]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
1da177e4 LT |
3 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
4 | * | |
5 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
6 | * kswapd added: 7.1.96 sct | |
7 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
8 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
9 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
10 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
11 | */ | |
12 | ||
b1de0d13 MH |
13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
14 | ||
1da177e4 | 15 | #include <linux/mm.h> |
5b3cc15a | 16 | #include <linux/sched/mm.h> |
1da177e4 | 17 | #include <linux/module.h> |
5a0e3ad6 | 18 | #include <linux/gfp.h> |
1da177e4 LT |
19 | #include <linux/kernel_stat.h> |
20 | #include <linux/swap.h> | |
21 | #include <linux/pagemap.h> | |
22 | #include <linux/init.h> | |
23 | #include <linux/highmem.h> | |
70ddf637 | 24 | #include <linux/vmpressure.h> |
e129b5c2 | 25 | #include <linux/vmstat.h> |
1da177e4 LT |
26 | #include <linux/file.h> |
27 | #include <linux/writeback.h> | |
28 | #include <linux/blkdev.h> | |
07f67a8d | 29 | #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ |
1da177e4 | 30 | #include <linux/mm_inline.h> |
1da177e4 LT |
31 | #include <linux/backing-dev.h> |
32 | #include <linux/rmap.h> | |
33 | #include <linux/topology.h> | |
34 | #include <linux/cpu.h> | |
35 | #include <linux/cpuset.h> | |
3e7d3449 | 36 | #include <linux/compaction.h> |
1da177e4 LT |
37 | #include <linux/notifier.h> |
38 | #include <linux/rwsem.h> | |
248a0301 | 39 | #include <linux/delay.h> |
3218ae14 | 40 | #include <linux/kthread.h> |
7dfb7103 | 41 | #include <linux/freezer.h> |
66e1707b | 42 | #include <linux/memcontrol.h> |
26aa2d19 | 43 | #include <linux/migrate.h> |
873b4771 | 44 | #include <linux/delayacct.h> |
af936a16 | 45 | #include <linux/sysctl.h> |
929bea7c | 46 | #include <linux/oom.h> |
64e3d12f | 47 | #include <linux/pagevec.h> |
268bb0ce | 48 | #include <linux/prefetch.h> |
b1de0d13 | 49 | #include <linux/printk.h> |
f9fe48be | 50 | #include <linux/dax.h> |
eb414681 | 51 | #include <linux/psi.h> |
1da177e4 LT |
52 | |
53 | #include <asm/tlbflush.h> | |
54 | #include <asm/div64.h> | |
55 | ||
56 | #include <linux/swapops.h> | |
117aad1e | 57 | #include <linux/balloon_compaction.h> |
c574bbe9 | 58 | #include <linux/sched/sysctl.h> |
1da177e4 | 59 | |
0f8053a5 | 60 | #include "internal.h" |
014bb1de | 61 | #include "swap.h" |
0f8053a5 | 62 | |
33906bc5 MG |
63 | #define CREATE_TRACE_POINTS |
64 | #include <trace/events/vmscan.h> | |
65 | ||
1da177e4 | 66 | struct scan_control { |
22fba335 KM |
67 | /* How many pages shrink_list() should reclaim */ |
68 | unsigned long nr_to_reclaim; | |
69 | ||
ee814fe2 JW |
70 | /* |
71 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
72 | * are scanned. | |
73 | */ | |
74 | nodemask_t *nodemask; | |
9e3b2f8c | 75 | |
f16015fb JW |
76 | /* |
77 | * The memory cgroup that hit its limit and as a result is the | |
78 | * primary target of this reclaim invocation. | |
79 | */ | |
80 | struct mem_cgroup *target_mem_cgroup; | |
66e1707b | 81 | |
7cf111bc JW |
82 | /* |
83 | * Scan pressure balancing between anon and file LRUs | |
84 | */ | |
85 | unsigned long anon_cost; | |
86 | unsigned long file_cost; | |
87 | ||
b91ac374 JW |
88 | /* Can active pages be deactivated as part of reclaim? */ |
89 | #define DEACTIVATE_ANON 1 | |
90 | #define DEACTIVATE_FILE 2 | |
91 | unsigned int may_deactivate:2; | |
92 | unsigned int force_deactivate:1; | |
93 | unsigned int skipped_deactivate:1; | |
94 | ||
1276ad68 | 95 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ |
ee814fe2 JW |
96 | unsigned int may_writepage:1; |
97 | ||
98 | /* Can mapped pages be reclaimed? */ | |
99 | unsigned int may_unmap:1; | |
100 | ||
101 | /* Can pages be swapped as part of reclaim? */ | |
102 | unsigned int may_swap:1; | |
103 | ||
73b73bac YA |
104 | /* Proactive reclaim invoked by userspace through memory.reclaim */ |
105 | unsigned int proactive:1; | |
106 | ||
d6622f63 | 107 | /* |
f56ce412 JW |
108 | * Cgroup memory below memory.low is protected as long as we |
109 | * don't threaten to OOM. If any cgroup is reclaimed at | |
110 | * reduced force or passed over entirely due to its memory.low | |
111 | * setting (memcg_low_skipped), and nothing is reclaimed as a | |
112 | * result, then go back for one more cycle that reclaims the protected | |
113 | * memory (memcg_low_reclaim) to avert OOM. | |
d6622f63 YX |
114 | */ |
115 | unsigned int memcg_low_reclaim:1; | |
116 | unsigned int memcg_low_skipped:1; | |
241994ed | 117 | |
ee814fe2 JW |
118 | unsigned int hibernation_mode:1; |
119 | ||
120 | /* One of the zones is ready for compaction */ | |
121 | unsigned int compaction_ready:1; | |
122 | ||
b91ac374 JW |
123 | /* There is easily reclaimable cold cache in the current node */ |
124 | unsigned int cache_trim_mode:1; | |
125 | ||
53138cea JW |
126 | /* The file pages on the current node are dangerously low */ |
127 | unsigned int file_is_tiny:1; | |
128 | ||
26aa2d19 DH |
129 | /* Always discard instead of demoting to lower tier memory */ |
130 | unsigned int no_demotion:1; | |
131 | ||
bb451fdf GT |
132 | /* Allocation order */ |
133 | s8 order; | |
134 | ||
135 | /* Scan (total_size >> priority) pages at once */ | |
136 | s8 priority; | |
137 | ||
138 | /* The highest zone to isolate pages for reclaim from */ | |
139 | s8 reclaim_idx; | |
140 | ||
141 | /* This context's GFP mask */ | |
142 | gfp_t gfp_mask; | |
143 | ||
ee814fe2 JW |
144 | /* Incremented by the number of inactive pages that were scanned */ |
145 | unsigned long nr_scanned; | |
146 | ||
147 | /* Number of pages freed so far during a call to shrink_zones() */ | |
148 | unsigned long nr_reclaimed; | |
d108c772 AR |
149 | |
150 | struct { | |
151 | unsigned int dirty; | |
152 | unsigned int unqueued_dirty; | |
153 | unsigned int congested; | |
154 | unsigned int writeback; | |
155 | unsigned int immediate; | |
156 | unsigned int file_taken; | |
157 | unsigned int taken; | |
158 | } nr; | |
e5ca8071 YS |
159 | |
160 | /* for recording the reclaimed slab by now */ | |
161 | struct reclaim_state reclaim_state; | |
1da177e4 LT |
162 | }; |
163 | ||
1da177e4 | 164 | #ifdef ARCH_HAS_PREFETCHW |
166e3d32 | 165 | #define prefetchw_prev_lru_folio(_folio, _base, _field) \ |
1da177e4 | 166 | do { \ |
166e3d32 MWO |
167 | if ((_folio)->lru.prev != _base) { \ |
168 | struct folio *prev; \ | |
1da177e4 | 169 | \ |
166e3d32 | 170 | prev = lru_to_folio(&(_folio->lru)); \ |
1da177e4 LT |
171 | prefetchw(&prev->_field); \ |
172 | } \ | |
173 | } while (0) | |
174 | #else | |
166e3d32 | 175 | #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) |
1da177e4 LT |
176 | #endif |
177 | ||
178 | /* | |
c843966c | 179 | * From 0 .. 200. Higher means more swappy. |
1da177e4 LT |
180 | */ |
181 | int vm_swappiness = 60; | |
1da177e4 | 182 | |
0a432dcb YS |
183 | static void set_task_reclaim_state(struct task_struct *task, |
184 | struct reclaim_state *rs) | |
185 | { | |
186 | /* Check for an overwrite */ | |
187 | WARN_ON_ONCE(rs && task->reclaim_state); | |
188 | ||
189 | /* Check for the nulling of an already-nulled member */ | |
190 | WARN_ON_ONCE(!rs && !task->reclaim_state); | |
191 | ||
192 | task->reclaim_state = rs; | |
193 | } | |
194 | ||
5035ebc6 RG |
195 | LIST_HEAD(shrinker_list); |
196 | DECLARE_RWSEM(shrinker_rwsem); | |
1da177e4 | 197 | |
0a432dcb | 198 | #ifdef CONFIG_MEMCG |
a2fb1261 | 199 | static int shrinker_nr_max; |
2bfd3637 | 200 | |
3c6f17e6 | 201 | /* The shrinker_info is expanded in a batch of BITS_PER_LONG */ |
a2fb1261 YS |
202 | static inline int shrinker_map_size(int nr_items) |
203 | { | |
204 | return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long)); | |
205 | } | |
2bfd3637 | 206 | |
3c6f17e6 YS |
207 | static inline int shrinker_defer_size(int nr_items) |
208 | { | |
209 | return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t)); | |
210 | } | |
211 | ||
468ab843 YS |
212 | static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg, |
213 | int nid) | |
214 | { | |
215 | return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info, | |
216 | lockdep_is_held(&shrinker_rwsem)); | |
217 | } | |
218 | ||
e4262c4f | 219 | static int expand_one_shrinker_info(struct mem_cgroup *memcg, |
3c6f17e6 YS |
220 | int map_size, int defer_size, |
221 | int old_map_size, int old_defer_size) | |
2bfd3637 | 222 | { |
e4262c4f | 223 | struct shrinker_info *new, *old; |
2bfd3637 YS |
224 | struct mem_cgroup_per_node *pn; |
225 | int nid; | |
3c6f17e6 | 226 | int size = map_size + defer_size; |
2bfd3637 | 227 | |
2bfd3637 YS |
228 | for_each_node(nid) { |
229 | pn = memcg->nodeinfo[nid]; | |
468ab843 | 230 | old = shrinker_info_protected(memcg, nid); |
2bfd3637 YS |
231 | /* Not yet online memcg */ |
232 | if (!old) | |
233 | return 0; | |
234 | ||
235 | new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); | |
236 | if (!new) | |
237 | return -ENOMEM; | |
238 | ||
3c6f17e6 YS |
239 | new->nr_deferred = (atomic_long_t *)(new + 1); |
240 | new->map = (void *)new->nr_deferred + defer_size; | |
241 | ||
242 | /* map: set all old bits, clear all new bits */ | |
243 | memset(new->map, (int)0xff, old_map_size); | |
244 | memset((void *)new->map + old_map_size, 0, map_size - old_map_size); | |
245 | /* nr_deferred: copy old values, clear all new values */ | |
246 | memcpy(new->nr_deferred, old->nr_deferred, old_defer_size); | |
247 | memset((void *)new->nr_deferred + old_defer_size, 0, | |
248 | defer_size - old_defer_size); | |
2bfd3637 | 249 | |
e4262c4f | 250 | rcu_assign_pointer(pn->shrinker_info, new); |
72673e86 | 251 | kvfree_rcu(old, rcu); |
2bfd3637 YS |
252 | } |
253 | ||
254 | return 0; | |
255 | } | |
256 | ||
e4262c4f | 257 | void free_shrinker_info(struct mem_cgroup *memcg) |
2bfd3637 YS |
258 | { |
259 | struct mem_cgroup_per_node *pn; | |
e4262c4f | 260 | struct shrinker_info *info; |
2bfd3637 YS |
261 | int nid; |
262 | ||
2bfd3637 YS |
263 | for_each_node(nid) { |
264 | pn = memcg->nodeinfo[nid]; | |
e4262c4f YS |
265 | info = rcu_dereference_protected(pn->shrinker_info, true); |
266 | kvfree(info); | |
267 | rcu_assign_pointer(pn->shrinker_info, NULL); | |
2bfd3637 YS |
268 | } |
269 | } | |
270 | ||
e4262c4f | 271 | int alloc_shrinker_info(struct mem_cgroup *memcg) |
2bfd3637 | 272 | { |
e4262c4f | 273 | struct shrinker_info *info; |
2bfd3637 | 274 | int nid, size, ret = 0; |
3c6f17e6 | 275 | int map_size, defer_size = 0; |
2bfd3637 | 276 | |
d27cf2aa | 277 | down_write(&shrinker_rwsem); |
3c6f17e6 YS |
278 | map_size = shrinker_map_size(shrinker_nr_max); |
279 | defer_size = shrinker_defer_size(shrinker_nr_max); | |
280 | size = map_size + defer_size; | |
2bfd3637 | 281 | for_each_node(nid) { |
e4262c4f YS |
282 | info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid); |
283 | if (!info) { | |
284 | free_shrinker_info(memcg); | |
2bfd3637 YS |
285 | ret = -ENOMEM; |
286 | break; | |
287 | } | |
3c6f17e6 YS |
288 | info->nr_deferred = (atomic_long_t *)(info + 1); |
289 | info->map = (void *)info->nr_deferred + defer_size; | |
e4262c4f | 290 | rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info); |
2bfd3637 | 291 | } |
d27cf2aa | 292 | up_write(&shrinker_rwsem); |
2bfd3637 YS |
293 | |
294 | return ret; | |
295 | } | |
296 | ||
3c6f17e6 YS |
297 | static inline bool need_expand(int nr_max) |
298 | { | |
299 | return round_up(nr_max, BITS_PER_LONG) > | |
300 | round_up(shrinker_nr_max, BITS_PER_LONG); | |
301 | } | |
302 | ||
e4262c4f | 303 | static int expand_shrinker_info(int new_id) |
2bfd3637 | 304 | { |
3c6f17e6 | 305 | int ret = 0; |
a2fb1261 | 306 | int new_nr_max = new_id + 1; |
3c6f17e6 YS |
307 | int map_size, defer_size = 0; |
308 | int old_map_size, old_defer_size = 0; | |
2bfd3637 YS |
309 | struct mem_cgroup *memcg; |
310 | ||
3c6f17e6 | 311 | if (!need_expand(new_nr_max)) |
a2fb1261 | 312 | goto out; |
2bfd3637 | 313 | |
2bfd3637 | 314 | if (!root_mem_cgroup) |
d27cf2aa YS |
315 | goto out; |
316 | ||
317 | lockdep_assert_held(&shrinker_rwsem); | |
2bfd3637 | 318 | |
3c6f17e6 YS |
319 | map_size = shrinker_map_size(new_nr_max); |
320 | defer_size = shrinker_defer_size(new_nr_max); | |
321 | old_map_size = shrinker_map_size(shrinker_nr_max); | |
322 | old_defer_size = shrinker_defer_size(shrinker_nr_max); | |
323 | ||
2bfd3637 YS |
324 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
325 | do { | |
3c6f17e6 YS |
326 | ret = expand_one_shrinker_info(memcg, map_size, defer_size, |
327 | old_map_size, old_defer_size); | |
2bfd3637 YS |
328 | if (ret) { |
329 | mem_cgroup_iter_break(NULL, memcg); | |
d27cf2aa | 330 | goto out; |
2bfd3637 YS |
331 | } |
332 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); | |
d27cf2aa | 333 | out: |
2bfd3637 | 334 | if (!ret) |
a2fb1261 | 335 | shrinker_nr_max = new_nr_max; |
d27cf2aa | 336 | |
2bfd3637 YS |
337 | return ret; |
338 | } | |
339 | ||
340 | void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) | |
341 | { | |
342 | if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { | |
e4262c4f | 343 | struct shrinker_info *info; |
2bfd3637 YS |
344 | |
345 | rcu_read_lock(); | |
e4262c4f | 346 | info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info); |
2bfd3637 YS |
347 | /* Pairs with smp mb in shrink_slab() */ |
348 | smp_mb__before_atomic(); | |
e4262c4f | 349 | set_bit(shrinker_id, info->map); |
2bfd3637 YS |
350 | rcu_read_unlock(); |
351 | } | |
352 | } | |
353 | ||
b4c2b231 | 354 | static DEFINE_IDR(shrinker_idr); |
b4c2b231 KT |
355 | |
356 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) | |
357 | { | |
358 | int id, ret = -ENOMEM; | |
359 | ||
476b30a0 YS |
360 | if (mem_cgroup_disabled()) |
361 | return -ENOSYS; | |
362 | ||
b4c2b231 KT |
363 | down_write(&shrinker_rwsem); |
364 | /* This may call shrinker, so it must use down_read_trylock() */ | |
41ca668a | 365 | id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); |
b4c2b231 KT |
366 | if (id < 0) |
367 | goto unlock; | |
368 | ||
0a4465d3 | 369 | if (id >= shrinker_nr_max) { |
e4262c4f | 370 | if (expand_shrinker_info(id)) { |
0a4465d3 KT |
371 | idr_remove(&shrinker_idr, id); |
372 | goto unlock; | |
373 | } | |
0a4465d3 | 374 | } |
b4c2b231 KT |
375 | shrinker->id = id; |
376 | ret = 0; | |
377 | unlock: | |
378 | up_write(&shrinker_rwsem); | |
379 | return ret; | |
380 | } | |
381 | ||
382 | static void unregister_memcg_shrinker(struct shrinker *shrinker) | |
383 | { | |
384 | int id = shrinker->id; | |
385 | ||
386 | BUG_ON(id < 0); | |
387 | ||
41ca668a YS |
388 | lockdep_assert_held(&shrinker_rwsem); |
389 | ||
b4c2b231 | 390 | idr_remove(&shrinker_idr, id); |
b4c2b231 | 391 | } |
b4c2b231 | 392 | |
86750830 YS |
393 | static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, |
394 | struct mem_cgroup *memcg) | |
395 | { | |
396 | struct shrinker_info *info; | |
397 | ||
398 | info = shrinker_info_protected(memcg, nid); | |
399 | return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0); | |
400 | } | |
401 | ||
402 | static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, | |
403 | struct mem_cgroup *memcg) | |
404 | { | |
405 | struct shrinker_info *info; | |
406 | ||
407 | info = shrinker_info_protected(memcg, nid); | |
408 | return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]); | |
409 | } | |
410 | ||
a178015c YS |
411 | void reparent_shrinker_deferred(struct mem_cgroup *memcg) |
412 | { | |
413 | int i, nid; | |
414 | long nr; | |
415 | struct mem_cgroup *parent; | |
416 | struct shrinker_info *child_info, *parent_info; | |
417 | ||
418 | parent = parent_mem_cgroup(memcg); | |
419 | if (!parent) | |
420 | parent = root_mem_cgroup; | |
421 | ||
422 | /* Prevent from concurrent shrinker_info expand */ | |
423 | down_read(&shrinker_rwsem); | |
424 | for_each_node(nid) { | |
425 | child_info = shrinker_info_protected(memcg, nid); | |
426 | parent_info = shrinker_info_protected(parent, nid); | |
427 | for (i = 0; i < shrinker_nr_max; i++) { | |
428 | nr = atomic_long_read(&child_info->nr_deferred[i]); | |
429 | atomic_long_add(nr, &parent_info->nr_deferred[i]); | |
430 | } | |
431 | } | |
432 | up_read(&shrinker_rwsem); | |
433 | } | |
434 | ||
b5ead35e | 435 | static bool cgroup_reclaim(struct scan_control *sc) |
89b5fae5 | 436 | { |
b5ead35e | 437 | return sc->target_mem_cgroup; |
89b5fae5 | 438 | } |
97c9341f TH |
439 | |
440 | /** | |
b5ead35e | 441 | * writeback_throttling_sane - is the usual dirty throttling mechanism available? |
97c9341f TH |
442 | * @sc: scan_control in question |
443 | * | |
444 | * The normal page dirty throttling mechanism in balance_dirty_pages() is | |
445 | * completely broken with the legacy memcg and direct stalling in | |
446 | * shrink_page_list() is used for throttling instead, which lacks all the | |
447 | * niceties such as fairness, adaptive pausing, bandwidth proportional | |
448 | * allocation and configurability. | |
449 | * | |
450 | * This function tests whether the vmscan currently in progress can assume | |
451 | * that the normal dirty throttling mechanism is operational. | |
452 | */ | |
b5ead35e | 453 | static bool writeback_throttling_sane(struct scan_control *sc) |
97c9341f | 454 | { |
b5ead35e | 455 | if (!cgroup_reclaim(sc)) |
97c9341f TH |
456 | return true; |
457 | #ifdef CONFIG_CGROUP_WRITEBACK | |
69234ace | 458 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
97c9341f TH |
459 | return true; |
460 | #endif | |
461 | return false; | |
462 | } | |
91a45470 | 463 | #else |
0a432dcb YS |
464 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) |
465 | { | |
476b30a0 | 466 | return -ENOSYS; |
0a432dcb YS |
467 | } |
468 | ||
469 | static void unregister_memcg_shrinker(struct shrinker *shrinker) | |
470 | { | |
471 | } | |
472 | ||
86750830 YS |
473 | static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker, |
474 | struct mem_cgroup *memcg) | |
475 | { | |
476 | return 0; | |
477 | } | |
478 | ||
479 | static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker, | |
480 | struct mem_cgroup *memcg) | |
481 | { | |
482 | return 0; | |
483 | } | |
484 | ||
b5ead35e | 485 | static bool cgroup_reclaim(struct scan_control *sc) |
89b5fae5 | 486 | { |
b5ead35e | 487 | return false; |
89b5fae5 | 488 | } |
97c9341f | 489 | |
b5ead35e | 490 | static bool writeback_throttling_sane(struct scan_control *sc) |
97c9341f TH |
491 | { |
492 | return true; | |
493 | } | |
91a45470 KH |
494 | #endif |
495 | ||
86750830 YS |
496 | static long xchg_nr_deferred(struct shrinker *shrinker, |
497 | struct shrink_control *sc) | |
498 | { | |
499 | int nid = sc->nid; | |
500 | ||
501 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) | |
502 | nid = 0; | |
503 | ||
504 | if (sc->memcg && | |
505 | (shrinker->flags & SHRINKER_MEMCG_AWARE)) | |
506 | return xchg_nr_deferred_memcg(nid, shrinker, | |
507 | sc->memcg); | |
508 | ||
509 | return atomic_long_xchg(&shrinker->nr_deferred[nid], 0); | |
510 | } | |
511 | ||
512 | ||
513 | static long add_nr_deferred(long nr, struct shrinker *shrinker, | |
514 | struct shrink_control *sc) | |
515 | { | |
516 | int nid = sc->nid; | |
517 | ||
518 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) | |
519 | nid = 0; | |
520 | ||
521 | if (sc->memcg && | |
522 | (shrinker->flags & SHRINKER_MEMCG_AWARE)) | |
523 | return add_nr_deferred_memcg(nr, nid, shrinker, | |
524 | sc->memcg); | |
525 | ||
526 | return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]); | |
527 | } | |
528 | ||
26aa2d19 DH |
529 | static bool can_demote(int nid, struct scan_control *sc) |
530 | { | |
20b51af1 YH |
531 | if (!numa_demotion_enabled) |
532 | return false; | |
3f1509c5 JW |
533 | if (sc && sc->no_demotion) |
534 | return false; | |
26aa2d19 DH |
535 | if (next_demotion_node(nid) == NUMA_NO_NODE) |
536 | return false; | |
537 | ||
20b51af1 | 538 | return true; |
26aa2d19 DH |
539 | } |
540 | ||
a2a36488 KB |
541 | static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, |
542 | int nid, | |
543 | struct scan_control *sc) | |
544 | { | |
545 | if (memcg == NULL) { | |
546 | /* | |
547 | * For non-memcg reclaim, is there | |
548 | * space in any swap device? | |
549 | */ | |
550 | if (get_nr_swap_pages() > 0) | |
551 | return true; | |
552 | } else { | |
553 | /* Is the memcg below its swap limit? */ | |
554 | if (mem_cgroup_get_nr_swap_pages(memcg) > 0) | |
555 | return true; | |
556 | } | |
557 | ||
558 | /* | |
559 | * The page can not be swapped. | |
560 | * | |
561 | * Can it be reclaimed from this node via demotion? | |
562 | */ | |
563 | return can_demote(nid, sc); | |
564 | } | |
565 | ||
5a1c84b4 MG |
566 | /* |
567 | * This misses isolated pages which are not accounted for to save counters. | |
568 | * As the data only determines if reclaim or compaction continues, it is | |
569 | * not expected that isolated pages will be a dominating factor. | |
570 | */ | |
571 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
572 | { | |
573 | unsigned long nr; | |
574 | ||
575 | nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + | |
576 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); | |
a2a36488 | 577 | if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) |
5a1c84b4 MG |
578 | nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + |
579 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); | |
580 | ||
581 | return nr; | |
582 | } | |
583 | ||
fd538803 MH |
584 | /** |
585 | * lruvec_lru_size - Returns the number of pages on the given LRU list. | |
586 | * @lruvec: lru vector | |
587 | * @lru: lru to use | |
8b3a899a | 588 | * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) |
fd538803 | 589 | */ |
2091339d YZ |
590 | static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, |
591 | int zone_idx) | |
c9f299d9 | 592 | { |
de3b0150 | 593 | unsigned long size = 0; |
fd538803 MH |
594 | int zid; |
595 | ||
8b3a899a | 596 | for (zid = 0; zid <= zone_idx; zid++) { |
fd538803 | 597 | struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; |
c9f299d9 | 598 | |
fd538803 MH |
599 | if (!managed_zone(zone)) |
600 | continue; | |
601 | ||
602 | if (!mem_cgroup_disabled()) | |
de3b0150 | 603 | size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); |
fd538803 | 604 | else |
de3b0150 | 605 | size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); |
fd538803 | 606 | } |
de3b0150 | 607 | return size; |
b4536f0c MH |
608 | } |
609 | ||
1da177e4 | 610 | /* |
1d3d4437 | 611 | * Add a shrinker callback to be called from the vm. |
1da177e4 | 612 | */ |
e33c267a | 613 | static int __prealloc_shrinker(struct shrinker *shrinker) |
1da177e4 | 614 | { |
476b30a0 YS |
615 | unsigned int size; |
616 | int err; | |
617 | ||
618 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) { | |
619 | err = prealloc_memcg_shrinker(shrinker); | |
620 | if (err != -ENOSYS) | |
621 | return err; | |
1d3d4437 | 622 | |
476b30a0 YS |
623 | shrinker->flags &= ~SHRINKER_MEMCG_AWARE; |
624 | } | |
625 | ||
626 | size = sizeof(*shrinker->nr_deferred); | |
1d3d4437 GC |
627 | if (shrinker->flags & SHRINKER_NUMA_AWARE) |
628 | size *= nr_node_ids; | |
629 | ||
630 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); | |
631 | if (!shrinker->nr_deferred) | |
632 | return -ENOMEM; | |
b4c2b231 | 633 | |
8e04944f TH |
634 | return 0; |
635 | } | |
636 | ||
e33c267a RG |
637 | #ifdef CONFIG_SHRINKER_DEBUG |
638 | int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) | |
639 | { | |
640 | va_list ap; | |
641 | int err; | |
642 | ||
643 | va_start(ap, fmt); | |
644 | shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); | |
645 | va_end(ap); | |
646 | if (!shrinker->name) | |
647 | return -ENOMEM; | |
648 | ||
649 | err = __prealloc_shrinker(shrinker); | |
14773bfa | 650 | if (err) { |
e33c267a | 651 | kfree_const(shrinker->name); |
14773bfa TH |
652 | shrinker->name = NULL; |
653 | } | |
e33c267a RG |
654 | |
655 | return err; | |
656 | } | |
657 | #else | |
658 | int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...) | |
659 | { | |
660 | return __prealloc_shrinker(shrinker); | |
661 | } | |
662 | #endif | |
663 | ||
8e04944f TH |
664 | void free_prealloced_shrinker(struct shrinker *shrinker) |
665 | { | |
e33c267a RG |
666 | #ifdef CONFIG_SHRINKER_DEBUG |
667 | kfree_const(shrinker->name); | |
14773bfa | 668 | shrinker->name = NULL; |
e33c267a | 669 | #endif |
41ca668a YS |
670 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) { |
671 | down_write(&shrinker_rwsem); | |
b4c2b231 | 672 | unregister_memcg_shrinker(shrinker); |
41ca668a | 673 | up_write(&shrinker_rwsem); |
476b30a0 | 674 | return; |
41ca668a | 675 | } |
b4c2b231 | 676 | |
8e04944f TH |
677 | kfree(shrinker->nr_deferred); |
678 | shrinker->nr_deferred = NULL; | |
679 | } | |
1d3d4437 | 680 | |
8e04944f TH |
681 | void register_shrinker_prepared(struct shrinker *shrinker) |
682 | { | |
8e1f936b RR |
683 | down_write(&shrinker_rwsem); |
684 | list_add_tail(&shrinker->list, &shrinker_list); | |
41ca668a | 685 | shrinker->flags |= SHRINKER_REGISTERED; |
5035ebc6 | 686 | shrinker_debugfs_add(shrinker); |
8e1f936b | 687 | up_write(&shrinker_rwsem); |
8e04944f TH |
688 | } |
689 | ||
e33c267a | 690 | static int __register_shrinker(struct shrinker *shrinker) |
8e04944f | 691 | { |
e33c267a | 692 | int err = __prealloc_shrinker(shrinker); |
8e04944f TH |
693 | |
694 | if (err) | |
695 | return err; | |
696 | register_shrinker_prepared(shrinker); | |
1d3d4437 | 697 | return 0; |
1da177e4 | 698 | } |
e33c267a RG |
699 | |
700 | #ifdef CONFIG_SHRINKER_DEBUG | |
701 | int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) | |
702 | { | |
703 | va_list ap; | |
704 | int err; | |
705 | ||
706 | va_start(ap, fmt); | |
707 | shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); | |
708 | va_end(ap); | |
709 | if (!shrinker->name) | |
710 | return -ENOMEM; | |
711 | ||
712 | err = __register_shrinker(shrinker); | |
14773bfa | 713 | if (err) { |
e33c267a | 714 | kfree_const(shrinker->name); |
14773bfa TH |
715 | shrinker->name = NULL; |
716 | } | |
e33c267a RG |
717 | return err; |
718 | } | |
719 | #else | |
720 | int register_shrinker(struct shrinker *shrinker, const char *fmt, ...) | |
721 | { | |
722 | return __register_shrinker(shrinker); | |
723 | } | |
724 | #endif | |
8e1f936b | 725 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
726 | |
727 | /* | |
728 | * Remove one | |
729 | */ | |
8e1f936b | 730 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 | 731 | { |
41ca668a | 732 | if (!(shrinker->flags & SHRINKER_REGISTERED)) |
bb422a73 | 733 | return; |
41ca668a | 734 | |
1da177e4 LT |
735 | down_write(&shrinker_rwsem); |
736 | list_del(&shrinker->list); | |
41ca668a YS |
737 | shrinker->flags &= ~SHRINKER_REGISTERED; |
738 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) | |
739 | unregister_memcg_shrinker(shrinker); | |
5035ebc6 | 740 | shrinker_debugfs_remove(shrinker); |
1da177e4 | 741 | up_write(&shrinker_rwsem); |
41ca668a | 742 | |
ae393321 | 743 | kfree(shrinker->nr_deferred); |
bb422a73 | 744 | shrinker->nr_deferred = NULL; |
1da177e4 | 745 | } |
8e1f936b | 746 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 | 747 | |
880121be CK |
748 | /** |
749 | * synchronize_shrinkers - Wait for all running shrinkers to complete. | |
750 | * | |
751 | * This is equivalent to calling unregister_shrink() and register_shrinker(), | |
752 | * but atomically and with less overhead. This is useful to guarantee that all | |
753 | * shrinker invocations have seen an update, before freeing memory, similar to | |
754 | * rcu. | |
755 | */ | |
756 | void synchronize_shrinkers(void) | |
757 | { | |
758 | down_write(&shrinker_rwsem); | |
759 | up_write(&shrinker_rwsem); | |
760 | } | |
761 | EXPORT_SYMBOL(synchronize_shrinkers); | |
762 | ||
1da177e4 | 763 | #define SHRINK_BATCH 128 |
1d3d4437 | 764 | |
cb731d6c | 765 | static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, |
9092c71b | 766 | struct shrinker *shrinker, int priority) |
1d3d4437 GC |
767 | { |
768 | unsigned long freed = 0; | |
769 | unsigned long long delta; | |
770 | long total_scan; | |
d5bc5fd3 | 771 | long freeable; |
1d3d4437 GC |
772 | long nr; |
773 | long new_nr; | |
1d3d4437 GC |
774 | long batch_size = shrinker->batch ? shrinker->batch |
775 | : SHRINK_BATCH; | |
5f33a080 | 776 | long scanned = 0, next_deferred; |
1d3d4437 | 777 | |
d5bc5fd3 | 778 | freeable = shrinker->count_objects(shrinker, shrinkctl); |
9b996468 KT |
779 | if (freeable == 0 || freeable == SHRINK_EMPTY) |
780 | return freeable; | |
1d3d4437 GC |
781 | |
782 | /* | |
783 | * copy the current shrinker scan count into a local variable | |
784 | * and zero it so that other concurrent shrinker invocations | |
785 | * don't also do this scanning work. | |
786 | */ | |
86750830 | 787 | nr = xchg_nr_deferred(shrinker, shrinkctl); |
1d3d4437 | 788 | |
4b85afbd JW |
789 | if (shrinker->seeks) { |
790 | delta = freeable >> priority; | |
791 | delta *= 4; | |
792 | do_div(delta, shrinker->seeks); | |
793 | } else { | |
794 | /* | |
795 | * These objects don't require any IO to create. Trim | |
796 | * them aggressively under memory pressure to keep | |
797 | * them from causing refetches in the IO caches. | |
798 | */ | |
799 | delta = freeable / 2; | |
800 | } | |
172b06c3 | 801 | |
18bb473e | 802 | total_scan = nr >> priority; |
1d3d4437 | 803 | total_scan += delta; |
18bb473e | 804 | total_scan = min(total_scan, (2 * freeable)); |
1d3d4437 GC |
805 | |
806 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, | |
9092c71b | 807 | freeable, delta, total_scan, priority); |
1d3d4437 | 808 | |
0b1fb40a VD |
809 | /* |
810 | * Normally, we should not scan less than batch_size objects in one | |
811 | * pass to avoid too frequent shrinker calls, but if the slab has less | |
812 | * than batch_size objects in total and we are really tight on memory, | |
813 | * we will try to reclaim all available objects, otherwise we can end | |
814 | * up failing allocations although there are plenty of reclaimable | |
815 | * objects spread over several slabs with usage less than the | |
816 | * batch_size. | |
817 | * | |
818 | * We detect the "tight on memory" situations by looking at the total | |
819 | * number of objects we want to scan (total_scan). If it is greater | |
d5bc5fd3 | 820 | * than the total number of objects on slab (freeable), we must be |
0b1fb40a VD |
821 | * scanning at high prio and therefore should try to reclaim as much as |
822 | * possible. | |
823 | */ | |
824 | while (total_scan >= batch_size || | |
d5bc5fd3 | 825 | total_scan >= freeable) { |
a0b02131 | 826 | unsigned long ret; |
0b1fb40a | 827 | unsigned long nr_to_scan = min(batch_size, total_scan); |
1d3d4437 | 828 | |
0b1fb40a | 829 | shrinkctl->nr_to_scan = nr_to_scan; |
d460acb5 | 830 | shrinkctl->nr_scanned = nr_to_scan; |
a0b02131 DC |
831 | ret = shrinker->scan_objects(shrinker, shrinkctl); |
832 | if (ret == SHRINK_STOP) | |
833 | break; | |
834 | freed += ret; | |
1d3d4437 | 835 | |
d460acb5 CW |
836 | count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); |
837 | total_scan -= shrinkctl->nr_scanned; | |
838 | scanned += shrinkctl->nr_scanned; | |
1d3d4437 GC |
839 | |
840 | cond_resched(); | |
841 | } | |
842 | ||
18bb473e YS |
843 | /* |
844 | * The deferred work is increased by any new work (delta) that wasn't | |
845 | * done, decreased by old deferred work that was done now. | |
846 | * | |
847 | * And it is capped to two times of the freeable items. | |
848 | */ | |
849 | next_deferred = max_t(long, (nr + delta - scanned), 0); | |
850 | next_deferred = min(next_deferred, (2 * freeable)); | |
851 | ||
1d3d4437 GC |
852 | /* |
853 | * move the unused scan count back into the shrinker in a | |
86750830 | 854 | * manner that handles concurrent updates. |
1d3d4437 | 855 | */ |
86750830 | 856 | new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl); |
1d3d4437 | 857 | |
8efb4b59 | 858 | trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan); |
1d3d4437 | 859 | return freed; |
1495f230 YH |
860 | } |
861 | ||
0a432dcb | 862 | #ifdef CONFIG_MEMCG |
b0dedc49 KT |
863 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, |
864 | struct mem_cgroup *memcg, int priority) | |
865 | { | |
e4262c4f | 866 | struct shrinker_info *info; |
b8e57efa KT |
867 | unsigned long ret, freed = 0; |
868 | int i; | |
b0dedc49 | 869 | |
0a432dcb | 870 | if (!mem_cgroup_online(memcg)) |
b0dedc49 KT |
871 | return 0; |
872 | ||
873 | if (!down_read_trylock(&shrinker_rwsem)) | |
874 | return 0; | |
875 | ||
468ab843 | 876 | info = shrinker_info_protected(memcg, nid); |
e4262c4f | 877 | if (unlikely(!info)) |
b0dedc49 KT |
878 | goto unlock; |
879 | ||
e4262c4f | 880 | for_each_set_bit(i, info->map, shrinker_nr_max) { |
b0dedc49 KT |
881 | struct shrink_control sc = { |
882 | .gfp_mask = gfp_mask, | |
883 | .nid = nid, | |
884 | .memcg = memcg, | |
885 | }; | |
886 | struct shrinker *shrinker; | |
887 | ||
888 | shrinker = idr_find(&shrinker_idr, i); | |
41ca668a | 889 | if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { |
7e010df5 | 890 | if (!shrinker) |
e4262c4f | 891 | clear_bit(i, info->map); |
b0dedc49 KT |
892 | continue; |
893 | } | |
894 | ||
0a432dcb YS |
895 | /* Call non-slab shrinkers even though kmem is disabled */ |
896 | if (!memcg_kmem_enabled() && | |
897 | !(shrinker->flags & SHRINKER_NONSLAB)) | |
898 | continue; | |
899 | ||
b0dedc49 | 900 | ret = do_shrink_slab(&sc, shrinker, priority); |
f90280d6 | 901 | if (ret == SHRINK_EMPTY) { |
e4262c4f | 902 | clear_bit(i, info->map); |
f90280d6 KT |
903 | /* |
904 | * After the shrinker reported that it had no objects to | |
905 | * free, but before we cleared the corresponding bit in | |
906 | * the memcg shrinker map, a new object might have been | |
907 | * added. To make sure, we have the bit set in this | |
908 | * case, we invoke the shrinker one more time and reset | |
909 | * the bit if it reports that it is not empty anymore. | |
910 | * The memory barrier here pairs with the barrier in | |
2bfd3637 | 911 | * set_shrinker_bit(): |
f90280d6 KT |
912 | * |
913 | * list_lru_add() shrink_slab_memcg() | |
914 | * list_add_tail() clear_bit() | |
915 | * <MB> <MB> | |
916 | * set_bit() do_shrink_slab() | |
917 | */ | |
918 | smp_mb__after_atomic(); | |
919 | ret = do_shrink_slab(&sc, shrinker, priority); | |
920 | if (ret == SHRINK_EMPTY) | |
921 | ret = 0; | |
922 | else | |
2bfd3637 | 923 | set_shrinker_bit(memcg, nid, i); |
f90280d6 | 924 | } |
b0dedc49 KT |
925 | freed += ret; |
926 | ||
927 | if (rwsem_is_contended(&shrinker_rwsem)) { | |
928 | freed = freed ? : 1; | |
929 | break; | |
930 | } | |
931 | } | |
932 | unlock: | |
933 | up_read(&shrinker_rwsem); | |
934 | return freed; | |
935 | } | |
0a432dcb | 936 | #else /* CONFIG_MEMCG */ |
b0dedc49 KT |
937 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, |
938 | struct mem_cgroup *memcg, int priority) | |
939 | { | |
940 | return 0; | |
941 | } | |
0a432dcb | 942 | #endif /* CONFIG_MEMCG */ |
b0dedc49 | 943 | |
6b4f7799 | 944 | /** |
cb731d6c | 945 | * shrink_slab - shrink slab caches |
6b4f7799 JW |
946 | * @gfp_mask: allocation context |
947 | * @nid: node whose slab caches to target | |
cb731d6c | 948 | * @memcg: memory cgroup whose slab caches to target |
9092c71b | 949 | * @priority: the reclaim priority |
1da177e4 | 950 | * |
6b4f7799 | 951 | * Call the shrink functions to age shrinkable caches. |
1da177e4 | 952 | * |
6b4f7799 JW |
953 | * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, |
954 | * unaware shrinkers will receive a node id of 0 instead. | |
1da177e4 | 955 | * |
aeed1d32 VD |
956 | * @memcg specifies the memory cgroup to target. Unaware shrinkers |
957 | * are called only if it is the root cgroup. | |
cb731d6c | 958 | * |
9092c71b JB |
959 | * @priority is sc->priority, we take the number of objects and >> by priority |
960 | * in order to get the scan target. | |
b15e0905 | 961 | * |
6b4f7799 | 962 | * Returns the number of reclaimed slab objects. |
1da177e4 | 963 | */ |
cb731d6c VD |
964 | static unsigned long shrink_slab(gfp_t gfp_mask, int nid, |
965 | struct mem_cgroup *memcg, | |
9092c71b | 966 | int priority) |
1da177e4 | 967 | { |
b8e57efa | 968 | unsigned long ret, freed = 0; |
1da177e4 LT |
969 | struct shrinker *shrinker; |
970 | ||
fa1e512f YS |
971 | /* |
972 | * The root memcg might be allocated even though memcg is disabled | |
973 | * via "cgroup_disable=memory" boot parameter. This could make | |
974 | * mem_cgroup_is_root() return false, then just run memcg slab | |
975 | * shrink, but skip global shrink. This may result in premature | |
976 | * oom. | |
977 | */ | |
978 | if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) | |
b0dedc49 | 979 | return shrink_slab_memcg(gfp_mask, nid, memcg, priority); |
cb731d6c | 980 | |
e830c63a | 981 | if (!down_read_trylock(&shrinker_rwsem)) |
f06590bd | 982 | goto out; |
1da177e4 LT |
983 | |
984 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
6b4f7799 JW |
985 | struct shrink_control sc = { |
986 | .gfp_mask = gfp_mask, | |
987 | .nid = nid, | |
cb731d6c | 988 | .memcg = memcg, |
6b4f7799 | 989 | }; |
ec97097b | 990 | |
9b996468 KT |
991 | ret = do_shrink_slab(&sc, shrinker, priority); |
992 | if (ret == SHRINK_EMPTY) | |
993 | ret = 0; | |
994 | freed += ret; | |
e496612c MK |
995 | /* |
996 | * Bail out if someone want to register a new shrinker to | |
55b65a57 | 997 | * prevent the registration from being stalled for long periods |
e496612c MK |
998 | * by parallel ongoing shrinking. |
999 | */ | |
1000 | if (rwsem_is_contended(&shrinker_rwsem)) { | |
1001 | freed = freed ? : 1; | |
1002 | break; | |
1003 | } | |
1da177e4 | 1004 | } |
6b4f7799 | 1005 | |
1da177e4 | 1006 | up_read(&shrinker_rwsem); |
f06590bd MK |
1007 | out: |
1008 | cond_resched(); | |
24f7c6b9 | 1009 | return freed; |
1da177e4 LT |
1010 | } |
1011 | ||
e4b424b7 | 1012 | static void drop_slab_node(int nid) |
cb731d6c VD |
1013 | { |
1014 | unsigned long freed; | |
1399af7e | 1015 | int shift = 0; |
cb731d6c VD |
1016 | |
1017 | do { | |
1018 | struct mem_cgroup *memcg = NULL; | |
1019 | ||
069c411d CZ |
1020 | if (fatal_signal_pending(current)) |
1021 | return; | |
1022 | ||
cb731d6c | 1023 | freed = 0; |
aeed1d32 | 1024 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
cb731d6c | 1025 | do { |
9092c71b | 1026 | freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); |
cb731d6c | 1027 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); |
1399af7e | 1028 | } while ((freed >> shift++) > 1); |
cb731d6c VD |
1029 | } |
1030 | ||
1031 | void drop_slab(void) | |
1032 | { | |
1033 | int nid; | |
1034 | ||
1035 | for_each_online_node(nid) | |
1036 | drop_slab_node(nid); | |
1037 | } | |
1038 | ||
e0cd5e7f | 1039 | static inline int is_page_cache_freeable(struct folio *folio) |
1da177e4 | 1040 | { |
ceddc3a5 JW |
1041 | /* |
1042 | * A freeable page cache page is referenced only by the caller | |
67891fff MW |
1043 | * that isolated the page, the page cache and optional buffer |
1044 | * heads at page->private. | |
ceddc3a5 | 1045 | */ |
e0cd5e7f MWO |
1046 | return folio_ref_count(folio) - folio_test_private(folio) == |
1047 | 1 + folio_nr_pages(folio); | |
1da177e4 LT |
1048 | } |
1049 | ||
1da177e4 | 1050 | /* |
e0cd5e7f | 1051 | * We detected a synchronous write error writing a folio out. Probably |
1da177e4 LT |
1052 | * -ENOSPC. We need to propagate that into the address_space for a subsequent |
1053 | * fsync(), msync() or close(). | |
1054 | * | |
1055 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
e0cd5e7f MWO |
1056 | * prevents it from being freed up. But we have a ref on the folio and once |
1057 | * that folio is locked, the mapping is pinned. | |
1da177e4 | 1058 | * |
e0cd5e7f | 1059 | * We're allowed to run sleeping folio_lock() here because we know the caller has |
1da177e4 LT |
1060 | * __GFP_FS. |
1061 | */ | |
1062 | static void handle_write_error(struct address_space *mapping, | |
e0cd5e7f | 1063 | struct folio *folio, int error) |
1da177e4 | 1064 | { |
e0cd5e7f MWO |
1065 | folio_lock(folio); |
1066 | if (folio_mapping(folio) == mapping) | |
3e9f45bd | 1067 | mapping_set_error(mapping, error); |
e0cd5e7f | 1068 | folio_unlock(folio); |
1da177e4 LT |
1069 | } |
1070 | ||
1b4e3f26 MG |
1071 | static bool skip_throttle_noprogress(pg_data_t *pgdat) |
1072 | { | |
1073 | int reclaimable = 0, write_pending = 0; | |
1074 | int i; | |
1075 | ||
1076 | /* | |
1077 | * If kswapd is disabled, reschedule if necessary but do not | |
1078 | * throttle as the system is likely near OOM. | |
1079 | */ | |
1080 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
1081 | return true; | |
1082 | ||
1083 | /* | |
1084 | * If there are a lot of dirty/writeback pages then do not | |
1085 | * throttle as throttling will occur when the pages cycle | |
1086 | * towards the end of the LRU if still under writeback. | |
1087 | */ | |
1088 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1089 | struct zone *zone = pgdat->node_zones + i; | |
1090 | ||
36c26128 | 1091 | if (!managed_zone(zone)) |
1b4e3f26 MG |
1092 | continue; |
1093 | ||
1094 | reclaimable += zone_reclaimable_pages(zone); | |
1095 | write_pending += zone_page_state_snapshot(zone, | |
1096 | NR_ZONE_WRITE_PENDING); | |
1097 | } | |
1098 | if (2 * write_pending <= reclaimable) | |
1099 | return true; | |
1100 | ||
1101 | return false; | |
1102 | } | |
1103 | ||
c3f4a9a2 | 1104 | void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) |
8cd7c588 MG |
1105 | { |
1106 | wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; | |
c3f4a9a2 | 1107 | long timeout, ret; |
8cd7c588 MG |
1108 | DEFINE_WAIT(wait); |
1109 | ||
1110 | /* | |
1111 | * Do not throttle IO workers, kthreads other than kswapd or | |
1112 | * workqueues. They may be required for reclaim to make | |
1113 | * forward progress (e.g. journalling workqueues or kthreads). | |
1114 | */ | |
1115 | if (!current_is_kswapd() && | |
b485c6f1 MG |
1116 | current->flags & (PF_IO_WORKER|PF_KTHREAD)) { |
1117 | cond_resched(); | |
8cd7c588 | 1118 | return; |
b485c6f1 | 1119 | } |
8cd7c588 | 1120 | |
c3f4a9a2 MG |
1121 | /* |
1122 | * These figures are pulled out of thin air. | |
1123 | * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many | |
1124 | * parallel reclaimers which is a short-lived event so the timeout is | |
1125 | * short. Failing to make progress or waiting on writeback are | |
1126 | * potentially long-lived events so use a longer timeout. This is shaky | |
1127 | * logic as a failure to make progress could be due to anything from | |
1128 | * writeback to a slow device to excessive references pages at the tail | |
1129 | * of the inactive LRU. | |
1130 | */ | |
1131 | switch(reason) { | |
1132 | case VMSCAN_THROTTLE_WRITEBACK: | |
1133 | timeout = HZ/10; | |
1134 | ||
1135 | if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { | |
1136 | WRITE_ONCE(pgdat->nr_reclaim_start, | |
1137 | node_page_state(pgdat, NR_THROTTLED_WRITTEN)); | |
1138 | } | |
1139 | ||
1140 | break; | |
1b4e3f26 MG |
1141 | case VMSCAN_THROTTLE_CONGESTED: |
1142 | fallthrough; | |
c3f4a9a2 | 1143 | case VMSCAN_THROTTLE_NOPROGRESS: |
1b4e3f26 MG |
1144 | if (skip_throttle_noprogress(pgdat)) { |
1145 | cond_resched(); | |
1146 | return; | |
1147 | } | |
1148 | ||
1149 | timeout = 1; | |
1150 | ||
c3f4a9a2 MG |
1151 | break; |
1152 | case VMSCAN_THROTTLE_ISOLATED: | |
1153 | timeout = HZ/50; | |
1154 | break; | |
1155 | default: | |
1156 | WARN_ON_ONCE(1); | |
1157 | timeout = HZ; | |
1158 | break; | |
8cd7c588 MG |
1159 | } |
1160 | ||
1161 | prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); | |
1162 | ret = schedule_timeout(timeout); | |
1163 | finish_wait(wqh, &wait); | |
d818fca1 | 1164 | |
c3f4a9a2 | 1165 | if (reason == VMSCAN_THROTTLE_WRITEBACK) |
d818fca1 | 1166 | atomic_dec(&pgdat->nr_writeback_throttled); |
8cd7c588 MG |
1167 | |
1168 | trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), | |
1169 | jiffies_to_usecs(timeout - ret), | |
1170 | reason); | |
1171 | } | |
1172 | ||
1173 | /* | |
1174 | * Account for pages written if tasks are throttled waiting on dirty | |
1175 | * pages to clean. If enough pages have been cleaned since throttling | |
1176 | * started then wakeup the throttled tasks. | |
1177 | */ | |
512b7931 | 1178 | void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, |
8cd7c588 MG |
1179 | int nr_throttled) |
1180 | { | |
1181 | unsigned long nr_written; | |
1182 | ||
512b7931 | 1183 | node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); |
8cd7c588 MG |
1184 | |
1185 | /* | |
1186 | * This is an inaccurate read as the per-cpu deltas may not | |
1187 | * be synchronised. However, given that the system is | |
1188 | * writeback throttled, it is not worth taking the penalty | |
1189 | * of getting an accurate count. At worst, the throttle | |
1190 | * timeout guarantees forward progress. | |
1191 | */ | |
1192 | nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - | |
1193 | READ_ONCE(pgdat->nr_reclaim_start); | |
1194 | ||
1195 | if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) | |
1196 | wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); | |
1197 | } | |
1198 | ||
04e62a29 CL |
1199 | /* possible outcome of pageout() */ |
1200 | typedef enum { | |
1201 | /* failed to write page out, page is locked */ | |
1202 | PAGE_KEEP, | |
1203 | /* move page to the active list, page is locked */ | |
1204 | PAGE_ACTIVATE, | |
1205 | /* page has been sent to the disk successfully, page is unlocked */ | |
1206 | PAGE_SUCCESS, | |
1207 | /* page is clean and locked */ | |
1208 | PAGE_CLEAN, | |
1209 | } pageout_t; | |
1210 | ||
1da177e4 | 1211 | /* |
1742f19f AM |
1212 | * pageout is called by shrink_page_list() for each dirty page. |
1213 | * Calls ->writepage(). | |
1da177e4 | 1214 | */ |
2282679f N |
1215 | static pageout_t pageout(struct folio *folio, struct address_space *mapping, |
1216 | struct swap_iocb **plug) | |
1da177e4 LT |
1217 | { |
1218 | /* | |
e0cd5e7f | 1219 | * If the folio is dirty, only perform writeback if that write |
1da177e4 LT |
1220 | * will be non-blocking. To prevent this allocation from being |
1221 | * stalled by pagecache activity. But note that there may be | |
1222 | * stalls if we need to run get_block(). We could test | |
1223 | * PagePrivate for that. | |
1224 | * | |
8174202b | 1225 | * If this process is currently in __generic_file_write_iter() against |
e0cd5e7f | 1226 | * this folio's queue, we can perform writeback even if that |
1da177e4 LT |
1227 | * will block. |
1228 | * | |
e0cd5e7f | 1229 | * If the folio is swapcache, write it back even if that would |
1da177e4 LT |
1230 | * block, for some throttling. This happens by accident, because |
1231 | * swap_backing_dev_info is bust: it doesn't reflect the | |
1232 | * congestion state of the swapdevs. Easy to fix, if needed. | |
1da177e4 | 1233 | */ |
e0cd5e7f | 1234 | if (!is_page_cache_freeable(folio)) |
1da177e4 LT |
1235 | return PAGE_KEEP; |
1236 | if (!mapping) { | |
1237 | /* | |
e0cd5e7f MWO |
1238 | * Some data journaling orphaned folios can have |
1239 | * folio->mapping == NULL while being dirty with clean buffers. | |
1da177e4 | 1240 | */ |
e0cd5e7f | 1241 | if (folio_test_private(folio)) { |
68189fef | 1242 | if (try_to_free_buffers(folio)) { |
e0cd5e7f MWO |
1243 | folio_clear_dirty(folio); |
1244 | pr_info("%s: orphaned folio\n", __func__); | |
1da177e4 LT |
1245 | return PAGE_CLEAN; |
1246 | } | |
1247 | } | |
1248 | return PAGE_KEEP; | |
1249 | } | |
1250 | if (mapping->a_ops->writepage == NULL) | |
1251 | return PAGE_ACTIVATE; | |
1da177e4 | 1252 | |
e0cd5e7f | 1253 | if (folio_clear_dirty_for_io(folio)) { |
1da177e4 LT |
1254 | int res; |
1255 | struct writeback_control wbc = { | |
1256 | .sync_mode = WB_SYNC_NONE, | |
1257 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
1258 | .range_start = 0, |
1259 | .range_end = LLONG_MAX, | |
1da177e4 | 1260 | .for_reclaim = 1, |
2282679f | 1261 | .swap_plug = plug, |
1da177e4 LT |
1262 | }; |
1263 | ||
e0cd5e7f MWO |
1264 | folio_set_reclaim(folio); |
1265 | res = mapping->a_ops->writepage(&folio->page, &wbc); | |
1da177e4 | 1266 | if (res < 0) |
e0cd5e7f | 1267 | handle_write_error(mapping, folio, res); |
994fc28c | 1268 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
e0cd5e7f | 1269 | folio_clear_reclaim(folio); |
1da177e4 LT |
1270 | return PAGE_ACTIVATE; |
1271 | } | |
c661b078 | 1272 | |
e0cd5e7f | 1273 | if (!folio_test_writeback(folio)) { |
1da177e4 | 1274 | /* synchronous write or broken a_ops? */ |
e0cd5e7f | 1275 | folio_clear_reclaim(folio); |
1da177e4 | 1276 | } |
e0cd5e7f MWO |
1277 | trace_mm_vmscan_write_folio(folio); |
1278 | node_stat_add_folio(folio, NR_VMSCAN_WRITE); | |
1da177e4 LT |
1279 | return PAGE_SUCCESS; |
1280 | } | |
1281 | ||
1282 | return PAGE_CLEAN; | |
1283 | } | |
1284 | ||
a649fd92 | 1285 | /* |
e286781d NP |
1286 | * Same as remove_mapping, but if the page is removed from the mapping, it |
1287 | * gets returned with a refcount of 0. | |
a649fd92 | 1288 | */ |
be7c07d6 | 1289 | static int __remove_mapping(struct address_space *mapping, struct folio *folio, |
b910718a | 1290 | bool reclaimed, struct mem_cgroup *target_memcg) |
49d2e9cc | 1291 | { |
bd4c82c2 | 1292 | int refcount; |
aae466b0 | 1293 | void *shadow = NULL; |
c4843a75 | 1294 | |
be7c07d6 MWO |
1295 | BUG_ON(!folio_test_locked(folio)); |
1296 | BUG_ON(mapping != folio_mapping(folio)); | |
49d2e9cc | 1297 | |
be7c07d6 | 1298 | if (!folio_test_swapcache(folio)) |
51b8c1fe | 1299 | spin_lock(&mapping->host->i_lock); |
30472509 | 1300 | xa_lock_irq(&mapping->i_pages); |
49d2e9cc | 1301 | /* |
0fd0e6b0 NP |
1302 | * The non racy check for a busy page. |
1303 | * | |
1304 | * Must be careful with the order of the tests. When someone has | |
1305 | * a ref to the page, it may be possible that they dirty it then | |
1306 | * drop the reference. So if PageDirty is tested before page_count | |
1307 | * here, then the following race may occur: | |
1308 | * | |
1309 | * get_user_pages(&page); | |
1310 | * [user mapping goes away] | |
1311 | * write_to(page); | |
1312 | * !PageDirty(page) [good] | |
1313 | * SetPageDirty(page); | |
1314 | * put_page(page); | |
1315 | * !page_count(page) [good, discard it] | |
1316 | * | |
1317 | * [oops, our write_to data is lost] | |
1318 | * | |
1319 | * Reversing the order of the tests ensures such a situation cannot | |
1320 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
0139aa7b | 1321 | * load is not satisfied before that of page->_refcount. |
0fd0e6b0 NP |
1322 | * |
1323 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
b93b0163 | 1324 | * and thus under the i_pages lock, then this ordering is not required. |
49d2e9cc | 1325 | */ |
be7c07d6 MWO |
1326 | refcount = 1 + folio_nr_pages(folio); |
1327 | if (!folio_ref_freeze(folio, refcount)) | |
49d2e9cc | 1328 | goto cannot_free; |
1c4c3b99 | 1329 | /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ |
be7c07d6 MWO |
1330 | if (unlikely(folio_test_dirty(folio))) { |
1331 | folio_ref_unfreeze(folio, refcount); | |
49d2e9cc | 1332 | goto cannot_free; |
e286781d | 1333 | } |
49d2e9cc | 1334 | |
be7c07d6 MWO |
1335 | if (folio_test_swapcache(folio)) { |
1336 | swp_entry_t swap = folio_swap_entry(folio); | |
3ecb0087 | 1337 | mem_cgroup_swapout(folio, swap); |
aae466b0 | 1338 | if (reclaimed && !mapping_exiting(mapping)) |
8927f647 | 1339 | shadow = workingset_eviction(folio, target_memcg); |
ceff9d33 | 1340 | __delete_from_swap_cache(folio, swap, shadow); |
30472509 | 1341 | xa_unlock_irq(&mapping->i_pages); |
be7c07d6 | 1342 | put_swap_page(&folio->page, swap); |
e286781d | 1343 | } else { |
d2329aa0 | 1344 | void (*free_folio)(struct folio *); |
6072d13c | 1345 | |
d2329aa0 | 1346 | free_folio = mapping->a_ops->free_folio; |
a528910e JW |
1347 | /* |
1348 | * Remember a shadow entry for reclaimed file cache in | |
1349 | * order to detect refaults, thus thrashing, later on. | |
1350 | * | |
1351 | * But don't store shadows in an address space that is | |
238c3046 | 1352 | * already exiting. This is not just an optimization, |
a528910e JW |
1353 | * inode reclaim needs to empty out the radix tree or |
1354 | * the nodes are lost. Don't plant shadows behind its | |
1355 | * back. | |
f9fe48be RZ |
1356 | * |
1357 | * We also don't store shadows for DAX mappings because the | |
1358 | * only page cache pages found in these are zero pages | |
1359 | * covering holes, and because we don't want to mix DAX | |
1360 | * exceptional entries and shadow exceptional entries in the | |
b93b0163 | 1361 | * same address_space. |
a528910e | 1362 | */ |
be7c07d6 | 1363 | if (reclaimed && folio_is_file_lru(folio) && |
f9fe48be | 1364 | !mapping_exiting(mapping) && !dax_mapping(mapping)) |
8927f647 MWO |
1365 | shadow = workingset_eviction(folio, target_memcg); |
1366 | __filemap_remove_folio(folio, shadow); | |
30472509 | 1367 | xa_unlock_irq(&mapping->i_pages); |
51b8c1fe JW |
1368 | if (mapping_shrinkable(mapping)) |
1369 | inode_add_lru(mapping->host); | |
1370 | spin_unlock(&mapping->host->i_lock); | |
6072d13c | 1371 | |
d2329aa0 MWO |
1372 | if (free_folio) |
1373 | free_folio(folio); | |
49d2e9cc CL |
1374 | } |
1375 | ||
49d2e9cc CL |
1376 | return 1; |
1377 | ||
1378 | cannot_free: | |
30472509 | 1379 | xa_unlock_irq(&mapping->i_pages); |
be7c07d6 | 1380 | if (!folio_test_swapcache(folio)) |
51b8c1fe | 1381 | spin_unlock(&mapping->host->i_lock); |
49d2e9cc CL |
1382 | return 0; |
1383 | } | |
1384 | ||
5100da38 MWO |
1385 | /** |
1386 | * remove_mapping() - Attempt to remove a folio from its mapping. | |
1387 | * @mapping: The address space. | |
1388 | * @folio: The folio to remove. | |
1389 | * | |
1390 | * If the folio is dirty, under writeback or if someone else has a ref | |
1391 | * on it, removal will fail. | |
1392 | * Return: The number of pages removed from the mapping. 0 if the folio | |
1393 | * could not be removed. | |
1394 | * Context: The caller should have a single refcount on the folio and | |
1395 | * hold its lock. | |
e286781d | 1396 | */ |
5100da38 | 1397 | long remove_mapping(struct address_space *mapping, struct folio *folio) |
e286781d | 1398 | { |
be7c07d6 | 1399 | if (__remove_mapping(mapping, folio, false, NULL)) { |
e286781d | 1400 | /* |
5100da38 | 1401 | * Unfreezing the refcount with 1 effectively |
e286781d NP |
1402 | * drops the pagecache ref for us without requiring another |
1403 | * atomic operation. | |
1404 | */ | |
be7c07d6 | 1405 | folio_ref_unfreeze(folio, 1); |
5100da38 | 1406 | return folio_nr_pages(folio); |
e286781d NP |
1407 | } |
1408 | return 0; | |
1409 | } | |
1410 | ||
894bc310 | 1411 | /** |
ca6d60f3 MWO |
1412 | * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. |
1413 | * @folio: Folio to be returned to an LRU list. | |
894bc310 | 1414 | * |
ca6d60f3 MWO |
1415 | * Add previously isolated @folio to appropriate LRU list. |
1416 | * The folio may still be unevictable for other reasons. | |
894bc310 | 1417 | * |
ca6d60f3 | 1418 | * Context: lru_lock must not be held, interrupts must be enabled. |
894bc310 | 1419 | */ |
ca6d60f3 | 1420 | void folio_putback_lru(struct folio *folio) |
894bc310 | 1421 | { |
ca6d60f3 MWO |
1422 | folio_add_lru(folio); |
1423 | folio_put(folio); /* drop ref from isolate */ | |
894bc310 LS |
1424 | } |
1425 | ||
dfc8d636 JW |
1426 | enum page_references { |
1427 | PAGEREF_RECLAIM, | |
1428 | PAGEREF_RECLAIM_CLEAN, | |
64574746 | 1429 | PAGEREF_KEEP, |
dfc8d636 JW |
1430 | PAGEREF_ACTIVATE, |
1431 | }; | |
1432 | ||
d92013d1 | 1433 | static enum page_references folio_check_references(struct folio *folio, |
dfc8d636 JW |
1434 | struct scan_control *sc) |
1435 | { | |
d92013d1 | 1436 | int referenced_ptes, referenced_folio; |
dfc8d636 | 1437 | unsigned long vm_flags; |
dfc8d636 | 1438 | |
b3ac0413 MWO |
1439 | referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, |
1440 | &vm_flags); | |
d92013d1 | 1441 | referenced_folio = folio_test_clear_referenced(folio); |
dfc8d636 | 1442 | |
dfc8d636 | 1443 | /* |
d92013d1 MWO |
1444 | * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. |
1445 | * Let the folio, now marked Mlocked, be moved to the unevictable list. | |
dfc8d636 JW |
1446 | */ |
1447 | if (vm_flags & VM_LOCKED) | |
47d4f3ee | 1448 | return PAGEREF_ACTIVATE; |
dfc8d636 | 1449 | |
6d4675e6 MK |
1450 | /* rmap lock contention: rotate */ |
1451 | if (referenced_ptes == -1) | |
1452 | return PAGEREF_KEEP; | |
1453 | ||
64574746 | 1454 | if (referenced_ptes) { |
64574746 | 1455 | /* |
d92013d1 | 1456 | * All mapped folios start out with page table |
64574746 | 1457 | * references from the instantiating fault, so we need |
9030fb0b | 1458 | * to look twice if a mapped file/anon folio is used more |
64574746 JW |
1459 | * than once. |
1460 | * | |
1461 | * Mark it and spare it for another trip around the | |
1462 | * inactive list. Another page table reference will | |
1463 | * lead to its activation. | |
1464 | * | |
d92013d1 MWO |
1465 | * Note: the mark is set for activated folios as well |
1466 | * so that recently deactivated but used folios are | |
64574746 JW |
1467 | * quickly recovered. |
1468 | */ | |
d92013d1 | 1469 | folio_set_referenced(folio); |
64574746 | 1470 | |
d92013d1 | 1471 | if (referenced_folio || referenced_ptes > 1) |
64574746 JW |
1472 | return PAGEREF_ACTIVATE; |
1473 | ||
c909e993 | 1474 | /* |
d92013d1 | 1475 | * Activate file-backed executable folios after first usage. |
c909e993 | 1476 | */ |
f19a27e3 | 1477 | if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) |
c909e993 KK |
1478 | return PAGEREF_ACTIVATE; |
1479 | ||
64574746 JW |
1480 | return PAGEREF_KEEP; |
1481 | } | |
dfc8d636 | 1482 | |
d92013d1 | 1483 | /* Reclaim if clean, defer dirty folios to writeback */ |
f19a27e3 | 1484 | if (referenced_folio && folio_is_file_lru(folio)) |
64574746 JW |
1485 | return PAGEREF_RECLAIM_CLEAN; |
1486 | ||
1487 | return PAGEREF_RECLAIM; | |
dfc8d636 JW |
1488 | } |
1489 | ||
e2be15f6 | 1490 | /* Check if a page is dirty or under writeback */ |
e20c41b1 | 1491 | static void folio_check_dirty_writeback(struct folio *folio, |
e2be15f6 MG |
1492 | bool *dirty, bool *writeback) |
1493 | { | |
b4597226 MG |
1494 | struct address_space *mapping; |
1495 | ||
e2be15f6 MG |
1496 | /* |
1497 | * Anonymous pages are not handled by flushers and must be written | |
32a331a7 ML |
1498 | * from reclaim context. Do not stall reclaim based on them. |
1499 | * MADV_FREE anonymous pages are put into inactive file list too. | |
1500 | * They could be mistakenly treated as file lru. So further anon | |
1501 | * test is needed. | |
e2be15f6 | 1502 | */ |
e20c41b1 MWO |
1503 | if (!folio_is_file_lru(folio) || |
1504 | (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { | |
e2be15f6 MG |
1505 | *dirty = false; |
1506 | *writeback = false; | |
1507 | return; | |
1508 | } | |
1509 | ||
e20c41b1 MWO |
1510 | /* By default assume that the folio flags are accurate */ |
1511 | *dirty = folio_test_dirty(folio); | |
1512 | *writeback = folio_test_writeback(folio); | |
b4597226 MG |
1513 | |
1514 | /* Verify dirty/writeback state if the filesystem supports it */ | |
e20c41b1 | 1515 | if (!folio_test_private(folio)) |
b4597226 MG |
1516 | return; |
1517 | ||
e20c41b1 | 1518 | mapping = folio_mapping(folio); |
b4597226 | 1519 | if (mapping && mapping->a_ops->is_dirty_writeback) |
520f301c | 1520 | mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); |
e2be15f6 MG |
1521 | } |
1522 | ||
26aa2d19 DH |
1523 | static struct page *alloc_demote_page(struct page *page, unsigned long node) |
1524 | { | |
1525 | struct migration_target_control mtc = { | |
1526 | /* | |
1527 | * Allocate from 'node', or fail quickly and quietly. | |
1528 | * When this happens, 'page' will likely just be discarded | |
1529 | * instead of migrated. | |
1530 | */ | |
1531 | .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | | |
1532 | __GFP_THISNODE | __GFP_NOWARN | | |
1533 | __GFP_NOMEMALLOC | GFP_NOWAIT, | |
1534 | .nid = node | |
1535 | }; | |
1536 | ||
1537 | return alloc_migration_target(page, (unsigned long)&mtc); | |
1538 | } | |
1539 | ||
1540 | /* | |
1541 | * Take pages on @demote_list and attempt to demote them to | |
1542 | * another node. Pages which are not demoted are left on | |
1543 | * @demote_pages. | |
1544 | */ | |
1545 | static unsigned int demote_page_list(struct list_head *demote_pages, | |
1546 | struct pglist_data *pgdat) | |
1547 | { | |
1548 | int target_nid = next_demotion_node(pgdat->node_id); | |
1549 | unsigned int nr_succeeded; | |
26aa2d19 DH |
1550 | |
1551 | if (list_empty(demote_pages)) | |
1552 | return 0; | |
1553 | ||
1554 | if (target_nid == NUMA_NO_NODE) | |
1555 | return 0; | |
1556 | ||
1557 | /* Demotion ignores all cpuset and mempolicy settings */ | |
cb75463c | 1558 | migrate_pages(demote_pages, alloc_demote_page, NULL, |
26aa2d19 DH |
1559 | target_nid, MIGRATE_ASYNC, MR_DEMOTION, |
1560 | &nr_succeeded); | |
1561 | ||
668e4147 YS |
1562 | if (current_is_kswapd()) |
1563 | __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded); | |
1564 | else | |
1565 | __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded); | |
1566 | ||
26aa2d19 DH |
1567 | return nr_succeeded; |
1568 | } | |
1569 | ||
c28a0e96 | 1570 | static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) |
d791ea67 N |
1571 | { |
1572 | if (gfp_mask & __GFP_FS) | |
1573 | return true; | |
c28a0e96 | 1574 | if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) |
d791ea67 N |
1575 | return false; |
1576 | /* | |
1577 | * We can "enter_fs" for swap-cache with only __GFP_IO | |
1578 | * providing this isn't SWP_FS_OPS. | |
1579 | * ->flags can be updated non-atomicially (scan_swap_map_slots), | |
1580 | * but that will never affect SWP_FS_OPS, so the data_race | |
1581 | * is safe. | |
1582 | */ | |
b98c359f | 1583 | return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); |
d791ea67 N |
1584 | } |
1585 | ||
1da177e4 | 1586 | /* |
1742f19f | 1587 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 1588 | */ |
730ec8c0 MS |
1589 | static unsigned int shrink_page_list(struct list_head *page_list, |
1590 | struct pglist_data *pgdat, | |
1591 | struct scan_control *sc, | |
730ec8c0 MS |
1592 | struct reclaim_stat *stat, |
1593 | bool ignore_references) | |
1da177e4 LT |
1594 | { |
1595 | LIST_HEAD(ret_pages); | |
abe4c3b5 | 1596 | LIST_HEAD(free_pages); |
26aa2d19 | 1597 | LIST_HEAD(demote_pages); |
730ec8c0 MS |
1598 | unsigned int nr_reclaimed = 0; |
1599 | unsigned int pgactivate = 0; | |
26aa2d19 | 1600 | bool do_demote_pass; |
2282679f | 1601 | struct swap_iocb *plug = NULL; |
1da177e4 | 1602 | |
060f005f | 1603 | memset(stat, 0, sizeof(*stat)); |
1da177e4 | 1604 | cond_resched(); |
26aa2d19 | 1605 | do_demote_pass = can_demote(pgdat->node_id, sc); |
1da177e4 | 1606 | |
26aa2d19 | 1607 | retry: |
1da177e4 LT |
1608 | while (!list_empty(page_list)) { |
1609 | struct address_space *mapping; | |
be7c07d6 | 1610 | struct folio *folio; |
8940b34a | 1611 | enum page_references references = PAGEREF_RECLAIM; |
d791ea67 | 1612 | bool dirty, writeback; |
98879b3b | 1613 | unsigned int nr_pages; |
1da177e4 LT |
1614 | |
1615 | cond_resched(); | |
1616 | ||
be7c07d6 MWO |
1617 | folio = lru_to_folio(page_list); |
1618 | list_del(&folio->lru); | |
1da177e4 | 1619 | |
c28a0e96 | 1620 | if (!folio_trylock(folio)) |
1da177e4 LT |
1621 | goto keep; |
1622 | ||
c28a0e96 | 1623 | VM_BUG_ON_FOLIO(folio_test_active(folio), folio); |
1da177e4 | 1624 | |
c28a0e96 | 1625 | nr_pages = folio_nr_pages(folio); |
98879b3b | 1626 | |
c28a0e96 | 1627 | /* Account the number of base pages */ |
98879b3b | 1628 | sc->nr_scanned += nr_pages; |
80e43426 | 1629 | |
c28a0e96 | 1630 | if (unlikely(!folio_evictable(folio))) |
ad6b6704 | 1631 | goto activate_locked; |
894bc310 | 1632 | |
1bee2c16 | 1633 | if (!sc->may_unmap && folio_mapped(folio)) |
80e43426 CL |
1634 | goto keep_locked; |
1635 | ||
e2be15f6 | 1636 | /* |
894befec | 1637 | * The number of dirty pages determines if a node is marked |
8cd7c588 | 1638 | * reclaim_congested. kswapd will stall and start writing |
c28a0e96 | 1639 | * folios if the tail of the LRU is all dirty unqueued folios. |
e2be15f6 | 1640 | */ |
e20c41b1 | 1641 | folio_check_dirty_writeback(folio, &dirty, &writeback); |
e2be15f6 | 1642 | if (dirty || writeback) |
c79b7b96 | 1643 | stat->nr_dirty += nr_pages; |
e2be15f6 MG |
1644 | |
1645 | if (dirty && !writeback) | |
c79b7b96 | 1646 | stat->nr_unqueued_dirty += nr_pages; |
e2be15f6 | 1647 | |
d04e8acd | 1648 | /* |
c28a0e96 MWO |
1649 | * Treat this folio as congested if folios are cycling |
1650 | * through the LRU so quickly that the folios marked | |
1651 | * for immediate reclaim are making it to the end of | |
1652 | * the LRU a second time. | |
d04e8acd | 1653 | */ |
c28a0e96 | 1654 | if (writeback && folio_test_reclaim(folio)) |
c79b7b96 | 1655 | stat->nr_congested += nr_pages; |
e2be15f6 | 1656 | |
283aba9f | 1657 | /* |
d33e4e14 | 1658 | * If a folio at the tail of the LRU is under writeback, there |
283aba9f MG |
1659 | * are three cases to consider. |
1660 | * | |
c28a0e96 MWO |
1661 | * 1) If reclaim is encountering an excessive number |
1662 | * of folios under writeback and this folio has both | |
1663 | * the writeback and reclaim flags set, then it | |
d33e4e14 MWO |
1664 | * indicates that folios are being queued for I/O but |
1665 | * are being recycled through the LRU before the I/O | |
1666 | * can complete. Waiting on the folio itself risks an | |
1667 | * indefinite stall if it is impossible to writeback | |
1668 | * the folio due to I/O error or disconnected storage | |
1669 | * so instead note that the LRU is being scanned too | |
1670 | * quickly and the caller can stall after the folio | |
1671 | * list has been processed. | |
283aba9f | 1672 | * |
d33e4e14 | 1673 | * 2) Global or new memcg reclaim encounters a folio that is |
ecf5fc6e MH |
1674 | * not marked for immediate reclaim, or the caller does not |
1675 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, | |
d33e4e14 | 1676 | * not to fs). In this case mark the folio for immediate |
97c9341f | 1677 | * reclaim and continue scanning. |
283aba9f | 1678 | * |
d791ea67 | 1679 | * Require may_enter_fs() because we would wait on fs, which |
d33e4e14 MWO |
1680 | * may not have submitted I/O yet. And the loop driver might |
1681 | * enter reclaim, and deadlock if it waits on a folio for | |
283aba9f MG |
1682 | * which it is needed to do the write (loop masks off |
1683 | * __GFP_IO|__GFP_FS for this reason); but more thought | |
1684 | * would probably show more reasons. | |
1685 | * | |
d33e4e14 MWO |
1686 | * 3) Legacy memcg encounters a folio that already has the |
1687 | * reclaim flag set. memcg does not have any dirty folio | |
283aba9f | 1688 | * throttling so we could easily OOM just because too many |
d33e4e14 | 1689 | * folios are in writeback and there is nothing else to |
283aba9f | 1690 | * reclaim. Wait for the writeback to complete. |
c55e8d03 | 1691 | * |
d33e4e14 MWO |
1692 | * In cases 1) and 2) we activate the folios to get them out of |
1693 | * the way while we continue scanning for clean folios on the | |
c55e8d03 JW |
1694 | * inactive list and refilling from the active list. The |
1695 | * observation here is that waiting for disk writes is more | |
1696 | * expensive than potentially causing reloads down the line. | |
1697 | * Since they're marked for immediate reclaim, they won't put | |
1698 | * memory pressure on the cache working set any longer than it | |
1699 | * takes to write them to disk. | |
283aba9f | 1700 | */ |
d33e4e14 | 1701 | if (folio_test_writeback(folio)) { |
283aba9f MG |
1702 | /* Case 1 above */ |
1703 | if (current_is_kswapd() && | |
d33e4e14 | 1704 | folio_test_reclaim(folio) && |
599d0c95 | 1705 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { |
c79b7b96 | 1706 | stat->nr_immediate += nr_pages; |
c55e8d03 | 1707 | goto activate_locked; |
283aba9f MG |
1708 | |
1709 | /* Case 2 above */ | |
b5ead35e | 1710 | } else if (writeback_throttling_sane(sc) || |
d33e4e14 | 1711 | !folio_test_reclaim(folio) || |
c28a0e96 | 1712 | !may_enter_fs(folio, sc->gfp_mask)) { |
c3b94f44 | 1713 | /* |
d33e4e14 | 1714 | * This is slightly racy - |
c28a0e96 MWO |
1715 | * folio_end_writeback() might have |
1716 | * just cleared the reclaim flag, then | |
1717 | * setting the reclaim flag here ends up | |
1718 | * interpreted as the readahead flag - but | |
1719 | * that does not matter enough to care. | |
1720 | * What we do want is for this folio to | |
1721 | * have the reclaim flag set next time | |
1722 | * memcg reclaim reaches the tests above, | |
1723 | * so it will then wait for writeback to | |
1724 | * avoid OOM; and it's also appropriate | |
d33e4e14 | 1725 | * in global reclaim. |
c3b94f44 | 1726 | */ |
d33e4e14 | 1727 | folio_set_reclaim(folio); |
c79b7b96 | 1728 | stat->nr_writeback += nr_pages; |
c55e8d03 | 1729 | goto activate_locked; |
283aba9f MG |
1730 | |
1731 | /* Case 3 above */ | |
1732 | } else { | |
d33e4e14 MWO |
1733 | folio_unlock(folio); |
1734 | folio_wait_writeback(folio); | |
1735 | /* then go back and try same folio again */ | |
1736 | list_add_tail(&folio->lru, page_list); | |
7fadc820 | 1737 | continue; |
e62e384e | 1738 | } |
c661b078 | 1739 | } |
1da177e4 | 1740 | |
8940b34a | 1741 | if (!ignore_references) |
d92013d1 | 1742 | references = folio_check_references(folio, sc); |
02c6de8d | 1743 | |
dfc8d636 JW |
1744 | switch (references) { |
1745 | case PAGEREF_ACTIVATE: | |
1da177e4 | 1746 | goto activate_locked; |
64574746 | 1747 | case PAGEREF_KEEP: |
98879b3b | 1748 | stat->nr_ref_keep += nr_pages; |
64574746 | 1749 | goto keep_locked; |
dfc8d636 JW |
1750 | case PAGEREF_RECLAIM: |
1751 | case PAGEREF_RECLAIM_CLEAN: | |
c28a0e96 | 1752 | ; /* try to reclaim the folio below */ |
dfc8d636 | 1753 | } |
1da177e4 | 1754 | |
26aa2d19 | 1755 | /* |
c28a0e96 | 1756 | * Before reclaiming the folio, try to relocate |
26aa2d19 DH |
1757 | * its contents to another node. |
1758 | */ | |
1759 | if (do_demote_pass && | |
c28a0e96 MWO |
1760 | (thp_migration_supported() || !folio_test_large(folio))) { |
1761 | list_add(&folio->lru, &demote_pages); | |
1762 | folio_unlock(folio); | |
26aa2d19 DH |
1763 | continue; |
1764 | } | |
1765 | ||
1da177e4 LT |
1766 | /* |
1767 | * Anonymous process memory has backing store? | |
1768 | * Try to allocate it some swap space here. | |
c28a0e96 | 1769 | * Lazyfree folio could be freed directly |
1da177e4 | 1770 | */ |
c28a0e96 MWO |
1771 | if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { |
1772 | if (!folio_test_swapcache(folio)) { | |
bd4c82c2 YH |
1773 | if (!(sc->gfp_mask & __GFP_IO)) |
1774 | goto keep_locked; | |
d4b4084a | 1775 | if (folio_maybe_dma_pinned(folio)) |
feb889fb | 1776 | goto keep_locked; |
c28a0e96 MWO |
1777 | if (folio_test_large(folio)) { |
1778 | /* cannot split folio, skip it */ | |
d4b4084a | 1779 | if (!can_split_folio(folio, NULL)) |
bd4c82c2 YH |
1780 | goto activate_locked; |
1781 | /* | |
c28a0e96 | 1782 | * Split folios without a PMD map right |
bd4c82c2 YH |
1783 | * away. Chances are some or all of the |
1784 | * tail pages can be freed without IO. | |
1785 | */ | |
d4b4084a | 1786 | if (!folio_entire_mapcount(folio) && |
346cf613 MWO |
1787 | split_folio_to_list(folio, |
1788 | page_list)) | |
bd4c82c2 YH |
1789 | goto activate_locked; |
1790 | } | |
09c02e56 MWO |
1791 | if (!add_to_swap(folio)) { |
1792 | if (!folio_test_large(folio)) | |
98879b3b | 1793 | goto activate_locked_split; |
bd4c82c2 | 1794 | /* Fallback to swap normal pages */ |
346cf613 MWO |
1795 | if (split_folio_to_list(folio, |
1796 | page_list)) | |
bd4c82c2 | 1797 | goto activate_locked; |
fe490cc0 YH |
1798 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1799 | count_vm_event(THP_SWPOUT_FALLBACK); | |
1800 | #endif | |
09c02e56 | 1801 | if (!add_to_swap(folio)) |
98879b3b | 1802 | goto activate_locked_split; |
bd4c82c2 | 1803 | } |
bd4c82c2 | 1804 | } |
c28a0e96 MWO |
1805 | } else if (folio_test_swapbacked(folio) && |
1806 | folio_test_large(folio)) { | |
1807 | /* Split shmem folio */ | |
346cf613 | 1808 | if (split_folio_to_list(folio, page_list)) |
7751b2da | 1809 | goto keep_locked; |
e2be15f6 | 1810 | } |
1da177e4 | 1811 | |
98879b3b | 1812 | /* |
c28a0e96 MWO |
1813 | * If the folio was split above, the tail pages will make |
1814 | * their own pass through this function and be accounted | |
1815 | * then. | |
98879b3b | 1816 | */ |
c28a0e96 | 1817 | if ((nr_pages > 1) && !folio_test_large(folio)) { |
98879b3b YS |
1818 | sc->nr_scanned -= (nr_pages - 1); |
1819 | nr_pages = 1; | |
1820 | } | |
1821 | ||
1da177e4 | 1822 | /* |
1bee2c16 | 1823 | * The folio is mapped into the page tables of one or more |
1da177e4 LT |
1824 | * processes. Try to unmap it here. |
1825 | */ | |
1bee2c16 | 1826 | if (folio_mapped(folio)) { |
013339df | 1827 | enum ttu_flags flags = TTU_BATCH_FLUSH; |
1bee2c16 | 1828 | bool was_swapbacked = folio_test_swapbacked(folio); |
bd4c82c2 | 1829 | |
1bee2c16 | 1830 | if (folio_test_pmd_mappable(folio)) |
bd4c82c2 | 1831 | flags |= TTU_SPLIT_HUGE_PMD; |
1f318a9b | 1832 | |
869f7ee6 | 1833 | try_to_unmap(folio, flags); |
1bee2c16 | 1834 | if (folio_mapped(folio)) { |
98879b3b | 1835 | stat->nr_unmap_fail += nr_pages; |
1bee2c16 MWO |
1836 | if (!was_swapbacked && |
1837 | folio_test_swapbacked(folio)) | |
1f318a9b | 1838 | stat->nr_lazyfree_fail += nr_pages; |
1da177e4 | 1839 | goto activate_locked; |
1da177e4 LT |
1840 | } |
1841 | } | |
1842 | ||
5441d490 | 1843 | mapping = folio_mapping(folio); |
49bd2bf9 | 1844 | if (folio_test_dirty(folio)) { |
ee72886d | 1845 | /* |
49bd2bf9 | 1846 | * Only kswapd can writeback filesystem folios |
4eda4823 | 1847 | * to avoid risk of stack overflow. But avoid |
49bd2bf9 | 1848 | * injecting inefficient single-folio I/O into |
4eda4823 | 1849 | * flusher writeback as much as possible: only |
49bd2bf9 MWO |
1850 | * write folios when we've encountered many |
1851 | * dirty folios, and when we've already scanned | |
1852 | * the rest of the LRU for clean folios and see | |
1853 | * the same dirty folios again (with the reclaim | |
1854 | * flag set). | |
ee72886d | 1855 | */ |
49bd2bf9 MWO |
1856 | if (folio_is_file_lru(folio) && |
1857 | (!current_is_kswapd() || | |
1858 | !folio_test_reclaim(folio) || | |
4eda4823 | 1859 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { |
49ea7eb6 MG |
1860 | /* |
1861 | * Immediately reclaim when written back. | |
49bd2bf9 MWO |
1862 | * Similar in principle to deactivate_page() |
1863 | * except we already have the folio isolated | |
49ea7eb6 MG |
1864 | * and know it's dirty |
1865 | */ | |
49bd2bf9 MWO |
1866 | node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, |
1867 | nr_pages); | |
1868 | folio_set_reclaim(folio); | |
49ea7eb6 | 1869 | |
c55e8d03 | 1870 | goto activate_locked; |
ee72886d MG |
1871 | } |
1872 | ||
dfc8d636 | 1873 | if (references == PAGEREF_RECLAIM_CLEAN) |
1da177e4 | 1874 | goto keep_locked; |
c28a0e96 | 1875 | if (!may_enter_fs(folio, sc->gfp_mask)) |
1da177e4 | 1876 | goto keep_locked; |
52a8363e | 1877 | if (!sc->may_writepage) |
1da177e4 LT |
1878 | goto keep_locked; |
1879 | ||
d950c947 | 1880 | /* |
49bd2bf9 MWO |
1881 | * Folio is dirty. Flush the TLB if a writable entry |
1882 | * potentially exists to avoid CPU writes after I/O | |
d950c947 MG |
1883 | * starts and then write it out here. |
1884 | */ | |
1885 | try_to_unmap_flush_dirty(); | |
2282679f | 1886 | switch (pageout(folio, mapping, &plug)) { |
1da177e4 LT |
1887 | case PAGE_KEEP: |
1888 | goto keep_locked; | |
1889 | case PAGE_ACTIVATE: | |
1890 | goto activate_locked; | |
1891 | case PAGE_SUCCESS: | |
c79b7b96 | 1892 | stat->nr_pageout += nr_pages; |
96f8bf4f | 1893 | |
49bd2bf9 | 1894 | if (folio_test_writeback(folio)) |
41ac1999 | 1895 | goto keep; |
49bd2bf9 | 1896 | if (folio_test_dirty(folio)) |
1da177e4 | 1897 | goto keep; |
7d3579e8 | 1898 | |
1da177e4 LT |
1899 | /* |
1900 | * A synchronous write - probably a ramdisk. Go | |
49bd2bf9 | 1901 | * ahead and try to reclaim the folio. |
1da177e4 | 1902 | */ |
49bd2bf9 | 1903 | if (!folio_trylock(folio)) |
1da177e4 | 1904 | goto keep; |
49bd2bf9 MWO |
1905 | if (folio_test_dirty(folio) || |
1906 | folio_test_writeback(folio)) | |
1da177e4 | 1907 | goto keep_locked; |
49bd2bf9 | 1908 | mapping = folio_mapping(folio); |
01359eb2 | 1909 | fallthrough; |
1da177e4 | 1910 | case PAGE_CLEAN: |
49bd2bf9 | 1911 | ; /* try to free the folio below */ |
1da177e4 LT |
1912 | } |
1913 | } | |
1914 | ||
1915 | /* | |
0a36111c MWO |
1916 | * If the folio has buffers, try to free the buffer |
1917 | * mappings associated with this folio. If we succeed | |
1918 | * we try to free the folio as well. | |
1da177e4 | 1919 | * |
0a36111c MWO |
1920 | * We do this even if the folio is dirty. |
1921 | * filemap_release_folio() does not perform I/O, but it | |
1922 | * is possible for a folio to have the dirty flag set, | |
1923 | * but it is actually clean (all its buffers are clean). | |
1924 | * This happens if the buffers were written out directly, | |
1925 | * with submit_bh(). ext3 will do this, as well as | |
1926 | * the blockdev mapping. filemap_release_folio() will | |
1927 | * discover that cleanness and will drop the buffers | |
1928 | * and mark the folio clean - it can be freed. | |
1da177e4 | 1929 | * |
0a36111c MWO |
1930 | * Rarely, folios can have buffers and no ->mapping. |
1931 | * These are the folios which were not successfully | |
1932 | * invalidated in truncate_cleanup_folio(). We try to | |
1933 | * drop those buffers here and if that worked, and the | |
1934 | * folio is no longer mapped into process address space | |
1935 | * (refcount == 1) it can be freed. Otherwise, leave | |
1936 | * the folio on the LRU so it is swappable. | |
1da177e4 | 1937 | */ |
0a36111c MWO |
1938 | if (folio_has_private(folio)) { |
1939 | if (!filemap_release_folio(folio, sc->gfp_mask)) | |
1da177e4 | 1940 | goto activate_locked; |
0a36111c MWO |
1941 | if (!mapping && folio_ref_count(folio) == 1) { |
1942 | folio_unlock(folio); | |
1943 | if (folio_put_testzero(folio)) | |
e286781d NP |
1944 | goto free_it; |
1945 | else { | |
1946 | /* | |
1947 | * rare race with speculative reference. | |
1948 | * the speculative reference will free | |
0a36111c | 1949 | * this folio shortly, so we may |
e286781d NP |
1950 | * increment nr_reclaimed here (and |
1951 | * leave it off the LRU). | |
1952 | */ | |
9aafcffc | 1953 | nr_reclaimed += nr_pages; |
e286781d NP |
1954 | continue; |
1955 | } | |
1956 | } | |
1da177e4 LT |
1957 | } |
1958 | ||
64daa5d8 | 1959 | if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { |
802a3a92 | 1960 | /* follow __remove_mapping for reference */ |
64daa5d8 | 1961 | if (!folio_ref_freeze(folio, 1)) |
802a3a92 | 1962 | goto keep_locked; |
d17be2d9 | 1963 | /* |
64daa5d8 | 1964 | * The folio has only one reference left, which is |
d17be2d9 | 1965 | * from the isolation. After the caller puts the |
64daa5d8 MWO |
1966 | * folio back on the lru and drops the reference, the |
1967 | * folio will be freed anyway. It doesn't matter | |
1968 | * which lru it goes on. So we don't bother checking | |
1969 | * the dirty flag here. | |
d17be2d9 | 1970 | */ |
64daa5d8 MWO |
1971 | count_vm_events(PGLAZYFREED, nr_pages); |
1972 | count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); | |
be7c07d6 | 1973 | } else if (!mapping || !__remove_mapping(mapping, folio, true, |
b910718a | 1974 | sc->target_mem_cgroup)) |
802a3a92 | 1975 | goto keep_locked; |
9a1ea439 | 1976 | |
c28a0e96 | 1977 | folio_unlock(folio); |
e286781d | 1978 | free_it: |
98879b3b | 1979 | /* |
c28a0e96 MWO |
1980 | * Folio may get swapped out as a whole, need to account |
1981 | * all pages in it. | |
98879b3b YS |
1982 | */ |
1983 | nr_reclaimed += nr_pages; | |
abe4c3b5 MG |
1984 | |
1985 | /* | |
1986 | * Is there need to periodically free_page_list? It would | |
1987 | * appear not as the counts should be low | |
1988 | */ | |
c28a0e96 | 1989 | if (unlikely(folio_test_large(folio))) |
5375336c | 1990 | destroy_large_folio(folio); |
7ae88534 | 1991 | else |
c28a0e96 | 1992 | list_add(&folio->lru, &free_pages); |
1da177e4 LT |
1993 | continue; |
1994 | ||
98879b3b YS |
1995 | activate_locked_split: |
1996 | /* | |
1997 | * The tail pages that are failed to add into swap cache | |
1998 | * reach here. Fixup nr_scanned and nr_pages. | |
1999 | */ | |
2000 | if (nr_pages > 1) { | |
2001 | sc->nr_scanned -= (nr_pages - 1); | |
2002 | nr_pages = 1; | |
2003 | } | |
1da177e4 | 2004 | activate_locked: |
68a22394 | 2005 | /* Not a candidate for swapping, so reclaim swap space. */ |
246b6480 MWO |
2006 | if (folio_test_swapcache(folio) && |
2007 | (mem_cgroup_swap_full(&folio->page) || | |
2008 | folio_test_mlocked(folio))) | |
2009 | try_to_free_swap(&folio->page); | |
2010 | VM_BUG_ON_FOLIO(folio_test_active(folio), folio); | |
2011 | if (!folio_test_mlocked(folio)) { | |
2012 | int type = folio_is_file_lru(folio); | |
2013 | folio_set_active(folio); | |
98879b3b | 2014 | stat->nr_activate[type] += nr_pages; |
246b6480 | 2015 | count_memcg_folio_events(folio, PGACTIVATE, nr_pages); |
ad6b6704 | 2016 | } |
1da177e4 | 2017 | keep_locked: |
c28a0e96 | 2018 | folio_unlock(folio); |
1da177e4 | 2019 | keep: |
c28a0e96 MWO |
2020 | list_add(&folio->lru, &ret_pages); |
2021 | VM_BUG_ON_FOLIO(folio_test_lru(folio) || | |
2022 | folio_test_unevictable(folio), folio); | |
1da177e4 | 2023 | } |
26aa2d19 DH |
2024 | /* 'page_list' is always empty here */ |
2025 | ||
c28a0e96 | 2026 | /* Migrate folios selected for demotion */ |
26aa2d19 | 2027 | nr_reclaimed += demote_page_list(&demote_pages, pgdat); |
c28a0e96 | 2028 | /* Folios that could not be demoted are still in @demote_pages */ |
26aa2d19 | 2029 | if (!list_empty(&demote_pages)) { |
c28a0e96 | 2030 | /* Folios which weren't demoted go back on @page_list for retry: */ |
26aa2d19 DH |
2031 | list_splice_init(&demote_pages, page_list); |
2032 | do_demote_pass = false; | |
2033 | goto retry; | |
2034 | } | |
abe4c3b5 | 2035 | |
98879b3b YS |
2036 | pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; |
2037 | ||
747db954 | 2038 | mem_cgroup_uncharge_list(&free_pages); |
72b252ae | 2039 | try_to_unmap_flush(); |
2d4894b5 | 2040 | free_unref_page_list(&free_pages); |
abe4c3b5 | 2041 | |
1da177e4 | 2042 | list_splice(&ret_pages, page_list); |
886cf190 | 2043 | count_vm_events(PGACTIVATE, pgactivate); |
060f005f | 2044 | |
2282679f N |
2045 | if (plug) |
2046 | swap_write_unplug(plug); | |
05ff5137 | 2047 | return nr_reclaimed; |
1da177e4 LT |
2048 | } |
2049 | ||
730ec8c0 | 2050 | unsigned int reclaim_clean_pages_from_list(struct zone *zone, |
b8cecb93 | 2051 | struct list_head *folio_list) |
02c6de8d MK |
2052 | { |
2053 | struct scan_control sc = { | |
2054 | .gfp_mask = GFP_KERNEL, | |
02c6de8d MK |
2055 | .may_unmap = 1, |
2056 | }; | |
1f318a9b | 2057 | struct reclaim_stat stat; |
730ec8c0 | 2058 | unsigned int nr_reclaimed; |
b8cecb93 MWO |
2059 | struct folio *folio, *next; |
2060 | LIST_HEAD(clean_folios); | |
2d2b8d2b | 2061 | unsigned int noreclaim_flag; |
02c6de8d | 2062 | |
b8cecb93 MWO |
2063 | list_for_each_entry_safe(folio, next, folio_list, lru) { |
2064 | if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && | |
2065 | !folio_test_dirty(folio) && !__folio_test_movable(folio) && | |
2066 | !folio_test_unevictable(folio)) { | |
2067 | folio_clear_active(folio); | |
2068 | list_move(&folio->lru, &clean_folios); | |
02c6de8d MK |
2069 | } |
2070 | } | |
2071 | ||
2d2b8d2b YZ |
2072 | /* |
2073 | * We should be safe here since we are only dealing with file pages and | |
2074 | * we are not kswapd and therefore cannot write dirty file pages. But | |
2075 | * call memalloc_noreclaim_save() anyway, just in case these conditions | |
2076 | * change in the future. | |
2077 | */ | |
2078 | noreclaim_flag = memalloc_noreclaim_save(); | |
b8cecb93 | 2079 | nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc, |
013339df | 2080 | &stat, true); |
2d2b8d2b YZ |
2081 | memalloc_noreclaim_restore(noreclaim_flag); |
2082 | ||
b8cecb93 | 2083 | list_splice(&clean_folios, folio_list); |
2da9f630 NP |
2084 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, |
2085 | -(long)nr_reclaimed); | |
1f318a9b JK |
2086 | /* |
2087 | * Since lazyfree pages are isolated from file LRU from the beginning, | |
2088 | * they will rotate back to anonymous LRU in the end if it failed to | |
2089 | * discard so isolated count will be mismatched. | |
2090 | * Compensate the isolated count for both LRU lists. | |
2091 | */ | |
2092 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, | |
2093 | stat.nr_lazyfree_fail); | |
2094 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, | |
2da9f630 | 2095 | -(long)stat.nr_lazyfree_fail); |
1f318a9b | 2096 | return nr_reclaimed; |
02c6de8d MK |
2097 | } |
2098 | ||
7ee36a14 MG |
2099 | /* |
2100 | * Update LRU sizes after isolating pages. The LRU size updates must | |
55b65a57 | 2101 | * be complete before mem_cgroup_update_lru_size due to a sanity check. |
7ee36a14 MG |
2102 | */ |
2103 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, | |
b4536f0c | 2104 | enum lru_list lru, unsigned long *nr_zone_taken) |
7ee36a14 | 2105 | { |
7ee36a14 MG |
2106 | int zid; |
2107 | ||
7ee36a14 MG |
2108 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
2109 | if (!nr_zone_taken[zid]) | |
2110 | continue; | |
2111 | ||
a892cb6b | 2112 | update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); |
b4536f0c MH |
2113 | } |
2114 | ||
7ee36a14 MG |
2115 | } |
2116 | ||
f611fab7 | 2117 | /* |
15b44736 HD |
2118 | * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. |
2119 | * | |
2120 | * lruvec->lru_lock is heavily contended. Some of the functions that | |
1da177e4 LT |
2121 | * shrink the lists perform better by taking out a batch of pages |
2122 | * and working on them outside the LRU lock. | |
2123 | * | |
2124 | * For pagecache intensive workloads, this function is the hottest | |
2125 | * spot in the kernel (apart from copy_*_user functions). | |
2126 | * | |
15b44736 | 2127 | * Lru_lock must be held before calling this function. |
1da177e4 | 2128 | * |
791b48b6 | 2129 | * @nr_to_scan: The number of eligible pages to look through on the list. |
5dc35979 | 2130 | * @lruvec: The LRU vector to pull pages from. |
1da177e4 | 2131 | * @dst: The temp list to put pages on to. |
f626012d | 2132 | * @nr_scanned: The number of pages that were scanned. |
fe2c2a10 | 2133 | * @sc: The scan_control struct for this reclaim session |
3cb99451 | 2134 | * @lru: LRU list id for isolating |
1da177e4 LT |
2135 | * |
2136 | * returns how many pages were moved onto *@dst. | |
2137 | */ | |
69e05944 | 2138 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
5dc35979 | 2139 | struct lruvec *lruvec, struct list_head *dst, |
fe2c2a10 | 2140 | unsigned long *nr_scanned, struct scan_control *sc, |
a9e7c39f | 2141 | enum lru_list lru) |
1da177e4 | 2142 | { |
75b00af7 | 2143 | struct list_head *src = &lruvec->lists[lru]; |
69e05944 | 2144 | unsigned long nr_taken = 0; |
599d0c95 | 2145 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; |
7cc30fcf | 2146 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; |
3db65812 | 2147 | unsigned long skipped = 0; |
791b48b6 | 2148 | unsigned long scan, total_scan, nr_pages; |
166e3d32 | 2149 | LIST_HEAD(folios_skipped); |
1da177e4 | 2150 | |
98879b3b | 2151 | total_scan = 0; |
791b48b6 | 2152 | scan = 0; |
98879b3b | 2153 | while (scan < nr_to_scan && !list_empty(src)) { |
89f6c88a | 2154 | struct list_head *move_to = src; |
166e3d32 | 2155 | struct folio *folio; |
5ad333eb | 2156 | |
166e3d32 MWO |
2157 | folio = lru_to_folio(src); |
2158 | prefetchw_prev_lru_folio(folio, src, flags); | |
1da177e4 | 2159 | |
166e3d32 | 2160 | nr_pages = folio_nr_pages(folio); |
98879b3b YS |
2161 | total_scan += nr_pages; |
2162 | ||
166e3d32 MWO |
2163 | if (folio_zonenum(folio) > sc->reclaim_idx) { |
2164 | nr_skipped[folio_zonenum(folio)] += nr_pages; | |
2165 | move_to = &folios_skipped; | |
89f6c88a | 2166 | goto move; |
b2e18757 MG |
2167 | } |
2168 | ||
791b48b6 | 2169 | /* |
166e3d32 MWO |
2170 | * Do not count skipped folios because that makes the function |
2171 | * return with no isolated folios if the LRU mostly contains | |
2172 | * ineligible folios. This causes the VM to not reclaim any | |
2173 | * folios, triggering a premature OOM. | |
2174 | * Account all pages in a folio. | |
791b48b6 | 2175 | */ |
98879b3b | 2176 | scan += nr_pages; |
89f6c88a | 2177 | |
166e3d32 | 2178 | if (!folio_test_lru(folio)) |
89f6c88a | 2179 | goto move; |
166e3d32 | 2180 | if (!sc->may_unmap && folio_mapped(folio)) |
89f6c88a HD |
2181 | goto move; |
2182 | ||
c2135f7c | 2183 | /* |
166e3d32 MWO |
2184 | * Be careful not to clear the lru flag until after we're |
2185 | * sure the folio is not being freed elsewhere -- the | |
2186 | * folio release code relies on it. | |
c2135f7c | 2187 | */ |
166e3d32 | 2188 | if (unlikely(!folio_try_get(folio))) |
89f6c88a | 2189 | goto move; |
5ad333eb | 2190 | |
166e3d32 MWO |
2191 | if (!folio_test_clear_lru(folio)) { |
2192 | /* Another thread is already isolating this folio */ | |
2193 | folio_put(folio); | |
89f6c88a | 2194 | goto move; |
5ad333eb | 2195 | } |
c2135f7c AS |
2196 | |
2197 | nr_taken += nr_pages; | |
166e3d32 | 2198 | nr_zone_taken[folio_zonenum(folio)] += nr_pages; |
89f6c88a HD |
2199 | move_to = dst; |
2200 | move: | |
166e3d32 | 2201 | list_move(&folio->lru, move_to); |
1da177e4 LT |
2202 | } |
2203 | ||
b2e18757 | 2204 | /* |
166e3d32 | 2205 | * Splice any skipped folios to the start of the LRU list. Note that |
b2e18757 MG |
2206 | * this disrupts the LRU order when reclaiming for lower zones but |
2207 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX | |
166e3d32 | 2208 | * scanning would soon rescan the same folios to skip and waste lots |
b2cb6826 | 2209 | * of cpu cycles. |
b2e18757 | 2210 | */ |
166e3d32 | 2211 | if (!list_empty(&folios_skipped)) { |
7cc30fcf MG |
2212 | int zid; |
2213 | ||
166e3d32 | 2214 | list_splice(&folios_skipped, src); |
7cc30fcf MG |
2215 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
2216 | if (!nr_skipped[zid]) | |
2217 | continue; | |
2218 | ||
2219 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); | |
1265e3a6 | 2220 | skipped += nr_skipped[zid]; |
7cc30fcf MG |
2221 | } |
2222 | } | |
791b48b6 | 2223 | *nr_scanned = total_scan; |
1265e3a6 | 2224 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, |
89f6c88a HD |
2225 | total_scan, skipped, nr_taken, |
2226 | sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru); | |
b4536f0c | 2227 | update_lru_sizes(lruvec, lru, nr_zone_taken); |
1da177e4 LT |
2228 | return nr_taken; |
2229 | } | |
2230 | ||
62695a84 | 2231 | /** |
d1d8a3b4 MWO |
2232 | * folio_isolate_lru() - Try to isolate a folio from its LRU list. |
2233 | * @folio: Folio to isolate from its LRU list. | |
62695a84 | 2234 | * |
d1d8a3b4 MWO |
2235 | * Isolate a @folio from an LRU list and adjust the vmstat statistic |
2236 | * corresponding to whatever LRU list the folio was on. | |
62695a84 | 2237 | * |
d1d8a3b4 MWO |
2238 | * The folio will have its LRU flag cleared. If it was found on the |
2239 | * active list, it will have the Active flag set. If it was found on the | |
2240 | * unevictable list, it will have the Unevictable flag set. These flags | |
894bc310 | 2241 | * may need to be cleared by the caller before letting the page go. |
62695a84 | 2242 | * |
d1d8a3b4 | 2243 | * Context: |
a5d09bed | 2244 | * |
62695a84 | 2245 | * (1) Must be called with an elevated refcount on the page. This is a |
d1d8a3b4 | 2246 | * fundamental difference from isolate_lru_pages() (which is called |
62695a84 | 2247 | * without a stable reference). |
d1d8a3b4 MWO |
2248 | * (2) The lru_lock must not be held. |
2249 | * (3) Interrupts must be enabled. | |
2250 | * | |
2251 | * Return: 0 if the folio was removed from an LRU list. | |
2252 | * -EBUSY if the folio was not on an LRU list. | |
62695a84 | 2253 | */ |
d1d8a3b4 | 2254 | int folio_isolate_lru(struct folio *folio) |
62695a84 NP |
2255 | { |
2256 | int ret = -EBUSY; | |
2257 | ||
d1d8a3b4 | 2258 | VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); |
0c917313 | 2259 | |
d1d8a3b4 | 2260 | if (folio_test_clear_lru(folio)) { |
fa9add64 | 2261 | struct lruvec *lruvec; |
62695a84 | 2262 | |
d1d8a3b4 | 2263 | folio_get(folio); |
e809c3fe | 2264 | lruvec = folio_lruvec_lock_irq(folio); |
d1d8a3b4 | 2265 | lruvec_del_folio(lruvec, folio); |
6168d0da | 2266 | unlock_page_lruvec_irq(lruvec); |
d25b5bd8 | 2267 | ret = 0; |
62695a84 | 2268 | } |
d25b5bd8 | 2269 | |
62695a84 NP |
2270 | return ret; |
2271 | } | |
2272 | ||
35cd7815 | 2273 | /* |
d37dd5dc | 2274 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
178821b8 | 2275 | * then get rescheduled. When there are massive number of tasks doing page |
d37dd5dc FW |
2276 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, |
2277 | * the LRU list will go small and be scanned faster than necessary, leading to | |
2278 | * unnecessary swapping, thrashing and OOM. | |
35cd7815 | 2279 | */ |
599d0c95 | 2280 | static int too_many_isolated(struct pglist_data *pgdat, int file, |
35cd7815 RR |
2281 | struct scan_control *sc) |
2282 | { | |
2283 | unsigned long inactive, isolated; | |
d818fca1 | 2284 | bool too_many; |
35cd7815 RR |
2285 | |
2286 | if (current_is_kswapd()) | |
2287 | return 0; | |
2288 | ||
b5ead35e | 2289 | if (!writeback_throttling_sane(sc)) |
35cd7815 RR |
2290 | return 0; |
2291 | ||
2292 | if (file) { | |
599d0c95 MG |
2293 | inactive = node_page_state(pgdat, NR_INACTIVE_FILE); |
2294 | isolated = node_page_state(pgdat, NR_ISOLATED_FILE); | |
35cd7815 | 2295 | } else { |
599d0c95 MG |
2296 | inactive = node_page_state(pgdat, NR_INACTIVE_ANON); |
2297 | isolated = node_page_state(pgdat, NR_ISOLATED_ANON); | |
35cd7815 RR |
2298 | } |
2299 | ||
3cf23841 FW |
2300 | /* |
2301 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
2302 | * won't get blocked by normal direct-reclaimers, forming a circular | |
2303 | * deadlock. | |
2304 | */ | |
d0164adc | 2305 | if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
3cf23841 FW |
2306 | inactive >>= 3; |
2307 | ||
d818fca1 MG |
2308 | too_many = isolated > inactive; |
2309 | ||
2310 | /* Wake up tasks throttled due to too_many_isolated. */ | |
2311 | if (!too_many) | |
2312 | wake_throttle_isolated(pgdat); | |
2313 | ||
2314 | return too_many; | |
35cd7815 RR |
2315 | } |
2316 | ||
a222f341 | 2317 | /* |
ff00a170 MWO |
2318 | * move_pages_to_lru() moves folios from private @list to appropriate LRU list. |
2319 | * On return, @list is reused as a list of folios to be freed by the caller. | |
a222f341 KT |
2320 | * |
2321 | * Returns the number of pages moved to the given lruvec. | |
2322 | */ | |
9ef56b78 MS |
2323 | static unsigned int move_pages_to_lru(struct lruvec *lruvec, |
2324 | struct list_head *list) | |
66635629 | 2325 | { |
a222f341 | 2326 | int nr_pages, nr_moved = 0; |
ff00a170 | 2327 | LIST_HEAD(folios_to_free); |
66635629 | 2328 | |
a222f341 | 2329 | while (!list_empty(list)) { |
ff00a170 MWO |
2330 | struct folio *folio = lru_to_folio(list); |
2331 | ||
2332 | VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); | |
2333 | list_del(&folio->lru); | |
2334 | if (unlikely(!folio_evictable(folio))) { | |
6168d0da | 2335 | spin_unlock_irq(&lruvec->lru_lock); |
ff00a170 | 2336 | folio_putback_lru(folio); |
6168d0da | 2337 | spin_lock_irq(&lruvec->lru_lock); |
66635629 MG |
2338 | continue; |
2339 | } | |
fa9add64 | 2340 | |
3d06afab | 2341 | /* |
ff00a170 | 2342 | * The folio_set_lru needs to be kept here for list integrity. |
3d06afab AS |
2343 | * Otherwise: |
2344 | * #0 move_pages_to_lru #1 release_pages | |
ff00a170 MWO |
2345 | * if (!folio_put_testzero()) |
2346 | * if (folio_put_testzero()) | |
2347 | * !lru //skip lru_lock | |
2348 | * folio_set_lru() | |
2349 | * list_add(&folio->lru,) | |
2350 | * list_add(&folio->lru,) | |
3d06afab | 2351 | */ |
ff00a170 | 2352 | folio_set_lru(folio); |
a222f341 | 2353 | |
ff00a170 MWO |
2354 | if (unlikely(folio_put_testzero(folio))) { |
2355 | __folio_clear_lru_flags(folio); | |
2bcf8879 | 2356 | |
ff00a170 | 2357 | if (unlikely(folio_test_large(folio))) { |
6168d0da | 2358 | spin_unlock_irq(&lruvec->lru_lock); |
5375336c | 2359 | destroy_large_folio(folio); |
6168d0da | 2360 | spin_lock_irq(&lruvec->lru_lock); |
2bcf8879 | 2361 | } else |
ff00a170 | 2362 | list_add(&folio->lru, &folios_to_free); |
3d06afab AS |
2363 | |
2364 | continue; | |
66635629 | 2365 | } |
3d06afab | 2366 | |
afca9157 AS |
2367 | /* |
2368 | * All pages were isolated from the same lruvec (and isolation | |
2369 | * inhibits memcg migration). | |
2370 | */ | |
ff00a170 MWO |
2371 | VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); |
2372 | lruvec_add_folio(lruvec, folio); | |
2373 | nr_pages = folio_nr_pages(folio); | |
3d06afab | 2374 | nr_moved += nr_pages; |
ff00a170 | 2375 | if (folio_test_active(folio)) |
3d06afab | 2376 | workingset_age_nonresident(lruvec, nr_pages); |
66635629 | 2377 | } |
66635629 | 2378 | |
3f79768f HD |
2379 | /* |
2380 | * To save our caller's stack, now use input list for pages to free. | |
2381 | */ | |
ff00a170 | 2382 | list_splice(&folios_to_free, list); |
a222f341 KT |
2383 | |
2384 | return nr_moved; | |
66635629 MG |
2385 | } |
2386 | ||
399ba0b9 | 2387 | /* |
5829f7db ML |
2388 | * If a kernel thread (such as nfsd for loop-back mounts) services a backing |
2389 | * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case | |
2390 | * we should not throttle. Otherwise it is safe to do so. | |
399ba0b9 N |
2391 | */ |
2392 | static int current_may_throttle(void) | |
2393 | { | |
b9b1335e | 2394 | return !(current->flags & PF_LOCAL_THROTTLE); |
399ba0b9 N |
2395 | } |
2396 | ||
1da177e4 | 2397 | /* |
b2e18757 | 2398 | * shrink_inactive_list() is a helper for shrink_node(). It returns the number |
1742f19f | 2399 | * of reclaimed pages |
1da177e4 | 2400 | */ |
9ef56b78 | 2401 | static unsigned long |
1a93be0e | 2402 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
9e3b2f8c | 2403 | struct scan_control *sc, enum lru_list lru) |
1da177e4 LT |
2404 | { |
2405 | LIST_HEAD(page_list); | |
e247dbce | 2406 | unsigned long nr_scanned; |
730ec8c0 | 2407 | unsigned int nr_reclaimed = 0; |
e247dbce | 2408 | unsigned long nr_taken; |
060f005f | 2409 | struct reclaim_stat stat; |
497a6c1b | 2410 | bool file = is_file_lru(lru); |
f46b7912 | 2411 | enum vm_event_item item; |
599d0c95 | 2412 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
db73ee0d | 2413 | bool stalled = false; |
78dc583d | 2414 | |
599d0c95 | 2415 | while (unlikely(too_many_isolated(pgdat, file, sc))) { |
db73ee0d MH |
2416 | if (stalled) |
2417 | return 0; | |
2418 | ||
2419 | /* wait a bit for the reclaimer. */ | |
db73ee0d | 2420 | stalled = true; |
c3f4a9a2 | 2421 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); |
35cd7815 RR |
2422 | |
2423 | /* We are about to die and free our memory. Return now. */ | |
2424 | if (fatal_signal_pending(current)) | |
2425 | return SWAP_CLUSTER_MAX; | |
2426 | } | |
2427 | ||
1da177e4 | 2428 | lru_add_drain(); |
f80c0673 | 2429 | |
6168d0da | 2430 | spin_lock_irq(&lruvec->lru_lock); |
b35ea17b | 2431 | |
5dc35979 | 2432 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
a9e7c39f | 2433 | &nr_scanned, sc, lru); |
95d918fc | 2434 | |
599d0c95 | 2435 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); |
f46b7912 | 2436 | item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; |
b5ead35e | 2437 | if (!cgroup_reclaim(sc)) |
f46b7912 KT |
2438 | __count_vm_events(item, nr_scanned); |
2439 | __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); | |
497a6c1b JW |
2440 | __count_vm_events(PGSCAN_ANON + file, nr_scanned); |
2441 | ||
6168d0da | 2442 | spin_unlock_irq(&lruvec->lru_lock); |
b35ea17b | 2443 | |
d563c050 | 2444 | if (nr_taken == 0) |
66635629 | 2445 | return 0; |
5ad333eb | 2446 | |
013339df | 2447 | nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); |
c661b078 | 2448 | |
6168d0da | 2449 | spin_lock_irq(&lruvec->lru_lock); |
497a6c1b JW |
2450 | move_pages_to_lru(lruvec, &page_list); |
2451 | ||
2452 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); | |
f46b7912 | 2453 | item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; |
b5ead35e | 2454 | if (!cgroup_reclaim(sc)) |
f46b7912 KT |
2455 | __count_vm_events(item, nr_reclaimed); |
2456 | __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); | |
497a6c1b | 2457 | __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); |
6168d0da | 2458 | spin_unlock_irq(&lruvec->lru_lock); |
3f79768f | 2459 | |
75cc3c91 | 2460 | lru_note_cost(lruvec, file, stat.nr_pageout); |
747db954 | 2461 | mem_cgroup_uncharge_list(&page_list); |
2d4894b5 | 2462 | free_unref_page_list(&page_list); |
e11da5b4 | 2463 | |
1c610d5f AR |
2464 | /* |
2465 | * If dirty pages are scanned that are not queued for IO, it | |
2466 | * implies that flushers are not doing their job. This can | |
2467 | * happen when memory pressure pushes dirty pages to the end of | |
2468 | * the LRU before the dirty limits are breached and the dirty | |
2469 | * data has expired. It can also happen when the proportion of | |
2470 | * dirty pages grows not through writes but through memory | |
2471 | * pressure reclaiming all the clean cache. And in some cases, | |
2472 | * the flushers simply cannot keep up with the allocation | |
2473 | * rate. Nudge the flusher threads in case they are asleep. | |
2474 | */ | |
2475 | if (stat.nr_unqueued_dirty == nr_taken) | |
2476 | wakeup_flusher_threads(WB_REASON_VMSCAN); | |
2477 | ||
d108c772 AR |
2478 | sc->nr.dirty += stat.nr_dirty; |
2479 | sc->nr.congested += stat.nr_congested; | |
2480 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | |
2481 | sc->nr.writeback += stat.nr_writeback; | |
2482 | sc->nr.immediate += stat.nr_immediate; | |
2483 | sc->nr.taken += nr_taken; | |
2484 | if (file) | |
2485 | sc->nr.file_taken += nr_taken; | |
8e950282 | 2486 | |
599d0c95 | 2487 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, |
d51d1e64 | 2488 | nr_scanned, nr_reclaimed, &stat, sc->priority, file); |
05ff5137 | 2489 | return nr_reclaimed; |
1da177e4 LT |
2490 | } |
2491 | ||
15b44736 | 2492 | /* |
07f67a8d | 2493 | * shrink_active_list() moves folios from the active LRU to the inactive LRU. |
15b44736 | 2494 | * |
07f67a8d | 2495 | * We move them the other way if the folio is referenced by one or more |
15b44736 HD |
2496 | * processes. |
2497 | * | |
07f67a8d | 2498 | * If the folios are mostly unmapped, the processing is fast and it is |
15b44736 | 2499 | * appropriate to hold lru_lock across the whole operation. But if |
07f67a8d MWO |
2500 | * the folios are mapped, the processing is slow (folio_referenced()), so |
2501 | * we should drop lru_lock around each folio. It's impossible to balance | |
2502 | * this, so instead we remove the folios from the LRU while processing them. | |
2503 | * It is safe to rely on the active flag against the non-LRU folios in here | |
2504 | * because nobody will play with that bit on a non-LRU folio. | |
15b44736 | 2505 | * |
07f67a8d MWO |
2506 | * The downside is that we have to touch folio->_refcount against each folio. |
2507 | * But we had to alter folio->flags anyway. | |
15b44736 | 2508 | */ |
f626012d | 2509 | static void shrink_active_list(unsigned long nr_to_scan, |
1a93be0e | 2510 | struct lruvec *lruvec, |
f16015fb | 2511 | struct scan_control *sc, |
9e3b2f8c | 2512 | enum lru_list lru) |
1da177e4 | 2513 | { |
44c241f1 | 2514 | unsigned long nr_taken; |
f626012d | 2515 | unsigned long nr_scanned; |
6fe6b7e3 | 2516 | unsigned long vm_flags; |
07f67a8d | 2517 | LIST_HEAD(l_hold); /* The folios which were snipped off */ |
8cab4754 | 2518 | LIST_HEAD(l_active); |
b69408e8 | 2519 | LIST_HEAD(l_inactive); |
9d998b4f MH |
2520 | unsigned nr_deactivate, nr_activate; |
2521 | unsigned nr_rotated = 0; | |
3cb99451 | 2522 | int file = is_file_lru(lru); |
599d0c95 | 2523 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
1da177e4 LT |
2524 | |
2525 | lru_add_drain(); | |
f80c0673 | 2526 | |
6168d0da | 2527 | spin_lock_irq(&lruvec->lru_lock); |
925b7673 | 2528 | |
5dc35979 | 2529 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
a9e7c39f | 2530 | &nr_scanned, sc, lru); |
89b5fae5 | 2531 | |
599d0c95 | 2532 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); |
1cfb419b | 2533 | |
912c0572 SB |
2534 | if (!cgroup_reclaim(sc)) |
2535 | __count_vm_events(PGREFILL, nr_scanned); | |
2fa2690c | 2536 | __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); |
9d5e6a9f | 2537 | |
6168d0da | 2538 | spin_unlock_irq(&lruvec->lru_lock); |
1da177e4 | 2539 | |
1da177e4 | 2540 | while (!list_empty(&l_hold)) { |
b3ac0413 | 2541 | struct folio *folio; |
b3ac0413 | 2542 | |
1da177e4 | 2543 | cond_resched(); |
b3ac0413 MWO |
2544 | folio = lru_to_folio(&l_hold); |
2545 | list_del(&folio->lru); | |
7e9cd484 | 2546 | |
07f67a8d MWO |
2547 | if (unlikely(!folio_evictable(folio))) { |
2548 | folio_putback_lru(folio); | |
894bc310 LS |
2549 | continue; |
2550 | } | |
2551 | ||
cc715d99 | 2552 | if (unlikely(buffer_heads_over_limit)) { |
36a3b14b MWO |
2553 | if (folio_test_private(folio) && folio_trylock(folio)) { |
2554 | if (folio_test_private(folio)) | |
07f67a8d MWO |
2555 | filemap_release_folio(folio, 0); |
2556 | folio_unlock(folio); | |
cc715d99 MG |
2557 | } |
2558 | } | |
2559 | ||
6d4675e6 | 2560 | /* Referenced or rmap lock contention: rotate */ |
b3ac0413 | 2561 | if (folio_referenced(folio, 0, sc->target_mem_cgroup, |
6d4675e6 | 2562 | &vm_flags) != 0) { |
8cab4754 | 2563 | /* |
07f67a8d | 2564 | * Identify referenced, file-backed active folios and |
8cab4754 WF |
2565 | * give them one more trip around the active list. So |
2566 | * that executable code get better chances to stay in | |
07f67a8d | 2567 | * memory under moderate memory pressure. Anon folios |
8cab4754 | 2568 | * are not likely to be evicted by use-once streaming |
07f67a8d | 2569 | * IO, plus JVM can create lots of anon VM_EXEC folios, |
8cab4754 WF |
2570 | * so we ignore them here. |
2571 | */ | |
07f67a8d MWO |
2572 | if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { |
2573 | nr_rotated += folio_nr_pages(folio); | |
2574 | list_add(&folio->lru, &l_active); | |
8cab4754 WF |
2575 | continue; |
2576 | } | |
2577 | } | |
7e9cd484 | 2578 | |
07f67a8d MWO |
2579 | folio_clear_active(folio); /* we are de-activating */ |
2580 | folio_set_workingset(folio); | |
2581 | list_add(&folio->lru, &l_inactive); | |
1da177e4 LT |
2582 | } |
2583 | ||
b555749a | 2584 | /* |
07f67a8d | 2585 | * Move folios back to the lru list. |
b555749a | 2586 | */ |
6168d0da | 2587 | spin_lock_irq(&lruvec->lru_lock); |
556adecb | 2588 | |
a222f341 KT |
2589 | nr_activate = move_pages_to_lru(lruvec, &l_active); |
2590 | nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); | |
07f67a8d | 2591 | /* Keep all free folios in l_active list */ |
f372d89e | 2592 | list_splice(&l_inactive, &l_active); |
9851ac13 KT |
2593 | |
2594 | __count_vm_events(PGDEACTIVATE, nr_deactivate); | |
2595 | __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); | |
2596 | ||
599d0c95 | 2597 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); |
6168d0da | 2598 | spin_unlock_irq(&lruvec->lru_lock); |
2bcf8879 | 2599 | |
f372d89e KT |
2600 | mem_cgroup_uncharge_list(&l_active); |
2601 | free_unref_page_list(&l_active); | |
9d998b4f MH |
2602 | trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, |
2603 | nr_deactivate, nr_rotated, sc->priority, file); | |
1da177e4 LT |
2604 | } |
2605 | ||
1fe47c0b ML |
2606 | static unsigned int reclaim_page_list(struct list_head *page_list, |
2607 | struct pglist_data *pgdat) | |
1a4e58cc | 2608 | { |
1a4e58cc | 2609 | struct reclaim_stat dummy_stat; |
1fe47c0b ML |
2610 | unsigned int nr_reclaimed; |
2611 | struct folio *folio; | |
1a4e58cc MK |
2612 | struct scan_control sc = { |
2613 | .gfp_mask = GFP_KERNEL, | |
1a4e58cc MK |
2614 | .may_writepage = 1, |
2615 | .may_unmap = 1, | |
2616 | .may_swap = 1, | |
26aa2d19 | 2617 | .no_demotion = 1, |
1a4e58cc MK |
2618 | }; |
2619 | ||
1fe47c0b ML |
2620 | nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false); |
2621 | while (!list_empty(page_list)) { | |
2622 | folio = lru_to_folio(page_list); | |
2623 | list_del(&folio->lru); | |
2624 | folio_putback_lru(folio); | |
2625 | } | |
2626 | ||
2627 | return nr_reclaimed; | |
2628 | } | |
2629 | ||
a83f0551 | 2630 | unsigned long reclaim_pages(struct list_head *folio_list) |
1fe47c0b | 2631 | { |
ed657e55 | 2632 | int nid; |
1fe47c0b | 2633 | unsigned int nr_reclaimed = 0; |
a83f0551 | 2634 | LIST_HEAD(node_folio_list); |
1fe47c0b ML |
2635 | unsigned int noreclaim_flag; |
2636 | ||
a83f0551 | 2637 | if (list_empty(folio_list)) |
1ae65e27 WY |
2638 | return nr_reclaimed; |
2639 | ||
2d2b8d2b YZ |
2640 | noreclaim_flag = memalloc_noreclaim_save(); |
2641 | ||
a83f0551 | 2642 | nid = folio_nid(lru_to_folio(folio_list)); |
1ae65e27 | 2643 | do { |
a83f0551 | 2644 | struct folio *folio = lru_to_folio(folio_list); |
1a4e58cc | 2645 | |
a83f0551 MWO |
2646 | if (nid == folio_nid(folio)) { |
2647 | folio_clear_active(folio); | |
2648 | list_move(&folio->lru, &node_folio_list); | |
1a4e58cc MK |
2649 | continue; |
2650 | } | |
2651 | ||
a83f0551 MWO |
2652 | nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid)); |
2653 | nid = folio_nid(lru_to_folio(folio_list)); | |
2654 | } while (!list_empty(folio_list)); | |
1a4e58cc | 2655 | |
a83f0551 | 2656 | nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid)); |
1a4e58cc | 2657 | |
2d2b8d2b YZ |
2658 | memalloc_noreclaim_restore(noreclaim_flag); |
2659 | ||
1a4e58cc MK |
2660 | return nr_reclaimed; |
2661 | } | |
2662 | ||
b91ac374 JW |
2663 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
2664 | struct lruvec *lruvec, struct scan_control *sc) | |
2665 | { | |
2666 | if (is_active_lru(lru)) { | |
2667 | if (sc->may_deactivate & (1 << is_file_lru(lru))) | |
2668 | shrink_active_list(nr_to_scan, lruvec, sc, lru); | |
2669 | else | |
2670 | sc->skipped_deactivate = 1; | |
2671 | return 0; | |
2672 | } | |
2673 | ||
2674 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); | |
2675 | } | |
2676 | ||
59dc76b0 RR |
2677 | /* |
2678 | * The inactive anon list should be small enough that the VM never has | |
2679 | * to do too much work. | |
14797e23 | 2680 | * |
59dc76b0 RR |
2681 | * The inactive file list should be small enough to leave most memory |
2682 | * to the established workingset on the scan-resistant active list, | |
2683 | * but large enough to avoid thrashing the aggregate readahead window. | |
56e49d21 | 2684 | * |
59dc76b0 RR |
2685 | * Both inactive lists should also be large enough that each inactive |
2686 | * page has a chance to be referenced again before it is reclaimed. | |
56e49d21 | 2687 | * |
2a2e4885 JW |
2688 | * If that fails and refaulting is observed, the inactive list grows. |
2689 | * | |
59dc76b0 | 2690 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages |
3a50d14d | 2691 | * on this LRU, maintained by the pageout code. An inactive_ratio |
59dc76b0 | 2692 | * of 3 means 3:1 or 25% of the pages are kept on the inactive list. |
56e49d21 | 2693 | * |
59dc76b0 RR |
2694 | * total target max |
2695 | * memory ratio inactive | |
2696 | * ------------------------------------- | |
2697 | * 10MB 1 5MB | |
2698 | * 100MB 1 50MB | |
2699 | * 1GB 3 250MB | |
2700 | * 10GB 10 0.9GB | |
2701 | * 100GB 31 3GB | |
2702 | * 1TB 101 10GB | |
2703 | * 10TB 320 32GB | |
56e49d21 | 2704 | */ |
b91ac374 | 2705 | static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) |
56e49d21 | 2706 | { |
b91ac374 | 2707 | enum lru_list active_lru = inactive_lru + LRU_ACTIVE; |
2a2e4885 JW |
2708 | unsigned long inactive, active; |
2709 | unsigned long inactive_ratio; | |
59dc76b0 | 2710 | unsigned long gb; |
e3790144 | 2711 | |
b91ac374 JW |
2712 | inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); |
2713 | active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); | |
f8d1a311 | 2714 | |
b91ac374 | 2715 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
4002570c | 2716 | if (gb) |
b91ac374 JW |
2717 | inactive_ratio = int_sqrt(10 * gb); |
2718 | else | |
2719 | inactive_ratio = 1; | |
fd538803 | 2720 | |
59dc76b0 | 2721 | return inactive * inactive_ratio < active; |
b39415b2 RR |
2722 | } |
2723 | ||
9a265114 JW |
2724 | enum scan_balance { |
2725 | SCAN_EQUAL, | |
2726 | SCAN_FRACT, | |
2727 | SCAN_ANON, | |
2728 | SCAN_FILE, | |
2729 | }; | |
2730 | ||
4f98a2fe RR |
2731 | /* |
2732 | * Determine how aggressively the anon and file LRU lists should be | |
02e458d8 | 2733 | * scanned. |
4f98a2fe | 2734 | * |
be7bd59d WL |
2735 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
2736 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
4f98a2fe | 2737 | */ |
afaf07a6 JW |
2738 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, |
2739 | unsigned long *nr) | |
4f98a2fe | 2740 | { |
a2a36488 | 2741 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
afaf07a6 | 2742 | struct mem_cgroup *memcg = lruvec_memcg(lruvec); |
d483a5dd | 2743 | unsigned long anon_cost, file_cost, total_cost; |
33377678 | 2744 | int swappiness = mem_cgroup_swappiness(memcg); |
ed017373 | 2745 | u64 fraction[ANON_AND_FILE]; |
9a265114 | 2746 | u64 denominator = 0; /* gcc */ |
9a265114 | 2747 | enum scan_balance scan_balance; |
4f98a2fe | 2748 | unsigned long ap, fp; |
4111304d | 2749 | enum lru_list lru; |
76a33fc3 SL |
2750 | |
2751 | /* If we have no swap space, do not bother scanning anon pages. */ | |
a2a36488 | 2752 | if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { |
9a265114 | 2753 | scan_balance = SCAN_FILE; |
76a33fc3 SL |
2754 | goto out; |
2755 | } | |
4f98a2fe | 2756 | |
10316b31 JW |
2757 | /* |
2758 | * Global reclaim will swap to prevent OOM even with no | |
2759 | * swappiness, but memcg users want to use this knob to | |
2760 | * disable swapping for individual groups completely when | |
2761 | * using the memory controller's swap limit feature would be | |
2762 | * too expensive. | |
2763 | */ | |
b5ead35e | 2764 | if (cgroup_reclaim(sc) && !swappiness) { |
9a265114 | 2765 | scan_balance = SCAN_FILE; |
10316b31 JW |
2766 | goto out; |
2767 | } | |
2768 | ||
2769 | /* | |
2770 | * Do not apply any pressure balancing cleverness when the | |
2771 | * system is close to OOM, scan both anon and file equally | |
2772 | * (unless the swappiness setting disagrees with swapping). | |
2773 | */ | |
02695175 | 2774 | if (!sc->priority && swappiness) { |
9a265114 | 2775 | scan_balance = SCAN_EQUAL; |
10316b31 JW |
2776 | goto out; |
2777 | } | |
2778 | ||
62376251 | 2779 | /* |
53138cea | 2780 | * If the system is almost out of file pages, force-scan anon. |
62376251 | 2781 | */ |
b91ac374 | 2782 | if (sc->file_is_tiny) { |
53138cea JW |
2783 | scan_balance = SCAN_ANON; |
2784 | goto out; | |
62376251 JW |
2785 | } |
2786 | ||
7c5bd705 | 2787 | /* |
b91ac374 JW |
2788 | * If there is enough inactive page cache, we do not reclaim |
2789 | * anything from the anonymous working right now. | |
7c5bd705 | 2790 | */ |
b91ac374 | 2791 | if (sc->cache_trim_mode) { |
9a265114 | 2792 | scan_balance = SCAN_FILE; |
7c5bd705 JW |
2793 | goto out; |
2794 | } | |
2795 | ||
9a265114 | 2796 | scan_balance = SCAN_FRACT; |
58c37f6e | 2797 | /* |
314b57fb JW |
2798 | * Calculate the pressure balance between anon and file pages. |
2799 | * | |
2800 | * The amount of pressure we put on each LRU is inversely | |
2801 | * proportional to the cost of reclaiming each list, as | |
2802 | * determined by the share of pages that are refaulting, times | |
2803 | * the relative IO cost of bringing back a swapped out | |
2804 | * anonymous page vs reloading a filesystem page (swappiness). | |
2805 | * | |
d483a5dd JW |
2806 | * Although we limit that influence to ensure no list gets |
2807 | * left behind completely: at least a third of the pressure is | |
2808 | * applied, before swappiness. | |
2809 | * | |
314b57fb | 2810 | * With swappiness at 100, anon and file have equal IO cost. |
58c37f6e | 2811 | */ |
d483a5dd JW |
2812 | total_cost = sc->anon_cost + sc->file_cost; |
2813 | anon_cost = total_cost + sc->anon_cost; | |
2814 | file_cost = total_cost + sc->file_cost; | |
2815 | total_cost = anon_cost + file_cost; | |
58c37f6e | 2816 | |
d483a5dd JW |
2817 | ap = swappiness * (total_cost + 1); |
2818 | ap /= anon_cost + 1; | |
4f98a2fe | 2819 | |
d483a5dd JW |
2820 | fp = (200 - swappiness) * (total_cost + 1); |
2821 | fp /= file_cost + 1; | |
4f98a2fe | 2822 | |
76a33fc3 SL |
2823 | fraction[0] = ap; |
2824 | fraction[1] = fp; | |
a4fe1631 | 2825 | denominator = ap + fp; |
76a33fc3 | 2826 | out: |
688035f7 JW |
2827 | for_each_evictable_lru(lru) { |
2828 | int file = is_file_lru(lru); | |
9783aa99 | 2829 | unsigned long lruvec_size; |
f56ce412 | 2830 | unsigned long low, min; |
688035f7 | 2831 | unsigned long scan; |
9783aa99 CD |
2832 | |
2833 | lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); | |
f56ce412 JW |
2834 | mem_cgroup_protection(sc->target_mem_cgroup, memcg, |
2835 | &min, &low); | |
9783aa99 | 2836 | |
f56ce412 | 2837 | if (min || low) { |
9783aa99 CD |
2838 | /* |
2839 | * Scale a cgroup's reclaim pressure by proportioning | |
2840 | * its current usage to its memory.low or memory.min | |
2841 | * setting. | |
2842 | * | |
2843 | * This is important, as otherwise scanning aggression | |
2844 | * becomes extremely binary -- from nothing as we | |
2845 | * approach the memory protection threshold, to totally | |
2846 | * nominal as we exceed it. This results in requiring | |
2847 | * setting extremely liberal protection thresholds. It | |
2848 | * also means we simply get no protection at all if we | |
2849 | * set it too low, which is not ideal. | |
1bc63fb1 CD |
2850 | * |
2851 | * If there is any protection in place, we reduce scan | |
2852 | * pressure by how much of the total memory used is | |
2853 | * within protection thresholds. | |
9783aa99 | 2854 | * |
9de7ca46 CD |
2855 | * There is one special case: in the first reclaim pass, |
2856 | * we skip over all groups that are within their low | |
2857 | * protection. If that fails to reclaim enough pages to | |
2858 | * satisfy the reclaim goal, we come back and override | |
2859 | * the best-effort low protection. However, we still | |
2860 | * ideally want to honor how well-behaved groups are in | |
2861 | * that case instead of simply punishing them all | |
2862 | * equally. As such, we reclaim them based on how much | |
1bc63fb1 CD |
2863 | * memory they are using, reducing the scan pressure |
2864 | * again by how much of the total memory used is under | |
2865 | * hard protection. | |
9783aa99 | 2866 | */ |
1bc63fb1 | 2867 | unsigned long cgroup_size = mem_cgroup_size(memcg); |
f56ce412 JW |
2868 | unsigned long protection; |
2869 | ||
2870 | /* memory.low scaling, make sure we retry before OOM */ | |
2871 | if (!sc->memcg_low_reclaim && low > min) { | |
2872 | protection = low; | |
2873 | sc->memcg_low_skipped = 1; | |
2874 | } else { | |
2875 | protection = min; | |
2876 | } | |
1bc63fb1 CD |
2877 | |
2878 | /* Avoid TOCTOU with earlier protection check */ | |
2879 | cgroup_size = max(cgroup_size, protection); | |
2880 | ||
2881 | scan = lruvec_size - lruvec_size * protection / | |
32d4f4b7 | 2882 | (cgroup_size + 1); |
9783aa99 CD |
2883 | |
2884 | /* | |
1bc63fb1 | 2885 | * Minimally target SWAP_CLUSTER_MAX pages to keep |
55b65a57 | 2886 | * reclaim moving forwards, avoiding decrementing |
9de7ca46 | 2887 | * sc->priority further than desirable. |
9783aa99 | 2888 | */ |
1bc63fb1 | 2889 | scan = max(scan, SWAP_CLUSTER_MAX); |
9783aa99 CD |
2890 | } else { |
2891 | scan = lruvec_size; | |
2892 | } | |
2893 | ||
2894 | scan >>= sc->priority; | |
6b4f7799 | 2895 | |
688035f7 JW |
2896 | /* |
2897 | * If the cgroup's already been deleted, make sure to | |
2898 | * scrape out the remaining cache. | |
2899 | */ | |
2900 | if (!scan && !mem_cgroup_online(memcg)) | |
9783aa99 | 2901 | scan = min(lruvec_size, SWAP_CLUSTER_MAX); |
6b4f7799 | 2902 | |
688035f7 JW |
2903 | switch (scan_balance) { |
2904 | case SCAN_EQUAL: | |
2905 | /* Scan lists relative to size */ | |
2906 | break; | |
2907 | case SCAN_FRACT: | |
9a265114 | 2908 | /* |
688035f7 JW |
2909 | * Scan types proportional to swappiness and |
2910 | * their relative recent reclaim efficiency. | |
76073c64 GS |
2911 | * Make sure we don't miss the last page on |
2912 | * the offlined memory cgroups because of a | |
2913 | * round-off error. | |
9a265114 | 2914 | */ |
76073c64 GS |
2915 | scan = mem_cgroup_online(memcg) ? |
2916 | div64_u64(scan * fraction[file], denominator) : | |
2917 | DIV64_U64_ROUND_UP(scan * fraction[file], | |
68600f62 | 2918 | denominator); |
688035f7 JW |
2919 | break; |
2920 | case SCAN_FILE: | |
2921 | case SCAN_ANON: | |
2922 | /* Scan one type exclusively */ | |
e072bff6 | 2923 | if ((scan_balance == SCAN_FILE) != file) |
688035f7 | 2924 | scan = 0; |
688035f7 JW |
2925 | break; |
2926 | default: | |
2927 | /* Look ma, no brain */ | |
2928 | BUG(); | |
9a265114 | 2929 | } |
688035f7 | 2930 | |
688035f7 | 2931 | nr[lru] = scan; |
76a33fc3 | 2932 | } |
6e08a369 | 2933 | } |
4f98a2fe | 2934 | |
2f368a9f DH |
2935 | /* |
2936 | * Anonymous LRU management is a waste if there is | |
2937 | * ultimately no way to reclaim the memory. | |
2938 | */ | |
2939 | static bool can_age_anon_pages(struct pglist_data *pgdat, | |
2940 | struct scan_control *sc) | |
2941 | { | |
2942 | /* Aging the anon LRU is valuable if swap is present: */ | |
2943 | if (total_swap_pages > 0) | |
2944 | return true; | |
2945 | ||
2946 | /* Also valuable if anon pages can be demoted: */ | |
2947 | return can_demote(pgdat->node_id, sc); | |
2948 | } | |
2949 | ||
afaf07a6 | 2950 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) |
9b4f98cd JW |
2951 | { |
2952 | unsigned long nr[NR_LRU_LISTS]; | |
e82e0561 | 2953 | unsigned long targets[NR_LRU_LISTS]; |
9b4f98cd JW |
2954 | unsigned long nr_to_scan; |
2955 | enum lru_list lru; | |
2956 | unsigned long nr_reclaimed = 0; | |
2957 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
2958 | struct blk_plug plug; | |
1a501907 | 2959 | bool scan_adjusted; |
9b4f98cd | 2960 | |
afaf07a6 | 2961 | get_scan_count(lruvec, sc, nr); |
9b4f98cd | 2962 | |
e82e0561 MG |
2963 | /* Record the original scan target for proportional adjustments later */ |
2964 | memcpy(targets, nr, sizeof(nr)); | |
2965 | ||
1a501907 MG |
2966 | /* |
2967 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | |
2968 | * event that can occur when there is little memory pressure e.g. | |
2969 | * multiple streaming readers/writers. Hence, we do not abort scanning | |
2970 | * when the requested number of pages are reclaimed when scanning at | |
2971 | * DEF_PRIORITY on the assumption that the fact we are direct | |
2972 | * reclaiming implies that kswapd is not keeping up and it is best to | |
2973 | * do a batch of work at once. For memcg reclaim one check is made to | |
2974 | * abort proportional reclaim if either the file or anon lru has already | |
2975 | * dropped to zero at the first pass. | |
2976 | */ | |
b5ead35e | 2977 | scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() && |
1a501907 MG |
2978 | sc->priority == DEF_PRIORITY); |
2979 | ||
9b4f98cd JW |
2980 | blk_start_plug(&plug); |
2981 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
2982 | nr[LRU_INACTIVE_FILE]) { | |
e82e0561 MG |
2983 | unsigned long nr_anon, nr_file, percentage; |
2984 | unsigned long nr_scanned; | |
2985 | ||
9b4f98cd JW |
2986 | for_each_evictable_lru(lru) { |
2987 | if (nr[lru]) { | |
2988 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
2989 | nr[lru] -= nr_to_scan; | |
2990 | ||
2991 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
3b991208 | 2992 | lruvec, sc); |
9b4f98cd JW |
2993 | } |
2994 | } | |
e82e0561 | 2995 | |
bd041733 MH |
2996 | cond_resched(); |
2997 | ||
e82e0561 MG |
2998 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) |
2999 | continue; | |
3000 | ||
e82e0561 MG |
3001 | /* |
3002 | * For kswapd and memcg, reclaim at least the number of pages | |
1a501907 | 3003 | * requested. Ensure that the anon and file LRUs are scanned |
e82e0561 MG |
3004 | * proportionally what was requested by get_scan_count(). We |
3005 | * stop reclaiming one LRU and reduce the amount scanning | |
3006 | * proportional to the original scan target. | |
3007 | */ | |
3008 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | |
3009 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | |
3010 | ||
1a501907 MG |
3011 | /* |
3012 | * It's just vindictive to attack the larger once the smaller | |
3013 | * has gone to zero. And given the way we stop scanning the | |
3014 | * smaller below, this makes sure that we only make one nudge | |
3015 | * towards proportionality once we've got nr_to_reclaim. | |
3016 | */ | |
3017 | if (!nr_file || !nr_anon) | |
3018 | break; | |
3019 | ||
e82e0561 MG |
3020 | if (nr_file > nr_anon) { |
3021 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | |
3022 | targets[LRU_ACTIVE_ANON] + 1; | |
3023 | lru = LRU_BASE; | |
3024 | percentage = nr_anon * 100 / scan_target; | |
3025 | } else { | |
3026 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | |
3027 | targets[LRU_ACTIVE_FILE] + 1; | |
3028 | lru = LRU_FILE; | |
3029 | percentage = nr_file * 100 / scan_target; | |
3030 | } | |
3031 | ||
3032 | /* Stop scanning the smaller of the LRU */ | |
3033 | nr[lru] = 0; | |
3034 | nr[lru + LRU_ACTIVE] = 0; | |
3035 | ||
3036 | /* | |
3037 | * Recalculate the other LRU scan count based on its original | |
3038 | * scan target and the percentage scanning already complete | |
3039 | */ | |
3040 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | |
3041 | nr_scanned = targets[lru] - nr[lru]; | |
3042 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
3043 | nr[lru] -= min(nr[lru], nr_scanned); | |
3044 | ||
3045 | lru += LRU_ACTIVE; | |
3046 | nr_scanned = targets[lru] - nr[lru]; | |
3047 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
3048 | nr[lru] -= min(nr[lru], nr_scanned); | |
3049 | ||
3050 | scan_adjusted = true; | |
9b4f98cd JW |
3051 | } |
3052 | blk_finish_plug(&plug); | |
3053 | sc->nr_reclaimed += nr_reclaimed; | |
3054 | ||
3055 | /* | |
3056 | * Even if we did not try to evict anon pages at all, we want to | |
3057 | * rebalance the anon lru active/inactive ratio. | |
3058 | */ | |
2f368a9f DH |
3059 | if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && |
3060 | inactive_is_low(lruvec, LRU_INACTIVE_ANON)) | |
9b4f98cd JW |
3061 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
3062 | sc, LRU_ACTIVE_ANON); | |
9b4f98cd JW |
3063 | } |
3064 | ||
23b9da55 | 3065 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
9e3b2f8c | 3066 | static bool in_reclaim_compaction(struct scan_control *sc) |
23b9da55 | 3067 | { |
d84da3f9 | 3068 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
23b9da55 | 3069 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
9e3b2f8c | 3070 | sc->priority < DEF_PRIORITY - 2)) |
23b9da55 MG |
3071 | return true; |
3072 | ||
3073 | return false; | |
3074 | } | |
3075 | ||
3e7d3449 | 3076 | /* |
23b9da55 MG |
3077 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
3078 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
3079 | * true if more pages should be reclaimed such that when the page allocator | |
df3a45f9 | 3080 | * calls try_to_compact_pages() that it will have enough free pages to succeed. |
23b9da55 | 3081 | * It will give up earlier than that if there is difficulty reclaiming pages. |
3e7d3449 | 3082 | */ |
a9dd0a83 | 3083 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, |
3e7d3449 | 3084 | unsigned long nr_reclaimed, |
3e7d3449 MG |
3085 | struct scan_control *sc) |
3086 | { | |
3087 | unsigned long pages_for_compaction; | |
3088 | unsigned long inactive_lru_pages; | |
a9dd0a83 | 3089 | int z; |
3e7d3449 MG |
3090 | |
3091 | /* If not in reclaim/compaction mode, stop */ | |
9e3b2f8c | 3092 | if (!in_reclaim_compaction(sc)) |
3e7d3449 MG |
3093 | return false; |
3094 | ||
5ee04716 VB |
3095 | /* |
3096 | * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX | |
3097 | * number of pages that were scanned. This will return to the caller | |
3098 | * with the risk reclaim/compaction and the resulting allocation attempt | |
3099 | * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL | |
3100 | * allocations through requiring that the full LRU list has been scanned | |
3101 | * first, by assuming that zero delta of sc->nr_scanned means full LRU | |
3102 | * scan, but that approximation was wrong, and there were corner cases | |
3103 | * where always a non-zero amount of pages were scanned. | |
3104 | */ | |
3105 | if (!nr_reclaimed) | |
3106 | return false; | |
3e7d3449 | 3107 | |
3e7d3449 | 3108 | /* If compaction would go ahead or the allocation would succeed, stop */ |
a9dd0a83 MG |
3109 | for (z = 0; z <= sc->reclaim_idx; z++) { |
3110 | struct zone *zone = &pgdat->node_zones[z]; | |
6aa303de | 3111 | if (!managed_zone(zone)) |
a9dd0a83 MG |
3112 | continue; |
3113 | ||
3114 | switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { | |
cf378319 | 3115 | case COMPACT_SUCCESS: |
a9dd0a83 MG |
3116 | case COMPACT_CONTINUE: |
3117 | return false; | |
3118 | default: | |
3119 | /* check next zone */ | |
3120 | ; | |
3121 | } | |
3e7d3449 | 3122 | } |
1c6c1597 HD |
3123 | |
3124 | /* | |
3125 | * If we have not reclaimed enough pages for compaction and the | |
3126 | * inactive lists are large enough, continue reclaiming | |
3127 | */ | |
3128 | pages_for_compaction = compact_gap(sc->order); | |
3129 | inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); | |
a2a36488 | 3130 | if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) |
1c6c1597 HD |
3131 | inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); |
3132 | ||
5ee04716 | 3133 | return inactive_lru_pages > pages_for_compaction; |
3e7d3449 MG |
3134 | } |
3135 | ||
0f6a5cff | 3136 | static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) |
1da177e4 | 3137 | { |
0f6a5cff | 3138 | struct mem_cgroup *target_memcg = sc->target_mem_cgroup; |
d2af3397 | 3139 | struct mem_cgroup *memcg; |
1da177e4 | 3140 | |
0f6a5cff | 3141 | memcg = mem_cgroup_iter(target_memcg, NULL, NULL); |
d2af3397 | 3142 | do { |
afaf07a6 | 3143 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); |
d2af3397 JW |
3144 | unsigned long reclaimed; |
3145 | unsigned long scanned; | |
5660048c | 3146 | |
e3336cab XP |
3147 | /* |
3148 | * This loop can become CPU-bound when target memcgs | |
3149 | * aren't eligible for reclaim - either because they | |
3150 | * don't have any reclaimable pages, or because their | |
3151 | * memory is explicitly protected. Avoid soft lockups. | |
3152 | */ | |
3153 | cond_resched(); | |
3154 | ||
45c7f7e1 CD |
3155 | mem_cgroup_calculate_protection(target_memcg, memcg); |
3156 | ||
3157 | if (mem_cgroup_below_min(memcg)) { | |
d2af3397 JW |
3158 | /* |
3159 | * Hard protection. | |
3160 | * If there is no reclaimable memory, OOM. | |
3161 | */ | |
3162 | continue; | |
45c7f7e1 | 3163 | } else if (mem_cgroup_below_low(memcg)) { |
d2af3397 JW |
3164 | /* |
3165 | * Soft protection. | |
3166 | * Respect the protection only as long as | |
3167 | * there is an unprotected supply | |
3168 | * of reclaimable memory from other cgroups. | |
3169 | */ | |
3170 | if (!sc->memcg_low_reclaim) { | |
3171 | sc->memcg_low_skipped = 1; | |
bf8d5d52 | 3172 | continue; |
241994ed | 3173 | } |
d2af3397 | 3174 | memcg_memory_event(memcg, MEMCG_LOW); |
d2af3397 | 3175 | } |
241994ed | 3176 | |
d2af3397 JW |
3177 | reclaimed = sc->nr_reclaimed; |
3178 | scanned = sc->nr_scanned; | |
afaf07a6 JW |
3179 | |
3180 | shrink_lruvec(lruvec, sc); | |
70ddf637 | 3181 | |
d2af3397 JW |
3182 | shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, |
3183 | sc->priority); | |
6b4f7799 | 3184 | |
d2af3397 | 3185 | /* Record the group's reclaim efficiency */ |
73b73bac YA |
3186 | if (!sc->proactive) |
3187 | vmpressure(sc->gfp_mask, memcg, false, | |
3188 | sc->nr_scanned - scanned, | |
3189 | sc->nr_reclaimed - reclaimed); | |
70ddf637 | 3190 | |
0f6a5cff JW |
3191 | } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); |
3192 | } | |
3193 | ||
6c9e0907 | 3194 | static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) |
0f6a5cff JW |
3195 | { |
3196 | struct reclaim_state *reclaim_state = current->reclaim_state; | |
0f6a5cff | 3197 | unsigned long nr_reclaimed, nr_scanned; |
1b05117d | 3198 | struct lruvec *target_lruvec; |
0f6a5cff | 3199 | bool reclaimable = false; |
b91ac374 | 3200 | unsigned long file; |
0f6a5cff | 3201 | |
1b05117d JW |
3202 | target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); |
3203 | ||
0f6a5cff | 3204 | again: |
aa48e47e SB |
3205 | /* |
3206 | * Flush the memory cgroup stats, so that we read accurate per-memcg | |
3207 | * lruvec stats for heuristics. | |
3208 | */ | |
3209 | mem_cgroup_flush_stats(); | |
3210 | ||
0f6a5cff JW |
3211 | memset(&sc->nr, 0, sizeof(sc->nr)); |
3212 | ||
3213 | nr_reclaimed = sc->nr_reclaimed; | |
3214 | nr_scanned = sc->nr_scanned; | |
3215 | ||
7cf111bc JW |
3216 | /* |
3217 | * Determine the scan balance between anon and file LRUs. | |
3218 | */ | |
6168d0da | 3219 | spin_lock_irq(&target_lruvec->lru_lock); |
7cf111bc JW |
3220 | sc->anon_cost = target_lruvec->anon_cost; |
3221 | sc->file_cost = target_lruvec->file_cost; | |
6168d0da | 3222 | spin_unlock_irq(&target_lruvec->lru_lock); |
7cf111bc | 3223 | |
b91ac374 JW |
3224 | /* |
3225 | * Target desirable inactive:active list ratios for the anon | |
3226 | * and file LRU lists. | |
3227 | */ | |
3228 | if (!sc->force_deactivate) { | |
3229 | unsigned long refaults; | |
3230 | ||
170b04b7 JK |
3231 | refaults = lruvec_page_state(target_lruvec, |
3232 | WORKINGSET_ACTIVATE_ANON); | |
3233 | if (refaults != target_lruvec->refaults[0] || | |
3234 | inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) | |
b91ac374 JW |
3235 | sc->may_deactivate |= DEACTIVATE_ANON; |
3236 | else | |
3237 | sc->may_deactivate &= ~DEACTIVATE_ANON; | |
3238 | ||
3239 | /* | |
3240 | * When refaults are being observed, it means a new | |
3241 | * workingset is being established. Deactivate to get | |
3242 | * rid of any stale active pages quickly. | |
3243 | */ | |
3244 | refaults = lruvec_page_state(target_lruvec, | |
170b04b7 JK |
3245 | WORKINGSET_ACTIVATE_FILE); |
3246 | if (refaults != target_lruvec->refaults[1] || | |
b91ac374 JW |
3247 | inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) |
3248 | sc->may_deactivate |= DEACTIVATE_FILE; | |
3249 | else | |
3250 | sc->may_deactivate &= ~DEACTIVATE_FILE; | |
3251 | } else | |
3252 | sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; | |
3253 | ||
3254 | /* | |
3255 | * If we have plenty of inactive file pages that aren't | |
3256 | * thrashing, try to reclaim those first before touching | |
3257 | * anonymous pages. | |
3258 | */ | |
3259 | file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); | |
3260 | if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) | |
3261 | sc->cache_trim_mode = 1; | |
3262 | else | |
3263 | sc->cache_trim_mode = 0; | |
3264 | ||
53138cea JW |
3265 | /* |
3266 | * Prevent the reclaimer from falling into the cache trap: as | |
3267 | * cache pages start out inactive, every cache fault will tip | |
3268 | * the scan balance towards the file LRU. And as the file LRU | |
3269 | * shrinks, so does the window for rotation from references. | |
3270 | * This means we have a runaway feedback loop where a tiny | |
3271 | * thrashing file LRU becomes infinitely more attractive than | |
3272 | * anon pages. Try to detect this based on file LRU size. | |
3273 | */ | |
3274 | if (!cgroup_reclaim(sc)) { | |
53138cea | 3275 | unsigned long total_high_wmark = 0; |
b91ac374 JW |
3276 | unsigned long free, anon; |
3277 | int z; | |
53138cea JW |
3278 | |
3279 | free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); | |
3280 | file = node_page_state(pgdat, NR_ACTIVE_FILE) + | |
3281 | node_page_state(pgdat, NR_INACTIVE_FILE); | |
3282 | ||
3283 | for (z = 0; z < MAX_NR_ZONES; z++) { | |
3284 | struct zone *zone = &pgdat->node_zones[z]; | |
3285 | if (!managed_zone(zone)) | |
3286 | continue; | |
3287 | ||
3288 | total_high_wmark += high_wmark_pages(zone); | |
3289 | } | |
3290 | ||
b91ac374 JW |
3291 | /* |
3292 | * Consider anon: if that's low too, this isn't a | |
3293 | * runaway file reclaim problem, but rather just | |
3294 | * extreme pressure. Reclaim as per usual then. | |
3295 | */ | |
3296 | anon = node_page_state(pgdat, NR_INACTIVE_ANON); | |
3297 | ||
3298 | sc->file_is_tiny = | |
3299 | file + free <= total_high_wmark && | |
3300 | !(sc->may_deactivate & DEACTIVATE_ANON) && | |
3301 | anon >> sc->priority; | |
53138cea JW |
3302 | } |
3303 | ||
0f6a5cff | 3304 | shrink_node_memcgs(pgdat, sc); |
2344d7e4 | 3305 | |
d2af3397 JW |
3306 | if (reclaim_state) { |
3307 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | |
3308 | reclaim_state->reclaimed_slab = 0; | |
3309 | } | |
d108c772 | 3310 | |
d2af3397 | 3311 | /* Record the subtree's reclaim efficiency */ |
73b73bac YA |
3312 | if (!sc->proactive) |
3313 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | |
3314 | sc->nr_scanned - nr_scanned, | |
3315 | sc->nr_reclaimed - nr_reclaimed); | |
d108c772 | 3316 | |
d2af3397 JW |
3317 | if (sc->nr_reclaimed - nr_reclaimed) |
3318 | reclaimable = true; | |
d108c772 | 3319 | |
d2af3397 JW |
3320 | if (current_is_kswapd()) { |
3321 | /* | |
3322 | * If reclaim is isolating dirty pages under writeback, | |
3323 | * it implies that the long-lived page allocation rate | |
3324 | * is exceeding the page laundering rate. Either the | |
3325 | * global limits are not being effective at throttling | |
3326 | * processes due to the page distribution throughout | |
3327 | * zones or there is heavy usage of a slow backing | |
3328 | * device. The only option is to throttle from reclaim | |
3329 | * context which is not ideal as there is no guarantee | |
3330 | * the dirtying process is throttled in the same way | |
3331 | * balance_dirty_pages() manages. | |
3332 | * | |
3333 | * Once a node is flagged PGDAT_WRITEBACK, kswapd will | |
3334 | * count the number of pages under pages flagged for | |
3335 | * immediate reclaim and stall if any are encountered | |
3336 | * in the nr_immediate check below. | |
3337 | */ | |
3338 | if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) | |
3339 | set_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
d108c772 | 3340 | |
d2af3397 JW |
3341 | /* Allow kswapd to start writing pages during reclaim.*/ |
3342 | if (sc->nr.unqueued_dirty == sc->nr.file_taken) | |
3343 | set_bit(PGDAT_DIRTY, &pgdat->flags); | |
e3c1ac58 | 3344 | |
d108c772 | 3345 | /* |
1eba09c1 | 3346 | * If kswapd scans pages marked for immediate |
d2af3397 JW |
3347 | * reclaim and under writeback (nr_immediate), it |
3348 | * implies that pages are cycling through the LRU | |
8cd7c588 MG |
3349 | * faster than they are written so forcibly stall |
3350 | * until some pages complete writeback. | |
d108c772 | 3351 | */ |
d2af3397 | 3352 | if (sc->nr.immediate) |
c3f4a9a2 | 3353 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); |
d2af3397 JW |
3354 | } |
3355 | ||
3356 | /* | |
8cd7c588 MG |
3357 | * Tag a node/memcg as congested if all the dirty pages were marked |
3358 | * for writeback and immediate reclaim (counted in nr.congested). | |
1b05117d | 3359 | * |
d2af3397 | 3360 | * Legacy memcg will stall in page writeback so avoid forcibly |
8cd7c588 | 3361 | * stalling in reclaim_throttle(). |
d2af3397 | 3362 | */ |
1b05117d JW |
3363 | if ((current_is_kswapd() || |
3364 | (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && | |
d2af3397 | 3365 | sc->nr.dirty && sc->nr.dirty == sc->nr.congested) |
1b05117d | 3366 | set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); |
d2af3397 JW |
3367 | |
3368 | /* | |
8cd7c588 MG |
3369 | * Stall direct reclaim for IO completions if the lruvec is |
3370 | * node is congested. Allow kswapd to continue until it | |
d2af3397 JW |
3371 | * starts encountering unqueued dirty pages or cycling through |
3372 | * the LRU too quickly. | |
3373 | */ | |
1b05117d JW |
3374 | if (!current_is_kswapd() && current_may_throttle() && |
3375 | !sc->hibernation_mode && | |
3376 | test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) | |
1b4e3f26 | 3377 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); |
d108c772 | 3378 | |
d2af3397 JW |
3379 | if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, |
3380 | sc)) | |
3381 | goto again; | |
2344d7e4 | 3382 | |
c73322d0 JW |
3383 | /* |
3384 | * Kswapd gives up on balancing particular nodes after too | |
3385 | * many failures to reclaim anything from them and goes to | |
3386 | * sleep. On reclaim progress, reset the failure counter. A | |
3387 | * successful direct reclaim run will revive a dormant kswapd. | |
3388 | */ | |
3389 | if (reclaimable) | |
3390 | pgdat->kswapd_failures = 0; | |
f16015fb JW |
3391 | } |
3392 | ||
53853e2d | 3393 | /* |
fdd4c614 VB |
3394 | * Returns true if compaction should go ahead for a costly-order request, or |
3395 | * the allocation would already succeed without compaction. Return false if we | |
3396 | * should reclaim first. | |
53853e2d | 3397 | */ |
4f588331 | 3398 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) |
fe4b1b24 | 3399 | { |
31483b6a | 3400 | unsigned long watermark; |
fdd4c614 | 3401 | enum compact_result suitable; |
fe4b1b24 | 3402 | |
fdd4c614 VB |
3403 | suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); |
3404 | if (suitable == COMPACT_SUCCESS) | |
3405 | /* Allocation should succeed already. Don't reclaim. */ | |
3406 | return true; | |
3407 | if (suitable == COMPACT_SKIPPED) | |
3408 | /* Compaction cannot yet proceed. Do reclaim. */ | |
3409 | return false; | |
fe4b1b24 | 3410 | |
53853e2d | 3411 | /* |
fdd4c614 VB |
3412 | * Compaction is already possible, but it takes time to run and there |
3413 | * are potentially other callers using the pages just freed. So proceed | |
3414 | * with reclaim to make a buffer of free pages available to give | |
3415 | * compaction a reasonable chance of completing and allocating the page. | |
3416 | * Note that we won't actually reclaim the whole buffer in one attempt | |
3417 | * as the target watermark in should_continue_reclaim() is lower. But if | |
3418 | * we are already above the high+gap watermark, don't reclaim at all. | |
53853e2d | 3419 | */ |
fdd4c614 | 3420 | watermark = high_wmark_pages(zone) + compact_gap(sc->order); |
fe4b1b24 | 3421 | |
fdd4c614 | 3422 | return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); |
fe4b1b24 MG |
3423 | } |
3424 | ||
69392a40 MG |
3425 | static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) |
3426 | { | |
66ce520b MG |
3427 | /* |
3428 | * If reclaim is making progress greater than 12% efficiency then | |
3429 | * wake all the NOPROGRESS throttled tasks. | |
3430 | */ | |
3431 | if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { | |
69392a40 MG |
3432 | wait_queue_head_t *wqh; |
3433 | ||
3434 | wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; | |
3435 | if (waitqueue_active(wqh)) | |
3436 | wake_up(wqh); | |
3437 | ||
3438 | return; | |
3439 | } | |
3440 | ||
3441 | /* | |
1b4e3f26 MG |
3442 | * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will |
3443 | * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages | |
3444 | * under writeback and marked for immediate reclaim at the tail of the | |
3445 | * LRU. | |
69392a40 | 3446 | */ |
1b4e3f26 | 3447 | if (current_is_kswapd() || cgroup_reclaim(sc)) |
69392a40 MG |
3448 | return; |
3449 | ||
3450 | /* Throttle if making no progress at high prioities. */ | |
1b4e3f26 | 3451 | if (sc->priority == 1 && !sc->nr_reclaimed) |
c3f4a9a2 | 3452 | reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); |
69392a40 MG |
3453 | } |
3454 | ||
1da177e4 LT |
3455 | /* |
3456 | * This is the direct reclaim path, for page-allocating processes. We only | |
3457 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
3458 | * request. | |
3459 | * | |
1da177e4 LT |
3460 | * If a zone is deemed to be full of pinned pages then just give it a light |
3461 | * scan then give up on it. | |
3462 | */ | |
0a0337e0 | 3463 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
1da177e4 | 3464 | { |
dd1a239f | 3465 | struct zoneref *z; |
54a6eb5c | 3466 | struct zone *zone; |
0608f43d AM |
3467 | unsigned long nr_soft_reclaimed; |
3468 | unsigned long nr_soft_scanned; | |
619d0d76 | 3469 | gfp_t orig_mask; |
79dafcdc | 3470 | pg_data_t *last_pgdat = NULL; |
1b4e3f26 | 3471 | pg_data_t *first_pgdat = NULL; |
1cfb419b | 3472 | |
cc715d99 MG |
3473 | /* |
3474 | * If the number of buffer_heads in the machine exceeds the maximum | |
3475 | * allowed level, force direct reclaim to scan the highmem zone as | |
3476 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
3477 | */ | |
619d0d76 | 3478 | orig_mask = sc->gfp_mask; |
b2e18757 | 3479 | if (buffer_heads_over_limit) { |
cc715d99 | 3480 | sc->gfp_mask |= __GFP_HIGHMEM; |
4f588331 | 3481 | sc->reclaim_idx = gfp_zone(sc->gfp_mask); |
b2e18757 | 3482 | } |
cc715d99 | 3483 | |
d4debc66 | 3484 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
b2e18757 | 3485 | sc->reclaim_idx, sc->nodemask) { |
1cfb419b KH |
3486 | /* |
3487 | * Take care memory controller reclaiming has small influence | |
3488 | * to global LRU. | |
3489 | */ | |
b5ead35e | 3490 | if (!cgroup_reclaim(sc)) { |
344736f2 VD |
3491 | if (!cpuset_zone_allowed(zone, |
3492 | GFP_KERNEL | __GFP_HARDWALL)) | |
1cfb419b | 3493 | continue; |
65ec02cb | 3494 | |
0b06496a JW |
3495 | /* |
3496 | * If we already have plenty of memory free for | |
3497 | * compaction in this zone, don't free any more. | |
3498 | * Even though compaction is invoked for any | |
3499 | * non-zero order, only frequent costly order | |
3500 | * reclamation is disruptive enough to become a | |
3501 | * noticeable problem, like transparent huge | |
3502 | * page allocations. | |
3503 | */ | |
3504 | if (IS_ENABLED(CONFIG_COMPACTION) && | |
3505 | sc->order > PAGE_ALLOC_COSTLY_ORDER && | |
4f588331 | 3506 | compaction_ready(zone, sc)) { |
0b06496a JW |
3507 | sc->compaction_ready = true; |
3508 | continue; | |
e0887c19 | 3509 | } |
0b06496a | 3510 | |
79dafcdc MG |
3511 | /* |
3512 | * Shrink each node in the zonelist once. If the | |
3513 | * zonelist is ordered by zone (not the default) then a | |
3514 | * node may be shrunk multiple times but in that case | |
3515 | * the user prefers lower zones being preserved. | |
3516 | */ | |
3517 | if (zone->zone_pgdat == last_pgdat) | |
3518 | continue; | |
3519 | ||
0608f43d AM |
3520 | /* |
3521 | * This steals pages from memory cgroups over softlimit | |
3522 | * and returns the number of reclaimed pages and | |
3523 | * scanned pages. This works for global memory pressure | |
3524 | * and balancing, not for a memcg's limit. | |
3525 | */ | |
3526 | nr_soft_scanned = 0; | |
ef8f2327 | 3527 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, |
0608f43d AM |
3528 | sc->order, sc->gfp_mask, |
3529 | &nr_soft_scanned); | |
3530 | sc->nr_reclaimed += nr_soft_reclaimed; | |
3531 | sc->nr_scanned += nr_soft_scanned; | |
ac34a1a3 | 3532 | /* need some check for avoid more shrink_zone() */ |
1cfb419b | 3533 | } |
408d8544 | 3534 | |
1b4e3f26 MG |
3535 | if (!first_pgdat) |
3536 | first_pgdat = zone->zone_pgdat; | |
3537 | ||
79dafcdc MG |
3538 | /* See comment about same check for global reclaim above */ |
3539 | if (zone->zone_pgdat == last_pgdat) | |
3540 | continue; | |
3541 | last_pgdat = zone->zone_pgdat; | |
970a39a3 | 3542 | shrink_node(zone->zone_pgdat, sc); |
1da177e4 | 3543 | } |
e0c23279 | 3544 | |
80082938 MG |
3545 | if (first_pgdat) |
3546 | consider_reclaim_throttle(first_pgdat, sc); | |
1b4e3f26 | 3547 | |
619d0d76 WY |
3548 | /* |
3549 | * Restore to original mask to avoid the impact on the caller if we | |
3550 | * promoted it to __GFP_HIGHMEM. | |
3551 | */ | |
3552 | sc->gfp_mask = orig_mask; | |
1da177e4 | 3553 | } |
4f98a2fe | 3554 | |
b910718a | 3555 | static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) |
2a2e4885 | 3556 | { |
b910718a JW |
3557 | struct lruvec *target_lruvec; |
3558 | unsigned long refaults; | |
2a2e4885 | 3559 | |
b910718a | 3560 | target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); |
170b04b7 JK |
3561 | refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); |
3562 | target_lruvec->refaults[0] = refaults; | |
3563 | refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); | |
3564 | target_lruvec->refaults[1] = refaults; | |
2a2e4885 JW |
3565 | } |
3566 | ||
1da177e4 LT |
3567 | /* |
3568 | * This is the main entry point to direct page reclaim. | |
3569 | * | |
3570 | * If a full scan of the inactive list fails to free enough memory then we | |
3571 | * are "out of memory" and something needs to be killed. | |
3572 | * | |
3573 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
3574 | * high - the zone may be full of dirty or under-writeback pages, which this | |
5b0830cb JA |
3575 | * caller can't do much about. We kick the writeback threads and take explicit |
3576 | * naps in the hope that some of these pages can be written. But if the | |
3577 | * allocating task holds filesystem locks which prevent writeout this might not | |
3578 | * work, and the allocation attempt will fail. | |
a41f24ea NA |
3579 | * |
3580 | * returns: 0, if no pages reclaimed | |
3581 | * else, the number of pages reclaimed | |
1da177e4 | 3582 | */ |
dac1d27b | 3583 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
3115cd91 | 3584 | struct scan_control *sc) |
1da177e4 | 3585 | { |
241994ed | 3586 | int initial_priority = sc->priority; |
2a2e4885 JW |
3587 | pg_data_t *last_pgdat; |
3588 | struct zoneref *z; | |
3589 | struct zone *zone; | |
241994ed | 3590 | retry: |
873b4771 KK |
3591 | delayacct_freepages_start(); |
3592 | ||
b5ead35e | 3593 | if (!cgroup_reclaim(sc)) |
7cc30fcf | 3594 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); |
1da177e4 | 3595 | |
9e3b2f8c | 3596 | do { |
73b73bac YA |
3597 | if (!sc->proactive) |
3598 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, | |
3599 | sc->priority); | |
66e1707b | 3600 | sc->nr_scanned = 0; |
0a0337e0 | 3601 | shrink_zones(zonelist, sc); |
c6a8a8c5 | 3602 | |
bb21c7ce | 3603 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
0b06496a JW |
3604 | break; |
3605 | ||
3606 | if (sc->compaction_ready) | |
3607 | break; | |
1da177e4 | 3608 | |
0e50ce3b MK |
3609 | /* |
3610 | * If we're getting trouble reclaiming, start doing | |
3611 | * writepage even in laptop mode. | |
3612 | */ | |
3613 | if (sc->priority < DEF_PRIORITY - 2) | |
3614 | sc->may_writepage = 1; | |
0b06496a | 3615 | } while (--sc->priority >= 0); |
bb21c7ce | 3616 | |
2a2e4885 JW |
3617 | last_pgdat = NULL; |
3618 | for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, | |
3619 | sc->nodemask) { | |
3620 | if (zone->zone_pgdat == last_pgdat) | |
3621 | continue; | |
3622 | last_pgdat = zone->zone_pgdat; | |
1b05117d | 3623 | |
2a2e4885 | 3624 | snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); |
1b05117d JW |
3625 | |
3626 | if (cgroup_reclaim(sc)) { | |
3627 | struct lruvec *lruvec; | |
3628 | ||
3629 | lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, | |
3630 | zone->zone_pgdat); | |
3631 | clear_bit(LRUVEC_CONGESTED, &lruvec->flags); | |
3632 | } | |
2a2e4885 JW |
3633 | } |
3634 | ||
873b4771 KK |
3635 | delayacct_freepages_end(); |
3636 | ||
bb21c7ce KM |
3637 | if (sc->nr_reclaimed) |
3638 | return sc->nr_reclaimed; | |
3639 | ||
0cee34fd | 3640 | /* Aborted reclaim to try compaction? don't OOM, then */ |
0b06496a | 3641 | if (sc->compaction_ready) |
7335084d MG |
3642 | return 1; |
3643 | ||
b91ac374 JW |
3644 | /* |
3645 | * We make inactive:active ratio decisions based on the node's | |
3646 | * composition of memory, but a restrictive reclaim_idx or a | |
3647 | * memory.low cgroup setting can exempt large amounts of | |
3648 | * memory from reclaim. Neither of which are very common, so | |
3649 | * instead of doing costly eligibility calculations of the | |
3650 | * entire cgroup subtree up front, we assume the estimates are | |
3651 | * good, and retry with forcible deactivation if that fails. | |
3652 | */ | |
3653 | if (sc->skipped_deactivate) { | |
3654 | sc->priority = initial_priority; | |
3655 | sc->force_deactivate = 1; | |
3656 | sc->skipped_deactivate = 0; | |
3657 | goto retry; | |
3658 | } | |
3659 | ||
241994ed | 3660 | /* Untapped cgroup reserves? Don't OOM, retry. */ |
d6622f63 | 3661 | if (sc->memcg_low_skipped) { |
241994ed | 3662 | sc->priority = initial_priority; |
b91ac374 | 3663 | sc->force_deactivate = 0; |
d6622f63 YX |
3664 | sc->memcg_low_reclaim = 1; |
3665 | sc->memcg_low_skipped = 0; | |
241994ed JW |
3666 | goto retry; |
3667 | } | |
3668 | ||
bb21c7ce | 3669 | return 0; |
1da177e4 LT |
3670 | } |
3671 | ||
c73322d0 | 3672 | static bool allow_direct_reclaim(pg_data_t *pgdat) |
5515061d MG |
3673 | { |
3674 | struct zone *zone; | |
3675 | unsigned long pfmemalloc_reserve = 0; | |
3676 | unsigned long free_pages = 0; | |
3677 | int i; | |
3678 | bool wmark_ok; | |
3679 | ||
c73322d0 JW |
3680 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) |
3681 | return true; | |
3682 | ||
5515061d MG |
3683 | for (i = 0; i <= ZONE_NORMAL; i++) { |
3684 | zone = &pgdat->node_zones[i]; | |
d450abd8 JW |
3685 | if (!managed_zone(zone)) |
3686 | continue; | |
3687 | ||
3688 | if (!zone_reclaimable_pages(zone)) | |
675becce MG |
3689 | continue; |
3690 | ||
5515061d MG |
3691 | pfmemalloc_reserve += min_wmark_pages(zone); |
3692 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
3693 | } | |
3694 | ||
675becce MG |
3695 | /* If there are no reserves (unexpected config) then do not throttle */ |
3696 | if (!pfmemalloc_reserve) | |
3697 | return true; | |
3698 | ||
5515061d MG |
3699 | wmark_ok = free_pages > pfmemalloc_reserve / 2; |
3700 | ||
3701 | /* kswapd must be awake if processes are being throttled */ | |
3702 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
97a225e6 JK |
3703 | if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) |
3704 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); | |
5644e1fb | 3705 | |
5515061d MG |
3706 | wake_up_interruptible(&pgdat->kswapd_wait); |
3707 | } | |
3708 | ||
3709 | return wmark_ok; | |
3710 | } | |
3711 | ||
3712 | /* | |
3713 | * Throttle direct reclaimers if backing storage is backed by the network | |
3714 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
3715 | * depleted. kswapd will continue to make progress and wake the processes | |
50694c28 MG |
3716 | * when the low watermark is reached. |
3717 | * | |
3718 | * Returns true if a fatal signal was delivered during throttling. If this | |
3719 | * happens, the page allocator should not consider triggering the OOM killer. | |
5515061d | 3720 | */ |
50694c28 | 3721 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
5515061d MG |
3722 | nodemask_t *nodemask) |
3723 | { | |
675becce | 3724 | struct zoneref *z; |
5515061d | 3725 | struct zone *zone; |
675becce | 3726 | pg_data_t *pgdat = NULL; |
5515061d MG |
3727 | |
3728 | /* | |
3729 | * Kernel threads should not be throttled as they may be indirectly | |
3730 | * responsible for cleaning pages necessary for reclaim to make forward | |
3731 | * progress. kjournald for example may enter direct reclaim while | |
3732 | * committing a transaction where throttling it could forcing other | |
3733 | * processes to block on log_wait_commit(). | |
3734 | */ | |
3735 | if (current->flags & PF_KTHREAD) | |
50694c28 MG |
3736 | goto out; |
3737 | ||
3738 | /* | |
3739 | * If a fatal signal is pending, this process should not throttle. | |
3740 | * It should return quickly so it can exit and free its memory | |
3741 | */ | |
3742 | if (fatal_signal_pending(current)) | |
3743 | goto out; | |
5515061d | 3744 | |
675becce MG |
3745 | /* |
3746 | * Check if the pfmemalloc reserves are ok by finding the first node | |
3747 | * with a usable ZONE_NORMAL or lower zone. The expectation is that | |
3748 | * GFP_KERNEL will be required for allocating network buffers when | |
3749 | * swapping over the network so ZONE_HIGHMEM is unusable. | |
3750 | * | |
3751 | * Throttling is based on the first usable node and throttled processes | |
3752 | * wait on a queue until kswapd makes progress and wakes them. There | |
3753 | * is an affinity then between processes waking up and where reclaim | |
3754 | * progress has been made assuming the process wakes on the same node. | |
3755 | * More importantly, processes running on remote nodes will not compete | |
3756 | * for remote pfmemalloc reserves and processes on different nodes | |
3757 | * should make reasonable progress. | |
3758 | */ | |
3759 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
17636faa | 3760 | gfp_zone(gfp_mask), nodemask) { |
675becce MG |
3761 | if (zone_idx(zone) > ZONE_NORMAL) |
3762 | continue; | |
3763 | ||
3764 | /* Throttle based on the first usable node */ | |
3765 | pgdat = zone->zone_pgdat; | |
c73322d0 | 3766 | if (allow_direct_reclaim(pgdat)) |
675becce MG |
3767 | goto out; |
3768 | break; | |
3769 | } | |
3770 | ||
3771 | /* If no zone was usable by the allocation flags then do not throttle */ | |
3772 | if (!pgdat) | |
50694c28 | 3773 | goto out; |
5515061d | 3774 | |
68243e76 MG |
3775 | /* Account for the throttling */ |
3776 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
3777 | ||
5515061d MG |
3778 | /* |
3779 | * If the caller cannot enter the filesystem, it's possible that it | |
3780 | * is due to the caller holding an FS lock or performing a journal | |
3781 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
3782 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
3783 | * blocked waiting on the same lock. Instead, throttle for up to a | |
3784 | * second before continuing. | |
3785 | */ | |
2e786d9e | 3786 | if (!(gfp_mask & __GFP_FS)) |
5515061d | 3787 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, |
c73322d0 | 3788 | allow_direct_reclaim(pgdat), HZ); |
2e786d9e ML |
3789 | else |
3790 | /* Throttle until kswapd wakes the process */ | |
3791 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
3792 | allow_direct_reclaim(pgdat)); | |
50694c28 | 3793 | |
50694c28 MG |
3794 | if (fatal_signal_pending(current)) |
3795 | return true; | |
3796 | ||
3797 | out: | |
3798 | return false; | |
5515061d MG |
3799 | } |
3800 | ||
dac1d27b | 3801 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
327c0e96 | 3802 | gfp_t gfp_mask, nodemask_t *nodemask) |
66e1707b | 3803 | { |
33906bc5 | 3804 | unsigned long nr_reclaimed; |
66e1707b | 3805 | struct scan_control sc = { |
ee814fe2 | 3806 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
f2f43e56 | 3807 | .gfp_mask = current_gfp_context(gfp_mask), |
b2e18757 | 3808 | .reclaim_idx = gfp_zone(gfp_mask), |
ee814fe2 JW |
3809 | .order = order, |
3810 | .nodemask = nodemask, | |
3811 | .priority = DEF_PRIORITY, | |
66e1707b | 3812 | .may_writepage = !laptop_mode, |
a6dc60f8 | 3813 | .may_unmap = 1, |
2e2e4259 | 3814 | .may_swap = 1, |
66e1707b BS |
3815 | }; |
3816 | ||
bb451fdf GT |
3817 | /* |
3818 | * scan_control uses s8 fields for order, priority, and reclaim_idx. | |
3819 | * Confirm they are large enough for max values. | |
3820 | */ | |
3821 | BUILD_BUG_ON(MAX_ORDER > S8_MAX); | |
3822 | BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); | |
3823 | BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); | |
3824 | ||
5515061d | 3825 | /* |
50694c28 MG |
3826 | * Do not enter reclaim if fatal signal was delivered while throttled. |
3827 | * 1 is returned so that the page allocator does not OOM kill at this | |
3828 | * point. | |
5515061d | 3829 | */ |
f2f43e56 | 3830 | if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) |
5515061d MG |
3831 | return 1; |
3832 | ||
1732d2b0 | 3833 | set_task_reclaim_state(current, &sc.reclaim_state); |
3481c37f | 3834 | trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); |
33906bc5 | 3835 | |
3115cd91 | 3836 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
33906bc5 MG |
3837 | |
3838 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
1732d2b0 | 3839 | set_task_reclaim_state(current, NULL); |
33906bc5 MG |
3840 | |
3841 | return nr_reclaimed; | |
66e1707b BS |
3842 | } |
3843 | ||
c255a458 | 3844 | #ifdef CONFIG_MEMCG |
66e1707b | 3845 | |
d2e5fb92 | 3846 | /* Only used by soft limit reclaim. Do not reuse for anything else. */ |
a9dd0a83 | 3847 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, |
4e416953 | 3848 | gfp_t gfp_mask, bool noswap, |
ef8f2327 | 3849 | pg_data_t *pgdat, |
0ae5e89c | 3850 | unsigned long *nr_scanned) |
4e416953 | 3851 | { |
afaf07a6 | 3852 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); |
4e416953 | 3853 | struct scan_control sc = { |
b8f5c566 | 3854 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
ee814fe2 | 3855 | .target_mem_cgroup = memcg, |
4e416953 BS |
3856 | .may_writepage = !laptop_mode, |
3857 | .may_unmap = 1, | |
b2e18757 | 3858 | .reclaim_idx = MAX_NR_ZONES - 1, |
4e416953 | 3859 | .may_swap = !noswap, |
4e416953 | 3860 | }; |
0ae5e89c | 3861 | |
d2e5fb92 MH |
3862 | WARN_ON_ONCE(!current->reclaim_state); |
3863 | ||
4e416953 BS |
3864 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
3865 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
bdce6d9e | 3866 | |
9e3b2f8c | 3867 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
3481c37f | 3868 | sc.gfp_mask); |
bdce6d9e | 3869 | |
4e416953 BS |
3870 | /* |
3871 | * NOTE: Although we can get the priority field, using it | |
3872 | * here is not a good idea, since it limits the pages we can scan. | |
a9dd0a83 | 3873 | * if we don't reclaim here, the shrink_node from balance_pgdat |
4e416953 BS |
3874 | * will pick up pages from other mem cgroup's as well. We hack |
3875 | * the priority and make it zero. | |
3876 | */ | |
afaf07a6 | 3877 | shrink_lruvec(lruvec, &sc); |
bdce6d9e KM |
3878 | |
3879 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
3880 | ||
0ae5e89c | 3881 | *nr_scanned = sc.nr_scanned; |
0308f7cf | 3882 | |
4e416953 BS |
3883 | return sc.nr_reclaimed; |
3884 | } | |
3885 | ||
72835c86 | 3886 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
b70a2a21 | 3887 | unsigned long nr_pages, |
a7885eb8 | 3888 | gfp_t gfp_mask, |
73b73bac | 3889 | unsigned int reclaim_options) |
66e1707b | 3890 | { |
bdce6d9e | 3891 | unsigned long nr_reclaimed; |
499118e9 | 3892 | unsigned int noreclaim_flag; |
66e1707b | 3893 | struct scan_control sc = { |
b70a2a21 | 3894 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
7dea19f9 | 3895 | .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | |
a09ed5e0 | 3896 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), |
b2e18757 | 3897 | .reclaim_idx = MAX_NR_ZONES - 1, |
ee814fe2 JW |
3898 | .target_mem_cgroup = memcg, |
3899 | .priority = DEF_PRIORITY, | |
3900 | .may_writepage = !laptop_mode, | |
3901 | .may_unmap = 1, | |
73b73bac YA |
3902 | .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), |
3903 | .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), | |
a09ed5e0 | 3904 | }; |
889976db | 3905 | /* |
fa40d1ee SB |
3906 | * Traverse the ZONELIST_FALLBACK zonelist of the current node to put |
3907 | * equal pressure on all the nodes. This is based on the assumption that | |
3908 | * the reclaim does not bail out early. | |
889976db | 3909 | */ |
fa40d1ee | 3910 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); |
889976db | 3911 | |
fa40d1ee | 3912 | set_task_reclaim_state(current, &sc.reclaim_state); |
3481c37f | 3913 | trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); |
499118e9 | 3914 | noreclaim_flag = memalloc_noreclaim_save(); |
eb414681 | 3915 | |
3115cd91 | 3916 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
eb414681 | 3917 | |
499118e9 | 3918 | memalloc_noreclaim_restore(noreclaim_flag); |
bdce6d9e | 3919 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); |
1732d2b0 | 3920 | set_task_reclaim_state(current, NULL); |
bdce6d9e KM |
3921 | |
3922 | return nr_reclaimed; | |
66e1707b BS |
3923 | } |
3924 | #endif | |
3925 | ||
1d82de61 | 3926 | static void age_active_anon(struct pglist_data *pgdat, |
ef8f2327 | 3927 | struct scan_control *sc) |
f16015fb | 3928 | { |
b95a2f2d | 3929 | struct mem_cgroup *memcg; |
b91ac374 | 3930 | struct lruvec *lruvec; |
f16015fb | 3931 | |
2f368a9f | 3932 | if (!can_age_anon_pages(pgdat, sc)) |
b95a2f2d JW |
3933 | return; |
3934 | ||
b91ac374 JW |
3935 | lruvec = mem_cgroup_lruvec(NULL, pgdat); |
3936 | if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) | |
3937 | return; | |
3938 | ||
b95a2f2d JW |
3939 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
3940 | do { | |
b91ac374 JW |
3941 | lruvec = mem_cgroup_lruvec(memcg, pgdat); |
3942 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
3943 | sc, LRU_ACTIVE_ANON); | |
b95a2f2d JW |
3944 | memcg = mem_cgroup_iter(NULL, memcg, NULL); |
3945 | } while (memcg); | |
f16015fb JW |
3946 | } |
3947 | ||
97a225e6 | 3948 | static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) |
1c30844d MG |
3949 | { |
3950 | int i; | |
3951 | struct zone *zone; | |
3952 | ||
3953 | /* | |
3954 | * Check for watermark boosts top-down as the higher zones | |
3955 | * are more likely to be boosted. Both watermarks and boosts | |
1eba09c1 | 3956 | * should not be checked at the same time as reclaim would |
1c30844d MG |
3957 | * start prematurely when there is no boosting and a lower |
3958 | * zone is balanced. | |
3959 | */ | |
97a225e6 | 3960 | for (i = highest_zoneidx; i >= 0; i--) { |
1c30844d MG |
3961 | zone = pgdat->node_zones + i; |
3962 | if (!managed_zone(zone)) | |
3963 | continue; | |
3964 | ||
3965 | if (zone->watermark_boost) | |
3966 | return true; | |
3967 | } | |
3968 | ||
3969 | return false; | |
3970 | } | |
3971 | ||
e716f2eb MG |
3972 | /* |
3973 | * Returns true if there is an eligible zone balanced for the request order | |
97a225e6 | 3974 | * and highest_zoneidx |
e716f2eb | 3975 | */ |
97a225e6 | 3976 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) |
60cefed4 | 3977 | { |
e716f2eb MG |
3978 | int i; |
3979 | unsigned long mark = -1; | |
3980 | struct zone *zone; | |
60cefed4 | 3981 | |
1c30844d MG |
3982 | /* |
3983 | * Check watermarks bottom-up as lower zones are more likely to | |
3984 | * meet watermarks. | |
3985 | */ | |
97a225e6 | 3986 | for (i = 0; i <= highest_zoneidx; i++) { |
e716f2eb | 3987 | zone = pgdat->node_zones + i; |
6256c6b4 | 3988 | |
e716f2eb MG |
3989 | if (!managed_zone(zone)) |
3990 | continue; | |
3991 | ||
c574bbe9 YH |
3992 | if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) |
3993 | mark = wmark_pages(zone, WMARK_PROMO); | |
3994 | else | |
3995 | mark = high_wmark_pages(zone); | |
97a225e6 | 3996 | if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) |
e716f2eb MG |
3997 | return true; |
3998 | } | |
3999 | ||
4000 | /* | |
36c26128 | 4001 | * If a node has no managed zone within highest_zoneidx, it does not |
e716f2eb MG |
4002 | * need balancing by definition. This can happen if a zone-restricted |
4003 | * allocation tries to wake a remote kswapd. | |
4004 | */ | |
4005 | if (mark == -1) | |
4006 | return true; | |
4007 | ||
4008 | return false; | |
60cefed4 JW |
4009 | } |
4010 | ||
631b6e08 MG |
4011 | /* Clear pgdat state for congested, dirty or under writeback. */ |
4012 | static void clear_pgdat_congested(pg_data_t *pgdat) | |
4013 | { | |
1b05117d JW |
4014 | struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); |
4015 | ||
4016 | clear_bit(LRUVEC_CONGESTED, &lruvec->flags); | |
631b6e08 MG |
4017 | clear_bit(PGDAT_DIRTY, &pgdat->flags); |
4018 | clear_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
4019 | } | |
4020 | ||
5515061d MG |
4021 | /* |
4022 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
4023 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
4024 | * | |
4025 | * Returns true if kswapd is ready to sleep | |
4026 | */ | |
97a225e6 JK |
4027 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, |
4028 | int highest_zoneidx) | |
f50de2d3 | 4029 | { |
5515061d | 4030 | /* |
9e5e3661 | 4031 | * The throttled processes are normally woken up in balance_pgdat() as |
c73322d0 | 4032 | * soon as allow_direct_reclaim() is true. But there is a potential |
9e5e3661 VB |
4033 | * race between when kswapd checks the watermarks and a process gets |
4034 | * throttled. There is also a potential race if processes get | |
4035 | * throttled, kswapd wakes, a large process exits thereby balancing the | |
4036 | * zones, which causes kswapd to exit balance_pgdat() before reaching | |
4037 | * the wake up checks. If kswapd is going to sleep, no process should | |
4038 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | |
4039 | * the wake up is premature, processes will wake kswapd and get | |
4040 | * throttled again. The difference from wake ups in balance_pgdat() is | |
4041 | * that here we are under prepare_to_wait(). | |
5515061d | 4042 | */ |
9e5e3661 VB |
4043 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) |
4044 | wake_up_all(&pgdat->pfmemalloc_wait); | |
f50de2d3 | 4045 | |
c73322d0 JW |
4046 | /* Hopeless node, leave it to direct reclaim */ |
4047 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
4048 | return true; | |
4049 | ||
97a225e6 | 4050 | if (pgdat_balanced(pgdat, order, highest_zoneidx)) { |
e716f2eb MG |
4051 | clear_pgdat_congested(pgdat); |
4052 | return true; | |
1d82de61 MG |
4053 | } |
4054 | ||
333b0a45 | 4055 | return false; |
f50de2d3 MG |
4056 | } |
4057 | ||
75485363 | 4058 | /* |
1d82de61 MG |
4059 | * kswapd shrinks a node of pages that are at or below the highest usable |
4060 | * zone that is currently unbalanced. | |
b8e83b94 MG |
4061 | * |
4062 | * Returns true if kswapd scanned at least the requested number of pages to | |
283aba9f MG |
4063 | * reclaim or if the lack of progress was due to pages under writeback. |
4064 | * This is used to determine if the scanning priority needs to be raised. | |
75485363 | 4065 | */ |
1d82de61 | 4066 | static bool kswapd_shrink_node(pg_data_t *pgdat, |
accf6242 | 4067 | struct scan_control *sc) |
75485363 | 4068 | { |
1d82de61 MG |
4069 | struct zone *zone; |
4070 | int z; | |
75485363 | 4071 | |
1d82de61 MG |
4072 | /* Reclaim a number of pages proportional to the number of zones */ |
4073 | sc->nr_to_reclaim = 0; | |
970a39a3 | 4074 | for (z = 0; z <= sc->reclaim_idx; z++) { |
1d82de61 | 4075 | zone = pgdat->node_zones + z; |
6aa303de | 4076 | if (!managed_zone(zone)) |
1d82de61 | 4077 | continue; |
7c954f6d | 4078 | |
1d82de61 MG |
4079 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); |
4080 | } | |
7c954f6d MG |
4081 | |
4082 | /* | |
1d82de61 MG |
4083 | * Historically care was taken to put equal pressure on all zones but |
4084 | * now pressure is applied based on node LRU order. | |
7c954f6d | 4085 | */ |
970a39a3 | 4086 | shrink_node(pgdat, sc); |
283aba9f | 4087 | |
7c954f6d | 4088 | /* |
1d82de61 MG |
4089 | * Fragmentation may mean that the system cannot be rebalanced for |
4090 | * high-order allocations. If twice the allocation size has been | |
4091 | * reclaimed then recheck watermarks only at order-0 to prevent | |
4092 | * excessive reclaim. Assume that a process requested a high-order | |
4093 | * can direct reclaim/compact. | |
7c954f6d | 4094 | */ |
9861a62c | 4095 | if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) |
1d82de61 | 4096 | sc->order = 0; |
7c954f6d | 4097 | |
b8e83b94 | 4098 | return sc->nr_scanned >= sc->nr_to_reclaim; |
75485363 MG |
4099 | } |
4100 | ||
c49c2c47 MG |
4101 | /* Page allocator PCP high watermark is lowered if reclaim is active. */ |
4102 | static inline void | |
4103 | update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) | |
4104 | { | |
4105 | int i; | |
4106 | struct zone *zone; | |
4107 | ||
4108 | for (i = 0; i <= highest_zoneidx; i++) { | |
4109 | zone = pgdat->node_zones + i; | |
4110 | ||
4111 | if (!managed_zone(zone)) | |
4112 | continue; | |
4113 | ||
4114 | if (active) | |
4115 | set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); | |
4116 | else | |
4117 | clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); | |
4118 | } | |
4119 | } | |
4120 | ||
4121 | static inline void | |
4122 | set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) | |
4123 | { | |
4124 | update_reclaim_active(pgdat, highest_zoneidx, true); | |
4125 | } | |
4126 | ||
4127 | static inline void | |
4128 | clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) | |
4129 | { | |
4130 | update_reclaim_active(pgdat, highest_zoneidx, false); | |
4131 | } | |
4132 | ||
1da177e4 | 4133 | /* |
1d82de61 MG |
4134 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones |
4135 | * that are eligible for use by the caller until at least one zone is | |
4136 | * balanced. | |
1da177e4 | 4137 | * |
1d82de61 | 4138 | * Returns the order kswapd finished reclaiming at. |
1da177e4 LT |
4139 | * |
4140 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
41858966 | 4141 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
8bb4e7a2 | 4142 | * found to have free_pages <= high_wmark_pages(zone), any page in that zone |
1d82de61 MG |
4143 | * or lower is eligible for reclaim until at least one usable zone is |
4144 | * balanced. | |
1da177e4 | 4145 | */ |
97a225e6 | 4146 | static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) |
1da177e4 | 4147 | { |
1da177e4 | 4148 | int i; |
0608f43d AM |
4149 | unsigned long nr_soft_reclaimed; |
4150 | unsigned long nr_soft_scanned; | |
eb414681 | 4151 | unsigned long pflags; |
1c30844d MG |
4152 | unsigned long nr_boost_reclaim; |
4153 | unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; | |
4154 | bool boosted; | |
1d82de61 | 4155 | struct zone *zone; |
179e9639 AM |
4156 | struct scan_control sc = { |
4157 | .gfp_mask = GFP_KERNEL, | |
ee814fe2 | 4158 | .order = order, |
a6dc60f8 | 4159 | .may_unmap = 1, |
179e9639 | 4160 | }; |
93781325 | 4161 | |
1732d2b0 | 4162 | set_task_reclaim_state(current, &sc.reclaim_state); |
eb414681 | 4163 | psi_memstall_enter(&pflags); |
4f3eaf45 | 4164 | __fs_reclaim_acquire(_THIS_IP_); |
93781325 | 4165 | |
f8891e5e | 4166 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 4167 | |
1c30844d MG |
4168 | /* |
4169 | * Account for the reclaim boost. Note that the zone boost is left in | |
4170 | * place so that parallel allocations that are near the watermark will | |
4171 | * stall or direct reclaim until kswapd is finished. | |
4172 | */ | |
4173 | nr_boost_reclaim = 0; | |
97a225e6 | 4174 | for (i = 0; i <= highest_zoneidx; i++) { |
1c30844d MG |
4175 | zone = pgdat->node_zones + i; |
4176 | if (!managed_zone(zone)) | |
4177 | continue; | |
4178 | ||
4179 | nr_boost_reclaim += zone->watermark_boost; | |
4180 | zone_boosts[i] = zone->watermark_boost; | |
4181 | } | |
4182 | boosted = nr_boost_reclaim; | |
4183 | ||
4184 | restart: | |
c49c2c47 | 4185 | set_reclaim_active(pgdat, highest_zoneidx); |
1c30844d | 4186 | sc.priority = DEF_PRIORITY; |
9e3b2f8c | 4187 | do { |
c73322d0 | 4188 | unsigned long nr_reclaimed = sc.nr_reclaimed; |
b8e83b94 | 4189 | bool raise_priority = true; |
1c30844d | 4190 | bool balanced; |
93781325 | 4191 | bool ret; |
b8e83b94 | 4192 | |
97a225e6 | 4193 | sc.reclaim_idx = highest_zoneidx; |
1da177e4 | 4194 | |
86c79f6b | 4195 | /* |
84c7a777 MG |
4196 | * If the number of buffer_heads exceeds the maximum allowed |
4197 | * then consider reclaiming from all zones. This has a dual | |
4198 | * purpose -- on 64-bit systems it is expected that | |
4199 | * buffer_heads are stripped during active rotation. On 32-bit | |
4200 | * systems, highmem pages can pin lowmem memory and shrinking | |
4201 | * buffers can relieve lowmem pressure. Reclaim may still not | |
4202 | * go ahead if all eligible zones for the original allocation | |
4203 | * request are balanced to avoid excessive reclaim from kswapd. | |
86c79f6b MG |
4204 | */ |
4205 | if (buffer_heads_over_limit) { | |
4206 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { | |
4207 | zone = pgdat->node_zones + i; | |
6aa303de | 4208 | if (!managed_zone(zone)) |
86c79f6b | 4209 | continue; |
cc715d99 | 4210 | |
970a39a3 | 4211 | sc.reclaim_idx = i; |
e1dbeda6 | 4212 | break; |
1da177e4 | 4213 | } |
1da177e4 | 4214 | } |
dafcb73e | 4215 | |
86c79f6b | 4216 | /* |
1c30844d MG |
4217 | * If the pgdat is imbalanced then ignore boosting and preserve |
4218 | * the watermarks for a later time and restart. Note that the | |
4219 | * zone watermarks will be still reset at the end of balancing | |
4220 | * on the grounds that the normal reclaim should be enough to | |
4221 | * re-evaluate if boosting is required when kswapd next wakes. | |
4222 | */ | |
97a225e6 | 4223 | balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); |
1c30844d MG |
4224 | if (!balanced && nr_boost_reclaim) { |
4225 | nr_boost_reclaim = 0; | |
4226 | goto restart; | |
4227 | } | |
4228 | ||
4229 | /* | |
4230 | * If boosting is not active then only reclaim if there are no | |
4231 | * eligible zones. Note that sc.reclaim_idx is not used as | |
4232 | * buffer_heads_over_limit may have adjusted it. | |
86c79f6b | 4233 | */ |
1c30844d | 4234 | if (!nr_boost_reclaim && balanced) |
e716f2eb | 4235 | goto out; |
e1dbeda6 | 4236 | |
1c30844d MG |
4237 | /* Limit the priority of boosting to avoid reclaim writeback */ |
4238 | if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) | |
4239 | raise_priority = false; | |
4240 | ||
4241 | /* | |
4242 | * Do not writeback or swap pages for boosted reclaim. The | |
4243 | * intent is to relieve pressure not issue sub-optimal IO | |
4244 | * from reclaim context. If no pages are reclaimed, the | |
4245 | * reclaim will be aborted. | |
4246 | */ | |
4247 | sc.may_writepage = !laptop_mode && !nr_boost_reclaim; | |
4248 | sc.may_swap = !nr_boost_reclaim; | |
1c30844d | 4249 | |
1d82de61 MG |
4250 | /* |
4251 | * Do some background aging of the anon list, to give | |
4252 | * pages a chance to be referenced before reclaiming. All | |
4253 | * pages are rotated regardless of classzone as this is | |
4254 | * about consistent aging. | |
4255 | */ | |
ef8f2327 | 4256 | age_active_anon(pgdat, &sc); |
1d82de61 | 4257 | |
b7ea3c41 MG |
4258 | /* |
4259 | * If we're getting trouble reclaiming, start doing writepage | |
4260 | * even in laptop mode. | |
4261 | */ | |
047d72c3 | 4262 | if (sc.priority < DEF_PRIORITY - 2) |
b7ea3c41 MG |
4263 | sc.may_writepage = 1; |
4264 | ||
1d82de61 MG |
4265 | /* Call soft limit reclaim before calling shrink_node. */ |
4266 | sc.nr_scanned = 0; | |
4267 | nr_soft_scanned = 0; | |
ef8f2327 | 4268 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, |
1d82de61 MG |
4269 | sc.gfp_mask, &nr_soft_scanned); |
4270 | sc.nr_reclaimed += nr_soft_reclaimed; | |
4271 | ||
1da177e4 | 4272 | /* |
1d82de61 MG |
4273 | * There should be no need to raise the scanning priority if |
4274 | * enough pages are already being scanned that that high | |
4275 | * watermark would be met at 100% efficiency. | |
1da177e4 | 4276 | */ |
970a39a3 | 4277 | if (kswapd_shrink_node(pgdat, &sc)) |
1d82de61 | 4278 | raise_priority = false; |
5515061d MG |
4279 | |
4280 | /* | |
4281 | * If the low watermark is met there is no need for processes | |
4282 | * to be throttled on pfmemalloc_wait as they should not be | |
4283 | * able to safely make forward progress. Wake them | |
4284 | */ | |
4285 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
c73322d0 | 4286 | allow_direct_reclaim(pgdat)) |
cfc51155 | 4287 | wake_up_all(&pgdat->pfmemalloc_wait); |
5515061d | 4288 | |
b8e83b94 | 4289 | /* Check if kswapd should be suspending */ |
4f3eaf45 | 4290 | __fs_reclaim_release(_THIS_IP_); |
93781325 | 4291 | ret = try_to_freeze(); |
4f3eaf45 | 4292 | __fs_reclaim_acquire(_THIS_IP_); |
93781325 | 4293 | if (ret || kthread_should_stop()) |
b8e83b94 | 4294 | break; |
8357376d | 4295 | |
73ce02e9 | 4296 | /* |
b8e83b94 MG |
4297 | * Raise priority if scanning rate is too low or there was no |
4298 | * progress in reclaiming pages | |
73ce02e9 | 4299 | */ |
c73322d0 | 4300 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; |
1c30844d MG |
4301 | nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); |
4302 | ||
4303 | /* | |
4304 | * If reclaim made no progress for a boost, stop reclaim as | |
4305 | * IO cannot be queued and it could be an infinite loop in | |
4306 | * extreme circumstances. | |
4307 | */ | |
4308 | if (nr_boost_reclaim && !nr_reclaimed) | |
4309 | break; | |
4310 | ||
c73322d0 | 4311 | if (raise_priority || !nr_reclaimed) |
b8e83b94 | 4312 | sc.priority--; |
1d82de61 | 4313 | } while (sc.priority >= 1); |
1da177e4 | 4314 | |
c73322d0 JW |
4315 | if (!sc.nr_reclaimed) |
4316 | pgdat->kswapd_failures++; | |
4317 | ||
b8e83b94 | 4318 | out: |
c49c2c47 MG |
4319 | clear_reclaim_active(pgdat, highest_zoneidx); |
4320 | ||
1c30844d MG |
4321 | /* If reclaim was boosted, account for the reclaim done in this pass */ |
4322 | if (boosted) { | |
4323 | unsigned long flags; | |
4324 | ||
97a225e6 | 4325 | for (i = 0; i <= highest_zoneidx; i++) { |
1c30844d MG |
4326 | if (!zone_boosts[i]) |
4327 | continue; | |
4328 | ||
4329 | /* Increments are under the zone lock */ | |
4330 | zone = pgdat->node_zones + i; | |
4331 | spin_lock_irqsave(&zone->lock, flags); | |
4332 | zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); | |
4333 | spin_unlock_irqrestore(&zone->lock, flags); | |
4334 | } | |
4335 | ||
4336 | /* | |
4337 | * As there is now likely space, wakeup kcompact to defragment | |
4338 | * pageblocks. | |
4339 | */ | |
97a225e6 | 4340 | wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); |
1c30844d MG |
4341 | } |
4342 | ||
2a2e4885 | 4343 | snapshot_refaults(NULL, pgdat); |
4f3eaf45 | 4344 | __fs_reclaim_release(_THIS_IP_); |
eb414681 | 4345 | psi_memstall_leave(&pflags); |
1732d2b0 | 4346 | set_task_reclaim_state(current, NULL); |
e5ca8071 | 4347 | |
0abdee2b | 4348 | /* |
1d82de61 MG |
4349 | * Return the order kswapd stopped reclaiming at as |
4350 | * prepare_kswapd_sleep() takes it into account. If another caller | |
4351 | * entered the allocator slow path while kswapd was awake, order will | |
4352 | * remain at the higher level. | |
0abdee2b | 4353 | */ |
1d82de61 | 4354 | return sc.order; |
1da177e4 LT |
4355 | } |
4356 | ||
e716f2eb | 4357 | /* |
97a225e6 JK |
4358 | * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to |
4359 | * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is | |
4360 | * not a valid index then either kswapd runs for first time or kswapd couldn't | |
4361 | * sleep after previous reclaim attempt (node is still unbalanced). In that | |
4362 | * case return the zone index of the previous kswapd reclaim cycle. | |
e716f2eb | 4363 | */ |
97a225e6 JK |
4364 | static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, |
4365 | enum zone_type prev_highest_zoneidx) | |
e716f2eb | 4366 | { |
97a225e6 | 4367 | enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); |
5644e1fb | 4368 | |
97a225e6 | 4369 | return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; |
e716f2eb MG |
4370 | } |
4371 | ||
38087d9b | 4372 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, |
97a225e6 | 4373 | unsigned int highest_zoneidx) |
f0bc0a60 KM |
4374 | { |
4375 | long remaining = 0; | |
4376 | DEFINE_WAIT(wait); | |
4377 | ||
4378 | if (freezing(current) || kthread_should_stop()) | |
4379 | return; | |
4380 | ||
4381 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
4382 | ||
333b0a45 SG |
4383 | /* |
4384 | * Try to sleep for a short interval. Note that kcompactd will only be | |
4385 | * woken if it is possible to sleep for a short interval. This is | |
4386 | * deliberate on the assumption that if reclaim cannot keep an | |
4387 | * eligible zone balanced that it's also unlikely that compaction will | |
4388 | * succeed. | |
4389 | */ | |
97a225e6 | 4390 | if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { |
fd901c95 VB |
4391 | /* |
4392 | * Compaction records what page blocks it recently failed to | |
4393 | * isolate pages from and skips them in the future scanning. | |
4394 | * When kswapd is going to sleep, it is reasonable to assume | |
4395 | * that pages and compaction may succeed so reset the cache. | |
4396 | */ | |
4397 | reset_isolation_suitable(pgdat); | |
4398 | ||
4399 | /* | |
4400 | * We have freed the memory, now we should compact it to make | |
4401 | * allocation of the requested order possible. | |
4402 | */ | |
97a225e6 | 4403 | wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); |
fd901c95 | 4404 | |
f0bc0a60 | 4405 | remaining = schedule_timeout(HZ/10); |
38087d9b MG |
4406 | |
4407 | /* | |
97a225e6 | 4408 | * If woken prematurely then reset kswapd_highest_zoneidx and |
38087d9b MG |
4409 | * order. The values will either be from a wakeup request or |
4410 | * the previous request that slept prematurely. | |
4411 | */ | |
4412 | if (remaining) { | |
97a225e6 JK |
4413 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, |
4414 | kswapd_highest_zoneidx(pgdat, | |
4415 | highest_zoneidx)); | |
5644e1fb QC |
4416 | |
4417 | if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) | |
4418 | WRITE_ONCE(pgdat->kswapd_order, reclaim_order); | |
38087d9b MG |
4419 | } |
4420 | ||
f0bc0a60 KM |
4421 | finish_wait(&pgdat->kswapd_wait, &wait); |
4422 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
4423 | } | |
4424 | ||
4425 | /* | |
4426 | * After a short sleep, check if it was a premature sleep. If not, then | |
4427 | * go fully to sleep until explicitly woken up. | |
4428 | */ | |
d9f21d42 | 4429 | if (!remaining && |
97a225e6 | 4430 | prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { |
f0bc0a60 KM |
4431 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
4432 | ||
4433 | /* | |
4434 | * vmstat counters are not perfectly accurate and the estimated | |
4435 | * value for counters such as NR_FREE_PAGES can deviate from the | |
4436 | * true value by nr_online_cpus * threshold. To avoid the zone | |
4437 | * watermarks being breached while under pressure, we reduce the | |
4438 | * per-cpu vmstat threshold while kswapd is awake and restore | |
4439 | * them before going back to sleep. | |
4440 | */ | |
4441 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
1c7e7f6c AK |
4442 | |
4443 | if (!kthread_should_stop()) | |
4444 | schedule(); | |
4445 | ||
f0bc0a60 KM |
4446 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
4447 | } else { | |
4448 | if (remaining) | |
4449 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
4450 | else | |
4451 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
4452 | } | |
4453 | finish_wait(&pgdat->kswapd_wait, &wait); | |
4454 | } | |
4455 | ||
1da177e4 LT |
4456 | /* |
4457 | * The background pageout daemon, started as a kernel thread | |
4f98a2fe | 4458 | * from the init process. |
1da177e4 LT |
4459 | * |
4460 | * This basically trickles out pages so that we have _some_ | |
4461 | * free memory available even if there is no other activity | |
4462 | * that frees anything up. This is needed for things like routing | |
4463 | * etc, where we otherwise might have all activity going on in | |
4464 | * asynchronous contexts that cannot page things out. | |
4465 | * | |
4466 | * If there are applications that are active memory-allocators | |
4467 | * (most normal use), this basically shouldn't matter. | |
4468 | */ | |
4469 | static int kswapd(void *p) | |
4470 | { | |
e716f2eb | 4471 | unsigned int alloc_order, reclaim_order; |
97a225e6 | 4472 | unsigned int highest_zoneidx = MAX_NR_ZONES - 1; |
68d68ff6 | 4473 | pg_data_t *pgdat = (pg_data_t *)p; |
1da177e4 | 4474 | struct task_struct *tsk = current; |
a70f7302 | 4475 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
1da177e4 | 4476 | |
174596a0 | 4477 | if (!cpumask_empty(cpumask)) |
c5f59f08 | 4478 | set_cpus_allowed_ptr(tsk, cpumask); |
1da177e4 LT |
4479 | |
4480 | /* | |
4481 | * Tell the memory management that we're a "memory allocator", | |
4482 | * and that if we need more memory we should get access to it | |
4483 | * regardless (see "__alloc_pages()"). "kswapd" should | |
4484 | * never get caught in the normal page freeing logic. | |
4485 | * | |
4486 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
4487 | * you need a small amount of memory in order to be able to | |
4488 | * page out something else, and this flag essentially protects | |
4489 | * us from recursively trying to free more memory as we're | |
4490 | * trying to free the first piece of memory in the first place). | |
4491 | */ | |
b698f0a1 | 4492 | tsk->flags |= PF_MEMALLOC | PF_KSWAPD; |
83144186 | 4493 | set_freezable(); |
1da177e4 | 4494 | |
5644e1fb | 4495 | WRITE_ONCE(pgdat->kswapd_order, 0); |
97a225e6 | 4496 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); |
8cd7c588 | 4497 | atomic_set(&pgdat->nr_writeback_throttled, 0); |
1da177e4 | 4498 | for ( ; ; ) { |
6f6313d4 | 4499 | bool ret; |
3e1d1d28 | 4500 | |
5644e1fb | 4501 | alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); |
97a225e6 JK |
4502 | highest_zoneidx = kswapd_highest_zoneidx(pgdat, |
4503 | highest_zoneidx); | |
e716f2eb | 4504 | |
38087d9b MG |
4505 | kswapd_try_sleep: |
4506 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, | |
97a225e6 | 4507 | highest_zoneidx); |
215ddd66 | 4508 | |
97a225e6 | 4509 | /* Read the new order and highest_zoneidx */ |
2b47a24c | 4510 | alloc_order = READ_ONCE(pgdat->kswapd_order); |
97a225e6 JK |
4511 | highest_zoneidx = kswapd_highest_zoneidx(pgdat, |
4512 | highest_zoneidx); | |
5644e1fb | 4513 | WRITE_ONCE(pgdat->kswapd_order, 0); |
97a225e6 | 4514 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); |
1da177e4 | 4515 | |
8fe23e05 DR |
4516 | ret = try_to_freeze(); |
4517 | if (kthread_should_stop()) | |
4518 | break; | |
4519 | ||
4520 | /* | |
4521 | * We can speed up thawing tasks if we don't call balance_pgdat | |
4522 | * after returning from the refrigerator | |
4523 | */ | |
38087d9b MG |
4524 | if (ret) |
4525 | continue; | |
4526 | ||
4527 | /* | |
4528 | * Reclaim begins at the requested order but if a high-order | |
4529 | * reclaim fails then kswapd falls back to reclaiming for | |
4530 | * order-0. If that happens, kswapd will consider sleeping | |
4531 | * for the order it finished reclaiming at (reclaim_order) | |
4532 | * but kcompactd is woken to compact for the original | |
4533 | * request (alloc_order). | |
4534 | */ | |
97a225e6 | 4535 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, |
e5146b12 | 4536 | alloc_order); |
97a225e6 JK |
4537 | reclaim_order = balance_pgdat(pgdat, alloc_order, |
4538 | highest_zoneidx); | |
38087d9b MG |
4539 | if (reclaim_order < alloc_order) |
4540 | goto kswapd_try_sleep; | |
1da177e4 | 4541 | } |
b0a8cc58 | 4542 | |
b698f0a1 | 4543 | tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); |
71abdc15 | 4544 | |
1da177e4 LT |
4545 | return 0; |
4546 | } | |
4547 | ||
4548 | /* | |
5ecd9d40 DR |
4549 | * A zone is low on free memory or too fragmented for high-order memory. If |
4550 | * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's | |
4551 | * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim | |
4552 | * has failed or is not needed, still wake up kcompactd if only compaction is | |
4553 | * needed. | |
1da177e4 | 4554 | */ |
5ecd9d40 | 4555 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, |
97a225e6 | 4556 | enum zone_type highest_zoneidx) |
1da177e4 LT |
4557 | { |
4558 | pg_data_t *pgdat; | |
5644e1fb | 4559 | enum zone_type curr_idx; |
1da177e4 | 4560 | |
6aa303de | 4561 | if (!managed_zone(zone)) |
1da177e4 LT |
4562 | return; |
4563 | ||
5ecd9d40 | 4564 | if (!cpuset_zone_allowed(zone, gfp_flags)) |
1da177e4 | 4565 | return; |
5644e1fb | 4566 | |
88f5acf8 | 4567 | pgdat = zone->zone_pgdat; |
97a225e6 | 4568 | curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); |
5644e1fb | 4569 | |
97a225e6 JK |
4570 | if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) |
4571 | WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); | |
5644e1fb QC |
4572 | |
4573 | if (READ_ONCE(pgdat->kswapd_order) < order) | |
4574 | WRITE_ONCE(pgdat->kswapd_order, order); | |
dffcac2c | 4575 | |
8d0986e2 | 4576 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 4577 | return; |
e1a55637 | 4578 | |
5ecd9d40 DR |
4579 | /* Hopeless node, leave it to direct reclaim if possible */ |
4580 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || | |
97a225e6 JK |
4581 | (pgdat_balanced(pgdat, order, highest_zoneidx) && |
4582 | !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { | |
5ecd9d40 DR |
4583 | /* |
4584 | * There may be plenty of free memory available, but it's too | |
4585 | * fragmented for high-order allocations. Wake up kcompactd | |
4586 | * and rely on compaction_suitable() to determine if it's | |
4587 | * needed. If it fails, it will defer subsequent attempts to | |
4588 | * ratelimit its work. | |
4589 | */ | |
4590 | if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) | |
97a225e6 | 4591 | wakeup_kcompactd(pgdat, order, highest_zoneidx); |
e716f2eb | 4592 | return; |
5ecd9d40 | 4593 | } |
88f5acf8 | 4594 | |
97a225e6 | 4595 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, |
5ecd9d40 | 4596 | gfp_flags); |
8d0986e2 | 4597 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
4598 | } |
4599 | ||
c6f37f12 | 4600 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 4601 | /* |
7b51755c | 4602 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
d6277db4 RW |
4603 | * freed pages. |
4604 | * | |
4605 | * Rather than trying to age LRUs the aim is to preserve the overall | |
4606 | * LRU order by reclaiming preferentially | |
4607 | * inactive > active > active referenced > active mapped | |
1da177e4 | 4608 | */ |
7b51755c | 4609 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
1da177e4 | 4610 | { |
d6277db4 | 4611 | struct scan_control sc = { |
ee814fe2 | 4612 | .nr_to_reclaim = nr_to_reclaim, |
7b51755c | 4613 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
b2e18757 | 4614 | .reclaim_idx = MAX_NR_ZONES - 1, |
ee814fe2 | 4615 | .priority = DEF_PRIORITY, |
d6277db4 | 4616 | .may_writepage = 1, |
ee814fe2 JW |
4617 | .may_unmap = 1, |
4618 | .may_swap = 1, | |
7b51755c | 4619 | .hibernation_mode = 1, |
1da177e4 | 4620 | }; |
a09ed5e0 | 4621 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); |
7b51755c | 4622 | unsigned long nr_reclaimed; |
499118e9 | 4623 | unsigned int noreclaim_flag; |
1da177e4 | 4624 | |
d92a8cfc | 4625 | fs_reclaim_acquire(sc.gfp_mask); |
93781325 | 4626 | noreclaim_flag = memalloc_noreclaim_save(); |
1732d2b0 | 4627 | set_task_reclaim_state(current, &sc.reclaim_state); |
d6277db4 | 4628 | |
3115cd91 | 4629 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
d979677c | 4630 | |
1732d2b0 | 4631 | set_task_reclaim_state(current, NULL); |
499118e9 | 4632 | memalloc_noreclaim_restore(noreclaim_flag); |
93781325 | 4633 | fs_reclaim_release(sc.gfp_mask); |
d6277db4 | 4634 | |
7b51755c | 4635 | return nr_reclaimed; |
1da177e4 | 4636 | } |
c6f37f12 | 4637 | #endif /* CONFIG_HIBERNATION */ |
1da177e4 | 4638 | |
3218ae14 YG |
4639 | /* |
4640 | * This kswapd start function will be called by init and node-hot-add. | |
3218ae14 | 4641 | */ |
b87c517a | 4642 | void kswapd_run(int nid) |
3218ae14 YG |
4643 | { |
4644 | pg_data_t *pgdat = NODE_DATA(nid); | |
3218ae14 YG |
4645 | |
4646 | if (pgdat->kswapd) | |
b87c517a | 4647 | return; |
3218ae14 YG |
4648 | |
4649 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
4650 | if (IS_ERR(pgdat->kswapd)) { | |
4651 | /* failure at boot is fatal */ | |
c6202adf | 4652 | BUG_ON(system_state < SYSTEM_RUNNING); |
d5dc0ad9 | 4653 | pr_err("Failed to start kswapd on node %d\n", nid); |
d72515b8 | 4654 | pgdat->kswapd = NULL; |
3218ae14 | 4655 | } |
3218ae14 YG |
4656 | } |
4657 | ||
8fe23e05 | 4658 | /* |
d8adde17 | 4659 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
e8da368a | 4660 | * be holding mem_hotplug_begin/done(). |
8fe23e05 DR |
4661 | */ |
4662 | void kswapd_stop(int nid) | |
4663 | { | |
4664 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
4665 | ||
d8adde17 | 4666 | if (kswapd) { |
8fe23e05 | 4667 | kthread_stop(kswapd); |
d8adde17 JL |
4668 | NODE_DATA(nid)->kswapd = NULL; |
4669 | } | |
8fe23e05 DR |
4670 | } |
4671 | ||
1da177e4 LT |
4672 | static int __init kswapd_init(void) |
4673 | { | |
6b700b5b | 4674 | int nid; |
69e05944 | 4675 | |
1da177e4 | 4676 | swap_setup(); |
48fb2e24 | 4677 | for_each_node_state(nid, N_MEMORY) |
3218ae14 | 4678 | kswapd_run(nid); |
1da177e4 LT |
4679 | return 0; |
4680 | } | |
4681 | ||
4682 | module_init(kswapd_init) | |
9eeff239 CL |
4683 | |
4684 | #ifdef CONFIG_NUMA | |
4685 | /* | |
a5f5f91d | 4686 | * Node reclaim mode |
9eeff239 | 4687 | * |
a5f5f91d | 4688 | * If non-zero call node_reclaim when the number of free pages falls below |
9eeff239 | 4689 | * the watermarks. |
9eeff239 | 4690 | */ |
a5f5f91d | 4691 | int node_reclaim_mode __read_mostly; |
9eeff239 | 4692 | |
a92f7126 | 4693 | /* |
a5f5f91d | 4694 | * Priority for NODE_RECLAIM. This determines the fraction of pages |
a92f7126 CL |
4695 | * of a node considered for each zone_reclaim. 4 scans 1/16th of |
4696 | * a zone. | |
4697 | */ | |
a5f5f91d | 4698 | #define NODE_RECLAIM_PRIORITY 4 |
a92f7126 | 4699 | |
9614634f | 4700 | /* |
a5f5f91d | 4701 | * Percentage of pages in a zone that must be unmapped for node_reclaim to |
9614634f CL |
4702 | * occur. |
4703 | */ | |
4704 | int sysctl_min_unmapped_ratio = 1; | |
4705 | ||
0ff38490 CL |
4706 | /* |
4707 | * If the number of slab pages in a zone grows beyond this percentage then | |
4708 | * slab reclaim needs to occur. | |
4709 | */ | |
4710 | int sysctl_min_slab_ratio = 5; | |
4711 | ||
11fb9989 | 4712 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) |
90afa5de | 4713 | { |
11fb9989 MG |
4714 | unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); |
4715 | unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + | |
4716 | node_page_state(pgdat, NR_ACTIVE_FILE); | |
90afa5de MG |
4717 | |
4718 | /* | |
4719 | * It's possible for there to be more file mapped pages than | |
4720 | * accounted for by the pages on the file LRU lists because | |
4721 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
4722 | */ | |
4723 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
4724 | } | |
4725 | ||
4726 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
a5f5f91d | 4727 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) |
90afa5de | 4728 | { |
d031a157 AM |
4729 | unsigned long nr_pagecache_reclaimable; |
4730 | unsigned long delta = 0; | |
90afa5de MG |
4731 | |
4732 | /* | |
95bbc0c7 | 4733 | * If RECLAIM_UNMAP is set, then all file pages are considered |
90afa5de | 4734 | * potentially reclaimable. Otherwise, we have to worry about |
11fb9989 | 4735 | * pages like swapcache and node_unmapped_file_pages() provides |
90afa5de MG |
4736 | * a better estimate |
4737 | */ | |
a5f5f91d MG |
4738 | if (node_reclaim_mode & RECLAIM_UNMAP) |
4739 | nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); | |
90afa5de | 4740 | else |
a5f5f91d | 4741 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); |
90afa5de MG |
4742 | |
4743 | /* If we can't clean pages, remove dirty pages from consideration */ | |
a5f5f91d MG |
4744 | if (!(node_reclaim_mode & RECLAIM_WRITE)) |
4745 | delta += node_page_state(pgdat, NR_FILE_DIRTY); | |
90afa5de MG |
4746 | |
4747 | /* Watch for any possible underflows due to delta */ | |
4748 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
4749 | delta = nr_pagecache_reclaimable; | |
4750 | ||
4751 | return nr_pagecache_reclaimable - delta; | |
4752 | } | |
4753 | ||
9eeff239 | 4754 | /* |
a5f5f91d | 4755 | * Try to free up some pages from this node through reclaim. |
9eeff239 | 4756 | */ |
a5f5f91d | 4757 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 4758 | { |
7fb2d46d | 4759 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 4760 | const unsigned long nr_pages = 1 << order; |
9eeff239 | 4761 | struct task_struct *p = current; |
499118e9 | 4762 | unsigned int noreclaim_flag; |
179e9639 | 4763 | struct scan_control sc = { |
62b726c1 | 4764 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
f2f43e56 | 4765 | .gfp_mask = current_gfp_context(gfp_mask), |
bd2f6199 | 4766 | .order = order, |
a5f5f91d MG |
4767 | .priority = NODE_RECLAIM_PRIORITY, |
4768 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), | |
4769 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), | |
ee814fe2 | 4770 | .may_swap = 1, |
f2f43e56 | 4771 | .reclaim_idx = gfp_zone(gfp_mask), |
179e9639 | 4772 | }; |
57f29762 | 4773 | unsigned long pflags; |
9eeff239 | 4774 | |
132bb8cf YS |
4775 | trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, |
4776 | sc.gfp_mask); | |
4777 | ||
9eeff239 | 4778 | cond_resched(); |
57f29762 | 4779 | psi_memstall_enter(&pflags); |
93781325 | 4780 | fs_reclaim_acquire(sc.gfp_mask); |
d4f7796e | 4781 | /* |
95bbc0c7 | 4782 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP |
d4f7796e | 4783 | */ |
499118e9 | 4784 | noreclaim_flag = memalloc_noreclaim_save(); |
1732d2b0 | 4785 | set_task_reclaim_state(p, &sc.reclaim_state); |
c84db23c | 4786 | |
d8ff6fde ML |
4787 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || |
4788 | node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { | |
0ff38490 | 4789 | /* |
894befec | 4790 | * Free memory by calling shrink node with increasing |
0ff38490 CL |
4791 | * priorities until we have enough memory freed. |
4792 | */ | |
0ff38490 | 4793 | do { |
970a39a3 | 4794 | shrink_node(pgdat, &sc); |
9e3b2f8c | 4795 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); |
0ff38490 | 4796 | } |
c84db23c | 4797 | |
1732d2b0 | 4798 | set_task_reclaim_state(p, NULL); |
499118e9 | 4799 | memalloc_noreclaim_restore(noreclaim_flag); |
93781325 | 4800 | fs_reclaim_release(sc.gfp_mask); |
57f29762 | 4801 | psi_memstall_leave(&pflags); |
132bb8cf YS |
4802 | |
4803 | trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); | |
4804 | ||
a79311c1 | 4805 | return sc.nr_reclaimed >= nr_pages; |
9eeff239 | 4806 | } |
179e9639 | 4807 | |
a5f5f91d | 4808 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
179e9639 | 4809 | { |
d773ed6b | 4810 | int ret; |
179e9639 AM |
4811 | |
4812 | /* | |
a5f5f91d | 4813 | * Node reclaim reclaims unmapped file backed pages and |
0ff38490 | 4814 | * slab pages if we are over the defined limits. |
34aa1330 | 4815 | * |
9614634f CL |
4816 | * A small portion of unmapped file backed pages is needed for |
4817 | * file I/O otherwise pages read by file I/O will be immediately | |
a5f5f91d MG |
4818 | * thrown out if the node is overallocated. So we do not reclaim |
4819 | * if less than a specified percentage of the node is used by | |
9614634f | 4820 | * unmapped file backed pages. |
179e9639 | 4821 | */ |
a5f5f91d | 4822 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && |
d42f3245 RG |
4823 | node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= |
4824 | pgdat->min_slab_pages) | |
a5f5f91d | 4825 | return NODE_RECLAIM_FULL; |
179e9639 AM |
4826 | |
4827 | /* | |
d773ed6b | 4828 | * Do not scan if the allocation should not be delayed. |
179e9639 | 4829 | */ |
d0164adc | 4830 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) |
a5f5f91d | 4831 | return NODE_RECLAIM_NOSCAN; |
179e9639 AM |
4832 | |
4833 | /* | |
a5f5f91d | 4834 | * Only run node reclaim on the local node or on nodes that do not |
179e9639 AM |
4835 | * have associated processors. This will favor the local processor |
4836 | * over remote processors and spread off node memory allocations | |
4837 | * as wide as possible. | |
4838 | */ | |
a5f5f91d MG |
4839 | if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) |
4840 | return NODE_RECLAIM_NOSCAN; | |
d773ed6b | 4841 | |
a5f5f91d MG |
4842 | if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) |
4843 | return NODE_RECLAIM_NOSCAN; | |
fa5e084e | 4844 | |
a5f5f91d MG |
4845 | ret = __node_reclaim(pgdat, gfp_mask, order); |
4846 | clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); | |
d773ed6b | 4847 | |
24cf7251 MG |
4848 | if (!ret) |
4849 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
4850 | ||
d773ed6b | 4851 | return ret; |
179e9639 | 4852 | } |
9eeff239 | 4853 | #endif |
894bc310 | 4854 | |
77414d19 MWO |
4855 | void check_move_unevictable_pages(struct pagevec *pvec) |
4856 | { | |
4857 | struct folio_batch fbatch; | |
4858 | unsigned i; | |
4859 | ||
4860 | folio_batch_init(&fbatch); | |
4861 | for (i = 0; i < pvec->nr; i++) { | |
4862 | struct page *page = pvec->pages[i]; | |
4863 | ||
4864 | if (PageTransTail(page)) | |
4865 | continue; | |
4866 | folio_batch_add(&fbatch, page_folio(page)); | |
4867 | } | |
4868 | check_move_unevictable_folios(&fbatch); | |
4869 | } | |
4870 | EXPORT_SYMBOL_GPL(check_move_unevictable_pages); | |
4871 | ||
89e004ea | 4872 | /** |
77414d19 MWO |
4873 | * check_move_unevictable_folios - Move evictable folios to appropriate zone |
4874 | * lru list | |
4875 | * @fbatch: Batch of lru folios to check. | |
89e004ea | 4876 | * |
77414d19 | 4877 | * Checks folios for evictability, if an evictable folio is in the unevictable |
64e3d12f | 4878 | * lru list, moves it to the appropriate evictable lru list. This function |
77414d19 | 4879 | * should be only used for lru folios. |
89e004ea | 4880 | */ |
77414d19 | 4881 | void check_move_unevictable_folios(struct folio_batch *fbatch) |
89e004ea | 4882 | { |
6168d0da | 4883 | struct lruvec *lruvec = NULL; |
24513264 HD |
4884 | int pgscanned = 0; |
4885 | int pgrescued = 0; | |
4886 | int i; | |
89e004ea | 4887 | |
77414d19 MWO |
4888 | for (i = 0; i < fbatch->nr; i++) { |
4889 | struct folio *folio = fbatch->folios[i]; | |
4890 | int nr_pages = folio_nr_pages(folio); | |
8d8869ca | 4891 | |
8d8869ca | 4892 | pgscanned += nr_pages; |
89e004ea | 4893 | |
77414d19 MWO |
4894 | /* block memcg migration while the folio moves between lrus */ |
4895 | if (!folio_test_clear_lru(folio)) | |
d25b5bd8 AS |
4896 | continue; |
4897 | ||
0de340cb | 4898 | lruvec = folio_lruvec_relock_irq(folio, lruvec); |
77414d19 MWO |
4899 | if (folio_evictable(folio) && folio_test_unevictable(folio)) { |
4900 | lruvec_del_folio(lruvec, folio); | |
4901 | folio_clear_unevictable(folio); | |
4902 | lruvec_add_folio(lruvec, folio); | |
8d8869ca | 4903 | pgrescued += nr_pages; |
89e004ea | 4904 | } |
77414d19 | 4905 | folio_set_lru(folio); |
24513264 | 4906 | } |
89e004ea | 4907 | |
6168d0da | 4908 | if (lruvec) { |
24513264 HD |
4909 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); |
4910 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
6168d0da | 4911 | unlock_page_lruvec_irq(lruvec); |
d25b5bd8 AS |
4912 | } else if (pgscanned) { |
4913 | count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
89e004ea | 4914 | } |
89e004ea | 4915 | } |
77414d19 | 4916 | EXPORT_SYMBOL_GPL(check_move_unevictable_folios); |