]> Git Repo - linux.git/blame - arch/x86/kvm/mmu.c
KVM: x86: remove unnecessary mark_page_dirty
[linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <[email protected]>
14 * Avi Kivity <[email protected]>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452}
453
8672b721
XG
454static bool spte_has_volatile_bits(u64 spte)
455{
c7ba5b48
XG
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
8672b721
XG
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
4132779b
XG
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
473 return false;
474
475 return true;
476}
477
4132779b
XG
478static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479{
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481}
482
1df9f2dc
XG
483/* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489static void mmu_spte_set(u64 *sptep, u64 new_spte)
490{
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493}
494
495/* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
1df9f2dc 503 */
6e7d0354 504static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 505{
c7ba5b48 506 u64 old_spte = *sptep;
6e7d0354 507 bool ret = false;
4132779b
XG
508
509 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 510
6e7d0354
XG
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
1df9f2dc 515
c7ba5b48 516 if (!spte_has_volatile_bits(old_spte))
603e0651 517 __update_clear_spte_fast(sptep, new_spte);
4132779b 518 else
603e0651 519 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 520
c7ba5b48
XG
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
6e7d0354
XG
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
4132779b 529 if (!shadow_accessed_mask)
6e7d0354 530 return ret;
4132779b
XG
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
536
537 return ret;
b79b93f9
AK
538}
539
1df9f2dc
XG
540/*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545static int mmu_spte_clear_track_bits(u64 *sptep)
546{
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
560 kvm_set_pfn_accessed(pfn);
561 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
562 kvm_set_pfn_dirty(pfn);
563 return 1;
564}
565
566/*
567 * Rules for using mmu_spte_clear_no_track:
568 * Directly clear spte without caring the state bits of sptep,
569 * it is used to set the upper level spte.
570 */
571static void mmu_spte_clear_no_track(u64 *sptep)
572{
603e0651 573 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
574}
575
c2a2ac2b
XG
576static u64 mmu_spte_get_lockless(u64 *sptep)
577{
578 return __get_spte_lockless(sptep);
579}
580
581static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
582{
c142786c
AK
583 /*
584 * Prevent page table teardown by making any free-er wait during
585 * kvm_flush_remote_tlbs() IPI to all active vcpus.
586 */
587 local_irq_disable();
588 vcpu->mode = READING_SHADOW_PAGE_TABLES;
589 /*
590 * Make sure a following spte read is not reordered ahead of the write
591 * to vcpu->mode.
592 */
593 smp_mb();
c2a2ac2b
XG
594}
595
596static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
597{
c142786c
AK
598 /*
599 * Make sure the write to vcpu->mode is not reordered in front of
600 * reads to sptes. If it does, kvm_commit_zap_page() can see us
601 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
602 */
603 smp_mb();
604 vcpu->mode = OUTSIDE_GUEST_MODE;
605 local_irq_enable();
c2a2ac2b
XG
606}
607
e2dec939 608static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 struct kmem_cache *base_cache, int min)
714b93da
AK
610{
611 void *obj;
612
613 if (cache->nobjs >= min)
e2dec939 614 return 0;
714b93da 615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 616 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 617 if (!obj)
e2dec939 618 return -ENOMEM;
714b93da
AK
619 cache->objects[cache->nobjs++] = obj;
620 }
e2dec939 621 return 0;
714b93da
AK
622}
623
f759e2b4
XG
624static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
625{
626 return cache->nobjs;
627}
628
e8ad9a70
XG
629static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
630 struct kmem_cache *cache)
714b93da
AK
631{
632 while (mc->nobjs)
e8ad9a70 633 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
634}
635
c1158e63 636static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 637 int min)
c1158e63 638{
842f22ed 639 void *page;
c1158e63
AK
640
641 if (cache->nobjs >= min)
642 return 0;
643 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 644 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
645 if (!page)
646 return -ENOMEM;
842f22ed 647 cache->objects[cache->nobjs++] = page;
c1158e63
AK
648 }
649 return 0;
650}
651
652static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
653{
654 while (mc->nobjs)
c4d198d5 655 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
656}
657
2e3e5882 658static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 659{
e2dec939
AK
660 int r;
661
53c07b18 662 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 663 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
664 if (r)
665 goto out;
ad312c7c 666 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
667 if (r)
668 goto out;
ad312c7c 669 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 670 mmu_page_header_cache, 4);
e2dec939
AK
671out:
672 return r;
714b93da
AK
673}
674
675static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
676{
53c07b18
XG
677 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
678 pte_list_desc_cache);
ad312c7c 679 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
680 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
681 mmu_page_header_cache);
714b93da
AK
682}
683
80feb89a 684static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
685{
686 void *p;
687
688 BUG_ON(!mc->nobjs);
689 p = mc->objects[--mc->nobjs];
714b93da
AK
690 return p;
691}
692
53c07b18 693static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 694{
80feb89a 695 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
696}
697
53c07b18 698static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 699{
53c07b18 700 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
701}
702
2032a93d
LJ
703static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
704{
705 if (!sp->role.direct)
706 return sp->gfns[index];
707
708 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
709}
710
711static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
712{
713 if (sp->role.direct)
714 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
715 else
716 sp->gfns[index] = gfn;
717}
718
05da4558 719/*
d4dbf470
TY
720 * Return the pointer to the large page information for a given gfn,
721 * handling slots that are not large page aligned.
05da4558 722 */
d4dbf470
TY
723static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724 struct kvm_memory_slot *slot,
725 int level)
05da4558
MT
726{
727 unsigned long idx;
728
fb03cb6f 729 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 730 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
731}
732
733static void account_shadowed(struct kvm *kvm, gfn_t gfn)
734{
d25797b2 735 struct kvm_memory_slot *slot;
d4dbf470 736 struct kvm_lpage_info *linfo;
d25797b2 737 int i;
05da4558 738
a1f4d395 739 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
740 for (i = PT_DIRECTORY_LEVEL;
741 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
742 linfo = lpage_info_slot(gfn, slot, i);
743 linfo->write_count += 1;
d25797b2 744 }
332b207d 745 kvm->arch.indirect_shadow_pages++;
05da4558
MT
746}
747
748static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
749{
d25797b2 750 struct kvm_memory_slot *slot;
d4dbf470 751 struct kvm_lpage_info *linfo;
d25797b2 752 int i;
05da4558 753
a1f4d395 754 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
755 for (i = PT_DIRECTORY_LEVEL;
756 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
757 linfo = lpage_info_slot(gfn, slot, i);
758 linfo->write_count -= 1;
759 WARN_ON(linfo->write_count < 0);
d25797b2 760 }
332b207d 761 kvm->arch.indirect_shadow_pages--;
05da4558
MT
762}
763
d25797b2
JR
764static int has_wrprotected_page(struct kvm *kvm,
765 gfn_t gfn,
766 int level)
05da4558 767{
2843099f 768 struct kvm_memory_slot *slot;
d4dbf470 769 struct kvm_lpage_info *linfo;
05da4558 770
a1f4d395 771 slot = gfn_to_memslot(kvm, gfn);
05da4558 772 if (slot) {
d4dbf470
TY
773 linfo = lpage_info_slot(gfn, slot, level);
774 return linfo->write_count;
05da4558
MT
775 }
776
777 return 1;
778}
779
d25797b2 780static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 781{
8f0b1ab6 782 unsigned long page_size;
d25797b2 783 int i, ret = 0;
05da4558 784
8f0b1ab6 785 page_size = kvm_host_page_size(kvm, gfn);
05da4558 786
d25797b2
JR
787 for (i = PT_PAGE_TABLE_LEVEL;
788 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
789 if (page_size >= KVM_HPAGE_SIZE(i))
790 ret = i;
791 else
792 break;
793 }
794
4c2155ce 795 return ret;
05da4558
MT
796}
797
5d163b1c
XG
798static struct kvm_memory_slot *
799gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800 bool no_dirty_log)
05da4558
MT
801{
802 struct kvm_memory_slot *slot;
5d163b1c
XG
803
804 slot = gfn_to_memslot(vcpu->kvm, gfn);
805 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
806 (no_dirty_log && slot->dirty_bitmap))
807 slot = NULL;
808
809 return slot;
810}
811
812static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
813{
a0a8eaba 814 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
815}
816
817static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
818{
819 int host_level, level, max_level;
05da4558 820
d25797b2
JR
821 host_level = host_mapping_level(vcpu->kvm, large_gfn);
822
823 if (host_level == PT_PAGE_TABLE_LEVEL)
824 return host_level;
825
878403b7
SY
826 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
827 kvm_x86_ops->get_lpage_level() : host_level;
828
829 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
830 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
831 break;
d25797b2
JR
832
833 return level - 1;
05da4558
MT
834}
835
290fc38d 836/*
53c07b18 837 * Pte mapping structures:
cd4a4e53 838 *
53c07b18 839 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 840 *
53c07b18
XG
841 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
842 * pte_list_desc containing more mappings.
53a27b39 843 *
53c07b18 844 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
845 * the spte was not added.
846 *
cd4a4e53 847 */
53c07b18
XG
848static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
849 unsigned long *pte_list)
cd4a4e53 850{
53c07b18 851 struct pte_list_desc *desc;
53a27b39 852 int i, count = 0;
cd4a4e53 853
53c07b18
XG
854 if (!*pte_list) {
855 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
856 *pte_list = (unsigned long)spte;
857 } else if (!(*pte_list & 1)) {
858 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
859 desc = mmu_alloc_pte_list_desc(vcpu);
860 desc->sptes[0] = (u64 *)*pte_list;
d555c333 861 desc->sptes[1] = spte;
53c07b18 862 *pte_list = (unsigned long)desc | 1;
cb16a7b3 863 ++count;
cd4a4e53 864 } else {
53c07b18
XG
865 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
866 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
867 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 868 desc = desc->more;
53c07b18 869 count += PTE_LIST_EXT;
53a27b39 870 }
53c07b18
XG
871 if (desc->sptes[PTE_LIST_EXT-1]) {
872 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
873 desc = desc->more;
874 }
d555c333 875 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 876 ++count;
d555c333 877 desc->sptes[i] = spte;
cd4a4e53 878 }
53a27b39 879 return count;
cd4a4e53
AK
880}
881
53c07b18
XG
882static void
883pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
884 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
885{
886 int j;
887
53c07b18 888 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 889 ;
d555c333
AK
890 desc->sptes[i] = desc->sptes[j];
891 desc->sptes[j] = NULL;
cd4a4e53
AK
892 if (j != 0)
893 return;
894 if (!prev_desc && !desc->more)
53c07b18 895 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
896 else
897 if (prev_desc)
898 prev_desc->more = desc->more;
899 else
53c07b18
XG
900 *pte_list = (unsigned long)desc->more | 1;
901 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
902}
903
53c07b18 904static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 905{
53c07b18
XG
906 struct pte_list_desc *desc;
907 struct pte_list_desc *prev_desc;
cd4a4e53
AK
908 int i;
909
53c07b18
XG
910 if (!*pte_list) {
911 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 912 BUG();
53c07b18
XG
913 } else if (!(*pte_list & 1)) {
914 rmap_printk("pte_list_remove: %p 1->0\n", spte);
915 if ((u64 *)*pte_list != spte) {
916 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
917 BUG();
918 }
53c07b18 919 *pte_list = 0;
cd4a4e53 920 } else {
53c07b18
XG
921 rmap_printk("pte_list_remove: %p many->many\n", spte);
922 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
923 prev_desc = NULL;
924 while (desc) {
53c07b18 925 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 926 if (desc->sptes[i] == spte) {
53c07b18 927 pte_list_desc_remove_entry(pte_list,
714b93da 928 desc, i,
cd4a4e53
AK
929 prev_desc);
930 return;
931 }
932 prev_desc = desc;
933 desc = desc->more;
934 }
53c07b18 935 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
936 BUG();
937 }
938}
939
67052b35
XG
940typedef void (*pte_list_walk_fn) (u64 *spte);
941static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
942{
943 struct pte_list_desc *desc;
944 int i;
945
946 if (!*pte_list)
947 return;
948
949 if (!(*pte_list & 1))
950 return fn((u64 *)*pte_list);
951
952 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
953 while (desc) {
954 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
955 fn(desc->sptes[i]);
956 desc = desc->more;
957 }
958}
959
9373e2c0 960static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 961 struct kvm_memory_slot *slot)
53c07b18 962{
77d11309 963 unsigned long idx;
53c07b18 964
53c07b18
XG
965 if (likely(level == PT_PAGE_TABLE_LEVEL))
966 return &slot->rmap[gfn - slot->base_gfn];
967
77d11309
TY
968 idx = gfn_to_index(gfn, slot->base_gfn, level);
969 return &slot->arch.rmap_pde[level - PT_DIRECTORY_LEVEL][idx];
53c07b18
XG
970}
971
9b9b1492
TY
972/*
973 * Take gfn and return the reverse mapping to it.
974 */
975static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
976{
977 struct kvm_memory_slot *slot;
978
979 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 980 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
981}
982
f759e2b4
XG
983static bool rmap_can_add(struct kvm_vcpu *vcpu)
984{
985 struct kvm_mmu_memory_cache *cache;
986
987 cache = &vcpu->arch.mmu_pte_list_desc_cache;
988 return mmu_memory_cache_free_objects(cache);
989}
990
53c07b18
XG
991static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
992{
993 struct kvm_mmu_page *sp;
994 unsigned long *rmapp;
995
53c07b18
XG
996 sp = page_header(__pa(spte));
997 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
998 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
999 return pte_list_add(vcpu, spte, rmapp);
1000}
1001
53c07b18
XG
1002static void rmap_remove(struct kvm *kvm, u64 *spte)
1003{
1004 struct kvm_mmu_page *sp;
1005 gfn_t gfn;
1006 unsigned long *rmapp;
1007
1008 sp = page_header(__pa(spte));
1009 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011 pte_list_remove(spte, rmapp);
1012}
1013
1e3f42f0
TY
1014/*
1015 * Used by the following functions to iterate through the sptes linked by a
1016 * rmap. All fields are private and not assumed to be used outside.
1017 */
1018struct rmap_iterator {
1019 /* private fields */
1020 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1021 int pos; /* index of the sptep */
1022};
1023
1024/*
1025 * Iteration must be started by this function. This should also be used after
1026 * removing/dropping sptes from the rmap link because in such cases the
1027 * information in the itererator may not be valid.
1028 *
1029 * Returns sptep if found, NULL otherwise.
1030 */
1031static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1032{
1033 if (!rmap)
1034 return NULL;
1035
1036 if (!(rmap & 1)) {
1037 iter->desc = NULL;
1038 return (u64 *)rmap;
1039 }
1040
1041 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1042 iter->pos = 0;
1043 return iter->desc->sptes[iter->pos];
1044}
1045
1046/*
1047 * Must be used with a valid iterator: e.g. after rmap_get_first().
1048 *
1049 * Returns sptep if found, NULL otherwise.
1050 */
1051static u64 *rmap_get_next(struct rmap_iterator *iter)
1052{
1053 if (iter->desc) {
1054 if (iter->pos < PTE_LIST_EXT - 1) {
1055 u64 *sptep;
1056
1057 ++iter->pos;
1058 sptep = iter->desc->sptes[iter->pos];
1059 if (sptep)
1060 return sptep;
1061 }
1062
1063 iter->desc = iter->desc->more;
1064
1065 if (iter->desc) {
1066 iter->pos = 0;
1067 /* desc->sptes[0] cannot be NULL */
1068 return iter->desc->sptes[iter->pos];
1069 }
1070 }
1071
1072 return NULL;
1073}
1074
c3707958 1075static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1076{
1df9f2dc 1077 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1078 rmap_remove(kvm, sptep);
be38d276
AK
1079}
1080
8e22f955
XG
1081
1082static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1083{
1084 if (is_large_pte(*sptep)) {
1085 WARN_ON(page_header(__pa(sptep))->role.level ==
1086 PT_PAGE_TABLE_LEVEL);
1087 drop_spte(kvm, sptep);
1088 --kvm->stat.lpages;
1089 return true;
1090 }
1091
1092 return false;
1093}
1094
1095static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1096{
1097 if (__drop_large_spte(vcpu->kvm, sptep))
1098 kvm_flush_remote_tlbs(vcpu->kvm);
1099}
1100
1101/*
49fde340
XG
1102 * Write-protect on the specified @sptep, @pt_protect indicates whether
1103 * spte writ-protection is caused by protecting shadow page table.
1104 * @flush indicates whether tlb need be flushed.
1105 *
1106 * Note: write protection is difference between drity logging and spte
1107 * protection:
1108 * - for dirty logging, the spte can be set to writable at anytime if
1109 * its dirty bitmap is properly set.
1110 * - for spte protection, the spte can be writable only after unsync-ing
1111 * shadow page.
8e22f955
XG
1112 *
1113 * Return true if the spte is dropped.
1114 */
49fde340
XG
1115static bool
1116spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1117{
1118 u64 spte = *sptep;
1119
49fde340
XG
1120 if (!is_writable_pte(spte) &&
1121 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1122 return false;
1123
1124 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1125
49fde340
XG
1126 if (__drop_large_spte(kvm, sptep)) {
1127 *flush |= true;
d13bc5b5 1128 return true;
49fde340 1129 }
d13bc5b5 1130
49fde340
XG
1131 if (pt_protect)
1132 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1133 spte = spte & ~PT_WRITABLE_MASK;
49fde340
XG
1134
1135 *flush |= mmu_spte_update(sptep, spte);
d13bc5b5
XG
1136 return false;
1137}
1138
49fde340
XG
1139static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1140 int level, bool pt_protect)
98348e95 1141{
1e3f42f0
TY
1142 u64 *sptep;
1143 struct rmap_iterator iter;
d13bc5b5 1144 bool flush = false;
374cbac0 1145
1e3f42f0
TY
1146 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1147 BUG_ON(!(*sptep & PT_PRESENT_MASK));
49fde340 1148 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1e3f42f0 1149 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1150 continue;
caa5b8a5 1151 }
a0ed4607 1152
d13bc5b5 1153 sptep = rmap_get_next(&iter);
374cbac0 1154 }
855149aa 1155
d13bc5b5 1156 return flush;
a0ed4607
TY
1157}
1158
5dc99b23
TY
1159/**
1160 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1161 * @kvm: kvm instance
1162 * @slot: slot to protect
1163 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1164 * @mask: indicates which pages we should protect
1165 *
1166 * Used when we do not need to care about huge page mappings: e.g. during dirty
1167 * logging we do not have any such mappings.
1168 */
1169void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1170 struct kvm_memory_slot *slot,
1171 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1172{
1173 unsigned long *rmapp;
a0ed4607 1174
5dc99b23
TY
1175 while (mask) {
1176 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
49fde340 1177 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
05da4558 1178
5dc99b23
TY
1179 /* clear the first set bit */
1180 mask &= mask - 1;
1181 }
374cbac0
AK
1182}
1183
2f84569f 1184static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1185{
1186 struct kvm_memory_slot *slot;
5dc99b23
TY
1187 unsigned long *rmapp;
1188 int i;
2f84569f 1189 bool write_protected = false;
95d4c16c
TY
1190
1191 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1192
1193 for (i = PT_PAGE_TABLE_LEVEL;
1194 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1195 rmapp = __gfn_to_rmap(gfn, i, slot);
49fde340 1196 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
5dc99b23
TY
1197 }
1198
1199 return write_protected;
95d4c16c
TY
1200}
1201
8a8365c5 1202static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1203 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1204{
1e3f42f0
TY
1205 u64 *sptep;
1206 struct rmap_iterator iter;
e930bffe
AA
1207 int need_tlb_flush = 0;
1208
1e3f42f0
TY
1209 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1210 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1211 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1212
1213 drop_spte(kvm, sptep);
e930bffe
AA
1214 need_tlb_flush = 1;
1215 }
1e3f42f0 1216
e930bffe
AA
1217 return need_tlb_flush;
1218}
1219
8a8365c5 1220static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1221 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1222{
1e3f42f0
TY
1223 u64 *sptep;
1224 struct rmap_iterator iter;
3da0dd43 1225 int need_flush = 0;
1e3f42f0 1226 u64 new_spte;
3da0dd43
IE
1227 pte_t *ptep = (pte_t *)data;
1228 pfn_t new_pfn;
1229
1230 WARN_ON(pte_huge(*ptep));
1231 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1232
1233 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1234 BUG_ON(!is_shadow_present_pte(*sptep));
1235 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1236
3da0dd43 1237 need_flush = 1;
1e3f42f0 1238
3da0dd43 1239 if (pte_write(*ptep)) {
1e3f42f0
TY
1240 drop_spte(kvm, sptep);
1241 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1242 } else {
1e3f42f0 1243 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1244 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1245
1246 new_spte &= ~PT_WRITABLE_MASK;
1247 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1248 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1249
1250 mmu_spte_clear_track_bits(sptep);
1251 mmu_spte_set(sptep, new_spte);
1252 sptep = rmap_get_next(&iter);
3da0dd43
IE
1253 }
1254 }
1e3f42f0 1255
3da0dd43
IE
1256 if (need_flush)
1257 kvm_flush_remote_tlbs(kvm);
1258
1259 return 0;
1260}
1261
84504ef3
TY
1262static int kvm_handle_hva_range(struct kvm *kvm,
1263 unsigned long start,
1264 unsigned long end,
1265 unsigned long data,
1266 int (*handler)(struct kvm *kvm,
1267 unsigned long *rmapp,
048212d0 1268 struct kvm_memory_slot *slot,
84504ef3 1269 unsigned long data))
e930bffe 1270{
be6ba0f0 1271 int j;
f395302e 1272 int ret = 0;
bc6678a3 1273 struct kvm_memslots *slots;
be6ba0f0 1274 struct kvm_memory_slot *memslot;
bc6678a3 1275
90d83dc3 1276 slots = kvm_memslots(kvm);
e930bffe 1277
be6ba0f0 1278 kvm_for_each_memslot(memslot, slots) {
84504ef3 1279 unsigned long hva_start, hva_end;
bcd3ef58 1280 gfn_t gfn_start, gfn_end;
852e3c19 1281
84504ef3
TY
1282 hva_start = max(start, memslot->userspace_addr);
1283 hva_end = min(end, memslot->userspace_addr +
1284 (memslot->npages << PAGE_SHIFT));
1285 if (hva_start >= hva_end)
1286 continue;
1287 /*
1288 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1289 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1290 */
bcd3ef58 1291 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3
TY
1292 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1293
bcd3ef58
TY
1294 for (j = PT_PAGE_TABLE_LEVEL;
1295 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1296 unsigned long idx, idx_end;
1297 unsigned long *rmapp;
d4dbf470 1298
bcd3ef58
TY
1299 /*
1300 * {idx(page_j) | page_j intersects with
1301 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1302 */
1303 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1304 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1305
1306 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1307
1308 for (; idx <= idx_end; ++idx)
1309 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1310 }
1311 }
1312
f395302e 1313 return ret;
e930bffe
AA
1314}
1315
84504ef3
TY
1316static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1317 unsigned long data,
1318 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1319 struct kvm_memory_slot *slot,
84504ef3
TY
1320 unsigned long data))
1321{
1322 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1323}
1324
e930bffe
AA
1325int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1326{
3da0dd43
IE
1327 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1328}
1329
b3ae2096
TY
1330int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1331{
1332 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1333}
1334
3da0dd43
IE
1335void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1336{
8a8365c5 1337 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1338}
1339
8a8365c5 1340static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1341 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1342{
1e3f42f0 1343 u64 *sptep;
79f702a6 1344 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1345 int young = 0;
1346
6316e1c8 1347 /*
3f6d8c8a
XH
1348 * In case of absence of EPT Access and Dirty Bits supports,
1349 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1350 * an EPT mapping, and clearing it if it does. On the next access,
1351 * a new EPT mapping will be established.
1352 * This has some overhead, but not as much as the cost of swapping
1353 * out actively used pages or breaking up actively used hugepages.
1354 */
f395302e
TY
1355 if (!shadow_accessed_mask) {
1356 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1357 goto out;
1358 }
534e38b4 1359
1e3f42f0
TY
1360 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1361 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1362 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1363
3f6d8c8a 1364 if (*sptep & shadow_accessed_mask) {
e930bffe 1365 young = 1;
3f6d8c8a
XH
1366 clear_bit((ffs(shadow_accessed_mask) - 1),
1367 (unsigned long *)sptep);
e930bffe 1368 }
e930bffe 1369 }
f395302e
TY
1370out:
1371 /* @data has hva passed to kvm_age_hva(). */
1372 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1373 return young;
1374}
1375
8ee53820 1376static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1377 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1378{
1e3f42f0
TY
1379 u64 *sptep;
1380 struct rmap_iterator iter;
8ee53820
AA
1381 int young = 0;
1382
1383 /*
1384 * If there's no access bit in the secondary pte set by the
1385 * hardware it's up to gup-fast/gup to set the access bit in
1386 * the primary pte or in the page structure.
1387 */
1388 if (!shadow_accessed_mask)
1389 goto out;
1390
1e3f42f0
TY
1391 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1392 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1393 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1394
3f6d8c8a 1395 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1396 young = 1;
1397 break;
1398 }
8ee53820
AA
1399 }
1400out:
1401 return young;
1402}
1403
53a27b39
MT
1404#define RMAP_RECYCLE_THRESHOLD 1000
1405
852e3c19 1406static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1407{
1408 unsigned long *rmapp;
852e3c19
JR
1409 struct kvm_mmu_page *sp;
1410
1411 sp = page_header(__pa(spte));
53a27b39 1412
852e3c19 1413 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1414
048212d0 1415 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1416 kvm_flush_remote_tlbs(vcpu->kvm);
1417}
1418
e930bffe
AA
1419int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1420{
f395302e 1421 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1422}
1423
8ee53820
AA
1424int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1425{
1426 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1427}
1428
d6c69ee9 1429#ifdef MMU_DEBUG
47ad8e68 1430static int is_empty_shadow_page(u64 *spt)
6aa8b732 1431{
139bdb2d
AK
1432 u64 *pos;
1433 u64 *end;
1434
47ad8e68 1435 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1436 if (is_shadow_present_pte(*pos)) {
b8688d51 1437 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1438 pos, *pos);
6aa8b732 1439 return 0;
139bdb2d 1440 }
6aa8b732
AK
1441 return 1;
1442}
d6c69ee9 1443#endif
6aa8b732 1444
45221ab6
DH
1445/*
1446 * This value is the sum of all of the kvm instances's
1447 * kvm->arch.n_used_mmu_pages values. We need a global,
1448 * aggregate version in order to make the slab shrinker
1449 * faster
1450 */
1451static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1452{
1453 kvm->arch.n_used_mmu_pages += nr;
1454 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1455}
1456
bd4c86ea
XG
1457/*
1458 * Remove the sp from shadow page cache, after call it,
1459 * we can not find this sp from the cache, and the shadow
1460 * page table is still valid.
1461 * It should be under the protection of mmu lock.
1462 */
1463static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1464{
4db35314 1465 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1466 hlist_del(&sp->hash_link);
2032a93d 1467 if (!sp->role.direct)
842f22ed 1468 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1469}
1470
1471/*
1472 * Free the shadow page table and the sp, we can do it
1473 * out of the protection of mmu lock.
1474 */
1475static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1476{
1477 list_del(&sp->link);
1478 free_page((unsigned long)sp->spt);
e8ad9a70 1479 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1480}
1481
cea0f0e7
AK
1482static unsigned kvm_page_table_hashfn(gfn_t gfn)
1483{
1ae0a13d 1484 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1485}
1486
714b93da 1487static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1488 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1489{
cea0f0e7
AK
1490 if (!parent_pte)
1491 return;
cea0f0e7 1492
67052b35 1493 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1494}
1495
4db35314 1496static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1497 u64 *parent_pte)
1498{
67052b35 1499 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1500}
1501
bcdd9a93
XG
1502static void drop_parent_pte(struct kvm_mmu_page *sp,
1503 u64 *parent_pte)
1504{
1505 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1506 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1507}
1508
67052b35
XG
1509static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1510 u64 *parent_pte, int direct)
ad8cfbe3 1511{
67052b35 1512 struct kvm_mmu_page *sp;
80feb89a
TY
1513 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1514 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1515 if (!direct)
80feb89a 1516 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1517 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1518 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1519 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1520 sp->parent_ptes = 0;
1521 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1522 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1523 return sp;
ad8cfbe3
MT
1524}
1525
67052b35 1526static void mark_unsync(u64 *spte);
1047df1f 1527static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1528{
67052b35 1529 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1530}
1531
67052b35 1532static void mark_unsync(u64 *spte)
0074ff63 1533{
67052b35 1534 struct kvm_mmu_page *sp;
1047df1f 1535 unsigned int index;
0074ff63 1536
67052b35 1537 sp = page_header(__pa(spte));
1047df1f
XG
1538 index = spte - sp->spt;
1539 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1540 return;
1047df1f 1541 if (sp->unsync_children++)
0074ff63 1542 return;
1047df1f 1543 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1544}
1545
e8bc217a 1546static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1547 struct kvm_mmu_page *sp)
e8bc217a
MT
1548{
1549 return 1;
1550}
1551
a7052897
MT
1552static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1553{
1554}
1555
0f53b5b1
XG
1556static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1557 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1558 const void *pte)
0f53b5b1
XG
1559{
1560 WARN_ON(1);
1561}
1562
60c8aec6
MT
1563#define KVM_PAGE_ARRAY_NR 16
1564
1565struct kvm_mmu_pages {
1566 struct mmu_page_and_offset {
1567 struct kvm_mmu_page *sp;
1568 unsigned int idx;
1569 } page[KVM_PAGE_ARRAY_NR];
1570 unsigned int nr;
1571};
1572
cded19f3
HE
1573static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1574 int idx)
4731d4c7 1575{
60c8aec6 1576 int i;
4731d4c7 1577
60c8aec6
MT
1578 if (sp->unsync)
1579 for (i=0; i < pvec->nr; i++)
1580 if (pvec->page[i].sp == sp)
1581 return 0;
1582
1583 pvec->page[pvec->nr].sp = sp;
1584 pvec->page[pvec->nr].idx = idx;
1585 pvec->nr++;
1586 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1587}
1588
1589static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1590 struct kvm_mmu_pages *pvec)
1591{
1592 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1593
37178b8b 1594 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1595 struct kvm_mmu_page *child;
4731d4c7
MT
1596 u64 ent = sp->spt[i];
1597
7a8f1a74
XG
1598 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1599 goto clear_child_bitmap;
1600
1601 child = page_header(ent & PT64_BASE_ADDR_MASK);
1602
1603 if (child->unsync_children) {
1604 if (mmu_pages_add(pvec, child, i))
1605 return -ENOSPC;
1606
1607 ret = __mmu_unsync_walk(child, pvec);
1608 if (!ret)
1609 goto clear_child_bitmap;
1610 else if (ret > 0)
1611 nr_unsync_leaf += ret;
1612 else
1613 return ret;
1614 } else if (child->unsync) {
1615 nr_unsync_leaf++;
1616 if (mmu_pages_add(pvec, child, i))
1617 return -ENOSPC;
1618 } else
1619 goto clear_child_bitmap;
1620
1621 continue;
1622
1623clear_child_bitmap:
1624 __clear_bit(i, sp->unsync_child_bitmap);
1625 sp->unsync_children--;
1626 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1627 }
1628
4731d4c7 1629
60c8aec6
MT
1630 return nr_unsync_leaf;
1631}
1632
1633static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1634 struct kvm_mmu_pages *pvec)
1635{
1636 if (!sp->unsync_children)
1637 return 0;
1638
1639 mmu_pages_add(pvec, sp, 0);
1640 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1641}
1642
4731d4c7
MT
1643static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1644{
1645 WARN_ON(!sp->unsync);
5e1b3ddb 1646 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1647 sp->unsync = 0;
1648 --kvm->stat.mmu_unsync;
1649}
1650
7775834a
XG
1651static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1652 struct list_head *invalid_list);
1653static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1654 struct list_head *invalid_list);
4731d4c7 1655
f41d335a
XG
1656#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1657 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1658 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1659 if ((sp)->gfn != (gfn)) {} else
1660
f41d335a
XG
1661#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1662 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1663 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1664 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1665 (sp)->role.invalid) {} else
1666
f918b443 1667/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1668static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1669 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1670{
5b7e0102 1671 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1672 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1673 return 1;
1674 }
1675
f918b443 1676 if (clear_unsync)
1d9dc7e0 1677 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1678
a4a8e6f7 1679 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1680 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1681 return 1;
1682 }
1683
1684 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1685 return 0;
1686}
1687
1d9dc7e0
XG
1688static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1689 struct kvm_mmu_page *sp)
1690{
d98ba053 1691 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1692 int ret;
1693
d98ba053 1694 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1695 if (ret)
d98ba053
XG
1696 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1697
1d9dc7e0
XG
1698 return ret;
1699}
1700
e37fa785
XG
1701#ifdef CONFIG_KVM_MMU_AUDIT
1702#include "mmu_audit.c"
1703#else
1704static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1705static void mmu_audit_disable(void) { }
1706#endif
1707
d98ba053
XG
1708static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1709 struct list_head *invalid_list)
1d9dc7e0 1710{
d98ba053 1711 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1712}
1713
9f1a122f
XG
1714/* @gfn should be write-protected at the call site */
1715static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1716{
9f1a122f 1717 struct kvm_mmu_page *s;
f41d335a 1718 struct hlist_node *node;
d98ba053 1719 LIST_HEAD(invalid_list);
9f1a122f
XG
1720 bool flush = false;
1721
f41d335a 1722 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1723 if (!s->unsync)
9f1a122f
XG
1724 continue;
1725
1726 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1727 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1728 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1729 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1730 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1731 continue;
1732 }
9f1a122f
XG
1733 flush = true;
1734 }
1735
d98ba053 1736 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1737 if (flush)
1738 kvm_mmu_flush_tlb(vcpu);
1739}
1740
60c8aec6
MT
1741struct mmu_page_path {
1742 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1743 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1744};
1745
60c8aec6
MT
1746#define for_each_sp(pvec, sp, parents, i) \
1747 for (i = mmu_pages_next(&pvec, &parents, -1), \
1748 sp = pvec.page[i].sp; \
1749 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1750 i = mmu_pages_next(&pvec, &parents, i))
1751
cded19f3
HE
1752static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1753 struct mmu_page_path *parents,
1754 int i)
60c8aec6
MT
1755{
1756 int n;
1757
1758 for (n = i+1; n < pvec->nr; n++) {
1759 struct kvm_mmu_page *sp = pvec->page[n].sp;
1760
1761 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1762 parents->idx[0] = pvec->page[n].idx;
1763 return n;
1764 }
1765
1766 parents->parent[sp->role.level-2] = sp;
1767 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1768 }
1769
1770 return n;
1771}
1772
cded19f3 1773static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1774{
60c8aec6
MT
1775 struct kvm_mmu_page *sp;
1776 unsigned int level = 0;
1777
1778 do {
1779 unsigned int idx = parents->idx[level];
4731d4c7 1780
60c8aec6
MT
1781 sp = parents->parent[level];
1782 if (!sp)
1783 return;
1784
1785 --sp->unsync_children;
1786 WARN_ON((int)sp->unsync_children < 0);
1787 __clear_bit(idx, sp->unsync_child_bitmap);
1788 level++;
1789 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1790}
1791
60c8aec6
MT
1792static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1793 struct mmu_page_path *parents,
1794 struct kvm_mmu_pages *pvec)
4731d4c7 1795{
60c8aec6
MT
1796 parents->parent[parent->role.level-1] = NULL;
1797 pvec->nr = 0;
1798}
4731d4c7 1799
60c8aec6
MT
1800static void mmu_sync_children(struct kvm_vcpu *vcpu,
1801 struct kvm_mmu_page *parent)
1802{
1803 int i;
1804 struct kvm_mmu_page *sp;
1805 struct mmu_page_path parents;
1806 struct kvm_mmu_pages pages;
d98ba053 1807 LIST_HEAD(invalid_list);
60c8aec6
MT
1808
1809 kvm_mmu_pages_init(parent, &parents, &pages);
1810 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1811 bool protected = false;
b1a36821
MT
1812
1813 for_each_sp(pages, sp, parents, i)
1814 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1815
1816 if (protected)
1817 kvm_flush_remote_tlbs(vcpu->kvm);
1818
60c8aec6 1819 for_each_sp(pages, sp, parents, i) {
d98ba053 1820 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1821 mmu_pages_clear_parents(&parents);
1822 }
d98ba053 1823 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1824 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1825 kvm_mmu_pages_init(parent, &parents, &pages);
1826 }
4731d4c7
MT
1827}
1828
c3707958
XG
1829static void init_shadow_page_table(struct kvm_mmu_page *sp)
1830{
1831 int i;
1832
1833 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1834 sp->spt[i] = 0ull;
1835}
1836
a30f47cb
XG
1837static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1838{
1839 sp->write_flooding_count = 0;
1840}
1841
1842static void clear_sp_write_flooding_count(u64 *spte)
1843{
1844 struct kvm_mmu_page *sp = page_header(__pa(spte));
1845
1846 __clear_sp_write_flooding_count(sp);
1847}
1848
cea0f0e7
AK
1849static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1850 gfn_t gfn,
1851 gva_t gaddr,
1852 unsigned level,
f6e2c02b 1853 int direct,
41074d07 1854 unsigned access,
f7d9c7b7 1855 u64 *parent_pte)
cea0f0e7
AK
1856{
1857 union kvm_mmu_page_role role;
cea0f0e7 1858 unsigned quadrant;
9f1a122f 1859 struct kvm_mmu_page *sp;
f41d335a 1860 struct hlist_node *node;
9f1a122f 1861 bool need_sync = false;
cea0f0e7 1862
a770f6f2 1863 role = vcpu->arch.mmu.base_role;
cea0f0e7 1864 role.level = level;
f6e2c02b 1865 role.direct = direct;
84b0c8c6 1866 if (role.direct)
5b7e0102 1867 role.cr4_pae = 0;
41074d07 1868 role.access = access;
c5a78f2b
JR
1869 if (!vcpu->arch.mmu.direct_map
1870 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1871 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1872 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1873 role.quadrant = quadrant;
1874 }
f41d335a 1875 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1876 if (!need_sync && sp->unsync)
1877 need_sync = true;
4731d4c7 1878
7ae680eb
XG
1879 if (sp->role.word != role.word)
1880 continue;
4731d4c7 1881
7ae680eb
XG
1882 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1883 break;
e02aa901 1884
7ae680eb
XG
1885 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1886 if (sp->unsync_children) {
a8eeb04a 1887 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1888 kvm_mmu_mark_parents_unsync(sp);
1889 } else if (sp->unsync)
1890 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1891
a30f47cb 1892 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1893 trace_kvm_mmu_get_page(sp, false);
1894 return sp;
1895 }
dfc5aa00 1896 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1897 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1898 if (!sp)
1899 return sp;
4db35314
AK
1900 sp->gfn = gfn;
1901 sp->role = role;
7ae680eb
XG
1902 hlist_add_head(&sp->hash_link,
1903 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1904 if (!direct) {
b1a36821
MT
1905 if (rmap_write_protect(vcpu->kvm, gfn))
1906 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1907 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1908 kvm_sync_pages(vcpu, gfn);
1909
4731d4c7
MT
1910 account_shadowed(vcpu->kvm, gfn);
1911 }
c3707958 1912 init_shadow_page_table(sp);
f691fe1d 1913 trace_kvm_mmu_get_page(sp, true);
4db35314 1914 return sp;
cea0f0e7
AK
1915}
1916
2d11123a
AK
1917static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1918 struct kvm_vcpu *vcpu, u64 addr)
1919{
1920 iterator->addr = addr;
1921 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1922 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1923
1924 if (iterator->level == PT64_ROOT_LEVEL &&
1925 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1926 !vcpu->arch.mmu.direct_map)
1927 --iterator->level;
1928
2d11123a
AK
1929 if (iterator->level == PT32E_ROOT_LEVEL) {
1930 iterator->shadow_addr
1931 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1932 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1933 --iterator->level;
1934 if (!iterator->shadow_addr)
1935 iterator->level = 0;
1936 }
1937}
1938
1939static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1940{
1941 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1942 return false;
4d88954d 1943
2d11123a
AK
1944 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1945 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1946 return true;
1947}
1948
c2a2ac2b
XG
1949static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1950 u64 spte)
2d11123a 1951{
c2a2ac2b 1952 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1953 iterator->level = 0;
1954 return;
1955 }
1956
c2a2ac2b 1957 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1958 --iterator->level;
1959}
1960
c2a2ac2b
XG
1961static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1962{
1963 return __shadow_walk_next(iterator, *iterator->sptep);
1964}
1965
32ef26a3
AK
1966static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1967{
1968 u64 spte;
1969
1970 spte = __pa(sp->spt)
1971 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1972 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1973 mmu_spte_set(sptep, spte);
32ef26a3
AK
1974}
1975
a357bd22
AK
1976static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1977 unsigned direct_access)
1978{
1979 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1980 struct kvm_mmu_page *child;
1981
1982 /*
1983 * For the direct sp, if the guest pte's dirty bit
1984 * changed form clean to dirty, it will corrupt the
1985 * sp's access: allow writable in the read-only sp,
1986 * so we should update the spte at this point to get
1987 * a new sp with the correct access.
1988 */
1989 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1990 if (child->role.access == direct_access)
1991 return;
1992
bcdd9a93 1993 drop_parent_pte(child, sptep);
a357bd22
AK
1994 kvm_flush_remote_tlbs(vcpu->kvm);
1995 }
1996}
1997
505aef8f 1998static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1999 u64 *spte)
2000{
2001 u64 pte;
2002 struct kvm_mmu_page *child;
2003
2004 pte = *spte;
2005 if (is_shadow_present_pte(pte)) {
505aef8f 2006 if (is_last_spte(pte, sp->role.level)) {
c3707958 2007 drop_spte(kvm, spte);
505aef8f
XG
2008 if (is_large_pte(pte))
2009 --kvm->stat.lpages;
2010 } else {
38e3b2b2 2011 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2012 drop_parent_pte(child, spte);
38e3b2b2 2013 }
505aef8f
XG
2014 return true;
2015 }
2016
2017 if (is_mmio_spte(pte))
ce88decf 2018 mmu_spte_clear_no_track(spte);
c3707958 2019
505aef8f 2020 return false;
38e3b2b2
XG
2021}
2022
90cb0529 2023static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2024 struct kvm_mmu_page *sp)
a436036b 2025{
697fe2e2 2026 unsigned i;
697fe2e2 2027
38e3b2b2
XG
2028 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2029 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2030}
2031
4db35314 2032static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2033{
4db35314 2034 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2035}
2036
31aa2b44 2037static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2038{
1e3f42f0
TY
2039 u64 *sptep;
2040 struct rmap_iterator iter;
a436036b 2041
1e3f42f0
TY
2042 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2043 drop_parent_pte(sp, sptep);
31aa2b44
AK
2044}
2045
60c8aec6 2046static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2047 struct kvm_mmu_page *parent,
2048 struct list_head *invalid_list)
4731d4c7 2049{
60c8aec6
MT
2050 int i, zapped = 0;
2051 struct mmu_page_path parents;
2052 struct kvm_mmu_pages pages;
4731d4c7 2053
60c8aec6 2054 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2055 return 0;
60c8aec6
MT
2056
2057 kvm_mmu_pages_init(parent, &parents, &pages);
2058 while (mmu_unsync_walk(parent, &pages)) {
2059 struct kvm_mmu_page *sp;
2060
2061 for_each_sp(pages, sp, parents, i) {
7775834a 2062 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2063 mmu_pages_clear_parents(&parents);
77662e00 2064 zapped++;
60c8aec6 2065 }
60c8aec6
MT
2066 kvm_mmu_pages_init(parent, &parents, &pages);
2067 }
2068
2069 return zapped;
4731d4c7
MT
2070}
2071
7775834a
XG
2072static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2073 struct list_head *invalid_list)
31aa2b44 2074{
4731d4c7 2075 int ret;
f691fe1d 2076
7775834a 2077 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2078 ++kvm->stat.mmu_shadow_zapped;
7775834a 2079 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2080 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2081 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2082 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2083 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2084 if (sp->unsync)
2085 kvm_unlink_unsync_page(kvm, sp);
4db35314 2086 if (!sp->root_count) {
54a4f023
GJ
2087 /* Count self */
2088 ret++;
7775834a 2089 list_move(&sp->link, invalid_list);
aa6bd187 2090 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2091 } else {
5b5c6a5a 2092 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2093 kvm_reload_remote_mmus(kvm);
2094 }
7775834a
XG
2095
2096 sp->role.invalid = 1;
4731d4c7 2097 return ret;
a436036b
AK
2098}
2099
7775834a
XG
2100static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2101 struct list_head *invalid_list)
2102{
2103 struct kvm_mmu_page *sp;
2104
2105 if (list_empty(invalid_list))
2106 return;
2107
c142786c
AK
2108 /*
2109 * wmb: make sure everyone sees our modifications to the page tables
2110 * rmb: make sure we see changes to vcpu->mode
2111 */
2112 smp_mb();
4f022648 2113
c142786c
AK
2114 /*
2115 * Wait for all vcpus to exit guest mode and/or lockless shadow
2116 * page table walks.
2117 */
2118 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2119
7775834a
XG
2120 do {
2121 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2122 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2123 kvm_mmu_isolate_page(sp);
aa6bd187 2124 kvm_mmu_free_page(sp);
7775834a 2125 } while (!list_empty(invalid_list));
7775834a
XG
2126}
2127
82ce2c96
IE
2128/*
2129 * Changing the number of mmu pages allocated to the vm
49d5ca26 2130 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2131 */
49d5ca26 2132void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2133{
d98ba053 2134 LIST_HEAD(invalid_list);
82ce2c96
IE
2135 /*
2136 * If we set the number of mmu pages to be smaller be than the
2137 * number of actived pages , we must to free some mmu pages before we
2138 * change the value
2139 */
2140
49d5ca26
DH
2141 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2142 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2143 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2144 struct kvm_mmu_page *page;
2145
f05e70ac 2146 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2147 struct kvm_mmu_page, link);
80b63faf 2148 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2149 }
aa6bd187 2150 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2151 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2152 }
82ce2c96 2153
49d5ca26 2154 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2155}
2156
1cb3f3ae 2157int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2158{
4db35314 2159 struct kvm_mmu_page *sp;
f41d335a 2160 struct hlist_node *node;
d98ba053 2161 LIST_HEAD(invalid_list);
a436036b
AK
2162 int r;
2163
9ad17b10 2164 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2165 r = 0;
1cb3f3ae 2166 spin_lock(&kvm->mmu_lock);
f41d335a 2167 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2168 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2169 sp->role.word);
2170 r = 1;
f41d335a 2171 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2172 }
d98ba053 2173 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2174 spin_unlock(&kvm->mmu_lock);
2175
a436036b 2176 return r;
cea0f0e7 2177}
1cb3f3ae 2178EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2179
38c335f1 2180static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2181{
bc6678a3 2182 int slot = memslot_id(kvm, gfn);
4db35314 2183 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2184
291f26bc 2185 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2186}
2187
74be52e3
SY
2188/*
2189 * The function is based on mtrr_type_lookup() in
2190 * arch/x86/kernel/cpu/mtrr/generic.c
2191 */
2192static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2193 u64 start, u64 end)
2194{
2195 int i;
2196 u64 base, mask;
2197 u8 prev_match, curr_match;
2198 int num_var_ranges = KVM_NR_VAR_MTRR;
2199
2200 if (!mtrr_state->enabled)
2201 return 0xFF;
2202
2203 /* Make end inclusive end, instead of exclusive */
2204 end--;
2205
2206 /* Look in fixed ranges. Just return the type as per start */
2207 if (mtrr_state->have_fixed && (start < 0x100000)) {
2208 int idx;
2209
2210 if (start < 0x80000) {
2211 idx = 0;
2212 idx += (start >> 16);
2213 return mtrr_state->fixed_ranges[idx];
2214 } else if (start < 0xC0000) {
2215 idx = 1 * 8;
2216 idx += ((start - 0x80000) >> 14);
2217 return mtrr_state->fixed_ranges[idx];
2218 } else if (start < 0x1000000) {
2219 idx = 3 * 8;
2220 idx += ((start - 0xC0000) >> 12);
2221 return mtrr_state->fixed_ranges[idx];
2222 }
2223 }
2224
2225 /*
2226 * Look in variable ranges
2227 * Look of multiple ranges matching this address and pick type
2228 * as per MTRR precedence
2229 */
2230 if (!(mtrr_state->enabled & 2))
2231 return mtrr_state->def_type;
2232
2233 prev_match = 0xFF;
2234 for (i = 0; i < num_var_ranges; ++i) {
2235 unsigned short start_state, end_state;
2236
2237 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2238 continue;
2239
2240 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2241 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2242 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2243 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2244
2245 start_state = ((start & mask) == (base & mask));
2246 end_state = ((end & mask) == (base & mask));
2247 if (start_state != end_state)
2248 return 0xFE;
2249
2250 if ((start & mask) != (base & mask))
2251 continue;
2252
2253 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2254 if (prev_match == 0xFF) {
2255 prev_match = curr_match;
2256 continue;
2257 }
2258
2259 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2260 curr_match == MTRR_TYPE_UNCACHABLE)
2261 return MTRR_TYPE_UNCACHABLE;
2262
2263 if ((prev_match == MTRR_TYPE_WRBACK &&
2264 curr_match == MTRR_TYPE_WRTHROUGH) ||
2265 (prev_match == MTRR_TYPE_WRTHROUGH &&
2266 curr_match == MTRR_TYPE_WRBACK)) {
2267 prev_match = MTRR_TYPE_WRTHROUGH;
2268 curr_match = MTRR_TYPE_WRTHROUGH;
2269 }
2270
2271 if (prev_match != curr_match)
2272 return MTRR_TYPE_UNCACHABLE;
2273 }
2274
2275 if (prev_match != 0xFF)
2276 return prev_match;
2277
2278 return mtrr_state->def_type;
2279}
2280
4b12f0de 2281u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2282{
2283 u8 mtrr;
2284
2285 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2286 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2287 if (mtrr == 0xfe || mtrr == 0xff)
2288 mtrr = MTRR_TYPE_WRBACK;
2289 return mtrr;
2290}
4b12f0de 2291EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2292
9cf5cf5a
XG
2293static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2294{
2295 trace_kvm_mmu_unsync_page(sp);
2296 ++vcpu->kvm->stat.mmu_unsync;
2297 sp->unsync = 1;
2298
2299 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2300}
2301
2302static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2303{
4731d4c7 2304 struct kvm_mmu_page *s;
f41d335a 2305 struct hlist_node *node;
9cf5cf5a 2306
f41d335a 2307 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2308 if (s->unsync)
4731d4c7 2309 continue;
9cf5cf5a
XG
2310 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2311 __kvm_unsync_page(vcpu, s);
4731d4c7 2312 }
4731d4c7
MT
2313}
2314
2315static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2316 bool can_unsync)
2317{
9cf5cf5a 2318 struct kvm_mmu_page *s;
f41d335a 2319 struct hlist_node *node;
9cf5cf5a
XG
2320 bool need_unsync = false;
2321
f41d335a 2322 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2323 if (!can_unsync)
2324 return 1;
2325
9cf5cf5a 2326 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2327 return 1;
9cf5cf5a
XG
2328
2329 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2330 need_unsync = true;
2331 }
4731d4c7 2332 }
9cf5cf5a
XG
2333 if (need_unsync)
2334 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2335 return 0;
2336}
2337
d555c333 2338static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2339 unsigned pte_access, int user_fault,
640d9b0d 2340 int write_fault, int level,
c2d0ee46 2341 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2342 bool can_unsync, bool host_writable)
1c4f1fd6 2343{
6e7d0354 2344 u64 spte;
1e73f9dd 2345 int ret = 0;
64d4d521 2346
ce88decf
XG
2347 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2348 return 0;
2349
982c2565 2350 spte = PT_PRESENT_MASK;
947da538 2351 if (!speculative)
3201b5d9 2352 spte |= shadow_accessed_mask;
640d9b0d 2353
7b52345e
SY
2354 if (pte_access & ACC_EXEC_MASK)
2355 spte |= shadow_x_mask;
2356 else
2357 spte |= shadow_nx_mask;
49fde340 2358
1c4f1fd6 2359 if (pte_access & ACC_USER_MASK)
7b52345e 2360 spte |= shadow_user_mask;
49fde340 2361
852e3c19 2362 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2363 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2364 if (tdp_enabled)
4b12f0de
SY
2365 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2366 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2367
9bdbba13 2368 if (host_writable)
1403283a 2369 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2370 else
2371 pte_access &= ~ACC_WRITE_MASK;
1403283a 2372
35149e21 2373 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2374
2375 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2376 || (!vcpu->arch.mmu.direct_map && write_fault
2377 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2378
852e3c19
JR
2379 if (level > PT_PAGE_TABLE_LEVEL &&
2380 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2381 ret = 1;
c3707958 2382 drop_spte(vcpu->kvm, sptep);
be38d276 2383 goto done;
38187c83
MT
2384 }
2385
49fde340 2386 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2387
c5a78f2b 2388 if (!vcpu->arch.mmu.direct_map
411c588d 2389 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2390 spte &= ~PT_USER_MASK;
411c588d
AK
2391 /*
2392 * If we converted a user page to a kernel page,
2393 * so that the kernel can write to it when cr0.wp=0,
2394 * then we should prevent the kernel from executing it
2395 * if SMEP is enabled.
2396 */
2397 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2398 spte |= PT64_NX_MASK;
2399 }
69325a12 2400
ecc5589f
MT
2401 /*
2402 * Optimization: for pte sync, if spte was writable the hash
2403 * lookup is unnecessary (and expensive). Write protection
2404 * is responsibility of mmu_get_page / kvm_sync_page.
2405 * Same reasoning can be applied to dirty page accounting.
2406 */
8dae4445 2407 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2408 goto set_pte;
2409
4731d4c7 2410 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2411 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2412 __func__, gfn);
1e73f9dd 2413 ret = 1;
1c4f1fd6 2414 pte_access &= ~ACC_WRITE_MASK;
49fde340 2415 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2416 }
2417 }
2418
1c4f1fd6
AK
2419 if (pte_access & ACC_WRITE_MASK)
2420 mark_page_dirty(vcpu->kvm, gfn);
2421
38187c83 2422set_pte:
6e7d0354 2423 if (mmu_spte_update(sptep, spte))
b330aa0c 2424 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2425done:
1e73f9dd
MT
2426 return ret;
2427}
2428
d555c333 2429static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2430 unsigned pt_access, unsigned pte_access,
640d9b0d 2431 int user_fault, int write_fault,
b90a0e6c 2432 int *emulate, int level, gfn_t gfn,
1403283a 2433 pfn_t pfn, bool speculative,
9bdbba13 2434 bool host_writable)
1e73f9dd
MT
2435{
2436 int was_rmapped = 0;
53a27b39 2437 int rmap_count;
1e73f9dd
MT
2438
2439 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2440 " user_fault %d gfn %llx\n",
d555c333 2441 __func__, *sptep, pt_access,
1e73f9dd
MT
2442 write_fault, user_fault, gfn);
2443
d555c333 2444 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2445 /*
2446 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2447 * the parent of the now unreachable PTE.
2448 */
852e3c19
JR
2449 if (level > PT_PAGE_TABLE_LEVEL &&
2450 !is_large_pte(*sptep)) {
1e73f9dd 2451 struct kvm_mmu_page *child;
d555c333 2452 u64 pte = *sptep;
1e73f9dd
MT
2453
2454 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2455 drop_parent_pte(child, sptep);
3be2264b 2456 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2457 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2458 pgprintk("hfn old %llx new %llx\n",
d555c333 2459 spte_to_pfn(*sptep), pfn);
c3707958 2460 drop_spte(vcpu->kvm, sptep);
91546356 2461 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2462 } else
2463 was_rmapped = 1;
1e73f9dd 2464 }
852e3c19 2465
d555c333 2466 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2467 level, gfn, pfn, speculative, true,
9bdbba13 2468 host_writable)) {
1e73f9dd 2469 if (write_fault)
b90a0e6c 2470 *emulate = 1;
5304efde 2471 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2472 }
1e73f9dd 2473
ce88decf
XG
2474 if (unlikely(is_mmio_spte(*sptep) && emulate))
2475 *emulate = 1;
2476
d555c333 2477 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2478 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2479 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2480 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2481 *sptep, sptep);
d555c333 2482 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2483 ++vcpu->kvm->stat.lpages;
2484
ffb61bb3
XG
2485 if (is_shadow_present_pte(*sptep)) {
2486 page_header_update_slot(vcpu->kvm, sptep, gfn);
2487 if (!was_rmapped) {
2488 rmap_count = rmap_add(vcpu, sptep, gfn);
2489 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2490 rmap_recycle(vcpu, sptep, gfn);
2491 }
1c4f1fd6 2492 }
9ed5520d 2493 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2494}
2495
6aa8b732
AK
2496static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2497{
e676505a 2498 mmu_free_roots(vcpu);
6aa8b732
AK
2499}
2500
957ed9ef
XG
2501static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2502 bool no_dirty_log)
2503{
2504 struct kvm_memory_slot *slot;
2505 unsigned long hva;
2506
5d163b1c 2507 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2508 if (!slot) {
fce92dce
XG
2509 get_page(fault_page);
2510 return page_to_pfn(fault_page);
957ed9ef
XG
2511 }
2512
2513 hva = gfn_to_hva_memslot(slot, gfn);
2514
2515 return hva_to_pfn_atomic(vcpu->kvm, hva);
2516}
2517
2518static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2519 struct kvm_mmu_page *sp,
2520 u64 *start, u64 *end)
2521{
2522 struct page *pages[PTE_PREFETCH_NUM];
2523 unsigned access = sp->role.access;
2524 int i, ret;
2525 gfn_t gfn;
2526
2527 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2528 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2529 return -1;
2530
2531 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2532 if (ret <= 0)
2533 return -1;
2534
2535 for (i = 0; i < ret; i++, gfn++, start++)
2536 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2537 access, 0, 0, NULL,
957ed9ef
XG
2538 sp->role.level, gfn,
2539 page_to_pfn(pages[i]), true, true);
2540
2541 return 0;
2542}
2543
2544static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2545 struct kvm_mmu_page *sp, u64 *sptep)
2546{
2547 u64 *spte, *start = NULL;
2548 int i;
2549
2550 WARN_ON(!sp->role.direct);
2551
2552 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2553 spte = sp->spt + i;
2554
2555 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2556 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2557 if (!start)
2558 continue;
2559 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2560 break;
2561 start = NULL;
2562 } else if (!start)
2563 start = spte;
2564 }
2565}
2566
2567static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2568{
2569 struct kvm_mmu_page *sp;
2570
2571 /*
2572 * Since it's no accessed bit on EPT, it's no way to
2573 * distinguish between actually accessed translations
2574 * and prefetched, so disable pte prefetch if EPT is
2575 * enabled.
2576 */
2577 if (!shadow_accessed_mask)
2578 return;
2579
2580 sp = page_header(__pa(sptep));
2581 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2582 return;
2583
2584 __direct_pte_prefetch(vcpu, sp, sptep);
2585}
2586
9f652d21 2587static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2588 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2589 bool prefault)
140754bc 2590{
9f652d21 2591 struct kvm_shadow_walk_iterator iterator;
140754bc 2592 struct kvm_mmu_page *sp;
b90a0e6c 2593 int emulate = 0;
140754bc 2594 gfn_t pseudo_gfn;
6aa8b732 2595
9f652d21 2596 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2597 if (iterator.level == level) {
612819c3
MT
2598 unsigned pte_access = ACC_ALL;
2599
612819c3 2600 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2601 0, write, &emulate,
2ec4739d 2602 level, gfn, pfn, prefault, map_writable);
957ed9ef 2603 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2604 ++vcpu->stat.pf_fixed;
2605 break;
6aa8b732
AK
2606 }
2607
c3707958 2608 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2609 u64 base_addr = iterator.addr;
2610
2611 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2612 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2613 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2614 iterator.level - 1,
2615 1, ACC_ALL, iterator.sptep);
2616 if (!sp) {
2617 pgprintk("nonpaging_map: ENOMEM\n");
2618 kvm_release_pfn_clean(pfn);
2619 return -ENOMEM;
2620 }
140754bc 2621
1df9f2dc
XG
2622 mmu_spte_set(iterator.sptep,
2623 __pa(sp->spt)
2624 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2625 | shadow_user_mask | shadow_x_mask
2626 | shadow_accessed_mask);
9f652d21
AK
2627 }
2628 }
b90a0e6c 2629 return emulate;
6aa8b732
AK
2630}
2631
77db5cbd 2632static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2633{
77db5cbd
YH
2634 siginfo_t info;
2635
2636 info.si_signo = SIGBUS;
2637 info.si_errno = 0;
2638 info.si_code = BUS_MCEERR_AR;
2639 info.si_addr = (void __user *)address;
2640 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2641
77db5cbd 2642 send_sig_info(SIGBUS, &info, tsk);
bf998156
YH
2643}
2644
d7c55201 2645static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
YH
2646{
2647 kvm_release_pfn_clean(pfn);
2648 if (is_hwpoison_pfn(pfn)) {
bebb106a 2649 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2650 return 0;
d7c55201 2651 }
edba23e5 2652
d7c55201 2653 return -EFAULT;
bf998156
YH
2654}
2655
936a5fe6
AA
2656static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2657 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2658{
2659 pfn_t pfn = *pfnp;
2660 gfn_t gfn = *gfnp;
2661 int level = *levelp;
2662
2663 /*
2664 * Check if it's a transparent hugepage. If this would be an
2665 * hugetlbfs page, level wouldn't be set to
2666 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2667 * here.
2668 */
2669 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2670 level == PT_PAGE_TABLE_LEVEL &&
2671 PageTransCompound(pfn_to_page(pfn)) &&
2672 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2673 unsigned long mask;
2674 /*
2675 * mmu_notifier_retry was successful and we hold the
2676 * mmu_lock here, so the pmd can't become splitting
2677 * from under us, and in turn
2678 * __split_huge_page_refcount() can't run from under
2679 * us and we can safely transfer the refcount from
2680 * PG_tail to PG_head as we switch the pfn to tail to
2681 * head.
2682 */
2683 *levelp = level = PT_DIRECTORY_LEVEL;
2684 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2685 VM_BUG_ON((gfn & mask) != (pfn & mask));
2686 if (pfn & mask) {
2687 gfn &= ~mask;
2688 *gfnp = gfn;
2689 kvm_release_pfn_clean(pfn);
2690 pfn &= ~mask;
c3586667 2691 kvm_get_pfn(pfn);
936a5fe6
AA
2692 *pfnp = pfn;
2693 }
2694 }
2695}
2696
d7c55201
XG
2697static bool mmu_invalid_pfn(pfn_t pfn)
2698{
ce88decf 2699 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2700}
2701
2702static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2703 pfn_t pfn, unsigned access, int *ret_val)
2704{
2705 bool ret = true;
2706
2707 /* The pfn is invalid, report the error! */
2708 if (unlikely(is_invalid_pfn(pfn))) {
2709 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2710 goto exit;
2711 }
2712
ce88decf 2713 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2714 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2715
2716 ret = false;
2717exit:
2718 return ret;
2719}
2720
c7ba5b48
XG
2721static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2722{
2723 /*
2724 * #PF can be fast only if the shadow page table is present and it
2725 * is caused by write-protect, that means we just need change the
2726 * W bit of the spte which can be done out of mmu-lock.
2727 */
2728 if (!(error_code & PFERR_PRESENT_MASK) ||
2729 !(error_code & PFERR_WRITE_MASK))
2730 return false;
2731
2732 return true;
2733}
2734
2735static bool
2736fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2737{
2738 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2739 gfn_t gfn;
2740
2741 WARN_ON(!sp->role.direct);
2742
2743 /*
2744 * The gfn of direct spte is stable since it is calculated
2745 * by sp->gfn.
2746 */
2747 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2748
2749 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2750 mark_page_dirty(vcpu->kvm, gfn);
2751
2752 return true;
2753}
2754
2755/*
2756 * Return value:
2757 * - true: let the vcpu to access on the same address again.
2758 * - false: let the real page fault path to fix it.
2759 */
2760static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2761 u32 error_code)
2762{
2763 struct kvm_shadow_walk_iterator iterator;
2764 bool ret = false;
2765 u64 spte = 0ull;
2766
2767 if (!page_fault_can_be_fast(vcpu, error_code))
2768 return false;
2769
2770 walk_shadow_page_lockless_begin(vcpu);
2771 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2772 if (!is_shadow_present_pte(spte) || iterator.level < level)
2773 break;
2774
2775 /*
2776 * If the mapping has been changed, let the vcpu fault on the
2777 * same address again.
2778 */
2779 if (!is_rmap_spte(spte)) {
2780 ret = true;
2781 goto exit;
2782 }
2783
2784 if (!is_last_spte(spte, level))
2785 goto exit;
2786
2787 /*
2788 * Check if it is a spurious fault caused by TLB lazily flushed.
2789 *
2790 * Need not check the access of upper level table entries since
2791 * they are always ACC_ALL.
2792 */
2793 if (is_writable_pte(spte)) {
2794 ret = true;
2795 goto exit;
2796 }
2797
2798 /*
2799 * Currently, to simplify the code, only the spte write-protected
2800 * by dirty-log can be fast fixed.
2801 */
2802 if (!spte_is_locklessly_modifiable(spte))
2803 goto exit;
2804
2805 /*
2806 * Currently, fast page fault only works for direct mapping since
2807 * the gfn is not stable for indirect shadow page.
2808 * See Documentation/virtual/kvm/locking.txt to get more detail.
2809 */
2810 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2811exit:
a72faf25
XG
2812 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2813 spte, ret);
c7ba5b48
XG
2814 walk_shadow_page_lockless_end(vcpu);
2815
2816 return ret;
2817}
2818
78b2c54a 2819static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2820 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2821
c7ba5b48
XG
2822static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2823 gfn_t gfn, bool prefault)
10589a46
MT
2824{
2825 int r;
852e3c19 2826 int level;
936a5fe6 2827 int force_pt_level;
35149e21 2828 pfn_t pfn;
e930bffe 2829 unsigned long mmu_seq;
c7ba5b48 2830 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2831
936a5fe6
AA
2832 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2833 if (likely(!force_pt_level)) {
2834 level = mapping_level(vcpu, gfn);
2835 /*
2836 * This path builds a PAE pagetable - so we can map
2837 * 2mb pages at maximum. Therefore check if the level
2838 * is larger than that.
2839 */
2840 if (level > PT_DIRECTORY_LEVEL)
2841 level = PT_DIRECTORY_LEVEL;
852e3c19 2842
936a5fe6
AA
2843 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2844 } else
2845 level = PT_PAGE_TABLE_LEVEL;
05da4558 2846
c7ba5b48
XG
2847 if (fast_page_fault(vcpu, v, level, error_code))
2848 return 0;
2849
e930bffe 2850 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2851 smp_rmb();
060c2abe 2852
78b2c54a 2853 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2854 return 0;
aaee2c94 2855
d7c55201
XG
2856 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2857 return r;
d196e343 2858
aaee2c94 2859 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2860 if (mmu_notifier_retry(vcpu, mmu_seq))
2861 goto out_unlock;
eb787d10 2862 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2863 if (likely(!force_pt_level))
2864 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2865 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2866 prefault);
aaee2c94
MT
2867 spin_unlock(&vcpu->kvm->mmu_lock);
2868
aaee2c94 2869
10589a46 2870 return r;
e930bffe
AA
2871
2872out_unlock:
2873 spin_unlock(&vcpu->kvm->mmu_lock);
2874 kvm_release_pfn_clean(pfn);
2875 return 0;
10589a46
MT
2876}
2877
2878
17ac10ad
AK
2879static void mmu_free_roots(struct kvm_vcpu *vcpu)
2880{
2881 int i;
4db35314 2882 struct kvm_mmu_page *sp;
d98ba053 2883 LIST_HEAD(invalid_list);
17ac10ad 2884
ad312c7c 2885 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2886 return;
aaee2c94 2887 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2888 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2889 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2890 vcpu->arch.mmu.direct_map)) {
ad312c7c 2891 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2892
4db35314
AK
2893 sp = page_header(root);
2894 --sp->root_count;
d98ba053
XG
2895 if (!sp->root_count && sp->role.invalid) {
2896 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2897 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2898 }
ad312c7c 2899 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2900 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2901 return;
2902 }
17ac10ad 2903 for (i = 0; i < 4; ++i) {
ad312c7c 2904 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2905
417726a3 2906 if (root) {
417726a3 2907 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2908 sp = page_header(root);
2909 --sp->root_count;
2e53d63a 2910 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2911 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2912 &invalid_list);
417726a3 2913 }
ad312c7c 2914 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2915 }
d98ba053 2916 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2917 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2918 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2919}
2920
8986ecc0
MT
2921static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2922{
2923 int ret = 0;
2924
2925 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2926 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2927 ret = 1;
2928 }
2929
2930 return ret;
2931}
2932
651dd37a
JR
2933static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2934{
2935 struct kvm_mmu_page *sp;
7ebaf15e 2936 unsigned i;
651dd37a
JR
2937
2938 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2939 spin_lock(&vcpu->kvm->mmu_lock);
2940 kvm_mmu_free_some_pages(vcpu);
2941 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2942 1, ACC_ALL, NULL);
2943 ++sp->root_count;
2944 spin_unlock(&vcpu->kvm->mmu_lock);
2945 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2946 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2947 for (i = 0; i < 4; ++i) {
2948 hpa_t root = vcpu->arch.mmu.pae_root[i];
2949
2950 ASSERT(!VALID_PAGE(root));
2951 spin_lock(&vcpu->kvm->mmu_lock);
2952 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2953 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2954 i << 30,
651dd37a
JR
2955 PT32_ROOT_LEVEL, 1, ACC_ALL,
2956 NULL);
2957 root = __pa(sp->spt);
2958 ++sp->root_count;
2959 spin_unlock(&vcpu->kvm->mmu_lock);
2960 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2961 }
6292757f 2962 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2963 } else
2964 BUG();
2965
2966 return 0;
2967}
2968
2969static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2970{
4db35314 2971 struct kvm_mmu_page *sp;
81407ca5
JR
2972 u64 pdptr, pm_mask;
2973 gfn_t root_gfn;
2974 int i;
3bb65a22 2975
5777ed34 2976 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2977
651dd37a
JR
2978 if (mmu_check_root(vcpu, root_gfn))
2979 return 1;
2980
2981 /*
2982 * Do we shadow a long mode page table? If so we need to
2983 * write-protect the guests page table root.
2984 */
2985 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2986 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2987
2988 ASSERT(!VALID_PAGE(root));
651dd37a 2989
8facbbff 2990 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2991 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2992 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2993 0, ACC_ALL, NULL);
4db35314
AK
2994 root = __pa(sp->spt);
2995 ++sp->root_count;
8facbbff 2996 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2997 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2998 return 0;
17ac10ad 2999 }
f87f9288 3000
651dd37a
JR
3001 /*
3002 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3003 * or a PAE 3-level page table. In either case we need to be aware that
3004 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3005 */
81407ca5
JR
3006 pm_mask = PT_PRESENT_MASK;
3007 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3008 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3009
17ac10ad 3010 for (i = 0; i < 4; ++i) {
ad312c7c 3011 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3012
3013 ASSERT(!VALID_PAGE(root));
ad312c7c 3014 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3015 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3016 if (!is_present_gpte(pdptr)) {
ad312c7c 3017 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3018 continue;
3019 }
6de4f3ad 3020 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3021 if (mmu_check_root(vcpu, root_gfn))
3022 return 1;
5a7388c2 3023 }
8facbbff 3024 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3025 kvm_mmu_free_some_pages(vcpu);
4db35314 3026 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3027 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3028 ACC_ALL, NULL);
4db35314
AK
3029 root = __pa(sp->spt);
3030 ++sp->root_count;
8facbbff
AK
3031 spin_unlock(&vcpu->kvm->mmu_lock);
3032
81407ca5 3033 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3034 }
6292757f 3035 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3036
3037 /*
3038 * If we shadow a 32 bit page table with a long mode page
3039 * table we enter this path.
3040 */
3041 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3042 if (vcpu->arch.mmu.lm_root == NULL) {
3043 /*
3044 * The additional page necessary for this is only
3045 * allocated on demand.
3046 */
3047
3048 u64 *lm_root;
3049
3050 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3051 if (lm_root == NULL)
3052 return 1;
3053
3054 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3055
3056 vcpu->arch.mmu.lm_root = lm_root;
3057 }
3058
3059 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3060 }
3061
8986ecc0 3062 return 0;
17ac10ad
AK
3063}
3064
651dd37a
JR
3065static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3066{
3067 if (vcpu->arch.mmu.direct_map)
3068 return mmu_alloc_direct_roots(vcpu);
3069 else
3070 return mmu_alloc_shadow_roots(vcpu);
3071}
3072
0ba73cda
MT
3073static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3074{
3075 int i;
3076 struct kvm_mmu_page *sp;
3077
81407ca5
JR
3078 if (vcpu->arch.mmu.direct_map)
3079 return;
3080
0ba73cda
MT
3081 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3082 return;
6903074c 3083
bebb106a 3084 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3085 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3086 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3087 hpa_t root = vcpu->arch.mmu.root_hpa;
3088 sp = page_header(root);
3089 mmu_sync_children(vcpu, sp);
0375f7fa 3090 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3091 return;
3092 }
3093 for (i = 0; i < 4; ++i) {
3094 hpa_t root = vcpu->arch.mmu.pae_root[i];
3095
8986ecc0 3096 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3097 root &= PT64_BASE_ADDR_MASK;
3098 sp = page_header(root);
3099 mmu_sync_children(vcpu, sp);
3100 }
3101 }
0375f7fa 3102 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3103}
3104
3105void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3106{
3107 spin_lock(&vcpu->kvm->mmu_lock);
3108 mmu_sync_roots(vcpu);
6cffe8ca 3109 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3110}
3111
1871c602 3112static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3113 u32 access, struct x86_exception *exception)
6aa8b732 3114{
ab9ae313
AK
3115 if (exception)
3116 exception->error_code = 0;
6aa8b732
AK
3117 return vaddr;
3118}
3119
6539e738 3120static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3121 u32 access,
3122 struct x86_exception *exception)
6539e738 3123{
ab9ae313
AK
3124 if (exception)
3125 exception->error_code = 0;
6539e738
JR
3126 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3127}
3128
ce88decf
XG
3129static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3130{
3131 if (direct)
3132 return vcpu_match_mmio_gpa(vcpu, addr);
3133
3134 return vcpu_match_mmio_gva(vcpu, addr);
3135}
3136
3137
3138/*
3139 * On direct hosts, the last spte is only allows two states
3140 * for mmio page fault:
3141 * - It is the mmio spte
3142 * - It is zapped or it is being zapped.
3143 *
3144 * This function completely checks the spte when the last spte
3145 * is not the mmio spte.
3146 */
3147static bool check_direct_spte_mmio_pf(u64 spte)
3148{
3149 return __check_direct_spte_mmio_pf(spte);
3150}
3151
3152static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3153{
3154 struct kvm_shadow_walk_iterator iterator;
3155 u64 spte = 0ull;
3156
3157 walk_shadow_page_lockless_begin(vcpu);
3158 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3159 if (!is_shadow_present_pte(spte))
3160 break;
3161 walk_shadow_page_lockless_end(vcpu);
3162
3163 return spte;
3164}
3165
3166/*
3167 * If it is a real mmio page fault, return 1 and emulat the instruction
3168 * directly, return 0 to let CPU fault again on the address, -1 is
3169 * returned if bug is detected.
3170 */
3171int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3172{
3173 u64 spte;
3174
3175 if (quickly_check_mmio_pf(vcpu, addr, direct))
3176 return 1;
3177
3178 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3179
3180 if (is_mmio_spte(spte)) {
3181 gfn_t gfn = get_mmio_spte_gfn(spte);
3182 unsigned access = get_mmio_spte_access(spte);
3183
3184 if (direct)
3185 addr = 0;
4f022648
XG
3186
3187 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3188 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3189 return 1;
3190 }
3191
3192 /*
3193 * It's ok if the gva is remapped by other cpus on shadow guest,
3194 * it's a BUG if the gfn is not a mmio page.
3195 */
3196 if (direct && !check_direct_spte_mmio_pf(spte))
3197 return -1;
3198
3199 /*
3200 * If the page table is zapped by other cpus, let CPU fault again on
3201 * the address.
3202 */
3203 return 0;
3204}
3205EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3206
3207static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3208 u32 error_code, bool direct)
3209{
3210 int ret;
3211
3212 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3213 WARN_ON(ret < 0);
3214 return ret;
3215}
3216
6aa8b732 3217static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3218 u32 error_code, bool prefault)
6aa8b732 3219{
e833240f 3220 gfn_t gfn;
e2dec939 3221 int r;
6aa8b732 3222
b8688d51 3223 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3224
3225 if (unlikely(error_code & PFERR_RSVD_MASK))
3226 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3227
e2dec939
AK
3228 r = mmu_topup_memory_caches(vcpu);
3229 if (r)
3230 return r;
714b93da 3231
6aa8b732 3232 ASSERT(vcpu);
ad312c7c 3233 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3234
e833240f 3235 gfn = gva >> PAGE_SHIFT;
6aa8b732 3236
e833240f 3237 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3238 error_code, gfn, prefault);
6aa8b732
AK
3239}
3240
7e1fbeac 3241static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3242{
3243 struct kvm_arch_async_pf arch;
fb67e14f 3244
7c90705b 3245 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3246 arch.gfn = gfn;
c4806acd 3247 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3248 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3249
3250 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3251}
3252
3253static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3254{
3255 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3256 kvm_event_needs_reinjection(vcpu)))
3257 return false;
3258
3259 return kvm_x86_ops->interrupt_allowed(vcpu);
3260}
3261
78b2c54a 3262static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3263 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3264{
3265 bool async;
3266
612819c3 3267 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3268
3269 if (!async)
3270 return false; /* *pfn has correct page already */
3271
3272 put_page(pfn_to_page(*pfn));
3273
78b2c54a 3274 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3275 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3276 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3277 trace_kvm_async_pf_doublefault(gva, gfn);
3278 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3279 return true;
3280 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3281 return true;
3282 }
3283
612819c3 3284 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3285
3286 return false;
3287}
3288
56028d08 3289static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3290 bool prefault)
fb72d167 3291{
35149e21 3292 pfn_t pfn;
fb72d167 3293 int r;
852e3c19 3294 int level;
936a5fe6 3295 int force_pt_level;
05da4558 3296 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3297 unsigned long mmu_seq;
612819c3
MT
3298 int write = error_code & PFERR_WRITE_MASK;
3299 bool map_writable;
fb72d167
JR
3300
3301 ASSERT(vcpu);
3302 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3303
ce88decf
XG
3304 if (unlikely(error_code & PFERR_RSVD_MASK))
3305 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3306
fb72d167
JR
3307 r = mmu_topup_memory_caches(vcpu);
3308 if (r)
3309 return r;
3310
936a5fe6
AA
3311 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3312 if (likely(!force_pt_level)) {
3313 level = mapping_level(vcpu, gfn);
3314 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3315 } else
3316 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3317
c7ba5b48
XG
3318 if (fast_page_fault(vcpu, gpa, level, error_code))
3319 return 0;
3320
e930bffe 3321 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3322 smp_rmb();
af585b92 3323
78b2c54a 3324 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3325 return 0;
3326
d7c55201
XG
3327 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3328 return r;
3329
fb72d167 3330 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3331 if (mmu_notifier_retry(vcpu, mmu_seq))
3332 goto out_unlock;
fb72d167 3333 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3334 if (likely(!force_pt_level))
3335 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3336 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3337 level, gfn, pfn, prefault);
fb72d167 3338 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3339
3340 return r;
e930bffe
AA
3341
3342out_unlock:
3343 spin_unlock(&vcpu->kvm->mmu_lock);
3344 kvm_release_pfn_clean(pfn);
3345 return 0;
fb72d167
JR
3346}
3347
6aa8b732
AK
3348static void nonpaging_free(struct kvm_vcpu *vcpu)
3349{
17ac10ad 3350 mmu_free_roots(vcpu);
6aa8b732
AK
3351}
3352
52fde8df
JR
3353static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3354 struct kvm_mmu *context)
6aa8b732 3355{
6aa8b732
AK
3356 context->new_cr3 = nonpaging_new_cr3;
3357 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3358 context->gva_to_gpa = nonpaging_gva_to_gpa;
3359 context->free = nonpaging_free;
e8bc217a 3360 context->sync_page = nonpaging_sync_page;
a7052897 3361 context->invlpg = nonpaging_invlpg;
0f53b5b1 3362 context->update_pte = nonpaging_update_pte;
cea0f0e7 3363 context->root_level = 0;
6aa8b732 3364 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3365 context->root_hpa = INVALID_PAGE;
c5a78f2b 3366 context->direct_map = true;
2d48a985 3367 context->nx = false;
6aa8b732
AK
3368 return 0;
3369}
3370
d835dfec 3371void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3372{
1165f5fe 3373 ++vcpu->stat.tlb_flush;
a8eeb04a 3374 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3375}
3376
3377static void paging_new_cr3(struct kvm_vcpu *vcpu)
3378{
9f8fe504 3379 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3380 mmu_free_roots(vcpu);
6aa8b732
AK
3381}
3382
5777ed34
JR
3383static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3384{
9f8fe504 3385 return kvm_read_cr3(vcpu);
5777ed34
JR
3386}
3387
6389ee94
AK
3388static void inject_page_fault(struct kvm_vcpu *vcpu,
3389 struct x86_exception *fault)
6aa8b732 3390{
6389ee94 3391 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3392}
3393
6aa8b732
AK
3394static void paging_free(struct kvm_vcpu *vcpu)
3395{
3396 nonpaging_free(vcpu);
3397}
3398
3241f22d 3399static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3400{
3401 int bit7;
3402
3403 bit7 = (gpte >> 7) & 1;
3241f22d 3404 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3405}
3406
ce88decf
XG
3407static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3408 int *nr_present)
3409{
3410 if (unlikely(is_mmio_spte(*sptep))) {
3411 if (gfn != get_mmio_spte_gfn(*sptep)) {
3412 mmu_spte_clear_no_track(sptep);
3413 return true;
3414 }
3415
3416 (*nr_present)++;
3417 mark_mmio_spte(sptep, gfn, access);
3418 return true;
3419 }
3420
3421 return false;
3422}
3423
6aa8b732
AK
3424#define PTTYPE 64
3425#include "paging_tmpl.h"
3426#undef PTTYPE
3427
3428#define PTTYPE 32
3429#include "paging_tmpl.h"
3430#undef PTTYPE
3431
52fde8df 3432static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3433 struct kvm_mmu *context)
82725b20 3434{
82725b20
DE
3435 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3436 u64 exb_bit_rsvd = 0;
3437
2d48a985 3438 if (!context->nx)
82725b20 3439 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3440 switch (context->root_level) {
82725b20
DE
3441 case PT32_ROOT_LEVEL:
3442 /* no rsvd bits for 2 level 4K page table entries */
3443 context->rsvd_bits_mask[0][1] = 0;
3444 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3445 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3446
3447 if (!is_pse(vcpu)) {
3448 context->rsvd_bits_mask[1][1] = 0;
3449 break;
3450 }
3451
82725b20
DE
3452 if (is_cpuid_PSE36())
3453 /* 36bits PSE 4MB page */
3454 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3455 else
3456 /* 32 bits PSE 4MB page */
3457 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3458 break;
3459 case PT32E_ROOT_LEVEL:
20c466b5
DE
3460 context->rsvd_bits_mask[0][2] =
3461 rsvd_bits(maxphyaddr, 63) |
3462 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3463 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3464 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3465 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3466 rsvd_bits(maxphyaddr, 62); /* PTE */
3467 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3468 rsvd_bits(maxphyaddr, 62) |
3469 rsvd_bits(13, 20); /* large page */
f815bce8 3470 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3471 break;
3472 case PT64_ROOT_LEVEL:
3473 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3474 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3475 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3476 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3477 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3478 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3479 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3480 rsvd_bits(maxphyaddr, 51);
3481 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3482 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3483 rsvd_bits(maxphyaddr, 51) |
3484 rsvd_bits(13, 29);
82725b20 3485 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3486 rsvd_bits(maxphyaddr, 51) |
3487 rsvd_bits(13, 20); /* large page */
f815bce8 3488 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3489 break;
3490 }
3491}
3492
52fde8df
JR
3493static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3494 struct kvm_mmu *context,
3495 int level)
6aa8b732 3496{
2d48a985 3497 context->nx = is_nx(vcpu);
4d6931c3 3498 context->root_level = level;
2d48a985 3499
4d6931c3 3500 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3501
3502 ASSERT(is_pae(vcpu));
3503 context->new_cr3 = paging_new_cr3;
3504 context->page_fault = paging64_page_fault;
6aa8b732 3505 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3506 context->sync_page = paging64_sync_page;
a7052897 3507 context->invlpg = paging64_invlpg;
0f53b5b1 3508 context->update_pte = paging64_update_pte;
6aa8b732 3509 context->free = paging_free;
17ac10ad 3510 context->shadow_root_level = level;
17c3ba9d 3511 context->root_hpa = INVALID_PAGE;
c5a78f2b 3512 context->direct_map = false;
6aa8b732
AK
3513 return 0;
3514}
3515
52fde8df
JR
3516static int paging64_init_context(struct kvm_vcpu *vcpu,
3517 struct kvm_mmu *context)
17ac10ad 3518{
52fde8df 3519 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3520}
3521
52fde8df
JR
3522static int paging32_init_context(struct kvm_vcpu *vcpu,
3523 struct kvm_mmu *context)
6aa8b732 3524{
2d48a985 3525 context->nx = false;
4d6931c3 3526 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3527
4d6931c3 3528 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3529
3530 context->new_cr3 = paging_new_cr3;
3531 context->page_fault = paging32_page_fault;
6aa8b732
AK
3532 context->gva_to_gpa = paging32_gva_to_gpa;
3533 context->free = paging_free;
e8bc217a 3534 context->sync_page = paging32_sync_page;
a7052897 3535 context->invlpg = paging32_invlpg;
0f53b5b1 3536 context->update_pte = paging32_update_pte;
6aa8b732 3537 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3538 context->root_hpa = INVALID_PAGE;
c5a78f2b 3539 context->direct_map = false;
6aa8b732
AK
3540 return 0;
3541}
3542
52fde8df
JR
3543static int paging32E_init_context(struct kvm_vcpu *vcpu,
3544 struct kvm_mmu *context)
6aa8b732 3545{
52fde8df 3546 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3547}
3548
fb72d167
JR
3549static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3550{
14dfe855 3551 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3552
c445f8ef 3553 context->base_role.word = 0;
fb72d167
JR
3554 context->new_cr3 = nonpaging_new_cr3;
3555 context->page_fault = tdp_page_fault;
3556 context->free = nonpaging_free;
e8bc217a 3557 context->sync_page = nonpaging_sync_page;
a7052897 3558 context->invlpg = nonpaging_invlpg;
0f53b5b1 3559 context->update_pte = nonpaging_update_pte;
67253af5 3560 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3561 context->root_hpa = INVALID_PAGE;
c5a78f2b 3562 context->direct_map = true;
1c97f0a0 3563 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3564 context->get_cr3 = get_cr3;
e4e517b4 3565 context->get_pdptr = kvm_pdptr_read;
cb659db8 3566 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3567
3568 if (!is_paging(vcpu)) {
2d48a985 3569 context->nx = false;
fb72d167
JR
3570 context->gva_to_gpa = nonpaging_gva_to_gpa;
3571 context->root_level = 0;
3572 } else if (is_long_mode(vcpu)) {
2d48a985 3573 context->nx = is_nx(vcpu);
fb72d167 3574 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3575 reset_rsvds_bits_mask(vcpu, context);
3576 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3577 } else if (is_pae(vcpu)) {
2d48a985 3578 context->nx = is_nx(vcpu);
fb72d167 3579 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3580 reset_rsvds_bits_mask(vcpu, context);
3581 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3582 } else {
2d48a985 3583 context->nx = false;
fb72d167 3584 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3585 reset_rsvds_bits_mask(vcpu, context);
3586 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3587 }
3588
3589 return 0;
3590}
3591
52fde8df 3592int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3593{
a770f6f2 3594 int r;
411c588d 3595 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3596 ASSERT(vcpu);
ad312c7c 3597 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3598
3599 if (!is_paging(vcpu))
52fde8df 3600 r = nonpaging_init_context(vcpu, context);
a9058ecd 3601 else if (is_long_mode(vcpu))
52fde8df 3602 r = paging64_init_context(vcpu, context);
6aa8b732 3603 else if (is_pae(vcpu))
52fde8df 3604 r = paging32E_init_context(vcpu, context);
6aa8b732 3605 else
52fde8df 3606 r = paging32_init_context(vcpu, context);
a770f6f2 3607
5b7e0102 3608 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3609 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3610 vcpu->arch.mmu.base_role.smep_andnot_wp
3611 = smep && !is_write_protection(vcpu);
52fde8df
JR
3612
3613 return r;
3614}
3615EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3616
3617static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3618{
14dfe855 3619 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3620
14dfe855
JR
3621 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3622 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3623 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3624 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3625
3626 return r;
6aa8b732
AK
3627}
3628
02f59dc9
JR
3629static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3630{
3631 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3632
3633 g_context->get_cr3 = get_cr3;
e4e517b4 3634 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3635 g_context->inject_page_fault = kvm_inject_page_fault;
3636
3637 /*
3638 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3639 * translation of l2_gpa to l1_gpa addresses is done using the
3640 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3641 * functions between mmu and nested_mmu are swapped.
3642 */
3643 if (!is_paging(vcpu)) {
2d48a985 3644 g_context->nx = false;
02f59dc9
JR
3645 g_context->root_level = 0;
3646 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3647 } else if (is_long_mode(vcpu)) {
2d48a985 3648 g_context->nx = is_nx(vcpu);
02f59dc9 3649 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3650 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3651 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3652 } else if (is_pae(vcpu)) {
2d48a985 3653 g_context->nx = is_nx(vcpu);
02f59dc9 3654 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3655 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3656 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3657 } else {
2d48a985 3658 g_context->nx = false;
02f59dc9 3659 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3660 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3661 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3662 }
3663
3664 return 0;
3665}
3666
fb72d167
JR
3667static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3668{
02f59dc9
JR
3669 if (mmu_is_nested(vcpu))
3670 return init_kvm_nested_mmu(vcpu);
3671 else if (tdp_enabled)
fb72d167
JR
3672 return init_kvm_tdp_mmu(vcpu);
3673 else
3674 return init_kvm_softmmu(vcpu);
3675}
3676
6aa8b732
AK
3677static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3678{
3679 ASSERT(vcpu);
62ad0755
SY
3680 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3681 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3682 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3683}
3684
3685int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3686{
3687 destroy_kvm_mmu(vcpu);
f8f7e5ee 3688 return init_kvm_mmu(vcpu);
17c3ba9d 3689}
8668a3c4 3690EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3691
3692int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3693{
714b93da
AK
3694 int r;
3695
e2dec939 3696 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3697 if (r)
3698 goto out;
8986ecc0 3699 r = mmu_alloc_roots(vcpu);
8facbbff 3700 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3701 mmu_sync_roots(vcpu);
aaee2c94 3702 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3703 if (r)
3704 goto out;
3662cb1c 3705 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3706 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3707out:
3708 return r;
6aa8b732 3709}
17c3ba9d
AK
3710EXPORT_SYMBOL_GPL(kvm_mmu_load);
3711
3712void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3713{
3714 mmu_free_roots(vcpu);
3715}
4b16184c 3716EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3717
0028425f 3718static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3719 struct kvm_mmu_page *sp, u64 *spte,
3720 const void *new)
0028425f 3721{
30945387 3722 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3723 ++vcpu->kvm->stat.mmu_pde_zapped;
3724 return;
30945387 3725 }
0028425f 3726
4cee5764 3727 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3728 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3729}
3730
79539cec
AK
3731static bool need_remote_flush(u64 old, u64 new)
3732{
3733 if (!is_shadow_present_pte(old))
3734 return false;
3735 if (!is_shadow_present_pte(new))
3736 return true;
3737 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3738 return true;
3739 old ^= PT64_NX_MASK;
3740 new ^= PT64_NX_MASK;
3741 return (old & ~new & PT64_PERM_MASK) != 0;
3742}
3743
0671a8e7
XG
3744static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3745 bool remote_flush, bool local_flush)
79539cec 3746{
0671a8e7
XG
3747 if (zap_page)
3748 return;
3749
3750 if (remote_flush)
79539cec 3751 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3752 else if (local_flush)
79539cec
AK
3753 kvm_mmu_flush_tlb(vcpu);
3754}
3755
889e5cbc
XG
3756static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3757 const u8 *new, int *bytes)
da4a00f0 3758{
889e5cbc
XG
3759 u64 gentry;
3760 int r;
72016f3a 3761
72016f3a
AK
3762 /*
3763 * Assume that the pte write on a page table of the same type
49b26e26
XG
3764 * as the current vcpu paging mode since we update the sptes only
3765 * when they have the same mode.
72016f3a 3766 */
889e5cbc 3767 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3768 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3769 *gpa &= ~(gpa_t)7;
3770 *bytes = 8;
3771 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3772 if (r)
3773 gentry = 0;
08e850c6
AK
3774 new = (const u8 *)&gentry;
3775 }
3776
889e5cbc 3777 switch (*bytes) {
08e850c6
AK
3778 case 4:
3779 gentry = *(const u32 *)new;
3780 break;
3781 case 8:
3782 gentry = *(const u64 *)new;
3783 break;
3784 default:
3785 gentry = 0;
3786 break;
72016f3a
AK
3787 }
3788
889e5cbc
XG
3789 return gentry;
3790}
3791
3792/*
3793 * If we're seeing too many writes to a page, it may no longer be a page table,
3794 * or we may be forking, in which case it is better to unmap the page.
3795 */
a138fe75 3796static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3797{
a30f47cb
XG
3798 /*
3799 * Skip write-flooding detected for the sp whose level is 1, because
3800 * it can become unsync, then the guest page is not write-protected.
3801 */
f71fa31f 3802 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3803 return false;
3246af0e 3804
a30f47cb 3805 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3806}
3807
3808/*
3809 * Misaligned accesses are too much trouble to fix up; also, they usually
3810 * indicate a page is not used as a page table.
3811 */
3812static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3813 int bytes)
3814{
3815 unsigned offset, pte_size, misaligned;
3816
3817 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3818 gpa, bytes, sp->role.word);
3819
3820 offset = offset_in_page(gpa);
3821 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3822
3823 /*
3824 * Sometimes, the OS only writes the last one bytes to update status
3825 * bits, for example, in linux, andb instruction is used in clear_bit().
3826 */
3827 if (!(offset & (pte_size - 1)) && bytes == 1)
3828 return false;
3829
889e5cbc
XG
3830 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3831 misaligned |= bytes < 4;
3832
3833 return misaligned;
3834}
3835
3836static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3837{
3838 unsigned page_offset, quadrant;
3839 u64 *spte;
3840 int level;
3841
3842 page_offset = offset_in_page(gpa);
3843 level = sp->role.level;
3844 *nspte = 1;
3845 if (!sp->role.cr4_pae) {
3846 page_offset <<= 1; /* 32->64 */
3847 /*
3848 * A 32-bit pde maps 4MB while the shadow pdes map
3849 * only 2MB. So we need to double the offset again
3850 * and zap two pdes instead of one.
3851 */
3852 if (level == PT32_ROOT_LEVEL) {
3853 page_offset &= ~7; /* kill rounding error */
3854 page_offset <<= 1;
3855 *nspte = 2;
3856 }
3857 quadrant = page_offset >> PAGE_SHIFT;
3858 page_offset &= ~PAGE_MASK;
3859 if (quadrant != sp->role.quadrant)
3860 return NULL;
3861 }
3862
3863 spte = &sp->spt[page_offset / sizeof(*spte)];
3864 return spte;
3865}
3866
3867void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3868 const u8 *new, int bytes)
3869{
3870 gfn_t gfn = gpa >> PAGE_SHIFT;
3871 union kvm_mmu_page_role mask = { .word = 0 };
3872 struct kvm_mmu_page *sp;
3873 struct hlist_node *node;
3874 LIST_HEAD(invalid_list);
3875 u64 entry, gentry, *spte;
3876 int npte;
a30f47cb 3877 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3878
3879 /*
3880 * If we don't have indirect shadow pages, it means no page is
3881 * write-protected, so we can exit simply.
3882 */
3883 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3884 return;
3885
3886 zap_page = remote_flush = local_flush = false;
3887
3888 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3889
3890 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3891
3892 /*
3893 * No need to care whether allocation memory is successful
3894 * or not since pte prefetch is skiped if it does not have
3895 * enough objects in the cache.
3896 */
3897 mmu_topup_memory_caches(vcpu);
3898
3899 spin_lock(&vcpu->kvm->mmu_lock);
3900 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3901 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3902
fa1de2bf 3903 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3904 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3905 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3906 detect_write_flooding(sp)) {
0671a8e7 3907 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3908 &invalid_list);
4cee5764 3909 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3910 continue;
3911 }
889e5cbc
XG
3912
3913 spte = get_written_sptes(sp, gpa, &npte);
3914 if (!spte)
3915 continue;
3916
0671a8e7 3917 local_flush = true;
ac1b714e 3918 while (npte--) {
79539cec 3919 entry = *spte;
38e3b2b2 3920 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3921 if (gentry &&
3922 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3923 & mask.word) && rmap_can_add(vcpu))
7c562522 3924 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3925 if (!remote_flush && need_remote_flush(entry, *spte))
3926 remote_flush = true;
ac1b714e 3927 ++spte;
9b7a0325 3928 }
9b7a0325 3929 }
0671a8e7 3930 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3931 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3932 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3933 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3934}
3935
a436036b
AK
3936int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3937{
10589a46
MT
3938 gpa_t gpa;
3939 int r;
a436036b 3940
c5a78f2b 3941 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3942 return 0;
3943
1871c602 3944 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3945
10589a46 3946 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3947
10589a46 3948 return r;
a436036b 3949}
577bdc49 3950EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3951
22d95b12 3952void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3953{
d98ba053 3954 LIST_HEAD(invalid_list);
103ad25a 3955
e0df7b9f 3956 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3957 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3958 struct kvm_mmu_page *sp;
ebeace86 3959
f05e70ac 3960 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3961 struct kvm_mmu_page, link);
e0df7b9f 3962 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3963 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3964 }
aa6bd187 3965 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3966}
ebeace86 3967
1cb3f3ae
XG
3968static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3969{
3970 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3971 return vcpu_match_mmio_gpa(vcpu, addr);
3972
3973 return vcpu_match_mmio_gva(vcpu, addr);
3974}
3975
dc25e89e
AP
3976int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3977 void *insn, int insn_len)
3067714c 3978{
1cb3f3ae 3979 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3980 enum emulation_result er;
3981
56028d08 3982 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3983 if (r < 0)
3984 goto out;
3985
3986 if (!r) {
3987 r = 1;
3988 goto out;
3989 }
3990
1cb3f3ae
XG
3991 if (is_mmio_page_fault(vcpu, cr2))
3992 emulation_type = 0;
3993
3994 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3995
3996 switch (er) {
3997 case EMULATE_DONE:
3998 return 1;
3999 case EMULATE_DO_MMIO:
4000 ++vcpu->stat.mmio_exits;
6d77dbfc 4001 /* fall through */
3067714c 4002 case EMULATE_FAIL:
3f5d18a9 4003 return 0;
3067714c
AK
4004 default:
4005 BUG();
4006 }
4007out:
3067714c
AK
4008 return r;
4009}
4010EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4011
a7052897
MT
4012void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4013{
a7052897 4014 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4015 kvm_mmu_flush_tlb(vcpu);
4016 ++vcpu->stat.invlpg;
4017}
4018EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4019
18552672
JR
4020void kvm_enable_tdp(void)
4021{
4022 tdp_enabled = true;
4023}
4024EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4025
5f4cb662
JR
4026void kvm_disable_tdp(void)
4027{
4028 tdp_enabled = false;
4029}
4030EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4031
6aa8b732
AK
4032static void free_mmu_pages(struct kvm_vcpu *vcpu)
4033{
ad312c7c 4034 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4035 if (vcpu->arch.mmu.lm_root != NULL)
4036 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4037}
4038
4039static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4040{
17ac10ad 4041 struct page *page;
6aa8b732
AK
4042 int i;
4043
4044 ASSERT(vcpu);
4045
17ac10ad
AK
4046 /*
4047 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4048 * Therefore we need to allocate shadow page tables in the first
4049 * 4GB of memory, which happens to fit the DMA32 zone.
4050 */
4051 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4052 if (!page)
d7fa6ab2
WY
4053 return -ENOMEM;
4054
ad312c7c 4055 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4056 for (i = 0; i < 4; ++i)
ad312c7c 4057 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4058
6aa8b732 4059 return 0;
6aa8b732
AK
4060}
4061
8018c27b 4062int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4063{
6aa8b732 4064 ASSERT(vcpu);
e459e322
XG
4065
4066 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4067 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4068 vcpu->arch.mmu.translate_gpa = translate_gpa;
4069 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4070
8018c27b
IM
4071 return alloc_mmu_pages(vcpu);
4072}
6aa8b732 4073
8018c27b
IM
4074int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4075{
4076 ASSERT(vcpu);
ad312c7c 4077 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4078
8018c27b 4079 return init_kvm_mmu(vcpu);
6aa8b732
AK
4080}
4081
90cb0529 4082void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4083{
4db35314 4084 struct kvm_mmu_page *sp;
d13bc5b5 4085 bool flush = false;
6aa8b732 4086
f05e70ac 4087 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
4088 int i;
4089 u64 *pt;
4090
291f26bc 4091 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
4092 continue;
4093
4db35314 4094 pt = sp->spt;
8234b22e 4095 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
4096 if (!is_shadow_present_pte(pt[i]) ||
4097 !is_last_spte(pt[i], sp->role.level))
4098 continue;
4099
49fde340 4100 spte_write_protect(kvm, &pt[i], &flush, false);
8234b22e 4101 }
6aa8b732 4102 }
171d595d 4103 kvm_flush_remote_tlbs(kvm);
6aa8b732 4104}
37a7d8b0 4105
90cb0529 4106void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4107{
4db35314 4108 struct kvm_mmu_page *sp, *node;
d98ba053 4109 LIST_HEAD(invalid_list);
e0fa826f 4110
aaee2c94 4111 spin_lock(&kvm->mmu_lock);
3246af0e 4112restart:
f05e70ac 4113 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4114 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4115 goto restart;
4116
d98ba053 4117 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4118 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4119}
4120
3d56cbdf
JK
4121static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4122 struct list_head *invalid_list)
3ee16c81
IE
4123{
4124 struct kvm_mmu_page *page;
4125
4126 page = container_of(kvm->arch.active_mmu_pages.prev,
4127 struct kvm_mmu_page, link);
3d56cbdf 4128 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4129}
4130
1495f230 4131static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4132{
4133 struct kvm *kvm;
1495f230 4134 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4135
4136 if (nr_to_scan == 0)
4137 goto out;
3ee16c81 4138
e935b837 4139 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4140
4141 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4142 int idx;
d98ba053 4143 LIST_HEAD(invalid_list);
3ee16c81 4144
19526396
GN
4145 /*
4146 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4147 * here. We may skip a VM instance errorneosly, but we do not
4148 * want to shrink a VM that only started to populate its MMU
4149 * anyway.
4150 */
4151 if (kvm->arch.n_used_mmu_pages > 0) {
4152 if (!nr_to_scan--)
4153 break;
4154 continue;
4155 }
4156
f656ce01 4157 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4158 spin_lock(&kvm->mmu_lock);
3ee16c81 4159
19526396 4160 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4161 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4162
3ee16c81 4163 spin_unlock(&kvm->mmu_lock);
f656ce01 4164 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4165
4166 list_move_tail(&kvm->vm_list, &vm_list);
4167 break;
3ee16c81 4168 }
3ee16c81 4169
e935b837 4170 raw_spin_unlock(&kvm_lock);
3ee16c81 4171
45221ab6
DH
4172out:
4173 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4174}
4175
4176static struct shrinker mmu_shrinker = {
4177 .shrink = mmu_shrink,
4178 .seeks = DEFAULT_SEEKS * 10,
4179};
4180
2ddfd20e 4181static void mmu_destroy_caches(void)
b5a33a75 4182{
53c07b18
XG
4183 if (pte_list_desc_cache)
4184 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4185 if (mmu_page_header_cache)
4186 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4187}
4188
4189int kvm_mmu_module_init(void)
4190{
53c07b18
XG
4191 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4192 sizeof(struct pte_list_desc),
20c2df83 4193 0, 0, NULL);
53c07b18 4194 if (!pte_list_desc_cache)
b5a33a75
AK
4195 goto nomem;
4196
d3d25b04
AK
4197 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4198 sizeof(struct kvm_mmu_page),
20c2df83 4199 0, 0, NULL);
d3d25b04
AK
4200 if (!mmu_page_header_cache)
4201 goto nomem;
4202
45bf21a8
WY
4203 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4204 goto nomem;
4205
3ee16c81
IE
4206 register_shrinker(&mmu_shrinker);
4207
b5a33a75
AK
4208 return 0;
4209
4210nomem:
3ee16c81 4211 mmu_destroy_caches();
b5a33a75
AK
4212 return -ENOMEM;
4213}
4214
3ad82a7e
ZX
4215/*
4216 * Caculate mmu pages needed for kvm.
4217 */
4218unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4219{
3ad82a7e
ZX
4220 unsigned int nr_mmu_pages;
4221 unsigned int nr_pages = 0;
bc6678a3 4222 struct kvm_memslots *slots;
be6ba0f0 4223 struct kvm_memory_slot *memslot;
3ad82a7e 4224
90d83dc3
LJ
4225 slots = kvm_memslots(kvm);
4226
be6ba0f0
XG
4227 kvm_for_each_memslot(memslot, slots)
4228 nr_pages += memslot->npages;
3ad82a7e
ZX
4229
4230 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4231 nr_mmu_pages = max(nr_mmu_pages,
4232 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4233
4234 return nr_mmu_pages;
4235}
4236
94d8b056
MT
4237int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4238{
4239 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4240 u64 spte;
94d8b056
MT
4241 int nr_sptes = 0;
4242
c2a2ac2b
XG
4243 walk_shadow_page_lockless_begin(vcpu);
4244 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4245 sptes[iterator.level-1] = spte;
94d8b056 4246 nr_sptes++;
c2a2ac2b 4247 if (!is_shadow_present_pte(spte))
94d8b056
MT
4248 break;
4249 }
c2a2ac2b 4250 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4251
4252 return nr_sptes;
4253}
4254EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4255
c42fffe3
XG
4256void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4257{
4258 ASSERT(vcpu);
4259
4260 destroy_kvm_mmu(vcpu);
4261 free_mmu_pages(vcpu);
4262 mmu_free_memory_caches(vcpu);
b034cf01
XG
4263}
4264
b034cf01
XG
4265void kvm_mmu_module_exit(void)
4266{
4267 mmu_destroy_caches();
4268 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4269 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4270 mmu_audit_disable();
4271}
This page took 1.540053 seconds and 4 git commands to generate.