]>
Commit | Line | Data |
---|---|---|
6aa8b732 AK |
1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | |
3 | * | |
4 | * This module enables machines with Intel VT-x extensions to run virtual | |
5 | * machines without emulation or binary translation. | |
6 | * | |
7 | * MMU support | |
8 | * | |
9 | * Copyright (C) 2006 Qumranet, Inc. | |
9611c187 | 10 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
6aa8b732 AK |
11 | * |
12 | * Authors: | |
13 | * Yaniv Kamay <[email protected]> | |
14 | * Avi Kivity <[email protected]> | |
15 | * | |
16 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
17 | * the COPYING file in the top-level directory. | |
18 | * | |
19 | */ | |
e495606d | 20 | |
af585b92 | 21 | #include "irq.h" |
1d737c8a | 22 | #include "mmu.h" |
836a1b3c | 23 | #include "x86.h" |
6de4f3ad | 24 | #include "kvm_cache_regs.h" |
5f7dde7b | 25 | #include "cpuid.h" |
e495606d | 26 | |
edf88417 | 27 | #include <linux/kvm_host.h> |
6aa8b732 AK |
28 | #include <linux/types.h> |
29 | #include <linux/string.h> | |
6aa8b732 AK |
30 | #include <linux/mm.h> |
31 | #include <linux/highmem.h> | |
1767e931 PG |
32 | #include <linux/moduleparam.h> |
33 | #include <linux/export.h> | |
448353ca | 34 | #include <linux/swap.h> |
05da4558 | 35 | #include <linux/hugetlb.h> |
2f333bcb | 36 | #include <linux/compiler.h> |
bc6678a3 | 37 | #include <linux/srcu.h> |
5a0e3ad6 | 38 | #include <linux/slab.h> |
3f07c014 | 39 | #include <linux/sched/signal.h> |
bf998156 | 40 | #include <linux/uaccess.h> |
114df303 | 41 | #include <linux/hash.h> |
f160c7b7 | 42 | #include <linux/kern_levels.h> |
6aa8b732 | 43 | |
e495606d AK |
44 | #include <asm/page.h> |
45 | #include <asm/cmpxchg.h> | |
4e542370 | 46 | #include <asm/io.h> |
13673a90 | 47 | #include <asm/vmx.h> |
3d0c27ad | 48 | #include <asm/kvm_page_track.h> |
1261bfa3 | 49 | #include "trace.h" |
6aa8b732 | 50 | |
18552672 JR |
51 | /* |
52 | * When setting this variable to true it enables Two-Dimensional-Paging | |
53 | * where the hardware walks 2 page tables: | |
54 | * 1. the guest-virtual to guest-physical | |
55 | * 2. while doing 1. it walks guest-physical to host-physical | |
56 | * If the hardware supports that we don't need to do shadow paging. | |
57 | */ | |
2f333bcb | 58 | bool tdp_enabled = false; |
18552672 | 59 | |
8b1fe17c XG |
60 | enum { |
61 | AUDIT_PRE_PAGE_FAULT, | |
62 | AUDIT_POST_PAGE_FAULT, | |
63 | AUDIT_PRE_PTE_WRITE, | |
6903074c XG |
64 | AUDIT_POST_PTE_WRITE, |
65 | AUDIT_PRE_SYNC, | |
66 | AUDIT_POST_SYNC | |
8b1fe17c | 67 | }; |
37a7d8b0 | 68 | |
8b1fe17c | 69 | #undef MMU_DEBUG |
37a7d8b0 AK |
70 | |
71 | #ifdef MMU_DEBUG | |
fa4a2c08 PB |
72 | static bool dbg = 0; |
73 | module_param(dbg, bool, 0644); | |
37a7d8b0 AK |
74 | |
75 | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | |
76 | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | |
fa4a2c08 | 77 | #define MMU_WARN_ON(x) WARN_ON(x) |
37a7d8b0 | 78 | #else |
37a7d8b0 AK |
79 | #define pgprintk(x...) do { } while (0) |
80 | #define rmap_printk(x...) do { } while (0) | |
fa4a2c08 | 81 | #define MMU_WARN_ON(x) do { } while (0) |
d6c69ee9 | 82 | #endif |
6aa8b732 | 83 | |
957ed9ef XG |
84 | #define PTE_PREFETCH_NUM 8 |
85 | ||
00763e41 | 86 | #define PT_FIRST_AVAIL_BITS_SHIFT 10 |
6aa8b732 AK |
87 | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 |
88 | ||
6aa8b732 AK |
89 | #define PT64_LEVEL_BITS 9 |
90 | ||
91 | #define PT64_LEVEL_SHIFT(level) \ | |
d77c26fc | 92 | (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) |
6aa8b732 | 93 | |
6aa8b732 AK |
94 | #define PT64_INDEX(address, level)\ |
95 | (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | |
96 | ||
97 | ||
98 | #define PT32_LEVEL_BITS 10 | |
99 | ||
100 | #define PT32_LEVEL_SHIFT(level) \ | |
d77c26fc | 101 | (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) |
6aa8b732 | 102 | |
e04da980 JR |
103 | #define PT32_LVL_OFFSET_MASK(level) \ |
104 | (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | |
105 | * PT32_LEVEL_BITS))) - 1)) | |
6aa8b732 AK |
106 | |
107 | #define PT32_INDEX(address, level)\ | |
108 | (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | |
109 | ||
110 | ||
d0ec49d4 | 111 | #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))) |
6aa8b732 AK |
112 | #define PT64_DIR_BASE_ADDR_MASK \ |
113 | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | |
e04da980 JR |
114 | #define PT64_LVL_ADDR_MASK(level) \ |
115 | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | |
116 | * PT64_LEVEL_BITS))) - 1)) | |
117 | #define PT64_LVL_OFFSET_MASK(level) \ | |
118 | (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | |
119 | * PT64_LEVEL_BITS))) - 1)) | |
6aa8b732 AK |
120 | |
121 | #define PT32_BASE_ADDR_MASK PAGE_MASK | |
122 | #define PT32_DIR_BASE_ADDR_MASK \ | |
123 | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | |
e04da980 JR |
124 | #define PT32_LVL_ADDR_MASK(level) \ |
125 | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | |
126 | * PT32_LEVEL_BITS))) - 1)) | |
6aa8b732 | 127 | |
53166229 | 128 | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ |
d0ec49d4 | 129 | | shadow_x_mask | shadow_nx_mask | shadow_me_mask) |
6aa8b732 | 130 | |
fe135d2c AK |
131 | #define ACC_EXEC_MASK 1 |
132 | #define ACC_WRITE_MASK PT_WRITABLE_MASK | |
133 | #define ACC_USER_MASK PT_USER_MASK | |
134 | #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) | |
135 | ||
f160c7b7 JS |
136 | /* The mask for the R/X bits in EPT PTEs */ |
137 | #define PT64_EPT_READABLE_MASK 0x1ull | |
138 | #define PT64_EPT_EXECUTABLE_MASK 0x4ull | |
139 | ||
90bb6fc5 AK |
140 | #include <trace/events/kvm.h> |
141 | ||
07420171 AK |
142 | #define CREATE_TRACE_POINTS |
143 | #include "mmutrace.h" | |
144 | ||
49fde340 XG |
145 | #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) |
146 | #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) | |
1403283a | 147 | |
135f8c2b AK |
148 | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
149 | ||
220f773a TY |
150 | /* make pte_list_desc fit well in cache line */ |
151 | #define PTE_LIST_EXT 3 | |
152 | ||
53c07b18 XG |
153 | struct pte_list_desc { |
154 | u64 *sptes[PTE_LIST_EXT]; | |
155 | struct pte_list_desc *more; | |
cd4a4e53 AK |
156 | }; |
157 | ||
2d11123a AK |
158 | struct kvm_shadow_walk_iterator { |
159 | u64 addr; | |
160 | hpa_t shadow_addr; | |
2d11123a | 161 | u64 *sptep; |
dd3bfd59 | 162 | int level; |
2d11123a AK |
163 | unsigned index; |
164 | }; | |
165 | ||
166 | #define for_each_shadow_entry(_vcpu, _addr, _walker) \ | |
167 | for (shadow_walk_init(&(_walker), _vcpu, _addr); \ | |
168 | shadow_walk_okay(&(_walker)); \ | |
169 | shadow_walk_next(&(_walker))) | |
170 | ||
c2a2ac2b XG |
171 | #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ |
172 | for (shadow_walk_init(&(_walker), _vcpu, _addr); \ | |
173 | shadow_walk_okay(&(_walker)) && \ | |
174 | ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ | |
175 | __shadow_walk_next(&(_walker), spte)) | |
176 | ||
53c07b18 | 177 | static struct kmem_cache *pte_list_desc_cache; |
d3d25b04 | 178 | static struct kmem_cache *mmu_page_header_cache; |
45221ab6 | 179 | static struct percpu_counter kvm_total_used_mmu_pages; |
b5a33a75 | 180 | |
7b52345e SY |
181 | static u64 __read_mostly shadow_nx_mask; |
182 | static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ | |
183 | static u64 __read_mostly shadow_user_mask; | |
184 | static u64 __read_mostly shadow_accessed_mask; | |
185 | static u64 __read_mostly shadow_dirty_mask; | |
ce88decf | 186 | static u64 __read_mostly shadow_mmio_mask; |
dcdca5fe | 187 | static u64 __read_mostly shadow_mmio_value; |
ffb128c8 | 188 | static u64 __read_mostly shadow_present_mask; |
d0ec49d4 | 189 | static u64 __read_mostly shadow_me_mask; |
ce88decf | 190 | |
f160c7b7 | 191 | /* |
ac8d57e5 PF |
192 | * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value. |
193 | * Non-present SPTEs with shadow_acc_track_value set are in place for access | |
194 | * tracking. | |
f160c7b7 JS |
195 | */ |
196 | static u64 __read_mostly shadow_acc_track_mask; | |
197 | static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK; | |
198 | ||
199 | /* | |
200 | * The mask/shift to use for saving the original R/X bits when marking the PTE | |
201 | * as not-present for access tracking purposes. We do not save the W bit as the | |
202 | * PTEs being access tracked also need to be dirty tracked, so the W bit will be | |
203 | * restored only when a write is attempted to the page. | |
204 | */ | |
205 | static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | | |
206 | PT64_EPT_EXECUTABLE_MASK; | |
207 | static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; | |
208 | ||
ce88decf | 209 | static void mmu_spte_set(u64 *sptep, u64 spte); |
e676505a | 210 | static void mmu_free_roots(struct kvm_vcpu *vcpu); |
ce88decf | 211 | |
dcdca5fe | 212 | void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value) |
ce88decf | 213 | { |
dcdca5fe PF |
214 | BUG_ON((mmio_mask & mmio_value) != mmio_value); |
215 | shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK; | |
312b616b | 216 | shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK; |
ce88decf XG |
217 | } |
218 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); | |
219 | ||
ac8d57e5 PF |
220 | static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) |
221 | { | |
222 | return sp->role.ad_disabled; | |
223 | } | |
224 | ||
225 | static inline bool spte_ad_enabled(u64 spte) | |
226 | { | |
227 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | |
228 | return !(spte & shadow_acc_track_value); | |
229 | } | |
230 | ||
231 | static inline u64 spte_shadow_accessed_mask(u64 spte) | |
232 | { | |
233 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | |
234 | return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; | |
235 | } | |
236 | ||
237 | static inline u64 spte_shadow_dirty_mask(u64 spte) | |
238 | { | |
239 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | |
240 | return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; | |
241 | } | |
242 | ||
f160c7b7 JS |
243 | static inline bool is_access_track_spte(u64 spte) |
244 | { | |
ac8d57e5 | 245 | return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; |
f160c7b7 JS |
246 | } |
247 | ||
f2fd125d | 248 | /* |
ee3d1570 DM |
249 | * the low bit of the generation number is always presumed to be zero. |
250 | * This disables mmio caching during memslot updates. The concept is | |
251 | * similar to a seqcount but instead of retrying the access we just punt | |
252 | * and ignore the cache. | |
253 | * | |
254 | * spte bits 3-11 are used as bits 1-9 of the generation number, | |
255 | * the bits 52-61 are used as bits 10-19 of the generation number. | |
f2fd125d | 256 | */ |
ee3d1570 | 257 | #define MMIO_SPTE_GEN_LOW_SHIFT 2 |
f2fd125d XG |
258 | #define MMIO_SPTE_GEN_HIGH_SHIFT 52 |
259 | ||
ee3d1570 DM |
260 | #define MMIO_GEN_SHIFT 20 |
261 | #define MMIO_GEN_LOW_SHIFT 10 | |
262 | #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2) | |
f8f55942 | 263 | #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1) |
f2fd125d XG |
264 | |
265 | static u64 generation_mmio_spte_mask(unsigned int gen) | |
266 | { | |
267 | u64 mask; | |
268 | ||
842bb26a | 269 | WARN_ON(gen & ~MMIO_GEN_MASK); |
f2fd125d XG |
270 | |
271 | mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT; | |
272 | mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT; | |
273 | return mask; | |
274 | } | |
275 | ||
276 | static unsigned int get_mmio_spte_generation(u64 spte) | |
277 | { | |
278 | unsigned int gen; | |
279 | ||
280 | spte &= ~shadow_mmio_mask; | |
281 | ||
282 | gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK; | |
283 | gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT; | |
284 | return gen; | |
285 | } | |
286 | ||
54bf36aa | 287 | static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu) |
f8f55942 | 288 | { |
54bf36aa | 289 | return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK; |
f8f55942 XG |
290 | } |
291 | ||
54bf36aa | 292 | static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, |
f2fd125d | 293 | unsigned access) |
ce88decf | 294 | { |
54bf36aa | 295 | unsigned int gen = kvm_current_mmio_generation(vcpu); |
f8f55942 | 296 | u64 mask = generation_mmio_spte_mask(gen); |
95b0430d | 297 | |
ce88decf | 298 | access &= ACC_WRITE_MASK | ACC_USER_MASK; |
dcdca5fe | 299 | mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT; |
f2fd125d | 300 | |
f8f55942 | 301 | trace_mark_mmio_spte(sptep, gfn, access, gen); |
f2fd125d | 302 | mmu_spte_set(sptep, mask); |
ce88decf XG |
303 | } |
304 | ||
305 | static bool is_mmio_spte(u64 spte) | |
306 | { | |
dcdca5fe | 307 | return (spte & shadow_mmio_mask) == shadow_mmio_value; |
ce88decf XG |
308 | } |
309 | ||
310 | static gfn_t get_mmio_spte_gfn(u64 spte) | |
311 | { | |
842bb26a | 312 | u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; |
f2fd125d | 313 | return (spte & ~mask) >> PAGE_SHIFT; |
ce88decf XG |
314 | } |
315 | ||
316 | static unsigned get_mmio_spte_access(u64 spte) | |
317 | { | |
842bb26a | 318 | u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; |
f2fd125d | 319 | return (spte & ~mask) & ~PAGE_MASK; |
ce88decf XG |
320 | } |
321 | ||
54bf36aa | 322 | static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, |
ba049e93 | 323 | kvm_pfn_t pfn, unsigned access) |
ce88decf XG |
324 | { |
325 | if (unlikely(is_noslot_pfn(pfn))) { | |
54bf36aa | 326 | mark_mmio_spte(vcpu, sptep, gfn, access); |
ce88decf XG |
327 | return true; |
328 | } | |
329 | ||
330 | return false; | |
331 | } | |
c7addb90 | 332 | |
54bf36aa | 333 | static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) |
f8f55942 | 334 | { |
089504c0 XG |
335 | unsigned int kvm_gen, spte_gen; |
336 | ||
54bf36aa | 337 | kvm_gen = kvm_current_mmio_generation(vcpu); |
089504c0 XG |
338 | spte_gen = get_mmio_spte_generation(spte); |
339 | ||
340 | trace_check_mmio_spte(spte, kvm_gen, spte_gen); | |
341 | return likely(kvm_gen == spte_gen); | |
f8f55942 XG |
342 | } |
343 | ||
ce00053b PF |
344 | /* |
345 | * Sets the shadow PTE masks used by the MMU. | |
346 | * | |
347 | * Assumptions: | |
348 | * - Setting either @accessed_mask or @dirty_mask requires setting both | |
349 | * - At least one of @accessed_mask or @acc_track_mask must be set | |
350 | */ | |
7b52345e | 351 | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, |
f160c7b7 | 352 | u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, |
d0ec49d4 | 353 | u64 acc_track_mask, u64 me_mask) |
7b52345e | 354 | { |
ce00053b PF |
355 | BUG_ON(!dirty_mask != !accessed_mask); |
356 | BUG_ON(!accessed_mask && !acc_track_mask); | |
ac8d57e5 | 357 | BUG_ON(acc_track_mask & shadow_acc_track_value); |
312b616b | 358 | |
7b52345e SY |
359 | shadow_user_mask = user_mask; |
360 | shadow_accessed_mask = accessed_mask; | |
361 | shadow_dirty_mask = dirty_mask; | |
362 | shadow_nx_mask = nx_mask; | |
363 | shadow_x_mask = x_mask; | |
ffb128c8 | 364 | shadow_present_mask = p_mask; |
f160c7b7 | 365 | shadow_acc_track_mask = acc_track_mask; |
d0ec49d4 | 366 | shadow_me_mask = me_mask; |
7b52345e SY |
367 | } |
368 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); | |
369 | ||
f160c7b7 JS |
370 | void kvm_mmu_clear_all_pte_masks(void) |
371 | { | |
372 | shadow_user_mask = 0; | |
373 | shadow_accessed_mask = 0; | |
374 | shadow_dirty_mask = 0; | |
375 | shadow_nx_mask = 0; | |
376 | shadow_x_mask = 0; | |
377 | shadow_mmio_mask = 0; | |
378 | shadow_present_mask = 0; | |
379 | shadow_acc_track_mask = 0; | |
380 | } | |
381 | ||
6aa8b732 AK |
382 | static int is_cpuid_PSE36(void) |
383 | { | |
384 | return 1; | |
385 | } | |
386 | ||
73b1087e AK |
387 | static int is_nx(struct kvm_vcpu *vcpu) |
388 | { | |
f6801dff | 389 | return vcpu->arch.efer & EFER_NX; |
73b1087e AK |
390 | } |
391 | ||
c7addb90 AK |
392 | static int is_shadow_present_pte(u64 pte) |
393 | { | |
f160c7b7 | 394 | return (pte != 0) && !is_mmio_spte(pte); |
c7addb90 AK |
395 | } |
396 | ||
05da4558 MT |
397 | static int is_large_pte(u64 pte) |
398 | { | |
399 | return pte & PT_PAGE_SIZE_MASK; | |
400 | } | |
401 | ||
776e6633 MT |
402 | static int is_last_spte(u64 pte, int level) |
403 | { | |
404 | if (level == PT_PAGE_TABLE_LEVEL) | |
405 | return 1; | |
852e3c19 | 406 | if (is_large_pte(pte)) |
776e6633 MT |
407 | return 1; |
408 | return 0; | |
409 | } | |
410 | ||
d3e328f2 JS |
411 | static bool is_executable_pte(u64 spte) |
412 | { | |
413 | return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; | |
414 | } | |
415 | ||
ba049e93 | 416 | static kvm_pfn_t spte_to_pfn(u64 pte) |
0b49ea86 | 417 | { |
35149e21 | 418 | return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; |
0b49ea86 AK |
419 | } |
420 | ||
da928521 AK |
421 | static gfn_t pse36_gfn_delta(u32 gpte) |
422 | { | |
423 | int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; | |
424 | ||
425 | return (gpte & PT32_DIR_PSE36_MASK) << shift; | |
426 | } | |
427 | ||
603e0651 | 428 | #ifdef CONFIG_X86_64 |
d555c333 | 429 | static void __set_spte(u64 *sptep, u64 spte) |
e663ee64 | 430 | { |
b19ee2ff | 431 | WRITE_ONCE(*sptep, spte); |
e663ee64 AK |
432 | } |
433 | ||
603e0651 | 434 | static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
a9221dd5 | 435 | { |
b19ee2ff | 436 | WRITE_ONCE(*sptep, spte); |
603e0651 XG |
437 | } |
438 | ||
439 | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | |
440 | { | |
441 | return xchg(sptep, spte); | |
442 | } | |
c2a2ac2b XG |
443 | |
444 | static u64 __get_spte_lockless(u64 *sptep) | |
445 | { | |
446 | return ACCESS_ONCE(*sptep); | |
447 | } | |
a9221dd5 | 448 | #else |
603e0651 XG |
449 | union split_spte { |
450 | struct { | |
451 | u32 spte_low; | |
452 | u32 spte_high; | |
453 | }; | |
454 | u64 spte; | |
455 | }; | |
a9221dd5 | 456 | |
c2a2ac2b XG |
457 | static void count_spte_clear(u64 *sptep, u64 spte) |
458 | { | |
459 | struct kvm_mmu_page *sp = page_header(__pa(sptep)); | |
460 | ||
461 | if (is_shadow_present_pte(spte)) | |
462 | return; | |
463 | ||
464 | /* Ensure the spte is completely set before we increase the count */ | |
465 | smp_wmb(); | |
466 | sp->clear_spte_count++; | |
467 | } | |
468 | ||
603e0651 XG |
469 | static void __set_spte(u64 *sptep, u64 spte) |
470 | { | |
471 | union split_spte *ssptep, sspte; | |
a9221dd5 | 472 | |
603e0651 XG |
473 | ssptep = (union split_spte *)sptep; |
474 | sspte = (union split_spte)spte; | |
475 | ||
476 | ssptep->spte_high = sspte.spte_high; | |
477 | ||
478 | /* | |
479 | * If we map the spte from nonpresent to present, We should store | |
480 | * the high bits firstly, then set present bit, so cpu can not | |
481 | * fetch this spte while we are setting the spte. | |
482 | */ | |
483 | smp_wmb(); | |
484 | ||
b19ee2ff | 485 | WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
a9221dd5 AK |
486 | } |
487 | ||
603e0651 XG |
488 | static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
489 | { | |
490 | union split_spte *ssptep, sspte; | |
491 | ||
492 | ssptep = (union split_spte *)sptep; | |
493 | sspte = (union split_spte)spte; | |
494 | ||
b19ee2ff | 495 | WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
603e0651 XG |
496 | |
497 | /* | |
498 | * If we map the spte from present to nonpresent, we should clear | |
499 | * present bit firstly to avoid vcpu fetch the old high bits. | |
500 | */ | |
501 | smp_wmb(); | |
502 | ||
503 | ssptep->spte_high = sspte.spte_high; | |
c2a2ac2b | 504 | count_spte_clear(sptep, spte); |
603e0651 XG |
505 | } |
506 | ||
507 | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | |
508 | { | |
509 | union split_spte *ssptep, sspte, orig; | |
510 | ||
511 | ssptep = (union split_spte *)sptep; | |
512 | sspte = (union split_spte)spte; | |
513 | ||
514 | /* xchg acts as a barrier before the setting of the high bits */ | |
515 | orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); | |
41bc3186 ZJ |
516 | orig.spte_high = ssptep->spte_high; |
517 | ssptep->spte_high = sspte.spte_high; | |
c2a2ac2b | 518 | count_spte_clear(sptep, spte); |
603e0651 XG |
519 | |
520 | return orig.spte; | |
521 | } | |
c2a2ac2b XG |
522 | |
523 | /* | |
524 | * The idea using the light way get the spte on x86_32 guest is from | |
525 | * gup_get_pte(arch/x86/mm/gup.c). | |
accaefe0 XG |
526 | * |
527 | * An spte tlb flush may be pending, because kvm_set_pte_rmapp | |
528 | * coalesces them and we are running out of the MMU lock. Therefore | |
529 | * we need to protect against in-progress updates of the spte. | |
530 | * | |
531 | * Reading the spte while an update is in progress may get the old value | |
532 | * for the high part of the spte. The race is fine for a present->non-present | |
533 | * change (because the high part of the spte is ignored for non-present spte), | |
534 | * but for a present->present change we must reread the spte. | |
535 | * | |
536 | * All such changes are done in two steps (present->non-present and | |
537 | * non-present->present), hence it is enough to count the number of | |
538 | * present->non-present updates: if it changed while reading the spte, | |
539 | * we might have hit the race. This is done using clear_spte_count. | |
c2a2ac2b XG |
540 | */ |
541 | static u64 __get_spte_lockless(u64 *sptep) | |
542 | { | |
543 | struct kvm_mmu_page *sp = page_header(__pa(sptep)); | |
544 | union split_spte spte, *orig = (union split_spte *)sptep; | |
545 | int count; | |
546 | ||
547 | retry: | |
548 | count = sp->clear_spte_count; | |
549 | smp_rmb(); | |
550 | ||
551 | spte.spte_low = orig->spte_low; | |
552 | smp_rmb(); | |
553 | ||
554 | spte.spte_high = orig->spte_high; | |
555 | smp_rmb(); | |
556 | ||
557 | if (unlikely(spte.spte_low != orig->spte_low || | |
558 | count != sp->clear_spte_count)) | |
559 | goto retry; | |
560 | ||
561 | return spte.spte; | |
562 | } | |
603e0651 XG |
563 | #endif |
564 | ||
ea4114bc | 565 | static bool spte_can_locklessly_be_made_writable(u64 spte) |
c7ba5b48 | 566 | { |
feb3eb70 GN |
567 | return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == |
568 | (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); | |
c7ba5b48 XG |
569 | } |
570 | ||
8672b721 XG |
571 | static bool spte_has_volatile_bits(u64 spte) |
572 | { | |
f160c7b7 JS |
573 | if (!is_shadow_present_pte(spte)) |
574 | return false; | |
575 | ||
c7ba5b48 | 576 | /* |
6a6256f9 | 577 | * Always atomically update spte if it can be updated |
c7ba5b48 XG |
578 | * out of mmu-lock, it can ensure dirty bit is not lost, |
579 | * also, it can help us to get a stable is_writable_pte() | |
580 | * to ensure tlb flush is not missed. | |
581 | */ | |
f160c7b7 JS |
582 | if (spte_can_locklessly_be_made_writable(spte) || |
583 | is_access_track_spte(spte)) | |
c7ba5b48 XG |
584 | return true; |
585 | ||
ac8d57e5 | 586 | if (spte_ad_enabled(spte)) { |
f160c7b7 JS |
587 | if ((spte & shadow_accessed_mask) == 0 || |
588 | (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) | |
589 | return true; | |
590 | } | |
8672b721 | 591 | |
f160c7b7 | 592 | return false; |
8672b721 XG |
593 | } |
594 | ||
83ef6c81 | 595 | static bool is_accessed_spte(u64 spte) |
4132779b | 596 | { |
ac8d57e5 PF |
597 | u64 accessed_mask = spte_shadow_accessed_mask(spte); |
598 | ||
599 | return accessed_mask ? spte & accessed_mask | |
600 | : !is_access_track_spte(spte); | |
4132779b XG |
601 | } |
602 | ||
83ef6c81 | 603 | static bool is_dirty_spte(u64 spte) |
7e71a59b | 604 | { |
ac8d57e5 PF |
605 | u64 dirty_mask = spte_shadow_dirty_mask(spte); |
606 | ||
607 | return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; | |
7e71a59b KH |
608 | } |
609 | ||
1df9f2dc XG |
610 | /* Rules for using mmu_spte_set: |
611 | * Set the sptep from nonpresent to present. | |
612 | * Note: the sptep being assigned *must* be either not present | |
613 | * or in a state where the hardware will not attempt to update | |
614 | * the spte. | |
615 | */ | |
616 | static void mmu_spte_set(u64 *sptep, u64 new_spte) | |
617 | { | |
618 | WARN_ON(is_shadow_present_pte(*sptep)); | |
619 | __set_spte(sptep, new_spte); | |
620 | } | |
621 | ||
f39a058d JS |
622 | /* |
623 | * Update the SPTE (excluding the PFN), but do not track changes in its | |
624 | * accessed/dirty status. | |
1df9f2dc | 625 | */ |
f39a058d | 626 | static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) |
b79b93f9 | 627 | { |
c7ba5b48 | 628 | u64 old_spte = *sptep; |
4132779b | 629 | |
afd28fe1 | 630 | WARN_ON(!is_shadow_present_pte(new_spte)); |
b79b93f9 | 631 | |
6e7d0354 XG |
632 | if (!is_shadow_present_pte(old_spte)) { |
633 | mmu_spte_set(sptep, new_spte); | |
f39a058d | 634 | return old_spte; |
6e7d0354 | 635 | } |
4132779b | 636 | |
c7ba5b48 | 637 | if (!spte_has_volatile_bits(old_spte)) |
603e0651 | 638 | __update_clear_spte_fast(sptep, new_spte); |
4132779b | 639 | else |
603e0651 | 640 | old_spte = __update_clear_spte_slow(sptep, new_spte); |
4132779b | 641 | |
83ef6c81 JS |
642 | WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); |
643 | ||
f39a058d JS |
644 | return old_spte; |
645 | } | |
646 | ||
647 | /* Rules for using mmu_spte_update: | |
648 | * Update the state bits, it means the mapped pfn is not changed. | |
649 | * | |
650 | * Whenever we overwrite a writable spte with a read-only one we | |
651 | * should flush remote TLBs. Otherwise rmap_write_protect | |
652 | * will find a read-only spte, even though the writable spte | |
653 | * might be cached on a CPU's TLB, the return value indicates this | |
654 | * case. | |
655 | * | |
656 | * Returns true if the TLB needs to be flushed | |
657 | */ | |
658 | static bool mmu_spte_update(u64 *sptep, u64 new_spte) | |
659 | { | |
660 | bool flush = false; | |
661 | u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); | |
662 | ||
663 | if (!is_shadow_present_pte(old_spte)) | |
664 | return false; | |
665 | ||
c7ba5b48 XG |
666 | /* |
667 | * For the spte updated out of mmu-lock is safe, since | |
6a6256f9 | 668 | * we always atomically update it, see the comments in |
c7ba5b48 XG |
669 | * spte_has_volatile_bits(). |
670 | */ | |
ea4114bc | 671 | if (spte_can_locklessly_be_made_writable(old_spte) && |
7f31c959 | 672 | !is_writable_pte(new_spte)) |
83ef6c81 | 673 | flush = true; |
4132779b | 674 | |
7e71a59b | 675 | /* |
83ef6c81 | 676 | * Flush TLB when accessed/dirty states are changed in the page tables, |
7e71a59b KH |
677 | * to guarantee consistency between TLB and page tables. |
678 | */ | |
7e71a59b | 679 | |
83ef6c81 JS |
680 | if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { |
681 | flush = true; | |
4132779b | 682 | kvm_set_pfn_accessed(spte_to_pfn(old_spte)); |
83ef6c81 JS |
683 | } |
684 | ||
685 | if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { | |
686 | flush = true; | |
4132779b | 687 | kvm_set_pfn_dirty(spte_to_pfn(old_spte)); |
83ef6c81 | 688 | } |
6e7d0354 | 689 | |
83ef6c81 | 690 | return flush; |
b79b93f9 AK |
691 | } |
692 | ||
1df9f2dc XG |
693 | /* |
694 | * Rules for using mmu_spte_clear_track_bits: | |
695 | * It sets the sptep from present to nonpresent, and track the | |
696 | * state bits, it is used to clear the last level sptep. | |
83ef6c81 | 697 | * Returns non-zero if the PTE was previously valid. |
1df9f2dc XG |
698 | */ |
699 | static int mmu_spte_clear_track_bits(u64 *sptep) | |
700 | { | |
ba049e93 | 701 | kvm_pfn_t pfn; |
1df9f2dc XG |
702 | u64 old_spte = *sptep; |
703 | ||
704 | if (!spte_has_volatile_bits(old_spte)) | |
603e0651 | 705 | __update_clear_spte_fast(sptep, 0ull); |
1df9f2dc | 706 | else |
603e0651 | 707 | old_spte = __update_clear_spte_slow(sptep, 0ull); |
1df9f2dc | 708 | |
afd28fe1 | 709 | if (!is_shadow_present_pte(old_spte)) |
1df9f2dc XG |
710 | return 0; |
711 | ||
712 | pfn = spte_to_pfn(old_spte); | |
86fde74c XG |
713 | |
714 | /* | |
715 | * KVM does not hold the refcount of the page used by | |
716 | * kvm mmu, before reclaiming the page, we should | |
717 | * unmap it from mmu first. | |
718 | */ | |
bf4bea8e | 719 | WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); |
86fde74c | 720 | |
83ef6c81 | 721 | if (is_accessed_spte(old_spte)) |
1df9f2dc | 722 | kvm_set_pfn_accessed(pfn); |
83ef6c81 JS |
723 | |
724 | if (is_dirty_spte(old_spte)) | |
1df9f2dc | 725 | kvm_set_pfn_dirty(pfn); |
83ef6c81 | 726 | |
1df9f2dc XG |
727 | return 1; |
728 | } | |
729 | ||
730 | /* | |
731 | * Rules for using mmu_spte_clear_no_track: | |
732 | * Directly clear spte without caring the state bits of sptep, | |
733 | * it is used to set the upper level spte. | |
734 | */ | |
735 | static void mmu_spte_clear_no_track(u64 *sptep) | |
736 | { | |
603e0651 | 737 | __update_clear_spte_fast(sptep, 0ull); |
1df9f2dc XG |
738 | } |
739 | ||
c2a2ac2b XG |
740 | static u64 mmu_spte_get_lockless(u64 *sptep) |
741 | { | |
742 | return __get_spte_lockless(sptep); | |
743 | } | |
744 | ||
f160c7b7 JS |
745 | static u64 mark_spte_for_access_track(u64 spte) |
746 | { | |
ac8d57e5 | 747 | if (spte_ad_enabled(spte)) |
f160c7b7 JS |
748 | return spte & ~shadow_accessed_mask; |
749 | ||
ac8d57e5 | 750 | if (is_access_track_spte(spte)) |
f160c7b7 JS |
751 | return spte; |
752 | ||
753 | /* | |
20d65236 JS |
754 | * Making an Access Tracking PTE will result in removal of write access |
755 | * from the PTE. So, verify that we will be able to restore the write | |
756 | * access in the fast page fault path later on. | |
f160c7b7 JS |
757 | */ |
758 | WARN_ONCE((spte & PT_WRITABLE_MASK) && | |
759 | !spte_can_locklessly_be_made_writable(spte), | |
760 | "kvm: Writable SPTE is not locklessly dirty-trackable\n"); | |
761 | ||
762 | WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << | |
763 | shadow_acc_track_saved_bits_shift), | |
764 | "kvm: Access Tracking saved bit locations are not zero\n"); | |
765 | ||
766 | spte |= (spte & shadow_acc_track_saved_bits_mask) << | |
767 | shadow_acc_track_saved_bits_shift; | |
768 | spte &= ~shadow_acc_track_mask; | |
f160c7b7 JS |
769 | |
770 | return spte; | |
771 | } | |
772 | ||
d3e328f2 JS |
773 | /* Restore an acc-track PTE back to a regular PTE */ |
774 | static u64 restore_acc_track_spte(u64 spte) | |
775 | { | |
776 | u64 new_spte = spte; | |
777 | u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) | |
778 | & shadow_acc_track_saved_bits_mask; | |
779 | ||
ac8d57e5 | 780 | WARN_ON_ONCE(spte_ad_enabled(spte)); |
d3e328f2 JS |
781 | WARN_ON_ONCE(!is_access_track_spte(spte)); |
782 | ||
783 | new_spte &= ~shadow_acc_track_mask; | |
784 | new_spte &= ~(shadow_acc_track_saved_bits_mask << | |
785 | shadow_acc_track_saved_bits_shift); | |
786 | new_spte |= saved_bits; | |
787 | ||
788 | return new_spte; | |
789 | } | |
790 | ||
f160c7b7 JS |
791 | /* Returns the Accessed status of the PTE and resets it at the same time. */ |
792 | static bool mmu_spte_age(u64 *sptep) | |
793 | { | |
794 | u64 spte = mmu_spte_get_lockless(sptep); | |
795 | ||
796 | if (!is_accessed_spte(spte)) | |
797 | return false; | |
798 | ||
ac8d57e5 | 799 | if (spte_ad_enabled(spte)) { |
f160c7b7 JS |
800 | clear_bit((ffs(shadow_accessed_mask) - 1), |
801 | (unsigned long *)sptep); | |
802 | } else { | |
803 | /* | |
804 | * Capture the dirty status of the page, so that it doesn't get | |
805 | * lost when the SPTE is marked for access tracking. | |
806 | */ | |
807 | if (is_writable_pte(spte)) | |
808 | kvm_set_pfn_dirty(spte_to_pfn(spte)); | |
809 | ||
810 | spte = mark_spte_for_access_track(spte); | |
811 | mmu_spte_update_no_track(sptep, spte); | |
812 | } | |
813 | ||
814 | return true; | |
815 | } | |
816 | ||
c2a2ac2b XG |
817 | static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) |
818 | { | |
c142786c AK |
819 | /* |
820 | * Prevent page table teardown by making any free-er wait during | |
821 | * kvm_flush_remote_tlbs() IPI to all active vcpus. | |
822 | */ | |
823 | local_irq_disable(); | |
36ca7e0a | 824 | |
c142786c AK |
825 | /* |
826 | * Make sure a following spte read is not reordered ahead of the write | |
827 | * to vcpu->mode. | |
828 | */ | |
36ca7e0a | 829 | smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); |
c2a2ac2b XG |
830 | } |
831 | ||
832 | static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) | |
833 | { | |
c142786c AK |
834 | /* |
835 | * Make sure the write to vcpu->mode is not reordered in front of | |
836 | * reads to sptes. If it does, kvm_commit_zap_page() can see us | |
837 | * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. | |
838 | */ | |
36ca7e0a | 839 | smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); |
c142786c | 840 | local_irq_enable(); |
c2a2ac2b XG |
841 | } |
842 | ||
e2dec939 | 843 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
2e3e5882 | 844 | struct kmem_cache *base_cache, int min) |
714b93da AK |
845 | { |
846 | void *obj; | |
847 | ||
848 | if (cache->nobjs >= min) | |
e2dec939 | 849 | return 0; |
714b93da | 850 | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { |
2e3e5882 | 851 | obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); |
714b93da | 852 | if (!obj) |
e2dec939 | 853 | return -ENOMEM; |
714b93da AK |
854 | cache->objects[cache->nobjs++] = obj; |
855 | } | |
e2dec939 | 856 | return 0; |
714b93da AK |
857 | } |
858 | ||
f759e2b4 XG |
859 | static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) |
860 | { | |
861 | return cache->nobjs; | |
862 | } | |
863 | ||
e8ad9a70 XG |
864 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, |
865 | struct kmem_cache *cache) | |
714b93da AK |
866 | { |
867 | while (mc->nobjs) | |
e8ad9a70 | 868 | kmem_cache_free(cache, mc->objects[--mc->nobjs]); |
714b93da AK |
869 | } |
870 | ||
c1158e63 | 871 | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, |
2e3e5882 | 872 | int min) |
c1158e63 | 873 | { |
842f22ed | 874 | void *page; |
c1158e63 AK |
875 | |
876 | if (cache->nobjs >= min) | |
877 | return 0; | |
878 | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | |
842f22ed | 879 | page = (void *)__get_free_page(GFP_KERNEL); |
c1158e63 AK |
880 | if (!page) |
881 | return -ENOMEM; | |
842f22ed | 882 | cache->objects[cache->nobjs++] = page; |
c1158e63 AK |
883 | } |
884 | return 0; | |
885 | } | |
886 | ||
887 | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) | |
888 | { | |
889 | while (mc->nobjs) | |
c4d198d5 | 890 | free_page((unsigned long)mc->objects[--mc->nobjs]); |
c1158e63 AK |
891 | } |
892 | ||
2e3e5882 | 893 | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) |
714b93da | 894 | { |
e2dec939 AK |
895 | int r; |
896 | ||
53c07b18 | 897 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, |
67052b35 | 898 | pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); |
d3d25b04 AK |
899 | if (r) |
900 | goto out; | |
ad312c7c | 901 | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); |
d3d25b04 AK |
902 | if (r) |
903 | goto out; | |
ad312c7c | 904 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, |
2e3e5882 | 905 | mmu_page_header_cache, 4); |
e2dec939 AK |
906 | out: |
907 | return r; | |
714b93da AK |
908 | } |
909 | ||
910 | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | |
911 | { | |
53c07b18 XG |
912 | mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, |
913 | pte_list_desc_cache); | |
ad312c7c | 914 | mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); |
e8ad9a70 XG |
915 | mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, |
916 | mmu_page_header_cache); | |
714b93da AK |
917 | } |
918 | ||
80feb89a | 919 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) |
714b93da AK |
920 | { |
921 | void *p; | |
922 | ||
923 | BUG_ON(!mc->nobjs); | |
924 | p = mc->objects[--mc->nobjs]; | |
714b93da AK |
925 | return p; |
926 | } | |
927 | ||
53c07b18 | 928 | static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) |
714b93da | 929 | { |
80feb89a | 930 | return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); |
714b93da AK |
931 | } |
932 | ||
53c07b18 | 933 | static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) |
714b93da | 934 | { |
53c07b18 | 935 | kmem_cache_free(pte_list_desc_cache, pte_list_desc); |
714b93da AK |
936 | } |
937 | ||
2032a93d LJ |
938 | static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) |
939 | { | |
940 | if (!sp->role.direct) | |
941 | return sp->gfns[index]; | |
942 | ||
943 | return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); | |
944 | } | |
945 | ||
946 | static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) | |
947 | { | |
948 | if (sp->role.direct) | |
949 | BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index)); | |
950 | else | |
951 | sp->gfns[index] = gfn; | |
952 | } | |
953 | ||
05da4558 | 954 | /* |
d4dbf470 TY |
955 | * Return the pointer to the large page information for a given gfn, |
956 | * handling slots that are not large page aligned. | |
05da4558 | 957 | */ |
d4dbf470 TY |
958 | static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, |
959 | struct kvm_memory_slot *slot, | |
960 | int level) | |
05da4558 MT |
961 | { |
962 | unsigned long idx; | |
963 | ||
fb03cb6f | 964 | idx = gfn_to_index(gfn, slot->base_gfn, level); |
db3fe4eb | 965 | return &slot->arch.lpage_info[level - 2][idx]; |
05da4558 MT |
966 | } |
967 | ||
547ffaed XG |
968 | static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, |
969 | gfn_t gfn, int count) | |
970 | { | |
971 | struct kvm_lpage_info *linfo; | |
972 | int i; | |
973 | ||
974 | for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { | |
975 | linfo = lpage_info_slot(gfn, slot, i); | |
976 | linfo->disallow_lpage += count; | |
977 | WARN_ON(linfo->disallow_lpage < 0); | |
978 | } | |
979 | } | |
980 | ||
981 | void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) | |
982 | { | |
983 | update_gfn_disallow_lpage_count(slot, gfn, 1); | |
984 | } | |
985 | ||
986 | void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) | |
987 | { | |
988 | update_gfn_disallow_lpage_count(slot, gfn, -1); | |
989 | } | |
990 | ||
3ed1a478 | 991 | static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
05da4558 | 992 | { |
699023e2 | 993 | struct kvm_memslots *slots; |
d25797b2 | 994 | struct kvm_memory_slot *slot; |
3ed1a478 | 995 | gfn_t gfn; |
05da4558 | 996 | |
56ca57f9 | 997 | kvm->arch.indirect_shadow_pages++; |
3ed1a478 | 998 | gfn = sp->gfn; |
699023e2 PB |
999 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
1000 | slot = __gfn_to_memslot(slots, gfn); | |
56ca57f9 XG |
1001 | |
1002 | /* the non-leaf shadow pages are keeping readonly. */ | |
1003 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | |
1004 | return kvm_slot_page_track_add_page(kvm, slot, gfn, | |
1005 | KVM_PAGE_TRACK_WRITE); | |
1006 | ||
547ffaed | 1007 | kvm_mmu_gfn_disallow_lpage(slot, gfn); |
05da4558 MT |
1008 | } |
1009 | ||
3ed1a478 | 1010 | static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
05da4558 | 1011 | { |
699023e2 | 1012 | struct kvm_memslots *slots; |
d25797b2 | 1013 | struct kvm_memory_slot *slot; |
3ed1a478 | 1014 | gfn_t gfn; |
05da4558 | 1015 | |
56ca57f9 | 1016 | kvm->arch.indirect_shadow_pages--; |
3ed1a478 | 1017 | gfn = sp->gfn; |
699023e2 PB |
1018 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
1019 | slot = __gfn_to_memslot(slots, gfn); | |
56ca57f9 XG |
1020 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
1021 | return kvm_slot_page_track_remove_page(kvm, slot, gfn, | |
1022 | KVM_PAGE_TRACK_WRITE); | |
1023 | ||
547ffaed | 1024 | kvm_mmu_gfn_allow_lpage(slot, gfn); |
05da4558 MT |
1025 | } |
1026 | ||
92f94f1e XG |
1027 | static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level, |
1028 | struct kvm_memory_slot *slot) | |
05da4558 | 1029 | { |
d4dbf470 | 1030 | struct kvm_lpage_info *linfo; |
05da4558 MT |
1031 | |
1032 | if (slot) { | |
d4dbf470 | 1033 | linfo = lpage_info_slot(gfn, slot, level); |
92f94f1e | 1034 | return !!linfo->disallow_lpage; |
05da4558 MT |
1035 | } |
1036 | ||
92f94f1e | 1037 | return true; |
05da4558 MT |
1038 | } |
1039 | ||
92f94f1e XG |
1040 | static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn, |
1041 | int level) | |
5225fdf8 TY |
1042 | { |
1043 | struct kvm_memory_slot *slot; | |
1044 | ||
1045 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | |
92f94f1e | 1046 | return __mmu_gfn_lpage_is_disallowed(gfn, level, slot); |
5225fdf8 TY |
1047 | } |
1048 | ||
d25797b2 | 1049 | static int host_mapping_level(struct kvm *kvm, gfn_t gfn) |
05da4558 | 1050 | { |
8f0b1ab6 | 1051 | unsigned long page_size; |
d25797b2 | 1052 | int i, ret = 0; |
05da4558 | 1053 | |
8f0b1ab6 | 1054 | page_size = kvm_host_page_size(kvm, gfn); |
05da4558 | 1055 | |
8a3d08f1 | 1056 | for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { |
d25797b2 JR |
1057 | if (page_size >= KVM_HPAGE_SIZE(i)) |
1058 | ret = i; | |
1059 | else | |
1060 | break; | |
1061 | } | |
1062 | ||
4c2155ce | 1063 | return ret; |
05da4558 MT |
1064 | } |
1065 | ||
d8aacf5d TY |
1066 | static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot, |
1067 | bool no_dirty_log) | |
1068 | { | |
1069 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) | |
1070 | return false; | |
1071 | if (no_dirty_log && slot->dirty_bitmap) | |
1072 | return false; | |
1073 | ||
1074 | return true; | |
1075 | } | |
1076 | ||
5d163b1c XG |
1077 | static struct kvm_memory_slot * |
1078 | gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, | |
1079 | bool no_dirty_log) | |
05da4558 MT |
1080 | { |
1081 | struct kvm_memory_slot *slot; | |
5d163b1c | 1082 | |
54bf36aa | 1083 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
d8aacf5d | 1084 | if (!memslot_valid_for_gpte(slot, no_dirty_log)) |
5d163b1c XG |
1085 | slot = NULL; |
1086 | ||
1087 | return slot; | |
1088 | } | |
1089 | ||
fd136902 TY |
1090 | static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn, |
1091 | bool *force_pt_level) | |
936a5fe6 AA |
1092 | { |
1093 | int host_level, level, max_level; | |
d8aacf5d TY |
1094 | struct kvm_memory_slot *slot; |
1095 | ||
8c85ac1c TY |
1096 | if (unlikely(*force_pt_level)) |
1097 | return PT_PAGE_TABLE_LEVEL; | |
05da4558 | 1098 | |
8c85ac1c TY |
1099 | slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn); |
1100 | *force_pt_level = !memslot_valid_for_gpte(slot, true); | |
fd136902 TY |
1101 | if (unlikely(*force_pt_level)) |
1102 | return PT_PAGE_TABLE_LEVEL; | |
1103 | ||
d25797b2 JR |
1104 | host_level = host_mapping_level(vcpu->kvm, large_gfn); |
1105 | ||
1106 | if (host_level == PT_PAGE_TABLE_LEVEL) | |
1107 | return host_level; | |
1108 | ||
55dd98c3 | 1109 | max_level = min(kvm_x86_ops->get_lpage_level(), host_level); |
878403b7 SY |
1110 | |
1111 | for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) | |
92f94f1e | 1112 | if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot)) |
d25797b2 | 1113 | break; |
d25797b2 JR |
1114 | |
1115 | return level - 1; | |
05da4558 MT |
1116 | } |
1117 | ||
290fc38d | 1118 | /* |
018aabb5 | 1119 | * About rmap_head encoding: |
cd4a4e53 | 1120 | * |
018aabb5 TY |
1121 | * If the bit zero of rmap_head->val is clear, then it points to the only spte |
1122 | * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct | |
53c07b18 | 1123 | * pte_list_desc containing more mappings. |
018aabb5 TY |
1124 | */ |
1125 | ||
1126 | /* | |
1127 | * Returns the number of pointers in the rmap chain, not counting the new one. | |
cd4a4e53 | 1128 | */ |
53c07b18 | 1129 | static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, |
018aabb5 | 1130 | struct kvm_rmap_head *rmap_head) |
cd4a4e53 | 1131 | { |
53c07b18 | 1132 | struct pte_list_desc *desc; |
53a27b39 | 1133 | int i, count = 0; |
cd4a4e53 | 1134 | |
018aabb5 | 1135 | if (!rmap_head->val) { |
53c07b18 | 1136 | rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); |
018aabb5 TY |
1137 | rmap_head->val = (unsigned long)spte; |
1138 | } else if (!(rmap_head->val & 1)) { | |
53c07b18 XG |
1139 | rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); |
1140 | desc = mmu_alloc_pte_list_desc(vcpu); | |
018aabb5 | 1141 | desc->sptes[0] = (u64 *)rmap_head->val; |
d555c333 | 1142 | desc->sptes[1] = spte; |
018aabb5 | 1143 | rmap_head->val = (unsigned long)desc | 1; |
cb16a7b3 | 1144 | ++count; |
cd4a4e53 | 1145 | } else { |
53c07b18 | 1146 | rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); |
018aabb5 | 1147 | desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
53c07b18 | 1148 | while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { |
cd4a4e53 | 1149 | desc = desc->more; |
53c07b18 | 1150 | count += PTE_LIST_EXT; |
53a27b39 | 1151 | } |
53c07b18 XG |
1152 | if (desc->sptes[PTE_LIST_EXT-1]) { |
1153 | desc->more = mmu_alloc_pte_list_desc(vcpu); | |
cd4a4e53 AK |
1154 | desc = desc->more; |
1155 | } | |
d555c333 | 1156 | for (i = 0; desc->sptes[i]; ++i) |
cb16a7b3 | 1157 | ++count; |
d555c333 | 1158 | desc->sptes[i] = spte; |
cd4a4e53 | 1159 | } |
53a27b39 | 1160 | return count; |
cd4a4e53 AK |
1161 | } |
1162 | ||
53c07b18 | 1163 | static void |
018aabb5 TY |
1164 | pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, |
1165 | struct pte_list_desc *desc, int i, | |
1166 | struct pte_list_desc *prev_desc) | |
cd4a4e53 AK |
1167 | { |
1168 | int j; | |
1169 | ||
53c07b18 | 1170 | for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) |
cd4a4e53 | 1171 | ; |
d555c333 AK |
1172 | desc->sptes[i] = desc->sptes[j]; |
1173 | desc->sptes[j] = NULL; | |
cd4a4e53 AK |
1174 | if (j != 0) |
1175 | return; | |
1176 | if (!prev_desc && !desc->more) | |
018aabb5 | 1177 | rmap_head->val = (unsigned long)desc->sptes[0]; |
cd4a4e53 AK |
1178 | else |
1179 | if (prev_desc) | |
1180 | prev_desc->more = desc->more; | |
1181 | else | |
018aabb5 | 1182 | rmap_head->val = (unsigned long)desc->more | 1; |
53c07b18 | 1183 | mmu_free_pte_list_desc(desc); |
cd4a4e53 AK |
1184 | } |
1185 | ||
018aabb5 | 1186 | static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) |
cd4a4e53 | 1187 | { |
53c07b18 XG |
1188 | struct pte_list_desc *desc; |
1189 | struct pte_list_desc *prev_desc; | |
cd4a4e53 AK |
1190 | int i; |
1191 | ||
018aabb5 | 1192 | if (!rmap_head->val) { |
53c07b18 | 1193 | printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte); |
cd4a4e53 | 1194 | BUG(); |
018aabb5 | 1195 | } else if (!(rmap_head->val & 1)) { |
53c07b18 | 1196 | rmap_printk("pte_list_remove: %p 1->0\n", spte); |
018aabb5 | 1197 | if ((u64 *)rmap_head->val != spte) { |
53c07b18 | 1198 | printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte); |
cd4a4e53 AK |
1199 | BUG(); |
1200 | } | |
018aabb5 | 1201 | rmap_head->val = 0; |
cd4a4e53 | 1202 | } else { |
53c07b18 | 1203 | rmap_printk("pte_list_remove: %p many->many\n", spte); |
018aabb5 | 1204 | desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
cd4a4e53 AK |
1205 | prev_desc = NULL; |
1206 | while (desc) { | |
018aabb5 | 1207 | for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { |
d555c333 | 1208 | if (desc->sptes[i] == spte) { |
018aabb5 TY |
1209 | pte_list_desc_remove_entry(rmap_head, |
1210 | desc, i, prev_desc); | |
cd4a4e53 AK |
1211 | return; |
1212 | } | |
018aabb5 | 1213 | } |
cd4a4e53 AK |
1214 | prev_desc = desc; |
1215 | desc = desc->more; | |
1216 | } | |
53c07b18 | 1217 | pr_err("pte_list_remove: %p many->many\n", spte); |
cd4a4e53 AK |
1218 | BUG(); |
1219 | } | |
1220 | } | |
1221 | ||
018aabb5 TY |
1222 | static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, |
1223 | struct kvm_memory_slot *slot) | |
53c07b18 | 1224 | { |
77d11309 | 1225 | unsigned long idx; |
53c07b18 | 1226 | |
77d11309 | 1227 | idx = gfn_to_index(gfn, slot->base_gfn, level); |
d89cc617 | 1228 | return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx]; |
53c07b18 XG |
1229 | } |
1230 | ||
018aabb5 TY |
1231 | static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, |
1232 | struct kvm_mmu_page *sp) | |
9b9b1492 | 1233 | { |
699023e2 | 1234 | struct kvm_memslots *slots; |
9b9b1492 TY |
1235 | struct kvm_memory_slot *slot; |
1236 | ||
699023e2 PB |
1237 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
1238 | slot = __gfn_to_memslot(slots, gfn); | |
e4cd1da9 | 1239 | return __gfn_to_rmap(gfn, sp->role.level, slot); |
9b9b1492 TY |
1240 | } |
1241 | ||
f759e2b4 XG |
1242 | static bool rmap_can_add(struct kvm_vcpu *vcpu) |
1243 | { | |
1244 | struct kvm_mmu_memory_cache *cache; | |
1245 | ||
1246 | cache = &vcpu->arch.mmu_pte_list_desc_cache; | |
1247 | return mmu_memory_cache_free_objects(cache); | |
1248 | } | |
1249 | ||
53c07b18 XG |
1250 | static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
1251 | { | |
1252 | struct kvm_mmu_page *sp; | |
018aabb5 | 1253 | struct kvm_rmap_head *rmap_head; |
53c07b18 | 1254 | |
53c07b18 XG |
1255 | sp = page_header(__pa(spte)); |
1256 | kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); | |
018aabb5 TY |
1257 | rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); |
1258 | return pte_list_add(vcpu, spte, rmap_head); | |
53c07b18 XG |
1259 | } |
1260 | ||
53c07b18 XG |
1261 | static void rmap_remove(struct kvm *kvm, u64 *spte) |
1262 | { | |
1263 | struct kvm_mmu_page *sp; | |
1264 | gfn_t gfn; | |
018aabb5 | 1265 | struct kvm_rmap_head *rmap_head; |
53c07b18 XG |
1266 | |
1267 | sp = page_header(__pa(spte)); | |
1268 | gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); | |
018aabb5 TY |
1269 | rmap_head = gfn_to_rmap(kvm, gfn, sp); |
1270 | pte_list_remove(spte, rmap_head); | |
53c07b18 XG |
1271 | } |
1272 | ||
1e3f42f0 TY |
1273 | /* |
1274 | * Used by the following functions to iterate through the sptes linked by a | |
1275 | * rmap. All fields are private and not assumed to be used outside. | |
1276 | */ | |
1277 | struct rmap_iterator { | |
1278 | /* private fields */ | |
1279 | struct pte_list_desc *desc; /* holds the sptep if not NULL */ | |
1280 | int pos; /* index of the sptep */ | |
1281 | }; | |
1282 | ||
1283 | /* | |
1284 | * Iteration must be started by this function. This should also be used after | |
1285 | * removing/dropping sptes from the rmap link because in such cases the | |
1286 | * information in the itererator may not be valid. | |
1287 | * | |
1288 | * Returns sptep if found, NULL otherwise. | |
1289 | */ | |
018aabb5 TY |
1290 | static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, |
1291 | struct rmap_iterator *iter) | |
1e3f42f0 | 1292 | { |
77fbbbd2 TY |
1293 | u64 *sptep; |
1294 | ||
018aabb5 | 1295 | if (!rmap_head->val) |
1e3f42f0 TY |
1296 | return NULL; |
1297 | ||
018aabb5 | 1298 | if (!(rmap_head->val & 1)) { |
1e3f42f0 | 1299 | iter->desc = NULL; |
77fbbbd2 TY |
1300 | sptep = (u64 *)rmap_head->val; |
1301 | goto out; | |
1e3f42f0 TY |
1302 | } |
1303 | ||
018aabb5 | 1304 | iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
1e3f42f0 | 1305 | iter->pos = 0; |
77fbbbd2 TY |
1306 | sptep = iter->desc->sptes[iter->pos]; |
1307 | out: | |
1308 | BUG_ON(!is_shadow_present_pte(*sptep)); | |
1309 | return sptep; | |
1e3f42f0 TY |
1310 | } |
1311 | ||
1312 | /* | |
1313 | * Must be used with a valid iterator: e.g. after rmap_get_first(). | |
1314 | * | |
1315 | * Returns sptep if found, NULL otherwise. | |
1316 | */ | |
1317 | static u64 *rmap_get_next(struct rmap_iterator *iter) | |
1318 | { | |
77fbbbd2 TY |
1319 | u64 *sptep; |
1320 | ||
1e3f42f0 TY |
1321 | if (iter->desc) { |
1322 | if (iter->pos < PTE_LIST_EXT - 1) { | |
1e3f42f0 TY |
1323 | ++iter->pos; |
1324 | sptep = iter->desc->sptes[iter->pos]; | |
1325 | if (sptep) | |
77fbbbd2 | 1326 | goto out; |
1e3f42f0 TY |
1327 | } |
1328 | ||
1329 | iter->desc = iter->desc->more; | |
1330 | ||
1331 | if (iter->desc) { | |
1332 | iter->pos = 0; | |
1333 | /* desc->sptes[0] cannot be NULL */ | |
77fbbbd2 TY |
1334 | sptep = iter->desc->sptes[iter->pos]; |
1335 | goto out; | |
1e3f42f0 TY |
1336 | } |
1337 | } | |
1338 | ||
1339 | return NULL; | |
77fbbbd2 TY |
1340 | out: |
1341 | BUG_ON(!is_shadow_present_pte(*sptep)); | |
1342 | return sptep; | |
1e3f42f0 TY |
1343 | } |
1344 | ||
018aabb5 TY |
1345 | #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ |
1346 | for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ | |
77fbbbd2 | 1347 | _spte_; _spte_ = rmap_get_next(_iter_)) |
0d536790 | 1348 | |
c3707958 | 1349 | static void drop_spte(struct kvm *kvm, u64 *sptep) |
e4b502ea | 1350 | { |
1df9f2dc | 1351 | if (mmu_spte_clear_track_bits(sptep)) |
eb45fda4 | 1352 | rmap_remove(kvm, sptep); |
be38d276 AK |
1353 | } |
1354 | ||
8e22f955 XG |
1355 | |
1356 | static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) | |
1357 | { | |
1358 | if (is_large_pte(*sptep)) { | |
1359 | WARN_ON(page_header(__pa(sptep))->role.level == | |
1360 | PT_PAGE_TABLE_LEVEL); | |
1361 | drop_spte(kvm, sptep); | |
1362 | --kvm->stat.lpages; | |
1363 | return true; | |
1364 | } | |
1365 | ||
1366 | return false; | |
1367 | } | |
1368 | ||
1369 | static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) | |
1370 | { | |
1371 | if (__drop_large_spte(vcpu->kvm, sptep)) | |
1372 | kvm_flush_remote_tlbs(vcpu->kvm); | |
1373 | } | |
1374 | ||
1375 | /* | |
49fde340 | 1376 | * Write-protect on the specified @sptep, @pt_protect indicates whether |
c126d94f | 1377 | * spte write-protection is caused by protecting shadow page table. |
49fde340 | 1378 | * |
b4619660 | 1379 | * Note: write protection is difference between dirty logging and spte |
49fde340 XG |
1380 | * protection: |
1381 | * - for dirty logging, the spte can be set to writable at anytime if | |
1382 | * its dirty bitmap is properly set. | |
1383 | * - for spte protection, the spte can be writable only after unsync-ing | |
1384 | * shadow page. | |
8e22f955 | 1385 | * |
c126d94f | 1386 | * Return true if tlb need be flushed. |
8e22f955 | 1387 | */ |
c4f138b4 | 1388 | static bool spte_write_protect(u64 *sptep, bool pt_protect) |
d13bc5b5 XG |
1389 | { |
1390 | u64 spte = *sptep; | |
1391 | ||
49fde340 | 1392 | if (!is_writable_pte(spte) && |
ea4114bc | 1393 | !(pt_protect && spte_can_locklessly_be_made_writable(spte))) |
d13bc5b5 XG |
1394 | return false; |
1395 | ||
1396 | rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); | |
1397 | ||
49fde340 XG |
1398 | if (pt_protect) |
1399 | spte &= ~SPTE_MMU_WRITEABLE; | |
d13bc5b5 | 1400 | spte = spte & ~PT_WRITABLE_MASK; |
49fde340 | 1401 | |
c126d94f | 1402 | return mmu_spte_update(sptep, spte); |
d13bc5b5 XG |
1403 | } |
1404 | ||
018aabb5 TY |
1405 | static bool __rmap_write_protect(struct kvm *kvm, |
1406 | struct kvm_rmap_head *rmap_head, | |
245c3912 | 1407 | bool pt_protect) |
98348e95 | 1408 | { |
1e3f42f0 TY |
1409 | u64 *sptep; |
1410 | struct rmap_iterator iter; | |
d13bc5b5 | 1411 | bool flush = false; |
374cbac0 | 1412 | |
018aabb5 | 1413 | for_each_rmap_spte(rmap_head, &iter, sptep) |
c4f138b4 | 1414 | flush |= spte_write_protect(sptep, pt_protect); |
855149aa | 1415 | |
d13bc5b5 | 1416 | return flush; |
a0ed4607 TY |
1417 | } |
1418 | ||
c4f138b4 | 1419 | static bool spte_clear_dirty(u64 *sptep) |
f4b4b180 KH |
1420 | { |
1421 | u64 spte = *sptep; | |
1422 | ||
1423 | rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); | |
1424 | ||
1425 | spte &= ~shadow_dirty_mask; | |
1426 | ||
1427 | return mmu_spte_update(sptep, spte); | |
1428 | } | |
1429 | ||
ac8d57e5 PF |
1430 | static bool wrprot_ad_disabled_spte(u64 *sptep) |
1431 | { | |
1432 | bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, | |
1433 | (unsigned long *)sptep); | |
1434 | if (was_writable) | |
1435 | kvm_set_pfn_dirty(spte_to_pfn(*sptep)); | |
1436 | ||
1437 | return was_writable; | |
1438 | } | |
1439 | ||
1440 | /* | |
1441 | * Gets the GFN ready for another round of dirty logging by clearing the | |
1442 | * - D bit on ad-enabled SPTEs, and | |
1443 | * - W bit on ad-disabled SPTEs. | |
1444 | * Returns true iff any D or W bits were cleared. | |
1445 | */ | |
018aabb5 | 1446 | static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
f4b4b180 KH |
1447 | { |
1448 | u64 *sptep; | |
1449 | struct rmap_iterator iter; | |
1450 | bool flush = false; | |
1451 | ||
018aabb5 | 1452 | for_each_rmap_spte(rmap_head, &iter, sptep) |
ac8d57e5 PF |
1453 | if (spte_ad_enabled(*sptep)) |
1454 | flush |= spte_clear_dirty(sptep); | |
1455 | else | |
1456 | flush |= wrprot_ad_disabled_spte(sptep); | |
f4b4b180 KH |
1457 | |
1458 | return flush; | |
1459 | } | |
1460 | ||
c4f138b4 | 1461 | static bool spte_set_dirty(u64 *sptep) |
f4b4b180 KH |
1462 | { |
1463 | u64 spte = *sptep; | |
1464 | ||
1465 | rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); | |
1466 | ||
1467 | spte |= shadow_dirty_mask; | |
1468 | ||
1469 | return mmu_spte_update(sptep, spte); | |
1470 | } | |
1471 | ||
018aabb5 | 1472 | static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
f4b4b180 KH |
1473 | { |
1474 | u64 *sptep; | |
1475 | struct rmap_iterator iter; | |
1476 | bool flush = false; | |
1477 | ||
018aabb5 | 1478 | for_each_rmap_spte(rmap_head, &iter, sptep) |
ac8d57e5 PF |
1479 | if (spte_ad_enabled(*sptep)) |
1480 | flush |= spte_set_dirty(sptep); | |
f4b4b180 KH |
1481 | |
1482 | return flush; | |
1483 | } | |
1484 | ||
5dc99b23 | 1485 | /** |
3b0f1d01 | 1486 | * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages |
5dc99b23 TY |
1487 | * @kvm: kvm instance |
1488 | * @slot: slot to protect | |
1489 | * @gfn_offset: start of the BITS_PER_LONG pages we care about | |
1490 | * @mask: indicates which pages we should protect | |
1491 | * | |
1492 | * Used when we do not need to care about huge page mappings: e.g. during dirty | |
1493 | * logging we do not have any such mappings. | |
1494 | */ | |
3b0f1d01 | 1495 | static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, |
5dc99b23 TY |
1496 | struct kvm_memory_slot *slot, |
1497 | gfn_t gfn_offset, unsigned long mask) | |
a0ed4607 | 1498 | { |
018aabb5 | 1499 | struct kvm_rmap_head *rmap_head; |
a0ed4607 | 1500 | |
5dc99b23 | 1501 | while (mask) { |
018aabb5 TY |
1502 | rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
1503 | PT_PAGE_TABLE_LEVEL, slot); | |
1504 | __rmap_write_protect(kvm, rmap_head, false); | |
05da4558 | 1505 | |
5dc99b23 TY |
1506 | /* clear the first set bit */ |
1507 | mask &= mask - 1; | |
1508 | } | |
374cbac0 AK |
1509 | } |
1510 | ||
f4b4b180 | 1511 | /** |
ac8d57e5 PF |
1512 | * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write |
1513 | * protect the page if the D-bit isn't supported. | |
f4b4b180 KH |
1514 | * @kvm: kvm instance |
1515 | * @slot: slot to clear D-bit | |
1516 | * @gfn_offset: start of the BITS_PER_LONG pages we care about | |
1517 | * @mask: indicates which pages we should clear D-bit | |
1518 | * | |
1519 | * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. | |
1520 | */ | |
1521 | void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, | |
1522 | struct kvm_memory_slot *slot, | |
1523 | gfn_t gfn_offset, unsigned long mask) | |
1524 | { | |
018aabb5 | 1525 | struct kvm_rmap_head *rmap_head; |
f4b4b180 KH |
1526 | |
1527 | while (mask) { | |
018aabb5 TY |
1528 | rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
1529 | PT_PAGE_TABLE_LEVEL, slot); | |
1530 | __rmap_clear_dirty(kvm, rmap_head); | |
f4b4b180 KH |
1531 | |
1532 | /* clear the first set bit */ | |
1533 | mask &= mask - 1; | |
1534 | } | |
1535 | } | |
1536 | EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); | |
1537 | ||
3b0f1d01 KH |
1538 | /** |
1539 | * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected | |
1540 | * PT level pages. | |
1541 | * | |
1542 | * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to | |
1543 | * enable dirty logging for them. | |
1544 | * | |
1545 | * Used when we do not need to care about huge page mappings: e.g. during dirty | |
1546 | * logging we do not have any such mappings. | |
1547 | */ | |
1548 | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, | |
1549 | struct kvm_memory_slot *slot, | |
1550 | gfn_t gfn_offset, unsigned long mask) | |
1551 | { | |
88178fd4 KH |
1552 | if (kvm_x86_ops->enable_log_dirty_pt_masked) |
1553 | kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset, | |
1554 | mask); | |
1555 | else | |
1556 | kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); | |
3b0f1d01 KH |
1557 | } |
1558 | ||
bab4165e BD |
1559 | /** |
1560 | * kvm_arch_write_log_dirty - emulate dirty page logging | |
1561 | * @vcpu: Guest mode vcpu | |
1562 | * | |
1563 | * Emulate arch specific page modification logging for the | |
1564 | * nested hypervisor | |
1565 | */ | |
1566 | int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu) | |
1567 | { | |
1568 | if (kvm_x86_ops->write_log_dirty) | |
1569 | return kvm_x86_ops->write_log_dirty(vcpu); | |
1570 | ||
1571 | return 0; | |
1572 | } | |
1573 | ||
aeecee2e XG |
1574 | bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, |
1575 | struct kvm_memory_slot *slot, u64 gfn) | |
95d4c16c | 1576 | { |
018aabb5 | 1577 | struct kvm_rmap_head *rmap_head; |
5dc99b23 | 1578 | int i; |
2f84569f | 1579 | bool write_protected = false; |
95d4c16c | 1580 | |
8a3d08f1 | 1581 | for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { |
018aabb5 | 1582 | rmap_head = __gfn_to_rmap(gfn, i, slot); |
aeecee2e | 1583 | write_protected |= __rmap_write_protect(kvm, rmap_head, true); |
5dc99b23 TY |
1584 | } |
1585 | ||
1586 | return write_protected; | |
95d4c16c TY |
1587 | } |
1588 | ||
aeecee2e XG |
1589 | static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) |
1590 | { | |
1591 | struct kvm_memory_slot *slot; | |
1592 | ||
1593 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | |
1594 | return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); | |
1595 | } | |
1596 | ||
018aabb5 | 1597 | static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
e930bffe | 1598 | { |
1e3f42f0 TY |
1599 | u64 *sptep; |
1600 | struct rmap_iterator iter; | |
6a49f85c | 1601 | bool flush = false; |
e930bffe | 1602 | |
018aabb5 | 1603 | while ((sptep = rmap_get_first(rmap_head, &iter))) { |
6a49f85c | 1604 | rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); |
1e3f42f0 TY |
1605 | |
1606 | drop_spte(kvm, sptep); | |
6a49f85c | 1607 | flush = true; |
e930bffe | 1608 | } |
1e3f42f0 | 1609 | |
6a49f85c XG |
1610 | return flush; |
1611 | } | |
1612 | ||
018aabb5 | 1613 | static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
6a49f85c XG |
1614 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
1615 | unsigned long data) | |
1616 | { | |
018aabb5 | 1617 | return kvm_zap_rmapp(kvm, rmap_head); |
e930bffe AA |
1618 | } |
1619 | ||
018aabb5 | 1620 | static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
8a9522d2 ALC |
1621 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
1622 | unsigned long data) | |
3da0dd43 | 1623 | { |
1e3f42f0 TY |
1624 | u64 *sptep; |
1625 | struct rmap_iterator iter; | |
3da0dd43 | 1626 | int need_flush = 0; |
1e3f42f0 | 1627 | u64 new_spte; |
3da0dd43 | 1628 | pte_t *ptep = (pte_t *)data; |
ba049e93 | 1629 | kvm_pfn_t new_pfn; |
3da0dd43 IE |
1630 | |
1631 | WARN_ON(pte_huge(*ptep)); | |
1632 | new_pfn = pte_pfn(*ptep); | |
1e3f42f0 | 1633 | |
0d536790 | 1634 | restart: |
018aabb5 | 1635 | for_each_rmap_spte(rmap_head, &iter, sptep) { |
8a9522d2 | 1636 | rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", |
f160c7b7 | 1637 | sptep, *sptep, gfn, level); |
1e3f42f0 | 1638 | |
3da0dd43 | 1639 | need_flush = 1; |
1e3f42f0 | 1640 | |
3da0dd43 | 1641 | if (pte_write(*ptep)) { |
1e3f42f0 | 1642 | drop_spte(kvm, sptep); |
0d536790 | 1643 | goto restart; |
3da0dd43 | 1644 | } else { |
1e3f42f0 | 1645 | new_spte = *sptep & ~PT64_BASE_ADDR_MASK; |
3da0dd43 IE |
1646 | new_spte |= (u64)new_pfn << PAGE_SHIFT; |
1647 | ||
1648 | new_spte &= ~PT_WRITABLE_MASK; | |
1649 | new_spte &= ~SPTE_HOST_WRITEABLE; | |
f160c7b7 JS |
1650 | |
1651 | new_spte = mark_spte_for_access_track(new_spte); | |
1e3f42f0 TY |
1652 | |
1653 | mmu_spte_clear_track_bits(sptep); | |
1654 | mmu_spte_set(sptep, new_spte); | |
3da0dd43 IE |
1655 | } |
1656 | } | |
1e3f42f0 | 1657 | |
3da0dd43 IE |
1658 | if (need_flush) |
1659 | kvm_flush_remote_tlbs(kvm); | |
1660 | ||
1661 | return 0; | |
1662 | } | |
1663 | ||
6ce1f4e2 XG |
1664 | struct slot_rmap_walk_iterator { |
1665 | /* input fields. */ | |
1666 | struct kvm_memory_slot *slot; | |
1667 | gfn_t start_gfn; | |
1668 | gfn_t end_gfn; | |
1669 | int start_level; | |
1670 | int end_level; | |
1671 | ||
1672 | /* output fields. */ | |
1673 | gfn_t gfn; | |
018aabb5 | 1674 | struct kvm_rmap_head *rmap; |
6ce1f4e2 XG |
1675 | int level; |
1676 | ||
1677 | /* private field. */ | |
018aabb5 | 1678 | struct kvm_rmap_head *end_rmap; |
6ce1f4e2 XG |
1679 | }; |
1680 | ||
1681 | static void | |
1682 | rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) | |
1683 | { | |
1684 | iterator->level = level; | |
1685 | iterator->gfn = iterator->start_gfn; | |
1686 | iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); | |
1687 | iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, | |
1688 | iterator->slot); | |
1689 | } | |
1690 | ||
1691 | static void | |
1692 | slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, | |
1693 | struct kvm_memory_slot *slot, int start_level, | |
1694 | int end_level, gfn_t start_gfn, gfn_t end_gfn) | |
1695 | { | |
1696 | iterator->slot = slot; | |
1697 | iterator->start_level = start_level; | |
1698 | iterator->end_level = end_level; | |
1699 | iterator->start_gfn = start_gfn; | |
1700 | iterator->end_gfn = end_gfn; | |
1701 | ||
1702 | rmap_walk_init_level(iterator, iterator->start_level); | |
1703 | } | |
1704 | ||
1705 | static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) | |
1706 | { | |
1707 | return !!iterator->rmap; | |
1708 | } | |
1709 | ||
1710 | static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) | |
1711 | { | |
1712 | if (++iterator->rmap <= iterator->end_rmap) { | |
1713 | iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); | |
1714 | return; | |
1715 | } | |
1716 | ||
1717 | if (++iterator->level > iterator->end_level) { | |
1718 | iterator->rmap = NULL; | |
1719 | return; | |
1720 | } | |
1721 | ||
1722 | rmap_walk_init_level(iterator, iterator->level); | |
1723 | } | |
1724 | ||
1725 | #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ | |
1726 | _start_gfn, _end_gfn, _iter_) \ | |
1727 | for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ | |
1728 | _end_level_, _start_gfn, _end_gfn); \ | |
1729 | slot_rmap_walk_okay(_iter_); \ | |
1730 | slot_rmap_walk_next(_iter_)) | |
1731 | ||
84504ef3 TY |
1732 | static int kvm_handle_hva_range(struct kvm *kvm, |
1733 | unsigned long start, | |
1734 | unsigned long end, | |
1735 | unsigned long data, | |
1736 | int (*handler)(struct kvm *kvm, | |
018aabb5 | 1737 | struct kvm_rmap_head *rmap_head, |
048212d0 | 1738 | struct kvm_memory_slot *slot, |
8a9522d2 ALC |
1739 | gfn_t gfn, |
1740 | int level, | |
84504ef3 | 1741 | unsigned long data)) |
e930bffe | 1742 | { |
bc6678a3 | 1743 | struct kvm_memslots *slots; |
be6ba0f0 | 1744 | struct kvm_memory_slot *memslot; |
6ce1f4e2 XG |
1745 | struct slot_rmap_walk_iterator iterator; |
1746 | int ret = 0; | |
9da0e4d5 | 1747 | int i; |
bc6678a3 | 1748 | |
9da0e4d5 PB |
1749 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
1750 | slots = __kvm_memslots(kvm, i); | |
1751 | kvm_for_each_memslot(memslot, slots) { | |
1752 | unsigned long hva_start, hva_end; | |
1753 | gfn_t gfn_start, gfn_end; | |
e930bffe | 1754 | |
9da0e4d5 PB |
1755 | hva_start = max(start, memslot->userspace_addr); |
1756 | hva_end = min(end, memslot->userspace_addr + | |
1757 | (memslot->npages << PAGE_SHIFT)); | |
1758 | if (hva_start >= hva_end) | |
1759 | continue; | |
1760 | /* | |
1761 | * {gfn(page) | page intersects with [hva_start, hva_end)} = | |
1762 | * {gfn_start, gfn_start+1, ..., gfn_end-1}. | |
1763 | */ | |
1764 | gfn_start = hva_to_gfn_memslot(hva_start, memslot); | |
1765 | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); | |
1766 | ||
1767 | for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL, | |
1768 | PT_MAX_HUGEPAGE_LEVEL, | |
1769 | gfn_start, gfn_end - 1, | |
1770 | &iterator) | |
1771 | ret |= handler(kvm, iterator.rmap, memslot, | |
1772 | iterator.gfn, iterator.level, data); | |
1773 | } | |
e930bffe AA |
1774 | } |
1775 | ||
f395302e | 1776 | return ret; |
e930bffe AA |
1777 | } |
1778 | ||
84504ef3 TY |
1779 | static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, |
1780 | unsigned long data, | |
018aabb5 TY |
1781 | int (*handler)(struct kvm *kvm, |
1782 | struct kvm_rmap_head *rmap_head, | |
048212d0 | 1783 | struct kvm_memory_slot *slot, |
8a9522d2 | 1784 | gfn_t gfn, int level, |
84504ef3 TY |
1785 | unsigned long data)) |
1786 | { | |
1787 | return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); | |
e930bffe AA |
1788 | } |
1789 | ||
1790 | int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) | |
1791 | { | |
3da0dd43 IE |
1792 | return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp); |
1793 | } | |
1794 | ||
b3ae2096 TY |
1795 | int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) |
1796 | { | |
1797 | return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); | |
1798 | } | |
1799 | ||
3da0dd43 IE |
1800 | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
1801 | { | |
8a8365c5 | 1802 | kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); |
e930bffe AA |
1803 | } |
1804 | ||
018aabb5 | 1805 | static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
8a9522d2 ALC |
1806 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
1807 | unsigned long data) | |
e930bffe | 1808 | { |
1e3f42f0 | 1809 | u64 *sptep; |
79f702a6 | 1810 | struct rmap_iterator uninitialized_var(iter); |
e930bffe AA |
1811 | int young = 0; |
1812 | ||
f160c7b7 JS |
1813 | for_each_rmap_spte(rmap_head, &iter, sptep) |
1814 | young |= mmu_spte_age(sptep); | |
0d536790 | 1815 | |
8a9522d2 | 1816 | trace_kvm_age_page(gfn, level, slot, young); |
e930bffe AA |
1817 | return young; |
1818 | } | |
1819 | ||
018aabb5 | 1820 | static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
8a9522d2 ALC |
1821 | struct kvm_memory_slot *slot, gfn_t gfn, |
1822 | int level, unsigned long data) | |
8ee53820 | 1823 | { |
1e3f42f0 TY |
1824 | u64 *sptep; |
1825 | struct rmap_iterator iter; | |
8ee53820 | 1826 | |
83ef6c81 JS |
1827 | for_each_rmap_spte(rmap_head, &iter, sptep) |
1828 | if (is_accessed_spte(*sptep)) | |
1829 | return 1; | |
83ef6c81 | 1830 | return 0; |
8ee53820 AA |
1831 | } |
1832 | ||
53a27b39 MT |
1833 | #define RMAP_RECYCLE_THRESHOLD 1000 |
1834 | ||
852e3c19 | 1835 | static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
53a27b39 | 1836 | { |
018aabb5 | 1837 | struct kvm_rmap_head *rmap_head; |
852e3c19 JR |
1838 | struct kvm_mmu_page *sp; |
1839 | ||
1840 | sp = page_header(__pa(spte)); | |
53a27b39 | 1841 | |
018aabb5 | 1842 | rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); |
53a27b39 | 1843 | |
018aabb5 | 1844 | kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); |
53a27b39 MT |
1845 | kvm_flush_remote_tlbs(vcpu->kvm); |
1846 | } | |
1847 | ||
57128468 | 1848 | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) |
e930bffe | 1849 | { |
57128468 | 1850 | return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); |
e930bffe AA |
1851 | } |
1852 | ||
8ee53820 AA |
1853 | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) |
1854 | { | |
1855 | return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); | |
1856 | } | |
1857 | ||
d6c69ee9 | 1858 | #ifdef MMU_DEBUG |
47ad8e68 | 1859 | static int is_empty_shadow_page(u64 *spt) |
6aa8b732 | 1860 | { |
139bdb2d AK |
1861 | u64 *pos; |
1862 | u64 *end; | |
1863 | ||
47ad8e68 | 1864 | for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) |
3c915510 | 1865 | if (is_shadow_present_pte(*pos)) { |
b8688d51 | 1866 | printk(KERN_ERR "%s: %p %llx\n", __func__, |
139bdb2d | 1867 | pos, *pos); |
6aa8b732 | 1868 | return 0; |
139bdb2d | 1869 | } |
6aa8b732 AK |
1870 | return 1; |
1871 | } | |
d6c69ee9 | 1872 | #endif |
6aa8b732 | 1873 | |
45221ab6 DH |
1874 | /* |
1875 | * This value is the sum of all of the kvm instances's | |
1876 | * kvm->arch.n_used_mmu_pages values. We need a global, | |
1877 | * aggregate version in order to make the slab shrinker | |
1878 | * faster | |
1879 | */ | |
1880 | static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) | |
1881 | { | |
1882 | kvm->arch.n_used_mmu_pages += nr; | |
1883 | percpu_counter_add(&kvm_total_used_mmu_pages, nr); | |
1884 | } | |
1885 | ||
834be0d8 | 1886 | static void kvm_mmu_free_page(struct kvm_mmu_page *sp) |
260746c0 | 1887 | { |
fa4a2c08 | 1888 | MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); |
7775834a | 1889 | hlist_del(&sp->hash_link); |
bd4c86ea XG |
1890 | list_del(&sp->link); |
1891 | free_page((unsigned long)sp->spt); | |
834be0d8 GN |
1892 | if (!sp->role.direct) |
1893 | free_page((unsigned long)sp->gfns); | |
e8ad9a70 | 1894 | kmem_cache_free(mmu_page_header_cache, sp); |
260746c0 AK |
1895 | } |
1896 | ||
cea0f0e7 AK |
1897 | static unsigned kvm_page_table_hashfn(gfn_t gfn) |
1898 | { | |
114df303 | 1899 | return hash_64(gfn, KVM_MMU_HASH_SHIFT); |
cea0f0e7 AK |
1900 | } |
1901 | ||
714b93da | 1902 | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, |
4db35314 | 1903 | struct kvm_mmu_page *sp, u64 *parent_pte) |
cea0f0e7 | 1904 | { |
cea0f0e7 AK |
1905 | if (!parent_pte) |
1906 | return; | |
cea0f0e7 | 1907 | |
67052b35 | 1908 | pte_list_add(vcpu, parent_pte, &sp->parent_ptes); |
cea0f0e7 AK |
1909 | } |
1910 | ||
4db35314 | 1911 | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, |
cea0f0e7 AK |
1912 | u64 *parent_pte) |
1913 | { | |
67052b35 | 1914 | pte_list_remove(parent_pte, &sp->parent_ptes); |
cea0f0e7 AK |
1915 | } |
1916 | ||
bcdd9a93 XG |
1917 | static void drop_parent_pte(struct kvm_mmu_page *sp, |
1918 | u64 *parent_pte) | |
1919 | { | |
1920 | mmu_page_remove_parent_pte(sp, parent_pte); | |
1df9f2dc | 1921 | mmu_spte_clear_no_track(parent_pte); |
bcdd9a93 XG |
1922 | } |
1923 | ||
47005792 | 1924 | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) |
ad8cfbe3 | 1925 | { |
67052b35 | 1926 | struct kvm_mmu_page *sp; |
7ddca7e4 | 1927 | |
80feb89a TY |
1928 | sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); |
1929 | sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); | |
67052b35 | 1930 | if (!direct) |
80feb89a | 1931 | sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); |
67052b35 | 1932 | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); |
5304b8d3 XG |
1933 | |
1934 | /* | |
1935 | * The active_mmu_pages list is the FIFO list, do not move the | |
1936 | * page until it is zapped. kvm_zap_obsolete_pages depends on | |
1937 | * this feature. See the comments in kvm_zap_obsolete_pages(). | |
1938 | */ | |
67052b35 | 1939 | list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); |
67052b35 XG |
1940 | kvm_mod_used_mmu_pages(vcpu->kvm, +1); |
1941 | return sp; | |
ad8cfbe3 MT |
1942 | } |
1943 | ||
67052b35 | 1944 | static void mark_unsync(u64 *spte); |
1047df1f | 1945 | static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) |
0074ff63 | 1946 | { |
74c4e63a TY |
1947 | u64 *sptep; |
1948 | struct rmap_iterator iter; | |
1949 | ||
1950 | for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { | |
1951 | mark_unsync(sptep); | |
1952 | } | |
0074ff63 MT |
1953 | } |
1954 | ||
67052b35 | 1955 | static void mark_unsync(u64 *spte) |
0074ff63 | 1956 | { |
67052b35 | 1957 | struct kvm_mmu_page *sp; |
1047df1f | 1958 | unsigned int index; |
0074ff63 | 1959 | |
67052b35 | 1960 | sp = page_header(__pa(spte)); |
1047df1f XG |
1961 | index = spte - sp->spt; |
1962 | if (__test_and_set_bit(index, sp->unsync_child_bitmap)) | |
0074ff63 | 1963 | return; |
1047df1f | 1964 | if (sp->unsync_children++) |
0074ff63 | 1965 | return; |
1047df1f | 1966 | kvm_mmu_mark_parents_unsync(sp); |
0074ff63 MT |
1967 | } |
1968 | ||
e8bc217a | 1969 | static int nonpaging_sync_page(struct kvm_vcpu *vcpu, |
a4a8e6f7 | 1970 | struct kvm_mmu_page *sp) |
e8bc217a | 1971 | { |
1f50f1b3 | 1972 | return 0; |
e8bc217a MT |
1973 | } |
1974 | ||
a7052897 MT |
1975 | static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva) |
1976 | { | |
1977 | } | |
1978 | ||
0f53b5b1 XG |
1979 | static void nonpaging_update_pte(struct kvm_vcpu *vcpu, |
1980 | struct kvm_mmu_page *sp, u64 *spte, | |
7c562522 | 1981 | const void *pte) |
0f53b5b1 XG |
1982 | { |
1983 | WARN_ON(1); | |
1984 | } | |
1985 | ||
60c8aec6 MT |
1986 | #define KVM_PAGE_ARRAY_NR 16 |
1987 | ||
1988 | struct kvm_mmu_pages { | |
1989 | struct mmu_page_and_offset { | |
1990 | struct kvm_mmu_page *sp; | |
1991 | unsigned int idx; | |
1992 | } page[KVM_PAGE_ARRAY_NR]; | |
1993 | unsigned int nr; | |
1994 | }; | |
1995 | ||
cded19f3 HE |
1996 | static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, |
1997 | int idx) | |
4731d4c7 | 1998 | { |
60c8aec6 | 1999 | int i; |
4731d4c7 | 2000 | |
60c8aec6 MT |
2001 | if (sp->unsync) |
2002 | for (i=0; i < pvec->nr; i++) | |
2003 | if (pvec->page[i].sp == sp) | |
2004 | return 0; | |
2005 | ||
2006 | pvec->page[pvec->nr].sp = sp; | |
2007 | pvec->page[pvec->nr].idx = idx; | |
2008 | pvec->nr++; | |
2009 | return (pvec->nr == KVM_PAGE_ARRAY_NR); | |
2010 | } | |
2011 | ||
fd951457 TY |
2012 | static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) |
2013 | { | |
2014 | --sp->unsync_children; | |
2015 | WARN_ON((int)sp->unsync_children < 0); | |
2016 | __clear_bit(idx, sp->unsync_child_bitmap); | |
2017 | } | |
2018 | ||
60c8aec6 MT |
2019 | static int __mmu_unsync_walk(struct kvm_mmu_page *sp, |
2020 | struct kvm_mmu_pages *pvec) | |
2021 | { | |
2022 | int i, ret, nr_unsync_leaf = 0; | |
4731d4c7 | 2023 | |
37178b8b | 2024 | for_each_set_bit(i, sp->unsync_child_bitmap, 512) { |
7a8f1a74 | 2025 | struct kvm_mmu_page *child; |
4731d4c7 MT |
2026 | u64 ent = sp->spt[i]; |
2027 | ||
fd951457 TY |
2028 | if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { |
2029 | clear_unsync_child_bit(sp, i); | |
2030 | continue; | |
2031 | } | |
7a8f1a74 XG |
2032 | |
2033 | child = page_header(ent & PT64_BASE_ADDR_MASK); | |
2034 | ||
2035 | if (child->unsync_children) { | |
2036 | if (mmu_pages_add(pvec, child, i)) | |
2037 | return -ENOSPC; | |
2038 | ||
2039 | ret = __mmu_unsync_walk(child, pvec); | |
fd951457 TY |
2040 | if (!ret) { |
2041 | clear_unsync_child_bit(sp, i); | |
2042 | continue; | |
2043 | } else if (ret > 0) { | |
7a8f1a74 | 2044 | nr_unsync_leaf += ret; |
fd951457 | 2045 | } else |
7a8f1a74 XG |
2046 | return ret; |
2047 | } else if (child->unsync) { | |
2048 | nr_unsync_leaf++; | |
2049 | if (mmu_pages_add(pvec, child, i)) | |
2050 | return -ENOSPC; | |
2051 | } else | |
fd951457 | 2052 | clear_unsync_child_bit(sp, i); |
4731d4c7 MT |
2053 | } |
2054 | ||
60c8aec6 MT |
2055 | return nr_unsync_leaf; |
2056 | } | |
2057 | ||
e23d3fef XG |
2058 | #define INVALID_INDEX (-1) |
2059 | ||
60c8aec6 MT |
2060 | static int mmu_unsync_walk(struct kvm_mmu_page *sp, |
2061 | struct kvm_mmu_pages *pvec) | |
2062 | { | |
0a47cd85 | 2063 | pvec->nr = 0; |
60c8aec6 MT |
2064 | if (!sp->unsync_children) |
2065 | return 0; | |
2066 | ||
e23d3fef | 2067 | mmu_pages_add(pvec, sp, INVALID_INDEX); |
60c8aec6 | 2068 | return __mmu_unsync_walk(sp, pvec); |
4731d4c7 MT |
2069 | } |
2070 | ||
4731d4c7 MT |
2071 | static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
2072 | { | |
2073 | WARN_ON(!sp->unsync); | |
5e1b3ddb | 2074 | trace_kvm_mmu_sync_page(sp); |
4731d4c7 MT |
2075 | sp->unsync = 0; |
2076 | --kvm->stat.mmu_unsync; | |
2077 | } | |
2078 | ||
7775834a XG |
2079 | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
2080 | struct list_head *invalid_list); | |
2081 | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | |
2082 | struct list_head *invalid_list); | |
4731d4c7 | 2083 | |
f34d251d XG |
2084 | /* |
2085 | * NOTE: we should pay more attention on the zapped-obsolete page | |
2086 | * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk | |
2087 | * since it has been deleted from active_mmu_pages but still can be found | |
2088 | * at hast list. | |
2089 | * | |
f3414bc7 | 2090 | * for_each_valid_sp() has skipped that kind of pages. |
f34d251d | 2091 | */ |
f3414bc7 | 2092 | #define for_each_valid_sp(_kvm, _sp, _gfn) \ |
1044b030 TY |
2093 | hlist_for_each_entry(_sp, \ |
2094 | &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ | |
f3414bc7 DM |
2095 | if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \ |
2096 | } else | |
1044b030 TY |
2097 | |
2098 | #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ | |
f3414bc7 DM |
2099 | for_each_valid_sp(_kvm, _sp, _gfn) \ |
2100 | if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else | |
7ae680eb | 2101 | |
f918b443 | 2102 | /* @sp->gfn should be write-protected at the call site */ |
1f50f1b3 PB |
2103 | static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
2104 | struct list_head *invalid_list) | |
4731d4c7 | 2105 | { |
5b7e0102 | 2106 | if (sp->role.cr4_pae != !!is_pae(vcpu)) { |
d98ba053 | 2107 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); |
1f50f1b3 | 2108 | return false; |
4731d4c7 MT |
2109 | } |
2110 | ||
1f50f1b3 | 2111 | if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) { |
d98ba053 | 2112 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); |
1f50f1b3 | 2113 | return false; |
4731d4c7 MT |
2114 | } |
2115 | ||
1f50f1b3 | 2116 | return true; |
4731d4c7 MT |
2117 | } |
2118 | ||
35a70510 PB |
2119 | static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, |
2120 | struct list_head *invalid_list, | |
2121 | bool remote_flush, bool local_flush) | |
1d9dc7e0 | 2122 | { |
35a70510 PB |
2123 | if (!list_empty(invalid_list)) { |
2124 | kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list); | |
2125 | return; | |
2126 | } | |
d98ba053 | 2127 | |
35a70510 PB |
2128 | if (remote_flush) |
2129 | kvm_flush_remote_tlbs(vcpu->kvm); | |
2130 | else if (local_flush) | |
2131 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | |
1d9dc7e0 XG |
2132 | } |
2133 | ||
e37fa785 XG |
2134 | #ifdef CONFIG_KVM_MMU_AUDIT |
2135 | #include "mmu_audit.c" | |
2136 | #else | |
2137 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } | |
2138 | static void mmu_audit_disable(void) { } | |
2139 | #endif | |
2140 | ||
46971a2f XG |
2141 | static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) |
2142 | { | |
2143 | return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); | |
2144 | } | |
2145 | ||
1f50f1b3 | 2146 | static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
d98ba053 | 2147 | struct list_head *invalid_list) |
1d9dc7e0 | 2148 | { |
9a43c5d9 PB |
2149 | kvm_unlink_unsync_page(vcpu->kvm, sp); |
2150 | return __kvm_sync_page(vcpu, sp, invalid_list); | |
1d9dc7e0 XG |
2151 | } |
2152 | ||
9f1a122f | 2153 | /* @gfn should be write-protected at the call site */ |
2a74003a PB |
2154 | static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, |
2155 | struct list_head *invalid_list) | |
9f1a122f | 2156 | { |
9f1a122f | 2157 | struct kvm_mmu_page *s; |
2a74003a | 2158 | bool ret = false; |
9f1a122f | 2159 | |
b67bfe0d | 2160 | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { |
7ae680eb | 2161 | if (!s->unsync) |
9f1a122f XG |
2162 | continue; |
2163 | ||
2164 | WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | |
2a74003a | 2165 | ret |= kvm_sync_page(vcpu, s, invalid_list); |
9f1a122f XG |
2166 | } |
2167 | ||
2a74003a | 2168 | return ret; |
9f1a122f XG |
2169 | } |
2170 | ||
60c8aec6 | 2171 | struct mmu_page_path { |
2a7266a8 YZ |
2172 | struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; |
2173 | unsigned int idx[PT64_ROOT_MAX_LEVEL]; | |
4731d4c7 MT |
2174 | }; |
2175 | ||
60c8aec6 | 2176 | #define for_each_sp(pvec, sp, parents, i) \ |
0a47cd85 | 2177 | for (i = mmu_pages_first(&pvec, &parents); \ |
60c8aec6 MT |
2178 | i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ |
2179 | i = mmu_pages_next(&pvec, &parents, i)) | |
2180 | ||
cded19f3 HE |
2181 | static int mmu_pages_next(struct kvm_mmu_pages *pvec, |
2182 | struct mmu_page_path *parents, | |
2183 | int i) | |
60c8aec6 MT |
2184 | { |
2185 | int n; | |
2186 | ||
2187 | for (n = i+1; n < pvec->nr; n++) { | |
2188 | struct kvm_mmu_page *sp = pvec->page[n].sp; | |
0a47cd85 PB |
2189 | unsigned idx = pvec->page[n].idx; |
2190 | int level = sp->role.level; | |
60c8aec6 | 2191 | |
0a47cd85 PB |
2192 | parents->idx[level-1] = idx; |
2193 | if (level == PT_PAGE_TABLE_LEVEL) | |
2194 | break; | |
60c8aec6 | 2195 | |
0a47cd85 | 2196 | parents->parent[level-2] = sp; |
60c8aec6 MT |
2197 | } |
2198 | ||
2199 | return n; | |
2200 | } | |
2201 | ||
0a47cd85 PB |
2202 | static int mmu_pages_first(struct kvm_mmu_pages *pvec, |
2203 | struct mmu_page_path *parents) | |
2204 | { | |
2205 | struct kvm_mmu_page *sp; | |
2206 | int level; | |
2207 | ||
2208 | if (pvec->nr == 0) | |
2209 | return 0; | |
2210 | ||
e23d3fef XG |
2211 | WARN_ON(pvec->page[0].idx != INVALID_INDEX); |
2212 | ||
0a47cd85 PB |
2213 | sp = pvec->page[0].sp; |
2214 | level = sp->role.level; | |
2215 | WARN_ON(level == PT_PAGE_TABLE_LEVEL); | |
2216 | ||
2217 | parents->parent[level-2] = sp; | |
2218 | ||
2219 | /* Also set up a sentinel. Further entries in pvec are all | |
2220 | * children of sp, so this element is never overwritten. | |
2221 | */ | |
2222 | parents->parent[level-1] = NULL; | |
2223 | return mmu_pages_next(pvec, parents, 0); | |
2224 | } | |
2225 | ||
cded19f3 | 2226 | static void mmu_pages_clear_parents(struct mmu_page_path *parents) |
4731d4c7 | 2227 | { |
60c8aec6 MT |
2228 | struct kvm_mmu_page *sp; |
2229 | unsigned int level = 0; | |
2230 | ||
2231 | do { | |
2232 | unsigned int idx = parents->idx[level]; | |
60c8aec6 MT |
2233 | sp = parents->parent[level]; |
2234 | if (!sp) | |
2235 | return; | |
2236 | ||
e23d3fef | 2237 | WARN_ON(idx == INVALID_INDEX); |
fd951457 | 2238 | clear_unsync_child_bit(sp, idx); |
60c8aec6 | 2239 | level++; |
0a47cd85 | 2240 | } while (!sp->unsync_children); |
60c8aec6 | 2241 | } |
4731d4c7 | 2242 | |
60c8aec6 MT |
2243 | static void mmu_sync_children(struct kvm_vcpu *vcpu, |
2244 | struct kvm_mmu_page *parent) | |
2245 | { | |
2246 | int i; | |
2247 | struct kvm_mmu_page *sp; | |
2248 | struct mmu_page_path parents; | |
2249 | struct kvm_mmu_pages pages; | |
d98ba053 | 2250 | LIST_HEAD(invalid_list); |
50c9e6f3 | 2251 | bool flush = false; |
60c8aec6 | 2252 | |
60c8aec6 | 2253 | while (mmu_unsync_walk(parent, &pages)) { |
2f84569f | 2254 | bool protected = false; |
b1a36821 MT |
2255 | |
2256 | for_each_sp(pages, sp, parents, i) | |
54bf36aa | 2257 | protected |= rmap_write_protect(vcpu, sp->gfn); |
b1a36821 | 2258 | |
50c9e6f3 | 2259 | if (protected) { |
b1a36821 | 2260 | kvm_flush_remote_tlbs(vcpu->kvm); |
50c9e6f3 PB |
2261 | flush = false; |
2262 | } | |
b1a36821 | 2263 | |
60c8aec6 | 2264 | for_each_sp(pages, sp, parents, i) { |
1f50f1b3 | 2265 | flush |= kvm_sync_page(vcpu, sp, &invalid_list); |
60c8aec6 MT |
2266 | mmu_pages_clear_parents(&parents); |
2267 | } | |
50c9e6f3 PB |
2268 | if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { |
2269 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | |
2270 | cond_resched_lock(&vcpu->kvm->mmu_lock); | |
2271 | flush = false; | |
2272 | } | |
60c8aec6 | 2273 | } |
50c9e6f3 PB |
2274 | |
2275 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | |
4731d4c7 MT |
2276 | } |
2277 | ||
a30f47cb XG |
2278 | static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) |
2279 | { | |
e5691a81 | 2280 | atomic_set(&sp->write_flooding_count, 0); |
a30f47cb XG |
2281 | } |
2282 | ||
2283 | static void clear_sp_write_flooding_count(u64 *spte) | |
2284 | { | |
2285 | struct kvm_mmu_page *sp = page_header(__pa(spte)); | |
2286 | ||
2287 | __clear_sp_write_flooding_count(sp); | |
2288 | } | |
2289 | ||
cea0f0e7 AK |
2290 | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, |
2291 | gfn_t gfn, | |
2292 | gva_t gaddr, | |
2293 | unsigned level, | |
f6e2c02b | 2294 | int direct, |
bb11c6c9 | 2295 | unsigned access) |
cea0f0e7 AK |
2296 | { |
2297 | union kvm_mmu_page_role role; | |
cea0f0e7 | 2298 | unsigned quadrant; |
9f1a122f | 2299 | struct kvm_mmu_page *sp; |
9f1a122f | 2300 | bool need_sync = false; |
2a74003a | 2301 | bool flush = false; |
f3414bc7 | 2302 | int collisions = 0; |
2a74003a | 2303 | LIST_HEAD(invalid_list); |
cea0f0e7 | 2304 | |
a770f6f2 | 2305 | role = vcpu->arch.mmu.base_role; |
cea0f0e7 | 2306 | role.level = level; |
f6e2c02b | 2307 | role.direct = direct; |
84b0c8c6 | 2308 | if (role.direct) |
5b7e0102 | 2309 | role.cr4_pae = 0; |
41074d07 | 2310 | role.access = access; |
c5a78f2b JR |
2311 | if (!vcpu->arch.mmu.direct_map |
2312 | && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { | |
cea0f0e7 AK |
2313 | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); |
2314 | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | |
2315 | role.quadrant = quadrant; | |
2316 | } | |
f3414bc7 DM |
2317 | for_each_valid_sp(vcpu->kvm, sp, gfn) { |
2318 | if (sp->gfn != gfn) { | |
2319 | collisions++; | |
2320 | continue; | |
2321 | } | |
2322 | ||
7ae680eb XG |
2323 | if (!need_sync && sp->unsync) |
2324 | need_sync = true; | |
4731d4c7 | 2325 | |
7ae680eb XG |
2326 | if (sp->role.word != role.word) |
2327 | continue; | |
4731d4c7 | 2328 | |
2a74003a PB |
2329 | if (sp->unsync) { |
2330 | /* The page is good, but __kvm_sync_page might still end | |
2331 | * up zapping it. If so, break in order to rebuild it. | |
2332 | */ | |
2333 | if (!__kvm_sync_page(vcpu, sp, &invalid_list)) | |
2334 | break; | |
2335 | ||
2336 | WARN_ON(!list_empty(&invalid_list)); | |
2337 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | |
2338 | } | |
e02aa901 | 2339 | |
98bba238 | 2340 | if (sp->unsync_children) |
a8eeb04a | 2341 | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
e02aa901 | 2342 | |
a30f47cb | 2343 | __clear_sp_write_flooding_count(sp); |
7ae680eb | 2344 | trace_kvm_mmu_get_page(sp, false); |
f3414bc7 | 2345 | goto out; |
7ae680eb | 2346 | } |
47005792 | 2347 | |
dfc5aa00 | 2348 | ++vcpu->kvm->stat.mmu_cache_miss; |
47005792 TY |
2349 | |
2350 | sp = kvm_mmu_alloc_page(vcpu, direct); | |
2351 | ||
4db35314 AK |
2352 | sp->gfn = gfn; |
2353 | sp->role = role; | |
7ae680eb XG |
2354 | hlist_add_head(&sp->hash_link, |
2355 | &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); | |
f6e2c02b | 2356 | if (!direct) { |
56ca57f9 XG |
2357 | /* |
2358 | * we should do write protection before syncing pages | |
2359 | * otherwise the content of the synced shadow page may | |
2360 | * be inconsistent with guest page table. | |
2361 | */ | |
2362 | account_shadowed(vcpu->kvm, sp); | |
2363 | if (level == PT_PAGE_TABLE_LEVEL && | |
2364 | rmap_write_protect(vcpu, gfn)) | |
b1a36821 | 2365 | kvm_flush_remote_tlbs(vcpu->kvm); |
9f1a122f | 2366 | |
9f1a122f | 2367 | if (level > PT_PAGE_TABLE_LEVEL && need_sync) |
2a74003a | 2368 | flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); |
4731d4c7 | 2369 | } |
5304b8d3 | 2370 | sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; |
77492664 | 2371 | clear_page(sp->spt); |
f691fe1d | 2372 | trace_kvm_mmu_get_page(sp, true); |
2a74003a PB |
2373 | |
2374 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | |
f3414bc7 DM |
2375 | out: |
2376 | if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) | |
2377 | vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; | |
4db35314 | 2378 | return sp; |
cea0f0e7 AK |
2379 | } |
2380 | ||
2d11123a AK |
2381 | static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, |
2382 | struct kvm_vcpu *vcpu, u64 addr) | |
2383 | { | |
2384 | iterator->addr = addr; | |
2385 | iterator->shadow_addr = vcpu->arch.mmu.root_hpa; | |
2386 | iterator->level = vcpu->arch.mmu.shadow_root_level; | |
81407ca5 | 2387 | |
2a7266a8 YZ |
2388 | if (iterator->level == PT64_ROOT_4LEVEL && |
2389 | vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL && | |
81407ca5 JR |
2390 | !vcpu->arch.mmu.direct_map) |
2391 | --iterator->level; | |
2392 | ||
2d11123a AK |
2393 | if (iterator->level == PT32E_ROOT_LEVEL) { |
2394 | iterator->shadow_addr | |
2395 | = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; | |
2396 | iterator->shadow_addr &= PT64_BASE_ADDR_MASK; | |
2397 | --iterator->level; | |
2398 | if (!iterator->shadow_addr) | |
2399 | iterator->level = 0; | |
2400 | } | |
2401 | } | |
2402 | ||
2403 | static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) | |
2404 | { | |
2405 | if (iterator->level < PT_PAGE_TABLE_LEVEL) | |
2406 | return false; | |
4d88954d | 2407 | |
2d11123a AK |
2408 | iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); |
2409 | iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; | |
2410 | return true; | |
2411 | } | |
2412 | ||
c2a2ac2b XG |
2413 | static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, |
2414 | u64 spte) | |
2d11123a | 2415 | { |
c2a2ac2b | 2416 | if (is_last_spte(spte, iterator->level)) { |
052331be XG |
2417 | iterator->level = 0; |
2418 | return; | |
2419 | } | |
2420 | ||
c2a2ac2b | 2421 | iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; |
2d11123a AK |
2422 | --iterator->level; |
2423 | } | |
2424 | ||
c2a2ac2b XG |
2425 | static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) |
2426 | { | |
2427 | return __shadow_walk_next(iterator, *iterator->sptep); | |
2428 | } | |
2429 | ||
98bba238 TY |
2430 | static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, |
2431 | struct kvm_mmu_page *sp) | |
32ef26a3 AK |
2432 | { |
2433 | u64 spte; | |
2434 | ||
ffb128c8 | 2435 | BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); |
7a1638ce | 2436 | |
ffb128c8 | 2437 | spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK | |
d0ec49d4 | 2438 | shadow_user_mask | shadow_x_mask | shadow_me_mask; |
ac8d57e5 PF |
2439 | |
2440 | if (sp_ad_disabled(sp)) | |
2441 | spte |= shadow_acc_track_value; | |
2442 | else | |
2443 | spte |= shadow_accessed_mask; | |
24db2734 | 2444 | |
1df9f2dc | 2445 | mmu_spte_set(sptep, spte); |
98bba238 TY |
2446 | |
2447 | mmu_page_add_parent_pte(vcpu, sp, sptep); | |
2448 | ||
2449 | if (sp->unsync_children || sp->unsync) | |
2450 | mark_unsync(sptep); | |
32ef26a3 AK |
2451 | } |
2452 | ||
a357bd22 AK |
2453 | static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
2454 | unsigned direct_access) | |
2455 | { | |
2456 | if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { | |
2457 | struct kvm_mmu_page *child; | |
2458 | ||
2459 | /* | |
2460 | * For the direct sp, if the guest pte's dirty bit | |
2461 | * changed form clean to dirty, it will corrupt the | |
2462 | * sp's access: allow writable in the read-only sp, | |
2463 | * so we should update the spte at this point to get | |
2464 | * a new sp with the correct access. | |
2465 | */ | |
2466 | child = page_header(*sptep & PT64_BASE_ADDR_MASK); | |
2467 | if (child->role.access == direct_access) | |
2468 | return; | |
2469 | ||
bcdd9a93 | 2470 | drop_parent_pte(child, sptep); |
a357bd22 AK |
2471 | kvm_flush_remote_tlbs(vcpu->kvm); |
2472 | } | |
2473 | } | |
2474 | ||
505aef8f | 2475 | static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, |
38e3b2b2 XG |
2476 | u64 *spte) |
2477 | { | |
2478 | u64 pte; | |
2479 | struct kvm_mmu_page *child; | |
2480 | ||
2481 | pte = *spte; | |
2482 | if (is_shadow_present_pte(pte)) { | |
505aef8f | 2483 | if (is_last_spte(pte, sp->role.level)) { |
c3707958 | 2484 | drop_spte(kvm, spte); |
505aef8f XG |
2485 | if (is_large_pte(pte)) |
2486 | --kvm->stat.lpages; | |
2487 | } else { | |
38e3b2b2 | 2488 | child = page_header(pte & PT64_BASE_ADDR_MASK); |
bcdd9a93 | 2489 | drop_parent_pte(child, spte); |
38e3b2b2 | 2490 | } |
505aef8f XG |
2491 | return true; |
2492 | } | |
2493 | ||
2494 | if (is_mmio_spte(pte)) | |
ce88decf | 2495 | mmu_spte_clear_no_track(spte); |
c3707958 | 2496 | |
505aef8f | 2497 | return false; |
38e3b2b2 XG |
2498 | } |
2499 | ||
90cb0529 | 2500 | static void kvm_mmu_page_unlink_children(struct kvm *kvm, |
4db35314 | 2501 | struct kvm_mmu_page *sp) |
a436036b | 2502 | { |
697fe2e2 | 2503 | unsigned i; |
697fe2e2 | 2504 | |
38e3b2b2 XG |
2505 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) |
2506 | mmu_page_zap_pte(kvm, sp, sp->spt + i); | |
a436036b AK |
2507 | } |
2508 | ||
31aa2b44 | 2509 | static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) |
a436036b | 2510 | { |
1e3f42f0 TY |
2511 | u64 *sptep; |
2512 | struct rmap_iterator iter; | |
a436036b | 2513 | |
018aabb5 | 2514 | while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) |
1e3f42f0 | 2515 | drop_parent_pte(sp, sptep); |
31aa2b44 AK |
2516 | } |
2517 | ||
60c8aec6 | 2518 | static int mmu_zap_unsync_children(struct kvm *kvm, |
7775834a XG |
2519 | struct kvm_mmu_page *parent, |
2520 | struct list_head *invalid_list) | |
4731d4c7 | 2521 | { |
60c8aec6 MT |
2522 | int i, zapped = 0; |
2523 | struct mmu_page_path parents; | |
2524 | struct kvm_mmu_pages pages; | |
4731d4c7 | 2525 | |
60c8aec6 | 2526 | if (parent->role.level == PT_PAGE_TABLE_LEVEL) |
4731d4c7 | 2527 | return 0; |
60c8aec6 | 2528 | |
60c8aec6 MT |
2529 | while (mmu_unsync_walk(parent, &pages)) { |
2530 | struct kvm_mmu_page *sp; | |
2531 | ||
2532 | for_each_sp(pages, sp, parents, i) { | |
7775834a | 2533 | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
60c8aec6 | 2534 | mmu_pages_clear_parents(&parents); |
77662e00 | 2535 | zapped++; |
60c8aec6 | 2536 | } |
60c8aec6 MT |
2537 | } |
2538 | ||
2539 | return zapped; | |
4731d4c7 MT |
2540 | } |
2541 | ||
7775834a XG |
2542 | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
2543 | struct list_head *invalid_list) | |
31aa2b44 | 2544 | { |
4731d4c7 | 2545 | int ret; |
f691fe1d | 2546 | |
7775834a | 2547 | trace_kvm_mmu_prepare_zap_page(sp); |
31aa2b44 | 2548 | ++kvm->stat.mmu_shadow_zapped; |
7775834a | 2549 | ret = mmu_zap_unsync_children(kvm, sp, invalid_list); |
4db35314 | 2550 | kvm_mmu_page_unlink_children(kvm, sp); |
31aa2b44 | 2551 | kvm_mmu_unlink_parents(kvm, sp); |
5304b8d3 | 2552 | |
f6e2c02b | 2553 | if (!sp->role.invalid && !sp->role.direct) |
3ed1a478 | 2554 | unaccount_shadowed(kvm, sp); |
5304b8d3 | 2555 | |
4731d4c7 MT |
2556 | if (sp->unsync) |
2557 | kvm_unlink_unsync_page(kvm, sp); | |
4db35314 | 2558 | if (!sp->root_count) { |
54a4f023 GJ |
2559 | /* Count self */ |
2560 | ret++; | |
7775834a | 2561 | list_move(&sp->link, invalid_list); |
aa6bd187 | 2562 | kvm_mod_used_mmu_pages(kvm, -1); |
2e53d63a | 2563 | } else { |
5b5c6a5a | 2564 | list_move(&sp->link, &kvm->arch.active_mmu_pages); |
05988d72 GN |
2565 | |
2566 | /* | |
2567 | * The obsolete pages can not be used on any vcpus. | |
2568 | * See the comments in kvm_mmu_invalidate_zap_all_pages(). | |
2569 | */ | |
2570 | if (!sp->role.invalid && !is_obsolete_sp(kvm, sp)) | |
2571 | kvm_reload_remote_mmus(kvm); | |
2e53d63a | 2572 | } |
7775834a XG |
2573 | |
2574 | sp->role.invalid = 1; | |
4731d4c7 | 2575 | return ret; |
a436036b AK |
2576 | } |
2577 | ||
7775834a XG |
2578 | static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
2579 | struct list_head *invalid_list) | |
2580 | { | |
945315b9 | 2581 | struct kvm_mmu_page *sp, *nsp; |
7775834a XG |
2582 | |
2583 | if (list_empty(invalid_list)) | |
2584 | return; | |
2585 | ||
c142786c | 2586 | /* |
9753f529 LT |
2587 | * We need to make sure everyone sees our modifications to |
2588 | * the page tables and see changes to vcpu->mode here. The barrier | |
2589 | * in the kvm_flush_remote_tlbs() achieves this. This pairs | |
2590 | * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. | |
2591 | * | |
2592 | * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit | |
2593 | * guest mode and/or lockless shadow page table walks. | |
c142786c AK |
2594 | */ |
2595 | kvm_flush_remote_tlbs(kvm); | |
c2a2ac2b | 2596 | |
945315b9 | 2597 | list_for_each_entry_safe(sp, nsp, invalid_list, link) { |
7775834a | 2598 | WARN_ON(!sp->role.invalid || sp->root_count); |
aa6bd187 | 2599 | kvm_mmu_free_page(sp); |
945315b9 | 2600 | } |
7775834a XG |
2601 | } |
2602 | ||
5da59607 TY |
2603 | static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, |
2604 | struct list_head *invalid_list) | |
2605 | { | |
2606 | struct kvm_mmu_page *sp; | |
2607 | ||
2608 | if (list_empty(&kvm->arch.active_mmu_pages)) | |
2609 | return false; | |
2610 | ||
d74c0e6b GT |
2611 | sp = list_last_entry(&kvm->arch.active_mmu_pages, |
2612 | struct kvm_mmu_page, link); | |
42bcbebf | 2613 | return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
5da59607 TY |
2614 | } |
2615 | ||
82ce2c96 IE |
2616 | /* |
2617 | * Changing the number of mmu pages allocated to the vm | |
49d5ca26 | 2618 | * Note: if goal_nr_mmu_pages is too small, you will get dead lock |
82ce2c96 | 2619 | */ |
49d5ca26 | 2620 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) |
82ce2c96 | 2621 | { |
d98ba053 | 2622 | LIST_HEAD(invalid_list); |
82ce2c96 | 2623 | |
b34cb590 TY |
2624 | spin_lock(&kvm->mmu_lock); |
2625 | ||
49d5ca26 | 2626 | if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { |
5da59607 TY |
2627 | /* Need to free some mmu pages to achieve the goal. */ |
2628 | while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) | |
2629 | if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) | |
2630 | break; | |
82ce2c96 | 2631 | |
aa6bd187 | 2632 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
49d5ca26 | 2633 | goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; |
82ce2c96 | 2634 | } |
82ce2c96 | 2635 | |
49d5ca26 | 2636 | kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; |
b34cb590 TY |
2637 | |
2638 | spin_unlock(&kvm->mmu_lock); | |
82ce2c96 IE |
2639 | } |
2640 | ||
1cb3f3ae | 2641 | int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) |
a436036b | 2642 | { |
4db35314 | 2643 | struct kvm_mmu_page *sp; |
d98ba053 | 2644 | LIST_HEAD(invalid_list); |
a436036b AK |
2645 | int r; |
2646 | ||
9ad17b10 | 2647 | pgprintk("%s: looking for gfn %llx\n", __func__, gfn); |
a436036b | 2648 | r = 0; |
1cb3f3ae | 2649 | spin_lock(&kvm->mmu_lock); |
b67bfe0d | 2650 | for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { |
9ad17b10 | 2651 | pgprintk("%s: gfn %llx role %x\n", __func__, gfn, |
7ae680eb XG |
2652 | sp->role.word); |
2653 | r = 1; | |
f41d335a | 2654 | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
7ae680eb | 2655 | } |
d98ba053 | 2656 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
1cb3f3ae XG |
2657 | spin_unlock(&kvm->mmu_lock); |
2658 | ||
a436036b | 2659 | return r; |
cea0f0e7 | 2660 | } |
1cb3f3ae | 2661 | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); |
cea0f0e7 | 2662 | |
5c520e90 | 2663 | static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
9cf5cf5a XG |
2664 | { |
2665 | trace_kvm_mmu_unsync_page(sp); | |
2666 | ++vcpu->kvm->stat.mmu_unsync; | |
2667 | sp->unsync = 1; | |
2668 | ||
2669 | kvm_mmu_mark_parents_unsync(sp); | |
9cf5cf5a XG |
2670 | } |
2671 | ||
3d0c27ad XG |
2672 | static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, |
2673 | bool can_unsync) | |
4731d4c7 | 2674 | { |
5c520e90 | 2675 | struct kvm_mmu_page *sp; |
4731d4c7 | 2676 | |
3d0c27ad XG |
2677 | if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) |
2678 | return true; | |
9cf5cf5a | 2679 | |
5c520e90 | 2680 | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { |
36a2e677 | 2681 | if (!can_unsync) |
3d0c27ad | 2682 | return true; |
36a2e677 | 2683 | |
5c520e90 XG |
2684 | if (sp->unsync) |
2685 | continue; | |
9cf5cf5a | 2686 | |
5c520e90 XG |
2687 | WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); |
2688 | kvm_unsync_page(vcpu, sp); | |
4731d4c7 | 2689 | } |
3d0c27ad XG |
2690 | |
2691 | return false; | |
4731d4c7 MT |
2692 | } |
2693 | ||
ba049e93 | 2694 | static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) |
d1fe9219 PB |
2695 | { |
2696 | if (pfn_valid(pfn)) | |
2697 | return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)); | |
2698 | ||
2699 | return true; | |
2700 | } | |
2701 | ||
d555c333 | 2702 | static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
c2288505 | 2703 | unsigned pte_access, int level, |
ba049e93 | 2704 | gfn_t gfn, kvm_pfn_t pfn, bool speculative, |
9bdbba13 | 2705 | bool can_unsync, bool host_writable) |
1c4f1fd6 | 2706 | { |
ffb128c8 | 2707 | u64 spte = 0; |
1e73f9dd | 2708 | int ret = 0; |
ac8d57e5 | 2709 | struct kvm_mmu_page *sp; |
64d4d521 | 2710 | |
54bf36aa | 2711 | if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) |
ce88decf XG |
2712 | return 0; |
2713 | ||
ac8d57e5 PF |
2714 | sp = page_header(__pa(sptep)); |
2715 | if (sp_ad_disabled(sp)) | |
2716 | spte |= shadow_acc_track_value; | |
2717 | ||
d95c5568 BD |
2718 | /* |
2719 | * For the EPT case, shadow_present_mask is 0 if hardware | |
2720 | * supports exec-only page table entries. In that case, | |
2721 | * ACC_USER_MASK and shadow_user_mask are used to represent | |
2722 | * read access. See FNAME(gpte_access) in paging_tmpl.h. | |
2723 | */ | |
ffb128c8 | 2724 | spte |= shadow_present_mask; |
947da538 | 2725 | if (!speculative) |
ac8d57e5 | 2726 | spte |= spte_shadow_accessed_mask(spte); |
640d9b0d | 2727 | |
7b52345e SY |
2728 | if (pte_access & ACC_EXEC_MASK) |
2729 | spte |= shadow_x_mask; | |
2730 | else | |
2731 | spte |= shadow_nx_mask; | |
49fde340 | 2732 | |
1c4f1fd6 | 2733 | if (pte_access & ACC_USER_MASK) |
7b52345e | 2734 | spte |= shadow_user_mask; |
49fde340 | 2735 | |
852e3c19 | 2736 | if (level > PT_PAGE_TABLE_LEVEL) |
05da4558 | 2737 | spte |= PT_PAGE_SIZE_MASK; |
b0bc3ee2 | 2738 | if (tdp_enabled) |
4b12f0de | 2739 | spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, |
d1fe9219 | 2740 | kvm_is_mmio_pfn(pfn)); |
1c4f1fd6 | 2741 | |
9bdbba13 | 2742 | if (host_writable) |
1403283a | 2743 | spte |= SPTE_HOST_WRITEABLE; |
f8e453b0 XG |
2744 | else |
2745 | pte_access &= ~ACC_WRITE_MASK; | |
1403283a | 2746 | |
35149e21 | 2747 | spte |= (u64)pfn << PAGE_SHIFT; |
d0ec49d4 | 2748 | spte |= shadow_me_mask; |
1c4f1fd6 | 2749 | |
c2288505 | 2750 | if (pte_access & ACC_WRITE_MASK) { |
1c4f1fd6 | 2751 | |
c2193463 | 2752 | /* |
7751babd XG |
2753 | * Other vcpu creates new sp in the window between |
2754 | * mapping_level() and acquiring mmu-lock. We can | |
2755 | * allow guest to retry the access, the mapping can | |
2756 | * be fixed if guest refault. | |
c2193463 | 2757 | */ |
852e3c19 | 2758 | if (level > PT_PAGE_TABLE_LEVEL && |
92f94f1e | 2759 | mmu_gfn_lpage_is_disallowed(vcpu, gfn, level)) |
be38d276 | 2760 | goto done; |
38187c83 | 2761 | |
49fde340 | 2762 | spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; |
1c4f1fd6 | 2763 | |
ecc5589f MT |
2764 | /* |
2765 | * Optimization: for pte sync, if spte was writable the hash | |
2766 | * lookup is unnecessary (and expensive). Write protection | |
2767 | * is responsibility of mmu_get_page / kvm_sync_page. | |
2768 | * Same reasoning can be applied to dirty page accounting. | |
2769 | */ | |
8dae4445 | 2770 | if (!can_unsync && is_writable_pte(*sptep)) |
ecc5589f MT |
2771 | goto set_pte; |
2772 | ||
4731d4c7 | 2773 | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { |
9ad17b10 | 2774 | pgprintk("%s: found shadow page for %llx, marking ro\n", |
b8688d51 | 2775 | __func__, gfn); |
1e73f9dd | 2776 | ret = 1; |
1c4f1fd6 | 2777 | pte_access &= ~ACC_WRITE_MASK; |
49fde340 | 2778 | spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); |
1c4f1fd6 AK |
2779 | } |
2780 | } | |
2781 | ||
9b51a630 | 2782 | if (pte_access & ACC_WRITE_MASK) { |
54bf36aa | 2783 | kvm_vcpu_mark_page_dirty(vcpu, gfn); |
ac8d57e5 | 2784 | spte |= spte_shadow_dirty_mask(spte); |
9b51a630 | 2785 | } |
1c4f1fd6 | 2786 | |
f160c7b7 JS |
2787 | if (speculative) |
2788 | spte = mark_spte_for_access_track(spte); | |
2789 | ||
38187c83 | 2790 | set_pte: |
6e7d0354 | 2791 | if (mmu_spte_update(sptep, spte)) |
b330aa0c | 2792 | kvm_flush_remote_tlbs(vcpu->kvm); |
be38d276 | 2793 | done: |
1e73f9dd MT |
2794 | return ret; |
2795 | } | |
2796 | ||
029499b4 | 2797 | static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, |
ba049e93 | 2798 | int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn, |
029499b4 | 2799 | bool speculative, bool host_writable) |
1e73f9dd MT |
2800 | { |
2801 | int was_rmapped = 0; | |
53a27b39 | 2802 | int rmap_count; |
029499b4 | 2803 | bool emulate = false; |
1e73f9dd | 2804 | |
f7616203 XG |
2805 | pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, |
2806 | *sptep, write_fault, gfn); | |
1e73f9dd | 2807 | |
afd28fe1 | 2808 | if (is_shadow_present_pte(*sptep)) { |
1e73f9dd MT |
2809 | /* |
2810 | * If we overwrite a PTE page pointer with a 2MB PMD, unlink | |
2811 | * the parent of the now unreachable PTE. | |
2812 | */ | |
852e3c19 JR |
2813 | if (level > PT_PAGE_TABLE_LEVEL && |
2814 | !is_large_pte(*sptep)) { | |
1e73f9dd | 2815 | struct kvm_mmu_page *child; |
d555c333 | 2816 | u64 pte = *sptep; |
1e73f9dd MT |
2817 | |
2818 | child = page_header(pte & PT64_BASE_ADDR_MASK); | |
bcdd9a93 | 2819 | drop_parent_pte(child, sptep); |
3be2264b | 2820 | kvm_flush_remote_tlbs(vcpu->kvm); |
d555c333 | 2821 | } else if (pfn != spte_to_pfn(*sptep)) { |
9ad17b10 | 2822 | pgprintk("hfn old %llx new %llx\n", |
d555c333 | 2823 | spte_to_pfn(*sptep), pfn); |
c3707958 | 2824 | drop_spte(vcpu->kvm, sptep); |
91546356 | 2825 | kvm_flush_remote_tlbs(vcpu->kvm); |
6bed6b9e JR |
2826 | } else |
2827 | was_rmapped = 1; | |
1e73f9dd | 2828 | } |
852e3c19 | 2829 | |
c2288505 XG |
2830 | if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative, |
2831 | true, host_writable)) { | |
1e73f9dd | 2832 | if (write_fault) |
029499b4 | 2833 | emulate = true; |
77c3913b | 2834 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
a378b4e6 | 2835 | } |
1e73f9dd | 2836 | |
029499b4 TY |
2837 | if (unlikely(is_mmio_spte(*sptep))) |
2838 | emulate = true; | |
ce88decf | 2839 | |
d555c333 | 2840 | pgprintk("%s: setting spte %llx\n", __func__, *sptep); |
9ad17b10 | 2841 | pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", |
d555c333 | 2842 | is_large_pte(*sptep)? "2MB" : "4kB", |
f160c7b7 | 2843 | *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn, |
a205bc19 | 2844 | *sptep, sptep); |
d555c333 | 2845 | if (!was_rmapped && is_large_pte(*sptep)) |
05da4558 MT |
2846 | ++vcpu->kvm->stat.lpages; |
2847 | ||
ffb61bb3 | 2848 | if (is_shadow_present_pte(*sptep)) { |
ffb61bb3 XG |
2849 | if (!was_rmapped) { |
2850 | rmap_count = rmap_add(vcpu, sptep, gfn); | |
2851 | if (rmap_count > RMAP_RECYCLE_THRESHOLD) | |
2852 | rmap_recycle(vcpu, sptep, gfn); | |
2853 | } | |
1c4f1fd6 | 2854 | } |
cb9aaa30 | 2855 | |
f3ac1a4b | 2856 | kvm_release_pfn_clean(pfn); |
029499b4 TY |
2857 | |
2858 | return emulate; | |
1c4f1fd6 AK |
2859 | } |
2860 | ||
ba049e93 | 2861 | static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, |
957ed9ef XG |
2862 | bool no_dirty_log) |
2863 | { | |
2864 | struct kvm_memory_slot *slot; | |
957ed9ef | 2865 | |
5d163b1c | 2866 | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); |
903816fa | 2867 | if (!slot) |
6c8ee57b | 2868 | return KVM_PFN_ERR_FAULT; |
957ed9ef | 2869 | |
037d92dc | 2870 | return gfn_to_pfn_memslot_atomic(slot, gfn); |
957ed9ef XG |
2871 | } |
2872 | ||
2873 | static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, | |
2874 | struct kvm_mmu_page *sp, | |
2875 | u64 *start, u64 *end) | |
2876 | { | |
2877 | struct page *pages[PTE_PREFETCH_NUM]; | |
d9ef13c2 | 2878 | struct kvm_memory_slot *slot; |
957ed9ef XG |
2879 | unsigned access = sp->role.access; |
2880 | int i, ret; | |
2881 | gfn_t gfn; | |
2882 | ||
2883 | gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); | |
d9ef13c2 PB |
2884 | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); |
2885 | if (!slot) | |
957ed9ef XG |
2886 | return -1; |
2887 | ||
d9ef13c2 | 2888 | ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); |
957ed9ef XG |
2889 | if (ret <= 0) |
2890 | return -1; | |
2891 | ||
2892 | for (i = 0; i < ret; i++, gfn++, start++) | |
029499b4 TY |
2893 | mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn, |
2894 | page_to_pfn(pages[i]), true, true); | |
957ed9ef XG |
2895 | |
2896 | return 0; | |
2897 | } | |
2898 | ||
2899 | static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, | |
2900 | struct kvm_mmu_page *sp, u64 *sptep) | |
2901 | { | |
2902 | u64 *spte, *start = NULL; | |
2903 | int i; | |
2904 | ||
2905 | WARN_ON(!sp->role.direct); | |
2906 | ||
2907 | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | |
2908 | spte = sp->spt + i; | |
2909 | ||
2910 | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | |
c3707958 | 2911 | if (is_shadow_present_pte(*spte) || spte == sptep) { |
957ed9ef XG |
2912 | if (!start) |
2913 | continue; | |
2914 | if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) | |
2915 | break; | |
2916 | start = NULL; | |
2917 | } else if (!start) | |
2918 | start = spte; | |
2919 | } | |
2920 | } | |
2921 | ||
2922 | static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) | |
2923 | { | |
2924 | struct kvm_mmu_page *sp; | |
2925 | ||
ac8d57e5 PF |
2926 | sp = page_header(__pa(sptep)); |
2927 | ||
957ed9ef | 2928 | /* |
ac8d57e5 PF |
2929 | * Without accessed bits, there's no way to distinguish between |
2930 | * actually accessed translations and prefetched, so disable pte | |
2931 | * prefetch if accessed bits aren't available. | |
957ed9ef | 2932 | */ |
ac8d57e5 | 2933 | if (sp_ad_disabled(sp)) |
957ed9ef XG |
2934 | return; |
2935 | ||
957ed9ef XG |
2936 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
2937 | return; | |
2938 | ||
2939 | __direct_pte_prefetch(vcpu, sp, sptep); | |
2940 | } | |
2941 | ||
7ee0e5b2 | 2942 | static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable, |
ba049e93 | 2943 | int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault) |
140754bc | 2944 | { |
9f652d21 | 2945 | struct kvm_shadow_walk_iterator iterator; |
140754bc | 2946 | struct kvm_mmu_page *sp; |
b90a0e6c | 2947 | int emulate = 0; |
140754bc | 2948 | gfn_t pseudo_gfn; |
6aa8b732 | 2949 | |
989c6b34 MT |
2950 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
2951 | return 0; | |
2952 | ||
9f652d21 | 2953 | for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) { |
852e3c19 | 2954 | if (iterator.level == level) { |
029499b4 TY |
2955 | emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, |
2956 | write, level, gfn, pfn, prefault, | |
2957 | map_writable); | |
957ed9ef | 2958 | direct_pte_prefetch(vcpu, iterator.sptep); |
9f652d21 AK |
2959 | ++vcpu->stat.pf_fixed; |
2960 | break; | |
6aa8b732 AK |
2961 | } |
2962 | ||
404381c5 | 2963 | drop_large_spte(vcpu, iterator.sptep); |
c3707958 | 2964 | if (!is_shadow_present_pte(*iterator.sptep)) { |
c9fa0b3b LJ |
2965 | u64 base_addr = iterator.addr; |
2966 | ||
2967 | base_addr &= PT64_LVL_ADDR_MASK(iterator.level); | |
2968 | pseudo_gfn = base_addr >> PAGE_SHIFT; | |
9f652d21 | 2969 | sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr, |
bb11c6c9 | 2970 | iterator.level - 1, 1, ACC_ALL); |
140754bc | 2971 | |
98bba238 | 2972 | link_shadow_page(vcpu, iterator.sptep, sp); |
9f652d21 AK |
2973 | } |
2974 | } | |
b90a0e6c | 2975 | return emulate; |
6aa8b732 AK |
2976 | } |
2977 | ||
77db5cbd | 2978 | static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) |
bf998156 | 2979 | { |
77db5cbd YH |
2980 | siginfo_t info; |
2981 | ||
2982 | info.si_signo = SIGBUS; | |
2983 | info.si_errno = 0; | |
2984 | info.si_code = BUS_MCEERR_AR; | |
2985 | info.si_addr = (void __user *)address; | |
2986 | info.si_addr_lsb = PAGE_SHIFT; | |
bf998156 | 2987 | |
77db5cbd | 2988 | send_sig_info(SIGBUS, &info, tsk); |
bf998156 YH |
2989 | } |
2990 | ||
ba049e93 | 2991 | static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) |
bf998156 | 2992 | { |
4d8b81ab XG |
2993 | /* |
2994 | * Do not cache the mmio info caused by writing the readonly gfn | |
2995 | * into the spte otherwise read access on readonly gfn also can | |
2996 | * caused mmio page fault and treat it as mmio access. | |
2997 | * Return 1 to tell kvm to emulate it. | |
2998 | */ | |
2999 | if (pfn == KVM_PFN_ERR_RO_FAULT) | |
3000 | return 1; | |
3001 | ||
e6c1502b | 3002 | if (pfn == KVM_PFN_ERR_HWPOISON) { |
54bf36aa | 3003 | kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); |
bf998156 | 3004 | return 0; |
d7c55201 | 3005 | } |
edba23e5 | 3006 | |
d7c55201 | 3007 | return -EFAULT; |
bf998156 YH |
3008 | } |
3009 | ||
936a5fe6 | 3010 | static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, |
ba049e93 DW |
3011 | gfn_t *gfnp, kvm_pfn_t *pfnp, |
3012 | int *levelp) | |
936a5fe6 | 3013 | { |
ba049e93 | 3014 | kvm_pfn_t pfn = *pfnp; |
936a5fe6 AA |
3015 | gfn_t gfn = *gfnp; |
3016 | int level = *levelp; | |
3017 | ||
3018 | /* | |
3019 | * Check if it's a transparent hugepage. If this would be an | |
3020 | * hugetlbfs page, level wouldn't be set to | |
3021 | * PT_PAGE_TABLE_LEVEL and there would be no adjustment done | |
3022 | * here. | |
3023 | */ | |
bf4bea8e | 3024 | if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) && |
936a5fe6 | 3025 | level == PT_PAGE_TABLE_LEVEL && |
127393fb | 3026 | PageTransCompoundMap(pfn_to_page(pfn)) && |
92f94f1e | 3027 | !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) { |
936a5fe6 AA |
3028 | unsigned long mask; |
3029 | /* | |
3030 | * mmu_notifier_retry was successful and we hold the | |
3031 | * mmu_lock here, so the pmd can't become splitting | |
3032 | * from under us, and in turn | |
3033 | * __split_huge_page_refcount() can't run from under | |
3034 | * us and we can safely transfer the refcount from | |
3035 | * PG_tail to PG_head as we switch the pfn to tail to | |
3036 | * head. | |
3037 | */ | |
3038 | *levelp = level = PT_DIRECTORY_LEVEL; | |
3039 | mask = KVM_PAGES_PER_HPAGE(level) - 1; | |
3040 | VM_BUG_ON((gfn & mask) != (pfn & mask)); | |
3041 | if (pfn & mask) { | |
3042 | gfn &= ~mask; | |
3043 | *gfnp = gfn; | |
3044 | kvm_release_pfn_clean(pfn); | |
3045 | pfn &= ~mask; | |
c3586667 | 3046 | kvm_get_pfn(pfn); |
936a5fe6 AA |
3047 | *pfnp = pfn; |
3048 | } | |
3049 | } | |
3050 | } | |
3051 | ||
d7c55201 | 3052 | static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, |
ba049e93 | 3053 | kvm_pfn_t pfn, unsigned access, int *ret_val) |
d7c55201 | 3054 | { |
d7c55201 | 3055 | /* The pfn is invalid, report the error! */ |
81c52c56 | 3056 | if (unlikely(is_error_pfn(pfn))) { |
d7c55201 | 3057 | *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); |
798e88b3 | 3058 | return true; |
d7c55201 XG |
3059 | } |
3060 | ||
ce88decf | 3061 | if (unlikely(is_noslot_pfn(pfn))) |
d7c55201 | 3062 | vcpu_cache_mmio_info(vcpu, gva, gfn, access); |
d7c55201 | 3063 | |
798e88b3 | 3064 | return false; |
d7c55201 XG |
3065 | } |
3066 | ||
e5552fd2 | 3067 | static bool page_fault_can_be_fast(u32 error_code) |
c7ba5b48 | 3068 | { |
1c118b82 XG |
3069 | /* |
3070 | * Do not fix the mmio spte with invalid generation number which | |
3071 | * need to be updated by slow page fault path. | |
3072 | */ | |
3073 | if (unlikely(error_code & PFERR_RSVD_MASK)) | |
3074 | return false; | |
3075 | ||
f160c7b7 JS |
3076 | /* See if the page fault is due to an NX violation */ |
3077 | if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) | |
3078 | == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) | |
3079 | return false; | |
3080 | ||
c7ba5b48 | 3081 | /* |
f160c7b7 JS |
3082 | * #PF can be fast if: |
3083 | * 1. The shadow page table entry is not present, which could mean that | |
3084 | * the fault is potentially caused by access tracking (if enabled). | |
3085 | * 2. The shadow page table entry is present and the fault | |
3086 | * is caused by write-protect, that means we just need change the W | |
3087 | * bit of the spte which can be done out of mmu-lock. | |
3088 | * | |
3089 | * However, if access tracking is disabled we know that a non-present | |
3090 | * page must be a genuine page fault where we have to create a new SPTE. | |
3091 | * So, if access tracking is disabled, we return true only for write | |
3092 | * accesses to a present page. | |
c7ba5b48 | 3093 | */ |
c7ba5b48 | 3094 | |
f160c7b7 JS |
3095 | return shadow_acc_track_mask != 0 || |
3096 | ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) | |
3097 | == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); | |
c7ba5b48 XG |
3098 | } |
3099 | ||
97dceba2 JS |
3100 | /* |
3101 | * Returns true if the SPTE was fixed successfully. Otherwise, | |
3102 | * someone else modified the SPTE from its original value. | |
3103 | */ | |
c7ba5b48 | 3104 | static bool |
92a476cb | 3105 | fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
d3e328f2 | 3106 | u64 *sptep, u64 old_spte, u64 new_spte) |
c7ba5b48 | 3107 | { |
c7ba5b48 XG |
3108 | gfn_t gfn; |
3109 | ||
3110 | WARN_ON(!sp->role.direct); | |
3111 | ||
9b51a630 KH |
3112 | /* |
3113 | * Theoretically we could also set dirty bit (and flush TLB) here in | |
3114 | * order to eliminate unnecessary PML logging. See comments in | |
3115 | * set_spte. But fast_page_fault is very unlikely to happen with PML | |
3116 | * enabled, so we do not do this. This might result in the same GPA | |
3117 | * to be logged in PML buffer again when the write really happens, and | |
3118 | * eventually to be called by mark_page_dirty twice. But it's also no | |
3119 | * harm. This also avoids the TLB flush needed after setting dirty bit | |
3120 | * so non-PML cases won't be impacted. | |
3121 | * | |
3122 | * Compare with set_spte where instead shadow_dirty_mask is set. | |
3123 | */ | |
f160c7b7 | 3124 | if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) |
97dceba2 JS |
3125 | return false; |
3126 | ||
d3e328f2 | 3127 | if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { |
f160c7b7 JS |
3128 | /* |
3129 | * The gfn of direct spte is stable since it is | |
3130 | * calculated by sp->gfn. | |
3131 | */ | |
3132 | gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); | |
3133 | kvm_vcpu_mark_page_dirty(vcpu, gfn); | |
3134 | } | |
c7ba5b48 XG |
3135 | |
3136 | return true; | |
3137 | } | |
3138 | ||
d3e328f2 JS |
3139 | static bool is_access_allowed(u32 fault_err_code, u64 spte) |
3140 | { | |
3141 | if (fault_err_code & PFERR_FETCH_MASK) | |
3142 | return is_executable_pte(spte); | |
3143 | ||
3144 | if (fault_err_code & PFERR_WRITE_MASK) | |
3145 | return is_writable_pte(spte); | |
3146 | ||
3147 | /* Fault was on Read access */ | |
3148 | return spte & PT_PRESENT_MASK; | |
3149 | } | |
3150 | ||
c7ba5b48 XG |
3151 | /* |
3152 | * Return value: | |
3153 | * - true: let the vcpu to access on the same address again. | |
3154 | * - false: let the real page fault path to fix it. | |
3155 | */ | |
3156 | static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, | |
3157 | u32 error_code) | |
3158 | { | |
3159 | struct kvm_shadow_walk_iterator iterator; | |
92a476cb | 3160 | struct kvm_mmu_page *sp; |
97dceba2 | 3161 | bool fault_handled = false; |
c7ba5b48 | 3162 | u64 spte = 0ull; |
97dceba2 | 3163 | uint retry_count = 0; |
c7ba5b48 | 3164 | |
37f6a4e2 MT |
3165 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
3166 | return false; | |
3167 | ||
e5552fd2 | 3168 | if (!page_fault_can_be_fast(error_code)) |
c7ba5b48 XG |
3169 | return false; |
3170 | ||
3171 | walk_shadow_page_lockless_begin(vcpu); | |
c7ba5b48 | 3172 | |
97dceba2 | 3173 | do { |
d3e328f2 | 3174 | u64 new_spte; |
c7ba5b48 | 3175 | |
d162f30a JS |
3176 | for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) |
3177 | if (!is_shadow_present_pte(spte) || | |
3178 | iterator.level < level) | |
3179 | break; | |
3180 | ||
97dceba2 JS |
3181 | sp = page_header(__pa(iterator.sptep)); |
3182 | if (!is_last_spte(spte, sp->role.level)) | |
3183 | break; | |
c7ba5b48 | 3184 | |
97dceba2 | 3185 | /* |
f160c7b7 JS |
3186 | * Check whether the memory access that caused the fault would |
3187 | * still cause it if it were to be performed right now. If not, | |
3188 | * then this is a spurious fault caused by TLB lazily flushed, | |
3189 | * or some other CPU has already fixed the PTE after the | |
3190 | * current CPU took the fault. | |
97dceba2 JS |
3191 | * |
3192 | * Need not check the access of upper level table entries since | |
3193 | * they are always ACC_ALL. | |
3194 | */ | |
d3e328f2 JS |
3195 | if (is_access_allowed(error_code, spte)) { |
3196 | fault_handled = true; | |
3197 | break; | |
3198 | } | |
f160c7b7 | 3199 | |
d3e328f2 JS |
3200 | new_spte = spte; |
3201 | ||
3202 | if (is_access_track_spte(spte)) | |
3203 | new_spte = restore_acc_track_spte(new_spte); | |
3204 | ||
3205 | /* | |
3206 | * Currently, to simplify the code, write-protection can | |
3207 | * be removed in the fast path only if the SPTE was | |
3208 | * write-protected for dirty-logging or access tracking. | |
3209 | */ | |
3210 | if ((error_code & PFERR_WRITE_MASK) && | |
3211 | spte_can_locklessly_be_made_writable(spte)) | |
3212 | { | |
3213 | new_spte |= PT_WRITABLE_MASK; | |
f160c7b7 JS |
3214 | |
3215 | /* | |
d3e328f2 JS |
3216 | * Do not fix write-permission on the large spte. Since |
3217 | * we only dirty the first page into the dirty-bitmap in | |
3218 | * fast_pf_fix_direct_spte(), other pages are missed | |
3219 | * if its slot has dirty logging enabled. | |
3220 | * | |
3221 | * Instead, we let the slow page fault path create a | |
3222 | * normal spte to fix the access. | |
3223 | * | |
3224 | * See the comments in kvm_arch_commit_memory_region(). | |
f160c7b7 | 3225 | */ |
d3e328f2 | 3226 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
f160c7b7 | 3227 | break; |
97dceba2 | 3228 | } |
c7ba5b48 | 3229 | |
f160c7b7 | 3230 | /* Verify that the fault can be handled in the fast path */ |
d3e328f2 JS |
3231 | if (new_spte == spte || |
3232 | !is_access_allowed(error_code, new_spte)) | |
97dceba2 JS |
3233 | break; |
3234 | ||
3235 | /* | |
3236 | * Currently, fast page fault only works for direct mapping | |
3237 | * since the gfn is not stable for indirect shadow page. See | |
3238 | * Documentation/virtual/kvm/locking.txt to get more detail. | |
3239 | */ | |
3240 | fault_handled = fast_pf_fix_direct_spte(vcpu, sp, | |
f160c7b7 | 3241 | iterator.sptep, spte, |
d3e328f2 | 3242 | new_spte); |
97dceba2 JS |
3243 | if (fault_handled) |
3244 | break; | |
3245 | ||
3246 | if (++retry_count > 4) { | |
3247 | printk_once(KERN_WARNING | |
3248 | "kvm: Fast #PF retrying more than 4 times.\n"); | |
3249 | break; | |
3250 | } | |
3251 | ||
97dceba2 | 3252 | } while (true); |
c126d94f | 3253 | |
a72faf25 | 3254 | trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, |
97dceba2 | 3255 | spte, fault_handled); |
c7ba5b48 XG |
3256 | walk_shadow_page_lockless_end(vcpu); |
3257 | ||
97dceba2 | 3258 | return fault_handled; |
c7ba5b48 XG |
3259 | } |
3260 | ||
78b2c54a | 3261 | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, |
ba049e93 | 3262 | gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable); |
26eeb53c | 3263 | static int make_mmu_pages_available(struct kvm_vcpu *vcpu); |
060c2abe | 3264 | |
c7ba5b48 XG |
3265 | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, |
3266 | gfn_t gfn, bool prefault) | |
10589a46 MT |
3267 | { |
3268 | int r; | |
852e3c19 | 3269 | int level; |
fd136902 | 3270 | bool force_pt_level = false; |
ba049e93 | 3271 | kvm_pfn_t pfn; |
e930bffe | 3272 | unsigned long mmu_seq; |
c7ba5b48 | 3273 | bool map_writable, write = error_code & PFERR_WRITE_MASK; |
aaee2c94 | 3274 | |
fd136902 | 3275 | level = mapping_level(vcpu, gfn, &force_pt_level); |
936a5fe6 | 3276 | if (likely(!force_pt_level)) { |
936a5fe6 AA |
3277 | /* |
3278 | * This path builds a PAE pagetable - so we can map | |
3279 | * 2mb pages at maximum. Therefore check if the level | |
3280 | * is larger than that. | |
3281 | */ | |
3282 | if (level > PT_DIRECTORY_LEVEL) | |
3283 | level = PT_DIRECTORY_LEVEL; | |
852e3c19 | 3284 | |
936a5fe6 | 3285 | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); |
fd136902 | 3286 | } |
05da4558 | 3287 | |
c7ba5b48 XG |
3288 | if (fast_page_fault(vcpu, v, level, error_code)) |
3289 | return 0; | |
3290 | ||
e930bffe | 3291 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
4c2155ce | 3292 | smp_rmb(); |
060c2abe | 3293 | |
78b2c54a | 3294 | if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) |
060c2abe | 3295 | return 0; |
aaee2c94 | 3296 | |
d7c55201 XG |
3297 | if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) |
3298 | return r; | |
d196e343 | 3299 | |
aaee2c94 | 3300 | spin_lock(&vcpu->kvm->mmu_lock); |
8ca40a70 | 3301 | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
e930bffe | 3302 | goto out_unlock; |
26eeb53c WL |
3303 | if (make_mmu_pages_available(vcpu) < 0) |
3304 | goto out_unlock; | |
936a5fe6 AA |
3305 | if (likely(!force_pt_level)) |
3306 | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | |
7ee0e5b2 | 3307 | r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault); |
aaee2c94 MT |
3308 | spin_unlock(&vcpu->kvm->mmu_lock); |
3309 | ||
10589a46 | 3310 | return r; |
e930bffe AA |
3311 | |
3312 | out_unlock: | |
3313 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3314 | kvm_release_pfn_clean(pfn); | |
3315 | return 0; | |
10589a46 MT |
3316 | } |
3317 | ||
3318 | ||
17ac10ad AK |
3319 | static void mmu_free_roots(struct kvm_vcpu *vcpu) |
3320 | { | |
3321 | int i; | |
4db35314 | 3322 | struct kvm_mmu_page *sp; |
d98ba053 | 3323 | LIST_HEAD(invalid_list); |
17ac10ad | 3324 | |
ad312c7c | 3325 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
7b53aa56 | 3326 | return; |
35af577a | 3327 | |
855feb67 YZ |
3328 | if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL && |
3329 | (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL || | |
81407ca5 | 3330 | vcpu->arch.mmu.direct_map)) { |
ad312c7c | 3331 | hpa_t root = vcpu->arch.mmu.root_hpa; |
17ac10ad | 3332 | |
35af577a | 3333 | spin_lock(&vcpu->kvm->mmu_lock); |
4db35314 AK |
3334 | sp = page_header(root); |
3335 | --sp->root_count; | |
d98ba053 XG |
3336 | if (!sp->root_count && sp->role.invalid) { |
3337 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); | |
3338 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); | |
3339 | } | |
aaee2c94 | 3340 | spin_unlock(&vcpu->kvm->mmu_lock); |
35af577a | 3341 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
17ac10ad AK |
3342 | return; |
3343 | } | |
35af577a GN |
3344 | |
3345 | spin_lock(&vcpu->kvm->mmu_lock); | |
17ac10ad | 3346 | for (i = 0; i < 4; ++i) { |
ad312c7c | 3347 | hpa_t root = vcpu->arch.mmu.pae_root[i]; |
17ac10ad | 3348 | |
417726a3 | 3349 | if (root) { |
417726a3 | 3350 | root &= PT64_BASE_ADDR_MASK; |
4db35314 AK |
3351 | sp = page_header(root); |
3352 | --sp->root_count; | |
2e53d63a | 3353 | if (!sp->root_count && sp->role.invalid) |
d98ba053 XG |
3354 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, |
3355 | &invalid_list); | |
417726a3 | 3356 | } |
ad312c7c | 3357 | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; |
17ac10ad | 3358 | } |
d98ba053 | 3359 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
aaee2c94 | 3360 | spin_unlock(&vcpu->kvm->mmu_lock); |
ad312c7c | 3361 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
17ac10ad AK |
3362 | } |
3363 | ||
8986ecc0 MT |
3364 | static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) |
3365 | { | |
3366 | int ret = 0; | |
3367 | ||
3368 | if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { | |
a8eeb04a | 3369 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
8986ecc0 MT |
3370 | ret = 1; |
3371 | } | |
3372 | ||
3373 | return ret; | |
3374 | } | |
3375 | ||
651dd37a JR |
3376 | static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) |
3377 | { | |
3378 | struct kvm_mmu_page *sp; | |
7ebaf15e | 3379 | unsigned i; |
651dd37a | 3380 | |
855feb67 | 3381 | if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) { |
651dd37a | 3382 | spin_lock(&vcpu->kvm->mmu_lock); |
26eeb53c WL |
3383 | if(make_mmu_pages_available(vcpu) < 0) { |
3384 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3385 | return 1; | |
3386 | } | |
855feb67 YZ |
3387 | sp = kvm_mmu_get_page(vcpu, 0, 0, |
3388 | vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL); | |
651dd37a JR |
3389 | ++sp->root_count; |
3390 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3391 | vcpu->arch.mmu.root_hpa = __pa(sp->spt); | |
3392 | } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) { | |
3393 | for (i = 0; i < 4; ++i) { | |
3394 | hpa_t root = vcpu->arch.mmu.pae_root[i]; | |
3395 | ||
fa4a2c08 | 3396 | MMU_WARN_ON(VALID_PAGE(root)); |
651dd37a | 3397 | spin_lock(&vcpu->kvm->mmu_lock); |
26eeb53c WL |
3398 | if (make_mmu_pages_available(vcpu) < 0) { |
3399 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3400 | return 1; | |
3401 | } | |
649497d1 | 3402 | sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), |
bb11c6c9 | 3403 | i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL); |
651dd37a JR |
3404 | root = __pa(sp->spt); |
3405 | ++sp->root_count; | |
3406 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3407 | vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; | |
651dd37a | 3408 | } |
6292757f | 3409 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); |
651dd37a JR |
3410 | } else |
3411 | BUG(); | |
3412 | ||
3413 | return 0; | |
3414 | } | |
3415 | ||
3416 | static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) | |
17ac10ad | 3417 | { |
4db35314 | 3418 | struct kvm_mmu_page *sp; |
81407ca5 JR |
3419 | u64 pdptr, pm_mask; |
3420 | gfn_t root_gfn; | |
3421 | int i; | |
3bb65a22 | 3422 | |
5777ed34 | 3423 | root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT; |
17ac10ad | 3424 | |
651dd37a JR |
3425 | if (mmu_check_root(vcpu, root_gfn)) |
3426 | return 1; | |
3427 | ||
3428 | /* | |
3429 | * Do we shadow a long mode page table? If so we need to | |
3430 | * write-protect the guests page table root. | |
3431 | */ | |
855feb67 | 3432 | if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) { |
ad312c7c | 3433 | hpa_t root = vcpu->arch.mmu.root_hpa; |
17ac10ad | 3434 | |
fa4a2c08 | 3435 | MMU_WARN_ON(VALID_PAGE(root)); |
651dd37a | 3436 | |
8facbbff | 3437 | spin_lock(&vcpu->kvm->mmu_lock); |
26eeb53c WL |
3438 | if (make_mmu_pages_available(vcpu) < 0) { |
3439 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3440 | return 1; | |
3441 | } | |
855feb67 YZ |
3442 | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, |
3443 | vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL); | |
4db35314 AK |
3444 | root = __pa(sp->spt); |
3445 | ++sp->root_count; | |
8facbbff | 3446 | spin_unlock(&vcpu->kvm->mmu_lock); |
ad312c7c | 3447 | vcpu->arch.mmu.root_hpa = root; |
8986ecc0 | 3448 | return 0; |
17ac10ad | 3449 | } |
f87f9288 | 3450 | |
651dd37a JR |
3451 | /* |
3452 | * We shadow a 32 bit page table. This may be a legacy 2-level | |
81407ca5 JR |
3453 | * or a PAE 3-level page table. In either case we need to be aware that |
3454 | * the shadow page table may be a PAE or a long mode page table. | |
651dd37a | 3455 | */ |
81407ca5 | 3456 | pm_mask = PT_PRESENT_MASK; |
2a7266a8 | 3457 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) |
81407ca5 JR |
3458 | pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; |
3459 | ||
17ac10ad | 3460 | for (i = 0; i < 4; ++i) { |
ad312c7c | 3461 | hpa_t root = vcpu->arch.mmu.pae_root[i]; |
17ac10ad | 3462 | |
fa4a2c08 | 3463 | MMU_WARN_ON(VALID_PAGE(root)); |
ad312c7c | 3464 | if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { |
e4e517b4 | 3465 | pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i); |
812f30b2 | 3466 | if (!(pdptr & PT_PRESENT_MASK)) { |
ad312c7c | 3467 | vcpu->arch.mmu.pae_root[i] = 0; |
417726a3 AK |
3468 | continue; |
3469 | } | |
6de4f3ad | 3470 | root_gfn = pdptr >> PAGE_SHIFT; |
f87f9288 JR |
3471 | if (mmu_check_root(vcpu, root_gfn)) |
3472 | return 1; | |
5a7388c2 | 3473 | } |
8facbbff | 3474 | spin_lock(&vcpu->kvm->mmu_lock); |
26eeb53c WL |
3475 | if (make_mmu_pages_available(vcpu) < 0) { |
3476 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3477 | return 1; | |
3478 | } | |
bb11c6c9 TY |
3479 | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL, |
3480 | 0, ACC_ALL); | |
4db35314 AK |
3481 | root = __pa(sp->spt); |
3482 | ++sp->root_count; | |
8facbbff AK |
3483 | spin_unlock(&vcpu->kvm->mmu_lock); |
3484 | ||
81407ca5 | 3485 | vcpu->arch.mmu.pae_root[i] = root | pm_mask; |
17ac10ad | 3486 | } |
6292757f | 3487 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); |
81407ca5 JR |
3488 | |
3489 | /* | |
3490 | * If we shadow a 32 bit page table with a long mode page | |
3491 | * table we enter this path. | |
3492 | */ | |
2a7266a8 | 3493 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) { |
81407ca5 JR |
3494 | if (vcpu->arch.mmu.lm_root == NULL) { |
3495 | /* | |
3496 | * The additional page necessary for this is only | |
3497 | * allocated on demand. | |
3498 | */ | |
3499 | ||
3500 | u64 *lm_root; | |
3501 | ||
3502 | lm_root = (void*)get_zeroed_page(GFP_KERNEL); | |
3503 | if (lm_root == NULL) | |
3504 | return 1; | |
3505 | ||
3506 | lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask; | |
3507 | ||
3508 | vcpu->arch.mmu.lm_root = lm_root; | |
3509 | } | |
3510 | ||
3511 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root); | |
3512 | } | |
3513 | ||
8986ecc0 | 3514 | return 0; |
17ac10ad AK |
3515 | } |
3516 | ||
651dd37a JR |
3517 | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) |
3518 | { | |
3519 | if (vcpu->arch.mmu.direct_map) | |
3520 | return mmu_alloc_direct_roots(vcpu); | |
3521 | else | |
3522 | return mmu_alloc_shadow_roots(vcpu); | |
3523 | } | |
3524 | ||
0ba73cda MT |
3525 | static void mmu_sync_roots(struct kvm_vcpu *vcpu) |
3526 | { | |
3527 | int i; | |
3528 | struct kvm_mmu_page *sp; | |
3529 | ||
81407ca5 JR |
3530 | if (vcpu->arch.mmu.direct_map) |
3531 | return; | |
3532 | ||
0ba73cda MT |
3533 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
3534 | return; | |
6903074c | 3535 | |
56f17dd3 | 3536 | vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); |
0375f7fa | 3537 | kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); |
855feb67 | 3538 | if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) { |
0ba73cda MT |
3539 | hpa_t root = vcpu->arch.mmu.root_hpa; |
3540 | sp = page_header(root); | |
3541 | mmu_sync_children(vcpu, sp); | |
0375f7fa | 3542 | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); |
0ba73cda MT |
3543 | return; |
3544 | } | |
3545 | for (i = 0; i < 4; ++i) { | |
3546 | hpa_t root = vcpu->arch.mmu.pae_root[i]; | |
3547 | ||
8986ecc0 | 3548 | if (root && VALID_PAGE(root)) { |
0ba73cda MT |
3549 | root &= PT64_BASE_ADDR_MASK; |
3550 | sp = page_header(root); | |
3551 | mmu_sync_children(vcpu, sp); | |
3552 | } | |
3553 | } | |
0375f7fa | 3554 | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); |
0ba73cda MT |
3555 | } |
3556 | ||
3557 | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) | |
3558 | { | |
3559 | spin_lock(&vcpu->kvm->mmu_lock); | |
3560 | mmu_sync_roots(vcpu); | |
6cffe8ca | 3561 | spin_unlock(&vcpu->kvm->mmu_lock); |
0ba73cda | 3562 | } |
bfd0a56b | 3563 | EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); |
0ba73cda | 3564 | |
1871c602 | 3565 | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, |
ab9ae313 | 3566 | u32 access, struct x86_exception *exception) |
6aa8b732 | 3567 | { |
ab9ae313 AK |
3568 | if (exception) |
3569 | exception->error_code = 0; | |
6aa8b732 AK |
3570 | return vaddr; |
3571 | } | |
3572 | ||
6539e738 | 3573 | static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, |
ab9ae313 AK |
3574 | u32 access, |
3575 | struct x86_exception *exception) | |
6539e738 | 3576 | { |
ab9ae313 AK |
3577 | if (exception) |
3578 | exception->error_code = 0; | |
54987b7a | 3579 | return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); |
6539e738 JR |
3580 | } |
3581 | ||
d625b155 XG |
3582 | static bool |
3583 | __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) | |
3584 | { | |
3585 | int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f; | |
3586 | ||
3587 | return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) | | |
3588 | ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0); | |
3589 | } | |
3590 | ||
3591 | static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) | |
3592 | { | |
3593 | return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level); | |
3594 | } | |
3595 | ||
3596 | static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level) | |
3597 | { | |
3598 | return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level); | |
3599 | } | |
3600 | ||
ded58749 | 3601 | static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) |
ce88decf | 3602 | { |
9034e6e8 PB |
3603 | /* |
3604 | * A nested guest cannot use the MMIO cache if it is using nested | |
3605 | * page tables, because cr2 is a nGPA while the cache stores GPAs. | |
3606 | */ | |
3607 | if (mmu_is_nested(vcpu)) | |
3608 | return false; | |
3609 | ||
ce88decf XG |
3610 | if (direct) |
3611 | return vcpu_match_mmio_gpa(vcpu, addr); | |
3612 | ||
3613 | return vcpu_match_mmio_gva(vcpu, addr); | |
3614 | } | |
3615 | ||
47ab8751 XG |
3616 | /* return true if reserved bit is detected on spte. */ |
3617 | static bool | |
3618 | walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) | |
ce88decf XG |
3619 | { |
3620 | struct kvm_shadow_walk_iterator iterator; | |
2a7266a8 | 3621 | u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull; |
47ab8751 XG |
3622 | int root, leaf; |
3623 | bool reserved = false; | |
ce88decf | 3624 | |
37f6a4e2 | 3625 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
47ab8751 | 3626 | goto exit; |
37f6a4e2 | 3627 | |
ce88decf | 3628 | walk_shadow_page_lockless_begin(vcpu); |
47ab8751 | 3629 | |
29ecd660 PB |
3630 | for (shadow_walk_init(&iterator, vcpu, addr), |
3631 | leaf = root = iterator.level; | |
47ab8751 XG |
3632 | shadow_walk_okay(&iterator); |
3633 | __shadow_walk_next(&iterator, spte)) { | |
47ab8751 XG |
3634 | spte = mmu_spte_get_lockless(iterator.sptep); |
3635 | ||
3636 | sptes[leaf - 1] = spte; | |
29ecd660 | 3637 | leaf--; |
47ab8751 | 3638 | |
ce88decf XG |
3639 | if (!is_shadow_present_pte(spte)) |
3640 | break; | |
47ab8751 XG |
3641 | |
3642 | reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte, | |
58c95070 | 3643 | iterator.level); |
47ab8751 XG |
3644 | } |
3645 | ||
ce88decf XG |
3646 | walk_shadow_page_lockless_end(vcpu); |
3647 | ||
47ab8751 XG |
3648 | if (reserved) { |
3649 | pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", | |
3650 | __func__, addr); | |
29ecd660 | 3651 | while (root > leaf) { |
47ab8751 XG |
3652 | pr_err("------ spte 0x%llx level %d.\n", |
3653 | sptes[root - 1], root); | |
3654 | root--; | |
3655 | } | |
3656 | } | |
3657 | exit: | |
3658 | *sptep = spte; | |
3659 | return reserved; | |
ce88decf XG |
3660 | } |
3661 | ||
e08d26f0 PB |
3662 | /* |
3663 | * Return values of handle_mmio_page_fault: | |
3664 | * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction | |
3665 | * directly. | |
3666 | * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page | |
3667 | * fault path update the mmio spte. | |
3668 | * RET_MMIO_PF_RETRY: let CPU fault again on the address. | |
3669 | * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed). | |
3670 | */ | |
3671 | enum { | |
3672 | RET_MMIO_PF_EMULATE = 1, | |
3673 | RET_MMIO_PF_INVALID = 2, | |
3674 | RET_MMIO_PF_RETRY = 0, | |
3675 | RET_MMIO_PF_BUG = -1 | |
3676 | }; | |
3677 | ||
3678 | static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) | |
ce88decf XG |
3679 | { |
3680 | u64 spte; | |
47ab8751 | 3681 | bool reserved; |
ce88decf | 3682 | |
ded58749 | 3683 | if (mmio_info_in_cache(vcpu, addr, direct)) |
b37fbea6 | 3684 | return RET_MMIO_PF_EMULATE; |
ce88decf | 3685 | |
47ab8751 | 3686 | reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte); |
450869d6 | 3687 | if (WARN_ON(reserved)) |
47ab8751 | 3688 | return RET_MMIO_PF_BUG; |
ce88decf XG |
3689 | |
3690 | if (is_mmio_spte(spte)) { | |
3691 | gfn_t gfn = get_mmio_spte_gfn(spte); | |
3692 | unsigned access = get_mmio_spte_access(spte); | |
3693 | ||
54bf36aa | 3694 | if (!check_mmio_spte(vcpu, spte)) |
f8f55942 XG |
3695 | return RET_MMIO_PF_INVALID; |
3696 | ||
ce88decf XG |
3697 | if (direct) |
3698 | addr = 0; | |
4f022648 XG |
3699 | |
3700 | trace_handle_mmio_page_fault(addr, gfn, access); | |
ce88decf | 3701 | vcpu_cache_mmio_info(vcpu, addr, gfn, access); |
b37fbea6 | 3702 | return RET_MMIO_PF_EMULATE; |
ce88decf XG |
3703 | } |
3704 | ||
ce88decf XG |
3705 | /* |
3706 | * If the page table is zapped by other cpus, let CPU fault again on | |
3707 | * the address. | |
3708 | */ | |
b37fbea6 | 3709 | return RET_MMIO_PF_RETRY; |
ce88decf | 3710 | } |
450869d6 | 3711 | EXPORT_SYMBOL_GPL(handle_mmio_page_fault); |
ce88decf | 3712 | |
3d0c27ad XG |
3713 | static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, |
3714 | u32 error_code, gfn_t gfn) | |
3715 | { | |
3716 | if (unlikely(error_code & PFERR_RSVD_MASK)) | |
3717 | return false; | |
3718 | ||
3719 | if (!(error_code & PFERR_PRESENT_MASK) || | |
3720 | !(error_code & PFERR_WRITE_MASK)) | |
3721 | return false; | |
3722 | ||
3723 | /* | |
3724 | * guest is writing the page which is write tracked which can | |
3725 | * not be fixed by page fault handler. | |
3726 | */ | |
3727 | if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) | |
3728 | return true; | |
3729 | ||
3730 | return false; | |
3731 | } | |
3732 | ||
e5691a81 XG |
3733 | static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) |
3734 | { | |
3735 | struct kvm_shadow_walk_iterator iterator; | |
3736 | u64 spte; | |
3737 | ||
3738 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | |
3739 | return; | |
3740 | ||
3741 | walk_shadow_page_lockless_begin(vcpu); | |
3742 | for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { | |
3743 | clear_sp_write_flooding_count(iterator.sptep); | |
3744 | if (!is_shadow_present_pte(spte)) | |
3745 | break; | |
3746 | } | |
3747 | walk_shadow_page_lockless_end(vcpu); | |
3748 | } | |
3749 | ||
6aa8b732 | 3750 | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, |
78b2c54a | 3751 | u32 error_code, bool prefault) |
6aa8b732 | 3752 | { |
3d0c27ad | 3753 | gfn_t gfn = gva >> PAGE_SHIFT; |
e2dec939 | 3754 | int r; |
6aa8b732 | 3755 | |
b8688d51 | 3756 | pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); |
ce88decf | 3757 | |
3d0c27ad XG |
3758 | if (page_fault_handle_page_track(vcpu, error_code, gfn)) |
3759 | return 1; | |
ce88decf | 3760 | |
e2dec939 AK |
3761 | r = mmu_topup_memory_caches(vcpu); |
3762 | if (r) | |
3763 | return r; | |
714b93da | 3764 | |
fa4a2c08 | 3765 | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
6aa8b732 | 3766 | |
6aa8b732 | 3767 | |
e833240f | 3768 | return nonpaging_map(vcpu, gva & PAGE_MASK, |
c7ba5b48 | 3769 | error_code, gfn, prefault); |
6aa8b732 AK |
3770 | } |
3771 | ||
7e1fbeac | 3772 | static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) |
af585b92 GN |
3773 | { |
3774 | struct kvm_arch_async_pf arch; | |
fb67e14f | 3775 | |
7c90705b | 3776 | arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; |
af585b92 | 3777 | arch.gfn = gfn; |
c4806acd | 3778 | arch.direct_map = vcpu->arch.mmu.direct_map; |
fb67e14f | 3779 | arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu); |
af585b92 | 3780 | |
54bf36aa | 3781 | return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); |
af585b92 GN |
3782 | } |
3783 | ||
9bc1f09f | 3784 | bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) |
af585b92 | 3785 | { |
35754c98 | 3786 | if (unlikely(!lapic_in_kernel(vcpu) || |
af585b92 GN |
3787 | kvm_event_needs_reinjection(vcpu))) |
3788 | return false; | |
3789 | ||
52a5c155 | 3790 | if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) |
9bc1f09f WL |
3791 | return false; |
3792 | ||
af585b92 GN |
3793 | return kvm_x86_ops->interrupt_allowed(vcpu); |
3794 | } | |
3795 | ||
78b2c54a | 3796 | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, |
ba049e93 | 3797 | gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable) |
af585b92 | 3798 | { |
3520469d | 3799 | struct kvm_memory_slot *slot; |
af585b92 GN |
3800 | bool async; |
3801 | ||
54bf36aa | 3802 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
3520469d PB |
3803 | async = false; |
3804 | *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); | |
af585b92 GN |
3805 | if (!async) |
3806 | return false; /* *pfn has correct page already */ | |
3807 | ||
9bc1f09f | 3808 | if (!prefault && kvm_can_do_async_pf(vcpu)) { |
c9b263d2 | 3809 | trace_kvm_try_async_get_page(gva, gfn); |
af585b92 GN |
3810 | if (kvm_find_async_pf_gfn(vcpu, gfn)) { |
3811 | trace_kvm_async_pf_doublefault(gva, gfn); | |
3812 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); | |
3813 | return true; | |
3814 | } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) | |
3815 | return true; | |
3816 | } | |
3817 | ||
3520469d | 3818 | *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); |
af585b92 GN |
3819 | return false; |
3820 | } | |
3821 | ||
1261bfa3 WL |
3822 | int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, |
3823 | u64 fault_address, char *insn, int insn_len, | |
3824 | bool need_unprotect) | |
3825 | { | |
3826 | int r = 1; | |
3827 | ||
3828 | switch (vcpu->arch.apf.host_apf_reason) { | |
3829 | default: | |
3830 | trace_kvm_page_fault(fault_address, error_code); | |
3831 | ||
3832 | if (need_unprotect && kvm_event_needs_reinjection(vcpu)) | |
3833 | kvm_mmu_unprotect_page_virt(vcpu, fault_address); | |
3834 | r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, | |
3835 | insn_len); | |
3836 | break; | |
3837 | case KVM_PV_REASON_PAGE_NOT_PRESENT: | |
3838 | vcpu->arch.apf.host_apf_reason = 0; | |
3839 | local_irq_disable(); | |
a2b7861b | 3840 | kvm_async_pf_task_wait(fault_address, 0); |
1261bfa3 WL |
3841 | local_irq_enable(); |
3842 | break; | |
3843 | case KVM_PV_REASON_PAGE_READY: | |
3844 | vcpu->arch.apf.host_apf_reason = 0; | |
3845 | local_irq_disable(); | |
3846 | kvm_async_pf_task_wake(fault_address); | |
3847 | local_irq_enable(); | |
3848 | break; | |
3849 | } | |
3850 | return r; | |
3851 | } | |
3852 | EXPORT_SYMBOL_GPL(kvm_handle_page_fault); | |
3853 | ||
6a39bbc5 XG |
3854 | static bool |
3855 | check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level) | |
3856 | { | |
3857 | int page_num = KVM_PAGES_PER_HPAGE(level); | |
3858 | ||
3859 | gfn &= ~(page_num - 1); | |
3860 | ||
3861 | return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num); | |
3862 | } | |
3863 | ||
56028d08 | 3864 | static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, |
78b2c54a | 3865 | bool prefault) |
fb72d167 | 3866 | { |
ba049e93 | 3867 | kvm_pfn_t pfn; |
fb72d167 | 3868 | int r; |
852e3c19 | 3869 | int level; |
cd1872f0 | 3870 | bool force_pt_level; |
05da4558 | 3871 | gfn_t gfn = gpa >> PAGE_SHIFT; |
e930bffe | 3872 | unsigned long mmu_seq; |
612819c3 MT |
3873 | int write = error_code & PFERR_WRITE_MASK; |
3874 | bool map_writable; | |
fb72d167 | 3875 | |
fa4a2c08 | 3876 | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
fb72d167 | 3877 | |
3d0c27ad XG |
3878 | if (page_fault_handle_page_track(vcpu, error_code, gfn)) |
3879 | return 1; | |
ce88decf | 3880 | |
fb72d167 JR |
3881 | r = mmu_topup_memory_caches(vcpu); |
3882 | if (r) | |
3883 | return r; | |
3884 | ||
fd136902 TY |
3885 | force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn, |
3886 | PT_DIRECTORY_LEVEL); | |
3887 | level = mapping_level(vcpu, gfn, &force_pt_level); | |
936a5fe6 | 3888 | if (likely(!force_pt_level)) { |
6a39bbc5 XG |
3889 | if (level > PT_DIRECTORY_LEVEL && |
3890 | !check_hugepage_cache_consistency(vcpu, gfn, level)) | |
3891 | level = PT_DIRECTORY_LEVEL; | |
936a5fe6 | 3892 | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); |
fd136902 | 3893 | } |
852e3c19 | 3894 | |
c7ba5b48 XG |
3895 | if (fast_page_fault(vcpu, gpa, level, error_code)) |
3896 | return 0; | |
3897 | ||
e930bffe | 3898 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
4c2155ce | 3899 | smp_rmb(); |
af585b92 | 3900 | |
78b2c54a | 3901 | if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) |
af585b92 GN |
3902 | return 0; |
3903 | ||
d7c55201 XG |
3904 | if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) |
3905 | return r; | |
3906 | ||
fb72d167 | 3907 | spin_lock(&vcpu->kvm->mmu_lock); |
8ca40a70 | 3908 | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
e930bffe | 3909 | goto out_unlock; |
26eeb53c WL |
3910 | if (make_mmu_pages_available(vcpu) < 0) |
3911 | goto out_unlock; | |
936a5fe6 AA |
3912 | if (likely(!force_pt_level)) |
3913 | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | |
7ee0e5b2 | 3914 | r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault); |
fb72d167 | 3915 | spin_unlock(&vcpu->kvm->mmu_lock); |
fb72d167 JR |
3916 | |
3917 | return r; | |
e930bffe AA |
3918 | |
3919 | out_unlock: | |
3920 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3921 | kvm_release_pfn_clean(pfn); | |
3922 | return 0; | |
fb72d167 JR |
3923 | } |
3924 | ||
8a3c1a33 PB |
3925 | static void nonpaging_init_context(struct kvm_vcpu *vcpu, |
3926 | struct kvm_mmu *context) | |
6aa8b732 | 3927 | { |
6aa8b732 | 3928 | context->page_fault = nonpaging_page_fault; |
6aa8b732 | 3929 | context->gva_to_gpa = nonpaging_gva_to_gpa; |
e8bc217a | 3930 | context->sync_page = nonpaging_sync_page; |
a7052897 | 3931 | context->invlpg = nonpaging_invlpg; |
0f53b5b1 | 3932 | context->update_pte = nonpaging_update_pte; |
cea0f0e7 | 3933 | context->root_level = 0; |
6aa8b732 | 3934 | context->shadow_root_level = PT32E_ROOT_LEVEL; |
17c3ba9d | 3935 | context->root_hpa = INVALID_PAGE; |
c5a78f2b | 3936 | context->direct_map = true; |
2d48a985 | 3937 | context->nx = false; |
6aa8b732 AK |
3938 | } |
3939 | ||
d8d173da | 3940 | void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu) |
6aa8b732 | 3941 | { |
cea0f0e7 | 3942 | mmu_free_roots(vcpu); |
6aa8b732 AK |
3943 | } |
3944 | ||
5777ed34 JR |
3945 | static unsigned long get_cr3(struct kvm_vcpu *vcpu) |
3946 | { | |
9f8fe504 | 3947 | return kvm_read_cr3(vcpu); |
5777ed34 JR |
3948 | } |
3949 | ||
6389ee94 AK |
3950 | static void inject_page_fault(struct kvm_vcpu *vcpu, |
3951 | struct x86_exception *fault) | |
6aa8b732 | 3952 | { |
6389ee94 | 3953 | vcpu->arch.mmu.inject_page_fault(vcpu, fault); |
6aa8b732 AK |
3954 | } |
3955 | ||
54bf36aa | 3956 | static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, |
f2fd125d | 3957 | unsigned access, int *nr_present) |
ce88decf XG |
3958 | { |
3959 | if (unlikely(is_mmio_spte(*sptep))) { | |
3960 | if (gfn != get_mmio_spte_gfn(*sptep)) { | |
3961 | mmu_spte_clear_no_track(sptep); | |
3962 | return true; | |
3963 | } | |
3964 | ||
3965 | (*nr_present)++; | |
54bf36aa | 3966 | mark_mmio_spte(vcpu, sptep, gfn, access); |
ce88decf XG |
3967 | return true; |
3968 | } | |
3969 | ||
3970 | return false; | |
3971 | } | |
3972 | ||
6bb69c9b PB |
3973 | static inline bool is_last_gpte(struct kvm_mmu *mmu, |
3974 | unsigned level, unsigned gpte) | |
6fd01b71 | 3975 | { |
6bb69c9b PB |
3976 | /* |
3977 | * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. | |
3978 | * If it is clear, there are no large pages at this level, so clear | |
3979 | * PT_PAGE_SIZE_MASK in gpte if that is the case. | |
3980 | */ | |
3981 | gpte &= level - mmu->last_nonleaf_level; | |
3982 | ||
829ee279 LP |
3983 | /* |
3984 | * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set | |
3985 | * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means | |
3986 | * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then. | |
3987 | */ | |
3988 | gpte |= level - PT_PAGE_TABLE_LEVEL - 1; | |
3989 | ||
6bb69c9b | 3990 | return gpte & PT_PAGE_SIZE_MASK; |
6fd01b71 AK |
3991 | } |
3992 | ||
37406aaa NHE |
3993 | #define PTTYPE_EPT 18 /* arbitrary */ |
3994 | #define PTTYPE PTTYPE_EPT | |
3995 | #include "paging_tmpl.h" | |
3996 | #undef PTTYPE | |
3997 | ||
6aa8b732 AK |
3998 | #define PTTYPE 64 |
3999 | #include "paging_tmpl.h" | |
4000 | #undef PTTYPE | |
4001 | ||
4002 | #define PTTYPE 32 | |
4003 | #include "paging_tmpl.h" | |
4004 | #undef PTTYPE | |
4005 | ||
6dc98b86 XG |
4006 | static void |
4007 | __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, | |
4008 | struct rsvd_bits_validate *rsvd_check, | |
4009 | int maxphyaddr, int level, bool nx, bool gbpages, | |
6fec2144 | 4010 | bool pse, bool amd) |
82725b20 | 4011 | { |
82725b20 | 4012 | u64 exb_bit_rsvd = 0; |
5f7dde7b | 4013 | u64 gbpages_bit_rsvd = 0; |
a0c0feb5 | 4014 | u64 nonleaf_bit8_rsvd = 0; |
82725b20 | 4015 | |
a0a64f50 | 4016 | rsvd_check->bad_mt_xwr = 0; |
25d92081 | 4017 | |
6dc98b86 | 4018 | if (!nx) |
82725b20 | 4019 | exb_bit_rsvd = rsvd_bits(63, 63); |
6dc98b86 | 4020 | if (!gbpages) |
5f7dde7b | 4021 | gbpages_bit_rsvd = rsvd_bits(7, 7); |
a0c0feb5 PB |
4022 | |
4023 | /* | |
4024 | * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for | |
4025 | * leaf entries) on AMD CPUs only. | |
4026 | */ | |
6fec2144 | 4027 | if (amd) |
a0c0feb5 PB |
4028 | nonleaf_bit8_rsvd = rsvd_bits(8, 8); |
4029 | ||
6dc98b86 | 4030 | switch (level) { |
82725b20 DE |
4031 | case PT32_ROOT_LEVEL: |
4032 | /* no rsvd bits for 2 level 4K page table entries */ | |
a0a64f50 XG |
4033 | rsvd_check->rsvd_bits_mask[0][1] = 0; |
4034 | rsvd_check->rsvd_bits_mask[0][0] = 0; | |
4035 | rsvd_check->rsvd_bits_mask[1][0] = | |
4036 | rsvd_check->rsvd_bits_mask[0][0]; | |
f815bce8 | 4037 | |
6dc98b86 | 4038 | if (!pse) { |
a0a64f50 | 4039 | rsvd_check->rsvd_bits_mask[1][1] = 0; |
f815bce8 XG |
4040 | break; |
4041 | } | |
4042 | ||
82725b20 DE |
4043 | if (is_cpuid_PSE36()) |
4044 | /* 36bits PSE 4MB page */ | |
a0a64f50 | 4045 | rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); |
82725b20 DE |
4046 | else |
4047 | /* 32 bits PSE 4MB page */ | |
a0a64f50 | 4048 | rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); |
82725b20 DE |
4049 | break; |
4050 | case PT32E_ROOT_LEVEL: | |
a0a64f50 | 4051 | rsvd_check->rsvd_bits_mask[0][2] = |
20c466b5 | 4052 | rsvd_bits(maxphyaddr, 63) | |
cd9ae5fe | 4053 | rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ |
a0a64f50 | 4054 | rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | |
4c26b4cd | 4055 | rsvd_bits(maxphyaddr, 62); /* PDE */ |
a0a64f50 | 4056 | rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | |
82725b20 | 4057 | rsvd_bits(maxphyaddr, 62); /* PTE */ |
a0a64f50 | 4058 | rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | |
82725b20 DE |
4059 | rsvd_bits(maxphyaddr, 62) | |
4060 | rsvd_bits(13, 20); /* large page */ | |
a0a64f50 XG |
4061 | rsvd_check->rsvd_bits_mask[1][0] = |
4062 | rsvd_check->rsvd_bits_mask[0][0]; | |
82725b20 | 4063 | break; |
855feb67 YZ |
4064 | case PT64_ROOT_5LEVEL: |
4065 | rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | | |
4066 | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | | |
4067 | rsvd_bits(maxphyaddr, 51); | |
4068 | rsvd_check->rsvd_bits_mask[1][4] = | |
4069 | rsvd_check->rsvd_bits_mask[0][4]; | |
2a7266a8 | 4070 | case PT64_ROOT_4LEVEL: |
a0a64f50 XG |
4071 | rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | |
4072 | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | | |
4c26b4cd | 4073 | rsvd_bits(maxphyaddr, 51); |
a0a64f50 XG |
4074 | rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | |
4075 | nonleaf_bit8_rsvd | gbpages_bit_rsvd | | |
82725b20 | 4076 | rsvd_bits(maxphyaddr, 51); |
a0a64f50 XG |
4077 | rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | |
4078 | rsvd_bits(maxphyaddr, 51); | |
4079 | rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | | |
4080 | rsvd_bits(maxphyaddr, 51); | |
4081 | rsvd_check->rsvd_bits_mask[1][3] = | |
4082 | rsvd_check->rsvd_bits_mask[0][3]; | |
4083 | rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | | |
5f7dde7b | 4084 | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | |
e04da980 | 4085 | rsvd_bits(13, 29); |
a0a64f50 | 4086 | rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | |
4c26b4cd SY |
4087 | rsvd_bits(maxphyaddr, 51) | |
4088 | rsvd_bits(13, 20); /* large page */ | |
a0a64f50 XG |
4089 | rsvd_check->rsvd_bits_mask[1][0] = |
4090 | rsvd_check->rsvd_bits_mask[0][0]; | |
82725b20 DE |
4091 | break; |
4092 | } | |
4093 | } | |
4094 | ||
6dc98b86 XG |
4095 | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, |
4096 | struct kvm_mmu *context) | |
4097 | { | |
4098 | __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, | |
4099 | cpuid_maxphyaddr(vcpu), context->root_level, | |
d6321d49 RK |
4100 | context->nx, |
4101 | guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), | |
6fec2144 | 4102 | is_pse(vcpu), guest_cpuid_is_amd(vcpu)); |
6dc98b86 XG |
4103 | } |
4104 | ||
81b8eebb XG |
4105 | static void |
4106 | __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, | |
4107 | int maxphyaddr, bool execonly) | |
25d92081 | 4108 | { |
951f9fd7 | 4109 | u64 bad_mt_xwr; |
25d92081 | 4110 | |
855feb67 YZ |
4111 | rsvd_check->rsvd_bits_mask[0][4] = |
4112 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); | |
a0a64f50 | 4113 | rsvd_check->rsvd_bits_mask[0][3] = |
25d92081 | 4114 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); |
a0a64f50 | 4115 | rsvd_check->rsvd_bits_mask[0][2] = |
25d92081 | 4116 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); |
a0a64f50 | 4117 | rsvd_check->rsvd_bits_mask[0][1] = |
25d92081 | 4118 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); |
a0a64f50 | 4119 | rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); |
25d92081 YZ |
4120 | |
4121 | /* large page */ | |
855feb67 | 4122 | rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; |
a0a64f50 XG |
4123 | rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; |
4124 | rsvd_check->rsvd_bits_mask[1][2] = | |
25d92081 | 4125 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); |
a0a64f50 | 4126 | rsvd_check->rsvd_bits_mask[1][1] = |
25d92081 | 4127 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); |
a0a64f50 | 4128 | rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; |
25d92081 | 4129 | |
951f9fd7 PB |
4130 | bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ |
4131 | bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ | |
4132 | bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ | |
4133 | bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ | |
4134 | bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ | |
4135 | if (!execonly) { | |
4136 | /* bits 0..2 must not be 100 unless VMX capabilities allow it */ | |
4137 | bad_mt_xwr |= REPEAT_BYTE(1ull << 4); | |
25d92081 | 4138 | } |
951f9fd7 | 4139 | rsvd_check->bad_mt_xwr = bad_mt_xwr; |
25d92081 YZ |
4140 | } |
4141 | ||
81b8eebb XG |
4142 | static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, |
4143 | struct kvm_mmu *context, bool execonly) | |
4144 | { | |
4145 | __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, | |
4146 | cpuid_maxphyaddr(vcpu), execonly); | |
4147 | } | |
4148 | ||
c258b62b XG |
4149 | /* |
4150 | * the page table on host is the shadow page table for the page | |
4151 | * table in guest or amd nested guest, its mmu features completely | |
4152 | * follow the features in guest. | |
4153 | */ | |
4154 | void | |
4155 | reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) | |
4156 | { | |
5f0b8199 | 4157 | bool uses_nx = context->nx || context->base_role.smep_andnot_wp; |
ea2800dd BS |
4158 | struct rsvd_bits_validate *shadow_zero_check; |
4159 | int i; | |
5f0b8199 | 4160 | |
6fec2144 PB |
4161 | /* |
4162 | * Passing "true" to the last argument is okay; it adds a check | |
4163 | * on bit 8 of the SPTEs which KVM doesn't use anyway. | |
4164 | */ | |
ea2800dd BS |
4165 | shadow_zero_check = &context->shadow_zero_check; |
4166 | __reset_rsvds_bits_mask(vcpu, shadow_zero_check, | |
c258b62b | 4167 | boot_cpu_data.x86_phys_bits, |
5f0b8199 | 4168 | context->shadow_root_level, uses_nx, |
d6321d49 RK |
4169 | guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), |
4170 | is_pse(vcpu), true); | |
ea2800dd BS |
4171 | |
4172 | if (!shadow_me_mask) | |
4173 | return; | |
4174 | ||
4175 | for (i = context->shadow_root_level; --i >= 0;) { | |
4176 | shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; | |
4177 | shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; | |
4178 | } | |
4179 | ||
c258b62b XG |
4180 | } |
4181 | EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); | |
4182 | ||
6fec2144 PB |
4183 | static inline bool boot_cpu_is_amd(void) |
4184 | { | |
4185 | WARN_ON_ONCE(!tdp_enabled); | |
4186 | return shadow_x_mask == 0; | |
4187 | } | |
4188 | ||
c258b62b XG |
4189 | /* |
4190 | * the direct page table on host, use as much mmu features as | |
4191 | * possible, however, kvm currently does not do execution-protection. | |
4192 | */ | |
4193 | static void | |
4194 | reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, | |
4195 | struct kvm_mmu *context) | |
4196 | { | |
ea2800dd BS |
4197 | struct rsvd_bits_validate *shadow_zero_check; |
4198 | int i; | |
4199 | ||
4200 | shadow_zero_check = &context->shadow_zero_check; | |
4201 | ||
6fec2144 | 4202 | if (boot_cpu_is_amd()) |
ea2800dd | 4203 | __reset_rsvds_bits_mask(vcpu, shadow_zero_check, |
c258b62b XG |
4204 | boot_cpu_data.x86_phys_bits, |
4205 | context->shadow_root_level, false, | |
b8291adc BP |
4206 | boot_cpu_has(X86_FEATURE_GBPAGES), |
4207 | true, true); | |
c258b62b | 4208 | else |
ea2800dd | 4209 | __reset_rsvds_bits_mask_ept(shadow_zero_check, |
c258b62b XG |
4210 | boot_cpu_data.x86_phys_bits, |
4211 | false); | |
4212 | ||
ea2800dd BS |
4213 | if (!shadow_me_mask) |
4214 | return; | |
4215 | ||
4216 | for (i = context->shadow_root_level; --i >= 0;) { | |
4217 | shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; | |
4218 | shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; | |
4219 | } | |
c258b62b XG |
4220 | } |
4221 | ||
4222 | /* | |
4223 | * as the comments in reset_shadow_zero_bits_mask() except it | |
4224 | * is the shadow page table for intel nested guest. | |
4225 | */ | |
4226 | static void | |
4227 | reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, | |
4228 | struct kvm_mmu *context, bool execonly) | |
4229 | { | |
4230 | __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, | |
4231 | boot_cpu_data.x86_phys_bits, execonly); | |
4232 | } | |
4233 | ||
09f037aa PB |
4234 | #define BYTE_MASK(access) \ |
4235 | ((1 & (access) ? 2 : 0) | \ | |
4236 | (2 & (access) ? 4 : 0) | \ | |
4237 | (3 & (access) ? 8 : 0) | \ | |
4238 | (4 & (access) ? 16 : 0) | \ | |
4239 | (5 & (access) ? 32 : 0) | \ | |
4240 | (6 & (access) ? 64 : 0) | \ | |
4241 | (7 & (access) ? 128 : 0)) | |
4242 | ||
4243 | ||
edc90b7d XG |
4244 | static void update_permission_bitmask(struct kvm_vcpu *vcpu, |
4245 | struct kvm_mmu *mmu, bool ept) | |
97d64b78 | 4246 | { |
09f037aa PB |
4247 | unsigned byte; |
4248 | ||
4249 | const u8 x = BYTE_MASK(ACC_EXEC_MASK); | |
4250 | const u8 w = BYTE_MASK(ACC_WRITE_MASK); | |
4251 | const u8 u = BYTE_MASK(ACC_USER_MASK); | |
4252 | ||
4253 | bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; | |
4254 | bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; | |
4255 | bool cr0_wp = is_write_protection(vcpu); | |
97d64b78 | 4256 | |
97d64b78 | 4257 | for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { |
09f037aa PB |
4258 | unsigned pfec = byte << 1; |
4259 | ||
97ec8c06 | 4260 | /* |
09f037aa PB |
4261 | * Each "*f" variable has a 1 bit for each UWX value |
4262 | * that causes a fault with the given PFEC. | |
97ec8c06 | 4263 | */ |
97d64b78 | 4264 | |
09f037aa PB |
4265 | /* Faults from writes to non-writable pages */ |
4266 | u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0; | |
4267 | /* Faults from user mode accesses to supervisor pages */ | |
4268 | u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0; | |
4269 | /* Faults from fetches of non-executable pages*/ | |
4270 | u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0; | |
4271 | /* Faults from kernel mode fetches of user pages */ | |
4272 | u8 smepf = 0; | |
4273 | /* Faults from kernel mode accesses of user pages */ | |
4274 | u8 smapf = 0; | |
4275 | ||
4276 | if (!ept) { | |
4277 | /* Faults from kernel mode accesses to user pages */ | |
4278 | u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; | |
4279 | ||
4280 | /* Not really needed: !nx will cause pte.nx to fault */ | |
4281 | if (!mmu->nx) | |
4282 | ff = 0; | |
4283 | ||
4284 | /* Allow supervisor writes if !cr0.wp */ | |
4285 | if (!cr0_wp) | |
4286 | wf = (pfec & PFERR_USER_MASK) ? wf : 0; | |
4287 | ||
4288 | /* Disallow supervisor fetches of user code if cr4.smep */ | |
4289 | if (cr4_smep) | |
4290 | smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; | |
4291 | ||
4292 | /* | |
4293 | * SMAP:kernel-mode data accesses from user-mode | |
4294 | * mappings should fault. A fault is considered | |
4295 | * as a SMAP violation if all of the following | |
4296 | * conditions are ture: | |
4297 | * - X86_CR4_SMAP is set in CR4 | |
4298 | * - A user page is accessed | |
4299 | * - The access is not a fetch | |
4300 | * - Page fault in kernel mode | |
4301 | * - if CPL = 3 or X86_EFLAGS_AC is clear | |
4302 | * | |
4303 | * Here, we cover the first three conditions. | |
4304 | * The fourth is computed dynamically in permission_fault(); | |
4305 | * PFERR_RSVD_MASK bit will be set in PFEC if the access is | |
4306 | * *not* subject to SMAP restrictions. | |
4307 | */ | |
4308 | if (cr4_smap) | |
4309 | smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; | |
97d64b78 | 4310 | } |
09f037aa PB |
4311 | |
4312 | mmu->permissions[byte] = ff | uf | wf | smepf | smapf; | |
97d64b78 AK |
4313 | } |
4314 | } | |
4315 | ||
2d344105 HH |
4316 | /* |
4317 | * PKU is an additional mechanism by which the paging controls access to | |
4318 | * user-mode addresses based on the value in the PKRU register. Protection | |
4319 | * key violations are reported through a bit in the page fault error code. | |
4320 | * Unlike other bits of the error code, the PK bit is not known at the | |
4321 | * call site of e.g. gva_to_gpa; it must be computed directly in | |
4322 | * permission_fault based on two bits of PKRU, on some machine state (CR4, | |
4323 | * CR0, EFER, CPL), and on other bits of the error code and the page tables. | |
4324 | * | |
4325 | * In particular the following conditions come from the error code, the | |
4326 | * page tables and the machine state: | |
4327 | * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 | |
4328 | * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) | |
4329 | * - PK is always zero if U=0 in the page tables | |
4330 | * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. | |
4331 | * | |
4332 | * The PKRU bitmask caches the result of these four conditions. The error | |
4333 | * code (minus the P bit) and the page table's U bit form an index into the | |
4334 | * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed | |
4335 | * with the two bits of the PKRU register corresponding to the protection key. | |
4336 | * For the first three conditions above the bits will be 00, thus masking | |
4337 | * away both AD and WD. For all reads or if the last condition holds, WD | |
4338 | * only will be masked away. | |
4339 | */ | |
4340 | static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | |
4341 | bool ept) | |
4342 | { | |
4343 | unsigned bit; | |
4344 | bool wp; | |
4345 | ||
4346 | if (ept) { | |
4347 | mmu->pkru_mask = 0; | |
4348 | return; | |
4349 | } | |
4350 | ||
4351 | /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ | |
4352 | if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { | |
4353 | mmu->pkru_mask = 0; | |
4354 | return; | |
4355 | } | |
4356 | ||
4357 | wp = is_write_protection(vcpu); | |
4358 | ||
4359 | for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { | |
4360 | unsigned pfec, pkey_bits; | |
4361 | bool check_pkey, check_write, ff, uf, wf, pte_user; | |
4362 | ||
4363 | pfec = bit << 1; | |
4364 | ff = pfec & PFERR_FETCH_MASK; | |
4365 | uf = pfec & PFERR_USER_MASK; | |
4366 | wf = pfec & PFERR_WRITE_MASK; | |
4367 | ||
4368 | /* PFEC.RSVD is replaced by ACC_USER_MASK. */ | |
4369 | pte_user = pfec & PFERR_RSVD_MASK; | |
4370 | ||
4371 | /* | |
4372 | * Only need to check the access which is not an | |
4373 | * instruction fetch and is to a user page. | |
4374 | */ | |
4375 | check_pkey = (!ff && pte_user); | |
4376 | /* | |
4377 | * write access is controlled by PKRU if it is a | |
4378 | * user access or CR0.WP = 1. | |
4379 | */ | |
4380 | check_write = check_pkey && wf && (uf || wp); | |
4381 | ||
4382 | /* PKRU.AD stops both read and write access. */ | |
4383 | pkey_bits = !!check_pkey; | |
4384 | /* PKRU.WD stops write access. */ | |
4385 | pkey_bits |= (!!check_write) << 1; | |
4386 | ||
4387 | mmu->pkru_mask |= (pkey_bits & 3) << pfec; | |
4388 | } | |
4389 | } | |
4390 | ||
6bb69c9b | 4391 | static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) |
6fd01b71 | 4392 | { |
6bb69c9b PB |
4393 | unsigned root_level = mmu->root_level; |
4394 | ||
4395 | mmu->last_nonleaf_level = root_level; | |
4396 | if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) | |
4397 | mmu->last_nonleaf_level++; | |
6fd01b71 AK |
4398 | } |
4399 | ||
8a3c1a33 PB |
4400 | static void paging64_init_context_common(struct kvm_vcpu *vcpu, |
4401 | struct kvm_mmu *context, | |
4402 | int level) | |
6aa8b732 | 4403 | { |
2d48a985 | 4404 | context->nx = is_nx(vcpu); |
4d6931c3 | 4405 | context->root_level = level; |
2d48a985 | 4406 | |
4d6931c3 | 4407 | reset_rsvds_bits_mask(vcpu, context); |
25d92081 | 4408 | update_permission_bitmask(vcpu, context, false); |
2d344105 | 4409 | update_pkru_bitmask(vcpu, context, false); |
6bb69c9b | 4410 | update_last_nonleaf_level(vcpu, context); |
6aa8b732 | 4411 | |
fa4a2c08 | 4412 | MMU_WARN_ON(!is_pae(vcpu)); |
6aa8b732 | 4413 | context->page_fault = paging64_page_fault; |
6aa8b732 | 4414 | context->gva_to_gpa = paging64_gva_to_gpa; |
e8bc217a | 4415 | context->sync_page = paging64_sync_page; |
a7052897 | 4416 | context->invlpg = paging64_invlpg; |
0f53b5b1 | 4417 | context->update_pte = paging64_update_pte; |
17ac10ad | 4418 | context->shadow_root_level = level; |
17c3ba9d | 4419 | context->root_hpa = INVALID_PAGE; |
c5a78f2b | 4420 | context->direct_map = false; |
6aa8b732 AK |
4421 | } |
4422 | ||
8a3c1a33 PB |
4423 | static void paging64_init_context(struct kvm_vcpu *vcpu, |
4424 | struct kvm_mmu *context) | |
17ac10ad | 4425 | { |
855feb67 YZ |
4426 | int root_level = is_la57_mode(vcpu) ? |
4427 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | |
4428 | ||
4429 | paging64_init_context_common(vcpu, context, root_level); | |
17ac10ad AK |
4430 | } |
4431 | ||
8a3c1a33 PB |
4432 | static void paging32_init_context(struct kvm_vcpu *vcpu, |
4433 | struct kvm_mmu *context) | |
6aa8b732 | 4434 | { |
2d48a985 | 4435 | context->nx = false; |
4d6931c3 | 4436 | context->root_level = PT32_ROOT_LEVEL; |
2d48a985 | 4437 | |
4d6931c3 | 4438 | reset_rsvds_bits_mask(vcpu, context); |
25d92081 | 4439 | update_permission_bitmask(vcpu, context, false); |
2d344105 | 4440 | update_pkru_bitmask(vcpu, context, false); |
6bb69c9b | 4441 | update_last_nonleaf_level(vcpu, context); |
6aa8b732 | 4442 | |
6aa8b732 | 4443 | context->page_fault = paging32_page_fault; |
6aa8b732 | 4444 | context->gva_to_gpa = paging32_gva_to_gpa; |
e8bc217a | 4445 | context->sync_page = paging32_sync_page; |
a7052897 | 4446 | context->invlpg = paging32_invlpg; |
0f53b5b1 | 4447 | context->update_pte = paging32_update_pte; |
6aa8b732 | 4448 | context->shadow_root_level = PT32E_ROOT_LEVEL; |
17c3ba9d | 4449 | context->root_hpa = INVALID_PAGE; |
c5a78f2b | 4450 | context->direct_map = false; |
6aa8b732 AK |
4451 | } |
4452 | ||
8a3c1a33 PB |
4453 | static void paging32E_init_context(struct kvm_vcpu *vcpu, |
4454 | struct kvm_mmu *context) | |
6aa8b732 | 4455 | { |
8a3c1a33 | 4456 | paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); |
6aa8b732 AK |
4457 | } |
4458 | ||
8a3c1a33 | 4459 | static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) |
fb72d167 | 4460 | { |
ad896af0 | 4461 | struct kvm_mmu *context = &vcpu->arch.mmu; |
fb72d167 | 4462 | |
c445f8ef | 4463 | context->base_role.word = 0; |
699023e2 | 4464 | context->base_role.smm = is_smm(vcpu); |
ac8d57e5 | 4465 | context->base_role.ad_disabled = (shadow_accessed_mask == 0); |
fb72d167 | 4466 | context->page_fault = tdp_page_fault; |
e8bc217a | 4467 | context->sync_page = nonpaging_sync_page; |
a7052897 | 4468 | context->invlpg = nonpaging_invlpg; |
0f53b5b1 | 4469 | context->update_pte = nonpaging_update_pte; |
855feb67 | 4470 | context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu); |
fb72d167 | 4471 | context->root_hpa = INVALID_PAGE; |
c5a78f2b | 4472 | context->direct_map = true; |
1c97f0a0 | 4473 | context->set_cr3 = kvm_x86_ops->set_tdp_cr3; |
5777ed34 | 4474 | context->get_cr3 = get_cr3; |
e4e517b4 | 4475 | context->get_pdptr = kvm_pdptr_read; |
cb659db8 | 4476 | context->inject_page_fault = kvm_inject_page_fault; |
fb72d167 JR |
4477 | |
4478 | if (!is_paging(vcpu)) { | |
2d48a985 | 4479 | context->nx = false; |
fb72d167 JR |
4480 | context->gva_to_gpa = nonpaging_gva_to_gpa; |
4481 | context->root_level = 0; | |
4482 | } else if (is_long_mode(vcpu)) { | |
2d48a985 | 4483 | context->nx = is_nx(vcpu); |
855feb67 YZ |
4484 | context->root_level = is_la57_mode(vcpu) ? |
4485 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | |
4d6931c3 DB |
4486 | reset_rsvds_bits_mask(vcpu, context); |
4487 | context->gva_to_gpa = paging64_gva_to_gpa; | |
fb72d167 | 4488 | } else if (is_pae(vcpu)) { |
2d48a985 | 4489 | context->nx = is_nx(vcpu); |
fb72d167 | 4490 | context->root_level = PT32E_ROOT_LEVEL; |
4d6931c3 DB |
4491 | reset_rsvds_bits_mask(vcpu, context); |
4492 | context->gva_to_gpa = paging64_gva_to_gpa; | |
fb72d167 | 4493 | } else { |
2d48a985 | 4494 | context->nx = false; |
fb72d167 | 4495 | context->root_level = PT32_ROOT_LEVEL; |
4d6931c3 DB |
4496 | reset_rsvds_bits_mask(vcpu, context); |
4497 | context->gva_to_gpa = paging32_gva_to_gpa; | |
fb72d167 JR |
4498 | } |
4499 | ||
25d92081 | 4500 | update_permission_bitmask(vcpu, context, false); |
2d344105 | 4501 | update_pkru_bitmask(vcpu, context, false); |
6bb69c9b | 4502 | update_last_nonleaf_level(vcpu, context); |
c258b62b | 4503 | reset_tdp_shadow_zero_bits_mask(vcpu, context); |
fb72d167 JR |
4504 | } |
4505 | ||
ad896af0 | 4506 | void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu) |
6aa8b732 | 4507 | { |
411c588d | 4508 | bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); |
edc90b7d | 4509 | bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); |
ad896af0 PB |
4510 | struct kvm_mmu *context = &vcpu->arch.mmu; |
4511 | ||
fa4a2c08 | 4512 | MMU_WARN_ON(VALID_PAGE(context->root_hpa)); |
6aa8b732 AK |
4513 | |
4514 | if (!is_paging(vcpu)) | |
8a3c1a33 | 4515 | nonpaging_init_context(vcpu, context); |
a9058ecd | 4516 | else if (is_long_mode(vcpu)) |
8a3c1a33 | 4517 | paging64_init_context(vcpu, context); |
6aa8b732 | 4518 | else if (is_pae(vcpu)) |
8a3c1a33 | 4519 | paging32E_init_context(vcpu, context); |
6aa8b732 | 4520 | else |
8a3c1a33 | 4521 | paging32_init_context(vcpu, context); |
a770f6f2 | 4522 | |
ad896af0 PB |
4523 | context->base_role.nxe = is_nx(vcpu); |
4524 | context->base_role.cr4_pae = !!is_pae(vcpu); | |
4525 | context->base_role.cr0_wp = is_write_protection(vcpu); | |
4526 | context->base_role.smep_andnot_wp | |
411c588d | 4527 | = smep && !is_write_protection(vcpu); |
edc90b7d XG |
4528 | context->base_role.smap_andnot_wp |
4529 | = smap && !is_write_protection(vcpu); | |
699023e2 | 4530 | context->base_role.smm = is_smm(vcpu); |
c258b62b | 4531 | reset_shadow_zero_bits_mask(vcpu, context); |
52fde8df JR |
4532 | } |
4533 | EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); | |
4534 | ||
ae1e2d10 PB |
4535 | void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, |
4536 | bool accessed_dirty) | |
155a97a3 | 4537 | { |
ad896af0 PB |
4538 | struct kvm_mmu *context = &vcpu->arch.mmu; |
4539 | ||
fa4a2c08 | 4540 | MMU_WARN_ON(VALID_PAGE(context->root_hpa)); |
155a97a3 | 4541 | |
855feb67 | 4542 | context->shadow_root_level = PT64_ROOT_4LEVEL; |
155a97a3 NHE |
4543 | |
4544 | context->nx = true; | |
ae1e2d10 | 4545 | context->ept_ad = accessed_dirty; |
155a97a3 NHE |
4546 | context->page_fault = ept_page_fault; |
4547 | context->gva_to_gpa = ept_gva_to_gpa; | |
4548 | context->sync_page = ept_sync_page; | |
4549 | context->invlpg = ept_invlpg; | |
4550 | context->update_pte = ept_update_pte; | |
855feb67 | 4551 | context->root_level = PT64_ROOT_4LEVEL; |
155a97a3 NHE |
4552 | context->root_hpa = INVALID_PAGE; |
4553 | context->direct_map = false; | |
995f00a6 | 4554 | context->base_role.ad_disabled = !accessed_dirty; |
155a97a3 NHE |
4555 | |
4556 | update_permission_bitmask(vcpu, context, true); | |
2d344105 | 4557 | update_pkru_bitmask(vcpu, context, true); |
fd19d3b4 | 4558 | update_last_nonleaf_level(vcpu, context); |
155a97a3 | 4559 | reset_rsvds_bits_mask_ept(vcpu, context, execonly); |
c258b62b | 4560 | reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); |
155a97a3 NHE |
4561 | } |
4562 | EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); | |
4563 | ||
8a3c1a33 | 4564 | static void init_kvm_softmmu(struct kvm_vcpu *vcpu) |
52fde8df | 4565 | { |
ad896af0 PB |
4566 | struct kvm_mmu *context = &vcpu->arch.mmu; |
4567 | ||
4568 | kvm_init_shadow_mmu(vcpu); | |
4569 | context->set_cr3 = kvm_x86_ops->set_cr3; | |
4570 | context->get_cr3 = get_cr3; | |
4571 | context->get_pdptr = kvm_pdptr_read; | |
4572 | context->inject_page_fault = kvm_inject_page_fault; | |
6aa8b732 AK |
4573 | } |
4574 | ||
8a3c1a33 | 4575 | static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) |
02f59dc9 JR |
4576 | { |
4577 | struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; | |
4578 | ||
4579 | g_context->get_cr3 = get_cr3; | |
e4e517b4 | 4580 | g_context->get_pdptr = kvm_pdptr_read; |
02f59dc9 JR |
4581 | g_context->inject_page_fault = kvm_inject_page_fault; |
4582 | ||
4583 | /* | |
0af2593b DM |
4584 | * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using |
4585 | * L1's nested page tables (e.g. EPT12). The nested translation | |
4586 | * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using | |
4587 | * L2's page tables as the first level of translation and L1's | |
4588 | * nested page tables as the second level of translation. Basically | |
4589 | * the gva_to_gpa functions between mmu and nested_mmu are swapped. | |
02f59dc9 JR |
4590 | */ |
4591 | if (!is_paging(vcpu)) { | |
2d48a985 | 4592 | g_context->nx = false; |
02f59dc9 JR |
4593 | g_context->root_level = 0; |
4594 | g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; | |
4595 | } else if (is_long_mode(vcpu)) { | |
2d48a985 | 4596 | g_context->nx = is_nx(vcpu); |
855feb67 YZ |
4597 | g_context->root_level = is_la57_mode(vcpu) ? |
4598 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | |
4d6931c3 | 4599 | reset_rsvds_bits_mask(vcpu, g_context); |
02f59dc9 JR |
4600 | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; |
4601 | } else if (is_pae(vcpu)) { | |
2d48a985 | 4602 | g_context->nx = is_nx(vcpu); |
02f59dc9 | 4603 | g_context->root_level = PT32E_ROOT_LEVEL; |
4d6931c3 | 4604 | reset_rsvds_bits_mask(vcpu, g_context); |
02f59dc9 JR |
4605 | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; |
4606 | } else { | |
2d48a985 | 4607 | g_context->nx = false; |
02f59dc9 | 4608 | g_context->root_level = PT32_ROOT_LEVEL; |
4d6931c3 | 4609 | reset_rsvds_bits_mask(vcpu, g_context); |
02f59dc9 JR |
4610 | g_context->gva_to_gpa = paging32_gva_to_gpa_nested; |
4611 | } | |
4612 | ||
25d92081 | 4613 | update_permission_bitmask(vcpu, g_context, false); |
2d344105 | 4614 | update_pkru_bitmask(vcpu, g_context, false); |
6bb69c9b | 4615 | update_last_nonleaf_level(vcpu, g_context); |
02f59dc9 JR |
4616 | } |
4617 | ||
8a3c1a33 | 4618 | static void init_kvm_mmu(struct kvm_vcpu *vcpu) |
fb72d167 | 4619 | { |
02f59dc9 | 4620 | if (mmu_is_nested(vcpu)) |
e0c6db3e | 4621 | init_kvm_nested_mmu(vcpu); |
02f59dc9 | 4622 | else if (tdp_enabled) |
e0c6db3e | 4623 | init_kvm_tdp_mmu(vcpu); |
fb72d167 | 4624 | else |
e0c6db3e | 4625 | init_kvm_softmmu(vcpu); |
fb72d167 JR |
4626 | } |
4627 | ||
8a3c1a33 | 4628 | void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) |
6aa8b732 | 4629 | { |
95f93af4 | 4630 | kvm_mmu_unload(vcpu); |
8a3c1a33 | 4631 | init_kvm_mmu(vcpu); |
17c3ba9d | 4632 | } |
8668a3c4 | 4633 | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); |
17c3ba9d AK |
4634 | |
4635 | int kvm_mmu_load(struct kvm_vcpu *vcpu) | |
6aa8b732 | 4636 | { |
714b93da AK |
4637 | int r; |
4638 | ||
e2dec939 | 4639 | r = mmu_topup_memory_caches(vcpu); |
17c3ba9d AK |
4640 | if (r) |
4641 | goto out; | |
8986ecc0 | 4642 | r = mmu_alloc_roots(vcpu); |
e2858b4a | 4643 | kvm_mmu_sync_roots(vcpu); |
8986ecc0 MT |
4644 | if (r) |
4645 | goto out; | |
3662cb1c | 4646 | /* set_cr3() should ensure TLB has been flushed */ |
f43addd4 | 4647 | vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa); |
714b93da AK |
4648 | out: |
4649 | return r; | |
6aa8b732 | 4650 | } |
17c3ba9d AK |
4651 | EXPORT_SYMBOL_GPL(kvm_mmu_load); |
4652 | ||
4653 | void kvm_mmu_unload(struct kvm_vcpu *vcpu) | |
4654 | { | |
4655 | mmu_free_roots(vcpu); | |
95f93af4 | 4656 | WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
17c3ba9d | 4657 | } |
4b16184c | 4658 | EXPORT_SYMBOL_GPL(kvm_mmu_unload); |
6aa8b732 | 4659 | |
0028425f | 4660 | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, |
7c562522 XG |
4661 | struct kvm_mmu_page *sp, u64 *spte, |
4662 | const void *new) | |
0028425f | 4663 | { |
30945387 | 4664 | if (sp->role.level != PT_PAGE_TABLE_LEVEL) { |
7e4e4056 JR |
4665 | ++vcpu->kvm->stat.mmu_pde_zapped; |
4666 | return; | |
30945387 | 4667 | } |
0028425f | 4668 | |
4cee5764 | 4669 | ++vcpu->kvm->stat.mmu_pte_updated; |
7c562522 | 4670 | vcpu->arch.mmu.update_pte(vcpu, sp, spte, new); |
0028425f AK |
4671 | } |
4672 | ||
79539cec AK |
4673 | static bool need_remote_flush(u64 old, u64 new) |
4674 | { | |
4675 | if (!is_shadow_present_pte(old)) | |
4676 | return false; | |
4677 | if (!is_shadow_present_pte(new)) | |
4678 | return true; | |
4679 | if ((old ^ new) & PT64_BASE_ADDR_MASK) | |
4680 | return true; | |
53166229 GN |
4681 | old ^= shadow_nx_mask; |
4682 | new ^= shadow_nx_mask; | |
79539cec AK |
4683 | return (old & ~new & PT64_PERM_MASK) != 0; |
4684 | } | |
4685 | ||
889e5cbc XG |
4686 | static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, |
4687 | const u8 *new, int *bytes) | |
da4a00f0 | 4688 | { |
889e5cbc XG |
4689 | u64 gentry; |
4690 | int r; | |
72016f3a | 4691 | |
72016f3a AK |
4692 | /* |
4693 | * Assume that the pte write on a page table of the same type | |
49b26e26 XG |
4694 | * as the current vcpu paging mode since we update the sptes only |
4695 | * when they have the same mode. | |
72016f3a | 4696 | */ |
889e5cbc | 4697 | if (is_pae(vcpu) && *bytes == 4) { |
72016f3a | 4698 | /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ |
889e5cbc XG |
4699 | *gpa &= ~(gpa_t)7; |
4700 | *bytes = 8; | |
54bf36aa | 4701 | r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8); |
72016f3a AK |
4702 | if (r) |
4703 | gentry = 0; | |
08e850c6 AK |
4704 | new = (const u8 *)&gentry; |
4705 | } | |
4706 | ||
889e5cbc | 4707 | switch (*bytes) { |
08e850c6 AK |
4708 | case 4: |
4709 | gentry = *(const u32 *)new; | |
4710 | break; | |
4711 | case 8: | |
4712 | gentry = *(const u64 *)new; | |
4713 | break; | |
4714 | default: | |
4715 | gentry = 0; | |
4716 | break; | |
72016f3a AK |
4717 | } |
4718 | ||
889e5cbc XG |
4719 | return gentry; |
4720 | } | |
4721 | ||
4722 | /* | |
4723 | * If we're seeing too many writes to a page, it may no longer be a page table, | |
4724 | * or we may be forking, in which case it is better to unmap the page. | |
4725 | */ | |
a138fe75 | 4726 | static bool detect_write_flooding(struct kvm_mmu_page *sp) |
889e5cbc | 4727 | { |
a30f47cb XG |
4728 | /* |
4729 | * Skip write-flooding detected for the sp whose level is 1, because | |
4730 | * it can become unsync, then the guest page is not write-protected. | |
4731 | */ | |
f71fa31f | 4732 | if (sp->role.level == PT_PAGE_TABLE_LEVEL) |
a30f47cb | 4733 | return false; |
3246af0e | 4734 | |
e5691a81 XG |
4735 | atomic_inc(&sp->write_flooding_count); |
4736 | return atomic_read(&sp->write_flooding_count) >= 3; | |
889e5cbc XG |
4737 | } |
4738 | ||
4739 | /* | |
4740 | * Misaligned accesses are too much trouble to fix up; also, they usually | |
4741 | * indicate a page is not used as a page table. | |
4742 | */ | |
4743 | static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, | |
4744 | int bytes) | |
4745 | { | |
4746 | unsigned offset, pte_size, misaligned; | |
4747 | ||
4748 | pgprintk("misaligned: gpa %llx bytes %d role %x\n", | |
4749 | gpa, bytes, sp->role.word); | |
4750 | ||
4751 | offset = offset_in_page(gpa); | |
4752 | pte_size = sp->role.cr4_pae ? 8 : 4; | |
5d9ca30e XG |
4753 | |
4754 | /* | |
4755 | * Sometimes, the OS only writes the last one bytes to update status | |
4756 | * bits, for example, in linux, andb instruction is used in clear_bit(). | |
4757 | */ | |
4758 | if (!(offset & (pte_size - 1)) && bytes == 1) | |
4759 | return false; | |
4760 | ||
889e5cbc XG |
4761 | misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); |
4762 | misaligned |= bytes < 4; | |
4763 | ||
4764 | return misaligned; | |
4765 | } | |
4766 | ||
4767 | static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) | |
4768 | { | |
4769 | unsigned page_offset, quadrant; | |
4770 | u64 *spte; | |
4771 | int level; | |
4772 | ||
4773 | page_offset = offset_in_page(gpa); | |
4774 | level = sp->role.level; | |
4775 | *nspte = 1; | |
4776 | if (!sp->role.cr4_pae) { | |
4777 | page_offset <<= 1; /* 32->64 */ | |
4778 | /* | |
4779 | * A 32-bit pde maps 4MB while the shadow pdes map | |
4780 | * only 2MB. So we need to double the offset again | |
4781 | * and zap two pdes instead of one. | |
4782 | */ | |
4783 | if (level == PT32_ROOT_LEVEL) { | |
4784 | page_offset &= ~7; /* kill rounding error */ | |
4785 | page_offset <<= 1; | |
4786 | *nspte = 2; | |
4787 | } | |
4788 | quadrant = page_offset >> PAGE_SHIFT; | |
4789 | page_offset &= ~PAGE_MASK; | |
4790 | if (quadrant != sp->role.quadrant) | |
4791 | return NULL; | |
4792 | } | |
4793 | ||
4794 | spte = &sp->spt[page_offset / sizeof(*spte)]; | |
4795 | return spte; | |
4796 | } | |
4797 | ||
13d268ca | 4798 | static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, |
d126363d JS |
4799 | const u8 *new, int bytes, |
4800 | struct kvm_page_track_notifier_node *node) | |
889e5cbc XG |
4801 | { |
4802 | gfn_t gfn = gpa >> PAGE_SHIFT; | |
889e5cbc | 4803 | struct kvm_mmu_page *sp; |
889e5cbc XG |
4804 | LIST_HEAD(invalid_list); |
4805 | u64 entry, gentry, *spte; | |
4806 | int npte; | |
b8c67b7a | 4807 | bool remote_flush, local_flush; |
4141259b AM |
4808 | union kvm_mmu_page_role mask = { }; |
4809 | ||
4810 | mask.cr0_wp = 1; | |
4811 | mask.cr4_pae = 1; | |
4812 | mask.nxe = 1; | |
4813 | mask.smep_andnot_wp = 1; | |
4814 | mask.smap_andnot_wp = 1; | |
699023e2 | 4815 | mask.smm = 1; |
ac8d57e5 | 4816 | mask.ad_disabled = 1; |
889e5cbc XG |
4817 | |
4818 | /* | |
4819 | * If we don't have indirect shadow pages, it means no page is | |
4820 | * write-protected, so we can exit simply. | |
4821 | */ | |
4822 | if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) | |
4823 | return; | |
4824 | ||
b8c67b7a | 4825 | remote_flush = local_flush = false; |
889e5cbc XG |
4826 | |
4827 | pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); | |
4828 | ||
4829 | gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes); | |
4830 | ||
4831 | /* | |
4832 | * No need to care whether allocation memory is successful | |
4833 | * or not since pte prefetch is skiped if it does not have | |
4834 | * enough objects in the cache. | |
4835 | */ | |
4836 | mmu_topup_memory_caches(vcpu); | |
4837 | ||
4838 | spin_lock(&vcpu->kvm->mmu_lock); | |
4839 | ++vcpu->kvm->stat.mmu_pte_write; | |
0375f7fa | 4840 | kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); |
889e5cbc | 4841 | |
b67bfe0d | 4842 | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { |
a30f47cb | 4843 | if (detect_write_misaligned(sp, gpa, bytes) || |
a138fe75 | 4844 | detect_write_flooding(sp)) { |
b8c67b7a | 4845 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); |
4cee5764 | 4846 | ++vcpu->kvm->stat.mmu_flooded; |
0e7bc4b9 AK |
4847 | continue; |
4848 | } | |
889e5cbc XG |
4849 | |
4850 | spte = get_written_sptes(sp, gpa, &npte); | |
4851 | if (!spte) | |
4852 | continue; | |
4853 | ||
0671a8e7 | 4854 | local_flush = true; |
ac1b714e | 4855 | while (npte--) { |
79539cec | 4856 | entry = *spte; |
38e3b2b2 | 4857 | mmu_page_zap_pte(vcpu->kvm, sp, spte); |
fa1de2bf XG |
4858 | if (gentry && |
4859 | !((sp->role.word ^ vcpu->arch.mmu.base_role.word) | |
f759e2b4 | 4860 | & mask.word) && rmap_can_add(vcpu)) |
7c562522 | 4861 | mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); |
9bb4f6b1 | 4862 | if (need_remote_flush(entry, *spte)) |
0671a8e7 | 4863 | remote_flush = true; |
ac1b714e | 4864 | ++spte; |
9b7a0325 | 4865 | } |
9b7a0325 | 4866 | } |
b8c67b7a | 4867 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); |
0375f7fa | 4868 | kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); |
aaee2c94 | 4869 | spin_unlock(&vcpu->kvm->mmu_lock); |
da4a00f0 AK |
4870 | } |
4871 | ||
a436036b AK |
4872 | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) |
4873 | { | |
10589a46 MT |
4874 | gpa_t gpa; |
4875 | int r; | |
a436036b | 4876 | |
c5a78f2b | 4877 | if (vcpu->arch.mmu.direct_map) |
60f24784 AK |
4878 | return 0; |
4879 | ||
1871c602 | 4880 | gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); |
10589a46 | 4881 | |
10589a46 | 4882 | r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
1cb3f3ae | 4883 | |
10589a46 | 4884 | return r; |
a436036b | 4885 | } |
577bdc49 | 4886 | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); |
a436036b | 4887 | |
26eeb53c | 4888 | static int make_mmu_pages_available(struct kvm_vcpu *vcpu) |
ebeace86 | 4889 | { |
d98ba053 | 4890 | LIST_HEAD(invalid_list); |
103ad25a | 4891 | |
81f4f76b | 4892 | if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) |
26eeb53c | 4893 | return 0; |
81f4f76b | 4894 | |
5da59607 TY |
4895 | while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { |
4896 | if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) | |
4897 | break; | |
ebeace86 | 4898 | |
4cee5764 | 4899 | ++vcpu->kvm->stat.mmu_recycled; |
ebeace86 | 4900 | } |
aa6bd187 | 4901 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
26eeb53c WL |
4902 | |
4903 | if (!kvm_mmu_available_pages(vcpu->kvm)) | |
4904 | return -ENOSPC; | |
4905 | return 0; | |
ebeace86 | 4906 | } |
ebeace86 | 4907 | |
14727754 | 4908 | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code, |
dc25e89e | 4909 | void *insn, int insn_len) |
3067714c | 4910 | { |
1cb3f3ae | 4911 | int r, emulation_type = EMULTYPE_RETRY; |
3067714c | 4912 | enum emulation_result er; |
9034e6e8 | 4913 | bool direct = vcpu->arch.mmu.direct_map; |
3067714c | 4914 | |
618232e2 BS |
4915 | /* With shadow page tables, fault_address contains a GVA or nGPA. */ |
4916 | if (vcpu->arch.mmu.direct_map) { | |
4917 | vcpu->arch.gpa_available = true; | |
4918 | vcpu->arch.gpa_val = cr2; | |
4919 | } | |
3067714c | 4920 | |
e9ee956e TY |
4921 | if (unlikely(error_code & PFERR_RSVD_MASK)) { |
4922 | r = handle_mmio_page_fault(vcpu, cr2, direct); | |
4923 | if (r == RET_MMIO_PF_EMULATE) { | |
4924 | emulation_type = 0; | |
4925 | goto emulate; | |
4926 | } | |
4927 | if (r == RET_MMIO_PF_RETRY) | |
4928 | return 1; | |
4929 | if (r < 0) | |
4930 | return r; | |
e08d26f0 | 4931 | /* Must be RET_MMIO_PF_INVALID. */ |
e9ee956e | 4932 | } |
3067714c | 4933 | |
14727754 TL |
4934 | r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code), |
4935 | false); | |
3067714c | 4936 | if (r < 0) |
e9ee956e TY |
4937 | return r; |
4938 | if (!r) | |
4939 | return 1; | |
3067714c | 4940 | |
14727754 TL |
4941 | /* |
4942 | * Before emulating the instruction, check if the error code | |
4943 | * was due to a RO violation while translating the guest page. | |
4944 | * This can occur when using nested virtualization with nested | |
4945 | * paging in both guests. If true, we simply unprotect the page | |
4946 | * and resume the guest. | |
14727754 | 4947 | */ |
64531a3b | 4948 | if (vcpu->arch.mmu.direct_map && |
eebed243 | 4949 | (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { |
14727754 TL |
4950 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2)); |
4951 | return 1; | |
4952 | } | |
4953 | ||
ded58749 | 4954 | if (mmio_info_in_cache(vcpu, cr2, direct)) |
1cb3f3ae | 4955 | emulation_type = 0; |
e9ee956e | 4956 | emulate: |
1cb3f3ae | 4957 | er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len); |
3067714c AK |
4958 | |
4959 | switch (er) { | |
4960 | case EMULATE_DONE: | |
4961 | return 1; | |
ac0a48c3 | 4962 | case EMULATE_USER_EXIT: |
3067714c | 4963 | ++vcpu->stat.mmio_exits; |
6d77dbfc | 4964 | /* fall through */ |
3067714c | 4965 | case EMULATE_FAIL: |
3f5d18a9 | 4966 | return 0; |
3067714c AK |
4967 | default: |
4968 | BUG(); | |
4969 | } | |
3067714c AK |
4970 | } |
4971 | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); | |
4972 | ||
a7052897 MT |
4973 | void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) |
4974 | { | |
a7052897 | 4975 | vcpu->arch.mmu.invlpg(vcpu, gva); |
77c3913b | 4976 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
a7052897 MT |
4977 | ++vcpu->stat.invlpg; |
4978 | } | |
4979 | EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); | |
4980 | ||
18552672 JR |
4981 | void kvm_enable_tdp(void) |
4982 | { | |
4983 | tdp_enabled = true; | |
4984 | } | |
4985 | EXPORT_SYMBOL_GPL(kvm_enable_tdp); | |
4986 | ||
5f4cb662 JR |
4987 | void kvm_disable_tdp(void) |
4988 | { | |
4989 | tdp_enabled = false; | |
4990 | } | |
4991 | EXPORT_SYMBOL_GPL(kvm_disable_tdp); | |
4992 | ||
6aa8b732 AK |
4993 | static void free_mmu_pages(struct kvm_vcpu *vcpu) |
4994 | { | |
ad312c7c | 4995 | free_page((unsigned long)vcpu->arch.mmu.pae_root); |
81407ca5 JR |
4996 | if (vcpu->arch.mmu.lm_root != NULL) |
4997 | free_page((unsigned long)vcpu->arch.mmu.lm_root); | |
6aa8b732 AK |
4998 | } |
4999 | ||
5000 | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | |
5001 | { | |
17ac10ad | 5002 | struct page *page; |
6aa8b732 AK |
5003 | int i; |
5004 | ||
17ac10ad AK |
5005 | /* |
5006 | * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | |
5007 | * Therefore we need to allocate shadow page tables in the first | |
5008 | * 4GB of memory, which happens to fit the DMA32 zone. | |
5009 | */ | |
5010 | page = alloc_page(GFP_KERNEL | __GFP_DMA32); | |
5011 | if (!page) | |
d7fa6ab2 WY |
5012 | return -ENOMEM; |
5013 | ||
ad312c7c | 5014 | vcpu->arch.mmu.pae_root = page_address(page); |
17ac10ad | 5015 | for (i = 0; i < 4; ++i) |
ad312c7c | 5016 | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; |
17ac10ad | 5017 | |
6aa8b732 | 5018 | return 0; |
6aa8b732 AK |
5019 | } |
5020 | ||
8018c27b | 5021 | int kvm_mmu_create(struct kvm_vcpu *vcpu) |
6aa8b732 | 5022 | { |
e459e322 XG |
5023 | vcpu->arch.walk_mmu = &vcpu->arch.mmu; |
5024 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; | |
5025 | vcpu->arch.mmu.translate_gpa = translate_gpa; | |
5026 | vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; | |
6aa8b732 | 5027 | |
8018c27b IM |
5028 | return alloc_mmu_pages(vcpu); |
5029 | } | |
6aa8b732 | 5030 | |
8a3c1a33 | 5031 | void kvm_mmu_setup(struct kvm_vcpu *vcpu) |
8018c27b | 5032 | { |
fa4a2c08 | 5033 | MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
2c264957 | 5034 | |
8a3c1a33 | 5035 | init_kvm_mmu(vcpu); |
6aa8b732 AK |
5036 | } |
5037 | ||
b5f5fdca | 5038 | static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, |
d126363d JS |
5039 | struct kvm_memory_slot *slot, |
5040 | struct kvm_page_track_notifier_node *node) | |
b5f5fdca XC |
5041 | { |
5042 | kvm_mmu_invalidate_zap_all_pages(kvm); | |
5043 | } | |
5044 | ||
13d268ca XG |
5045 | void kvm_mmu_init_vm(struct kvm *kvm) |
5046 | { | |
5047 | struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; | |
5048 | ||
5049 | node->track_write = kvm_mmu_pte_write; | |
b5f5fdca | 5050 | node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; |
13d268ca XG |
5051 | kvm_page_track_register_notifier(kvm, node); |
5052 | } | |
5053 | ||
5054 | void kvm_mmu_uninit_vm(struct kvm *kvm) | |
5055 | { | |
5056 | struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; | |
5057 | ||
5058 | kvm_page_track_unregister_notifier(kvm, node); | |
5059 | } | |
5060 | ||
1bad2b2a | 5061 | /* The return value indicates if tlb flush on all vcpus is needed. */ |
018aabb5 | 5062 | typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); |
1bad2b2a XG |
5063 | |
5064 | /* The caller should hold mmu-lock before calling this function. */ | |
5065 | static bool | |
5066 | slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, | |
5067 | slot_level_handler fn, int start_level, int end_level, | |
5068 | gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) | |
5069 | { | |
5070 | struct slot_rmap_walk_iterator iterator; | |
5071 | bool flush = false; | |
5072 | ||
5073 | for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, | |
5074 | end_gfn, &iterator) { | |
5075 | if (iterator.rmap) | |
5076 | flush |= fn(kvm, iterator.rmap); | |
5077 | ||
5078 | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { | |
5079 | if (flush && lock_flush_tlb) { | |
5080 | kvm_flush_remote_tlbs(kvm); | |
5081 | flush = false; | |
5082 | } | |
5083 | cond_resched_lock(&kvm->mmu_lock); | |
5084 | } | |
5085 | } | |
5086 | ||
5087 | if (flush && lock_flush_tlb) { | |
5088 | kvm_flush_remote_tlbs(kvm); | |
5089 | flush = false; | |
5090 | } | |
5091 | ||
5092 | return flush; | |
5093 | } | |
5094 | ||
5095 | static bool | |
5096 | slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, | |
5097 | slot_level_handler fn, int start_level, int end_level, | |
5098 | bool lock_flush_tlb) | |
5099 | { | |
5100 | return slot_handle_level_range(kvm, memslot, fn, start_level, | |
5101 | end_level, memslot->base_gfn, | |
5102 | memslot->base_gfn + memslot->npages - 1, | |
5103 | lock_flush_tlb); | |
5104 | } | |
5105 | ||
5106 | static bool | |
5107 | slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, | |
5108 | slot_level_handler fn, bool lock_flush_tlb) | |
5109 | { | |
5110 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, | |
5111 | PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); | |
5112 | } | |
5113 | ||
5114 | static bool | |
5115 | slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, | |
5116 | slot_level_handler fn, bool lock_flush_tlb) | |
5117 | { | |
5118 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1, | |
5119 | PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); | |
5120 | } | |
5121 | ||
5122 | static bool | |
5123 | slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, | |
5124 | slot_level_handler fn, bool lock_flush_tlb) | |
5125 | { | |
5126 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, | |
5127 | PT_PAGE_TABLE_LEVEL, lock_flush_tlb); | |
5128 | } | |
5129 | ||
efdfe536 XG |
5130 | void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) |
5131 | { | |
5132 | struct kvm_memslots *slots; | |
5133 | struct kvm_memory_slot *memslot; | |
9da0e4d5 | 5134 | int i; |
efdfe536 XG |
5135 | |
5136 | spin_lock(&kvm->mmu_lock); | |
9da0e4d5 PB |
5137 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
5138 | slots = __kvm_memslots(kvm, i); | |
5139 | kvm_for_each_memslot(memslot, slots) { | |
5140 | gfn_t start, end; | |
5141 | ||
5142 | start = max(gfn_start, memslot->base_gfn); | |
5143 | end = min(gfn_end, memslot->base_gfn + memslot->npages); | |
5144 | if (start >= end) | |
5145 | continue; | |
efdfe536 | 5146 | |
9da0e4d5 PB |
5147 | slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, |
5148 | PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL, | |
5149 | start, end - 1, true); | |
5150 | } | |
efdfe536 XG |
5151 | } |
5152 | ||
5153 | spin_unlock(&kvm->mmu_lock); | |
5154 | } | |
5155 | ||
018aabb5 TY |
5156 | static bool slot_rmap_write_protect(struct kvm *kvm, |
5157 | struct kvm_rmap_head *rmap_head) | |
d77aa73c | 5158 | { |
018aabb5 | 5159 | return __rmap_write_protect(kvm, rmap_head, false); |
d77aa73c XG |
5160 | } |
5161 | ||
1c91cad4 KH |
5162 | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, |
5163 | struct kvm_memory_slot *memslot) | |
6aa8b732 | 5164 | { |
d77aa73c | 5165 | bool flush; |
6aa8b732 | 5166 | |
9d1beefb | 5167 | spin_lock(&kvm->mmu_lock); |
d77aa73c XG |
5168 | flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect, |
5169 | false); | |
9d1beefb | 5170 | spin_unlock(&kvm->mmu_lock); |
198c74f4 XG |
5171 | |
5172 | /* | |
5173 | * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() | |
5174 | * which do tlb flush out of mmu-lock should be serialized by | |
5175 | * kvm->slots_lock otherwise tlb flush would be missed. | |
5176 | */ | |
5177 | lockdep_assert_held(&kvm->slots_lock); | |
5178 | ||
5179 | /* | |
5180 | * We can flush all the TLBs out of the mmu lock without TLB | |
5181 | * corruption since we just change the spte from writable to | |
5182 | * readonly so that we only need to care the case of changing | |
5183 | * spte from present to present (changing the spte from present | |
5184 | * to nonpresent will flush all the TLBs immediately), in other | |
5185 | * words, the only case we care is mmu_spte_update() where we | |
5186 | * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE | |
5187 | * instead of PT_WRITABLE_MASK, that means it does not depend | |
5188 | * on PT_WRITABLE_MASK anymore. | |
5189 | */ | |
d91ffee9 KH |
5190 | if (flush) |
5191 | kvm_flush_remote_tlbs(kvm); | |
6aa8b732 | 5192 | } |
37a7d8b0 | 5193 | |
3ea3b7fa | 5194 | static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, |
018aabb5 | 5195 | struct kvm_rmap_head *rmap_head) |
3ea3b7fa WL |
5196 | { |
5197 | u64 *sptep; | |
5198 | struct rmap_iterator iter; | |
5199 | int need_tlb_flush = 0; | |
ba049e93 | 5200 | kvm_pfn_t pfn; |
3ea3b7fa WL |
5201 | struct kvm_mmu_page *sp; |
5202 | ||
0d536790 | 5203 | restart: |
018aabb5 | 5204 | for_each_rmap_spte(rmap_head, &iter, sptep) { |
3ea3b7fa WL |
5205 | sp = page_header(__pa(sptep)); |
5206 | pfn = spte_to_pfn(*sptep); | |
5207 | ||
5208 | /* | |
decf6333 XG |
5209 | * We cannot do huge page mapping for indirect shadow pages, |
5210 | * which are found on the last rmap (level = 1) when not using | |
5211 | * tdp; such shadow pages are synced with the page table in | |
5212 | * the guest, and the guest page table is using 4K page size | |
5213 | * mapping if the indirect sp has level = 1. | |
3ea3b7fa WL |
5214 | */ |
5215 | if (sp->role.direct && | |
5216 | !kvm_is_reserved_pfn(pfn) && | |
127393fb | 5217 | PageTransCompoundMap(pfn_to_page(pfn))) { |
3ea3b7fa | 5218 | drop_spte(kvm, sptep); |
3ea3b7fa | 5219 | need_tlb_flush = 1; |
0d536790 XG |
5220 | goto restart; |
5221 | } | |
3ea3b7fa WL |
5222 | } |
5223 | ||
5224 | return need_tlb_flush; | |
5225 | } | |
5226 | ||
5227 | void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, | |
f36f3f28 | 5228 | const struct kvm_memory_slot *memslot) |
3ea3b7fa | 5229 | { |
f36f3f28 | 5230 | /* FIXME: const-ify all uses of struct kvm_memory_slot. */ |
3ea3b7fa | 5231 | spin_lock(&kvm->mmu_lock); |
f36f3f28 PB |
5232 | slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, |
5233 | kvm_mmu_zap_collapsible_spte, true); | |
3ea3b7fa WL |
5234 | spin_unlock(&kvm->mmu_lock); |
5235 | } | |
5236 | ||
f4b4b180 KH |
5237 | void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, |
5238 | struct kvm_memory_slot *memslot) | |
5239 | { | |
d77aa73c | 5240 | bool flush; |
f4b4b180 KH |
5241 | |
5242 | spin_lock(&kvm->mmu_lock); | |
d77aa73c | 5243 | flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); |
f4b4b180 KH |
5244 | spin_unlock(&kvm->mmu_lock); |
5245 | ||
5246 | lockdep_assert_held(&kvm->slots_lock); | |
5247 | ||
5248 | /* | |
5249 | * It's also safe to flush TLBs out of mmu lock here as currently this | |
5250 | * function is only used for dirty logging, in which case flushing TLB | |
5251 | * out of mmu lock also guarantees no dirty pages will be lost in | |
5252 | * dirty_bitmap. | |
5253 | */ | |
5254 | if (flush) | |
5255 | kvm_flush_remote_tlbs(kvm); | |
5256 | } | |
5257 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); | |
5258 | ||
5259 | void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, | |
5260 | struct kvm_memory_slot *memslot) | |
5261 | { | |
d77aa73c | 5262 | bool flush; |
f4b4b180 KH |
5263 | |
5264 | spin_lock(&kvm->mmu_lock); | |
d77aa73c XG |
5265 | flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, |
5266 | false); | |
f4b4b180 KH |
5267 | spin_unlock(&kvm->mmu_lock); |
5268 | ||
5269 | /* see kvm_mmu_slot_remove_write_access */ | |
5270 | lockdep_assert_held(&kvm->slots_lock); | |
5271 | ||
5272 | if (flush) | |
5273 | kvm_flush_remote_tlbs(kvm); | |
5274 | } | |
5275 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); | |
5276 | ||
5277 | void kvm_mmu_slot_set_dirty(struct kvm *kvm, | |
5278 | struct kvm_memory_slot *memslot) | |
5279 | { | |
d77aa73c | 5280 | bool flush; |
f4b4b180 KH |
5281 | |
5282 | spin_lock(&kvm->mmu_lock); | |
d77aa73c | 5283 | flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); |
f4b4b180 KH |
5284 | spin_unlock(&kvm->mmu_lock); |
5285 | ||
5286 | lockdep_assert_held(&kvm->slots_lock); | |
5287 | ||
5288 | /* see kvm_mmu_slot_leaf_clear_dirty */ | |
5289 | if (flush) | |
5290 | kvm_flush_remote_tlbs(kvm); | |
5291 | } | |
5292 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); | |
5293 | ||
e7d11c7a | 5294 | #define BATCH_ZAP_PAGES 10 |
5304b8d3 XG |
5295 | static void kvm_zap_obsolete_pages(struct kvm *kvm) |
5296 | { | |
5297 | struct kvm_mmu_page *sp, *node; | |
e7d11c7a | 5298 | int batch = 0; |
5304b8d3 XG |
5299 | |
5300 | restart: | |
5301 | list_for_each_entry_safe_reverse(sp, node, | |
5302 | &kvm->arch.active_mmu_pages, link) { | |
e7d11c7a XG |
5303 | int ret; |
5304 | ||
5304b8d3 XG |
5305 | /* |
5306 | * No obsolete page exists before new created page since | |
5307 | * active_mmu_pages is the FIFO list. | |
5308 | */ | |
5309 | if (!is_obsolete_sp(kvm, sp)) | |
5310 | break; | |
5311 | ||
5312 | /* | |
5304b8d3 XG |
5313 | * Since we are reversely walking the list and the invalid |
5314 | * list will be moved to the head, skip the invalid page | |
5315 | * can help us to avoid the infinity list walking. | |
5316 | */ | |
5317 | if (sp->role.invalid) | |
5318 | continue; | |
5319 | ||
f34d251d XG |
5320 | /* |
5321 | * Need not flush tlb since we only zap the sp with invalid | |
5322 | * generation number. | |
5323 | */ | |
e7d11c7a | 5324 | if (batch >= BATCH_ZAP_PAGES && |
f34d251d | 5325 | cond_resched_lock(&kvm->mmu_lock)) { |
e7d11c7a | 5326 | batch = 0; |
5304b8d3 XG |
5327 | goto restart; |
5328 | } | |
5329 | ||
365c8868 XG |
5330 | ret = kvm_mmu_prepare_zap_page(kvm, sp, |
5331 | &kvm->arch.zapped_obsolete_pages); | |
e7d11c7a XG |
5332 | batch += ret; |
5333 | ||
5334 | if (ret) | |
5304b8d3 XG |
5335 | goto restart; |
5336 | } | |
5337 | ||
f34d251d XG |
5338 | /* |
5339 | * Should flush tlb before free page tables since lockless-walking | |
5340 | * may use the pages. | |
5341 | */ | |
365c8868 | 5342 | kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); |
5304b8d3 XG |
5343 | } |
5344 | ||
5345 | /* | |
5346 | * Fast invalidate all shadow pages and use lock-break technique | |
5347 | * to zap obsolete pages. | |
5348 | * | |
5349 | * It's required when memslot is being deleted or VM is being | |
5350 | * destroyed, in these cases, we should ensure that KVM MMU does | |
5351 | * not use any resource of the being-deleted slot or all slots | |
5352 | * after calling the function. | |
5353 | */ | |
5354 | void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm) | |
5355 | { | |
5356 | spin_lock(&kvm->mmu_lock); | |
35006126 | 5357 | trace_kvm_mmu_invalidate_zap_all_pages(kvm); |
5304b8d3 XG |
5358 | kvm->arch.mmu_valid_gen++; |
5359 | ||
f34d251d XG |
5360 | /* |
5361 | * Notify all vcpus to reload its shadow page table | |
5362 | * and flush TLB. Then all vcpus will switch to new | |
5363 | * shadow page table with the new mmu_valid_gen. | |
5364 | * | |
5365 | * Note: we should do this under the protection of | |
5366 | * mmu-lock, otherwise, vcpu would purge shadow page | |
5367 | * but miss tlb flush. | |
5368 | */ | |
5369 | kvm_reload_remote_mmus(kvm); | |
5370 | ||
5304b8d3 XG |
5371 | kvm_zap_obsolete_pages(kvm); |
5372 | spin_unlock(&kvm->mmu_lock); | |
5373 | } | |
5374 | ||
365c8868 XG |
5375 | static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) |
5376 | { | |
5377 | return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); | |
5378 | } | |
5379 | ||
54bf36aa | 5380 | void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots) |
f8f55942 XG |
5381 | { |
5382 | /* | |
5383 | * The very rare case: if the generation-number is round, | |
5384 | * zap all shadow pages. | |
f8f55942 | 5385 | */ |
54bf36aa | 5386 | if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) { |
ae0f5499 | 5387 | kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); |
a8eca9dc | 5388 | kvm_mmu_invalidate_zap_all_pages(kvm); |
7a2e8aaf | 5389 | } |
f8f55942 XG |
5390 | } |
5391 | ||
70534a73 DC |
5392 | static unsigned long |
5393 | mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | |
3ee16c81 IE |
5394 | { |
5395 | struct kvm *kvm; | |
1495f230 | 5396 | int nr_to_scan = sc->nr_to_scan; |
70534a73 | 5397 | unsigned long freed = 0; |
3ee16c81 | 5398 | |
2f303b74 | 5399 | spin_lock(&kvm_lock); |
3ee16c81 IE |
5400 | |
5401 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
3d56cbdf | 5402 | int idx; |
d98ba053 | 5403 | LIST_HEAD(invalid_list); |
3ee16c81 | 5404 | |
35f2d16b TY |
5405 | /* |
5406 | * Never scan more than sc->nr_to_scan VM instances. | |
5407 | * Will not hit this condition practically since we do not try | |
5408 | * to shrink more than one VM and it is very unlikely to see | |
5409 | * !n_used_mmu_pages so many times. | |
5410 | */ | |
5411 | if (!nr_to_scan--) | |
5412 | break; | |
19526396 GN |
5413 | /* |
5414 | * n_used_mmu_pages is accessed without holding kvm->mmu_lock | |
5415 | * here. We may skip a VM instance errorneosly, but we do not | |
5416 | * want to shrink a VM that only started to populate its MMU | |
5417 | * anyway. | |
5418 | */ | |
365c8868 XG |
5419 | if (!kvm->arch.n_used_mmu_pages && |
5420 | !kvm_has_zapped_obsolete_pages(kvm)) | |
19526396 | 5421 | continue; |
19526396 | 5422 | |
f656ce01 | 5423 | idx = srcu_read_lock(&kvm->srcu); |
3ee16c81 | 5424 | spin_lock(&kvm->mmu_lock); |
3ee16c81 | 5425 | |
365c8868 XG |
5426 | if (kvm_has_zapped_obsolete_pages(kvm)) { |
5427 | kvm_mmu_commit_zap_page(kvm, | |
5428 | &kvm->arch.zapped_obsolete_pages); | |
5429 | goto unlock; | |
5430 | } | |
5431 | ||
70534a73 DC |
5432 | if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) |
5433 | freed++; | |
d98ba053 | 5434 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
19526396 | 5435 | |
365c8868 | 5436 | unlock: |
3ee16c81 | 5437 | spin_unlock(&kvm->mmu_lock); |
f656ce01 | 5438 | srcu_read_unlock(&kvm->srcu, idx); |
19526396 | 5439 | |
70534a73 DC |
5440 | /* |
5441 | * unfair on small ones | |
5442 | * per-vm shrinkers cry out | |
5443 | * sadness comes quickly | |
5444 | */ | |
19526396 GN |
5445 | list_move_tail(&kvm->vm_list, &vm_list); |
5446 | break; | |
3ee16c81 | 5447 | } |
3ee16c81 | 5448 | |
2f303b74 | 5449 | spin_unlock(&kvm_lock); |
70534a73 | 5450 | return freed; |
70534a73 DC |
5451 | } |
5452 | ||
5453 | static unsigned long | |
5454 | mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | |
5455 | { | |
45221ab6 | 5456 | return percpu_counter_read_positive(&kvm_total_used_mmu_pages); |
3ee16c81 IE |
5457 | } |
5458 | ||
5459 | static struct shrinker mmu_shrinker = { | |
70534a73 DC |
5460 | .count_objects = mmu_shrink_count, |
5461 | .scan_objects = mmu_shrink_scan, | |
3ee16c81 IE |
5462 | .seeks = DEFAULT_SEEKS * 10, |
5463 | }; | |
5464 | ||
2ddfd20e | 5465 | static void mmu_destroy_caches(void) |
b5a33a75 | 5466 | { |
53c07b18 XG |
5467 | if (pte_list_desc_cache) |
5468 | kmem_cache_destroy(pte_list_desc_cache); | |
d3d25b04 AK |
5469 | if (mmu_page_header_cache) |
5470 | kmem_cache_destroy(mmu_page_header_cache); | |
b5a33a75 AK |
5471 | } |
5472 | ||
5473 | int kvm_mmu_module_init(void) | |
5474 | { | |
f160c7b7 JS |
5475 | kvm_mmu_clear_all_pte_masks(); |
5476 | ||
53c07b18 XG |
5477 | pte_list_desc_cache = kmem_cache_create("pte_list_desc", |
5478 | sizeof(struct pte_list_desc), | |
20c2df83 | 5479 | 0, 0, NULL); |
53c07b18 | 5480 | if (!pte_list_desc_cache) |
b5a33a75 AK |
5481 | goto nomem; |
5482 | ||
d3d25b04 AK |
5483 | mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", |
5484 | sizeof(struct kvm_mmu_page), | |
20c2df83 | 5485 | 0, 0, NULL); |
d3d25b04 AK |
5486 | if (!mmu_page_header_cache) |
5487 | goto nomem; | |
5488 | ||
908c7f19 | 5489 | if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) |
45bf21a8 WY |
5490 | goto nomem; |
5491 | ||
3ee16c81 IE |
5492 | register_shrinker(&mmu_shrinker); |
5493 | ||
b5a33a75 AK |
5494 | return 0; |
5495 | ||
5496 | nomem: | |
3ee16c81 | 5497 | mmu_destroy_caches(); |
b5a33a75 AK |
5498 | return -ENOMEM; |
5499 | } | |
5500 | ||
3ad82a7e ZX |
5501 | /* |
5502 | * Caculate mmu pages needed for kvm. | |
5503 | */ | |
5504 | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) | |
5505 | { | |
3ad82a7e ZX |
5506 | unsigned int nr_mmu_pages; |
5507 | unsigned int nr_pages = 0; | |
bc6678a3 | 5508 | struct kvm_memslots *slots; |
be6ba0f0 | 5509 | struct kvm_memory_slot *memslot; |
9da0e4d5 | 5510 | int i; |
3ad82a7e | 5511 | |
9da0e4d5 PB |
5512 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
5513 | slots = __kvm_memslots(kvm, i); | |
90d83dc3 | 5514 | |
9da0e4d5 PB |
5515 | kvm_for_each_memslot(memslot, slots) |
5516 | nr_pages += memslot->npages; | |
5517 | } | |
3ad82a7e ZX |
5518 | |
5519 | nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; | |
5520 | nr_mmu_pages = max(nr_mmu_pages, | |
9da0e4d5 | 5521 | (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); |
3ad82a7e ZX |
5522 | |
5523 | return nr_mmu_pages; | |
5524 | } | |
5525 | ||
c42fffe3 XG |
5526 | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) |
5527 | { | |
95f93af4 | 5528 | kvm_mmu_unload(vcpu); |
c42fffe3 XG |
5529 | free_mmu_pages(vcpu); |
5530 | mmu_free_memory_caches(vcpu); | |
b034cf01 XG |
5531 | } |
5532 | ||
b034cf01 XG |
5533 | void kvm_mmu_module_exit(void) |
5534 | { | |
5535 | mmu_destroy_caches(); | |
5536 | percpu_counter_destroy(&kvm_total_used_mmu_pages); | |
5537 | unregister_shrinker(&mmu_shrinker); | |
c42fffe3 XG |
5538 | mmu_audit_disable(); |
5539 | } |