]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/exit.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
1da177e4 LT |
7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | |
4eb5aaa3 | 9 | #include <linux/sched/autogroup.h> |
6e84f315 | 10 | #include <linux/sched/mm.h> |
03441a34 | 11 | #include <linux/sched/stat.h> |
29930025 | 12 | #include <linux/sched/task.h> |
68db0cf1 | 13 | #include <linux/sched/task_stack.h> |
32ef5517 | 14 | #include <linux/sched/cputime.h> |
1da177e4 | 15 | #include <linux/interrupt.h> |
1da177e4 | 16 | #include <linux/module.h> |
c59ede7b | 17 | #include <linux/capability.h> |
1da177e4 LT |
18 | #include <linux/completion.h> |
19 | #include <linux/personality.h> | |
20 | #include <linux/tty.h> | |
da9cbc87 | 21 | #include <linux/iocontext.h> |
1da177e4 | 22 | #include <linux/key.h> |
1da177e4 LT |
23 | #include <linux/cpu.h> |
24 | #include <linux/acct.h> | |
8f0ab514 | 25 | #include <linux/tsacct_kern.h> |
1da177e4 | 26 | #include <linux/file.h> |
9f3acc31 | 27 | #include <linux/fdtable.h> |
80d26af8 | 28 | #include <linux/freezer.h> |
1da177e4 | 29 | #include <linux/binfmts.h> |
ab516013 | 30 | #include <linux/nsproxy.h> |
84d73786 | 31 | #include <linux/pid_namespace.h> |
1da177e4 LT |
32 | #include <linux/ptrace.h> |
33 | #include <linux/profile.h> | |
34 | #include <linux/mount.h> | |
35 | #include <linux/proc_fs.h> | |
49d769d5 | 36 | #include <linux/kthread.h> |
1da177e4 | 37 | #include <linux/mempolicy.h> |
c757249a | 38 | #include <linux/taskstats_kern.h> |
ca74e92b | 39 | #include <linux/delayacct.h> |
b4f48b63 | 40 | #include <linux/cgroup.h> |
1da177e4 | 41 | #include <linux/syscalls.h> |
7ed20e1a | 42 | #include <linux/signal.h> |
6a14c5c9 | 43 | #include <linux/posix-timers.h> |
9f46080c | 44 | #include <linux/cn_proc.h> |
de5097c2 | 45 | #include <linux/mutex.h> |
0771dfef | 46 | #include <linux/futex.h> |
b92ce558 | 47 | #include <linux/pipe_fs_i.h> |
fa84cb93 | 48 | #include <linux/audit.h> /* for audit_free() */ |
83cc5ed3 | 49 | #include <linux/resource.h> |
0d67a46d | 50 | #include <linux/blkdev.h> |
6eaeeaba | 51 | #include <linux/task_io_accounting_ops.h> |
30199f5a | 52 | #include <linux/tracehook.h> |
5ad4e53b | 53 | #include <linux/fs_struct.h> |
d84f4f99 | 54 | #include <linux/init_task.h> |
cdd6c482 | 55 | #include <linux/perf_event.h> |
ad8d75ff | 56 | #include <trace/events/sched.h> |
24f1e32c | 57 | #include <linux/hw_breakpoint.h> |
3d5992d2 | 58 | #include <linux/oom.h> |
54848d73 | 59 | #include <linux/writeback.h> |
40401530 | 60 | #include <linux/shm.h> |
5c9a8750 | 61 | #include <linux/kcov.h> |
53d3eaa3 | 62 | #include <linux/random.h> |
8f95c90c | 63 | #include <linux/rcuwait.h> |
7e95a225 | 64 | #include <linux/compat.h> |
1da177e4 | 65 | |
7c0f6ba6 | 66 | #include <linux/uaccess.h> |
1da177e4 LT |
67 | #include <asm/unistd.h> |
68 | #include <asm/pgtable.h> | |
69 | #include <asm/mmu_context.h> | |
70 | ||
d40e48e0 | 71 | static void __unhash_process(struct task_struct *p, bool group_dead) |
1da177e4 LT |
72 | { |
73 | nr_threads--; | |
50d75f8d | 74 | detach_pid(p, PIDTYPE_PID); |
d40e48e0 | 75 | if (group_dead) { |
1da177e4 LT |
76 | detach_pid(p, PIDTYPE_PGID); |
77 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 | 78 | |
5e85d4ab | 79 | list_del_rcu(&p->tasks); |
9cd80bbb | 80 | list_del_init(&p->sibling); |
909ea964 | 81 | __this_cpu_dec(process_counts); |
1da177e4 | 82 | } |
47e65328 | 83 | list_del_rcu(&p->thread_group); |
0c740d0a | 84 | list_del_rcu(&p->thread_node); |
1da177e4 LT |
85 | } |
86 | ||
6a14c5c9 ON |
87 | /* |
88 | * This function expects the tasklist_lock write-locked. | |
89 | */ | |
90 | static void __exit_signal(struct task_struct *tsk) | |
91 | { | |
92 | struct signal_struct *sig = tsk->signal; | |
d40e48e0 | 93 | bool group_dead = thread_group_leader(tsk); |
6a14c5c9 | 94 | struct sighand_struct *sighand; |
4ada856f | 95 | struct tty_struct *uninitialized_var(tty); |
5613fda9 | 96 | u64 utime, stime; |
6a14c5c9 | 97 | |
d11c563d | 98 | sighand = rcu_dereference_check(tsk->sighand, |
db1466b3 | 99 | lockdep_tasklist_lock_is_held()); |
6a14c5c9 ON |
100 | spin_lock(&sighand->siglock); |
101 | ||
baa73d9e | 102 | #ifdef CONFIG_POSIX_TIMERS |
6a14c5c9 | 103 | posix_cpu_timers_exit(tsk); |
d40e48e0 | 104 | if (group_dead) { |
6a14c5c9 | 105 | posix_cpu_timers_exit_group(tsk); |
4a599942 | 106 | } else { |
e0a70217 ON |
107 | /* |
108 | * This can only happen if the caller is de_thread(). | |
109 | * FIXME: this is the temporary hack, we should teach | |
110 | * posix-cpu-timers to handle this case correctly. | |
111 | */ | |
112 | if (unlikely(has_group_leader_pid(tsk))) | |
113 | posix_cpu_timers_exit_group(tsk); | |
baa73d9e NP |
114 | } |
115 | #endif | |
e0a70217 | 116 | |
baa73d9e NP |
117 | if (group_dead) { |
118 | tty = sig->tty; | |
119 | sig->tty = NULL; | |
120 | } else { | |
6a14c5c9 ON |
121 | /* |
122 | * If there is any task waiting for the group exit | |
123 | * then notify it: | |
124 | */ | |
d344193a | 125 | if (sig->notify_count > 0 && !--sig->notify_count) |
6a14c5c9 | 126 | wake_up_process(sig->group_exit_task); |
6db840fa | 127 | |
6a14c5c9 ON |
128 | if (tsk == sig->curr_target) |
129 | sig->curr_target = next_thread(tsk); | |
6a14c5c9 ON |
130 | } |
131 | ||
53d3eaa3 NP |
132 | add_device_randomness((const void*) &tsk->se.sum_exec_runtime, |
133 | sizeof(unsigned long long)); | |
134 | ||
90ed9cbe | 135 | /* |
26e75b5c ON |
136 | * Accumulate here the counters for all threads as they die. We could |
137 | * skip the group leader because it is the last user of signal_struct, | |
138 | * but we want to avoid the race with thread_group_cputime() which can | |
139 | * see the empty ->thread_head list. | |
90ed9cbe RR |
140 | */ |
141 | task_cputime(tsk, &utime, &stime); | |
e78c3496 | 142 | write_seqlock(&sig->stats_lock); |
90ed9cbe RR |
143 | sig->utime += utime; |
144 | sig->stime += stime; | |
145 | sig->gtime += task_gtime(tsk); | |
146 | sig->min_flt += tsk->min_flt; | |
147 | sig->maj_flt += tsk->maj_flt; | |
148 | sig->nvcsw += tsk->nvcsw; | |
149 | sig->nivcsw += tsk->nivcsw; | |
150 | sig->inblock += task_io_get_inblock(tsk); | |
151 | sig->oublock += task_io_get_oublock(tsk); | |
152 | task_io_accounting_add(&sig->ioac, &tsk->ioac); | |
153 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | |
b3ac022c | 154 | sig->nr_threads--; |
d40e48e0 | 155 | __unhash_process(tsk, group_dead); |
e78c3496 | 156 | write_sequnlock(&sig->stats_lock); |
5876700c | 157 | |
da7978b0 ON |
158 | /* |
159 | * Do this under ->siglock, we can race with another thread | |
160 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | |
161 | */ | |
162 | flush_sigqueue(&tsk->pending); | |
a7e5328a | 163 | tsk->sighand = NULL; |
6a14c5c9 | 164 | spin_unlock(&sighand->siglock); |
6a14c5c9 | 165 | |
a7e5328a | 166 | __cleanup_sighand(sighand); |
a0be55de | 167 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
d40e48e0 | 168 | if (group_dead) { |
6a14c5c9 | 169 | flush_sigqueue(&sig->shared_pending); |
4ada856f | 170 | tty_kref_put(tty); |
6a14c5c9 ON |
171 | } |
172 | } | |
173 | ||
8c7904a0 EB |
174 | static void delayed_put_task_struct(struct rcu_head *rhp) |
175 | { | |
0a16b607 MD |
176 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
177 | ||
4e231c79 | 178 | perf_event_delayed_put(tsk); |
0a16b607 MD |
179 | trace_sched_process_free(tsk); |
180 | put_task_struct(tsk); | |
8c7904a0 EB |
181 | } |
182 | ||
f470021a | 183 | |
a0be55de | 184 | void release_task(struct task_struct *p) |
1da177e4 | 185 | { |
36c8b586 | 186 | struct task_struct *leader; |
1da177e4 | 187 | int zap_leader; |
1f09f974 | 188 | repeat: |
c69e8d9c | 189 | /* don't need to get the RCU readlock here - the process is dead and |
d11c563d PM |
190 | * can't be modifying its own credentials. But shut RCU-lockdep up */ |
191 | rcu_read_lock(); | |
c69e8d9c | 192 | atomic_dec(&__task_cred(p)->user->processes); |
d11c563d | 193 | rcu_read_unlock(); |
c69e8d9c | 194 | |
60347f67 | 195 | proc_flush_task(p); |
0203026b | 196 | |
1da177e4 | 197 | write_lock_irq(&tasklist_lock); |
a288eecc | 198 | ptrace_release_task(p); |
1da177e4 | 199 | __exit_signal(p); |
35f5cad8 | 200 | |
1da177e4 LT |
201 | /* |
202 | * If we are the last non-leader member of the thread | |
203 | * group, and the leader is zombie, then notify the | |
204 | * group leader's parent process. (if it wants notification.) | |
205 | */ | |
206 | zap_leader = 0; | |
207 | leader = p->group_leader; | |
a0be55de IA |
208 | if (leader != p && thread_group_empty(leader) |
209 | && leader->exit_state == EXIT_ZOMBIE) { | |
1da177e4 LT |
210 | /* |
211 | * If we were the last child thread and the leader has | |
212 | * exited already, and the leader's parent ignores SIGCHLD, | |
213 | * then we are the one who should release the leader. | |
dae33574 | 214 | */ |
86773473 | 215 | zap_leader = do_notify_parent(leader, leader->exit_signal); |
dae33574 RM |
216 | if (zap_leader) |
217 | leader->exit_state = EXIT_DEAD; | |
1da177e4 LT |
218 | } |
219 | ||
1da177e4 | 220 | write_unlock_irq(&tasklist_lock); |
1da177e4 | 221 | release_thread(p); |
8c7904a0 | 222 | call_rcu(&p->rcu, delayed_put_task_struct); |
1da177e4 LT |
223 | |
224 | p = leader; | |
225 | if (unlikely(zap_leader)) | |
226 | goto repeat; | |
227 | } | |
228 | ||
150593bf ON |
229 | /* |
230 | * Note that if this function returns a valid task_struct pointer (!NULL) | |
231 | * task->usage must remain >0 for the duration of the RCU critical section. | |
232 | */ | |
233 | struct task_struct *task_rcu_dereference(struct task_struct **ptask) | |
234 | { | |
235 | struct sighand_struct *sighand; | |
236 | struct task_struct *task; | |
237 | ||
238 | /* | |
239 | * We need to verify that release_task() was not called and thus | |
240 | * delayed_put_task_struct() can't run and drop the last reference | |
241 | * before rcu_read_unlock(). We check task->sighand != NULL, | |
242 | * but we can read the already freed and reused memory. | |
243 | */ | |
244 | retry: | |
245 | task = rcu_dereference(*ptask); | |
246 | if (!task) | |
247 | return NULL; | |
248 | ||
249 | probe_kernel_address(&task->sighand, sighand); | |
250 | ||
251 | /* | |
252 | * Pairs with atomic_dec_and_test() in put_task_struct(). If this task | |
253 | * was already freed we can not miss the preceding update of this | |
254 | * pointer. | |
255 | */ | |
256 | smp_rmb(); | |
257 | if (unlikely(task != READ_ONCE(*ptask))) | |
258 | goto retry; | |
259 | ||
260 | /* | |
261 | * We've re-checked that "task == *ptask", now we have two different | |
262 | * cases: | |
263 | * | |
264 | * 1. This is actually the same task/task_struct. In this case | |
265 | * sighand != NULL tells us it is still alive. | |
266 | * | |
267 | * 2. This is another task which got the same memory for task_struct. | |
268 | * We can't know this of course, and we can not trust | |
269 | * sighand != NULL. | |
270 | * | |
271 | * In this case we actually return a random value, but this is | |
272 | * correct. | |
273 | * | |
274 | * If we return NULL - we can pretend that we actually noticed that | |
275 | * *ptask was updated when the previous task has exited. Or pretend | |
276 | * that probe_slab_address(&sighand) reads NULL. | |
277 | * | |
278 | * If we return the new task (because sighand is not NULL for any | |
279 | * reason) - this is fine too. This (new) task can't go away before | |
280 | * another gp pass. | |
281 | * | |
282 | * And note: We could even eliminate the false positive if re-read | |
283 | * task->sighand once again to avoid the falsely NULL. But this case | |
284 | * is very unlikely so we don't care. | |
285 | */ | |
286 | if (!sighand) | |
287 | return NULL; | |
288 | ||
289 | return task; | |
290 | } | |
291 | ||
8f95c90c DB |
292 | void rcuwait_wake_up(struct rcuwait *w) |
293 | { | |
294 | struct task_struct *task; | |
295 | ||
296 | rcu_read_lock(); | |
297 | ||
298 | /* | |
299 | * Order condition vs @task, such that everything prior to the load | |
300 | * of @task is visible. This is the condition as to why the user called | |
301 | * rcuwait_trywake() in the first place. Pairs with set_current_state() | |
302 | * barrier (A) in rcuwait_wait_event(). | |
303 | * | |
304 | * WAIT WAKE | |
305 | * [S] tsk = current [S] cond = true | |
306 | * MB (A) MB (B) | |
307 | * [L] cond [L] tsk | |
308 | */ | |
309 | smp_rmb(); /* (B) */ | |
310 | ||
311 | /* | |
312 | * Avoid using task_rcu_dereference() magic as long as we are careful, | |
313 | * see comment in rcuwait_wait_event() regarding ->exit_state. | |
314 | */ | |
315 | task = rcu_dereference(w->task); | |
316 | if (task) | |
317 | wake_up_process(task); | |
318 | rcu_read_unlock(); | |
319 | } | |
320 | ||
1da177e4 LT |
321 | /* |
322 | * Determine if a process group is "orphaned", according to the POSIX | |
323 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
324 | * by terminal-generated stop signals. Newly orphaned process groups are | |
325 | * to receive a SIGHUP and a SIGCONT. | |
326 | * | |
327 | * "I ask you, have you ever known what it is to be an orphan?" | |
328 | */ | |
a0be55de IA |
329 | static int will_become_orphaned_pgrp(struct pid *pgrp, |
330 | struct task_struct *ignored_task) | |
1da177e4 LT |
331 | { |
332 | struct task_struct *p; | |
1da177e4 | 333 | |
0475ac08 | 334 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
05e83df6 ON |
335 | if ((p == ignored_task) || |
336 | (p->exit_state && thread_group_empty(p)) || | |
337 | is_global_init(p->real_parent)) | |
1da177e4 | 338 | continue; |
05e83df6 | 339 | |
0475ac08 | 340 | if (task_pgrp(p->real_parent) != pgrp && |
05e83df6 ON |
341 | task_session(p->real_parent) == task_session(p)) |
342 | return 0; | |
0475ac08 | 343 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
05e83df6 ON |
344 | |
345 | return 1; | |
1da177e4 LT |
346 | } |
347 | ||
3e7cd6c4 | 348 | int is_current_pgrp_orphaned(void) |
1da177e4 LT |
349 | { |
350 | int retval; | |
351 | ||
352 | read_lock(&tasklist_lock); | |
3e7cd6c4 | 353 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
1da177e4 LT |
354 | read_unlock(&tasklist_lock); |
355 | ||
356 | return retval; | |
357 | } | |
358 | ||
961c4675 | 359 | static bool has_stopped_jobs(struct pid *pgrp) |
1da177e4 | 360 | { |
1da177e4 LT |
361 | struct task_struct *p; |
362 | ||
0475ac08 | 363 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
961c4675 ON |
364 | if (p->signal->flags & SIGNAL_STOP_STOPPED) |
365 | return true; | |
0475ac08 | 366 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
961c4675 ON |
367 | |
368 | return false; | |
1da177e4 LT |
369 | } |
370 | ||
f49ee505 ON |
371 | /* |
372 | * Check to see if any process groups have become orphaned as | |
373 | * a result of our exiting, and if they have any stopped jobs, | |
374 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
375 | */ | |
376 | static void | |
377 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | |
378 | { | |
379 | struct pid *pgrp = task_pgrp(tsk); | |
380 | struct task_struct *ignored_task = tsk; | |
381 | ||
382 | if (!parent) | |
a0be55de IA |
383 | /* exit: our father is in a different pgrp than |
384 | * we are and we were the only connection outside. | |
385 | */ | |
f49ee505 ON |
386 | parent = tsk->real_parent; |
387 | else | |
388 | /* reparent: our child is in a different pgrp than | |
389 | * we are, and it was the only connection outside. | |
390 | */ | |
391 | ignored_task = NULL; | |
392 | ||
393 | if (task_pgrp(parent) != pgrp && | |
394 | task_session(parent) == task_session(tsk) && | |
395 | will_become_orphaned_pgrp(pgrp, ignored_task) && | |
396 | has_stopped_jobs(pgrp)) { | |
397 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | |
398 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
399 | } | |
400 | } | |
401 | ||
f98bafa0 | 402 | #ifdef CONFIG_MEMCG |
cf475ad2 | 403 | /* |
733eda7a | 404 | * A task is exiting. If it owned this mm, find a new owner for the mm. |
cf475ad2 | 405 | */ |
cf475ad2 BS |
406 | void mm_update_next_owner(struct mm_struct *mm) |
407 | { | |
408 | struct task_struct *c, *g, *p = current; | |
409 | ||
410 | retry: | |
733eda7a KH |
411 | /* |
412 | * If the exiting or execing task is not the owner, it's | |
413 | * someone else's problem. | |
414 | */ | |
415 | if (mm->owner != p) | |
cf475ad2 | 416 | return; |
733eda7a KH |
417 | /* |
418 | * The current owner is exiting/execing and there are no other | |
419 | * candidates. Do not leave the mm pointing to a possibly | |
420 | * freed task structure. | |
421 | */ | |
422 | if (atomic_read(&mm->mm_users) <= 1) { | |
423 | mm->owner = NULL; | |
424 | return; | |
425 | } | |
cf475ad2 BS |
426 | |
427 | read_lock(&tasklist_lock); | |
428 | /* | |
429 | * Search in the children | |
430 | */ | |
431 | list_for_each_entry(c, &p->children, sibling) { | |
432 | if (c->mm == mm) | |
433 | goto assign_new_owner; | |
434 | } | |
435 | ||
436 | /* | |
437 | * Search in the siblings | |
438 | */ | |
dea33cfd | 439 | list_for_each_entry(c, &p->real_parent->children, sibling) { |
cf475ad2 BS |
440 | if (c->mm == mm) |
441 | goto assign_new_owner; | |
442 | } | |
443 | ||
444 | /* | |
f87fb599 | 445 | * Search through everything else, we should not get here often. |
cf475ad2 | 446 | */ |
39af1765 ON |
447 | for_each_process(g) { |
448 | if (g->flags & PF_KTHREAD) | |
449 | continue; | |
450 | for_each_thread(g, c) { | |
451 | if (c->mm == mm) | |
452 | goto assign_new_owner; | |
453 | if (c->mm) | |
454 | break; | |
455 | } | |
f87fb599 | 456 | } |
cf475ad2 | 457 | read_unlock(&tasklist_lock); |
31a78f23 BS |
458 | /* |
459 | * We found no owner yet mm_users > 1: this implies that we are | |
460 | * most likely racing with swapoff (try_to_unuse()) or /proc or | |
e5991371 | 461 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. |
31a78f23 | 462 | */ |
31a78f23 | 463 | mm->owner = NULL; |
cf475ad2 BS |
464 | return; |
465 | ||
466 | assign_new_owner: | |
467 | BUG_ON(c == p); | |
468 | get_task_struct(c); | |
469 | /* | |
470 | * The task_lock protects c->mm from changing. | |
471 | * We always want mm->owner->mm == mm | |
472 | */ | |
473 | task_lock(c); | |
e5991371 HD |
474 | /* |
475 | * Delay read_unlock() till we have the task_lock() | |
476 | * to ensure that c does not slip away underneath us | |
477 | */ | |
478 | read_unlock(&tasklist_lock); | |
cf475ad2 BS |
479 | if (c->mm != mm) { |
480 | task_unlock(c); | |
481 | put_task_struct(c); | |
482 | goto retry; | |
483 | } | |
cf475ad2 BS |
484 | mm->owner = c; |
485 | task_unlock(c); | |
486 | put_task_struct(c); | |
487 | } | |
f98bafa0 | 488 | #endif /* CONFIG_MEMCG */ |
cf475ad2 | 489 | |
1da177e4 LT |
490 | /* |
491 | * Turn us into a lazy TLB process if we | |
492 | * aren't already.. | |
493 | */ | |
0039962a | 494 | static void exit_mm(void) |
1da177e4 | 495 | { |
0039962a | 496 | struct mm_struct *mm = current->mm; |
b564daf8 | 497 | struct core_state *core_state; |
1da177e4 | 498 | |
0039962a | 499 | mm_release(current, mm); |
1da177e4 LT |
500 | if (!mm) |
501 | return; | |
4fe7efdb | 502 | sync_mm_rss(mm); |
1da177e4 LT |
503 | /* |
504 | * Serialize with any possible pending coredump. | |
999d9fc1 | 505 | * We must hold mmap_sem around checking core_state |
1da177e4 | 506 | * and clearing tsk->mm. The core-inducing thread |
999d9fc1 | 507 | * will increment ->nr_threads for each thread in the |
1da177e4 LT |
508 | * group with ->mm != NULL. |
509 | */ | |
510 | down_read(&mm->mmap_sem); | |
b564daf8 ON |
511 | core_state = mm->core_state; |
512 | if (core_state) { | |
513 | struct core_thread self; | |
a0be55de | 514 | |
1da177e4 | 515 | up_read(&mm->mmap_sem); |
1da177e4 | 516 | |
0039962a | 517 | self.task = current; |
b564daf8 ON |
518 | self.next = xchg(&core_state->dumper.next, &self); |
519 | /* | |
520 | * Implies mb(), the result of xchg() must be visible | |
521 | * to core_state->dumper. | |
522 | */ | |
523 | if (atomic_dec_and_test(&core_state->nr_threads)) | |
524 | complete(&core_state->startup); | |
1da177e4 | 525 | |
a94e2d40 | 526 | for (;;) { |
642fa448 | 527 | set_current_state(TASK_UNINTERRUPTIBLE); |
a94e2d40 ON |
528 | if (!self.task) /* see coredump_finish() */ |
529 | break; | |
80d26af8 | 530 | freezable_schedule(); |
a94e2d40 | 531 | } |
642fa448 | 532 | __set_current_state(TASK_RUNNING); |
1da177e4 LT |
533 | down_read(&mm->mmap_sem); |
534 | } | |
f1f10076 | 535 | mmgrab(mm); |
0039962a | 536 | BUG_ON(mm != current->active_mm); |
1da177e4 | 537 | /* more a memory barrier than a real lock */ |
0039962a DB |
538 | task_lock(current); |
539 | current->mm = NULL; | |
1da177e4 LT |
540 | up_read(&mm->mmap_sem); |
541 | enter_lazy_tlb(mm, current); | |
0039962a | 542 | task_unlock(current); |
cf475ad2 | 543 | mm_update_next_owner(mm); |
1da177e4 | 544 | mmput(mm); |
c32b3cbe | 545 | if (test_thread_flag(TIF_MEMDIE)) |
38531201 | 546 | exit_oom_victim(); |
1da177e4 LT |
547 | } |
548 | ||
c9dc05bf ON |
549 | static struct task_struct *find_alive_thread(struct task_struct *p) |
550 | { | |
551 | struct task_struct *t; | |
552 | ||
553 | for_each_thread(p, t) { | |
554 | if (!(t->flags & PF_EXITING)) | |
555 | return t; | |
556 | } | |
557 | return NULL; | |
558 | } | |
559 | ||
1109909c ON |
560 | static struct task_struct *find_child_reaper(struct task_struct *father) |
561 | __releases(&tasklist_lock) | |
562 | __acquires(&tasklist_lock) | |
563 | { | |
564 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | |
565 | struct task_struct *reaper = pid_ns->child_reaper; | |
566 | ||
567 | if (likely(reaper != father)) | |
568 | return reaper; | |
569 | ||
c9dc05bf ON |
570 | reaper = find_alive_thread(father); |
571 | if (reaper) { | |
1109909c ON |
572 | pid_ns->child_reaper = reaper; |
573 | return reaper; | |
574 | } | |
575 | ||
576 | write_unlock_irq(&tasklist_lock); | |
577 | if (unlikely(pid_ns == &init_pid_ns)) { | |
578 | panic("Attempted to kill init! exitcode=0x%08x\n", | |
579 | father->signal->group_exit_code ?: father->exit_code); | |
580 | } | |
581 | zap_pid_ns_processes(pid_ns); | |
582 | write_lock_irq(&tasklist_lock); | |
583 | ||
584 | return father; | |
585 | } | |
586 | ||
1da177e4 | 587 | /* |
ebec18a6 LP |
588 | * When we die, we re-parent all our children, and try to: |
589 | * 1. give them to another thread in our thread group, if such a member exists | |
590 | * 2. give it to the first ancestor process which prctl'd itself as a | |
591 | * child_subreaper for its children (like a service manager) | |
592 | * 3. give it to the init process (PID 1) in our pid namespace | |
1da177e4 | 593 | */ |
1109909c ON |
594 | static struct task_struct *find_new_reaper(struct task_struct *father, |
595 | struct task_struct *child_reaper) | |
1da177e4 | 596 | { |
c9dc05bf | 597 | struct task_struct *thread, *reaper; |
1da177e4 | 598 | |
c9dc05bf ON |
599 | thread = find_alive_thread(father); |
600 | if (thread) | |
950bbabb | 601 | return thread; |
1da177e4 | 602 | |
7d24e2df | 603 | if (father->signal->has_child_subreaper) { |
c6c70f44 | 604 | unsigned int ns_level = task_pid(father)->level; |
ebec18a6 | 605 | /* |
175aed3f | 606 | * Find the first ->is_child_subreaper ancestor in our pid_ns. |
c6c70f44 ON |
607 | * We can't check reaper != child_reaper to ensure we do not |
608 | * cross the namespaces, the exiting parent could be injected | |
609 | * by setns() + fork(). | |
610 | * We check pid->level, this is slightly more efficient than | |
611 | * task_active_pid_ns(reaper) != task_active_pid_ns(father). | |
ebec18a6 | 612 | */ |
c6c70f44 ON |
613 | for (reaper = father->real_parent; |
614 | task_pid(reaper)->level == ns_level; | |
ebec18a6 | 615 | reaper = reaper->real_parent) { |
175aed3f | 616 | if (reaper == &init_task) |
ebec18a6 LP |
617 | break; |
618 | if (!reaper->signal->is_child_subreaper) | |
619 | continue; | |
c9dc05bf ON |
620 | thread = find_alive_thread(reaper); |
621 | if (thread) | |
622 | return thread; | |
ebec18a6 | 623 | } |
1da177e4 | 624 | } |
762a24be | 625 | |
1109909c | 626 | return child_reaper; |
950bbabb ON |
627 | } |
628 | ||
5dfc80be ON |
629 | /* |
630 | * Any that need to be release_task'd are put on the @dead list. | |
631 | */ | |
9cd80bbb | 632 | static void reparent_leader(struct task_struct *father, struct task_struct *p, |
5dfc80be ON |
633 | struct list_head *dead) |
634 | { | |
2831096e | 635 | if (unlikely(p->exit_state == EXIT_DEAD)) |
5dfc80be ON |
636 | return; |
637 | ||
abd50b39 | 638 | /* We don't want people slaying init. */ |
5dfc80be ON |
639 | p->exit_signal = SIGCHLD; |
640 | ||
641 | /* If it has exited notify the new parent about this child's death. */ | |
d21142ec | 642 | if (!p->ptrace && |
5dfc80be | 643 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { |
86773473 | 644 | if (do_notify_parent(p, p->exit_signal)) { |
5dfc80be | 645 | p->exit_state = EXIT_DEAD; |
dc2fd4b0 | 646 | list_add(&p->ptrace_entry, dead); |
5dfc80be ON |
647 | } |
648 | } | |
649 | ||
650 | kill_orphaned_pgrp(p, father); | |
651 | } | |
652 | ||
482a3767 ON |
653 | /* |
654 | * This does two things: | |
655 | * | |
656 | * A. Make init inherit all the child processes | |
657 | * B. Check to see if any process groups have become orphaned | |
658 | * as a result of our exiting, and if they have any stopped | |
659 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
660 | */ | |
661 | static void forget_original_parent(struct task_struct *father, | |
662 | struct list_head *dead) | |
1da177e4 | 663 | { |
482a3767 | 664 | struct task_struct *p, *t, *reaper; |
762a24be | 665 | |
7c8bd232 | 666 | if (unlikely(!list_empty(&father->ptraced))) |
482a3767 | 667 | exit_ptrace(father, dead); |
f470021a | 668 | |
7c8bd232 | 669 | /* Can drop and reacquire tasklist_lock */ |
1109909c | 670 | reaper = find_child_reaper(father); |
ad9e206a | 671 | if (list_empty(&father->children)) |
482a3767 | 672 | return; |
1109909c ON |
673 | |
674 | reaper = find_new_reaper(father, reaper); | |
2831096e | 675 | list_for_each_entry(p, &father->children, sibling) { |
57a05918 | 676 | for_each_thread(p, t) { |
9cd80bbb | 677 | t->real_parent = reaper; |
57a05918 ON |
678 | BUG_ON((!t->ptrace) != (t->parent == father)); |
679 | if (likely(!t->ptrace)) | |
9cd80bbb | 680 | t->parent = t->real_parent; |
9cd80bbb ON |
681 | if (t->pdeath_signal) |
682 | group_send_sig_info(t->pdeath_signal, | |
683 | SEND_SIG_NOINFO, t); | |
57a05918 | 684 | } |
2831096e ON |
685 | /* |
686 | * If this is a threaded reparent there is no need to | |
687 | * notify anyone anything has happened. | |
688 | */ | |
689 | if (!same_thread_group(reaper, father)) | |
482a3767 | 690 | reparent_leader(father, p, dead); |
1da177e4 | 691 | } |
2831096e | 692 | list_splice_tail_init(&father->children, &reaper->children); |
1da177e4 LT |
693 | } |
694 | ||
695 | /* | |
696 | * Send signals to all our closest relatives so that they know | |
697 | * to properly mourn us.. | |
698 | */ | |
821c7de7 | 699 | static void exit_notify(struct task_struct *tsk, int group_dead) |
1da177e4 | 700 | { |
53c8f9f1 | 701 | bool autoreap; |
482a3767 ON |
702 | struct task_struct *p, *n; |
703 | LIST_HEAD(dead); | |
1da177e4 | 704 | |
762a24be | 705 | write_lock_irq(&tasklist_lock); |
482a3767 ON |
706 | forget_original_parent(tsk, &dead); |
707 | ||
821c7de7 ON |
708 | if (group_dead) |
709 | kill_orphaned_pgrp(tsk->group_leader, NULL); | |
1da177e4 | 710 | |
45cdf5cc ON |
711 | if (unlikely(tsk->ptrace)) { |
712 | int sig = thread_group_leader(tsk) && | |
713 | thread_group_empty(tsk) && | |
714 | !ptrace_reparented(tsk) ? | |
715 | tsk->exit_signal : SIGCHLD; | |
716 | autoreap = do_notify_parent(tsk, sig); | |
717 | } else if (thread_group_leader(tsk)) { | |
718 | autoreap = thread_group_empty(tsk) && | |
719 | do_notify_parent(tsk, tsk->exit_signal); | |
720 | } else { | |
721 | autoreap = true; | |
722 | } | |
1da177e4 | 723 | |
53c8f9f1 | 724 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; |
6c66e7db ON |
725 | if (tsk->exit_state == EXIT_DEAD) |
726 | list_add(&tsk->ptrace_entry, &dead); | |
1da177e4 | 727 | |
9c339168 ON |
728 | /* mt-exec, de_thread() is waiting for group leader */ |
729 | if (unlikely(tsk->signal->notify_count < 0)) | |
6db840fa | 730 | wake_up_process(tsk->signal->group_exit_task); |
1da177e4 LT |
731 | write_unlock_irq(&tasklist_lock); |
732 | ||
482a3767 ON |
733 | list_for_each_entry_safe(p, n, &dead, ptrace_entry) { |
734 | list_del_init(&p->ptrace_entry); | |
735 | release_task(p); | |
736 | } | |
1da177e4 LT |
737 | } |
738 | ||
e18eecb8 JD |
739 | #ifdef CONFIG_DEBUG_STACK_USAGE |
740 | static void check_stack_usage(void) | |
741 | { | |
742 | static DEFINE_SPINLOCK(low_water_lock); | |
743 | static int lowest_to_date = THREAD_SIZE; | |
e18eecb8 JD |
744 | unsigned long free; |
745 | ||
7c9f8861 | 746 | free = stack_not_used(current); |
e18eecb8 JD |
747 | |
748 | if (free >= lowest_to_date) | |
749 | return; | |
750 | ||
751 | spin_lock(&low_water_lock); | |
752 | if (free < lowest_to_date) { | |
627393d4 | 753 | pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", |
a0be55de | 754 | current->comm, task_pid_nr(current), free); |
e18eecb8 JD |
755 | lowest_to_date = free; |
756 | } | |
757 | spin_unlock(&low_water_lock); | |
758 | } | |
759 | #else | |
760 | static inline void check_stack_usage(void) {} | |
761 | #endif | |
762 | ||
9af6528e | 763 | void __noreturn do_exit(long code) |
1da177e4 LT |
764 | { |
765 | struct task_struct *tsk = current; | |
766 | int group_dead; | |
767 | ||
768 | profile_task_exit(tsk); | |
5c9a8750 | 769 | kcov_task_exit(tsk); |
1da177e4 | 770 | |
73c10101 | 771 | WARN_ON(blk_needs_flush_plug(tsk)); |
22e2c507 | 772 | |
1da177e4 LT |
773 | if (unlikely(in_interrupt())) |
774 | panic("Aiee, killing interrupt handler!"); | |
775 | if (unlikely(!tsk->pid)) | |
776 | panic("Attempted to kill the idle task!"); | |
1da177e4 | 777 | |
33dd94ae NE |
778 | /* |
779 | * If do_exit is called because this processes oopsed, it's possible | |
780 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | |
781 | * continuing. Amongst other possible reasons, this is to prevent | |
782 | * mm_release()->clear_child_tid() from writing to a user-controlled | |
783 | * kernel address. | |
784 | */ | |
785 | set_fs(USER_DS); | |
786 | ||
a288eecc | 787 | ptrace_event(PTRACE_EVENT_EXIT, code); |
1da177e4 | 788 | |
e0e81739 DH |
789 | validate_creds_for_do_exit(tsk); |
790 | ||
df164db5 AN |
791 | /* |
792 | * We're taking recursive faults here in do_exit. Safest is to just | |
793 | * leave this task alone and wait for reboot. | |
794 | */ | |
795 | if (unlikely(tsk->flags & PF_EXITING)) { | |
a0be55de | 796 | pr_alert("Fixing recursive fault but reboot is needed!\n"); |
778e9a9c AK |
797 | /* |
798 | * We can do this unlocked here. The futex code uses | |
799 | * this flag just to verify whether the pi state | |
800 | * cleanup has been done or not. In the worst case it | |
801 | * loops once more. We pretend that the cleanup was | |
802 | * done as there is no way to return. Either the | |
803 | * OWNER_DIED bit is set by now or we push the blocked | |
804 | * task into the wait for ever nirwana as well. | |
805 | */ | |
806 | tsk->flags |= PF_EXITPIDONE; | |
df164db5 AN |
807 | set_current_state(TASK_UNINTERRUPTIBLE); |
808 | schedule(); | |
809 | } | |
810 | ||
d12619b5 | 811 | exit_signals(tsk); /* sets PF_EXITING */ |
778e9a9c | 812 | /* |
be3e7844 PZ |
813 | * Ensure that all new tsk->pi_lock acquisitions must observe |
814 | * PF_EXITING. Serializes against futex.c:attach_to_pi_owner(). | |
778e9a9c | 815 | */ |
d2ee7198 | 816 | smp_mb(); |
be3e7844 PZ |
817 | /* |
818 | * Ensure that we must observe the pi_state in exit_mm() -> | |
819 | * mm_release() -> exit_pi_state_list(). | |
820 | */ | |
8083f293 PM |
821 | raw_spin_lock_irq(&tsk->pi_lock); |
822 | raw_spin_unlock_irq(&tsk->pi_lock); | |
1da177e4 | 823 | |
1dc0fffc | 824 | if (unlikely(in_atomic())) { |
a0be55de IA |
825 | pr_info("note: %s[%d] exited with preempt_count %d\n", |
826 | current->comm, task_pid_nr(current), | |
827 | preempt_count()); | |
1dc0fffc PZ |
828 | preempt_count_set(PREEMPT_ENABLED); |
829 | } | |
1da177e4 | 830 | |
48d212a2 LT |
831 | /* sync mm's RSS info before statistics gathering */ |
832 | if (tsk->mm) | |
833 | sync_mm_rss(tsk->mm); | |
51229b49 | 834 | acct_update_integrals(tsk); |
1da177e4 | 835 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 836 | if (group_dead) { |
baa73d9e | 837 | #ifdef CONFIG_POSIX_TIMERS |
778e9a9c | 838 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 839 | exit_itimers(tsk->signal); |
baa73d9e | 840 | #endif |
1f10206c JP |
841 | if (tsk->mm) |
842 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | |
c3068951 | 843 | } |
f6ec29a4 | 844 | acct_collect(code, group_dead); |
522ed776 MT |
845 | if (group_dead) |
846 | tty_audit_exit(); | |
a4ff8dba | 847 | audit_free(tsk); |
115085ea | 848 | |
48d212a2 | 849 | tsk->exit_code = code; |
115085ea | 850 | taskstats_exit(tsk, group_dead); |
c757249a | 851 | |
0039962a | 852 | exit_mm(); |
1da177e4 | 853 | |
0e464814 | 854 | if (group_dead) |
f6ec29a4 | 855 | acct_process(); |
0a16b607 MD |
856 | trace_sched_process_exit(tsk); |
857 | ||
1da177e4 | 858 | exit_sem(tsk); |
b34a6b1d | 859 | exit_shm(tsk); |
1ec7f1dd AV |
860 | exit_files(tsk); |
861 | exit_fs(tsk); | |
c39df5fa ON |
862 | if (group_dead) |
863 | disassociate_ctty(1); | |
8aac6270 | 864 | exit_task_namespaces(tsk); |
ed3e694d | 865 | exit_task_work(tsk); |
e6464694 | 866 | exit_thread(tsk); |
0b3fcf17 SE |
867 | |
868 | /* | |
869 | * Flush inherited counters to the parent - before the parent | |
870 | * gets woken up by child-exit notifications. | |
871 | * | |
872 | * because of cgroup mode, must be called before cgroup_exit() | |
873 | */ | |
874 | perf_event_exit_task(tsk); | |
875 | ||
8e5bfa8c | 876 | sched_autogroup_exit_task(tsk); |
1ec41830 | 877 | cgroup_exit(tsk); |
1da177e4 | 878 | |
24f1e32c FW |
879 | /* |
880 | * FIXME: do that only when needed, using sched_exit tracepoint | |
881 | */ | |
7c8df286 | 882 | flush_ptrace_hw_breakpoint(tsk); |
33b2fb30 | 883 | |
ccdd29ff | 884 | exit_tasks_rcu_start(); |
821c7de7 | 885 | exit_notify(tsk, group_dead); |
ef982393 | 886 | proc_exit_connector(tsk); |
c11600e4 | 887 | mpol_put_task_policy(tsk); |
42b2dd0a | 888 | #ifdef CONFIG_FUTEX |
c87e2837 IM |
889 | if (unlikely(current->pi_state_cache)) |
890 | kfree(current->pi_state_cache); | |
42b2dd0a | 891 | #endif |
de5097c2 | 892 | /* |
9a11b49a | 893 | * Make sure we are holding no locks: |
de5097c2 | 894 | */ |
1b1d2fb4 | 895 | debug_check_no_locks_held(); |
778e9a9c AK |
896 | /* |
897 | * We can do this unlocked here. The futex code uses this flag | |
898 | * just to verify whether the pi state cleanup has been done | |
899 | * or not. In the worst case it loops once more. | |
900 | */ | |
901 | tsk->flags |= PF_EXITPIDONE; | |
1da177e4 | 902 | |
afc847b7 | 903 | if (tsk->io_context) |
b69f2292 | 904 | exit_io_context(tsk); |
afc847b7 | 905 | |
b92ce558 | 906 | if (tsk->splice_pipe) |
4b8a8f1e | 907 | free_pipe_info(tsk->splice_pipe); |
b92ce558 | 908 | |
5640f768 ED |
909 | if (tsk->task_frag.page) |
910 | put_page(tsk->task_frag.page); | |
911 | ||
e0e81739 DH |
912 | validate_creds_for_do_exit(tsk); |
913 | ||
4bcb8232 | 914 | check_stack_usage(); |
7407251a | 915 | preempt_disable(); |
54848d73 WF |
916 | if (tsk->nr_dirtied) |
917 | __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); | |
f41d911f | 918 | exit_rcu(); |
ccdd29ff | 919 | exit_tasks_rcu_finish(); |
b5740f4b | 920 | |
b09be676 | 921 | lockdep_free_task(tsk); |
9af6528e | 922 | do_task_dead(); |
1da177e4 | 923 | } |
012914da RA |
924 | EXPORT_SYMBOL_GPL(do_exit); |
925 | ||
9402c95f | 926 | void complete_and_exit(struct completion *comp, long code) |
1da177e4 LT |
927 | { |
928 | if (comp) | |
929 | complete(comp); | |
55a101f8 | 930 | |
1da177e4 LT |
931 | do_exit(code); |
932 | } | |
1da177e4 LT |
933 | EXPORT_SYMBOL(complete_and_exit); |
934 | ||
754fe8d2 | 935 | SYSCALL_DEFINE1(exit, int, error_code) |
1da177e4 LT |
936 | { |
937 | do_exit((error_code&0xff)<<8); | |
938 | } | |
939 | ||
1da177e4 LT |
940 | /* |
941 | * Take down every thread in the group. This is called by fatal signals | |
942 | * as well as by sys_exit_group (below). | |
943 | */ | |
9402c95f | 944 | void |
1da177e4 LT |
945 | do_group_exit(int exit_code) |
946 | { | |
bfc4b089 ON |
947 | struct signal_struct *sig = current->signal; |
948 | ||
1da177e4 LT |
949 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
950 | ||
bfc4b089 ON |
951 | if (signal_group_exit(sig)) |
952 | exit_code = sig->group_exit_code; | |
1da177e4 | 953 | else if (!thread_group_empty(current)) { |
1da177e4 | 954 | struct sighand_struct *const sighand = current->sighand; |
a0be55de | 955 | |
1da177e4 | 956 | spin_lock_irq(&sighand->siglock); |
ed5d2cac | 957 | if (signal_group_exit(sig)) |
1da177e4 LT |
958 | /* Another thread got here before we took the lock. */ |
959 | exit_code = sig->group_exit_code; | |
960 | else { | |
1da177e4 | 961 | sig->group_exit_code = exit_code; |
ed5d2cac | 962 | sig->flags = SIGNAL_GROUP_EXIT; |
1da177e4 LT |
963 | zap_other_threads(current); |
964 | } | |
965 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
966 | } |
967 | ||
968 | do_exit(exit_code); | |
969 | /* NOTREACHED */ | |
970 | } | |
971 | ||
972 | /* | |
973 | * this kills every thread in the thread group. Note that any externally | |
974 | * wait4()-ing process will get the correct exit code - even if this | |
975 | * thread is not the thread group leader. | |
976 | */ | |
754fe8d2 | 977 | SYSCALL_DEFINE1(exit_group, int, error_code) |
1da177e4 LT |
978 | { |
979 | do_group_exit((error_code & 0xff) << 8); | |
2ed7c03e HC |
980 | /* NOTREACHED */ |
981 | return 0; | |
1da177e4 LT |
982 | } |
983 | ||
67d7ddde AV |
984 | struct waitid_info { |
985 | pid_t pid; | |
986 | uid_t uid; | |
987 | int status; | |
988 | int cause; | |
989 | }; | |
990 | ||
9e8ae01d ON |
991 | struct wait_opts { |
992 | enum pid_type wo_type; | |
9e8ae01d | 993 | int wo_flags; |
e1eb1ebc | 994 | struct pid *wo_pid; |
9e8ae01d | 995 | |
67d7ddde | 996 | struct waitid_info *wo_info; |
359566fa | 997 | int wo_stat; |
ce72a16f | 998 | struct rusage *wo_rusage; |
9e8ae01d | 999 | |
ac6424b9 | 1000 | wait_queue_entry_t child_wait; |
9e8ae01d ON |
1001 | int notask_error; |
1002 | }; | |
1003 | ||
989264f4 ON |
1004 | static inline |
1005 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | |
161550d7 | 1006 | { |
989264f4 ON |
1007 | if (type != PIDTYPE_PID) |
1008 | task = task->group_leader; | |
1009 | return task->pids[type].pid; | |
161550d7 EB |
1010 | } |
1011 | ||
989264f4 | 1012 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 1013 | { |
5c01ba49 ON |
1014 | return wo->wo_type == PIDTYPE_MAX || |
1015 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
1016 | } | |
1da177e4 | 1017 | |
bf959931 ON |
1018 | static int |
1019 | eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) | |
5c01ba49 ON |
1020 | { |
1021 | if (!eligible_pid(wo, p)) | |
1022 | return 0; | |
bf959931 ON |
1023 | |
1024 | /* | |
1025 | * Wait for all children (clone and not) if __WALL is set or | |
1026 | * if it is traced by us. | |
1027 | */ | |
1028 | if (ptrace || (wo->wo_flags & __WALL)) | |
1029 | return 1; | |
1030 | ||
1031 | /* | |
1032 | * Otherwise, wait for clone children *only* if __WCLONE is set; | |
1033 | * otherwise, wait for non-clone children *only*. | |
1034 | * | |
1035 | * Note: a "clone" child here is one that reports to its parent | |
1036 | * using a signal other than SIGCHLD, or a non-leader thread which | |
1037 | * we can only see if it is traced by us. | |
1038 | */ | |
1039 | if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) | |
1da177e4 | 1040 | return 0; |
1da177e4 | 1041 | |
14dd0b81 | 1042 | return 1; |
1da177e4 LT |
1043 | } |
1044 | ||
1da177e4 LT |
1045 | /* |
1046 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
1047 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1048 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1049 | * released the lock and the system call should return. | |
1050 | */ | |
9e8ae01d | 1051 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 1052 | { |
67d7ddde | 1053 | int state, status; |
6c5f3e7b | 1054 | pid_t pid = task_pid_vnr(p); |
43e13cc1 | 1055 | uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
67d7ddde | 1056 | struct waitid_info *infop; |
1da177e4 | 1057 | |
9e8ae01d | 1058 | if (!likely(wo->wo_flags & WEXITED)) |
98abed02 RM |
1059 | return 0; |
1060 | ||
9e8ae01d | 1061 | if (unlikely(wo->wo_flags & WNOWAIT)) { |
76d9871e | 1062 | status = p->exit_code; |
1da177e4 LT |
1063 | get_task_struct(p); |
1064 | read_unlock(&tasklist_lock); | |
1029a2b5 | 1065 | sched_annotate_sleep(); |
e61a2502 AV |
1066 | if (wo->wo_rusage) |
1067 | getrusage(p, RUSAGE_BOTH, wo->wo_rusage); | |
bb380ec3 | 1068 | put_task_struct(p); |
76d9871e | 1069 | goto out_info; |
1da177e4 | 1070 | } |
1da177e4 | 1071 | /* |
abd50b39 | 1072 | * Move the task's state to DEAD/TRACE, only one thread can do this. |
1da177e4 | 1073 | */ |
f6507f83 ON |
1074 | state = (ptrace_reparented(p) && thread_group_leader(p)) ? |
1075 | EXIT_TRACE : EXIT_DEAD; | |
abd50b39 | 1076 | if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) |
1da177e4 | 1077 | return 0; |
986094df ON |
1078 | /* |
1079 | * We own this thread, nobody else can reap it. | |
1080 | */ | |
1081 | read_unlock(&tasklist_lock); | |
1082 | sched_annotate_sleep(); | |
f6507f83 | 1083 | |
befca967 | 1084 | /* |
f6507f83 | 1085 | * Check thread_group_leader() to exclude the traced sub-threads. |
befca967 | 1086 | */ |
f6507f83 | 1087 | if (state == EXIT_DEAD && thread_group_leader(p)) { |
f953ccd0 ON |
1088 | struct signal_struct *sig = p->signal; |
1089 | struct signal_struct *psig = current->signal; | |
1f10206c | 1090 | unsigned long maxrss; |
5613fda9 | 1091 | u64 tgutime, tgstime; |
3795e161 | 1092 | |
1da177e4 LT |
1093 | /* |
1094 | * The resource counters for the group leader are in its | |
1095 | * own task_struct. Those for dead threads in the group | |
1096 | * are in its signal_struct, as are those for the child | |
1097 | * processes it has previously reaped. All these | |
1098 | * accumulate in the parent's signal_struct c* fields. | |
1099 | * | |
1100 | * We don't bother to take a lock here to protect these | |
f953ccd0 ON |
1101 | * p->signal fields because the whole thread group is dead |
1102 | * and nobody can change them. | |
1103 | * | |
1104 | * psig->stats_lock also protects us from our sub-theads | |
1105 | * which can reap other children at the same time. Until | |
1106 | * we change k_getrusage()-like users to rely on this lock | |
1107 | * we have to take ->siglock as well. | |
0cf55e1e | 1108 | * |
a0be55de IA |
1109 | * We use thread_group_cputime_adjusted() to get times for |
1110 | * the thread group, which consolidates times for all threads | |
1111 | * in the group including the group leader. | |
1da177e4 | 1112 | */ |
e80d0a1a | 1113 | thread_group_cputime_adjusted(p, &tgutime, &tgstime); |
f953ccd0 | 1114 | spin_lock_irq(¤t->sighand->siglock); |
e78c3496 | 1115 | write_seqlock(&psig->stats_lock); |
64861634 MS |
1116 | psig->cutime += tgutime + sig->cutime; |
1117 | psig->cstime += tgstime + sig->cstime; | |
6fac4829 | 1118 | psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; |
3795e161 JJ |
1119 | psig->cmin_flt += |
1120 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1121 | psig->cmaj_flt += | |
1122 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1123 | psig->cnvcsw += | |
1124 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1125 | psig->cnivcsw += | |
1126 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
6eaeeaba ED |
1127 | psig->cinblock += |
1128 | task_io_get_inblock(p) + | |
1129 | sig->inblock + sig->cinblock; | |
1130 | psig->coublock += | |
1131 | task_io_get_oublock(p) + | |
1132 | sig->oublock + sig->coublock; | |
1f10206c JP |
1133 | maxrss = max(sig->maxrss, sig->cmaxrss); |
1134 | if (psig->cmaxrss < maxrss) | |
1135 | psig->cmaxrss = maxrss; | |
5995477a AR |
1136 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1137 | task_io_accounting_add(&psig->ioac, &sig->ioac); | |
e78c3496 | 1138 | write_sequnlock(&psig->stats_lock); |
f953ccd0 | 1139 | spin_unlock_irq(¤t->sighand->siglock); |
1da177e4 LT |
1140 | } |
1141 | ||
ce72a16f AV |
1142 | if (wo->wo_rusage) |
1143 | getrusage(p, RUSAGE_BOTH, wo->wo_rusage); | |
1da177e4 LT |
1144 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1145 | ? p->signal->group_exit_code : p->exit_code; | |
359566fa | 1146 | wo->wo_stat = status; |
2f4e6e2a | 1147 | |
b4360690 | 1148 | if (state == EXIT_TRACE) { |
1da177e4 | 1149 | write_lock_irq(&tasklist_lock); |
2f4e6e2a ON |
1150 | /* We dropped tasklist, ptracer could die and untrace */ |
1151 | ptrace_unlink(p); | |
b4360690 ON |
1152 | |
1153 | /* If parent wants a zombie, don't release it now */ | |
1154 | state = EXIT_ZOMBIE; | |
1155 | if (do_notify_parent(p, p->exit_signal)) | |
1156 | state = EXIT_DEAD; | |
abd50b39 | 1157 | p->exit_state = state; |
1da177e4 LT |
1158 | write_unlock_irq(&tasklist_lock); |
1159 | } | |
abd50b39 | 1160 | if (state == EXIT_DEAD) |
1da177e4 | 1161 | release_task(p); |
2f4e6e2a | 1162 | |
76d9871e AV |
1163 | out_info: |
1164 | infop = wo->wo_info; | |
1165 | if (infop) { | |
1166 | if ((status & 0x7f) == 0) { | |
1167 | infop->cause = CLD_EXITED; | |
1168 | infop->status = status >> 8; | |
1169 | } else { | |
1170 | infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1171 | infop->status = status & 0x7f; | |
1172 | } | |
1173 | infop->pid = pid; | |
1174 | infop->uid = uid; | |
1175 | } | |
1176 | ||
67d7ddde | 1177 | return pid; |
1da177e4 LT |
1178 | } |
1179 | ||
90bc8d8b ON |
1180 | static int *task_stopped_code(struct task_struct *p, bool ptrace) |
1181 | { | |
1182 | if (ptrace) { | |
570ac933 | 1183 | if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) |
90bc8d8b ON |
1184 | return &p->exit_code; |
1185 | } else { | |
1186 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | |
1187 | return &p->signal->group_exit_code; | |
1188 | } | |
1189 | return NULL; | |
1190 | } | |
1191 | ||
19e27463 TH |
1192 | /** |
1193 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | |
1194 | * @wo: wait options | |
1195 | * @ptrace: is the wait for ptrace | |
1196 | * @p: task to wait for | |
1197 | * | |
1198 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | |
1199 | * | |
1200 | * CONTEXT: | |
1201 | * read_lock(&tasklist_lock), which is released if return value is | |
1202 | * non-zero. Also, grabs and releases @p->sighand->siglock. | |
1203 | * | |
1204 | * RETURNS: | |
1205 | * 0 if wait condition didn't exist and search for other wait conditions | |
1206 | * should continue. Non-zero return, -errno on failure and @p's pid on | |
1207 | * success, implies that tasklist_lock is released and wait condition | |
1208 | * search should terminate. | |
1da177e4 | 1209 | */ |
9e8ae01d ON |
1210 | static int wait_task_stopped(struct wait_opts *wo, |
1211 | int ptrace, struct task_struct *p) | |
1da177e4 | 1212 | { |
67d7ddde AV |
1213 | struct waitid_info *infop; |
1214 | int exit_code, *p_code, why; | |
ee7c82da | 1215 | uid_t uid = 0; /* unneeded, required by compiler */ |
c8950783 | 1216 | pid_t pid; |
1da177e4 | 1217 | |
47918025 ON |
1218 | /* |
1219 | * Traditionally we see ptrace'd stopped tasks regardless of options. | |
1220 | */ | |
9e8ae01d | 1221 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) |
98abed02 RM |
1222 | return 0; |
1223 | ||
19e27463 TH |
1224 | if (!task_stopped_code(p, ptrace)) |
1225 | return 0; | |
1226 | ||
ee7c82da ON |
1227 | exit_code = 0; |
1228 | spin_lock_irq(&p->sighand->siglock); | |
1229 | ||
90bc8d8b ON |
1230 | p_code = task_stopped_code(p, ptrace); |
1231 | if (unlikely(!p_code)) | |
ee7c82da ON |
1232 | goto unlock_sig; |
1233 | ||
90bc8d8b | 1234 | exit_code = *p_code; |
ee7c82da ON |
1235 | if (!exit_code) |
1236 | goto unlock_sig; | |
1237 | ||
9e8ae01d | 1238 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
90bc8d8b | 1239 | *p_code = 0; |
ee7c82da | 1240 | |
8ca937a6 | 1241 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
ee7c82da ON |
1242 | unlock_sig: |
1243 | spin_unlock_irq(&p->sighand->siglock); | |
1244 | if (!exit_code) | |
1da177e4 LT |
1245 | return 0; |
1246 | ||
1247 | /* | |
1248 | * Now we are pretty sure this task is interesting. | |
1249 | * Make sure it doesn't get reaped out from under us while we | |
1250 | * give up the lock and then examine it below. We don't want to | |
1251 | * keep holding onto the tasklist_lock while we call getrusage and | |
1252 | * possibly take page faults for user memory. | |
1253 | */ | |
1254 | get_task_struct(p); | |
6c5f3e7b | 1255 | pid = task_pid_vnr(p); |
f470021a | 1256 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1da177e4 | 1257 | read_unlock(&tasklist_lock); |
1029a2b5 | 1258 | sched_annotate_sleep(); |
e61a2502 AV |
1259 | if (wo->wo_rusage) |
1260 | getrusage(p, RUSAGE_BOTH, wo->wo_rusage); | |
bb380ec3 | 1261 | put_task_struct(p); |
1da177e4 | 1262 | |
bb380ec3 AV |
1263 | if (likely(!(wo->wo_flags & WNOWAIT))) |
1264 | wo->wo_stat = (exit_code << 8) | 0x7f; | |
1da177e4 | 1265 | |
9e8ae01d | 1266 | infop = wo->wo_info; |
67d7ddde AV |
1267 | if (infop) { |
1268 | infop->cause = why; | |
1269 | infop->status = exit_code; | |
1270 | infop->pid = pid; | |
1271 | infop->uid = uid; | |
1272 | } | |
67d7ddde | 1273 | return pid; |
1da177e4 LT |
1274 | } |
1275 | ||
1276 | /* | |
1277 | * Handle do_wait work for one task in a live, non-stopped state. | |
1278 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1279 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1280 | * released the lock and the system call should return. | |
1281 | */ | |
9e8ae01d | 1282 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 1283 | { |
bb380ec3 | 1284 | struct waitid_info *infop; |
1da177e4 LT |
1285 | pid_t pid; |
1286 | uid_t uid; | |
1287 | ||
9e8ae01d | 1288 | if (!unlikely(wo->wo_flags & WCONTINUED)) |
98abed02 RM |
1289 | return 0; |
1290 | ||
1da177e4 LT |
1291 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1292 | return 0; | |
1293 | ||
1294 | spin_lock_irq(&p->sighand->siglock); | |
1295 | /* Re-check with the lock held. */ | |
1296 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1297 | spin_unlock_irq(&p->sighand->siglock); | |
1298 | return 0; | |
1299 | } | |
9e8ae01d | 1300 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1da177e4 | 1301 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
8ca937a6 | 1302 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
1da177e4 LT |
1303 | spin_unlock_irq(&p->sighand->siglock); |
1304 | ||
6c5f3e7b | 1305 | pid = task_pid_vnr(p); |
1da177e4 LT |
1306 | get_task_struct(p); |
1307 | read_unlock(&tasklist_lock); | |
1029a2b5 | 1308 | sched_annotate_sleep(); |
e61a2502 AV |
1309 | if (wo->wo_rusage) |
1310 | getrusage(p, RUSAGE_BOTH, wo->wo_rusage); | |
bb380ec3 | 1311 | put_task_struct(p); |
1da177e4 | 1312 | |
bb380ec3 AV |
1313 | infop = wo->wo_info; |
1314 | if (!infop) { | |
359566fa | 1315 | wo->wo_stat = 0xffff; |
1da177e4 | 1316 | } else { |
bb380ec3 AV |
1317 | infop->cause = CLD_CONTINUED; |
1318 | infop->pid = pid; | |
1319 | infop->uid = uid; | |
1320 | infop->status = SIGCONT; | |
1da177e4 | 1321 | } |
bb380ec3 | 1322 | return pid; |
1da177e4 LT |
1323 | } |
1324 | ||
98abed02 RM |
1325 | /* |
1326 | * Consider @p for a wait by @parent. | |
1327 | * | |
9e8ae01d | 1328 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1329 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1330 | * Returns zero if the search for a child should continue; | |
9e8ae01d | 1331 | * then ->notask_error is 0 if @p is an eligible child, |
3a2f5a59 | 1332 | * or still -ECHILD. |
98abed02 | 1333 | */ |
b6e763f0 ON |
1334 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1335 | struct task_struct *p) | |
98abed02 | 1336 | { |
3245d6ac ON |
1337 | /* |
1338 | * We can race with wait_task_zombie() from another thread. | |
1339 | * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition | |
1340 | * can't confuse the checks below. | |
1341 | */ | |
1342 | int exit_state = ACCESS_ONCE(p->exit_state); | |
b3ab0316 ON |
1343 | int ret; |
1344 | ||
3245d6ac | 1345 | if (unlikely(exit_state == EXIT_DEAD)) |
b3ab0316 ON |
1346 | return 0; |
1347 | ||
bf959931 | 1348 | ret = eligible_child(wo, ptrace, p); |
14dd0b81 | 1349 | if (!ret) |
98abed02 RM |
1350 | return ret; |
1351 | ||
3245d6ac | 1352 | if (unlikely(exit_state == EXIT_TRACE)) { |
50b8d257 | 1353 | /* |
abd50b39 ON |
1354 | * ptrace == 0 means we are the natural parent. In this case |
1355 | * we should clear notask_error, debugger will notify us. | |
50b8d257 | 1356 | */ |
abd50b39 | 1357 | if (likely(!ptrace)) |
50b8d257 | 1358 | wo->notask_error = 0; |
823b018e | 1359 | return 0; |
50b8d257 | 1360 | } |
823b018e | 1361 | |
377d75da ON |
1362 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1363 | /* | |
1364 | * If it is traced by its real parent's group, just pretend | |
1365 | * the caller is ptrace_do_wait() and reap this child if it | |
1366 | * is zombie. | |
1367 | * | |
1368 | * This also hides group stop state from real parent; otherwise | |
1369 | * a single stop can be reported twice as group and ptrace stop. | |
1370 | * If a ptracer wants to distinguish these two events for its | |
1371 | * own children it should create a separate process which takes | |
1372 | * the role of real parent. | |
1373 | */ | |
1374 | if (!ptrace_reparented(p)) | |
1375 | ptrace = 1; | |
1376 | } | |
1377 | ||
45cb24a1 | 1378 | /* slay zombie? */ |
3245d6ac | 1379 | if (exit_state == EXIT_ZOMBIE) { |
9b84cca2 | 1380 | /* we don't reap group leaders with subthreads */ |
7c733eb3 ON |
1381 | if (!delay_group_leader(p)) { |
1382 | /* | |
1383 | * A zombie ptracee is only visible to its ptracer. | |
1384 | * Notification and reaping will be cascaded to the | |
1385 | * real parent when the ptracer detaches. | |
1386 | */ | |
1387 | if (unlikely(ptrace) || likely(!p->ptrace)) | |
1388 | return wait_task_zombie(wo, p); | |
1389 | } | |
98abed02 | 1390 | |
f470021a | 1391 | /* |
9b84cca2 TH |
1392 | * Allow access to stopped/continued state via zombie by |
1393 | * falling through. Clearing of notask_error is complex. | |
1394 | * | |
1395 | * When !@ptrace: | |
1396 | * | |
1397 | * If WEXITED is set, notask_error should naturally be | |
1398 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, | |
1399 | * so, if there are live subthreads, there are events to | |
1400 | * wait for. If all subthreads are dead, it's still safe | |
1401 | * to clear - this function will be called again in finite | |
1402 | * amount time once all the subthreads are released and | |
1403 | * will then return without clearing. | |
1404 | * | |
1405 | * When @ptrace: | |
1406 | * | |
1407 | * Stopped state is per-task and thus can't change once the | |
1408 | * target task dies. Only continued and exited can happen. | |
1409 | * Clear notask_error if WCONTINUED | WEXITED. | |
1410 | */ | |
1411 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | |
1412 | wo->notask_error = 0; | |
1413 | } else { | |
1414 | /* | |
1415 | * @p is alive and it's gonna stop, continue or exit, so | |
1416 | * there always is something to wait for. | |
f470021a | 1417 | */ |
9e8ae01d | 1418 | wo->notask_error = 0; |
f470021a RM |
1419 | } |
1420 | ||
98abed02 | 1421 | /* |
45cb24a1 TH |
1422 | * Wait for stopped. Depending on @ptrace, different stopped state |
1423 | * is used and the two don't interact with each other. | |
98abed02 | 1424 | */ |
19e27463 TH |
1425 | ret = wait_task_stopped(wo, ptrace, p); |
1426 | if (ret) | |
1427 | return ret; | |
98abed02 RM |
1428 | |
1429 | /* | |
45cb24a1 TH |
1430 | * Wait for continued. There's only one continued state and the |
1431 | * ptracer can consume it which can confuse the real parent. Don't | |
1432 | * use WCONTINUED from ptracer. You don't need or want it. | |
98abed02 | 1433 | */ |
9e8ae01d | 1434 | return wait_task_continued(wo, p); |
98abed02 RM |
1435 | } |
1436 | ||
1437 | /* | |
1438 | * Do the work of do_wait() for one thread in the group, @tsk. | |
1439 | * | |
9e8ae01d | 1440 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1441 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1442 | * Returns zero if the search for a child should continue; then | |
9e8ae01d | 1443 | * ->notask_error is 0 if there were any eligible children, |
3a2f5a59 | 1444 | * or still -ECHILD. |
98abed02 | 1445 | */ |
9e8ae01d | 1446 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1447 | { |
1448 | struct task_struct *p; | |
1449 | ||
1450 | list_for_each_entry(p, &tsk->children, sibling) { | |
9cd80bbb | 1451 | int ret = wait_consider_task(wo, 0, p); |
a0be55de | 1452 | |
9cd80bbb ON |
1453 | if (ret) |
1454 | return ret; | |
98abed02 RM |
1455 | } |
1456 | ||
1457 | return 0; | |
1458 | } | |
1459 | ||
9e8ae01d | 1460 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1461 | { |
1462 | struct task_struct *p; | |
1463 | ||
f470021a | 1464 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
b6e763f0 | 1465 | int ret = wait_consider_task(wo, 1, p); |
a0be55de | 1466 | |
f470021a | 1467 | if (ret) |
98abed02 | 1468 | return ret; |
98abed02 RM |
1469 | } |
1470 | ||
1471 | return 0; | |
1472 | } | |
1473 | ||
ac6424b9 | 1474 | static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, |
0b7570e7 ON |
1475 | int sync, void *key) |
1476 | { | |
1477 | struct wait_opts *wo = container_of(wait, struct wait_opts, | |
1478 | child_wait); | |
1479 | struct task_struct *p = key; | |
1480 | ||
5c01ba49 | 1481 | if (!eligible_pid(wo, p)) |
0b7570e7 ON |
1482 | return 0; |
1483 | ||
b4fe5182 ON |
1484 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) |
1485 | return 0; | |
1486 | ||
0b7570e7 ON |
1487 | return default_wake_function(wait, mode, sync, key); |
1488 | } | |
1489 | ||
a7f0765e ON |
1490 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) |
1491 | { | |
0b7570e7 ON |
1492 | __wake_up_sync_key(&parent->signal->wait_chldexit, |
1493 | TASK_INTERRUPTIBLE, 1, p); | |
a7f0765e ON |
1494 | } |
1495 | ||
9e8ae01d | 1496 | static long do_wait(struct wait_opts *wo) |
1da177e4 | 1497 | { |
1da177e4 | 1498 | struct task_struct *tsk; |
98abed02 | 1499 | int retval; |
1da177e4 | 1500 | |
9e8ae01d | 1501 | trace_sched_process_wait(wo->wo_pid); |
0a16b607 | 1502 | |
0b7570e7 ON |
1503 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1504 | wo->child_wait.private = current; | |
1505 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | |
1da177e4 | 1506 | repeat: |
98abed02 | 1507 | /* |
3da56d16 | 1508 | * If there is nothing that can match our criteria, just get out. |
9e8ae01d ON |
1509 | * We will clear ->notask_error to zero if we see any child that |
1510 | * might later match our criteria, even if we are not able to reap | |
1511 | * it yet. | |
98abed02 | 1512 | */ |
64a16caf | 1513 | wo->notask_error = -ECHILD; |
9e8ae01d ON |
1514 | if ((wo->wo_type < PIDTYPE_MAX) && |
1515 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | |
64a16caf | 1516 | goto notask; |
161550d7 | 1517 | |
f95d39d1 | 1518 | set_current_state(TASK_INTERRUPTIBLE); |
1da177e4 LT |
1519 | read_lock(&tasklist_lock); |
1520 | tsk = current; | |
1521 | do { | |
64a16caf ON |
1522 | retval = do_wait_thread(wo, tsk); |
1523 | if (retval) | |
1524 | goto end; | |
9e8ae01d | 1525 | |
64a16caf ON |
1526 | retval = ptrace_do_wait(wo, tsk); |
1527 | if (retval) | |
98abed02 | 1528 | goto end; |
98abed02 | 1529 | |
9e8ae01d | 1530 | if (wo->wo_flags & __WNOTHREAD) |
1da177e4 | 1531 | break; |
a3f6dfb7 | 1532 | } while_each_thread(current, tsk); |
1da177e4 | 1533 | read_unlock(&tasklist_lock); |
f2cc3eb1 | 1534 | |
64a16caf | 1535 | notask: |
9e8ae01d ON |
1536 | retval = wo->notask_error; |
1537 | if (!retval && !(wo->wo_flags & WNOHANG)) { | |
1da177e4 | 1538 | retval = -ERESTARTSYS; |
98abed02 RM |
1539 | if (!signal_pending(current)) { |
1540 | schedule(); | |
1541 | goto repeat; | |
1542 | } | |
1da177e4 | 1543 | } |
1da177e4 | 1544 | end: |
f95d39d1 | 1545 | __set_current_state(TASK_RUNNING); |
0b7570e7 | 1546 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1da177e4 LT |
1547 | return retval; |
1548 | } | |
1549 | ||
67d7ddde | 1550 | static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, |
ce72a16f | 1551 | int options, struct rusage *ru) |
1da177e4 | 1552 | { |
9e8ae01d | 1553 | struct wait_opts wo; |
161550d7 EB |
1554 | struct pid *pid = NULL; |
1555 | enum pid_type type; | |
1da177e4 LT |
1556 | long ret; |
1557 | ||
91c4e8ea ON |
1558 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| |
1559 | __WNOTHREAD|__WCLONE|__WALL)) | |
1da177e4 LT |
1560 | return -EINVAL; |
1561 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1562 | return -EINVAL; | |
1563 | ||
1564 | switch (which) { | |
1565 | case P_ALL: | |
161550d7 | 1566 | type = PIDTYPE_MAX; |
1da177e4 LT |
1567 | break; |
1568 | case P_PID: | |
161550d7 EB |
1569 | type = PIDTYPE_PID; |
1570 | if (upid <= 0) | |
1da177e4 LT |
1571 | return -EINVAL; |
1572 | break; | |
1573 | case P_PGID: | |
161550d7 EB |
1574 | type = PIDTYPE_PGID; |
1575 | if (upid <= 0) | |
1da177e4 | 1576 | return -EINVAL; |
1da177e4 LT |
1577 | break; |
1578 | default: | |
1579 | return -EINVAL; | |
1580 | } | |
1581 | ||
161550d7 EB |
1582 | if (type < PIDTYPE_MAX) |
1583 | pid = find_get_pid(upid); | |
9e8ae01d ON |
1584 | |
1585 | wo.wo_type = type; | |
1586 | wo.wo_pid = pid; | |
1587 | wo.wo_flags = options; | |
1588 | wo.wo_info = infop; | |
9e8ae01d ON |
1589 | wo.wo_rusage = ru; |
1590 | ret = do_wait(&wo); | |
dfe16dfa | 1591 | |
161550d7 | 1592 | put_pid(pid); |
1da177e4 LT |
1593 | return ret; |
1594 | } | |
1595 | ||
ce72a16f AV |
1596 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, |
1597 | infop, int, options, struct rusage __user *, ru) | |
1598 | { | |
1599 | struct rusage r; | |
67d7ddde AV |
1600 | struct waitid_info info = {.status = 0}; |
1601 | long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); | |
634a8160 | 1602 | int signo = 0; |
6c85501f | 1603 | |
634a8160 AV |
1604 | if (err > 0) { |
1605 | signo = SIGCHLD; | |
1606 | err = 0; | |
ce72a16f AV |
1607 | if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) |
1608 | return -EFAULT; | |
1609 | } | |
67d7ddde AV |
1610 | if (!infop) |
1611 | return err; | |
1612 | ||
96ca579a | 1613 | if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop))) |
1c9fec47 | 1614 | return -EFAULT; |
96ca579a | 1615 | |
4c48abe9 | 1616 | user_access_begin(); |
634a8160 | 1617 | unsafe_put_user(signo, &infop->si_signo, Efault); |
4c48abe9 | 1618 | unsafe_put_user(0, &infop->si_errno, Efault); |
cc731525 | 1619 | unsafe_put_user(info.cause, &infop->si_code, Efault); |
4c48abe9 AV |
1620 | unsafe_put_user(info.pid, &infop->si_pid, Efault); |
1621 | unsafe_put_user(info.uid, &infop->si_uid, Efault); | |
1622 | unsafe_put_user(info.status, &infop->si_status, Efault); | |
1623 | user_access_end(); | |
ce72a16f | 1624 | return err; |
4c48abe9 AV |
1625 | Efault: |
1626 | user_access_end(); | |
1627 | return -EFAULT; | |
ce72a16f AV |
1628 | } |
1629 | ||
92ebce5a AV |
1630 | long kernel_wait4(pid_t upid, int __user *stat_addr, int options, |
1631 | struct rusage *ru) | |
1da177e4 | 1632 | { |
9e8ae01d | 1633 | struct wait_opts wo; |
161550d7 EB |
1634 | struct pid *pid = NULL; |
1635 | enum pid_type type; | |
1da177e4 LT |
1636 | long ret; |
1637 | ||
1638 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1639 | __WNOTHREAD|__WCLONE|__WALL)) | |
1640 | return -EINVAL; | |
161550d7 | 1641 | |
dd83c161 | 1642 | /* -INT_MIN is not defined */ |
1643 | if (upid == INT_MIN) | |
1644 | return -ESRCH; | |
1645 | ||
161550d7 EB |
1646 | if (upid == -1) |
1647 | type = PIDTYPE_MAX; | |
1648 | else if (upid < 0) { | |
1649 | type = PIDTYPE_PGID; | |
1650 | pid = find_get_pid(-upid); | |
1651 | } else if (upid == 0) { | |
1652 | type = PIDTYPE_PGID; | |
2ae448ef | 1653 | pid = get_task_pid(current, PIDTYPE_PGID); |
161550d7 EB |
1654 | } else /* upid > 0 */ { |
1655 | type = PIDTYPE_PID; | |
1656 | pid = find_get_pid(upid); | |
1657 | } | |
1658 | ||
9e8ae01d ON |
1659 | wo.wo_type = type; |
1660 | wo.wo_pid = pid; | |
1661 | wo.wo_flags = options | WEXITED; | |
1662 | wo.wo_info = NULL; | |
359566fa | 1663 | wo.wo_stat = 0; |
9e8ae01d ON |
1664 | wo.wo_rusage = ru; |
1665 | ret = do_wait(&wo); | |
161550d7 | 1666 | put_pid(pid); |
359566fa AV |
1667 | if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) |
1668 | ret = -EFAULT; | |
1da177e4 | 1669 | |
1da177e4 LT |
1670 | return ret; |
1671 | } | |
1672 | ||
ce72a16f AV |
1673 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, |
1674 | int, options, struct rusage __user *, ru) | |
1675 | { | |
1676 | struct rusage r; | |
1677 | long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); | |
1678 | ||
1679 | if (err > 0) { | |
1680 | if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) | |
1681 | return -EFAULT; | |
1682 | } | |
1683 | return err; | |
1684 | } | |
1685 | ||
1da177e4 LT |
1686 | #ifdef __ARCH_WANT_SYS_WAITPID |
1687 | ||
1688 | /* | |
1689 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1690 | * implemented by calling sys_wait4() from libc.a. | |
1691 | */ | |
17da2bd9 | 1692 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) |
1da177e4 LT |
1693 | { |
1694 | return sys_wait4(pid, stat_addr, options, NULL); | |
1695 | } | |
1696 | ||
1697 | #endif | |
7e95a225 AV |
1698 | |
1699 | #ifdef CONFIG_COMPAT | |
1700 | COMPAT_SYSCALL_DEFINE4(wait4, | |
1701 | compat_pid_t, pid, | |
1702 | compat_uint_t __user *, stat_addr, | |
1703 | int, options, | |
1704 | struct compat_rusage __user *, ru) | |
1705 | { | |
ce72a16f AV |
1706 | struct rusage r; |
1707 | long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); | |
1708 | if (err > 0) { | |
1709 | if (ru && put_compat_rusage(&r, ru)) | |
1710 | return -EFAULT; | |
7e95a225 | 1711 | } |
ce72a16f | 1712 | return err; |
7e95a225 AV |
1713 | } |
1714 | ||
1715 | COMPAT_SYSCALL_DEFINE5(waitid, | |
1716 | int, which, compat_pid_t, pid, | |
1717 | struct compat_siginfo __user *, infop, int, options, | |
1718 | struct compat_rusage __user *, uru) | |
1719 | { | |
7e95a225 | 1720 | struct rusage ru; |
67d7ddde AV |
1721 | struct waitid_info info = {.status = 0}; |
1722 | long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); | |
634a8160 AV |
1723 | int signo = 0; |
1724 | if (err > 0) { | |
1725 | signo = SIGCHLD; | |
1726 | err = 0; | |
6c85501f AV |
1727 | if (uru) { |
1728 | /* kernel_waitid() overwrites everything in ru */ | |
1729 | if (COMPAT_USE_64BIT_TIME) | |
1730 | err = copy_to_user(uru, &ru, sizeof(ru)); | |
1731 | else | |
1732 | err = put_compat_rusage(&ru, uru); | |
1733 | if (err) | |
1734 | return -EFAULT; | |
1735 | } | |
7e95a225 AV |
1736 | } |
1737 | ||
4c48abe9 AV |
1738 | if (!infop) |
1739 | return err; | |
1740 | ||
96ca579a | 1741 | if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop))) |
1c9fec47 | 1742 | return -EFAULT; |
96ca579a | 1743 | |
4c48abe9 | 1744 | user_access_begin(); |
634a8160 | 1745 | unsafe_put_user(signo, &infop->si_signo, Efault); |
4c48abe9 | 1746 | unsafe_put_user(0, &infop->si_errno, Efault); |
cc731525 | 1747 | unsafe_put_user(info.cause, &infop->si_code, Efault); |
4c48abe9 AV |
1748 | unsafe_put_user(info.pid, &infop->si_pid, Efault); |
1749 | unsafe_put_user(info.uid, &infop->si_uid, Efault); | |
1750 | unsafe_put_user(info.status, &infop->si_status, Efault); | |
1751 | user_access_end(); | |
67d7ddde | 1752 | return err; |
4c48abe9 AV |
1753 | Efault: |
1754 | user_access_end(); | |
1755 | return -EFAULT; | |
7e95a225 AV |
1756 | } |
1757 | #endif |