bound of cold pages.
4467 */
4468 if (young * MIN_NR_GENS > total)
4469 return true;
4470 if (old * (MIN_NR_GENS + 2) < total)
4471 return true;
4472
4473 return false;
4474}
4475
1332a809 4476static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
ac35a490
YZ
4477{
4478 bool need_aging;
4479 unsigned long nr_to_scan;
4480 int swappiness = get_swappiness(lruvec, sc);
4481 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4482 DEFINE_MAX_SEQ(lruvec);
4483 DEFINE_MIN_SEQ(lruvec);
4484
4485 VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4486
4487 mem_cgroup_calculate_protection(NULL, memcg);
4488
4489 if (mem_cgroup_below_min(memcg))
1332a809 4490 return false;
ac35a490
YZ
4491
4492 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
1332a809
YZ
4493
4494 if (min_ttl) {
4495 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4496 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4497
4498 if (time_is_after_jiffies(birth + min_ttl))
4499 return false;
4500
4501 /* the size is likely too small to be helpful */
4502 if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4503 return false;
4504 }
4505
ac35a490 4506 if (need_aging)
d6c3af7d 4507 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
1332a809
YZ
4508
4509 return true;
ac35a490
YZ
4510}
4511
1332a809
YZ
4512/* to protect the working set of the last N jiffies */
4513static unsigned long lru_gen_min_ttl __read_mostly;
4514
ac35a490
YZ
4515static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4516{
4517 struct mem_cgroup *memcg;
1332a809
YZ
4518 bool success = false;
4519 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
ac35a490
YZ
4520
4521 VM_WARN_ON_ONCE(!current_is_kswapd());
4522
f76c8337
YZ
4523 sc->last_reclaimed = sc->nr_reclaimed;
4524
4525 /*
4526 * To reduce the chance of going into the aging path, which can be
4527 * costly, optimistically skip it if the flag below was cleared in the
4528 * eviction path. This improves the overall performance when multiple
4529 * memcgs are available.
4530 */
4531 if (!sc->memcgs_need_aging) {
4532 sc->memcgs_need_aging = true;
4533 return;
4534 }
4535
bd74fdae
YZ
4536 set_mm_walk(pgdat);
4537
ac35a490
YZ
4538 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4539 do {
4540 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4541
1332a809
YZ
4542 if (age_lruvec(lruvec, sc, min_ttl))
4543 success = true;
ac35a490
YZ
4544
4545 cond_resched();
4546 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
bd74fdae
YZ
4547
4548 clear_mm_walk();
1332a809
YZ
4549
4550 /* check the order to exclude compaction-induced reclaim */
4551 if (success || !min_ttl || sc->order)
4552 return;
4553
4554 /*
4555 * The main goal is to OOM kill if every generation from all memcgs is
4556 * younger than min_ttl. However, another possibility is all memcgs are
4557 * either below min or empty.
4558 */
4559 if (mutex_trylock(&oom_lock)) {
4560 struct oom_control oc = {
4561 .gfp_mask = sc->gfp_mask,
4562 };
4563
4564 out_of_memory(&oc);
4565
4566 mutex_unlock(&oom_lock);
4567 }
ac35a490
YZ
4568}
4569
018ee47f 4570/*
49fd9b6d 4571 * This function exploits spatial locality when shrink_folio_list() walks the
bd74fdae
YZ
4572 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4573 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4574 * the PTE table to the Bloom filter. This forms a feedback loop between the
4575 * eviction and the aging.
018ee47f
YZ
4576 */
4577void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4578{
4579 int i;
4580 pte_t *pte;
4581 unsigned long start;
4582 unsigned long end;
4583 unsigned long addr;
bd74fdae
YZ
4584 struct lru_gen_mm_walk *walk;
4585 int young = 0;
018ee47f
YZ
4586 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4587 struct folio *folio = pfn_folio(pvmw->pfn);
4588 struct mem_cgroup *memcg = folio_memcg(folio);
4589 struct pglist_data *pgdat = folio_pgdat(folio);
4590 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4591 DEFINE_MAX_SEQ(lruvec);
4592 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4593
4594 lockdep_assert_held(pvmw->ptl);
4595 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4596
4597 if (spin_is_contended(pvmw->ptl))
4598 return;
4599
bd74fdae
YZ
4600 /* avoid taking the LRU lock under the PTL when possible */
4601 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4602
018ee47f
YZ
4603 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4604 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4605
4606 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4607 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4608 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4609 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4610 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4611 else {
4612 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4613 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4614 }
4615 }
4616
4617 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4618
4619 rcu_read_lock();
4620 arch_enter_lazy_mmu_mode();
4621
4622 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4623 unsigned long pfn;
4624
4625 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4626 if (pfn == -1)
4627 continue;
4628
4629 if (!pte_young(pte[i]))
4630 continue;
4631
bd74fdae 4632 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
018ee47f
YZ
4633 if (!folio)
4634 continue;
4635
4636 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4637 VM_WARN_ON_ONCE(true);
4638
bd74fdae
YZ
4639 young++;
4640
018ee47f
YZ
4641 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4642 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4643 !folio_test_swapcache(folio)))
4644 folio_mark_dirty(folio);
4645
4646 old_gen = folio_lru_gen(folio);
4647 if (old_gen < 0)
4648 folio_set_referenced(folio);
4649 else if (old_gen != new_gen)
4650 __set_bit(i, bitmap);
4651 }
4652
4653 arch_leave_lazy_mmu_mode();
4654 rcu_read_unlock();
4655
bd74fdae
YZ
4656 /* feedback from rmap walkers to page table walkers */
4657 if (suitable_to_scan(i, young))
4658 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4659
4660 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
018ee47f
YZ
4661 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4662 folio = pfn_folio(pte_pfn(pte[i]));
4663 folio_activate(folio);
4664 }
4665 return;
4666 }
4667
4668 /* folio_update_gen() requires stable folio_memcg() */
4669 if (!mem_cgroup_trylock_pages(memcg))
4670 return;
4671
bd74fdae
YZ
4672 if (!walk) {
4673 spin_lock_irq(&lruvec->lru_lock);
4674 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4675 }
018ee47f
YZ
4676
4677 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4678 folio = pfn_folio(pte_pfn(pte[i]));
4679 if (folio_memcg_rcu(folio) != memcg)
4680 continue;
4681
4682 old_gen = folio_update_gen(folio, new_gen);
4683 if (old_gen < 0 || old_gen == new_gen)
4684 continue;
4685
bd74fdae
YZ
4686 if (walk)
4687 update_batch_size(walk, folio, old_gen, new_gen);
4688 else
4689 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
018ee47f
YZ
4690 }
4691
bd74fdae
YZ
4692 if (!walk)
4693 spin_unlock_irq(&lruvec->lru_lock);
018ee47f
YZ
4694
4695 mem_cgroup_unlock_pages();
4696}
4697
ac35a490
YZ
4698/******************************************************************************
4699 * the eviction
4700 ******************************************************************************/
4701
4702static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4703{
4704 bool success;
4705 int gen = folio_lru_gen(folio);
4706 int type = folio_is_file_lru(folio);
4707 int zone = folio_zonenum(folio);
4708 int delta = folio_nr_pages(folio);
4709 int refs = folio_lru_refs(folio);
4710 int tier = lru_tier_from_refs(refs);
4711 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4712
4713 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4714
4715 /* unevictable */
4716 if (!folio_evictable(folio)) {
4717 success = lru_gen_del_folio(lruvec, folio, true);
4718 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4719 folio_set_unevictable(folio);
4720 lruvec_add_folio(lruvec, folio);
4721 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4722 return true;
4723 }
4724
4725 /* dirty lazyfree */
4726 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4727 success = lru_gen_del_folio(lruvec, folio, true);
4728 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4729 folio_set_swapbacked(folio);
4730 lruvec_add_folio_tail(lruvec, folio);
4731 return true;
4732 }
4733
018ee47f
YZ
4734 /* promoted */
4735 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4736 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4737 return true;
4738 }
4739
ac35a490
YZ
4740 /* protected */
4741 if (tier > tier_idx) {
4742 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4743
4744 gen = folio_inc_gen(lruvec, folio, false);
4745 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4746
4747 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4748 lrugen->protected[hist][type][tier - 1] + delta);
4749 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4750 return true;
4751 }
4752
4753 /* waiting for writeback */
4754 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4755 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4756 gen = folio_inc_gen(lruvec, folio, true);
4757 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4758 return true;
4759 }
4760
4761 return false;
4762}
4763
4764static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4765{
4766 bool success;
4767
4768 /* unmapping inhibited */
4769 if (!sc->may_unmap && folio_mapped(folio))
4770 return false;
4771
4772 /* swapping inhibited */
4773 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4774 (folio_test_dirty(folio) ||
4775 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4776 return false;
4777
4778 /* raced with release_pages() */
4779 if (!folio_try_get(folio))
4780 return false;
4781
4782 /* raced with another isolation */
4783 if (!folio_test_clear_lru(folio)) {
4784 folio_put(folio);
4785 return false;
4786 }
4787
4788 /* see the comment on MAX_NR_TIERS */
4789 if (!folio_test_referenced(folio))
4790 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4791
49fd9b6d 4792 /* for shrink_folio_list() */
ac35a490
YZ
4793 folio_clear_reclaim(folio);
4794 folio_clear_referenced(folio);
4795
4796 success = lru_gen_del_folio(lruvec, folio, true);
4797 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4798
4799 return true;
4800}
4801
4802static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4803 int type, int tier, struct list_head *list)
4804{
4805 int gen, zone;
4806 enum vm_event_item item;
4807 int sorted = 0;
4808 int scanned = 0;
4809 int isolated = 0;
4810 int remaining = MAX_LRU_BATCH;
4811 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4812 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4813
4814 VM_WARN_ON_ONCE(!list_empty(list));
4815
4816 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4817 return 0;
4818
4819 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4820
4821 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4822 LIST_HEAD(moved);
4823 int skipped = 0;
4824 struct list_head *head = &lrugen->lists[gen][type][zone];
4825
4826 while (!list_empty(head)) {
4827 struct folio *folio = lru_to_folio(head);
4828 int delta = folio_nr_pages(folio);
4829
4830 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4831 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4832 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4833 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4834
4835 scanned += delta;
4836
4837 if (sort_folio(lruvec, folio, tier))
4838 sorted += delta;
4839 else if (isolate_folio(lruvec, folio, sc)) {
4840 list_add(&folio->lru, list);
4841 isolated += delta;
4842 } else {
4843 list_move(&folio->lru, &moved);
4844 skipped += delta;
4845 }
4846
4847 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4848 break;
4849 }
4850
4851 if (skipped) {
4852 list_splice(&moved, head);
4853 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4854 }
4855
4856 if (!remaining || isolated >= MIN_LRU_BATCH)
4857 break;
4858 }
4859
4860 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
4861 if (!cgroup_reclaim(sc)) {
4862 __count_vm_events(item, isolated);
4863 __count_vm_events(PGREFILL, sorted);
4864 }
4865 __count_memcg_events(memcg, item, isolated);
4866 __count_memcg_events(memcg, PGREFILL, sorted);
4867 __count_vm_events(PGSCAN_ANON + type, isolated);
4868
4869 /*
4870 * There might not be eligible pages due to reclaim_idx, may_unmap and
4871 * may_writepage. Check the remaining to prevent livelock if it's not
4872 * making progress.
4873 */
4874 return isolated || !remaining ? scanned : 0;
4875}
4876
4877static int get_tier_idx(struct lruvec *lruvec, int type)
4878{
4879 int tier;
4880 struct ctrl_pos sp, pv;
4881
4882 /*
4883 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4884 * This value is chosen because any other tier would have at least twice
4885 * as many refaults as the first tier.
4886 */
4887 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4888 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4889 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4890 if (!positive_ctrl_err(&sp, &pv))
4891 break;
4892 }
4893
4894 return tier - 1;
4895}
4896
4897static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4898{
4899 int type, tier;
4900 struct ctrl_pos sp, pv;
4901 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4902
4903 /*
4904 * Compare the first tier of anon with that of file to determine which
4905 * type to scan. Also need to compare other tiers of the selected type
4906 * with the first tier of the other type to determine the last tier (of
4907 * the selected type) to evict.
4908 */
4909 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4910 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4911 type = positive_ctrl_err(&sp, &pv);
4912
4913 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4914 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4915 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4916 if (!positive_ctrl_err(&sp, &pv))
4917 break;
4918 }
4919
4920 *tier_idx = tier - 1;
4921
4922 return type;
4923}
4924
4925static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4926 int *type_scanned, struct list_head *list)
4927{
4928 int i;
4929 int type;
4930 int scanned;
4931 int tier = -1;
4932 DEFINE_MIN_SEQ(lruvec);
4933
4934 /*
4935 * Try to make the obvious choice first. When anon and file are both
4936 * available from the same generation, interpret swappiness 1 as file
4937 * first and 200 as anon first.
4938 */
4939 if (!swappiness)
4940 type = LRU_GEN_FILE;
4941 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4942 type = LRU_GEN_ANON;
4943 else if (swappiness == 1)
4944 type = LRU_GEN_FILE;
4945 else if (swappiness == 200)
4946 type = LRU_GEN_ANON;
4947 else
4948 type = get_type_to_scan(lruvec, swappiness, &tier);
4949
4950 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4951 if (tier < 0)
4952 tier = get_tier_idx(lruvec, type);
4953
4954 scanned = scan_folios(lruvec, sc, type, tier, list);
4955 if (scanned)
4956 break;
4957
4958 type = !type;
4959 tier = -1;
4960 }
4961
4962 *type_scanned = type;
4963
4964 return scanned;
4965}
4966
f76c8337
YZ
4967static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4968 bool *need_swapping)
ac35a490
YZ
4969{
4970 int type;
4971 int scanned;
4972 int reclaimed;
4973 LIST_HEAD(list);
4974 struct folio *folio;
4975 enum vm_event_item item;
4976 struct reclaim_stat stat;
bd74fdae 4977 struct lru_gen_mm_walk *walk;
ac35a490
YZ
4978 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4979 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4980
4981 spin_lock_irq(&lruvec->lru_lock);
4982
4983 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4984
4985 scanned += try_to_inc_min_seq(lruvec, swappiness);
4986
4987 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4988 scanned = 0;
4989
4990 spin_unlock_irq(&lruvec->lru_lock);
4991
4992 if (list_empty(&list))
4993 return scanned;
4994
49fd9b6d 4995 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
ac35a490
YZ
4996
4997 list_for_each_entry(folio, &list, lru) {
4998 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4999 if (folio_test_workingset(folio))
5000 folio_set_referenced(folio);
5001
5002 /* don't add rejected pages to the oldest generation */
5003 if (folio_test_reclaim(folio) &&
5004 (folio_test_dirty(folio) || folio_test_writeback(folio)))
5005 folio_clear_active(folio);
5006 else
5007 folio_set_active(folio);
5008 }
5009
5010 spin_lock_irq(&lruvec->lru_lock);
5011
49fd9b6d 5012 move_folios_to_lru(lruvec, &list);
ac35a490 5013
bd74fdae
YZ
5014 walk = current->reclaim_state->mm_walk;
5015 if (walk && walk->batched)
5016 reset_batch_size(lruvec, walk);
5017
ac35a490
YZ
5018 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
5019 if (!cgroup_reclaim(sc))
5020 __count_vm_events(item, reclaimed);
5021 __count_memcg_events(memcg, item, reclaimed);
5022 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5023
5024 spin_unlock_irq(&lruvec->lru_lock);
5025
5026 mem_cgroup_uncharge_list(&list);
5027 free_unref_page_list(&list);
5028
5029 sc->nr_reclaimed += reclaimed;
5030
f76c8337
YZ
5031 if (need_swapping && type == LRU_GEN_ANON)
5032 *need_swapping = true;
5033
ac35a490
YZ
5034 return scanned;
5035}
5036
bd74fdae
YZ
5037/*
5038 * For future optimizations:
5039 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5040 * reclaim.
5041 */
ac35a490 5042static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
f76c8337 5043 bool can_swap, bool *need_aging)
ac35a490 5044{
ac35a490
YZ
5045 unsigned long nr_to_scan;
5046 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5047 DEFINE_MAX_SEQ(lruvec);
5048 DEFINE_MIN_SEQ(lruvec);
5049
5050 if (mem_cgroup_below_min(memcg) ||
5051 (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim))
5052 return 0;
5053
f76c8337
YZ
5054 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5055 if (!*need_aging)
ac35a490
YZ
5056 return nr_to_scan;
5057
5058 /* skip the aging path at the default priority */
5059 if (sc->priority == DEF_PRIORITY)
5060 goto done;
5061
5062 /* leave the work to lru_gen_age_node() */
5063 if (current_is_kswapd())
5064 return 0;
5065
d6c3af7d 5066 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
bd74fdae 5067 return nr_to_scan;
ac35a490
YZ
5068done:
5069 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5070}
5071
f76c8337
YZ
5072static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5073 struct scan_control *sc, bool need_swapping)
5074{
5075 int i;
5076 DEFINE_MAX_SEQ(lruvec);
5077
5078 if (!current_is_kswapd()) {
5079 /* age each memcg once to ensure fairness */
5080 if (max_seq - seq > 1)
5081 return true;
5082
5083 /* over-swapping can increase allocation latency */
5084 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5085 return true;
5086
5087 /* give this thread a chance to exit and free its memory */
5088 if (fatal_signal_pending(current)) {
5089 sc->nr_reclaimed += MIN_LRU_BATCH;
5090 return true;
5091 }
5092
5093 if (cgroup_reclaim(sc))
5094 return false;
5095 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5096 return false;
5097
5098 /* keep scanning at low priorities to ensure fairness */
5099 if (sc->priority > DEF_PRIORITY - 2)
5100 return false;
5101
5102 /*
5103 * A minimum amount of work was done under global memory pressure. For
5104 * kswapd, it may be overshooting. For direct reclaim, the target isn't
5105 * met, and yet the allocation may still succeed, since kswapd may have
5106 * caught up. In either case, it's better to stop now, and restart if
5107 * necessary.
5108 */
5109 for (i = 0; i <= sc->reclaim_idx; i++) {
5110 unsigned long wmark;
5111 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5112
5113 if (!managed_zone(zone))
5114 continue;
5115
5116 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5117 if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5118 return false;
5119 }
5120
5121 sc->nr_reclaimed += MIN_LRU_BATCH;
5122
5123 return true;
5124}
5125
ac35a490
YZ
5126static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5127{
5128 struct blk_plug plug;
f76c8337
YZ
5129 bool need_aging = false;
5130 bool need_swapping = false;
ac35a490 5131 unsigned long scanned = 0;
f76c8337
YZ
5132 unsigned long reclaimed = sc->nr_reclaimed;
5133 DEFINE_MAX_SEQ(lruvec);
ac35a490
YZ
5134
5135 lru_add_drain();
5136
5137 blk_start_plug(&plug);
5138
bd74fdae
YZ
5139 set_mm_walk(lruvec_pgdat(lruvec));
5140
ac35a490
YZ
5141 while (true) {
5142 int delta;
5143 int swappiness;
5144 unsigned long nr_to_scan;
5145
5146 if (sc->may_swap)
5147 swappiness = get_swappiness(lruvec, sc);
5148 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5149 swappiness = 1;
5150 else
5151 swappiness = 0;
5152
f76c8337 5153 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
ac35a490 5154 if (!nr_to_scan)
f76c8337 5155 goto done;
ac35a490 5156
f76c8337 5157 delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
ac35a490 5158 if (!delta)
f76c8337 5159 goto done;
ac35a490
YZ
5160
5161 scanned += delta;
5162 if (scanned >= nr_to_scan)
5163 break;
5164
f76c8337
YZ
5165 if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5166 break;
5167
ac35a490
YZ
5168 cond_resched();
5169 }
5170
f76c8337
YZ
5171 /* see the comment in lru_gen_age_node() */
5172 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5173 sc->memcgs_need_aging = false;
5174done:
bd74fdae
YZ
5175 clear_mm_walk();
5176
ac35a490
YZ
5177 blk_finish_plug(&plug);
5178}
5179
354ed597
YZ
5180/******************************************************************************
5181 * state change
5182 ******************************************************************************/
5183
5184static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5185{
5186 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5187
5188 if (lrugen->enabled) {
5189 enum lru_list lru;
5190
5191 for_each_evictable_lru(lru) {
5192 if (!list_empty(&lruvec->lists[lru]))
5193 return false;
5194 }
5195 } else {
5196 int gen, type, zone;
5197
5198 for_each_gen_type_zone(gen, type, zone) {
5199 if (!list_empty(&lrugen->lists[gen][type][zone]))
5200 return false;
5201 }
5202 }
5203
5204 return true;
5205}
5206
5207static bool fill_evictable(struct lruvec *lruvec)
5208{
5209 enum lru_list lru;
5210 int remaining = MAX_LRU_BATCH;
5211
5212 for_each_evictable_lru(lru) {
5213 int type = is_file_lru(lru);
5214 bool active = is_active_lru(lru);
5215 struct list_head *head = &lruvec->lists[lru];
5216
5217 while (!list_empty(head)) {
5218 bool success;
5219 struct folio *folio = lru_to_folio(head);
5220
5221 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5222 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5223 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5224 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5225
5226 lruvec_del_folio(lruvec, folio);
5227 success = lru_gen_add_folio(lruvec, folio, false);
5228 VM_WARN_ON_ONCE(!success);
5229
5230 if (!--remaining)
5231 return false;
5232 }
5233 }
5234
5235 return true;
5236}
5237
5238static bool drain_evictable(struct lruvec *lruvec)
5239{
5240 int gen, type, zone;
5241 int remaining = MAX_LRU_BATCH;
5242
5243 for_each_gen_type_zone(gen, type, zone) {
5244 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5245
5246 while (!list_empty(head)) {
5247 bool success;
5248 struct folio *folio = lru_to_folio(head);
5249
5250 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5251 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5252 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5253 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5254
5255 success = lru_gen_del_folio(lruvec, folio, false);
5256 VM_WARN_ON_ONCE(!success);
5257 lruvec_add_folio(lruvec, folio);
5258
5259 if (!--remaining)
5260 return false;
5261 }
5262 }
5263
5264 return true;
5265}
5266
5267static void lru_gen_change_state(bool enabled)
5268{
5269 static DEFINE_MUTEX(state_mutex);
5270
5271 struct mem_cgroup *memcg;
5272
5273 cgroup_lock();
5274 cpus_read_lock();
5275 get_online_mems();
5276 mutex_lock(&state_mutex);
5277
5278 if (enabled == lru_gen_enabled())
5279 goto unlock;
5280
5281 if (enabled)
5282 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5283 else
5284 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5285
5286 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5287 do {
5288 int nid;
5289
5290 for_each_node(nid) {
5291 struct lruvec *lruvec = get_lruvec(memcg, nid);
5292
5293 if (!lruvec)
5294 continue;
5295
5296 spin_lock_irq(&lruvec->lru_lock);
5297
5298 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5299 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5300
5301 lruvec->lrugen.enabled = enabled;
5302
5303 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5304 spin_unlock_irq(&lruvec->lru_lock);
5305 cond_resched();
5306 spin_lock_irq(&lruvec->lru_lock);
5307 }
5308
5309 spin_unlock_irq(&lruvec->lru_lock);
5310 }
5311
5312 cond_resched();
5313 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5314unlock:
5315 mutex_unlock(&state_mutex);
5316 put_online_mems();
5317 cpus_read_unlock();
5318 cgroup_unlock();
5319}
5320
5321/******************************************************************************
5322 * sysfs interface
5323 ******************************************************************************/
5324
1332a809
YZ
5325static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5326{
5327 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5328}
5329
07017acb 5330/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
1332a809
YZ
5331static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5332 const char *buf, size_t len)
5333{
5334 unsigned int msecs;
5335
5336 if (kstrtouint(buf, 0, &msecs))
5337 return -EINVAL;
5338
5339 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5340
5341 return len;
5342}
5343
5344static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5345 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5346);
5347
354ed597
YZ
5348static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5349{
5350 unsigned int caps = 0;
5351
5352 if (get_cap(LRU_GEN_CORE))
5353 caps |= BIT(LRU_GEN_CORE);
5354
5355 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5356 caps |= BIT(LRU_GEN_MM_WALK);
5357
5358 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && get_cap(LRU_GEN_NONLEAF_YOUNG))
5359 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5360
5361 return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
5362}
5363
07017acb 5364/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
354ed597
YZ
5365static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5366 const char *buf, size_t len)
5367{
5368 int i;
5369 unsigned int caps;
5370
5371 if (tolower(*buf) == 'n')
5372 caps = 0;
5373 else if (tolower(*buf) == 'y')
5374 caps = -1;
5375 else if (kstrtouint(buf, 0, &caps))
5376 return -EINVAL;
5377
5378 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5379 bool enabled = caps & BIT(i);
5380
5381 if (i == LRU_GEN_CORE)
5382 lru_gen_change_state(enabled);
5383 else if (enabled)
5384 static_branch_enable(&lru_gen_caps[i]);
5385 else
5386 static_branch_disable(&lru_gen_caps[i]);
5387 }
5388
5389 return len;
5390}
5391
5392static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5393 enabled, 0644, show_enabled, store_enabled
5394);
5395
5396static struct attribute *lru_gen_attrs[] = {
1332a809 5397 &lru_gen_min_ttl_attr.attr,
354ed597
YZ
5398 &lru_gen_enabled_attr.attr,
5399 NULL
5400};
5401
5402static struct attribute_group lru_gen_attr_group = {
5403 .name = "lru_gen",
5404 .attrs = lru_gen_attrs,
5405};
5406
d6c3af7d
YZ
5407/******************************************************************************
5408 * debugfs interface
5409 ******************************************************************************/
5410
5411static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5412{
5413 struct mem_cgroup *memcg;
5414 loff_t nr_to_skip = *pos;
5415
5416 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5417 if (!m->private)
5418 return ERR_PTR(-ENOMEM);
5419
5420 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5421 do {
5422 int nid;
5423
5424 for_each_node_state(nid, N_MEMORY) {
5425 if (!nr_to_skip--)
5426 return get_lruvec(memcg, nid);
5427 }
5428 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5429
5430 return NULL;
5431}
5432
5433static void lru_gen_seq_stop(struct seq_file *m, void *v)
5434{
5435 if (!IS_ERR_OR_NULL(v))
5436 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5437
5438 kvfree(m->private);
5439 m->private = NULL;
5440}
5441
5442static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5443{
5444 int nid = lruvec_pgdat(v)->node_id;
5445 struct mem_cgroup *memcg = lruvec_memcg(v);
5446
5447 ++*pos;
5448
5449 nid = next_memory_node(nid);
5450 if (nid == MAX_NUMNODES) {
5451 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5452 if (!memcg)
5453 return NULL;
5454
5455 nid = first_memory_node;
5456 }
5457
5458 return get_lruvec(memcg, nid);
5459}
5460
5461static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5462 unsigned long max_seq, unsigned long *min_seq,
5463 unsigned long seq)
5464{
5465 int i;
5466 int type, tier;
5467 int hist = lru_hist_from_seq(seq);
5468 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5469
5470 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5471 seq_printf(m, " %10d", tier);
5472 for (type = 0; type < ANON_AND_FILE; type++) {
5473 const char *s = " ";
5474 unsigned long n[3] = {};
5475
5476 if (seq == max_seq) {
5477 s = "RT ";
5478 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5479 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5480 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5481 s = "rep";
5482 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5483 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5484 if (tier)
5485 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5486 }
5487
5488 for (i = 0; i < 3; i++)
5489 seq_printf(m, " %10lu%c", n[i], s[i]);
5490 }
5491 seq_putc(m, '\n');
5492 }
5493
5494 seq_puts(m, " ");
5495 for (i = 0; i < NR_MM_STATS; i++) {
5496 const char *s = " ";
5497 unsigned long n = 0;
5498
5499 if (seq == max_seq && NR_HIST_GENS == 1) {
5500 s = "LOYNFA";
5501 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5502 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5503 s = "loynfa";
5504 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5505 }
5506
5507 seq_printf(m, " %10lu%c", n, s[i]);
5508 }
5509 seq_putc(m, '\n');
5510}
5511
07017acb 5512/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
d6c3af7d
YZ
5513static int lru_gen_seq_show(struct seq_file *m, void *v)
5514{
5515 unsigned long seq;
5516 bool full = !debugfs_real_fops(m->file)->write;
5517 struct lruvec *lruvec = v;
5518 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5519 int nid = lruvec_pgdat(lruvec)->node_id;
5520 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5521 DEFINE_MAX_SEQ(lruvec);
5522 DEFINE_MIN_SEQ(lruvec);
5523
5524 if (nid == first_memory_node) {
5525 const char *path = memcg ? m->private : "";
5526
5527#ifdef CONFIG_MEMCG
5528 if (memcg)
5529 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5530#endif
5531 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5532 }
5533
5534 seq_printf(m, " node %5d\n", nid);
5535
5536 if (!full)
5537 seq = min_seq[LRU_GEN_ANON];
5538 else if (max_seq >= MAX_NR_GENS)
5539 seq = max_seq - MAX_NR_GENS + 1;
5540 else
5541 seq = 0;
5542
5543 for (; seq <= max_seq; seq++) {
5544 int type, zone;
5545 int gen = lru_gen_from_seq(seq);
5546 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5547
5548 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5549
5550 for (type = 0; type < ANON_AND_FILE; type++) {
5551 unsigned long size = 0;
5552 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5553
5554 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5555 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5556
5557 seq_printf(m, " %10lu%c", size, mark);
5558 }
5559
5560 seq_putc(m, '\n');
5561
5562 if (full)
5563 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5564 }
5565
5566 return 0;
5567}
5568
5569static const struct seq_operations lru_gen_seq_ops = {
5570 .start = lru_gen_seq_start,
5571 .stop = lru_gen_seq_stop,
5572 .next = lru_gen_seq_next,
5573 .show = lru_gen_seq_show,
5574};
5575
5576static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5577 bool can_swap, bool force_scan)
5578{
5579 DEFINE_MAX_SEQ(lruvec);
5580 DEFINE_MIN_SEQ(lruvec);
5581
5582 if (seq < max_seq)
5583 return 0;
5584
5585 if (seq > max_seq)
5586 return -EINVAL;
5587
5588 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5589 return -ERANGE;
5590
5591 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5592
5593 return 0;
5594}
5595
5596static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5597 int swappiness, unsigned long nr_to_reclaim)
5598{
5599 DEFINE_MAX_SEQ(lruvec);
5600
5601 if (seq + MIN_NR_GENS > max_seq)
5602 return -EINVAL;
5603
5604 sc->nr_reclaimed = 0;
5605
5606 while (!signal_pending(current)) {
5607 DEFINE_MIN_SEQ(lruvec);
5608
5609 if (seq < min_seq[!swappiness])
5610 return 0;
5611
5612 if (sc->nr_reclaimed >= nr_to_reclaim)
5613 return 0;
5614
5615 if (!evict_folios(lruvec, sc, swappiness, NULL))
5616 return 0;
5617
5618 cond_resched();
5619 }
5620
5621 return -EINTR;
5622}
5623
5624static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5625 struct scan_control *sc, int swappiness, unsigned long opt)
5626{
5627 struct lruvec *lruvec;
5628 int err = -EINVAL;
5629 struct mem_cgroup *memcg = NULL;
5630
5631 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5632 return -EINVAL;
5633
5634 if (!mem_cgroup_disabled()) {
5635 rcu_read_lock();
5636 memcg = mem_cgroup_from_id(memcg_id);
5637#ifdef CONFIG_MEMCG
5638 if (memcg && !css_tryget(&memcg->css))
5639 memcg = NULL;
5640#endif
5641 rcu_read_unlock();
5642
5643 if (!memcg)
5644 return -EINVAL;
5645 }
5646
5647 if (memcg_id != mem_cgroup_id(memcg))
5648 goto done;
5649
5650 lruvec = get_lruvec(memcg, nid);
5651
5652 if (swappiness < 0)
5653 swappiness = get_swappiness(lruvec, sc);
5654 else if (swappiness > 200)
5655 goto done;
5656
5657 switch (cmd) {
5658 case '+':
5659 err = run_aging(lruvec, seq, sc, swappiness, opt);
5660 break;
5661 case '-':
5662 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5663 break;
5664 }
5665done:
5666 mem_cgroup_put(memcg);
5667
5668 return err;
5669}
5670
07017acb 5671/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
d6c3af7d
YZ
5672static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5673 size_t len, loff_t *pos)
5674{
5675 void *buf;
5676 char *cur, *next;
5677 unsigned int flags;
5678 struct blk_plug plug;
5679 int err = -EINVAL;
5680 struct scan_control sc = {
5681 .may_writepage = true,
5682 .may_unmap = true,
5683 .may_swap = true,
5684 .reclaim_idx = MAX_NR_ZONES - 1,
5685 .gfp_mask = GFP_KERNEL,
5686 };
5687
5688 buf = kvmalloc(len + 1, GFP_KERNEL);
5689 if (!buf)
5690 return -ENOMEM;
5691
5692 if (copy_from_user(buf, src, len)) {
5693 kvfree(buf);
5694 return -EFAULT;
5695 }
5696
5697 set_task_reclaim_state(current, &sc.reclaim_state);
5698 flags = memalloc_noreclaim_save();
5699 blk_start_plug(&plug);
5700 if (!set_mm_walk(NULL)) {
5701 err = -ENOMEM;
5702 goto done;
5703 }
5704
5705 next = buf;
5706 next[len] = '\0';
5707
5708 while ((cur = strsep(&next, ",;\n"))) {
5709 int n;
5710 int end;
5711 char cmd;
5712 unsigned int memcg_id;
5713 unsigned int nid;
5714 unsigned long seq;
5715 unsigned int swappiness = -1;
5716 unsigned long opt = -1;
5717
5718 cur = skip_spaces(cur);
5719 if (!*cur)
5720 continue;
5721
5722 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5723 &seq, &end, &swappiness, &end, &opt, &end);
5724 if (n < 4 || cur[end]) {
5725 err = -EINVAL;
5726 break;
5727 }
5728
5729 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5730 if (err)
5731 break;
5732 }
5733done:
5734 clear_mm_walk();
5735 blk_finish_plug(&plug);
5736 memalloc_noreclaim_restore(flags);
5737 set_task_reclaim_state(current, NULL);
5738
5739 kvfree(buf);
5740
5741 return err ? : len;
5742}
5743
5744static int lru_gen_seq_open(struct inode *inode, struct file *file)
5745{
5746 return seq_open(file, &lru_gen_seq_ops);
5747}
5748
5749static const struct file_operations lru_gen_rw_fops = {
5750 .open = lru_gen_seq_open,
5751 .read = seq_read,
5752 .write = lru_gen_seq_write,
5753 .llseek = seq_lseek,
5754 .release = seq_release,
5755};
5756
5757static const struct file_operations lru_gen_ro_fops = {
5758 .open = lru_gen_seq_open,
5759 .read = seq_read,
5760 .llseek = seq_lseek,
5761 .release = seq_release,
5762};
5763
ec1c86b2
YZ
5764/******************************************************************************
5765 * initialization
5766 ******************************************************************************/
5767
5768void lru_gen_init_lruvec(struct lruvec *lruvec)
5769{
1332a809 5770 int i;
ec1c86b2
YZ
5771 int gen, type, zone;
5772 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5773
5774 lrugen->max_seq = MIN_NR_GENS + 1;
354ed597 5775 lrugen->enabled = lru_gen_enabled();
ec1c86b2 5776
1332a809
YZ
5777 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5778 lrugen->timestamps[i] = jiffies;
5779
ec1c86b2
YZ
5780 for_each_gen_type_zone(gen, type, zone)
5781 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
bd74fdae
YZ
5782
5783 lruvec->mm_state.seq = MIN_NR_GENS;
5784 init_waitqueue_head(&lruvec->mm_state.wait);
ec1c86b2
YZ
5785}
5786
5787#ifdef CONFIG_MEMCG
5788void lru_gen_init_memcg(struct mem_cgroup *memcg)
5789{
bd74fdae
YZ
5790 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5791 spin_lock_init(&memcg->mm_list.lock);
ec1c86b2
YZ
5792}
5793
5794void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5795{
bd74fdae 5796 int i;
ec1c86b2
YZ
5797 int nid;
5798
5799 for_each_node(nid) {
5800 struct lruvec *lruvec = get_lruvec(memcg, nid);
5801
5802 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5803 sizeof(lruvec->lrugen.nr_pages)));
bd74fdae
YZ
5804
5805 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5806 bitmap_free(lruvec->mm_state.filters[i]);
5807 lruvec->mm_state.filters[i] = NULL;
5808 }
ec1c86b2
YZ
5809 }
5810}
5811#endif
5812
5813static int __init init_lru_gen(void)
5814{
5815 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5816 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5817
354ed597
YZ
5818 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5819 pr_err("lru_gen: failed to create sysfs group\n");
5820
d6c3af7d
YZ
5821 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5822 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5823
ec1c86b2
YZ
5824 return 0;
5825};
5826late_initcall(init_lru_gen);
5827
ac35a490
YZ
5828#else /* !CONFIG_LRU_GEN */
5829
5830static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5831{
5832}
5833
5834static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5835{
5836}
5837
ec1c86b2
YZ
5838#endif /* CONFIG_LRU_GEN */
5839
afaf07a6 5840static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
5841{
5842 unsigned long nr[NR_LRU_LISTS];
e82e0561 5843 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
5844 unsigned long nr_to_scan;
5845 enum lru_list lru;
5846 unsigned long nr_reclaimed = 0;
5847 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5848 struct blk_plug plug;
1a501907 5849 bool scan_adjusted;
9b4f98cd 5850
ac35a490
YZ
5851 if (lru_gen_enabled()) {
5852 lru_gen_shrink_lruvec(lruvec, sc);
5853 return;
5854 }
5855
afaf07a6 5856 get_scan_count(lruvec, sc, nr);
9b4f98cd 5857
e82e0561
MG
5858 /* Record the original scan target for proportional adjustments later */
5859 memcpy(targets, nr, sizeof(nr));
5860
1a501907
MG
5861 /*
5862 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5863 * event that can occur when there is little memory pressure e.g.
5864 * multiple streaming readers/writers. Hence, we do not abort scanning
5865 * when the requested number of pages are reclaimed when scanning at
5866 * DEF_PRIORITY on the assumption that the fact we are direct
5867 * reclaiming implies that kswapd is not keeping up and it is best to
5868 * do a batch of work at once. For memcg reclaim one check is made to
5869 * abort proportional reclaim if either the file or anon lru has already
5870 * dropped to zero at the first pass.
5871 */
b5ead35e 5872 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
5873 sc->priority == DEF_PRIORITY);
5874
9b4f98cd
JW
5875 blk_start_plug(&plug);
5876 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5877 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
5878 unsigned long nr_anon, nr_file, percentage;
5879 unsigned long nr_scanned;
5880
9b4f98cd
JW
5881 for_each_evictable_lru(lru) {
5882 if (nr[lru]) {
5883 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5884 nr[lru] -= nr_to_scan;
5885
5886 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 5887 lruvec, sc);
9b4f98cd
JW
5888 }
5889 }
e82e0561 5890
bd041733
MH
5891 cond_resched();
5892
e82e0561
MG
5893 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
5894 continue;
5895
e82e0561
MG
5896 /*
5897 * For kswapd and memcg, reclaim at least the number of pages
1a501907 5898 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
5899 * proportionally what was requested by get_scan_count(). We
5900 * stop reclaiming one LRU and reduce the amount scanning
5901 * proportional to the original scan target.
5902 */
5903 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5904 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5905
1a501907
MG
5906 /*
5907 * It's just vindictive to attack the larger once the smaller
5908 * has gone to zero. And given the way we stop scanning the
5909 * smaller below, this makes sure that we only make one nudge
5910 * towards proportionality once we've got nr_to_reclaim.
5911 */
5912 if (!nr_file || !nr_anon)
5913 break;
5914
e82e0561
MG
5915 if (nr_file > nr_anon) {
5916 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5917 targets[LRU_ACTIVE_ANON] + 1;
5918 lru = LRU_BASE;
5919 percentage = nr_anon * 100 / scan_target;
5920 } else {
5921 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5922 targets[LRU_ACTIVE_FILE] + 1;
5923 lru = LRU_FILE;
5924 percentage = nr_file * 100 / scan_target;
5925 }
5926
5927 /* Stop scanning the smaller of the LRU */
5928 nr[lru] = 0;
5929 nr[lru + LRU_ACTIVE] = 0;
5930
5931 /*
5932 * Recalculate the other LRU scan count based on its original
5933 * scan target and the percentage scanning already complete
5934 */
5935 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5936 nr_scanned = targets[lru] - nr[lru];
5937 nr[lru] = targets[lru] * (100 - percentage) / 100;
5938 nr[lru] -= min(nr[lru], nr_scanned);
5939
5940 lru += LRU_ACTIVE;
5941 nr_scanned = targets[lru] - nr[lru];
5942 nr[lru] = targets[lru] * (100 - percentage) / 100;
5943 nr[lru] -= min(nr[lru], nr_scanned);
5944
5945 scan_adjusted = true;
9b4f98cd
JW
5946 }
5947 blk_finish_plug(&plug);
5948 sc->nr_reclaimed += nr_reclaimed;
5949
5950 /*
5951 * Even if we did not try to evict anon pages at all, we want to
5952 * rebalance the anon lru active/inactive ratio.
5953 */
2f368a9f
DH
5954 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5955 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
5956 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5957 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
5958}
5959
23b9da55 5960/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 5961static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 5962{
d84da3f9 5963 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 5964 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 5965 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
5966 return true;
5967
5968 return false;
5969}
5970
3e7d3449 5971/*
23b9da55
MG
5972 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5973 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5974 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 5975 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 5976 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 5977 */
a9dd0a83 5978static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 5979 unsigned long nr_reclaimed,
3e7d3449
MG
5980 struct scan_control *sc)
5981{
5982 unsigned long pages_for_compaction;
5983 unsigned long inactive_lru_pages;
a9dd0a83 5984 int z;
3e7d3449
MG
5985
5986 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 5987 if (!in_reclaim_compaction(sc))
3e7d3449
MG
5988 return false;
5989
5ee04716
VB
5990 /*
5991 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5992 * number of pages that were scanned. This will return to the caller
5993 * with the risk reclaim/compaction and the resulting allocation attempt
5994 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5995 * allocations through requiring that the full LRU list has been scanned
5996 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5997 * scan, but that approximation was wrong, and there were corner cases
5998 * where always a non-zero amount of pages were scanned.
5999 */
6000 if (!nr_reclaimed)
6001 return false;
3e7d3449 6002
3e7d3449 6003 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
6004 for (z = 0; z <= sc->reclaim_idx; z++) {
6005 struct zone *zone = &pgdat->node_zones[z];
6aa303de 6006 if (!managed_zone(zone))
a9dd0a83
MG
6007 continue;
6008
6009 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 6010 case COMPACT_SUCCESS:
a9dd0a83
MG
6011 case COMPACT_CONTINUE:
6012 return false;
6013 default:
6014 /* check next zone */
6015 ;
6016 }
3e7d3449 6017 }
1c6c1597
HD
6018
6019 /*
6020 * If we have not reclaimed enough pages for compaction and the
6021 * inactive lists are large enough, continue reclaiming
6022 */
6023 pages_for_compaction = compact_gap(sc->order);
6024 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 6025 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
6026 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6027
5ee04716 6028 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
6029}
6030
0f6a5cff 6031static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 6032{
0f6a5cff 6033 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 6034 struct mem_cgroup *memcg;
1da177e4 6035
0f6a5cff 6036 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 6037 do {
afaf07a6 6038 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
6039 unsigned long reclaimed;
6040 unsigned long scanned;
5660048c 6041
e3336cab
XP
6042 /*
6043 * This loop can become CPU-bound when target memcgs
6044 * aren't eligible for reclaim - either because they
6045 * don't have any reclaimable pages, or because their
6046 * memory is explicitly protected. Avoid soft lockups.
6047 */
6048 cond_resched();
6049
45c7f7e1
CD
6050 mem_cgroup_calculate_protection(target_memcg, memcg);
6051
6052 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
6053 /*
6054 * Hard protection.
6055 * If there is no reclaimable memory, OOM.
6056 */
6057 continue;
45c7f7e1 6058 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
6059 /*
6060 * Soft protection.
6061 * Respect the protection only as long as
6062 * there is an unprotected supply
6063 * of reclaimable memory from other cgroups.
6064 */
6065 if (!sc->memcg_low_reclaim) {
6066 sc->memcg_low_skipped = 1;
bf8d5d52 6067 continue;
241994ed 6068 }
d2af3397 6069 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 6070 }
241994ed 6071
d2af3397
JW
6072 reclaimed = sc->nr_reclaimed;
6073 scanned = sc->nr_scanned;
afaf07a6
JW
6074
6075 shrink_lruvec(lruvec, sc);
70ddf637 6076
d2af3397
JW
6077 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6078 sc->priority);
6b4f7799 6079
d2af3397 6080 /* Record the group's reclaim efficiency */
73b73bac
YA
6081 if (!sc->proactive)
6082 vmpressure(sc->gfp_mask, memcg, false,
6083 sc->nr_scanned - scanned,
6084 sc->nr_reclaimed - reclaimed);
70ddf637 6085
0f6a5cff
JW
6086 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6087}
6088
6c9e0907 6089static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
6090{
6091 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 6092 unsigned long nr_reclaimed, nr_scanned;
1b05117d 6093 struct lruvec *target_lruvec;
0f6a5cff
JW
6094 bool reclaimable = false;
6095
1b05117d
JW
6096 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6097
0f6a5cff
JW
6098again:
6099 memset(&sc->nr, 0, sizeof(sc->nr));
6100
6101 nr_reclaimed = sc->nr_reclaimed;
6102 nr_scanned = sc->nr_scanned;
6103
f1e1a7be 6104 prepare_scan_count(pgdat, sc);
53138cea 6105
0f6a5cff 6106 shrink_node_memcgs(pgdat, sc);
2344d7e4 6107
d2af3397
JW
6108 if (reclaim_state) {
6109 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6110 reclaim_state->reclaimed_slab = 0;
6111 }
d108c772 6112
d2af3397 6113 /* Record the subtree's reclaim efficiency */
73b73bac
YA
6114 if (!sc->proactive)
6115 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6116 sc->nr_scanned - nr_scanned,
6117 sc->nr_reclaimed - nr_reclaimed);
d108c772 6118
d2af3397
JW
6119 if (sc->nr_reclaimed - nr_reclaimed)
6120 reclaimable = true;
d108c772 6121
d2af3397
JW
6122 if (current_is_kswapd()) {
6123 /*
6124 * If reclaim is isolating dirty pages under writeback,
6125 * it implies that the long-lived page allocation rate
6126 * is exceeding the page laundering rate. Either the
6127 * global limits are not being effective at throttling
6128 * processes due to the page distribution throughout
6129 * zones or there is heavy usage of a slow backing
6130 * device. The only option is to throttle from reclaim
6131 * context which is not ideal as there is no guarantee
6132 * the dirtying process is throttled in the same way
6133 * balance_dirty_pages() manages.
6134 *
6135 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6136 * count the number of pages under pages flagged for
6137 * immediate reclaim and stall if any are encountered
6138 * in the nr_immediate check below.
6139 */
6140 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6141 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 6142
d2af3397
JW
6143 /* Allow kswapd to start writing pages during reclaim.*/
6144 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6145 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 6146
d108c772 6147 /*
1eba09c1 6148 * If kswapd scans pages marked for immediate
d2af3397
JW
6149 * reclaim and under writeback (nr_immediate), it
6150 * implies that pages are cycling through the LRU
8cd7c588
MG
6151 * faster than they are written so forcibly stall
6152 * until some pages complete writeback.
d108c772 6153 */
d2af3397 6154 if (sc->nr.immediate)
c3f4a9a2 6155 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
6156 }
6157
6158 /*
8cd7c588
MG
6159 * Tag a node/memcg as congested if all the dirty pages were marked
6160 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 6161 *
d2af3397 6162 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 6163 * stalling in reclaim_throttle().
d2af3397 6164 */
1b05117d
JW
6165 if ((current_is_kswapd() ||
6166 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 6167 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 6168 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
6169
6170 /*
8cd7c588
MG
6171 * Stall direct reclaim for IO completions if the lruvec is
6172 * node is congested. Allow kswapd to continue until it
d2af3397
JW
6173 * starts encountering unqueued dirty pages or cycling through
6174 * the LRU too quickly.
6175 */
1b05117d
JW
6176 if (!current_is_kswapd() && current_may_throttle() &&
6177 !sc->hibernation_mode &&
6178 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 6179 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 6180
d2af3397
JW
6181 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6182 sc))
6183 goto again;
2344d7e4 6184
c73322d0
JW
6185 /*
6186 * Kswapd gives up on balancing particular nodes after too
6187 * many failures to reclaim anything from them and goes to
6188 * sleep. On reclaim progress, reset the failure counter. A
6189 * successful direct reclaim run will revive a dormant kswapd.
6190 */
6191 if (reclaimable)
6192 pgdat->kswapd_failures = 0;
f16015fb
JW
6193}
6194
53853e2d 6195/*
fdd4c614
VB
6196 * Returns true if compaction should go ahead for a costly-order request, or
6197 * the allocation would already succeed without compaction. Return false if we
6198 * should reclaim first.
53853e2d 6199 */
4f588331 6200static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 6201{
31483b6a 6202 unsigned long watermark;
fdd4c614 6203 enum compact_result suitable;
fe4b1b24 6204
fdd4c614
VB
6205 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6206 if (suitable == COMPACT_SUCCESS)
6207 /* Allocation should succeed already. Don't reclaim. */
6208 return true;
6209 if (suitable == COMPACT_SKIPPED)
6210 /* Compaction cannot yet proceed. Do reclaim. */
6211 return false;
fe4b1b24 6212
53853e2d 6213 /*
fdd4c614
VB
6214 * Compaction is already possible, but it takes time to run and there
6215 * are potentially other callers using the pages just freed. So proceed
6216 * with reclaim to make a buffer of free pages available to give
6217 * compaction a reasonable chance of completing and allocating the page.
6218 * Note that we won't actually reclaim the whole buffer in one attempt
6219 * as the target watermark in should_continue_reclaim() is lower. But if
6220 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 6221 */
fdd4c614 6222 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 6223
fdd4c614 6224 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
6225}
6226
69392a40
MG
6227static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6228{
66ce520b
MG
6229 /*
6230 * If reclaim is making progress greater than 12% efficiency then
6231 * wake all the NOPROGRESS throttled tasks.
6232 */
6233 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
6234 wait_queue_head_t *wqh;
6235
6236 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6237 if (waitqueue_active(wqh))
6238 wake_up(wqh);
6239
6240 return;
6241 }
6242
6243 /*
1b4e3f26
MG
6244 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6245 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6246 * under writeback and marked for immediate reclaim at the tail of the
6247 * LRU.
69392a40 6248 */
1b4e3f26 6249 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
6250 return;
6251
6252 /* Throttle if making no progress at high prioities. */
1b4e3f26 6253 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 6254 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
6255}
6256
1da177e4
LT
6257/*
6258 * This is the direct reclaim path, for page-allocating processes. We only
6259 * try to reclaim pages from zones which will satisfy the caller's allocation
6260 * request.
6261 *
1da177e4
LT
6262 * If a zone is deemed to be full of pinned pages then just give it a light
6263 * scan then give up on it.
6264 */
0a0337e0 6265static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 6266{
dd1a239f 6267 struct zoneref *z;
54a6eb5c 6268 struct zone *zone;
0608f43d
AM
6269 unsigned long nr_soft_reclaimed;
6270 unsigned long nr_soft_scanned;
619d0d76 6271 gfp_t orig_mask;
79dafcdc 6272 pg_data_t *last_pgdat = NULL;
1b4e3f26 6273 pg_data_t *first_pgdat = NULL;
1cfb419b 6274
cc715d99
MG
6275 /*
6276 * If the number of buffer_heads in the machine exceeds the maximum
6277 * allowed level, force direct reclaim to scan the highmem zone as
6278 * highmem pages could be pinning lowmem pages storing buffer_heads
6279 */
619d0d76 6280 orig_mask = sc->gfp_mask;
b2e18757 6281 if (buffer_heads_over_limit) {
cc715d99 6282 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 6283 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 6284 }
cc715d99 6285
d4debc66 6286 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 6287 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
6288 /*
6289 * Take care memory controller reclaiming has small influence
6290 * to global LRU.
6291 */
b5ead35e 6292 if (!cgroup_reclaim(sc)) {
344736f2
VD
6293 if (!cpuset_zone_allowed(zone,
6294 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 6295 continue;
65ec02cb 6296
0b06496a
JW
6297 /*
6298 * If we already have plenty of memory free for
6299 * compaction in this zone, don't free any more.
6300 * Even though compaction is invoked for any
6301 * non-zero order, only frequent costly order
6302 * reclamation is disruptive enough to become a
6303 * noticeable problem, like transparent huge
6304 * page allocations.
6305 */
6306 if (IS_ENABLED(CONFIG_COMPACTION) &&
6307 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 6308 compaction_ready(zone, sc)) {
0b06496a
JW
6309 sc->compaction_ready = true;
6310 continue;
e0887c19 6311 }
0b06496a 6312
79dafcdc
MG
6313 /*
6314 * Shrink each node in the zonelist once. If the
6315 * zonelist is ordered by zone (not the default) then a
6316 * node may be shrunk multiple times but in that case
6317 * the user prefers lower zones being preserved.
6318 */
6319 if (zone->zone_pgdat == last_pgdat)
6320 continue;
6321
0608f43d
AM
6322 /*
6323 * This steals pages from memory cgroups over softlimit
6324 * and returns the number of reclaimed pages and
6325 * scanned pages. This works for global memory pressure
6326 * and balancing, not for a memcg's limit.
6327 */
6328 nr_soft_scanned = 0;
ef8f2327 6329 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
6330 sc->order, sc->gfp_mask,
6331 &nr_soft_scanned);
6332 sc->nr_reclaimed += nr_soft_reclaimed;
6333 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 6334 /* need some check for avoid more shrink_zone() */
1cfb419b 6335 }
408d8544 6336
1b4e3f26
MG
6337 if (!first_pgdat)
6338 first_pgdat = zone->zone_pgdat;
6339
79dafcdc
MG
6340 /* See comment about same check for global reclaim above */
6341 if (zone->zone_pgdat == last_pgdat)
6342 continue;
6343 last_pgdat = zone->zone_pgdat;
970a39a3 6344 shrink_node(zone->zone_pgdat, sc);
1da177e4 6345 }
e0c23279 6346
80082938
MG
6347 if (first_pgdat)
6348 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 6349
619d0d76
WY
6350 /*
6351 * Restore to original mask to avoid the impact on the caller if we
6352 * promoted it to __GFP_HIGHMEM.
6353 */
6354 sc->gfp_mask = orig_mask;
1da177e4 6355}
4f98a2fe 6356
b910718a 6357static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 6358{
b910718a
JW
6359 struct lruvec *target_lruvec;
6360 unsigned long refaults;
2a2e4885 6361
ac35a490
YZ
6362 if (lru_gen_enabled())
6363 return;
6364
b910718a 6365 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7 6366 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
e9c2dbc8 6367 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
170b04b7 6368 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
e9c2dbc8 6369 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
2a2e4885
JW
6370}
6371
1da177e4
LT
6372/*
6373 * This is the main entry point to direct page reclaim.
6374 *
6375 * If a full scan of the inactive list fails to free enough memory then we
6376 * are "out of memory" and something needs to be killed.
6377 *
6378 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6379 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
6380 * caller can't do much about. We kick the writeback threads and take explicit
6381 * naps in the hope that some of these pages can be written. But if the
6382 * allocating task holds filesystem locks which prevent writeout this might not
6383 * work, and the allocation attempt will fail.
a41f24ea
NA
6384 *
6385 * returns: 0, if no pages reclaimed
6386 * else, the number of pages reclaimed
1da177e4 6387 */
dac1d27b 6388static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 6389 struct scan_control *sc)
1da177e4 6390{
241994ed 6391 int initial_priority = sc->priority;
2a2e4885
JW
6392 pg_data_t *last_pgdat;
6393 struct zoneref *z;
6394 struct zone *zone;
241994ed 6395retry:
873b4771
KK
6396 delayacct_freepages_start();
6397
b5ead35e 6398 if (!cgroup_reclaim(sc))
7cc30fcf 6399 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 6400
9e3b2f8c 6401 do {
73b73bac
YA
6402 if (!sc->proactive)
6403 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6404 sc->priority);
66e1707b 6405 sc->nr_scanned = 0;
0a0337e0 6406 shrink_zones(zonelist, sc);
c6a8a8c5 6407
bb21c7ce 6408 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
6409 break;
6410
6411 if (sc->compaction_ready)
6412 break;
1da177e4 6413
0e50ce3b
MK
6414 /*
6415 * If we're getting trouble reclaiming, start doing
6416 * writepage even in laptop mode.
6417 */
6418 if (sc->priority < DEF_PRIORITY - 2)
6419 sc->may_writepage = 1;
0b06496a 6420 } while (--sc->priority >= 0);
bb21c7ce 6421
2a2e4885
JW
6422 last_pgdat = NULL;
6423 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6424 sc->nodemask) {
6425 if (zone->zone_pgdat == last_pgdat)
6426 continue;
6427 last_pgdat = zone->zone_pgdat;
1b05117d 6428
2a2e4885 6429 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
6430
6431 if (cgroup_reclaim(sc)) {
6432 struct lruvec *lruvec;
6433
6434 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6435 zone->zone_pgdat);
6436 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6437 }
2a2e4885
JW
6438 }
6439
873b4771
KK
6440 delayacct_freepages_end();
6441
bb21c7ce
KM
6442 if (sc->nr_reclaimed)
6443 return sc->nr_reclaimed;
6444
0cee34fd 6445 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 6446 if (sc->compaction_ready)
7335084d
MG
6447 return 1;
6448
b91ac374
JW
6449 /*
6450 * We make inactive:active ratio decisions based on the node's
6451 * composition of memory, but a restrictive reclaim_idx or a
6452 * memory.low cgroup setting can exempt large amounts of
6453 * memory from reclaim. Neither of which are very common, so
6454 * instead of doing costly eligibility calculations of the
6455 * entire cgroup subtree up front, we assume the estimates are
6456 * good, and retry with forcible deactivation if that fails.
6457 */
6458 if (sc->skipped_deactivate) {
6459 sc->priority = initial_priority;
6460 sc->force_deactivate = 1;
6461 sc->skipped_deactivate = 0;
6462 goto retry;
6463 }
6464
241994ed 6465 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 6466 if (sc->memcg_low_skipped) {
241994ed 6467 sc->priority = initial_priority;
b91ac374 6468 sc->force_deactivate = 0;
d6622f63
YX
6469 sc->memcg_low_reclaim = 1;
6470 sc->memcg_low_skipped = 0;
241994ed
JW
6471 goto retry;
6472 }
6473
bb21c7ce 6474 return 0;
1da177e4
LT
6475}
6476
c73322d0 6477static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
6478{
6479 struct zone *zone;
6480 unsigned long pfmemalloc_reserve = 0;
6481 unsigned long free_pages = 0;
6482 int i;
6483 bool wmark_ok;
6484
c73322d0
JW
6485 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6486 return true;
6487
5515061d
MG
6488 for (i = 0; i <= ZONE_NORMAL; i++) {
6489 zone = &pgdat->node_zones[i];
d450abd8
JW
6490 if (!managed_zone(zone))
6491 continue;
6492
6493 if (!zone_reclaimable_pages(zone))
675becce
MG
6494 continue;
6495
5515061d
MG
6496 pfmemalloc_reserve += min_wmark_pages(zone);
6497 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6498 }
6499
675becce
MG
6500 /* If there are no reserves (unexpected config) then do not throttle */
6501 if (!pfmemalloc_reserve)
6502 return true;
6503
5515061d
MG
6504 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6505
6506 /* kswapd must be awake if processes are being throttled */
6507 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
6508 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6509 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 6510
5515061d
MG
6511 wake_up_interruptible(&pgdat->kswapd_wait);
6512 }
6513
6514 return wmark_ok;
6515}
6516
6517/*
6518 * Throttle direct reclaimers if backing storage is backed by the network
6519 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6520 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
6521 * when the low watermark is reached.
6522 *
6523 * Returns true if a fatal signal was delivered during throttling. If this
6524 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 6525 */
50694c28 6526static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
6527 nodemask_t *nodemask)
6528{
675becce 6529 struct zoneref *z;
5515061d 6530 struct zone *zone;
675becce 6531 pg_data_t *pgdat = NULL;
5515061d
MG
6532
6533 /*
6534 * Kernel threads should not be throttled as they may be indirectly
6535 * responsible for cleaning pages necessary for reclaim to make forward
6536 * progress. kjournald for example may enter direct reclaim while
6537 * committing a transaction where throttling it could forcing other
6538 * processes to block on log_wait_commit().
6539 */
6540 if (current->flags & PF_KTHREAD)
50694c28
MG
6541 goto out;
6542
6543 /*
6544 * If a fatal signal is pending, this process should not throttle.
6545 * It should return quickly so it can exit and free its memory
6546 */
6547 if (fatal_signal_pending(current))
6548 goto out;
5515061d 6549
675becce
MG
6550 /*
6551 * Check if the pfmemalloc reserves are ok by finding the first node
6552 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6553 * GFP_KERNEL will be required for allocating network buffers when
6554 * swapping over the network so ZONE_HIGHMEM is unusable.
6555 *
6556 * Throttling is based on the first usable node and throttled processes
6557 * wait on a queue until kswapd makes progress and wakes them. There
6558 * is an affinity then between processes waking up and where reclaim
6559 * progress has been made assuming the process wakes on the same node.
6560 * More importantly, processes running on remote nodes will not compete
6561 * for remote pfmemalloc reserves and processes on different nodes
6562 * should make reasonable progress.
6563 */
6564 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 6565 gfp_zone(gfp_mask), nodemask) {
675becce
MG
6566 if (zone_idx(zone) > ZONE_NORMAL)
6567 continue;
6568
6569 /* Throttle based on the first usable node */
6570 pgdat = zone->zone_pgdat;
c73322d0 6571 if (allow_direct_reclaim(pgdat))
675becce
MG
6572 goto out;
6573 break;
6574 }
6575
6576 /* If no zone was usable by the allocation flags then do not throttle */
6577 if (!pgdat)
50694c28 6578 goto out;
5515061d 6579
68243e76
MG
6580 /* Account for the throttling */
6581 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6582
5515061d
MG
6583 /*
6584 * If the caller cannot enter the filesystem, it's possible that it
6585 * is due to the caller holding an FS lock or performing a journal
6586 * transaction in the case of a filesystem like ext[3|4]. In this case,
6587 * it is not safe to block on pfmemalloc_wait as kswapd could be
6588 * blocked waiting on the same lock. Instead, throttle for up to a
6589 * second before continuing.
6590 */
2e786d9e 6591 if (!(gfp_mask & __GFP_FS))
5515061d 6592 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 6593 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
6594 else
6595 /* Throttle until kswapd wakes the process */
6596 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6597 allow_direct_reclaim(pgdat));
50694c28 6598
50694c28
MG
6599 if (fatal_signal_pending(current))
6600 return true;
6601
6602out:
6603 return false;
5515061d
MG
6604}
6605
dac1d27b 6606unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 6607 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 6608{
33906bc5 6609 unsigned long nr_reclaimed;
66e1707b 6610 struct scan_control sc = {
ee814fe2 6611 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 6612 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 6613 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
6614 .order = order,
6615 .nodemask = nodemask,
6616 .priority = DEF_PRIORITY,
66e1707b 6617 .may_writepage = !laptop_mode,
a6dc60f8 6618 .may_unmap = 1,
2e2e4259 6619 .may_swap = 1,
66e1707b
BS
6620 };
6621
bb451fdf
GT
6622 /*
6623 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6624 * Confirm they are large enough for max values.
6625 */
6626 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6627 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6628 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6629
5515061d 6630 /*
50694c28
MG
6631 * Do not enter reclaim if fatal signal was delivered while throttled.
6632 * 1 is returned so that the page allocator does not OOM kill at this
6633 * point.
5515061d 6634 */
f2f43e56 6635 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
6636 return 1;
6637
1732d2b0 6638 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 6639 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 6640
3115cd91 6641 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
6642
6643 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 6644 set_task_reclaim_state(current, NULL);
33906bc5
MG
6645
6646 return nr_reclaimed;
66e1707b
BS
6647}
6648
c255a458 6649#ifdef CONFIG_MEMCG
66e1707b 6650
d2e5fb92 6651/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 6652unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 6653 gfp_t gfp_mask, bool noswap,
ef8f2327 6654 pg_data_t *pgdat,
0ae5e89c 6655 unsigned long *nr_scanned)
4e416953 6656{
afaf07a6 6657 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 6658 struct scan_control sc = {
b8f5c566 6659 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 6660 .target_mem_cgroup = memcg,
4e416953
BS
6661 .may_writepage = !laptop_mode,
6662 .may_unmap = 1,
b2e18757 6663 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 6664 .may_swap = !noswap,
4e416953 6665 };
0ae5e89c 6666
d2e5fb92
MH
6667 WARN_ON_ONCE(!current->reclaim_state);
6668
4e416953
BS
6669 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6670 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 6671
9e3b2f8c 6672 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 6673 sc.gfp_mask);
bdce6d9e 6674
4e416953
BS
6675 /*
6676 * NOTE: Although we can get the priority field, using it
6677 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 6678 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
6679 * will pick up pages from other mem cgroup's as well. We hack
6680 * the priority and make it zero.
6681 */
afaf07a6 6682 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
6683
6684 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6685
0ae5e89c 6686 *nr_scanned = sc.nr_scanned;
0308f7cf 6687
4e416953
BS
6688 return sc.nr_reclaimed;
6689}
6690
72835c86 6691unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 6692 unsigned long nr_pages,
a7885eb8 6693 gfp_t gfp_mask,
73b73bac 6694 unsigned int reclaim_options)
66e1707b 6695{
bdce6d9e 6696 unsigned long nr_reclaimed;
499118e9 6697 unsigned int noreclaim_flag;
66e1707b 6698 struct scan_control sc = {
b70a2a21 6699 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 6700 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 6701 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 6702 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
6703 .target_mem_cgroup = memcg,
6704 .priority = DEF_PRIORITY,
6705 .may_writepage = !laptop_mode,
6706 .may_unmap = 1,
73b73bac
YA
6707 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6708 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
a09ed5e0 6709 };
889976db 6710 /*
fa40d1ee
SB
6711 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6712 * equal pressure on all the nodes. This is based on the assumption that
6713 * the reclaim does not bail out early.
889976db 6714 */
fa40d1ee 6715 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 6716
fa40d1ee 6717 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 6718 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 6719 noreclaim_flag = memalloc_noreclaim_save();
eb414681 6720
3115cd91 6721 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 6722
499118e9 6723 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 6724 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 6725 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
6726
6727 return nr_reclaimed;
66e1707b
BS
6728}
6729#endif
6730
ac35a490 6731static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
f16015fb 6732{
b95a2f2d 6733 struct mem_cgroup *memcg;
b91ac374 6734 struct lruvec *lruvec;
f16015fb 6735
ac35a490
YZ
6736 if (lru_gen_enabled()) {
6737 lru_gen_age_node(pgdat, sc);
6738 return;
6739 }
6740
2f368a9f 6741 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
6742 return;
6743
b91ac374
JW
6744 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6745 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6746 return;
6747
b95a2f2d
JW
6748 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6749 do {
b91ac374
JW
6750 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6751 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6752 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
6753 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6754 } while (memcg);
f16015fb
JW
6755}
6756
97a225e6 6757static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
6758{
6759 int i;
6760 struct zone *zone;
6761
6762 /*
6763 * Check for watermark boosts top-down as the higher zones
6764 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 6765 * should not be checked at the same time as reclaim would
1c30844d
MG
6766 * start prematurely when there is no boosting and a lower
6767 * zone is balanced.
6768 */
97a225e6 6769 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
6770 zone = pgdat->node_zones + i;
6771 if (!managed_zone(zone))
6772 continue;
6773
6774 if (zone->watermark_boost)
6775 return true;
6776 }
6777
6778 return false;
6779}
6780
e716f2eb
MG
6781/*
6782 * Returns true if there is an eligible zone balanced for the request order
97a225e6 6783 * and highest_zoneidx
e716f2eb 6784 */
97a225e6 6785static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 6786{
e716f2eb
MG
6787 int i;
6788 unsigned long mark = -1;
6789 struct zone *zone;
60cefed4 6790
1c30844d
MG
6791 /*
6792 * Check watermarks bottom-up as lower zones are more likely to
6793 * meet watermarks.
6794 */
97a225e6 6795 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 6796 zone = pgdat->node_zones + i;
6256c6b4 6797
e716f2eb
MG
6798 if (!managed_zone(zone))
6799 continue;
6800
c574bbe9
YH
6801 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6802 mark = wmark_pages(zone, WMARK_PROMO);
6803 else
6804 mark = high_wmark_pages(zone);
97a225e6 6805 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
6806 return true;
6807 }
6808
6809 /*
36c26128 6810 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
6811 * need balancing by definition. This can happen if a zone-restricted
6812 * allocation tries to wake a remote kswapd.
6813 */
6814 if (mark == -1)
6815 return true;
6816
6817 return false;
60cefed4
JW
6818}
6819
631b6e08
MG
6820/* Clear pgdat state for congested, dirty or under writeback. */
6821static void clear_pgdat_congested(pg_data_t *pgdat)
6822{
1b05117d
JW
6823 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6824
6825 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
6826 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6827 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6828}
6829
5515061d
MG
6830/*
6831 * Prepare kswapd for sleeping. This verifies that there are no processes
6832 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6833 *
6834 * Returns true if kswapd is ready to sleep
6835 */
97a225e6
JK
6836static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6837 int highest_zoneidx)
f50de2d3 6838{
5515061d 6839 /*
9e5e3661 6840 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 6841 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
6842 * race between when kswapd checks the watermarks and a process gets
6843 * throttled. There is also a potential race if processes get
6844 * throttled, kswapd wakes, a large process exits thereby balancing the
6845 * zones, which causes kswapd to exit balance_pgdat() before reaching
6846 * the wake up checks. If kswapd is going to sleep, no process should
6847 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6848 * the wake up is premature, processes will wake kswapd and get
6849 * throttled again. The difference from wake ups in balance_pgdat() is
6850 * that here we are under prepare_to_wait().
5515061d 6851 */
9e5e3661
VB
6852 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6853 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 6854
c73322d0
JW
6855 /* Hopeless node, leave it to direct reclaim */
6856 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6857 return true;
6858
97a225e6 6859 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
6860 clear_pgdat_congested(pgdat);
6861 return true;
1d82de61
MG
6862 }
6863
333b0a45 6864 return false;
f50de2d3
MG
6865}
6866
75485363 6867/*
1d82de61
MG
6868 * kswapd shrinks a node of pages that are at or below the highest usable
6869 * zone that is currently unbalanced.
b8e83b94
MG
6870 *
6871 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
6872 * reclaim or if the lack of progress was due to pages under writeback.
6873 * This is used to determine if the scanning priority needs to be raised.
75485363 6874 */
1d82de61 6875static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 6876 struct scan_control *sc)
75485363 6877{
1d82de61
MG
6878 struct zone *zone;
6879 int z;
75485363 6880
1d82de61
MG
6881 /* Reclaim a number of pages proportional to the number of zones */
6882 sc->nr_to_reclaim = 0;
970a39a3 6883 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 6884 zone = pgdat->node_zones + z;
6aa303de 6885 if (!managed_zone(zone))
1d82de61 6886 continue;
7c954f6d 6887
1d82de61
MG
6888 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6889 }
7c954f6d
MG
6890
6891 /*
1d82de61
MG
6892 * Historically care was taken to put equal pressure on all zones but
6893 * now pressure is applied based on node LRU order.
7c954f6d 6894 */
970a39a3 6895 shrink_node(pgdat, sc);
283aba9f 6896
7c954f6d 6897 /*
1d82de61
MG
6898 * Fragmentation may mean that the system cannot be rebalanced for
6899 * high-order allocations. If twice the allocation size has been
6900 * reclaimed then recheck watermarks only at order-0 to prevent
6901 * excessive reclaim. Assume that a process requested a high-order
6902 * can direct reclaim/compact.
7c954f6d 6903 */
9861a62c 6904 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 6905 sc->order = 0;
7c954f6d 6906
b8e83b94 6907 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
6908}
6909
c49c2c47
MG
6910/* Page allocator PCP high watermark is lowered if reclaim is active. */
6911static inline void
6912update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6913{
6914 int i;
6915 struct zone *zone;
6916
6917 for (i = 0; i <= highest_zoneidx; i++) {
6918 zone = pgdat->node_zones + i;
6919
6920 if (!managed_zone(zone))
6921 continue;
6922
6923 if (active)
6924 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6925 else
6926 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6927 }
6928}
6929
6930static inline void
6931set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6932{
6933 update_reclaim_active(pgdat, highest_zoneidx, true);
6934}
6935
6936static inline void
6937clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6938{
6939 update_reclaim_active(pgdat, highest_zoneidx, false);
6940}
6941
1da177e4 6942/*
1d82de61
MG
6943 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6944 * that are eligible for use by the caller until at least one zone is
6945 * balanced.
1da177e4 6946 *
1d82de61 6947 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
6948 *
6949 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 6950 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 6951 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
6952 * or lower is eligible for reclaim until at least one usable zone is
6953 * balanced.
1da177e4 6954 */
97a225e6 6955static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 6956{
1da177e4 6957 int i;
0608f43d
AM
6958 unsigned long nr_soft_reclaimed;
6959 unsigned long nr_soft_scanned;
eb414681 6960 unsigned long pflags;
1c30844d
MG
6961 unsigned long nr_boost_reclaim;
6962 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6963 bool boosted;
1d82de61 6964 struct zone *zone;
179e9639
AM
6965 struct scan_control sc = {
6966 .gfp_mask = GFP_KERNEL,
ee814fe2 6967 .order = order,
a6dc60f8 6968 .may_unmap = 1,
179e9639 6969 };
93781325 6970
1732d2b0 6971 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 6972 psi_memstall_enter(&pflags);
4f3eaf45 6973 __fs_reclaim_acquire(_THIS_IP_);
93781325 6974
f8891e5e 6975 count_vm_event(PAGEOUTRUN);
1da177e4 6976
1c30844d
MG
6977 /*
6978 * Account for the reclaim boost. Note that the zone boost is left in
6979 * place so that parallel allocations that are near the watermark will
6980 * stall or direct reclaim until kswapd is finished.
6981 */
6982 nr_boost_reclaim = 0;
97a225e6 6983 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
6984 zone = pgdat->node_zones + i;
6985 if (!managed_zone(zone))
6986 continue;
6987
6988 nr_boost_reclaim += zone->watermark_boost;
6989 zone_boosts[i] = zone->watermark_boost;
6990 }
6991 boosted = nr_boost_reclaim;
6992
6993restart:
c49c2c47 6994 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 6995 sc.priority = DEF_PRIORITY;
9e3b2f8c 6996 do {
c73322d0 6997 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 6998 bool raise_priority = true;
1c30844d 6999 bool balanced;
93781325 7000 bool ret;
b8e83b94 7001
97a225e6 7002 sc.reclaim_idx = highest_zoneidx;
1da177e4 7003
86c79f6b 7004 /*
84c7a777
MG
7005 * If the number of buffer_heads exceeds the maximum allowed
7006 * then consider reclaiming from all zones. This has a dual
7007 * purpose -- on 64-bit systems it is expected that
7008 * buffer_heads are stripped during active rotation. On 32-bit
7009 * systems, highmem pages can pin lowmem memory and shrinking
7010 * buffers can relieve lowmem pressure. Reclaim may still not
7011 * go ahead if all eligible zones for the original allocation
7012 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
7013 */
7014 if (buffer_heads_over_limit) {
7015 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7016 zone = pgdat->node_zones + i;
6aa303de 7017 if (!managed_zone(zone))
86c79f6b 7018 continue;
cc715d99 7019
970a39a3 7020 sc.reclaim_idx = i;
e1dbeda6 7021 break;
1da177e4 7022 }
1da177e4 7023 }
dafcb73e 7024
86c79f6b 7025 /*
1c30844d
MG
7026 * If the pgdat is imbalanced then ignore boosting and preserve
7027 * the watermarks for a later time and restart. Note that the
7028 * zone watermarks will be still reset at the end of balancing
7029 * on the grounds that the normal reclaim should be enough to
7030 * re-evaluate if boosting is required when kswapd next wakes.
7031 */
97a225e6 7032 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
7033 if (!balanced && nr_boost_reclaim) {
7034 nr_boost_reclaim = 0;
7035 goto restart;
7036 }
7037
7038 /*
7039 * If boosting is not active then only reclaim if there are no
7040 * eligible zones. Note that sc.reclaim_idx is not used as
7041 * buffer_heads_over_limit may have adjusted it.
86c79f6b 7042 */
1c30844d 7043 if (!nr_boost_reclaim && balanced)
e716f2eb 7044 goto out;
e1dbeda6 7045
1c30844d
MG
7046 /* Limit the priority of boosting to avoid reclaim writeback */
7047 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7048 raise_priority = false;
7049
7050 /*
7051 * Do not writeback or swap pages for boosted reclaim. The
7052 * intent is to relieve pressure not issue sub-optimal IO
7053 * from reclaim context. If no pages are reclaimed, the
7054 * reclaim will be aborted.
7055 */
7056 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7057 sc.may_swap = !nr_boost_reclaim;
1c30844d 7058
1d82de61 7059 /*
ac35a490
YZ
7060 * Do some background aging, to give pages a chance to be
7061 * referenced before reclaiming. All pages are rotated
7062 * regardless of classzone as this is about consistent aging.
1d82de61 7063 */
ac35a490 7064 kswapd_age_node(pgdat, &sc);
1d82de61 7065
b7ea3c41
MG
7066 /*
7067 * If we're getting trouble reclaiming, start doing writepage
7068 * even in laptop mode.
7069 */
047d72c3 7070 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
7071 sc.may_writepage = 1;
7072
1d82de61
MG
7073 /* Call soft limit reclaim before calling shrink_node. */
7074 sc.nr_scanned = 0;
7075 nr_soft_scanned = 0;
ef8f2327 7076 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
7077 sc.gfp_mask, &nr_soft_scanned);
7078 sc.nr_reclaimed += nr_soft_reclaimed;
7079
1da177e4 7080 /*
1d82de61
MG
7081 * There should be no need to raise the scanning priority if
7082 * enough pages are already being scanned that that high
7083 * watermark would be met at 100% efficiency.
1da177e4 7084 */
970a39a3 7085 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 7086 raise_priority = false;
5515061d
MG
7087
7088 /*
7089 * If the low watermark is met there is no need for processes
7090 * to be throttled on pfmemalloc_wait as they should not be
7091 * able to safely make forward progress. Wake them
7092 */
7093 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 7094 allow_direct_reclaim(pgdat))
cfc51155 7095 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 7096
b8e83b94 7097 /* Check if kswapd should be suspending */
4f3eaf45 7098 __fs_reclaim_release(_THIS_IP_);
93781325 7099 ret = try_to_freeze();
4f3eaf45 7100 __fs_reclaim_acquire(_THIS_IP_);
93781325 7101 if (ret || kthread_should_stop())
b8e83b94 7102 break;
8357376d 7103
73ce02e9 7104 /*
b8e83b94
MG
7105 * Raise priority if scanning rate is too low or there was no
7106 * progress in reclaiming pages
73ce02e9 7107 */
c73322d0 7108 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
7109 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7110
7111 /*
7112 * If reclaim made no progress for a boost, stop reclaim as
7113 * IO cannot be queued and it could be an infinite loop in
7114 * extreme circumstances.
7115 */
7116 if (nr_boost_reclaim && !nr_reclaimed)
7117 break;
7118
c73322d0 7119 if (raise_priority || !nr_reclaimed)
b8e83b94 7120 sc.priority--;
1d82de61 7121 } while (sc.priority >= 1);
1da177e4 7122
c73322d0
JW
7123 if (!sc.nr_reclaimed)
7124 pgdat->kswapd_failures++;
7125
b8e83b94 7126out:
c49c2c47
MG
7127 clear_reclaim_active(pgdat, highest_zoneidx);
7128
1c30844d
MG
7129 /* If reclaim was boosted, account for the reclaim done in this pass */
7130 if (boosted) {
7131 unsigned long flags;
7132
97a225e6 7133 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
7134 if (!zone_boosts[i])
7135 continue;
7136
7137 /* Increments are under the zone lock */
7138 zone = pgdat->node_zones + i;
7139 spin_lock_irqsave(&zone->lock, flags);
7140 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7141 spin_unlock_irqrestore(&zone->lock, flags);
7142 }
7143
7144 /*
7145 * As there is now likely space, wakeup kcompact to defragment
7146 * pageblocks.
7147 */
97a225e6 7148 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
7149 }
7150
2a2e4885 7151 snapshot_refaults(NULL, pgdat);
4f3eaf45 7152 __fs_reclaim_release(_THIS_IP_);
eb414681 7153 psi_memstall_leave(&pflags);
1732d2b0 7154 set_task_reclaim_state(current, NULL);
e5ca8071 7155
0abdee2b 7156 /*
1d82de61
MG
7157 * Return the order kswapd stopped reclaiming at as
7158 * prepare_kswapd_sleep() takes it into account. If another caller
7159 * entered the allocator slow path while kswapd was awake, order will
7160 * remain at the higher level.
0abdee2b 7161 */
1d82de61 7162 return sc.order;
1da177e4
LT
7163}
7164
e716f2eb 7165/*
97a225e6
JK
7166 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7167 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7168 * not a valid index then either kswapd runs for first time or kswapd couldn't
7169 * sleep after previous reclaim attempt (node is still unbalanced). In that
7170 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 7171 */
97a225e6
JK
7172static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7173 enum zone_type prev_highest_zoneidx)
e716f2eb 7174{
97a225e6 7175 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 7176
97a225e6 7177 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
7178}
7179
38087d9b 7180static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 7181 unsigned int highest_zoneidx)
f0bc0a60
KM
7182{
7183 long remaining = 0;
7184 DEFINE_WAIT(wait);
7185
7186 if (freezing(current) || kthread_should_stop())
7187 return;
7188
7189 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7190
333b0a45
SG
7191 /*
7192 * Try to sleep for a short interval. Note that kcompactd will only be
7193 * woken if it is possible to sleep for a short interval. This is
7194 * deliberate on the assumption that if reclaim cannot keep an
7195 * eligible zone balanced that it's also unlikely that compaction will
7196 * succeed.
7197 */
97a225e6 7198 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
7199 /*
7200 * Compaction records what page blocks it recently failed to
7201 * isolate pages from and skips them in the future scanning.
7202 * When kswapd is going to sleep, it is reasonable to assume
7203 * that pages and compaction may succeed so reset the cache.
7204 */
7205 reset_isolation_suitable(pgdat);
7206
7207 /*
7208 * We have freed the memory, now we should compact it to make
7209 * allocation of the requested order possible.
7210 */
97a225e6 7211 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 7212
f0bc0a60 7213 remaining = schedule_timeout(HZ/10);
38087d9b
MG
7214
7215 /*
97a225e6 7216 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
7217 * order. The values will either be from a wakeup request or
7218 * the previous request that slept prematurely.
7219 */
7220 if (remaining) {
97a225e6
JK
7221 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7222 kswapd_highest_zoneidx(pgdat,
7223 highest_zoneidx));
5644e1fb
QC
7224
7225 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7226 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
7227 }
7228
f0bc0a60
KM
7229 finish_wait(&pgdat->kswapd_wait, &wait);
7230 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7231 }
7232
7233 /*
7234 * After a short sleep, check if it was a premature sleep. If not, then
7235 * go fully to sleep until explicitly woken up.
7236 */
d9f21d42 7237 if (!remaining &&
97a225e6 7238 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
7239 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7240
7241 /*
7242 * vmstat counters are not perfectly accurate and the estimated
7243 * value for counters such as NR_FREE_PAGES can deviate from the
7244 * true value by nr_online_cpus * threshold. To avoid the zone
7245 * watermarks being breached while under pressure, we reduce the
7246 * per-cpu vmstat threshold while kswapd is awake and restore
7247 * them before going back to sleep.
7248 */
7249 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
7250
7251 if (!kthread_should_stop())
7252 schedule();
7253
f0bc0a60
KM
7254 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7255 } else {
7256 if (remaining)
7257 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7258 else
7259 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7260 }
7261 finish_wait(&pgdat->kswapd_wait, &wait);
7262}
7263
1da177e4
LT
7264/*
7265 * The background pageout daemon, started as a kernel thread
4f98a2fe 7266 * from the init process.
1da177e4
LT
7267 *
7268 * This basically trickles out pages so that we have _some_
7269 * free memory available even if there is no other activity
7270 * that frees anything up. This is needed for things like routing
7271 * etc, where we otherwise might have all activity going on in
7272 * asynchronous contexts that cannot page things out.
7273 *
7274 * If there are applications that are active memory-allocators
7275 * (most normal use), this basically shouldn't matter.
7276 */
7277static int kswapd(void *p)
7278{
e716f2eb 7279 unsigned int alloc_order, reclaim_order;
97a225e6 7280 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 7281 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 7282 struct task_struct *tsk = current;
a70f7302 7283 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 7284
174596a0 7285 if (!cpumask_empty(cpumask))
c5f59f08 7286 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
7287
7288 /*
7289 * Tell the memory management that we're a "memory allocator",
7290 * and that if we need more memory we should get access to it
7291 * regardless (see "__alloc_pages()"). "kswapd" should
7292 * never get caught in the normal page freeing logic.
7293 *
7294 * (Kswapd normally doesn't need memory anyway, but sometimes
7295 * you need a small amount of memory in order to be able to
7296 * page out something else, and this flag essentially protects
7297 * us from recursively trying to free more memory as we're
7298 * trying to free the first piece of memory in the first place).
7299 */
b698f0a1 7300 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 7301 set_freezable();
1da177e4 7302
5644e1fb 7303 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 7304 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 7305 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 7306 for ( ; ; ) {
6f6313d4 7307 bool ret;
3e1d1d28 7308
5644e1fb 7309 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
7310 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7311 highest_zoneidx);
e716f2eb 7312
38087d9b
MG
7313kswapd_try_sleep:
7314 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 7315 highest_zoneidx);
215ddd66 7316
97a225e6 7317 /* Read the new order and highest_zoneidx */
2b47a24c 7318 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
7319 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7320 highest_zoneidx);
5644e1fb 7321 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 7322 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 7323
8fe23e05
DR
7324 ret = try_to_freeze();
7325 if (kthread_should_stop())
7326 break;
7327
7328 /*
7329 * We can speed up thawing tasks if we don't call balance_pgdat
7330 * after returning from the refrigerator
7331 */
38087d9b
MG
7332 if (ret)
7333 continue;
7334
7335 /*
7336 * Reclaim begins at the requested order but if a high-order
7337 * reclaim fails then kswapd falls back to reclaiming for
7338 * order-0. If that happens, kswapd will consider sleeping
7339 * for the order it finished reclaiming at (reclaim_order)
7340 * but kcompactd is woken to compact for the original
7341 * request (alloc_order).
7342 */
97a225e6 7343 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 7344 alloc_order);
97a225e6
JK
7345 reclaim_order = balance_pgdat(pgdat, alloc_order,
7346 highest_zoneidx);
38087d9b
MG
7347 if (reclaim_order < alloc_order)
7348 goto kswapd_try_sleep;
1da177e4 7349 }
b0a8cc58 7350
b698f0a1 7351 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 7352
1da177e4
LT
7353 return 0;
7354}
7355
7356/*
5ecd9d40
DR
7357 * A zone is low on free memory or too fragmented for high-order memory. If
7358 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7359 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7360 * has failed or is not needed, still wake up kcompactd if only compaction is
7361 * needed.
1da177e4 7362 */
5ecd9d40 7363void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 7364 enum zone_type highest_zoneidx)
1da177e4
LT
7365{
7366 pg_data_t *pgdat;
5644e1fb 7367 enum zone_type curr_idx;
1da177e4 7368
6aa303de 7369 if (!managed_zone(zone))
1da177e4
LT
7370 return;
7371
5ecd9d40 7372 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 7373 return;
5644e1fb 7374
88f5acf8 7375 pgdat = zone->zone_pgdat;
97a225e6 7376 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 7377
97a225e6
JK
7378 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7379 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
7380
7381 if (READ_ONCE(pgdat->kswapd_order) < order)
7382 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 7383
8d0986e2 7384 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 7385 return;
e1a55637 7386
5ecd9d40
DR
7387 /* Hopeless node, leave it to direct reclaim if possible */
7388 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
7389 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7390 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
7391 /*
7392 * There may be plenty of free memory available, but it's too
7393 * fragmented for high-order allocations. Wake up kcompactd
7394 * and rely on compaction_suitable() to determine if it's
7395 * needed. If it fails, it will defer subsequent attempts to
7396 * ratelimit its work.
7397 */
7398 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 7399 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 7400 return;
5ecd9d40 7401 }
88f5acf8 7402
97a225e6 7403 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 7404 gfp_flags);
8d0986e2 7405 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
7406}
7407
c6f37f12 7408#ifdef CONFIG_HIBERNATION
1da177e4 7409/*
7b51755c 7410 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
7411 * freed pages.
7412 *
7413 * Rather than trying to age LRUs the aim is to preserve the overall
7414 * LRU order by reclaiming preferentially
7415 * inactive > active > active referenced > active mapped
1da177e4 7416 */
7b51755c 7417unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 7418{
d6277db4 7419 struct scan_control sc = {
ee814fe2 7420 .nr_to_reclaim = nr_to_reclaim,
7b51755c 7421 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 7422 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 7423 .priority = DEF_PRIORITY,
d6277db4 7424 .may_writepage = 1,
ee814fe2
JW
7425 .may_unmap = 1,
7426 .may_swap = 1,
7b51755c 7427 .hibernation_mode = 1,
1da177e4 7428 };
a09ed5e0 7429 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 7430 unsigned long nr_reclaimed;
499118e9 7431 unsigned int noreclaim_flag;
1da177e4 7432
d92a8cfc 7433 fs_reclaim_acquire(sc.gfp_mask);
93781325 7434 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 7435 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 7436
3115cd91 7437 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 7438
1732d2b0 7439 set_task_reclaim_state(current, NULL);
499118e9 7440 memalloc_noreclaim_restore(noreclaim_flag);
93781325 7441 fs_reclaim_release(sc.gfp_mask);
d6277db4 7442
7b51755c 7443 return nr_reclaimed;
1da177e4 7444}
c6f37f12 7445#endif /* CONFIG_HIBERNATION */
1da177e4 7446
3218ae14
YG
7447/*
7448 * This kswapd start function will be called by init and node-hot-add.
3218ae14 7449 */
b87c517a 7450void kswapd_run(int nid)
3218ae14
YG
7451{
7452 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14 7453
b4a0215e
KW
7454 pgdat_kswapd_lock(pgdat);
7455 if (!pgdat->kswapd) {
7456 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7457 if (IS_ERR(pgdat->kswapd)) {
7458 /* failure at boot is fatal */
7459 BUG_ON(system_state < SYSTEM_RUNNING);
7460 pr_err("Failed to start kswapd on node %d\n", nid);
7461 pgdat->kswapd = NULL;
7462 }
3218ae14 7463 }
b4a0215e 7464 pgdat_kswapd_unlock(pgdat);
3218ae14
YG
7465}
7466
8fe23e05 7467/*
d8adde17 7468 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 7469 * be holding mem_hotplug_begin/done().
8fe23e05
DR
7470 */
7471void kswapd_stop(int nid)
7472{
b4a0215e
KW
7473 pg_data_t *pgdat = NODE_DATA(nid);
7474 struct task_struct *kswapd;
8fe23e05 7475
b4a0215e
KW
7476 pgdat_kswapd_lock(pgdat);
7477 kswapd = pgdat->kswapd;
d8adde17 7478 if (kswapd) {
8fe23e05 7479 kthread_stop(kswapd);
b4a0215e 7480 pgdat->kswapd = NULL;
d8adde17 7481 }
b4a0215e 7482 pgdat_kswapd_unlock(pgdat);
8fe23e05
DR
7483}
7484
1da177e4
LT
7485static int __init kswapd_init(void)
7486{
6b700b5b 7487 int nid;
69e05944 7488
1da177e4 7489 swap_setup();
48fb2e24 7490 for_each_node_state(nid, N_MEMORY)
3218ae14 7491 kswapd_run(nid);
1da177e4
LT
7492 return 0;
7493}
7494
7495module_init(kswapd_init)
9eeff239
CL
7496
7497#ifdef CONFIG_NUMA
7498/*
a5f5f91d 7499 * Node reclaim mode
9eeff239 7500 *
a5f5f91d 7501 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 7502 * the watermarks.
9eeff239 7503 */
a5f5f91d 7504int node_reclaim_mode __read_mostly;
9eeff239 7505
a92f7126 7506/*
a5f5f91d 7507 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
7508 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7509 * a zone.
7510 */
a5f5f91d 7511#define NODE_RECLAIM_PRIORITY 4
a92f7126 7512
9614634f 7513/*
a5f5f91d 7514 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
7515 * occur.
7516 */
7517int sysctl_min_unmapped_ratio = 1;
7518
0ff38490
CL
7519/*
7520 * If the number of slab pages in a zone grows beyond this percentage then
7521 * slab reclaim needs to occur.
7522 */
7523int sysctl_min_slab_ratio = 5;
7524
11fb9989 7525static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 7526{
11fb9989
MG
7527 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7528 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7529 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
7530
7531 /*
7532 * It's possible for there to be more file mapped pages than
7533 * accounted for by the pages on the file LRU lists because
7534 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7535 */
7536 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7537}
7538
7539/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 7540static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 7541{
d031a157
AM
7542 unsigned long nr_pagecache_reclaimable;
7543 unsigned long delta = 0;
90afa5de
MG
7544
7545 /*
95bbc0c7 7546 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 7547 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 7548 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
7549 * a better estimate
7550 */
a5f5f91d
MG
7551 if (node_reclaim_mode & RECLAIM_UNMAP)
7552 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 7553 else
a5f5f91d 7554 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
7555
7556 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
7557 if (!(node_reclaim_mode & RECLAIM_WRITE))
7558 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
7559
7560 /* Watch for any possible underflows due to delta */
7561 if (unlikely(delta > nr_pagecache_reclaimable))
7562 delta = nr_pagecache_reclaimable;
7563
7564 return nr_pagecache_reclaimable - delta;
7565}
7566
9eeff239 7567/*
a5f5f91d 7568 * Try to free up some pages from this node through reclaim.
9eeff239 7569 */
a5f5f91d 7570static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 7571{
7fb2d46d 7572 /* Minimum pages needed in order to stay on node */
69e05944 7573 const unsigned long nr_pages = 1 << order;
9eeff239 7574 struct task_struct *p = current;
499118e9 7575 unsigned int noreclaim_flag;
179e9639 7576 struct scan_control sc = {
62b726c1 7577 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 7578 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 7579 .order = order,
a5f5f91d
MG
7580 .priority = NODE_RECLAIM_PRIORITY,
7581 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7582 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 7583 .may_swap = 1,
f2f43e56 7584 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 7585 };
57f29762 7586 unsigned long pflags;
9eeff239 7587
132bb8cf
YS
7588 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7589 sc.gfp_mask);
7590
9eeff239 7591 cond_resched();
57f29762 7592 psi_memstall_enter(&pflags);
93781325 7593 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 7594 /*
95bbc0c7 7595 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 7596 */
499118e9 7597 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 7598 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 7599
d8ff6fde
ML
7600 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7601 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
0ff38490 7602 /*
894befec 7603 * Free memory by calling shrink node with increasing
0ff38490
CL
7604 * priorities until we have enough memory freed.
7605 */
0ff38490 7606 do {
970a39a3 7607 shrink_node(pgdat, &sc);
9e3b2f8c 7608 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 7609 }
c84db23c 7610
1732d2b0 7611 set_task_reclaim_state(p, NULL);
499118e9 7612 memalloc_noreclaim_restore(noreclaim_flag);
93781325 7613 fs_reclaim_release(sc.gfp_mask);
57f29762 7614 psi_memstall_leave(&pflags);
132bb8cf
YS
7615
7616 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7617
a79311c1 7618 return sc.nr_reclaimed >= nr_pages;
9eeff239 7619}
179e9639 7620
a5f5f91d 7621int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 7622{
d773ed6b 7623 int ret;
179e9639
AM
7624
7625 /*
a5f5f91d 7626 * Node reclaim reclaims unmapped file backed pages and
0ff38490 7627 * slab pages if we are over the defined limits.
34aa1330 7628 *
9614634f
CL
7629 * A small portion of unmapped file backed pages is needed for
7630 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
7631 * thrown out if the node is overallocated. So we do not reclaim
7632 * if less than a specified percentage of the node is used by
9614634f 7633 * unmapped file backed pages.
179e9639 7634 */
a5f5f91d 7635 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
7636 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7637 pgdat->min_slab_pages)
a5f5f91d 7638 return NODE_RECLAIM_FULL;
179e9639
AM
7639
7640 /*
d773ed6b 7641 * Do not scan if the allocation should not be delayed.
179e9639 7642 */
d0164adc 7643 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 7644 return NODE_RECLAIM_NOSCAN;
179e9639
AM
7645
7646 /*
a5f5f91d 7647 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
7648 * have associated processors. This will favor the local processor
7649 * over remote processors and spread off node memory allocations
7650 * as wide as possible.
7651 */
a5f5f91d
MG
7652 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7653 return NODE_RECLAIM_NOSCAN;
d773ed6b 7654
a5f5f91d
MG
7655 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7656 return NODE_RECLAIM_NOSCAN;
fa5e084e 7657
a5f5f91d
MG
7658 ret = __node_reclaim(pgdat, gfp_mask, order);
7659 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 7660
24cf7251
MG
7661 if (!ret)
7662 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7663
d773ed6b 7664 return ret;
179e9639 7665}
9eeff239 7666#endif
894bc310 7667
77414d19
MWO
7668void check_move_unevictable_pages(struct pagevec *pvec)
7669{
7670 struct folio_batch fbatch;
7671 unsigned i;
7672
7673 folio_batch_init(&fbatch);
7674 for (i = 0; i < pvec->nr; i++) {
7675 struct page *page = pvec->pages[i];
7676
7677 if (PageTransTail(page))
7678 continue;
7679 folio_batch_add(&fbatch, page_folio(page));
7680 }
7681 check_move_unevictable_folios(&fbatch);
7682}
7683EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7684
89e004ea 7685/**
77414d19
MWO
7686 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7687 * lru list
7688 * @fbatch: Batch of lru folios to check.
89e004ea 7689 *
77414d19 7690 * Checks folios for evictability, if an evictable folio is in the unevictable
64e3d12f 7691 * lru list, moves it to the appropriate evictable lru list. This function
77414d19 7692 * should be only used for lru folios.
89e004ea 7693 */
77414d19 7694void check_move_unevictable_folios(struct folio_batch *fbatch)
89e004ea 7695{
6168d0da 7696 struct lruvec *lruvec = NULL;
24513264
HD
7697 int pgscanned = 0;
7698 int pgrescued = 0;
7699 int i;
89e004ea 7700
77414d19
MWO
7701 for (i = 0; i < fbatch->nr; i++) {
7702 struct folio *folio = fbatch->folios[i];
7703 int nr_pages = folio_nr_pages(folio);
8d8869ca 7704
8d8869ca 7705 pgscanned += nr_pages;
89e004ea 7706
77414d19
MWO
7707 /* block memcg migration while the folio moves between lrus */
7708 if (!folio_test_clear_lru(folio))
d25b5bd8
AS
7709 continue;
7710
0de340cb 7711 lruvec = folio_lruvec_relock_irq(folio, lruvec);
77414d19
MWO
7712 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7713 lruvec_del_folio(lruvec, folio);
7714 folio_clear_unevictable(folio);
7715 lruvec_add_folio(lruvec, folio);
8d8869ca 7716 pgrescued += nr_pages;
89e004ea 7717 }
77414d19 7718 folio_set_lru(folio);
24513264 7719 }
89e004ea 7720
6168d0da 7721 if (lruvec) {
24513264
HD
7722 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7723 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 7724 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
7725 } else if (pgscanned) {
7726 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 7727 }
89e004ea 7728}
77414d19 7729EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
This page took 3.080181 seconds and 4 git commands to generate.