]> Git Repo - linux.git/blame - kernel/workqueue.c
Merge branch 'stable/for-linus-5.11' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / kernel / workqueue.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
c54fce6e 3 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 4 *
c54fce6e 5 * Copyright (C) 2002 Ingo Molnar
1da177e4 6 *
c54fce6e
TH
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <[email protected]>
9 * Andrew Morton
10 * Kai Petzke <[email protected]>
11 * Theodore Ts'o <[email protected]>
1da177e4 12 *
c54fce6e 13 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 14 *
c54fce6e
TH
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <[email protected]>
89ada679 17 *
c54fce6e
TH
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
b11895c4
L
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
c54fce6e 24 *
9a261491 25 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
26 */
27
9984de1a 28#include <linux/export.h>
1da177e4
LT
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
1fa44eca 39#include <linux/hardirq.h>
46934023 40#include <linux/mempolicy.h>
341a5958 41#include <linux/freezer.h>
d5abe669 42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
c98a9805 51#include <linux/sched/isolation.h>
62635ea8 52#include <linux/nmi.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 70 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
1258fae7 127 * A: wq_pool_attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
24acfb71 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
24acfb71 136 * RCU for reads.
5b95e1af 137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
24acfb71 140 * WR: wq->mutex protected for writes. RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
a9b8a985 148 raw_spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43 156 struct list_head worklist; /* L: list of pending works */
ea1abd61 157
5826cc8f
LJ
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
c5aa87bb 165 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4 170 struct list_head workers; /* A: attached workers */
60f5a4bc 171 struct completion *detach_completion; /* all workers detached */
e19e397a 172
7cda9aae 173 struct ida worker_ida; /* worker IDs for task name */
e19e397a 174
7a4e344c 175 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 178
e19e397a
TH
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
185
186 /*
24acfb71 187 * Destruction of pool is RCU protected to allow dereferences
29c91e99
TH
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
8b03ae3c
TH
191} ____cacheline_aligned_in_smp;
192
1da177e4 193/*
112202d9
TH
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
1da177e4 198 */
112202d9 199struct pool_workqueue {
bd7bdd43 200 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 201 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
8864b4e5 204 int refcnt; /* L: reference count */
73f53c4a
TH
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
1e19ffc6 207 int nr_active; /* L: nr of active works */
a0a1a5fd 208 int max_active; /* L: max active works */
1e19ffc6 209 struct list_head delayed_works; /* L: delayed works */
3c25a55d 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 211 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
24acfb71 216 * itself is also RCU protected so that the first pwq can be
b09f4fd3 217 * determined without grabbing wq->mutex.
8864b4e5
TH
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
e904e6c2 221} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 222
73f53c4a
TH
223/*
224 * Structure used to wait for workqueue flush.
225 */
226struct wq_flusher {
3c25a55d
LJ
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
229 struct completion done; /* flush completion */
230};
231
226223ab
TH
232struct wq_device;
233
1da177e4 234/*
c5aa87bb
TH
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
237 */
238struct workqueue_struct {
3c25a55d 239 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 240 struct list_head list; /* PR: list of all workqueues */
73f53c4a 241
3c25a55d
LJ
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
112202d9 245 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 249
2e109a28 250 struct list_head maydays; /* MD: pwqs requesting rescue */
30ae2fc0 251 struct worker *rescuer; /* MD: rescue worker */
e22bee78 252
87fc741e 253 int nr_drainers; /* WQ: drain in progress */
a357fc03 254 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 255
5b95e1af
LJ
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 258
226223ab
TH
259#ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261#endif
4e6045f1 262#ifdef CONFIG_LOCKDEP
669de8bd
BVA
263 char *lock_name;
264 struct lock_class_key key;
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
ecf6881f 267 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 268
e2dca7ad 269 /*
24acfb71
TG
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
e2dca7ad
TH
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
2728fd2f
TH
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
280};
281
e904e6c2
TH
282static struct kmem_cache *pwq_cache;
283
bce90380
TH
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
d55262c4
TH
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
cee22a15 290/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
863b710b 294static bool wq_online; /* can kworkers be created yet? */
3347fa09 295
bce90380
TH
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
4c16bd32
TH
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
68e13a67 301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 302static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
a9b8a985 303static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
d8bb65ab
SAS
304/* wait for manager to go away */
305static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
5bcab335 306
e2dca7ad 307static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 308static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 309
ef557180
MG
310/* PL: allowable cpus for unbound wqs and work items */
311static cpumask_var_t wq_unbound_cpumask;
312
313/* CPU where unbound work was last round robin scheduled from this CPU */
314static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 315
f303fccb
TH
316/*
317 * Local execution of unbound work items is no longer guaranteed. The
318 * following always forces round-robin CPU selection on unbound work items
319 * to uncover usages which depend on it.
320 */
321#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322static bool wq_debug_force_rr_cpu = true;
323#else
324static bool wq_debug_force_rr_cpu = false;
325#endif
326module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327
7d19c5ce 328/* the per-cpu worker pools */
25528213 329static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 330
68e13a67 331static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 332
68e13a67 333/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
334static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335
c5aa87bb 336/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
337static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338
8a2b7538
TH
339/* I: attributes used when instantiating ordered pools on demand */
340static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341
d320c038 342struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 343EXPORT_SYMBOL(system_wq);
044c782c 344struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 345EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 346struct workqueue_struct *system_long_wq __read_mostly;
d320c038 347EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 348struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 349EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 350struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 351EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
352struct workqueue_struct *system_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 356
7d19c5ce 357static int worker_thread(void *__worker);
6ba94429 358static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
c29eb853 359static void show_pwq(struct pool_workqueue *pwq);
7d19c5ce 360
97bd2347
TH
361#define CREATE_TRACE_POINTS
362#include <trace/events/workqueue.h>
363
68e13a67 364#define assert_rcu_or_pool_mutex() \
24acfb71 365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90 366 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 367 "RCU or wq_pool_mutex should be held")
5bcab335 368
5b95e1af 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
24acfb71 370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
f78f5b90
PM
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
24acfb71 373 "RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 374
f02ae73a
TH
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 378 (pool)++)
4ce62e9e 379
17116969
TH
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
611c92a0 383 * @pi: integer used for iteration
fa1b54e6 384 *
24acfb71 385 * This must be called either with wq_pool_mutex held or RCU read
68e13a67
LJ
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
17116969 391 */
611c92a0
TH
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 395 else
17116969 396
822d8405
TH
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
822d8405
TH
400 * @pool: worker_pool to iterate workers of
401 *
1258fae7 402 * This must be called with wq_pool_attach_mutex.
822d8405
TH
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
da028469
LJ
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
410 else
411
49e3cf44
TH
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
76af4d93 416 *
24acfb71 417 * This must be called either with wq->mutex held or RCU read locked.
794b18bc
TH
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
49e3cf44
TH
423 */
424#define for_each_pwq(pwq, wq) \
49e9d1a9 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
5a644662 426 lockdep_is_held(&(wq->mutex)))
f3421797 427
dc186ad7
TG
428#ifdef CONFIG_DEBUG_OBJECTS_WORK
429
f9e62f31 430static const struct debug_obj_descr work_debug_descr;
dc186ad7 431
99777288
SG
432static void *work_debug_hint(void *addr)
433{
434 return ((struct work_struct *) addr)->func;
435}
436
b9fdac7f
CD
437static bool work_is_static_object(void *addr)
438{
439 struct work_struct *work = addr;
440
441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
442}
443
dc186ad7
TG
444/*
445 * fixup_init is called when:
446 * - an active object is initialized
447 */
02a982a6 448static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
449{
450 struct work_struct *work = addr;
451
452 switch (state) {
453 case ODEBUG_STATE_ACTIVE:
454 cancel_work_sync(work);
455 debug_object_init(work, &work_debug_descr);
02a982a6 456 return true;
dc186ad7 457 default:
02a982a6 458 return false;
dc186ad7
TG
459 }
460}
461
dc186ad7
TG
462/*
463 * fixup_free is called when:
464 * - an active object is freed
465 */
02a982a6 466static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
467{
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_free(work, &work_debug_descr);
02a982a6 474 return true;
dc186ad7 475 default:
02a982a6 476 return false;
dc186ad7
TG
477 }
478}
479
f9e62f31 480static const struct debug_obj_descr work_debug_descr = {
dc186ad7 481 .name = "work_struct",
99777288 482 .debug_hint = work_debug_hint,
b9fdac7f 483 .is_static_object = work_is_static_object,
dc186ad7 484 .fixup_init = work_fixup_init,
dc186ad7
TG
485 .fixup_free = work_fixup_free,
486};
487
488static inline void debug_work_activate(struct work_struct *work)
489{
490 debug_object_activate(work, &work_debug_descr);
491}
492
493static inline void debug_work_deactivate(struct work_struct *work)
494{
495 debug_object_deactivate(work, &work_debug_descr);
496}
497
498void __init_work(struct work_struct *work, int onstack)
499{
500 if (onstack)
501 debug_object_init_on_stack(work, &work_debug_descr);
502 else
503 debug_object_init(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(__init_work);
506
507void destroy_work_on_stack(struct work_struct *work)
508{
509 debug_object_free(work, &work_debug_descr);
510}
511EXPORT_SYMBOL_GPL(destroy_work_on_stack);
512
ea2e64f2
TG
513void destroy_delayed_work_on_stack(struct delayed_work *work)
514{
515 destroy_timer_on_stack(&work->timer);
516 debug_object_free(&work->work, &work_debug_descr);
517}
518EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
519
dc186ad7
TG
520#else
521static inline void debug_work_activate(struct work_struct *work) { }
522static inline void debug_work_deactivate(struct work_struct *work) { }
523#endif
524
4e8b22bd
LB
525/**
526 * worker_pool_assign_id - allocate ID and assing it to @pool
527 * @pool: the pool pointer of interest
528 *
529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530 * successfully, -errno on failure.
531 */
9daf9e67
TH
532static int worker_pool_assign_id(struct worker_pool *pool)
533{
534 int ret;
535
68e13a67 536 lockdep_assert_held(&wq_pool_mutex);
5bcab335 537
4e8b22bd
LB
538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 GFP_KERNEL);
229641a6 540 if (ret >= 0) {
e68035fb 541 pool->id = ret;
229641a6
TH
542 return 0;
543 }
fa1b54e6 544 return ret;
7c3eed5c
TH
545}
546
df2d5ae4
TH
547/**
548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549 * @wq: the target workqueue
550 * @node: the node ID
551 *
24acfb71 552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
5b95e1af 553 * read locked.
df2d5ae4
TH
554 * If the pwq needs to be used beyond the locking in effect, the caller is
555 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
556 *
557 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
558 */
559static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 int node)
561{
5b95e1af 562 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
563
564 /*
565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 * delayed item is pending. The plan is to keep CPU -> NODE
567 * mapping valid and stable across CPU on/offlines. Once that
568 * happens, this workaround can be removed.
569 */
570 if (unlikely(node == NUMA_NO_NODE))
571 return wq->dfl_pwq;
572
df2d5ae4
TH
573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574}
575
73f53c4a
TH
576static unsigned int work_color_to_flags(int color)
577{
578 return color << WORK_STRUCT_COLOR_SHIFT;
579}
580
581static int get_work_color(struct work_struct *work)
582{
583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
585}
586
587static int work_next_color(int color)
588{
589 return (color + 1) % WORK_NR_COLORS;
590}
1da177e4 591
14441960 592/*
112202d9
TH
593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 595 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 596 *
112202d9
TH
597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
599 * work->data. These functions should only be called while the work is
600 * owned - ie. while the PENDING bit is set.
7a22ad75 601 *
112202d9 602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 603 * corresponding to a work. Pool is available once the work has been
112202d9 604 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 605 * available only while the work item is queued.
7a22ad75 606 *
bbb68dfa
TH
607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608 * canceled. While being canceled, a work item may have its PENDING set
609 * but stay off timer and worklist for arbitrarily long and nobody should
610 * try to steal the PENDING bit.
14441960 611 */
7a22ad75
TH
612static inline void set_work_data(struct work_struct *work, unsigned long data,
613 unsigned long flags)
365970a1 614{
6183c009 615 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
616 atomic_long_set(&work->data, data | flags | work_static(work));
617}
365970a1 618
112202d9 619static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
620 unsigned long extra_flags)
621{
112202d9
TH
622 set_work_data(work, (unsigned long)pwq,
623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
624}
625
4468a00f
LJ
626static void set_work_pool_and_keep_pending(struct work_struct *work,
627 int pool_id)
628{
629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 WORK_STRUCT_PENDING);
631}
632
7c3eed5c
TH
633static void set_work_pool_and_clear_pending(struct work_struct *work,
634 int pool_id)
7a22ad75 635{
23657bb1
TH
636 /*
637 * The following wmb is paired with the implied mb in
638 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 * here are visible to and precede any updates by the next PENDING
640 * owner.
641 */
642 smp_wmb();
7c3eed5c 643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
644 /*
645 * The following mb guarantees that previous clear of a PENDING bit
646 * will not be reordered with any speculative LOADS or STORES from
647 * work->current_func, which is executed afterwards. This possible
8bdc6201 648 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
649 * the same @work. E.g. consider this case:
650 *
651 * CPU#0 CPU#1
652 * ---------------------------- --------------------------------
653 *
654 * 1 STORE event_indicated
655 * 2 queue_work_on() {
656 * 3 test_and_set_bit(PENDING)
657 * 4 } set_..._and_clear_pending() {
658 * 5 set_work_data() # clear bit
659 * 6 smp_mb()
660 * 7 work->current_func() {
661 * 8 LOAD event_indicated
662 * }
663 *
664 * Without an explicit full barrier speculative LOAD on line 8 can
665 * be executed before CPU#0 does STORE on line 1. If that happens,
666 * CPU#0 observes the PENDING bit is still set and new execution of
667 * a @work is not queued in a hope, that CPU#1 will eventually
668 * finish the queued @work. Meanwhile CPU#1 does not see
669 * event_indicated is set, because speculative LOAD was executed
670 * before actual STORE.
671 */
672 smp_mb();
7a22ad75 673}
f756d5e2 674
7a22ad75 675static void clear_work_data(struct work_struct *work)
1da177e4 676{
7c3eed5c
TH
677 smp_wmb(); /* see set_work_pool_and_clear_pending() */
678 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
679}
680
112202d9 681static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 682{
e120153d 683 unsigned long data = atomic_long_read(&work->data);
7a22ad75 684
112202d9 685 if (data & WORK_STRUCT_PWQ)
e120153d
TH
686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 else
688 return NULL;
4d707b9f
ON
689}
690
7c3eed5c
TH
691/**
692 * get_work_pool - return the worker_pool a given work was associated with
693 * @work: the work item of interest
694 *
68e13a67 695 * Pools are created and destroyed under wq_pool_mutex, and allows read
24acfb71
TG
696 * access under RCU read lock. As such, this function should be
697 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
fa1b54e6
TH
698 *
699 * All fields of the returned pool are accessible as long as the above
700 * mentioned locking is in effect. If the returned pool needs to be used
701 * beyond the critical section, the caller is responsible for ensuring the
702 * returned pool is and stays online.
d185af30
YB
703 *
704 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
705 */
706static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 707{
e120153d 708 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 709 int pool_id;
7a22ad75 710
68e13a67 711 assert_rcu_or_pool_mutex();
fa1b54e6 712
112202d9
TH
713 if (data & WORK_STRUCT_PWQ)
714 return ((struct pool_workqueue *)
7c3eed5c 715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 716
7c3eed5c
TH
717 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
719 return NULL;
720
fa1b54e6 721 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
722}
723
724/**
725 * get_work_pool_id - return the worker pool ID a given work is associated with
726 * @work: the work item of interest
727 *
d185af30 728 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
729 * %WORK_OFFQ_POOL_NONE if none.
730 */
731static int get_work_pool_id(struct work_struct *work)
732{
54d5b7d0
LJ
733 unsigned long data = atomic_long_read(&work->data);
734
112202d9
TH
735 if (data & WORK_STRUCT_PWQ)
736 return ((struct pool_workqueue *)
54d5b7d0 737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 738
54d5b7d0 739 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
740}
741
bbb68dfa
TH
742static void mark_work_canceling(struct work_struct *work)
743{
7c3eed5c 744 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 745
7c3eed5c
TH
746 pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
748}
749
750static bool work_is_canceling(struct work_struct *work)
751{
752 unsigned long data = atomic_long_read(&work->data);
753
112202d9 754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
755}
756
e22bee78 757/*
3270476a
TH
758 * Policy functions. These define the policies on how the global worker
759 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 760 * they're being called with pool->lock held.
e22bee78
TH
761 */
762
63d95a91 763static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 764{
e19e397a 765 return !atomic_read(&pool->nr_running);
a848e3b6
ON
766}
767
4594bf15 768/*
e22bee78
TH
769 * Need to wake up a worker? Called from anything but currently
770 * running workers.
974271c4
TH
771 *
772 * Note that, because unbound workers never contribute to nr_running, this
706026c2 773 * function will always return %true for unbound pools as long as the
974271c4 774 * worklist isn't empty.
4594bf15 775 */
63d95a91 776static bool need_more_worker(struct worker_pool *pool)
365970a1 777{
63d95a91 778 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 779}
4594bf15 780
e22bee78 781/* Can I start working? Called from busy but !running workers. */
63d95a91 782static bool may_start_working(struct worker_pool *pool)
e22bee78 783{
63d95a91 784 return pool->nr_idle;
e22bee78
TH
785}
786
787/* Do I need to keep working? Called from currently running workers. */
63d95a91 788static bool keep_working(struct worker_pool *pool)
e22bee78 789{
e19e397a
TH
790 return !list_empty(&pool->worklist) &&
791 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
792}
793
794/* Do we need a new worker? Called from manager. */
63d95a91 795static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 796{
63d95a91 797 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 798}
365970a1 799
e22bee78 800/* Do we have too many workers and should some go away? */
63d95a91 801static bool too_many_workers(struct worker_pool *pool)
e22bee78 802{
692b4825 803 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
806
807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
808}
809
4d707b9f 810/*
e22bee78
TH
811 * Wake up functions.
812 */
813
1037de36
LJ
814/* Return the first idle worker. Safe with preemption disabled */
815static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 816{
63d95a91 817 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
818 return NULL;
819
63d95a91 820 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
821}
822
823/**
824 * wake_up_worker - wake up an idle worker
63d95a91 825 * @pool: worker pool to wake worker from
7e11629d 826 *
63d95a91 827 * Wake up the first idle worker of @pool.
7e11629d
TH
828 *
829 * CONTEXT:
a9b8a985 830 * raw_spin_lock_irq(pool->lock).
7e11629d 831 */
63d95a91 832static void wake_up_worker(struct worker_pool *pool)
7e11629d 833{
1037de36 834 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
835
836 if (likely(worker))
837 wake_up_process(worker->task);
838}
839
d302f017 840/**
6d25be57 841 * wq_worker_running - a worker is running again
e22bee78 842 * @task: task waking up
e22bee78 843 *
6d25be57 844 * This function is called when a worker returns from schedule()
e22bee78 845 */
6d25be57 846void wq_worker_running(struct task_struct *task)
e22bee78
TH
847{
848 struct worker *worker = kthread_data(task);
849
6d25be57
TG
850 if (!worker->sleeping)
851 return;
852 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 853 atomic_inc(&worker->pool->nr_running);
6d25be57 854 worker->sleeping = 0;
e22bee78
TH
855}
856
857/**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
e22bee78 860 *
6d25be57 861 * This function is called from schedule() when a busy worker is
62849a96
SAS
862 * going to sleep. Preemption needs to be disabled to protect ->sleeping
863 * assignment.
e22bee78 864 */
6d25be57 865void wq_worker_sleeping(struct task_struct *task)
e22bee78 866{
6d25be57 867 struct worker *next, *worker = kthread_data(task);
111c225a 868 struct worker_pool *pool;
e22bee78 869
111c225a
TH
870 /*
871 * Rescuers, which may not have all the fields set up like normal
872 * workers, also reach here, let's not access anything before
873 * checking NOT_RUNNING.
874 */
2d64672e 875 if (worker->flags & WORKER_NOT_RUNNING)
6d25be57 876 return;
e22bee78 877
111c225a 878 pool = worker->pool;
111c225a 879
62849a96
SAS
880 /* Return if preempted before wq_worker_running() was reached */
881 if (worker->sleeping)
6d25be57
TG
882 return;
883
884 worker->sleeping = 1;
a9b8a985 885 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
886
887 /*
888 * The counterpart of the following dec_and_test, implied mb,
889 * worklist not empty test sequence is in insert_work().
890 * Please read comment there.
891 *
628c78e7
TH
892 * NOT_RUNNING is clear. This means that we're bound to and
893 * running on the local cpu w/ rq lock held and preemption
894 * disabled, which in turn means that none else could be
d565ed63 895 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 896 * lock is safe.
e22bee78 897 */
e19e397a 898 if (atomic_dec_and_test(&pool->nr_running) &&
6d25be57
TG
899 !list_empty(&pool->worklist)) {
900 next = first_idle_worker(pool);
901 if (next)
902 wake_up_process(next->task);
903 }
a9b8a985 904 raw_spin_unlock_irq(&pool->lock);
e22bee78
TH
905}
906
1b69ac6b
JW
907/**
908 * wq_worker_last_func - retrieve worker's last work function
8194fe94 909 * @task: Task to retrieve last work function of.
1b69ac6b
JW
910 *
911 * Determine the last function a worker executed. This is called from
912 * the scheduler to get a worker's last known identity.
913 *
914 * CONTEXT:
a9b8a985 915 * raw_spin_lock_irq(rq->lock)
1b69ac6b 916 *
4b047002
JW
917 * This function is called during schedule() when a kworker is going
918 * to sleep. It's used by psi to identify aggregation workers during
919 * dequeuing, to allow periodic aggregation to shut-off when that
920 * worker is the last task in the system or cgroup to go to sleep.
921 *
922 * As this function doesn't involve any workqueue-related locking, it
923 * only returns stable values when called from inside the scheduler's
924 * queuing and dequeuing paths, when @task, which must be a kworker,
925 * is guaranteed to not be processing any works.
926 *
1b69ac6b
JW
927 * Return:
928 * The last work function %current executed as a worker, NULL if it
929 * hasn't executed any work yet.
930 */
931work_func_t wq_worker_last_func(struct task_struct *task)
932{
933 struct worker *worker = kthread_data(task);
934
935 return worker->last_func;
936}
937
e22bee78
TH
938/**
939 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 940 * @worker: self
d302f017 941 * @flags: flags to set
d302f017 942 *
228f1d00 943 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 944 *
cb444766 945 * CONTEXT:
a9b8a985 946 * raw_spin_lock_irq(pool->lock)
d302f017 947 */
228f1d00 948static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 949{
bd7bdd43 950 struct worker_pool *pool = worker->pool;
e22bee78 951
cb444766
TH
952 WARN_ON_ONCE(worker->task != current);
953
228f1d00 954 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
955 if ((flags & WORKER_NOT_RUNNING) &&
956 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 957 atomic_dec(&pool->nr_running);
e22bee78
TH
958 }
959
d302f017
TH
960 worker->flags |= flags;
961}
962
963/**
e22bee78 964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 965 * @worker: self
d302f017
TH
966 * @flags: flags to clear
967 *
e22bee78 968 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 969 *
cb444766 970 * CONTEXT:
a9b8a985 971 * raw_spin_lock_irq(pool->lock)
d302f017
TH
972 */
973static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974{
63d95a91 975 struct worker_pool *pool = worker->pool;
e22bee78
TH
976 unsigned int oflags = worker->flags;
977
cb444766
TH
978 WARN_ON_ONCE(worker->task != current);
979
d302f017 980 worker->flags &= ~flags;
e22bee78 981
42c025f3
TH
982 /*
983 * If transitioning out of NOT_RUNNING, increment nr_running. Note
984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
985 * of multiple flags, not a single flag.
986 */
e22bee78
TH
987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 989 atomic_inc(&pool->nr_running);
d302f017
TH
990}
991
8cca0eea
TH
992/**
993 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 994 * @pool: pool of interest
8cca0eea
TH
995 * @work: work to find worker for
996 *
c9e7cf27
TH
997 * Find a worker which is executing @work on @pool by searching
998 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
999 * to match, its current execution should match the address of @work and
1000 * its work function. This is to avoid unwanted dependency between
1001 * unrelated work executions through a work item being recycled while still
1002 * being executed.
1003 *
1004 * This is a bit tricky. A work item may be freed once its execution
1005 * starts and nothing prevents the freed area from being recycled for
1006 * another work item. If the same work item address ends up being reused
1007 * before the original execution finishes, workqueue will identify the
1008 * recycled work item as currently executing and make it wait until the
1009 * current execution finishes, introducing an unwanted dependency.
1010 *
c5aa87bb
TH
1011 * This function checks the work item address and work function to avoid
1012 * false positives. Note that this isn't complete as one may construct a
1013 * work function which can introduce dependency onto itself through a
1014 * recycled work item. Well, if somebody wants to shoot oneself in the
1015 * foot that badly, there's only so much we can do, and if such deadlock
1016 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1017 *
1018 * CONTEXT:
a9b8a985 1019 * raw_spin_lock_irq(pool->lock).
8cca0eea 1020 *
d185af30
YB
1021 * Return:
1022 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1023 * otherwise.
4d707b9f 1024 */
c9e7cf27 1025static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1026 struct work_struct *work)
4d707b9f 1027{
42f8570f 1028 struct worker *worker;
42f8570f 1029
b67bfe0d 1030 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1031 (unsigned long)work)
1032 if (worker->current_work == work &&
1033 worker->current_func == work->func)
42f8570f
SL
1034 return worker;
1035
1036 return NULL;
4d707b9f
ON
1037}
1038
bf4ede01
TH
1039/**
1040 * move_linked_works - move linked works to a list
1041 * @work: start of series of works to be scheduled
1042 * @head: target list to append @work to
402dd89d 1043 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1044 *
1045 * Schedule linked works starting from @work to @head. Work series to
1046 * be scheduled starts at @work and includes any consecutive work with
1047 * WORK_STRUCT_LINKED set in its predecessor.
1048 *
1049 * If @nextp is not NULL, it's updated to point to the next work of
1050 * the last scheduled work. This allows move_linked_works() to be
1051 * nested inside outer list_for_each_entry_safe().
1052 *
1053 * CONTEXT:
a9b8a985 1054 * raw_spin_lock_irq(pool->lock).
bf4ede01
TH
1055 */
1056static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 struct work_struct **nextp)
1058{
1059 struct work_struct *n;
1060
1061 /*
1062 * Linked worklist will always end before the end of the list,
1063 * use NULL for list head.
1064 */
1065 list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 list_move_tail(&work->entry, head);
1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 break;
1069 }
1070
1071 /*
1072 * If we're already inside safe list traversal and have moved
1073 * multiple works to the scheduled queue, the next position
1074 * needs to be updated.
1075 */
1076 if (nextp)
1077 *nextp = n;
1078}
1079
8864b4e5
TH
1080/**
1081 * get_pwq - get an extra reference on the specified pool_workqueue
1082 * @pwq: pool_workqueue to get
1083 *
1084 * Obtain an extra reference on @pwq. The caller should guarantee that
1085 * @pwq has positive refcnt and be holding the matching pool->lock.
1086 */
1087static void get_pwq(struct pool_workqueue *pwq)
1088{
1089 lockdep_assert_held(&pwq->pool->lock);
1090 WARN_ON_ONCE(pwq->refcnt <= 0);
1091 pwq->refcnt++;
1092}
1093
1094/**
1095 * put_pwq - put a pool_workqueue reference
1096 * @pwq: pool_workqueue to put
1097 *
1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1099 * destruction. The caller should be holding the matching pool->lock.
1100 */
1101static void put_pwq(struct pool_workqueue *pwq)
1102{
1103 lockdep_assert_held(&pwq->pool->lock);
1104 if (likely(--pwq->refcnt))
1105 return;
1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 return;
1108 /*
1109 * @pwq can't be released under pool->lock, bounce to
1110 * pwq_unbound_release_workfn(). This never recurses on the same
1111 * pool->lock as this path is taken only for unbound workqueues and
1112 * the release work item is scheduled on a per-cpu workqueue. To
1113 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 * subclass of 1 in get_unbound_pool().
1115 */
1116 schedule_work(&pwq->unbound_release_work);
1117}
1118
dce90d47
TH
1119/**
1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121 * @pwq: pool_workqueue to put (can be %NULL)
1122 *
1123 * put_pwq() with locking. This function also allows %NULL @pwq.
1124 */
1125static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126{
1127 if (pwq) {
1128 /*
24acfb71 1129 * As both pwqs and pools are RCU protected, the
dce90d47
TH
1130 * following lock operations are safe.
1131 */
a9b8a985 1132 raw_spin_lock_irq(&pwq->pool->lock);
dce90d47 1133 put_pwq(pwq);
a9b8a985 1134 raw_spin_unlock_irq(&pwq->pool->lock);
dce90d47
TH
1135 }
1136}
1137
112202d9 1138static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1139{
112202d9 1140 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1141
1142 trace_workqueue_activate_work(work);
82607adc
TH
1143 if (list_empty(&pwq->pool->worklist))
1144 pwq->pool->watchdog_ts = jiffies;
112202d9 1145 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1147 pwq->nr_active++;
bf4ede01
TH
1148}
1149
112202d9 1150static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1151{
112202d9 1152 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1153 struct work_struct, entry);
1154
112202d9 1155 pwq_activate_delayed_work(work);
3aa62497
LJ
1156}
1157
bf4ede01 1158/**
112202d9
TH
1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160 * @pwq: pwq of interest
bf4ede01 1161 * @color: color of work which left the queue
bf4ede01
TH
1162 *
1163 * A work either has completed or is removed from pending queue,
112202d9 1164 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1165 *
1166 * CONTEXT:
a9b8a985 1167 * raw_spin_lock_irq(pool->lock).
bf4ede01 1168 */
112202d9 1169static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1170{
8864b4e5 1171 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1172 if (color == WORK_NO_COLOR)
8864b4e5 1173 goto out_put;
bf4ede01 1174
112202d9 1175 pwq->nr_in_flight[color]--;
bf4ede01 1176
112202d9
TH
1177 pwq->nr_active--;
1178 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1179 /* one down, submit a delayed one */
112202d9
TH
1180 if (pwq->nr_active < pwq->max_active)
1181 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1182 }
1183
1184 /* is flush in progress and are we at the flushing tip? */
112202d9 1185 if (likely(pwq->flush_color != color))
8864b4e5 1186 goto out_put;
bf4ede01
TH
1187
1188 /* are there still in-flight works? */
112202d9 1189 if (pwq->nr_in_flight[color])
8864b4e5 1190 goto out_put;
bf4ede01 1191
112202d9
TH
1192 /* this pwq is done, clear flush_color */
1193 pwq->flush_color = -1;
bf4ede01
TH
1194
1195 /*
112202d9 1196 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1197 * will handle the rest.
1198 */
112202d9
TH
1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1201out_put:
1202 put_pwq(pwq);
bf4ede01
TH
1203}
1204
36e227d2 1205/**
bbb68dfa 1206 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1207 * @work: work item to steal
1208 * @is_dwork: @work is a delayed_work
bbb68dfa 1209 * @flags: place to store irq state
36e227d2
TH
1210 *
1211 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1212 * stable state - idle, on timer or on worklist.
36e227d2 1213 *
d185af30 1214 * Return:
3eb6b31b
MCC
1215 *
1216 * ======== ================================================================
36e227d2
TH
1217 * 1 if @work was pending and we successfully stole PENDING
1218 * 0 if @work was idle and we claimed PENDING
1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1220 * -ENOENT if someone else is canceling @work, this state may persist
1221 * for arbitrarily long
3eb6b31b 1222 * ======== ================================================================
36e227d2 1223 *
d185af30 1224 * Note:
bbb68dfa 1225 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1226 * interrupted while holding PENDING and @work off queue, irq must be
1227 * disabled on entry. This, combined with delayed_work->timer being
1228 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1229 *
1230 * On successful return, >= 0, irq is disabled and the caller is
1231 * responsible for releasing it using local_irq_restore(*@flags).
1232 *
e0aecdd8 1233 * This function is safe to call from any context including IRQ handler.
bf4ede01 1234 */
bbb68dfa
TH
1235static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1236 unsigned long *flags)
bf4ede01 1237{
d565ed63 1238 struct worker_pool *pool;
112202d9 1239 struct pool_workqueue *pwq;
bf4ede01 1240
bbb68dfa
TH
1241 local_irq_save(*flags);
1242
36e227d2
TH
1243 /* try to steal the timer if it exists */
1244 if (is_dwork) {
1245 struct delayed_work *dwork = to_delayed_work(work);
1246
e0aecdd8
TH
1247 /*
1248 * dwork->timer is irqsafe. If del_timer() fails, it's
1249 * guaranteed that the timer is not queued anywhere and not
1250 * running on the local CPU.
1251 */
36e227d2
TH
1252 if (likely(del_timer(&dwork->timer)))
1253 return 1;
1254 }
1255
1256 /* try to claim PENDING the normal way */
bf4ede01
TH
1257 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1258 return 0;
1259
24acfb71 1260 rcu_read_lock();
bf4ede01
TH
1261 /*
1262 * The queueing is in progress, or it is already queued. Try to
1263 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1264 */
d565ed63
TH
1265 pool = get_work_pool(work);
1266 if (!pool)
bbb68dfa 1267 goto fail;
bf4ede01 1268
a9b8a985 1269 raw_spin_lock(&pool->lock);
0b3dae68 1270 /*
112202d9
TH
1271 * work->data is guaranteed to point to pwq only while the work
1272 * item is queued on pwq->wq, and both updating work->data to point
1273 * to pwq on queueing and to pool on dequeueing are done under
1274 * pwq->pool->lock. This in turn guarantees that, if work->data
1275 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1276 * item is currently queued on that pool.
1277 */
112202d9
TH
1278 pwq = get_work_pwq(work);
1279 if (pwq && pwq->pool == pool) {
16062836
TH
1280 debug_work_deactivate(work);
1281
1282 /*
1283 * A delayed work item cannot be grabbed directly because
1284 * it might have linked NO_COLOR work items which, if left
112202d9 1285 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1286 * management later on and cause stall. Make sure the work
1287 * item is activated before grabbing.
1288 */
1289 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1290 pwq_activate_delayed_work(work);
16062836
TH
1291
1292 list_del_init(&work->entry);
9c34a704 1293 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1294
112202d9 1295 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1296 set_work_pool_and_keep_pending(work, pool->id);
1297
a9b8a985 1298 raw_spin_unlock(&pool->lock);
24acfb71 1299 rcu_read_unlock();
16062836 1300 return 1;
bf4ede01 1301 }
a9b8a985 1302 raw_spin_unlock(&pool->lock);
bbb68dfa 1303fail:
24acfb71 1304 rcu_read_unlock();
bbb68dfa
TH
1305 local_irq_restore(*flags);
1306 if (work_is_canceling(work))
1307 return -ENOENT;
1308 cpu_relax();
36e227d2 1309 return -EAGAIN;
bf4ede01
TH
1310}
1311
4690c4ab 1312/**
706026c2 1313 * insert_work - insert a work into a pool
112202d9 1314 * @pwq: pwq @work belongs to
4690c4ab
TH
1315 * @work: work to insert
1316 * @head: insertion point
1317 * @extra_flags: extra WORK_STRUCT_* flags to set
1318 *
112202d9 1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1320 * work_struct flags.
4690c4ab
TH
1321 *
1322 * CONTEXT:
a9b8a985 1323 * raw_spin_lock_irq(pool->lock).
4690c4ab 1324 */
112202d9
TH
1325static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 struct list_head *head, unsigned int extra_flags)
b89deed3 1327{
112202d9 1328 struct worker_pool *pool = pwq->pool;
e22bee78 1329
e89a85d6
WW
1330 /* record the work call stack in order to print it in KASAN reports */
1331 kasan_record_aux_stack(work);
1332
4690c4ab 1333 /* we own @work, set data and link */
112202d9 1334 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1335 list_add_tail(&work->entry, head);
8864b4e5 1336 get_pwq(pwq);
e22bee78
TH
1337
1338 /*
c5aa87bb
TH
1339 * Ensure either wq_worker_sleeping() sees the above
1340 * list_add_tail() or we see zero nr_running to avoid workers lying
1341 * around lazily while there are works to be processed.
e22bee78
TH
1342 */
1343 smp_mb();
1344
63d95a91
TH
1345 if (__need_more_worker(pool))
1346 wake_up_worker(pool);
b89deed3
ON
1347}
1348
c8efcc25
TH
1349/*
1350 * Test whether @work is being queued from another work executing on the
8d03ecfe 1351 * same workqueue.
c8efcc25
TH
1352 */
1353static bool is_chained_work(struct workqueue_struct *wq)
1354{
8d03ecfe
TH
1355 struct worker *worker;
1356
1357 worker = current_wq_worker();
1358 /*
bf393fd4 1359 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1360 * I'm @worker, it's safe to dereference it without locking.
1361 */
112202d9 1362 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1363}
1364
ef557180
MG
1365/*
1366 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1367 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1368 * avoid perturbing sensitive tasks.
1369 */
1370static int wq_select_unbound_cpu(int cpu)
1371{
f303fccb 1372 static bool printed_dbg_warning;
ef557180
MG
1373 int new_cpu;
1374
f303fccb
TH
1375 if (likely(!wq_debug_force_rr_cpu)) {
1376 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1377 return cpu;
1378 } else if (!printed_dbg_warning) {
1379 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1380 printed_dbg_warning = true;
1381 }
1382
ef557180
MG
1383 if (cpumask_empty(wq_unbound_cpumask))
1384 return cpu;
1385
1386 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1387 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1388 if (unlikely(new_cpu >= nr_cpu_ids)) {
1389 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1390 if (unlikely(new_cpu >= nr_cpu_ids))
1391 return cpu;
1392 }
1393 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1394
1395 return new_cpu;
1396}
1397
d84ff051 1398static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1399 struct work_struct *work)
1400{
112202d9 1401 struct pool_workqueue *pwq;
c9178087 1402 struct worker_pool *last_pool;
1e19ffc6 1403 struct list_head *worklist;
8a2e8e5d 1404 unsigned int work_flags;
b75cac93 1405 unsigned int req_cpu = cpu;
8930caba
TH
1406
1407 /*
1408 * While a work item is PENDING && off queue, a task trying to
1409 * steal the PENDING will busy-loop waiting for it to either get
1410 * queued or lose PENDING. Grabbing PENDING and queueing should
1411 * happen with IRQ disabled.
1412 */
8e8eb730 1413 lockdep_assert_irqs_disabled();
1da177e4 1414
dc186ad7 1415 debug_work_activate(work);
1e19ffc6 1416
9ef28a73 1417 /* if draining, only works from the same workqueue are allowed */
618b01eb 1418 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1419 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1420 return;
24acfb71 1421 rcu_read_lock();
9e8cd2f5 1422retry:
c9178087 1423 /* pwq which will be used unless @work is executing elsewhere */
aa202f1f
HD
1424 if (wq->flags & WQ_UNBOUND) {
1425 if (req_cpu == WORK_CPU_UNBOUND)
1426 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1427 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
aa202f1f
HD
1428 } else {
1429 if (req_cpu == WORK_CPU_UNBOUND)
1430 cpu = raw_smp_processor_id();
1431 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1432 }
dbf2576e 1433
c9178087
TH
1434 /*
1435 * If @work was previously on a different pool, it might still be
1436 * running there, in which case the work needs to be queued on that
1437 * pool to guarantee non-reentrancy.
1438 */
1439 last_pool = get_work_pool(work);
1440 if (last_pool && last_pool != pwq->pool) {
1441 struct worker *worker;
18aa9eff 1442
a9b8a985 1443 raw_spin_lock(&last_pool->lock);
18aa9eff 1444
c9178087 1445 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1446
c9178087
TH
1447 if (worker && worker->current_pwq->wq == wq) {
1448 pwq = worker->current_pwq;
8930caba 1449 } else {
c9178087 1450 /* meh... not running there, queue here */
a9b8a985
SAS
1451 raw_spin_unlock(&last_pool->lock);
1452 raw_spin_lock(&pwq->pool->lock);
8930caba 1453 }
f3421797 1454 } else {
a9b8a985 1455 raw_spin_lock(&pwq->pool->lock);
502ca9d8
TH
1456 }
1457
9e8cd2f5
TH
1458 /*
1459 * pwq is determined and locked. For unbound pools, we could have
1460 * raced with pwq release and it could already be dead. If its
1461 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1462 * without another pwq replacing it in the numa_pwq_tbl or while
1463 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1464 * make forward-progress.
1465 */
1466 if (unlikely(!pwq->refcnt)) {
1467 if (wq->flags & WQ_UNBOUND) {
a9b8a985 1468 raw_spin_unlock(&pwq->pool->lock);
9e8cd2f5
TH
1469 cpu_relax();
1470 goto retry;
1471 }
1472 /* oops */
1473 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1474 wq->name, cpu);
1475 }
1476
112202d9
TH
1477 /* pwq determined, queue */
1478 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1479
24acfb71
TG
1480 if (WARN_ON(!list_empty(&work->entry)))
1481 goto out;
1e19ffc6 1482
112202d9
TH
1483 pwq->nr_in_flight[pwq->work_color]++;
1484 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1485
112202d9 1486 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1487 trace_workqueue_activate_work(work);
112202d9
TH
1488 pwq->nr_active++;
1489 worklist = &pwq->pool->worklist;
82607adc
TH
1490 if (list_empty(worklist))
1491 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1492 } else {
1493 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1494 worklist = &pwq->delayed_works;
8a2e8e5d 1495 }
1e19ffc6 1496
112202d9 1497 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1498
24acfb71 1499out:
a9b8a985 1500 raw_spin_unlock(&pwq->pool->lock);
24acfb71 1501 rcu_read_unlock();
1da177e4
LT
1502}
1503
0fcb78c2 1504/**
c1a220e7
ZR
1505 * queue_work_on - queue work on specific cpu
1506 * @cpu: CPU number to execute work on
0fcb78c2
REB
1507 * @wq: workqueue to use
1508 * @work: work to queue
1509 *
c1a220e7
ZR
1510 * We queue the work to a specific CPU, the caller must ensure it
1511 * can't go away.
d185af30
YB
1512 *
1513 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1514 */
d4283e93
TH
1515bool queue_work_on(int cpu, struct workqueue_struct *wq,
1516 struct work_struct *work)
1da177e4 1517{
d4283e93 1518 bool ret = false;
8930caba 1519 unsigned long flags;
ef1ca236 1520
8930caba 1521 local_irq_save(flags);
c1a220e7 1522
22df02bb 1523 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1524 __queue_work(cpu, wq, work);
d4283e93 1525 ret = true;
c1a220e7 1526 }
ef1ca236 1527
8930caba 1528 local_irq_restore(flags);
1da177e4
LT
1529 return ret;
1530}
ad7b1f84 1531EXPORT_SYMBOL(queue_work_on);
1da177e4 1532
8204e0c1
AD
1533/**
1534 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1535 * @node: NUMA node ID that we want to select a CPU from
1536 *
1537 * This function will attempt to find a "random" cpu available on a given
1538 * node. If there are no CPUs available on the given node it will return
1539 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1540 * available CPU if we need to schedule this work.
1541 */
1542static int workqueue_select_cpu_near(int node)
1543{
1544 int cpu;
1545
1546 /* No point in doing this if NUMA isn't enabled for workqueues */
1547 if (!wq_numa_enabled)
1548 return WORK_CPU_UNBOUND;
1549
1550 /* Delay binding to CPU if node is not valid or online */
1551 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1552 return WORK_CPU_UNBOUND;
1553
1554 /* Use local node/cpu if we are already there */
1555 cpu = raw_smp_processor_id();
1556 if (node == cpu_to_node(cpu))
1557 return cpu;
1558
1559 /* Use "random" otherwise know as "first" online CPU of node */
1560 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1561
1562 /* If CPU is valid return that, otherwise just defer */
1563 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1564}
1565
1566/**
1567 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1568 * @node: NUMA node that we are targeting the work for
1569 * @wq: workqueue to use
1570 * @work: work to queue
1571 *
1572 * We queue the work to a "random" CPU within a given NUMA node. The basic
1573 * idea here is to provide a way to somehow associate work with a given
1574 * NUMA node.
1575 *
1576 * This function will only make a best effort attempt at getting this onto
1577 * the right NUMA node. If no node is requested or the requested node is
1578 * offline then we just fall back to standard queue_work behavior.
1579 *
1580 * Currently the "random" CPU ends up being the first available CPU in the
1581 * intersection of cpu_online_mask and the cpumask of the node, unless we
1582 * are running on the node. In that case we just use the current CPU.
1583 *
1584 * Return: %false if @work was already on a queue, %true otherwise.
1585 */
1586bool queue_work_node(int node, struct workqueue_struct *wq,
1587 struct work_struct *work)
1588{
1589 unsigned long flags;
1590 bool ret = false;
1591
1592 /*
1593 * This current implementation is specific to unbound workqueues.
1594 * Specifically we only return the first available CPU for a given
1595 * node instead of cycling through individual CPUs within the node.
1596 *
1597 * If this is used with a per-cpu workqueue then the logic in
1598 * workqueue_select_cpu_near would need to be updated to allow for
1599 * some round robin type logic.
1600 */
1601 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1602
1603 local_irq_save(flags);
1604
1605 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1606 int cpu = workqueue_select_cpu_near(node);
1607
1608 __queue_work(cpu, wq, work);
1609 ret = true;
1610 }
1611
1612 local_irq_restore(flags);
1613 return ret;
1614}
1615EXPORT_SYMBOL_GPL(queue_work_node);
1616
8c20feb6 1617void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1618{
8c20feb6 1619 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1620
e0aecdd8 1621 /* should have been called from irqsafe timer with irq already off */
60c057bc 1622 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1623}
1438ade5 1624EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1625
7beb2edf
TH
1626static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1627 struct delayed_work *dwork, unsigned long delay)
1da177e4 1628{
7beb2edf
TH
1629 struct timer_list *timer = &dwork->timer;
1630 struct work_struct *work = &dwork->work;
7beb2edf 1631
637fdbae 1632 WARN_ON_ONCE(!wq);
841b86f3 1633 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1634 WARN_ON_ONCE(timer_pending(timer));
1635 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1636
8852aac2
TH
1637 /*
1638 * If @delay is 0, queue @dwork->work immediately. This is for
1639 * both optimization and correctness. The earliest @timer can
1640 * expire is on the closest next tick and delayed_work users depend
1641 * on that there's no such delay when @delay is 0.
1642 */
1643 if (!delay) {
1644 __queue_work(cpu, wq, &dwork->work);
1645 return;
1646 }
1647
60c057bc 1648 dwork->wq = wq;
1265057f 1649 dwork->cpu = cpu;
7beb2edf
TH
1650 timer->expires = jiffies + delay;
1651
041bd12e
TH
1652 if (unlikely(cpu != WORK_CPU_UNBOUND))
1653 add_timer_on(timer, cpu);
1654 else
1655 add_timer(timer);
1da177e4
LT
1656}
1657
0fcb78c2
REB
1658/**
1659 * queue_delayed_work_on - queue work on specific CPU after delay
1660 * @cpu: CPU number to execute work on
1661 * @wq: workqueue to use
af9997e4 1662 * @dwork: work to queue
0fcb78c2
REB
1663 * @delay: number of jiffies to wait before queueing
1664 *
d185af30 1665 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1666 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1667 * execution.
0fcb78c2 1668 */
d4283e93
TH
1669bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1670 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1671{
52bad64d 1672 struct work_struct *work = &dwork->work;
d4283e93 1673 bool ret = false;
8930caba 1674 unsigned long flags;
7a6bc1cd 1675
8930caba
TH
1676 /* read the comment in __queue_work() */
1677 local_irq_save(flags);
7a6bc1cd 1678
22df02bb 1679 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1680 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1681 ret = true;
7a6bc1cd 1682 }
8a3e77cc 1683
8930caba 1684 local_irq_restore(flags);
7a6bc1cd
VP
1685 return ret;
1686}
ad7b1f84 1687EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1688
8376fe22
TH
1689/**
1690 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1691 * @cpu: CPU number to execute work on
1692 * @wq: workqueue to use
1693 * @dwork: work to queue
1694 * @delay: number of jiffies to wait before queueing
1695 *
1696 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1697 * modify @dwork's timer so that it expires after @delay. If @delay is
1698 * zero, @work is guaranteed to be scheduled immediately regardless of its
1699 * current state.
1700 *
d185af30 1701 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1702 * pending and its timer was modified.
1703 *
e0aecdd8 1704 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1705 * See try_to_grab_pending() for details.
1706 */
1707bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1708 struct delayed_work *dwork, unsigned long delay)
1709{
1710 unsigned long flags;
1711 int ret;
c7fc77f7 1712
8376fe22
TH
1713 do {
1714 ret = try_to_grab_pending(&dwork->work, true, &flags);
1715 } while (unlikely(ret == -EAGAIN));
63bc0362 1716
8376fe22
TH
1717 if (likely(ret >= 0)) {
1718 __queue_delayed_work(cpu, wq, dwork, delay);
1719 local_irq_restore(flags);
7a6bc1cd 1720 }
8376fe22
TH
1721
1722 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1723 return ret;
1724}
8376fe22
TH
1725EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1726
05f0fe6b
TH
1727static void rcu_work_rcufn(struct rcu_head *rcu)
1728{
1729 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1730
1731 /* read the comment in __queue_work() */
1732 local_irq_disable();
1733 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1734 local_irq_enable();
1735}
1736
1737/**
1738 * queue_rcu_work - queue work after a RCU grace period
1739 * @wq: workqueue to use
1740 * @rwork: work to queue
1741 *
1742 * Return: %false if @rwork was already pending, %true otherwise. Note
1743 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1744 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1745 * execution may happen before a full RCU grace period has passed.
1746 */
1747bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1748{
1749 struct work_struct *work = &rwork->work;
1750
1751 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1752 rwork->wq = wq;
1753 call_rcu(&rwork->rcu, rcu_work_rcufn);
1754 return true;
1755 }
1756
1757 return false;
1758}
1759EXPORT_SYMBOL(queue_rcu_work);
1760
c8e55f36
TH
1761/**
1762 * worker_enter_idle - enter idle state
1763 * @worker: worker which is entering idle state
1764 *
1765 * @worker is entering idle state. Update stats and idle timer if
1766 * necessary.
1767 *
1768 * LOCKING:
a9b8a985 1769 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1770 */
1771static void worker_enter_idle(struct worker *worker)
1da177e4 1772{
bd7bdd43 1773 struct worker_pool *pool = worker->pool;
c8e55f36 1774
6183c009
TH
1775 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1776 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1777 (worker->hentry.next || worker->hentry.pprev)))
1778 return;
c8e55f36 1779
051e1850 1780 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1781 worker->flags |= WORKER_IDLE;
bd7bdd43 1782 pool->nr_idle++;
e22bee78 1783 worker->last_active = jiffies;
c8e55f36
TH
1784
1785 /* idle_list is LIFO */
bd7bdd43 1786 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1787
628c78e7
TH
1788 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1789 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1790
544ecf31 1791 /*
e8b3f8db 1792 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1793 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1794 * nr_running, the warning may trigger spuriously. Check iff
1795 * unbind is not in progress.
544ecf31 1796 */
24647570 1797 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1798 pool->nr_workers == pool->nr_idle &&
e19e397a 1799 atomic_read(&pool->nr_running));
c8e55f36
TH
1800}
1801
1802/**
1803 * worker_leave_idle - leave idle state
1804 * @worker: worker which is leaving idle state
1805 *
1806 * @worker is leaving idle state. Update stats.
1807 *
1808 * LOCKING:
a9b8a985 1809 * raw_spin_lock_irq(pool->lock).
c8e55f36
TH
1810 */
1811static void worker_leave_idle(struct worker *worker)
1812{
bd7bdd43 1813 struct worker_pool *pool = worker->pool;
c8e55f36 1814
6183c009
TH
1815 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1816 return;
d302f017 1817 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1818 pool->nr_idle--;
c8e55f36
TH
1819 list_del_init(&worker->entry);
1820}
1821
f7537df5 1822static struct worker *alloc_worker(int node)
c34056a3
TH
1823{
1824 struct worker *worker;
1825
f7537df5 1826 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1827 if (worker) {
1828 INIT_LIST_HEAD(&worker->entry);
affee4b2 1829 INIT_LIST_HEAD(&worker->scheduled);
da028469 1830 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1831 /* on creation a worker is in !idle && prep state */
1832 worker->flags = WORKER_PREP;
c8e55f36 1833 }
c34056a3
TH
1834 return worker;
1835}
1836
4736cbf7
LJ
1837/**
1838 * worker_attach_to_pool() - attach a worker to a pool
1839 * @worker: worker to be attached
1840 * @pool: the target pool
1841 *
1842 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1843 * cpu-binding of @worker are kept coordinated with the pool across
1844 * cpu-[un]hotplugs.
1845 */
1846static void worker_attach_to_pool(struct worker *worker,
1847 struct worker_pool *pool)
1848{
1258fae7 1849 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1850
1851 /*
1852 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1853 * online CPUs. It'll be re-applied when any of the CPUs come up.
1854 */
1855 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1856
1857 /*
1258fae7
TH
1858 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1859 * stable across this function. See the comments above the flag
1860 * definition for details.
4736cbf7
LJ
1861 */
1862 if (pool->flags & POOL_DISASSOCIATED)
1863 worker->flags |= WORKER_UNBOUND;
1864
1865 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1866 worker->pool = pool;
4736cbf7 1867
1258fae7 1868 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1869}
1870
60f5a4bc
LJ
1871/**
1872 * worker_detach_from_pool() - detach a worker from its pool
1873 * @worker: worker which is attached to its pool
60f5a4bc 1874 *
4736cbf7
LJ
1875 * Undo the attaching which had been done in worker_attach_to_pool(). The
1876 * caller worker shouldn't access to the pool after detached except it has
1877 * other reference to the pool.
60f5a4bc 1878 */
a2d812a2 1879static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1880{
a2d812a2 1881 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1882 struct completion *detach_completion = NULL;
1883
1258fae7 1884 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1885
da028469 1886 list_del(&worker->node);
a2d812a2
TH
1887 worker->pool = NULL;
1888
da028469 1889 if (list_empty(&pool->workers))
60f5a4bc 1890 detach_completion = pool->detach_completion;
1258fae7 1891 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1892
b62c0751
LJ
1893 /* clear leftover flags without pool->lock after it is detached */
1894 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1895
60f5a4bc
LJ
1896 if (detach_completion)
1897 complete(detach_completion);
1898}
1899
c34056a3
TH
1900/**
1901 * create_worker - create a new workqueue worker
63d95a91 1902 * @pool: pool the new worker will belong to
c34056a3 1903 *
051e1850 1904 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1905 *
1906 * CONTEXT:
1907 * Might sleep. Does GFP_KERNEL allocations.
1908 *
d185af30 1909 * Return:
c34056a3
TH
1910 * Pointer to the newly created worker.
1911 */
bc2ae0f5 1912static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1913{
c34056a3 1914 struct worker *worker = NULL;
f3421797 1915 int id = -1;
e3c916a4 1916 char id_buf[16];
c34056a3 1917
7cda9aae
LJ
1918 /* ID is needed to determine kthread name */
1919 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1920 if (id < 0)
1921 goto fail;
c34056a3 1922
f7537df5 1923 worker = alloc_worker(pool->node);
c34056a3
TH
1924 if (!worker)
1925 goto fail;
1926
c34056a3
TH
1927 worker->id = id;
1928
29c91e99 1929 if (pool->cpu >= 0)
e3c916a4
TH
1930 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1931 pool->attrs->nice < 0 ? "H" : "");
f3421797 1932 else
e3c916a4
TH
1933 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1934
f3f90ad4 1935 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1936 "kworker/%s", id_buf);
c34056a3
TH
1937 if (IS_ERR(worker->task))
1938 goto fail;
1939
91151228 1940 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1941 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1942
da028469 1943 /* successful, attach the worker to the pool */
4736cbf7 1944 worker_attach_to_pool(worker, pool);
822d8405 1945
051e1850 1946 /* start the newly created worker */
a9b8a985 1947 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
1948 worker->pool->nr_workers++;
1949 worker_enter_idle(worker);
1950 wake_up_process(worker->task);
a9b8a985 1951 raw_spin_unlock_irq(&pool->lock);
051e1850 1952
c34056a3 1953 return worker;
822d8405 1954
c34056a3 1955fail:
9625ab17 1956 if (id >= 0)
7cda9aae 1957 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1958 kfree(worker);
1959 return NULL;
1960}
1961
c34056a3
TH
1962/**
1963 * destroy_worker - destroy a workqueue worker
1964 * @worker: worker to be destroyed
1965 *
73eb7fe7
LJ
1966 * Destroy @worker and adjust @pool stats accordingly. The worker should
1967 * be idle.
c8e55f36
TH
1968 *
1969 * CONTEXT:
a9b8a985 1970 * raw_spin_lock_irq(pool->lock).
c34056a3
TH
1971 */
1972static void destroy_worker(struct worker *worker)
1973{
bd7bdd43 1974 struct worker_pool *pool = worker->pool;
c34056a3 1975
cd549687
TH
1976 lockdep_assert_held(&pool->lock);
1977
c34056a3 1978 /* sanity check frenzy */
6183c009 1979 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1980 WARN_ON(!list_empty(&worker->scheduled)) ||
1981 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1982 return;
c34056a3 1983
73eb7fe7
LJ
1984 pool->nr_workers--;
1985 pool->nr_idle--;
5bdfff96 1986
c8e55f36 1987 list_del_init(&worker->entry);
cb444766 1988 worker->flags |= WORKER_DIE;
60f5a4bc 1989 wake_up_process(worker->task);
c34056a3
TH
1990}
1991
32a6c723 1992static void idle_worker_timeout(struct timer_list *t)
e22bee78 1993{
32a6c723 1994 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1995
a9b8a985 1996 raw_spin_lock_irq(&pool->lock);
e22bee78 1997
3347fc9f 1998 while (too_many_workers(pool)) {
e22bee78
TH
1999 struct worker *worker;
2000 unsigned long expires;
2001
2002 /* idle_list is kept in LIFO order, check the last one */
63d95a91 2003 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
2004 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2005
3347fc9f 2006 if (time_before(jiffies, expires)) {
63d95a91 2007 mod_timer(&pool->idle_timer, expires);
3347fc9f 2008 break;
d5abe669 2009 }
3347fc9f
LJ
2010
2011 destroy_worker(worker);
e22bee78
TH
2012 }
2013
a9b8a985 2014 raw_spin_unlock_irq(&pool->lock);
e22bee78 2015}
d5abe669 2016
493a1724 2017static void send_mayday(struct work_struct *work)
e22bee78 2018{
112202d9
TH
2019 struct pool_workqueue *pwq = get_work_pwq(work);
2020 struct workqueue_struct *wq = pwq->wq;
493a1724 2021
2e109a28 2022 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2023
493008a8 2024 if (!wq->rescuer)
493a1724 2025 return;
e22bee78
TH
2026
2027 /* mayday mayday mayday */
493a1724 2028 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2029 /*
2030 * If @pwq is for an unbound wq, its base ref may be put at
2031 * any time due to an attribute change. Pin @pwq until the
2032 * rescuer is done with it.
2033 */
2034 get_pwq(pwq);
493a1724 2035 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2036 wake_up_process(wq->rescuer->task);
493a1724 2037 }
e22bee78
TH
2038}
2039
32a6c723 2040static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2041{
32a6c723 2042 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2043 struct work_struct *work;
2044
a9b8a985
SAS
2045 raw_spin_lock_irq(&pool->lock);
2046 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2047
63d95a91 2048 if (need_to_create_worker(pool)) {
e22bee78
TH
2049 /*
2050 * We've been trying to create a new worker but
2051 * haven't been successful. We might be hitting an
2052 * allocation deadlock. Send distress signals to
2053 * rescuers.
2054 */
63d95a91 2055 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2056 send_mayday(work);
1da177e4 2057 }
e22bee78 2058
a9b8a985
SAS
2059 raw_spin_unlock(&wq_mayday_lock);
2060 raw_spin_unlock_irq(&pool->lock);
e22bee78 2061
63d95a91 2062 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2063}
2064
e22bee78
TH
2065/**
2066 * maybe_create_worker - create a new worker if necessary
63d95a91 2067 * @pool: pool to create a new worker for
e22bee78 2068 *
63d95a91 2069 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2070 * have at least one idle worker on return from this function. If
2071 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2072 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2073 * possible allocation deadlock.
2074 *
c5aa87bb
TH
2075 * On return, need_to_create_worker() is guaranteed to be %false and
2076 * may_start_working() %true.
e22bee78
TH
2077 *
2078 * LOCKING:
a9b8a985 2079 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2080 * multiple times. Does GFP_KERNEL allocations. Called only from
2081 * manager.
e22bee78 2082 */
29187a9e 2083static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2084__releases(&pool->lock)
2085__acquires(&pool->lock)
1da177e4 2086{
e22bee78 2087restart:
a9b8a985 2088 raw_spin_unlock_irq(&pool->lock);
9f9c2364 2089
e22bee78 2090 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2091 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2092
2093 while (true) {
051e1850 2094 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2095 break;
1da177e4 2096
e212f361 2097 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2098
63d95a91 2099 if (!need_to_create_worker(pool))
e22bee78
TH
2100 break;
2101 }
2102
63d95a91 2103 del_timer_sync(&pool->mayday_timer);
a9b8a985 2104 raw_spin_lock_irq(&pool->lock);
051e1850
LJ
2105 /*
2106 * This is necessary even after a new worker was just successfully
2107 * created as @pool->lock was dropped and the new worker might have
2108 * already become busy.
2109 */
63d95a91 2110 if (need_to_create_worker(pool))
e22bee78 2111 goto restart;
e22bee78
TH
2112}
2113
73f53c4a 2114/**
e22bee78
TH
2115 * manage_workers - manage worker pool
2116 * @worker: self
73f53c4a 2117 *
706026c2 2118 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2119 * to. At any given time, there can be only zero or one manager per
706026c2 2120 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2121 *
2122 * The caller can safely start processing works on false return. On
2123 * true return, it's guaranteed that need_to_create_worker() is false
2124 * and may_start_working() is true.
73f53c4a
TH
2125 *
2126 * CONTEXT:
a9b8a985 2127 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2128 * multiple times. Does GFP_KERNEL allocations.
2129 *
d185af30 2130 * Return:
29187a9e
TH
2131 * %false if the pool doesn't need management and the caller can safely
2132 * start processing works, %true if management function was performed and
2133 * the conditions that the caller verified before calling the function may
2134 * no longer be true.
73f53c4a 2135 */
e22bee78 2136static bool manage_workers(struct worker *worker)
73f53c4a 2137{
63d95a91 2138 struct worker_pool *pool = worker->pool;
73f53c4a 2139
692b4825 2140 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2141 return false;
692b4825
TH
2142
2143 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2144 pool->manager = worker;
1e19ffc6 2145
29187a9e 2146 maybe_create_worker(pool);
e22bee78 2147
2607d7a6 2148 pool->manager = NULL;
692b4825 2149 pool->flags &= ~POOL_MANAGER_ACTIVE;
d8bb65ab 2150 rcuwait_wake_up(&manager_wait);
29187a9e 2151 return true;
73f53c4a
TH
2152}
2153
a62428c0
TH
2154/**
2155 * process_one_work - process single work
c34056a3 2156 * @worker: self
a62428c0
TH
2157 * @work: work to process
2158 *
2159 * Process @work. This function contains all the logics necessary to
2160 * process a single work including synchronization against and
2161 * interaction with other workers on the same cpu, queueing and
2162 * flushing. As long as context requirement is met, any worker can
2163 * call this function to process a work.
2164 *
2165 * CONTEXT:
a9b8a985 2166 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2167 */
c34056a3 2168static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2169__releases(&pool->lock)
2170__acquires(&pool->lock)
a62428c0 2171{
112202d9 2172 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2173 struct worker_pool *pool = worker->pool;
112202d9 2174 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2175 int work_color;
7e11629d 2176 struct worker *collision;
a62428c0
TH
2177#ifdef CONFIG_LOCKDEP
2178 /*
2179 * It is permissible to free the struct work_struct from
2180 * inside the function that is called from it, this we need to
2181 * take into account for lockdep too. To avoid bogus "held
2182 * lock freed" warnings as well as problems when looking into
2183 * work->lockdep_map, make a copy and use that here.
2184 */
4d82a1de
PZ
2185 struct lockdep_map lockdep_map;
2186
2187 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2188#endif
807407c0 2189 /* ensure we're on the correct CPU */
85327af6 2190 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2191 raw_smp_processor_id() != pool->cpu);
25511a47 2192
7e11629d
TH
2193 /*
2194 * A single work shouldn't be executed concurrently by
2195 * multiple workers on a single cpu. Check whether anyone is
2196 * already processing the work. If so, defer the work to the
2197 * currently executing one.
2198 */
c9e7cf27 2199 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2200 if (unlikely(collision)) {
2201 move_linked_works(work, &collision->scheduled, NULL);
2202 return;
2203 }
2204
8930caba 2205 /* claim and dequeue */
a62428c0 2206 debug_work_deactivate(work);
c9e7cf27 2207 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2208 worker->current_work = work;
a2c1c57b 2209 worker->current_func = work->func;
112202d9 2210 worker->current_pwq = pwq;
73f53c4a 2211 work_color = get_work_color(work);
7a22ad75 2212
8bf89593
TH
2213 /*
2214 * Record wq name for cmdline and debug reporting, may get
2215 * overridden through set_worker_desc().
2216 */
2217 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2218
a62428c0
TH
2219 list_del_init(&work->entry);
2220
fb0e7beb 2221 /*
228f1d00
LJ
2222 * CPU intensive works don't participate in concurrency management.
2223 * They're the scheduler's responsibility. This takes @worker out
2224 * of concurrency management and the next code block will chain
2225 * execution of the pending work items.
fb0e7beb
TH
2226 */
2227 if (unlikely(cpu_intensive))
228f1d00 2228 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2229
974271c4 2230 /*
a489a03e
LJ
2231 * Wake up another worker if necessary. The condition is always
2232 * false for normal per-cpu workers since nr_running would always
2233 * be >= 1 at this point. This is used to chain execution of the
2234 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2235 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2236 */
a489a03e 2237 if (need_more_worker(pool))
63d95a91 2238 wake_up_worker(pool);
974271c4 2239
8930caba 2240 /*
7c3eed5c 2241 * Record the last pool and clear PENDING which should be the last
d565ed63 2242 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2243 * PENDING and queued state changes happen together while IRQ is
2244 * disabled.
8930caba 2245 */
7c3eed5c 2246 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2247
a9b8a985 2248 raw_spin_unlock_irq(&pool->lock);
a62428c0 2249
a1d14934 2250 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2251 lock_map_acquire(&lockdep_map);
e6f3faa7 2252 /*
f52be570
PZ
2253 * Strictly speaking we should mark the invariant state without holding
2254 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2255 *
2256 * However, that would result in:
2257 *
2258 * A(W1)
2259 * WFC(C)
2260 * A(W1)
2261 * C(C)
2262 *
2263 * Which would create W1->C->W1 dependencies, even though there is no
2264 * actual deadlock possible. There are two solutions, using a
2265 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2266 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2267 * these locks.
2268 *
2269 * AFAICT there is no possible deadlock scenario between the
2270 * flush_work() and complete() primitives (except for single-threaded
2271 * workqueues), so hiding them isn't a problem.
2272 */
f52be570 2273 lockdep_invariant_state(true);
e36c886a 2274 trace_workqueue_execute_start(work);
a2c1c57b 2275 worker->current_func(work);
e36c886a
AV
2276 /*
2277 * While we must be careful to not use "work" after this, the trace
2278 * point will only record its address.
2279 */
1c5da0ec 2280 trace_workqueue_execute_end(work, worker->current_func);
a62428c0 2281 lock_map_release(&lockdep_map);
112202d9 2282 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2283
2284 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c 2285 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
d75f773c 2286 " last function: %ps\n",
a2c1c57b
TH
2287 current->comm, preempt_count(), task_pid_nr(current),
2288 worker->current_func);
a62428c0
TH
2289 debug_show_held_locks(current);
2290 dump_stack();
2291 }
2292
b22ce278 2293 /*
025f50f3 2294 * The following prevents a kworker from hogging CPU on !PREEMPTION
b22ce278
TH
2295 * kernels, where a requeueing work item waiting for something to
2296 * happen could deadlock with stop_machine as such work item could
2297 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2298 * stop_machine. At the same time, report a quiescent RCU state so
2299 * the same condition doesn't freeze RCU.
b22ce278 2300 */
a7e6425e 2301 cond_resched();
b22ce278 2302
a9b8a985 2303 raw_spin_lock_irq(&pool->lock);
a62428c0 2304
fb0e7beb
TH
2305 /* clear cpu intensive status */
2306 if (unlikely(cpu_intensive))
2307 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2308
1b69ac6b
JW
2309 /* tag the worker for identification in schedule() */
2310 worker->last_func = worker->current_func;
2311
a62428c0 2312 /* we're done with it, release */
42f8570f 2313 hash_del(&worker->hentry);
c34056a3 2314 worker->current_work = NULL;
a2c1c57b 2315 worker->current_func = NULL;
112202d9
TH
2316 worker->current_pwq = NULL;
2317 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2318}
2319
affee4b2
TH
2320/**
2321 * process_scheduled_works - process scheduled works
2322 * @worker: self
2323 *
2324 * Process all scheduled works. Please note that the scheduled list
2325 * may change while processing a work, so this function repeatedly
2326 * fetches a work from the top and executes it.
2327 *
2328 * CONTEXT:
a9b8a985 2329 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2330 * multiple times.
2331 */
2332static void process_scheduled_works(struct worker *worker)
1da177e4 2333{
affee4b2
TH
2334 while (!list_empty(&worker->scheduled)) {
2335 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2336 struct work_struct, entry);
c34056a3 2337 process_one_work(worker, work);
1da177e4 2338 }
1da177e4
LT
2339}
2340
197f6acc
TH
2341static void set_pf_worker(bool val)
2342{
2343 mutex_lock(&wq_pool_attach_mutex);
2344 if (val)
2345 current->flags |= PF_WQ_WORKER;
2346 else
2347 current->flags &= ~PF_WQ_WORKER;
2348 mutex_unlock(&wq_pool_attach_mutex);
2349}
2350
4690c4ab
TH
2351/**
2352 * worker_thread - the worker thread function
c34056a3 2353 * @__worker: self
4690c4ab 2354 *
c5aa87bb
TH
2355 * The worker thread function. All workers belong to a worker_pool -
2356 * either a per-cpu one or dynamic unbound one. These workers process all
2357 * work items regardless of their specific target workqueue. The only
2358 * exception is work items which belong to workqueues with a rescuer which
2359 * will be explained in rescuer_thread().
d185af30
YB
2360 *
2361 * Return: 0
4690c4ab 2362 */
c34056a3 2363static int worker_thread(void *__worker)
1da177e4 2364{
c34056a3 2365 struct worker *worker = __worker;
bd7bdd43 2366 struct worker_pool *pool = worker->pool;
1da177e4 2367
e22bee78 2368 /* tell the scheduler that this is a workqueue worker */
197f6acc 2369 set_pf_worker(true);
c8e55f36 2370woke_up:
a9b8a985 2371 raw_spin_lock_irq(&pool->lock);
1da177e4 2372
a9ab775b
TH
2373 /* am I supposed to die? */
2374 if (unlikely(worker->flags & WORKER_DIE)) {
a9b8a985 2375 raw_spin_unlock_irq(&pool->lock);
a9ab775b 2376 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2377 set_pf_worker(false);
60f5a4bc
LJ
2378
2379 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2380 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2381 worker_detach_from_pool(worker);
60f5a4bc 2382 kfree(worker);
a9ab775b 2383 return 0;
c8e55f36 2384 }
affee4b2 2385
c8e55f36 2386 worker_leave_idle(worker);
db7bccf4 2387recheck:
e22bee78 2388 /* no more worker necessary? */
63d95a91 2389 if (!need_more_worker(pool))
e22bee78
TH
2390 goto sleep;
2391
2392 /* do we need to manage? */
63d95a91 2393 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2394 goto recheck;
2395
c8e55f36
TH
2396 /*
2397 * ->scheduled list can only be filled while a worker is
2398 * preparing to process a work or actually processing it.
2399 * Make sure nobody diddled with it while I was sleeping.
2400 */
6183c009 2401 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2402
e22bee78 2403 /*
a9ab775b
TH
2404 * Finish PREP stage. We're guaranteed to have at least one idle
2405 * worker or that someone else has already assumed the manager
2406 * role. This is where @worker starts participating in concurrency
2407 * management if applicable and concurrency management is restored
2408 * after being rebound. See rebind_workers() for details.
e22bee78 2409 */
a9ab775b 2410 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2411
2412 do {
c8e55f36 2413 struct work_struct *work =
bd7bdd43 2414 list_first_entry(&pool->worklist,
c8e55f36
TH
2415 struct work_struct, entry);
2416
82607adc
TH
2417 pool->watchdog_ts = jiffies;
2418
c8e55f36
TH
2419 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2420 /* optimization path, not strictly necessary */
2421 process_one_work(worker, work);
2422 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2423 process_scheduled_works(worker);
c8e55f36
TH
2424 } else {
2425 move_linked_works(work, &worker->scheduled, NULL);
2426 process_scheduled_works(worker);
affee4b2 2427 }
63d95a91 2428 } while (keep_working(pool));
e22bee78 2429
228f1d00 2430 worker_set_flags(worker, WORKER_PREP);
d313dd85 2431sleep:
c8e55f36 2432 /*
d565ed63
TH
2433 * pool->lock is held and there's no work to process and no need to
2434 * manage, sleep. Workers are woken up only while holding
2435 * pool->lock or from local cpu, so setting the current state
2436 * before releasing pool->lock is enough to prevent losing any
2437 * event.
c8e55f36
TH
2438 */
2439 worker_enter_idle(worker);
c5a94a61 2440 __set_current_state(TASK_IDLE);
a9b8a985 2441 raw_spin_unlock_irq(&pool->lock);
c8e55f36
TH
2442 schedule();
2443 goto woke_up;
1da177e4
LT
2444}
2445
e22bee78
TH
2446/**
2447 * rescuer_thread - the rescuer thread function
111c225a 2448 * @__rescuer: self
e22bee78
TH
2449 *
2450 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2451 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2452 *
706026c2 2453 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2454 * worker which uses GFP_KERNEL allocation which has slight chance of
2455 * developing into deadlock if some works currently on the same queue
2456 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2457 * the problem rescuer solves.
2458 *
706026c2
TH
2459 * When such condition is possible, the pool summons rescuers of all
2460 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2461 * those works so that forward progress can be guaranteed.
2462 *
2463 * This should happen rarely.
d185af30
YB
2464 *
2465 * Return: 0
e22bee78 2466 */
111c225a 2467static int rescuer_thread(void *__rescuer)
e22bee78 2468{
111c225a
TH
2469 struct worker *rescuer = __rescuer;
2470 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2471 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2472 bool should_stop;
e22bee78
TH
2473
2474 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2475
2476 /*
2477 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2478 * doesn't participate in concurrency management.
2479 */
197f6acc 2480 set_pf_worker(true);
e22bee78 2481repeat:
c5a94a61 2482 set_current_state(TASK_IDLE);
e22bee78 2483
4d595b86
LJ
2484 /*
2485 * By the time the rescuer is requested to stop, the workqueue
2486 * shouldn't have any work pending, but @wq->maydays may still have
2487 * pwq(s) queued. This can happen by non-rescuer workers consuming
2488 * all the work items before the rescuer got to them. Go through
2489 * @wq->maydays processing before acting on should_stop so that the
2490 * list is always empty on exit.
2491 */
2492 should_stop = kthread_should_stop();
e22bee78 2493
493a1724 2494 /* see whether any pwq is asking for help */
a9b8a985 2495 raw_spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2496
2497 while (!list_empty(&wq->maydays)) {
2498 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2499 struct pool_workqueue, mayday_node);
112202d9 2500 struct worker_pool *pool = pwq->pool;
e22bee78 2501 struct work_struct *work, *n;
82607adc 2502 bool first = true;
e22bee78
TH
2503
2504 __set_current_state(TASK_RUNNING);
493a1724
TH
2505 list_del_init(&pwq->mayday_node);
2506
a9b8a985 2507 raw_spin_unlock_irq(&wq_mayday_lock);
e22bee78 2508
51697d39
LJ
2509 worker_attach_to_pool(rescuer, pool);
2510
a9b8a985 2511 raw_spin_lock_irq(&pool->lock);
e22bee78
TH
2512
2513 /*
2514 * Slurp in all works issued via this workqueue and
2515 * process'em.
2516 */
0479c8c5 2517 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2518 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2519 if (get_work_pwq(work) == pwq) {
2520 if (first)
2521 pool->watchdog_ts = jiffies;
e22bee78 2522 move_linked_works(work, scheduled, &n);
82607adc
TH
2523 }
2524 first = false;
2525 }
e22bee78 2526
008847f6
N
2527 if (!list_empty(scheduled)) {
2528 process_scheduled_works(rescuer);
2529
2530 /*
2531 * The above execution of rescued work items could
2532 * have created more to rescue through
2533 * pwq_activate_first_delayed() or chained
2534 * queueing. Let's put @pwq back on mayday list so
2535 * that such back-to-back work items, which may be
2536 * being used to relieve memory pressure, don't
2537 * incur MAYDAY_INTERVAL delay inbetween.
2538 */
4f3f4cf3 2539 if (pwq->nr_active && need_to_create_worker(pool)) {
a9b8a985 2540 raw_spin_lock(&wq_mayday_lock);
e66b39af
TH
2541 /*
2542 * Queue iff we aren't racing destruction
2543 * and somebody else hasn't queued it already.
2544 */
2545 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2546 get_pwq(pwq);
2547 list_add_tail(&pwq->mayday_node, &wq->maydays);
2548 }
a9b8a985 2549 raw_spin_unlock(&wq_mayday_lock);
008847f6
N
2550 }
2551 }
7576958a 2552
77668c8b
LJ
2553 /*
2554 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2555 * go away while we're still attached to it.
77668c8b
LJ
2556 */
2557 put_pwq(pwq);
2558
7576958a 2559 /*
d8ca83e6 2560 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2561 * regular worker; otherwise, we end up with 0 concurrency
2562 * and stalling the execution.
2563 */
d8ca83e6 2564 if (need_more_worker(pool))
63d95a91 2565 wake_up_worker(pool);
7576958a 2566
a9b8a985 2567 raw_spin_unlock_irq(&pool->lock);
13b1d625 2568
a2d812a2 2569 worker_detach_from_pool(rescuer);
13b1d625 2570
a9b8a985 2571 raw_spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2572 }
2573
a9b8a985 2574 raw_spin_unlock_irq(&wq_mayday_lock);
493a1724 2575
4d595b86
LJ
2576 if (should_stop) {
2577 __set_current_state(TASK_RUNNING);
197f6acc 2578 set_pf_worker(false);
4d595b86
LJ
2579 return 0;
2580 }
2581
111c225a
TH
2582 /* rescuers should never participate in concurrency management */
2583 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2584 schedule();
2585 goto repeat;
1da177e4
LT
2586}
2587
fca839c0
TH
2588/**
2589 * check_flush_dependency - check for flush dependency sanity
2590 * @target_wq: workqueue being flushed
2591 * @target_work: work item being flushed (NULL for workqueue flushes)
2592 *
2593 * %current is trying to flush the whole @target_wq or @target_work on it.
2594 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2595 * reclaiming memory or running on a workqueue which doesn't have
2596 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2597 * a deadlock.
2598 */
2599static void check_flush_dependency(struct workqueue_struct *target_wq,
2600 struct work_struct *target_work)
2601{
2602 work_func_t target_func = target_work ? target_work->func : NULL;
2603 struct worker *worker;
2604
2605 if (target_wq->flags & WQ_MEM_RECLAIM)
2606 return;
2607
2608 worker = current_wq_worker();
2609
2610 WARN_ONCE(current->flags & PF_MEMALLOC,
d75f773c 2611 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0 2612 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2613 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2614 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
d75f773c 2615 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
fca839c0
TH
2616 worker->current_pwq->wq->name, worker->current_func,
2617 target_wq->name, target_func);
2618}
2619
fc2e4d70
ON
2620struct wq_barrier {
2621 struct work_struct work;
2622 struct completion done;
2607d7a6 2623 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2624};
2625
2626static void wq_barrier_func(struct work_struct *work)
2627{
2628 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2629 complete(&barr->done);
2630}
2631
4690c4ab
TH
2632/**
2633 * insert_wq_barrier - insert a barrier work
112202d9 2634 * @pwq: pwq to insert barrier into
4690c4ab 2635 * @barr: wq_barrier to insert
affee4b2
TH
2636 * @target: target work to attach @barr to
2637 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2638 *
affee4b2
TH
2639 * @barr is linked to @target such that @barr is completed only after
2640 * @target finishes execution. Please note that the ordering
2641 * guarantee is observed only with respect to @target and on the local
2642 * cpu.
2643 *
2644 * Currently, a queued barrier can't be canceled. This is because
2645 * try_to_grab_pending() can't determine whether the work to be
2646 * grabbed is at the head of the queue and thus can't clear LINKED
2647 * flag of the previous work while there must be a valid next work
2648 * after a work with LINKED flag set.
2649 *
2650 * Note that when @worker is non-NULL, @target may be modified
112202d9 2651 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2652 *
2653 * CONTEXT:
a9b8a985 2654 * raw_spin_lock_irq(pool->lock).
4690c4ab 2655 */
112202d9 2656static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2657 struct wq_barrier *barr,
2658 struct work_struct *target, struct worker *worker)
fc2e4d70 2659{
affee4b2
TH
2660 struct list_head *head;
2661 unsigned int linked = 0;
2662
dc186ad7 2663 /*
d565ed63 2664 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2665 * as we know for sure that this will not trigger any of the
2666 * checks and call back into the fixup functions where we
2667 * might deadlock.
2668 */
ca1cab37 2669 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2670 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2671
fd1a5b04
BP
2672 init_completion_map(&barr->done, &target->lockdep_map);
2673
2607d7a6 2674 barr->task = current;
83c22520 2675
affee4b2
TH
2676 /*
2677 * If @target is currently being executed, schedule the
2678 * barrier to the worker; otherwise, put it after @target.
2679 */
2680 if (worker)
2681 head = worker->scheduled.next;
2682 else {
2683 unsigned long *bits = work_data_bits(target);
2684
2685 head = target->entry.next;
2686 /* there can already be other linked works, inherit and set */
2687 linked = *bits & WORK_STRUCT_LINKED;
2688 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2689 }
2690
dc186ad7 2691 debug_work_activate(&barr->work);
112202d9 2692 insert_work(pwq, &barr->work, head,
affee4b2 2693 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2694}
2695
73f53c4a 2696/**
112202d9 2697 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2698 * @wq: workqueue being flushed
2699 * @flush_color: new flush color, < 0 for no-op
2700 * @work_color: new work color, < 0 for no-op
2701 *
112202d9 2702 * Prepare pwqs for workqueue flushing.
73f53c4a 2703 *
112202d9
TH
2704 * If @flush_color is non-negative, flush_color on all pwqs should be
2705 * -1. If no pwq has in-flight commands at the specified color, all
2706 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2707 * has in flight commands, its pwq->flush_color is set to
2708 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2709 * wakeup logic is armed and %true is returned.
2710 *
2711 * The caller should have initialized @wq->first_flusher prior to
2712 * calling this function with non-negative @flush_color. If
2713 * @flush_color is negative, no flush color update is done and %false
2714 * is returned.
2715 *
112202d9 2716 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2717 * work_color which is previous to @work_color and all will be
2718 * advanced to @work_color.
2719 *
2720 * CONTEXT:
3c25a55d 2721 * mutex_lock(wq->mutex).
73f53c4a 2722 *
d185af30 2723 * Return:
73f53c4a
TH
2724 * %true if @flush_color >= 0 and there's something to flush. %false
2725 * otherwise.
2726 */
112202d9 2727static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2728 int flush_color, int work_color)
1da177e4 2729{
73f53c4a 2730 bool wait = false;
49e3cf44 2731 struct pool_workqueue *pwq;
1da177e4 2732
73f53c4a 2733 if (flush_color >= 0) {
6183c009 2734 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2735 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2736 }
2355b70f 2737
49e3cf44 2738 for_each_pwq(pwq, wq) {
112202d9 2739 struct worker_pool *pool = pwq->pool;
fc2e4d70 2740
a9b8a985 2741 raw_spin_lock_irq(&pool->lock);
83c22520 2742
73f53c4a 2743 if (flush_color >= 0) {
6183c009 2744 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2745
112202d9
TH
2746 if (pwq->nr_in_flight[flush_color]) {
2747 pwq->flush_color = flush_color;
2748 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2749 wait = true;
2750 }
2751 }
1da177e4 2752
73f53c4a 2753 if (work_color >= 0) {
6183c009 2754 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2755 pwq->work_color = work_color;
73f53c4a 2756 }
1da177e4 2757
a9b8a985 2758 raw_spin_unlock_irq(&pool->lock);
1da177e4 2759 }
2355b70f 2760
112202d9 2761 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2762 complete(&wq->first_flusher->done);
14441960 2763
73f53c4a 2764 return wait;
1da177e4
LT
2765}
2766
0fcb78c2 2767/**
1da177e4 2768 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2769 * @wq: workqueue to flush
1da177e4 2770 *
c5aa87bb
TH
2771 * This function sleeps until all work items which were queued on entry
2772 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2773 */
7ad5b3a5 2774void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2775{
73f53c4a
TH
2776 struct wq_flusher this_flusher = {
2777 .list = LIST_HEAD_INIT(this_flusher.list),
2778 .flush_color = -1,
fd1a5b04 2779 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2780 };
2781 int next_color;
1da177e4 2782
3347fa09
TH
2783 if (WARN_ON(!wq_online))
2784 return;
2785
87915adc
JB
2786 lock_map_acquire(&wq->lockdep_map);
2787 lock_map_release(&wq->lockdep_map);
2788
3c25a55d 2789 mutex_lock(&wq->mutex);
73f53c4a
TH
2790
2791 /*
2792 * Start-to-wait phase
2793 */
2794 next_color = work_next_color(wq->work_color);
2795
2796 if (next_color != wq->flush_color) {
2797 /*
2798 * Color space is not full. The current work_color
2799 * becomes our flush_color and work_color is advanced
2800 * by one.
2801 */
6183c009 2802 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2803 this_flusher.flush_color = wq->work_color;
2804 wq->work_color = next_color;
2805
2806 if (!wq->first_flusher) {
2807 /* no flush in progress, become the first flusher */
6183c009 2808 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2809
2810 wq->first_flusher = &this_flusher;
2811
112202d9 2812 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2813 wq->work_color)) {
2814 /* nothing to flush, done */
2815 wq->flush_color = next_color;
2816 wq->first_flusher = NULL;
2817 goto out_unlock;
2818 }
2819 } else {
2820 /* wait in queue */
6183c009 2821 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2822 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2823 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2824 }
2825 } else {
2826 /*
2827 * Oops, color space is full, wait on overflow queue.
2828 * The next flush completion will assign us
2829 * flush_color and transfer to flusher_queue.
2830 */
2831 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2832 }
2833
fca839c0
TH
2834 check_flush_dependency(wq, NULL);
2835
3c25a55d 2836 mutex_unlock(&wq->mutex);
73f53c4a
TH
2837
2838 wait_for_completion(&this_flusher.done);
2839
2840 /*
2841 * Wake-up-and-cascade phase
2842 *
2843 * First flushers are responsible for cascading flushes and
2844 * handling overflow. Non-first flushers can simply return.
2845 */
00d5d15b 2846 if (READ_ONCE(wq->first_flusher) != &this_flusher)
73f53c4a
TH
2847 return;
2848
3c25a55d 2849 mutex_lock(&wq->mutex);
73f53c4a 2850
4ce48b37
TH
2851 /* we might have raced, check again with mutex held */
2852 if (wq->first_flusher != &this_flusher)
2853 goto out_unlock;
2854
00d5d15b 2855 WRITE_ONCE(wq->first_flusher, NULL);
73f53c4a 2856
6183c009
TH
2857 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2858 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2859
2860 while (true) {
2861 struct wq_flusher *next, *tmp;
2862
2863 /* complete all the flushers sharing the current flush color */
2864 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2865 if (next->flush_color != wq->flush_color)
2866 break;
2867 list_del_init(&next->list);
2868 complete(&next->done);
2869 }
2870
6183c009
TH
2871 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2872 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2873
2874 /* this flush_color is finished, advance by one */
2875 wq->flush_color = work_next_color(wq->flush_color);
2876
2877 /* one color has been freed, handle overflow queue */
2878 if (!list_empty(&wq->flusher_overflow)) {
2879 /*
2880 * Assign the same color to all overflowed
2881 * flushers, advance work_color and append to
2882 * flusher_queue. This is the start-to-wait
2883 * phase for these overflowed flushers.
2884 */
2885 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2886 tmp->flush_color = wq->work_color;
2887
2888 wq->work_color = work_next_color(wq->work_color);
2889
2890 list_splice_tail_init(&wq->flusher_overflow,
2891 &wq->flusher_queue);
112202d9 2892 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2893 }
2894
2895 if (list_empty(&wq->flusher_queue)) {
6183c009 2896 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2897 break;
2898 }
2899
2900 /*
2901 * Need to flush more colors. Make the next flusher
112202d9 2902 * the new first flusher and arm pwqs.
73f53c4a 2903 */
6183c009
TH
2904 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2905 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2906
2907 list_del_init(&next->list);
2908 wq->first_flusher = next;
2909
112202d9 2910 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2911 break;
2912
2913 /*
2914 * Meh... this color is already done, clear first
2915 * flusher and repeat cascading.
2916 */
2917 wq->first_flusher = NULL;
2918 }
2919
2920out_unlock:
3c25a55d 2921 mutex_unlock(&wq->mutex);
1da177e4 2922}
1dadafa8 2923EXPORT_SYMBOL(flush_workqueue);
1da177e4 2924
9c5a2ba7
TH
2925/**
2926 * drain_workqueue - drain a workqueue
2927 * @wq: workqueue to drain
2928 *
2929 * Wait until the workqueue becomes empty. While draining is in progress,
2930 * only chain queueing is allowed. IOW, only currently pending or running
2931 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2932 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2933 * by the depth of chaining and should be relatively short. Whine if it
2934 * takes too long.
2935 */
2936void drain_workqueue(struct workqueue_struct *wq)
2937{
2938 unsigned int flush_cnt = 0;
49e3cf44 2939 struct pool_workqueue *pwq;
9c5a2ba7
TH
2940
2941 /*
2942 * __queue_work() needs to test whether there are drainers, is much
2943 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2944 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2945 */
87fc741e 2946 mutex_lock(&wq->mutex);
9c5a2ba7 2947 if (!wq->nr_drainers++)
618b01eb 2948 wq->flags |= __WQ_DRAINING;
87fc741e 2949 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2950reflush:
2951 flush_workqueue(wq);
2952
b09f4fd3 2953 mutex_lock(&wq->mutex);
76af4d93 2954
49e3cf44 2955 for_each_pwq(pwq, wq) {
fa2563e4 2956 bool drained;
9c5a2ba7 2957
a9b8a985 2958 raw_spin_lock_irq(&pwq->pool->lock);
112202d9 2959 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
a9b8a985 2960 raw_spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2961
2962 if (drained)
9c5a2ba7
TH
2963 continue;
2964
2965 if (++flush_cnt == 10 ||
2966 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2967 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2968 wq->name, flush_cnt);
76af4d93 2969
b09f4fd3 2970 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2971 goto reflush;
2972 }
2973
9c5a2ba7 2974 if (!--wq->nr_drainers)
618b01eb 2975 wq->flags &= ~__WQ_DRAINING;
87fc741e 2976 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2977}
2978EXPORT_SYMBOL_GPL(drain_workqueue);
2979
d6e89786
JB
2980static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2981 bool from_cancel)
db700897 2982{
affee4b2 2983 struct worker *worker = NULL;
c9e7cf27 2984 struct worker_pool *pool;
112202d9 2985 struct pool_workqueue *pwq;
db700897
ON
2986
2987 might_sleep();
fa1b54e6 2988
24acfb71 2989 rcu_read_lock();
c9e7cf27 2990 pool = get_work_pool(work);
fa1b54e6 2991 if (!pool) {
24acfb71 2992 rcu_read_unlock();
baf59022 2993 return false;
fa1b54e6 2994 }
db700897 2995
a9b8a985 2996 raw_spin_lock_irq(&pool->lock);
0b3dae68 2997 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2998 pwq = get_work_pwq(work);
2999 if (pwq) {
3000 if (unlikely(pwq->pool != pool))
4690c4ab 3001 goto already_gone;
606a5020 3002 } else {
c9e7cf27 3003 worker = find_worker_executing_work(pool, work);
affee4b2 3004 if (!worker)
4690c4ab 3005 goto already_gone;
112202d9 3006 pwq = worker->current_pwq;
606a5020 3007 }
db700897 3008
fca839c0
TH
3009 check_flush_dependency(pwq->wq, work);
3010
112202d9 3011 insert_wq_barrier(pwq, barr, work, worker);
a9b8a985 3012 raw_spin_unlock_irq(&pool->lock);
7a22ad75 3013
e159489b 3014 /*
a1d14934
PZ
3015 * Force a lock recursion deadlock when using flush_work() inside a
3016 * single-threaded or rescuer equipped workqueue.
3017 *
3018 * For single threaded workqueues the deadlock happens when the work
3019 * is after the work issuing the flush_work(). For rescuer equipped
3020 * workqueues the deadlock happens when the rescuer stalls, blocking
3021 * forward progress.
e159489b 3022 */
d6e89786
JB
3023 if (!from_cancel &&
3024 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3025 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3026 lock_map_release(&pwq->wq->lockdep_map);
3027 }
24acfb71 3028 rcu_read_unlock();
401a8d04 3029 return true;
4690c4ab 3030already_gone:
a9b8a985 3031 raw_spin_unlock_irq(&pool->lock);
24acfb71 3032 rcu_read_unlock();
401a8d04 3033 return false;
db700897 3034}
baf59022 3035
d6e89786
JB
3036static bool __flush_work(struct work_struct *work, bool from_cancel)
3037{
3038 struct wq_barrier barr;
3039
3040 if (WARN_ON(!wq_online))
3041 return false;
3042
4d43d395
TH
3043 if (WARN_ON(!work->func))
3044 return false;
3045
87915adc
JB
3046 if (!from_cancel) {
3047 lock_map_acquire(&work->lockdep_map);
3048 lock_map_release(&work->lockdep_map);
3049 }
3050
d6e89786
JB
3051 if (start_flush_work(work, &barr, from_cancel)) {
3052 wait_for_completion(&barr.done);
3053 destroy_work_on_stack(&barr.work);
3054 return true;
3055 } else {
3056 return false;
3057 }
3058}
3059
baf59022
TH
3060/**
3061 * flush_work - wait for a work to finish executing the last queueing instance
3062 * @work: the work to flush
3063 *
606a5020
TH
3064 * Wait until @work has finished execution. @work is guaranteed to be idle
3065 * on return if it hasn't been requeued since flush started.
baf59022 3066 *
d185af30 3067 * Return:
baf59022
TH
3068 * %true if flush_work() waited for the work to finish execution,
3069 * %false if it was already idle.
3070 */
3071bool flush_work(struct work_struct *work)
3072{
d6e89786 3073 return __flush_work(work, false);
6e84d644 3074}
606a5020 3075EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3076
8603e1b3 3077struct cwt_wait {
ac6424b9 3078 wait_queue_entry_t wait;
8603e1b3
TH
3079 struct work_struct *work;
3080};
3081
ac6424b9 3082static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3083{
3084 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3085
3086 if (cwait->work != key)
3087 return 0;
3088 return autoremove_wake_function(wait, mode, sync, key);
3089}
3090
36e227d2 3091static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3092{
8603e1b3 3093 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3094 unsigned long flags;
1f1f642e
ON
3095 int ret;
3096
3097 do {
bbb68dfa
TH
3098 ret = try_to_grab_pending(work, is_dwork, &flags);
3099 /*
8603e1b3
TH
3100 * If someone else is already canceling, wait for it to
3101 * finish. flush_work() doesn't work for PREEMPT_NONE
3102 * because we may get scheduled between @work's completion
3103 * and the other canceling task resuming and clearing
3104 * CANCELING - flush_work() will return false immediately
3105 * as @work is no longer busy, try_to_grab_pending() will
3106 * return -ENOENT as @work is still being canceled and the
3107 * other canceling task won't be able to clear CANCELING as
3108 * we're hogging the CPU.
3109 *
3110 * Let's wait for completion using a waitqueue. As this
3111 * may lead to the thundering herd problem, use a custom
3112 * wake function which matches @work along with exclusive
3113 * wait and wakeup.
bbb68dfa 3114 */
8603e1b3
TH
3115 if (unlikely(ret == -ENOENT)) {
3116 struct cwt_wait cwait;
3117
3118 init_wait(&cwait.wait);
3119 cwait.wait.func = cwt_wakefn;
3120 cwait.work = work;
3121
3122 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3123 TASK_UNINTERRUPTIBLE);
3124 if (work_is_canceling(work))
3125 schedule();
3126 finish_wait(&cancel_waitq, &cwait.wait);
3127 }
1f1f642e
ON
3128 } while (unlikely(ret < 0));
3129
bbb68dfa
TH
3130 /* tell other tasks trying to grab @work to back off */
3131 mark_work_canceling(work);
3132 local_irq_restore(flags);
3133
3347fa09
TH
3134 /*
3135 * This allows canceling during early boot. We know that @work
3136 * isn't executing.
3137 */
3138 if (wq_online)
d6e89786 3139 __flush_work(work, true);
3347fa09 3140
7a22ad75 3141 clear_work_data(work);
8603e1b3
TH
3142
3143 /*
3144 * Paired with prepare_to_wait() above so that either
3145 * waitqueue_active() is visible here or !work_is_canceling() is
3146 * visible there.
3147 */
3148 smp_mb();
3149 if (waitqueue_active(&cancel_waitq))
3150 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3151
1f1f642e
ON
3152 return ret;
3153}
3154
6e84d644 3155/**
401a8d04
TH
3156 * cancel_work_sync - cancel a work and wait for it to finish
3157 * @work: the work to cancel
6e84d644 3158 *
401a8d04
TH
3159 * Cancel @work and wait for its execution to finish. This function
3160 * can be used even if the work re-queues itself or migrates to
3161 * another workqueue. On return from this function, @work is
3162 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3163 *
401a8d04
TH
3164 * cancel_work_sync(&delayed_work->work) must not be used for
3165 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3166 *
401a8d04 3167 * The caller must ensure that the workqueue on which @work was last
6e84d644 3168 * queued can't be destroyed before this function returns.
401a8d04 3169 *
d185af30 3170 * Return:
401a8d04 3171 * %true if @work was pending, %false otherwise.
6e84d644 3172 */
401a8d04 3173bool cancel_work_sync(struct work_struct *work)
6e84d644 3174{
36e227d2 3175 return __cancel_work_timer(work, false);
b89deed3 3176}
28e53bdd 3177EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3178
6e84d644 3179/**
401a8d04
TH
3180 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3181 * @dwork: the delayed work to flush
6e84d644 3182 *
401a8d04
TH
3183 * Delayed timer is cancelled and the pending work is queued for
3184 * immediate execution. Like flush_work(), this function only
3185 * considers the last queueing instance of @dwork.
1f1f642e 3186 *
d185af30 3187 * Return:
401a8d04
TH
3188 * %true if flush_work() waited for the work to finish execution,
3189 * %false if it was already idle.
6e84d644 3190 */
401a8d04
TH
3191bool flush_delayed_work(struct delayed_work *dwork)
3192{
8930caba 3193 local_irq_disable();
401a8d04 3194 if (del_timer_sync(&dwork->timer))
60c057bc 3195 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3196 local_irq_enable();
401a8d04
TH
3197 return flush_work(&dwork->work);
3198}
3199EXPORT_SYMBOL(flush_delayed_work);
3200
05f0fe6b
TH
3201/**
3202 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3203 * @rwork: the rcu work to flush
3204 *
3205 * Return:
3206 * %true if flush_rcu_work() waited for the work to finish execution,
3207 * %false if it was already idle.
3208 */
3209bool flush_rcu_work(struct rcu_work *rwork)
3210{
3211 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3212 rcu_barrier();
3213 flush_work(&rwork->work);
3214 return true;
3215 } else {
3216 return flush_work(&rwork->work);
3217 }
3218}
3219EXPORT_SYMBOL(flush_rcu_work);
3220
f72b8792
JA
3221static bool __cancel_work(struct work_struct *work, bool is_dwork)
3222{
3223 unsigned long flags;
3224 int ret;
3225
3226 do {
3227 ret = try_to_grab_pending(work, is_dwork, &flags);
3228 } while (unlikely(ret == -EAGAIN));
3229
3230 if (unlikely(ret < 0))
3231 return false;
3232
3233 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3234 local_irq_restore(flags);
3235 return ret;
3236}
3237
09383498 3238/**
57b30ae7
TH
3239 * cancel_delayed_work - cancel a delayed work
3240 * @dwork: delayed_work to cancel
09383498 3241 *
d185af30
YB
3242 * Kill off a pending delayed_work.
3243 *
3244 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3245 * pending.
3246 *
3247 * Note:
3248 * The work callback function may still be running on return, unless
3249 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3250 * use cancel_delayed_work_sync() to wait on it.
09383498 3251 *
57b30ae7 3252 * This function is safe to call from any context including IRQ handler.
09383498 3253 */
57b30ae7 3254bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3255{
f72b8792 3256 return __cancel_work(&dwork->work, true);
09383498 3257}
57b30ae7 3258EXPORT_SYMBOL(cancel_delayed_work);
09383498 3259
401a8d04
TH
3260/**
3261 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3262 * @dwork: the delayed work cancel
3263 *
3264 * This is cancel_work_sync() for delayed works.
3265 *
d185af30 3266 * Return:
401a8d04
TH
3267 * %true if @dwork was pending, %false otherwise.
3268 */
3269bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3270{
36e227d2 3271 return __cancel_work_timer(&dwork->work, true);
6e84d644 3272}
f5a421a4 3273EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3274
b6136773 3275/**
31ddd871 3276 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3277 * @func: the function to call
b6136773 3278 *
31ddd871
TH
3279 * schedule_on_each_cpu() executes @func on each online CPU using the
3280 * system workqueue and blocks until all CPUs have completed.
b6136773 3281 * schedule_on_each_cpu() is very slow.
31ddd871 3282 *
d185af30 3283 * Return:
31ddd871 3284 * 0 on success, -errno on failure.
b6136773 3285 */
65f27f38 3286int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3287{
3288 int cpu;
38f51568 3289 struct work_struct __percpu *works;
15316ba8 3290
b6136773
AM
3291 works = alloc_percpu(struct work_struct);
3292 if (!works)
15316ba8 3293 return -ENOMEM;
b6136773 3294
93981800
TH
3295 get_online_cpus();
3296
15316ba8 3297 for_each_online_cpu(cpu) {
9bfb1839
IM
3298 struct work_struct *work = per_cpu_ptr(works, cpu);
3299
3300 INIT_WORK(work, func);
b71ab8c2 3301 schedule_work_on(cpu, work);
65a64464 3302 }
93981800
TH
3303
3304 for_each_online_cpu(cpu)
3305 flush_work(per_cpu_ptr(works, cpu));
3306
95402b38 3307 put_online_cpus();
b6136773 3308 free_percpu(works);
15316ba8
CL
3309 return 0;
3310}
3311
1fa44eca
JB
3312/**
3313 * execute_in_process_context - reliably execute the routine with user context
3314 * @fn: the function to execute
1fa44eca
JB
3315 * @ew: guaranteed storage for the execute work structure (must
3316 * be available when the work executes)
3317 *
3318 * Executes the function immediately if process context is available,
3319 * otherwise schedules the function for delayed execution.
3320 *
d185af30 3321 * Return: 0 - function was executed
1fa44eca
JB
3322 * 1 - function was scheduled for execution
3323 */
65f27f38 3324int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3325{
3326 if (!in_interrupt()) {
65f27f38 3327 fn(&ew->work);
1fa44eca
JB
3328 return 0;
3329 }
3330
65f27f38 3331 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3332 schedule_work(&ew->work);
3333
3334 return 1;
3335}
3336EXPORT_SYMBOL_GPL(execute_in_process_context);
3337
6ba94429
FW
3338/**
3339 * free_workqueue_attrs - free a workqueue_attrs
3340 * @attrs: workqueue_attrs to free
226223ab 3341 *
6ba94429 3342 * Undo alloc_workqueue_attrs().
226223ab 3343 */
513c98d0 3344void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3345{
6ba94429
FW
3346 if (attrs) {
3347 free_cpumask_var(attrs->cpumask);
3348 kfree(attrs);
3349 }
226223ab
TH
3350}
3351
6ba94429
FW
3352/**
3353 * alloc_workqueue_attrs - allocate a workqueue_attrs
6ba94429
FW
3354 *
3355 * Allocate a new workqueue_attrs, initialize with default settings and
3356 * return it.
3357 *
3358 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3359 */
513c98d0 3360struct workqueue_attrs *alloc_workqueue_attrs(void)
226223ab 3361{
6ba94429 3362 struct workqueue_attrs *attrs;
226223ab 3363
be69d00d 3364 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
6ba94429
FW
3365 if (!attrs)
3366 goto fail;
be69d00d 3367 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
6ba94429
FW
3368 goto fail;
3369
3370 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3371 return attrs;
3372fail:
3373 free_workqueue_attrs(attrs);
3374 return NULL;
226223ab
TH
3375}
3376
6ba94429
FW
3377static void copy_workqueue_attrs(struct workqueue_attrs *to,
3378 const struct workqueue_attrs *from)
226223ab 3379{
6ba94429
FW
3380 to->nice = from->nice;
3381 cpumask_copy(to->cpumask, from->cpumask);
3382 /*
3383 * Unlike hash and equality test, this function doesn't ignore
3384 * ->no_numa as it is used for both pool and wq attrs. Instead,
3385 * get_unbound_pool() explicitly clears ->no_numa after copying.
3386 */
3387 to->no_numa = from->no_numa;
226223ab
TH
3388}
3389
6ba94429
FW
3390/* hash value of the content of @attr */
3391static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3392{
6ba94429 3393 u32 hash = 0;
226223ab 3394
6ba94429
FW
3395 hash = jhash_1word(attrs->nice, hash);
3396 hash = jhash(cpumask_bits(attrs->cpumask),
3397 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3398 return hash;
226223ab 3399}
226223ab 3400
6ba94429
FW
3401/* content equality test */
3402static bool wqattrs_equal(const struct workqueue_attrs *a,
3403 const struct workqueue_attrs *b)
226223ab 3404{
6ba94429
FW
3405 if (a->nice != b->nice)
3406 return false;
3407 if (!cpumask_equal(a->cpumask, b->cpumask))
3408 return false;
3409 return true;
226223ab
TH
3410}
3411
6ba94429
FW
3412/**
3413 * init_worker_pool - initialize a newly zalloc'd worker_pool
3414 * @pool: worker_pool to initialize
3415 *
402dd89d 3416 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3417 *
3418 * Return: 0 on success, -errno on failure. Even on failure, all fields
3419 * inside @pool proper are initialized and put_unbound_pool() can be called
3420 * on @pool safely to release it.
3421 */
3422static int init_worker_pool(struct worker_pool *pool)
226223ab 3423{
a9b8a985 3424 raw_spin_lock_init(&pool->lock);
6ba94429
FW
3425 pool->id = -1;
3426 pool->cpu = -1;
3427 pool->node = NUMA_NO_NODE;
3428 pool->flags |= POOL_DISASSOCIATED;
82607adc 3429 pool->watchdog_ts = jiffies;
6ba94429
FW
3430 INIT_LIST_HEAD(&pool->worklist);
3431 INIT_LIST_HEAD(&pool->idle_list);
3432 hash_init(pool->busy_hash);
226223ab 3433
32a6c723 3434 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3435
32a6c723 3436 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3437
6ba94429 3438 INIT_LIST_HEAD(&pool->workers);
226223ab 3439
6ba94429
FW
3440 ida_init(&pool->worker_ida);
3441 INIT_HLIST_NODE(&pool->hash_node);
3442 pool->refcnt = 1;
226223ab 3443
6ba94429 3444 /* shouldn't fail above this point */
be69d00d 3445 pool->attrs = alloc_workqueue_attrs();
6ba94429
FW
3446 if (!pool->attrs)
3447 return -ENOMEM;
3448 return 0;
226223ab
TH
3449}
3450
669de8bd
BVA
3451#ifdef CONFIG_LOCKDEP
3452static void wq_init_lockdep(struct workqueue_struct *wq)
3453{
3454 char *lock_name;
3455
3456 lockdep_register_key(&wq->key);
3457 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3458 if (!lock_name)
3459 lock_name = wq->name;
69a106c0
QC
3460
3461 wq->lock_name = lock_name;
669de8bd
BVA
3462 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3463}
3464
3465static void wq_unregister_lockdep(struct workqueue_struct *wq)
3466{
3467 lockdep_unregister_key(&wq->key);
3468}
3469
3470static void wq_free_lockdep(struct workqueue_struct *wq)
3471{
3472 if (wq->lock_name != wq->name)
3473 kfree(wq->lock_name);
3474}
3475#else
3476static void wq_init_lockdep(struct workqueue_struct *wq)
3477{
3478}
3479
3480static void wq_unregister_lockdep(struct workqueue_struct *wq)
3481{
3482}
3483
3484static void wq_free_lockdep(struct workqueue_struct *wq)
3485{
3486}
3487#endif
3488
6ba94429 3489static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3490{
6ba94429
FW
3491 struct workqueue_struct *wq =
3492 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3493
669de8bd
BVA
3494 wq_free_lockdep(wq);
3495
6ba94429
FW
3496 if (!(wq->flags & WQ_UNBOUND))
3497 free_percpu(wq->cpu_pwqs);
226223ab 3498 else
6ba94429 3499 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3500
6ba94429 3501 kfree(wq);
226223ab
TH
3502}
3503
6ba94429 3504static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3505{
6ba94429 3506 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3507
6ba94429
FW
3508 ida_destroy(&pool->worker_ida);
3509 free_workqueue_attrs(pool->attrs);
3510 kfree(pool);
226223ab
TH
3511}
3512
d8bb65ab
SAS
3513/* This returns with the lock held on success (pool manager is inactive). */
3514static bool wq_manager_inactive(struct worker_pool *pool)
3515{
a9b8a985 3516 raw_spin_lock_irq(&pool->lock);
d8bb65ab
SAS
3517
3518 if (pool->flags & POOL_MANAGER_ACTIVE) {
a9b8a985 3519 raw_spin_unlock_irq(&pool->lock);
d8bb65ab
SAS
3520 return false;
3521 }
3522 return true;
3523}
3524
6ba94429
FW
3525/**
3526 * put_unbound_pool - put a worker_pool
3527 * @pool: worker_pool to put
3528 *
24acfb71 3529 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
6ba94429
FW
3530 * safe manner. get_unbound_pool() calls this function on its failure path
3531 * and this function should be able to release pools which went through,
3532 * successfully or not, init_worker_pool().
3533 *
3534 * Should be called with wq_pool_mutex held.
3535 */
3536static void put_unbound_pool(struct worker_pool *pool)
226223ab 3537{
6ba94429
FW
3538 DECLARE_COMPLETION_ONSTACK(detach_completion);
3539 struct worker *worker;
226223ab 3540
6ba94429 3541 lockdep_assert_held(&wq_pool_mutex);
226223ab 3542
6ba94429
FW
3543 if (--pool->refcnt)
3544 return;
226223ab 3545
6ba94429
FW
3546 /* sanity checks */
3547 if (WARN_ON(!(pool->cpu < 0)) ||
3548 WARN_ON(!list_empty(&pool->worklist)))
3549 return;
226223ab 3550
6ba94429
FW
3551 /* release id and unhash */
3552 if (pool->id >= 0)
3553 idr_remove(&worker_pool_idr, pool->id);
3554 hash_del(&pool->hash_node);
d55262c4 3555
6ba94429 3556 /*
692b4825
TH
3557 * Become the manager and destroy all workers. This prevents
3558 * @pool's workers from blocking on attach_mutex. We're the last
3559 * manager and @pool gets freed with the flag set.
d8bb65ab
SAS
3560 * Because of how wq_manager_inactive() works, we will hold the
3561 * spinlock after a successful wait.
6ba94429 3562 */
d8bb65ab
SAS
3563 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3564 TASK_UNINTERRUPTIBLE);
692b4825
TH
3565 pool->flags |= POOL_MANAGER_ACTIVE;
3566
6ba94429
FW
3567 while ((worker = first_idle_worker(pool)))
3568 destroy_worker(worker);
3569 WARN_ON(pool->nr_workers || pool->nr_idle);
a9b8a985 3570 raw_spin_unlock_irq(&pool->lock);
d55262c4 3571
1258fae7 3572 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3573 if (!list_empty(&pool->workers))
3574 pool->detach_completion = &detach_completion;
1258fae7 3575 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3576
6ba94429
FW
3577 if (pool->detach_completion)
3578 wait_for_completion(pool->detach_completion);
226223ab 3579
6ba94429
FW
3580 /* shut down the timers */
3581 del_timer_sync(&pool->idle_timer);
3582 del_timer_sync(&pool->mayday_timer);
226223ab 3583
24acfb71 3584 /* RCU protected to allow dereferences from get_work_pool() */
25b00775 3585 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3586}
3587
3588/**
6ba94429
FW
3589 * get_unbound_pool - get a worker_pool with the specified attributes
3590 * @attrs: the attributes of the worker_pool to get
226223ab 3591 *
6ba94429
FW
3592 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3593 * reference count and return it. If there already is a matching
3594 * worker_pool, it will be used; otherwise, this function attempts to
3595 * create a new one.
226223ab 3596 *
6ba94429 3597 * Should be called with wq_pool_mutex held.
226223ab 3598 *
6ba94429
FW
3599 * Return: On success, a worker_pool with the same attributes as @attrs.
3600 * On failure, %NULL.
226223ab 3601 */
6ba94429 3602static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3603{
6ba94429
FW
3604 u32 hash = wqattrs_hash(attrs);
3605 struct worker_pool *pool;
3606 int node;
e2273584 3607 int target_node = NUMA_NO_NODE;
226223ab 3608
6ba94429 3609 lockdep_assert_held(&wq_pool_mutex);
226223ab 3610
6ba94429
FW
3611 /* do we already have a matching pool? */
3612 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3613 if (wqattrs_equal(pool->attrs, attrs)) {
3614 pool->refcnt++;
3615 return pool;
3616 }
3617 }
226223ab 3618
e2273584
XP
3619 /* if cpumask is contained inside a NUMA node, we belong to that node */
3620 if (wq_numa_enabled) {
3621 for_each_node(node) {
3622 if (cpumask_subset(attrs->cpumask,
3623 wq_numa_possible_cpumask[node])) {
3624 target_node = node;
3625 break;
3626 }
3627 }
3628 }
3629
6ba94429 3630 /* nope, create a new one */
e2273584 3631 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3632 if (!pool || init_worker_pool(pool) < 0)
3633 goto fail;
3634
3635 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3636 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3637 pool->node = target_node;
226223ab
TH
3638
3639 /*
6ba94429
FW
3640 * no_numa isn't a worker_pool attribute, always clear it. See
3641 * 'struct workqueue_attrs' comments for detail.
226223ab 3642 */
6ba94429 3643 pool->attrs->no_numa = false;
226223ab 3644
6ba94429
FW
3645 if (worker_pool_assign_id(pool) < 0)
3646 goto fail;
226223ab 3647
6ba94429 3648 /* create and start the initial worker */
3347fa09 3649 if (wq_online && !create_worker(pool))
6ba94429 3650 goto fail;
226223ab 3651
6ba94429
FW
3652 /* install */
3653 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3654
6ba94429
FW
3655 return pool;
3656fail:
3657 if (pool)
3658 put_unbound_pool(pool);
3659 return NULL;
226223ab 3660}
226223ab 3661
6ba94429 3662static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3663{
6ba94429
FW
3664 kmem_cache_free(pwq_cache,
3665 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3666}
3667
6ba94429
FW
3668/*
3669 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3670 * and needs to be destroyed.
7a4e344c 3671 */
6ba94429 3672static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3673{
6ba94429
FW
3674 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3675 unbound_release_work);
3676 struct workqueue_struct *wq = pwq->wq;
3677 struct worker_pool *pool = pwq->pool;
3678 bool is_last;
7a4e344c 3679
6ba94429
FW
3680 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3681 return;
7a4e344c 3682
6ba94429
FW
3683 mutex_lock(&wq->mutex);
3684 list_del_rcu(&pwq->pwqs_node);
3685 is_last = list_empty(&wq->pwqs);
3686 mutex_unlock(&wq->mutex);
3687
3688 mutex_lock(&wq_pool_mutex);
3689 put_unbound_pool(pool);
3690 mutex_unlock(&wq_pool_mutex);
3691
25b00775 3692 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3693
2865a8fb 3694 /*
6ba94429
FW
3695 * If we're the last pwq going away, @wq is already dead and no one
3696 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3697 */
669de8bd
BVA
3698 if (is_last) {
3699 wq_unregister_lockdep(wq);
25b00775 3700 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3701 }
29c91e99
TH
3702}
3703
7a4e344c 3704/**
6ba94429
FW
3705 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3706 * @pwq: target pool_workqueue
d185af30 3707 *
6ba94429
FW
3708 * If @pwq isn't freezing, set @pwq->max_active to the associated
3709 * workqueue's saved_max_active and activate delayed work items
3710 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3711 */
6ba94429 3712static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3713{
6ba94429
FW
3714 struct workqueue_struct *wq = pwq->wq;
3715 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3716 unsigned long flags;
4e1a1f9a 3717
6ba94429
FW
3718 /* for @wq->saved_max_active */
3719 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3720
6ba94429
FW
3721 /* fast exit for non-freezable wqs */
3722 if (!freezable && pwq->max_active == wq->saved_max_active)
3723 return;
7a4e344c 3724
3347fa09 3725 /* this function can be called during early boot w/ irq disabled */
a9b8a985 3726 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3727
6ba94429
FW
3728 /*
3729 * During [un]freezing, the caller is responsible for ensuring that
3730 * this function is called at least once after @workqueue_freezing
3731 * is updated and visible.
3732 */
3733 if (!freezable || !workqueue_freezing) {
3734 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3735
6ba94429
FW
3736 while (!list_empty(&pwq->delayed_works) &&
3737 pwq->nr_active < pwq->max_active)
3738 pwq_activate_first_delayed(pwq);
e2dca7ad 3739
6ba94429
FW
3740 /*
3741 * Need to kick a worker after thawed or an unbound wq's
3742 * max_active is bumped. It's a slow path. Do it always.
3743 */
3744 wake_up_worker(pwq->pool);
3745 } else {
3746 pwq->max_active = 0;
3747 }
e2dca7ad 3748
a9b8a985 3749 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3750}
3751
6ba94429
FW
3752/* initialize newly alloced @pwq which is associated with @wq and @pool */
3753static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3754 struct worker_pool *pool)
29c91e99 3755{
6ba94429 3756 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3757
6ba94429
FW
3758 memset(pwq, 0, sizeof(*pwq));
3759
3760 pwq->pool = pool;
3761 pwq->wq = wq;
3762 pwq->flush_color = -1;
3763 pwq->refcnt = 1;
3764 INIT_LIST_HEAD(&pwq->delayed_works);
3765 INIT_LIST_HEAD(&pwq->pwqs_node);
3766 INIT_LIST_HEAD(&pwq->mayday_node);
3767 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3768}
3769
6ba94429
FW
3770/* sync @pwq with the current state of its associated wq and link it */
3771static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3772{
6ba94429 3773 struct workqueue_struct *wq = pwq->wq;
29c91e99 3774
6ba94429 3775 lockdep_assert_held(&wq->mutex);
a892cacc 3776
6ba94429
FW
3777 /* may be called multiple times, ignore if already linked */
3778 if (!list_empty(&pwq->pwqs_node))
29c91e99 3779 return;
29c91e99 3780
6ba94429
FW
3781 /* set the matching work_color */
3782 pwq->work_color = wq->work_color;
29c91e99 3783
6ba94429
FW
3784 /* sync max_active to the current setting */
3785 pwq_adjust_max_active(pwq);
29c91e99 3786
6ba94429
FW
3787 /* link in @pwq */
3788 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3789}
29c91e99 3790
6ba94429
FW
3791/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3792static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3793 const struct workqueue_attrs *attrs)
3794{
3795 struct worker_pool *pool;
3796 struct pool_workqueue *pwq;
60f5a4bc 3797
6ba94429 3798 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3799
6ba94429
FW
3800 pool = get_unbound_pool(attrs);
3801 if (!pool)
3802 return NULL;
60f5a4bc 3803
6ba94429
FW
3804 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3805 if (!pwq) {
3806 put_unbound_pool(pool);
3807 return NULL;
3808 }
29c91e99 3809
6ba94429
FW
3810 init_pwq(pwq, wq, pool);
3811 return pwq;
3812}
29c91e99 3813
29c91e99 3814/**
30186c6f 3815 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3816 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3817 * @node: the target NUMA node
3818 * @cpu_going_down: if >= 0, the CPU to consider as offline
3819 * @cpumask: outarg, the resulting cpumask
29c91e99 3820 *
6ba94429
FW
3821 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3822 * @cpu_going_down is >= 0, that cpu is considered offline during
3823 * calculation. The result is stored in @cpumask.
a892cacc 3824 *
6ba94429
FW
3825 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3826 * enabled and @node has online CPUs requested by @attrs, the returned
3827 * cpumask is the intersection of the possible CPUs of @node and
3828 * @attrs->cpumask.
d185af30 3829 *
6ba94429
FW
3830 * The caller is responsible for ensuring that the cpumask of @node stays
3831 * stable.
3832 *
3833 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3834 * %false if equal.
29c91e99 3835 */
6ba94429
FW
3836static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3837 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3838{
6ba94429
FW
3839 if (!wq_numa_enabled || attrs->no_numa)
3840 goto use_dfl;
29c91e99 3841
6ba94429
FW
3842 /* does @node have any online CPUs @attrs wants? */
3843 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3844 if (cpu_going_down >= 0)
3845 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3846
6ba94429
FW
3847 if (cpumask_empty(cpumask))
3848 goto use_dfl;
4c16bd32
TH
3849
3850 /* yeap, return possible CPUs in @node that @attrs wants */
3851 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3852
3853 if (cpumask_empty(cpumask)) {
3854 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3855 "possible intersect\n");
3856 return false;
3857 }
3858
4c16bd32
TH
3859 return !cpumask_equal(cpumask, attrs->cpumask);
3860
3861use_dfl:
3862 cpumask_copy(cpumask, attrs->cpumask);
3863 return false;
3864}
3865
1befcf30
TH
3866/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3867static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3868 int node,
3869 struct pool_workqueue *pwq)
3870{
3871 struct pool_workqueue *old_pwq;
3872
5b95e1af 3873 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3874 lockdep_assert_held(&wq->mutex);
3875
3876 /* link_pwq() can handle duplicate calls */
3877 link_pwq(pwq);
3878
3879 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3880 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3881 return old_pwq;
3882}
3883
2d5f0764
LJ
3884/* context to store the prepared attrs & pwqs before applying */
3885struct apply_wqattrs_ctx {
3886 struct workqueue_struct *wq; /* target workqueue */
3887 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3888 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3889 struct pool_workqueue *dfl_pwq;
3890 struct pool_workqueue *pwq_tbl[];
3891};
3892
3893/* free the resources after success or abort */
3894static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3895{
3896 if (ctx) {
3897 int node;
3898
3899 for_each_node(node)
3900 put_pwq_unlocked(ctx->pwq_tbl[node]);
3901 put_pwq_unlocked(ctx->dfl_pwq);
3902
3903 free_workqueue_attrs(ctx->attrs);
3904
3905 kfree(ctx);
3906 }
3907}
3908
3909/* allocate the attrs and pwqs for later installation */
3910static struct apply_wqattrs_ctx *
3911apply_wqattrs_prepare(struct workqueue_struct *wq,
3912 const struct workqueue_attrs *attrs)
9e8cd2f5 3913{
2d5f0764 3914 struct apply_wqattrs_ctx *ctx;
4c16bd32 3915 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3916 int node;
9e8cd2f5 3917
2d5f0764 3918 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3919
acafe7e3 3920 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3921
be69d00d
TG
3922 new_attrs = alloc_workqueue_attrs();
3923 tmp_attrs = alloc_workqueue_attrs();
2d5f0764
LJ
3924 if (!ctx || !new_attrs || !tmp_attrs)
3925 goto out_free;
13e2e556 3926
042f7df1
LJ
3927 /*
3928 * Calculate the attrs of the default pwq.
3929 * If the user configured cpumask doesn't overlap with the
3930 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3931 */
13e2e556 3932 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3933 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3934 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3935 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3936
4c16bd32
TH
3937 /*
3938 * We may create multiple pwqs with differing cpumasks. Make a
3939 * copy of @new_attrs which will be modified and used to obtain
3940 * pools.
3941 */
3942 copy_workqueue_attrs(tmp_attrs, new_attrs);
3943
4c16bd32
TH
3944 /*
3945 * If something goes wrong during CPU up/down, we'll fall back to
3946 * the default pwq covering whole @attrs->cpumask. Always create
3947 * it even if we don't use it immediately.
3948 */
2d5f0764
LJ
3949 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3950 if (!ctx->dfl_pwq)
3951 goto out_free;
4c16bd32
TH
3952
3953 for_each_node(node) {
042f7df1 3954 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3955 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3956 if (!ctx->pwq_tbl[node])
3957 goto out_free;
4c16bd32 3958 } else {
2d5f0764
LJ
3959 ctx->dfl_pwq->refcnt++;
3960 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3961 }
3962 }
3963
042f7df1
LJ
3964 /* save the user configured attrs and sanitize it. */
3965 copy_workqueue_attrs(new_attrs, attrs);
3966 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3967 ctx->attrs = new_attrs;
042f7df1 3968
2d5f0764
LJ
3969 ctx->wq = wq;
3970 free_workqueue_attrs(tmp_attrs);
3971 return ctx;
3972
3973out_free:
3974 free_workqueue_attrs(tmp_attrs);
3975 free_workqueue_attrs(new_attrs);
3976 apply_wqattrs_cleanup(ctx);
3977 return NULL;
3978}
3979
3980/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3981static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3982{
3983 int node;
9e8cd2f5 3984
4c16bd32 3985 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3986 mutex_lock(&ctx->wq->mutex);
a892cacc 3987
2d5f0764 3988 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3989
3990 /* save the previous pwq and install the new one */
f147f29e 3991 for_each_node(node)
2d5f0764
LJ
3992 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3993 ctx->pwq_tbl[node]);
4c16bd32
TH
3994
3995 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3996 link_pwq(ctx->dfl_pwq);
3997 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3998
2d5f0764
LJ
3999 mutex_unlock(&ctx->wq->mutex);
4000}
9e8cd2f5 4001
a0111cf6
LJ
4002static void apply_wqattrs_lock(void)
4003{
4004 /* CPUs should stay stable across pwq creations and installations */
4005 get_online_cpus();
4006 mutex_lock(&wq_pool_mutex);
4007}
4008
4009static void apply_wqattrs_unlock(void)
4010{
4011 mutex_unlock(&wq_pool_mutex);
4012 put_online_cpus();
4013}
4014
4015static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4016 const struct workqueue_attrs *attrs)
2d5f0764
LJ
4017{
4018 struct apply_wqattrs_ctx *ctx;
4c16bd32 4019
2d5f0764
LJ
4020 /* only unbound workqueues can change attributes */
4021 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4022 return -EINVAL;
13e2e556 4023
2d5f0764 4024 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4025 if (!list_empty(&wq->pwqs)) {
4026 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4027 return -EINVAL;
4028
4029 wq->flags &= ~__WQ_ORDERED;
4030 }
2d5f0764 4031
2d5f0764 4032 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4033 if (!ctx)
4034 return -ENOMEM;
2d5f0764
LJ
4035
4036 /* the ctx has been prepared successfully, let's commit it */
6201171e 4037 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4038 apply_wqattrs_cleanup(ctx);
4039
6201171e 4040 return 0;
9e8cd2f5
TH
4041}
4042
a0111cf6
LJ
4043/**
4044 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4045 * @wq: the target workqueue
4046 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4047 *
4048 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4049 * machines, this function maps a separate pwq to each NUMA node with
4050 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4051 * NUMA node it was issued on. Older pwqs are released as in-flight work
4052 * items finish. Note that a work item which repeatedly requeues itself
4053 * back-to-back will stay on its current pwq.
4054 *
4055 * Performs GFP_KERNEL allocations.
4056 *
509b3204
DJ
4057 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4058 *
a0111cf6
LJ
4059 * Return: 0 on success and -errno on failure.
4060 */
513c98d0 4061int apply_workqueue_attrs(struct workqueue_struct *wq,
a0111cf6
LJ
4062 const struct workqueue_attrs *attrs)
4063{
4064 int ret;
4065
509b3204
DJ
4066 lockdep_assert_cpus_held();
4067
4068 mutex_lock(&wq_pool_mutex);
a0111cf6 4069 ret = apply_workqueue_attrs_locked(wq, attrs);
509b3204 4070 mutex_unlock(&wq_pool_mutex);
a0111cf6
LJ
4071
4072 return ret;
4073}
4074
4c16bd32
TH
4075/**
4076 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4077 * @wq: the target workqueue
4078 * @cpu: the CPU coming up or going down
4079 * @online: whether @cpu is coming up or going down
4080 *
4081 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4082 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4083 * @wq accordingly.
4084 *
4085 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4086 * falls back to @wq->dfl_pwq which may not be optimal but is always
4087 * correct.
4088 *
4089 * Note that when the last allowed CPU of a NUMA node goes offline for a
4090 * workqueue with a cpumask spanning multiple nodes, the workers which were
4091 * already executing the work items for the workqueue will lose their CPU
4092 * affinity and may execute on any CPU. This is similar to how per-cpu
4093 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4094 * affinity, it's the user's responsibility to flush the work item from
4095 * CPU_DOWN_PREPARE.
4096 */
4097static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4098 bool online)
4099{
4100 int node = cpu_to_node(cpu);
4101 int cpu_off = online ? -1 : cpu;
4102 struct pool_workqueue *old_pwq = NULL, *pwq;
4103 struct workqueue_attrs *target_attrs;
4104 cpumask_t *cpumask;
4105
4106 lockdep_assert_held(&wq_pool_mutex);
4107
f7142ed4
LJ
4108 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4109 wq->unbound_attrs->no_numa)
4c16bd32
TH
4110 return;
4111
4112 /*
4113 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4114 * Let's use a preallocated one. The following buf is protected by
4115 * CPU hotplug exclusion.
4116 */
4117 target_attrs = wq_update_unbound_numa_attrs_buf;
4118 cpumask = target_attrs->cpumask;
4119
4c16bd32
TH
4120 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4121 pwq = unbound_pwq_by_node(wq, node);
4122
4123 /*
4124 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4125 * different from the default pwq's, we need to compare it to @pwq's
4126 * and create a new one if they don't match. If the target cpumask
4127 * equals the default pwq's, the default pwq should be used.
4c16bd32 4128 */
042f7df1 4129 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4130 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4131 return;
4c16bd32 4132 } else {
534a3fbb 4133 goto use_dfl_pwq;
4c16bd32
TH
4134 }
4135
4c16bd32
TH
4136 /* create a new pwq */
4137 pwq = alloc_unbound_pwq(wq, target_attrs);
4138 if (!pwq) {
2d916033
FF
4139 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4140 wq->name);
77f300b1 4141 goto use_dfl_pwq;
4c16bd32
TH
4142 }
4143
f7142ed4 4144 /* Install the new pwq. */
4c16bd32
TH
4145 mutex_lock(&wq->mutex);
4146 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4147 goto out_unlock;
4148
4149use_dfl_pwq:
f7142ed4 4150 mutex_lock(&wq->mutex);
a9b8a985 4151 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32 4152 get_pwq(wq->dfl_pwq);
a9b8a985 4153 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4c16bd32
TH
4154 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4155out_unlock:
4156 mutex_unlock(&wq->mutex);
4157 put_pwq_unlocked(old_pwq);
4158}
4159
30cdf249 4160static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4161{
49e3cf44 4162 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4163 int cpu, ret;
30cdf249
TH
4164
4165 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4166 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4167 if (!wq->cpu_pwqs)
30cdf249
TH
4168 return -ENOMEM;
4169
4170 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4171 struct pool_workqueue *pwq =
4172 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4173 struct worker_pool *cpu_pools =
f02ae73a 4174 per_cpu(cpu_worker_pools, cpu);
f3421797 4175
f147f29e
TH
4176 init_pwq(pwq, wq, &cpu_pools[highpri]);
4177
4178 mutex_lock(&wq->mutex);
1befcf30 4179 link_pwq(pwq);
f147f29e 4180 mutex_unlock(&wq->mutex);
30cdf249 4181 }
9e8cd2f5 4182 return 0;
509b3204
DJ
4183 }
4184
4185 get_online_cpus();
4186 if (wq->flags & __WQ_ORDERED) {
8a2b7538
TH
4187 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4188 /* there should only be single pwq for ordering guarantee */
4189 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4190 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4191 "ordering guarantee broken for workqueue %s\n", wq->name);
30cdf249 4192 } else {
509b3204 4193 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4194 }
509b3204
DJ
4195 put_online_cpus();
4196
4197 return ret;
0f900049
TH
4198}
4199
f3421797
TH
4200static int wq_clamp_max_active(int max_active, unsigned int flags,
4201 const char *name)
b71ab8c2 4202{
f3421797
TH
4203 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4204
4205 if (max_active < 1 || max_active > lim)
044c782c
VI
4206 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4207 max_active, name, 1, lim);
b71ab8c2 4208
f3421797 4209 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4210}
4211
983c7515
TH
4212/*
4213 * Workqueues which may be used during memory reclaim should have a rescuer
4214 * to guarantee forward progress.
4215 */
4216static int init_rescuer(struct workqueue_struct *wq)
4217{
4218 struct worker *rescuer;
b92b36ea 4219 int ret;
983c7515
TH
4220
4221 if (!(wq->flags & WQ_MEM_RECLAIM))
4222 return 0;
4223
4224 rescuer = alloc_worker(NUMA_NO_NODE);
4225 if (!rescuer)
4226 return -ENOMEM;
4227
4228 rescuer->rescue_wq = wq;
4229 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
f187b697 4230 if (IS_ERR(rescuer->task)) {
b92b36ea 4231 ret = PTR_ERR(rescuer->task);
983c7515 4232 kfree(rescuer);
b92b36ea 4233 return ret;
983c7515
TH
4234 }
4235
4236 wq->rescuer = rescuer;
4237 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4238 wake_up_process(rescuer->task);
4239
4240 return 0;
4241}
4242
a2775bbc 4243__printf(1, 4)
669de8bd
BVA
4244struct workqueue_struct *alloc_workqueue(const char *fmt,
4245 unsigned int flags,
4246 int max_active, ...)
1da177e4 4247{
df2d5ae4 4248 size_t tbl_size = 0;
ecf6881f 4249 va_list args;
1da177e4 4250 struct workqueue_struct *wq;
49e3cf44 4251 struct pool_workqueue *pwq;
b196be89 4252
5c0338c6
TH
4253 /*
4254 * Unbound && max_active == 1 used to imply ordered, which is no
4255 * longer the case on NUMA machines due to per-node pools. While
4256 * alloc_ordered_workqueue() is the right way to create an ordered
4257 * workqueue, keep the previous behavior to avoid subtle breakages
4258 * on NUMA.
4259 */
4260 if ((flags & WQ_UNBOUND) && max_active == 1)
4261 flags |= __WQ_ORDERED;
4262
cee22a15
VK
4263 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4264 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4265 flags |= WQ_UNBOUND;
4266
ecf6881f 4267 /* allocate wq and format name */
df2d5ae4 4268 if (flags & WQ_UNBOUND)
ddcb57e2 4269 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4270
4271 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4272 if (!wq)
d2c1d404 4273 return NULL;
b196be89 4274
6029a918 4275 if (flags & WQ_UNBOUND) {
be69d00d 4276 wq->unbound_attrs = alloc_workqueue_attrs();
6029a918
TH
4277 if (!wq->unbound_attrs)
4278 goto err_free_wq;
4279 }
4280
669de8bd 4281 va_start(args, max_active);
ecf6881f 4282 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4283 va_end(args);
1da177e4 4284
d320c038 4285 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4286 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4287
b196be89 4288 /* init wq */
97e37d7b 4289 wq->flags = flags;
a0a1a5fd 4290 wq->saved_max_active = max_active;
3c25a55d 4291 mutex_init(&wq->mutex);
112202d9 4292 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4293 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4294 INIT_LIST_HEAD(&wq->flusher_queue);
4295 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4296 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4297
669de8bd 4298 wq_init_lockdep(wq);
cce1a165 4299 INIT_LIST_HEAD(&wq->list);
3af24433 4300
30cdf249 4301 if (alloc_and_link_pwqs(wq) < 0)
82efcab3 4302 goto err_unreg_lockdep;
1537663f 4303
40c17f75 4304 if (wq_online && init_rescuer(wq) < 0)
983c7515 4305 goto err_destroy;
3af24433 4306
226223ab
TH
4307 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4308 goto err_destroy;
4309
a0a1a5fd 4310 /*
68e13a67
LJ
4311 * wq_pool_mutex protects global freeze state and workqueues list.
4312 * Grab it, adjust max_active and add the new @wq to workqueues
4313 * list.
a0a1a5fd 4314 */
68e13a67 4315 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4316
a357fc03 4317 mutex_lock(&wq->mutex);
699ce097
TH
4318 for_each_pwq(pwq, wq)
4319 pwq_adjust_max_active(pwq);
a357fc03 4320 mutex_unlock(&wq->mutex);
a0a1a5fd 4321
e2dca7ad 4322 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4323
68e13a67 4324 mutex_unlock(&wq_pool_mutex);
1537663f 4325
3af24433 4326 return wq;
d2c1d404 4327
82efcab3 4328err_unreg_lockdep:
009bb421
BVA
4329 wq_unregister_lockdep(wq);
4330 wq_free_lockdep(wq);
82efcab3 4331err_free_wq:
6029a918 4332 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4333 kfree(wq);
4334 return NULL;
4335err_destroy:
4336 destroy_workqueue(wq);
4690c4ab 4337 return NULL;
3af24433 4338}
669de8bd 4339EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4340
c29eb853
TH
4341static bool pwq_busy(struct pool_workqueue *pwq)
4342{
4343 int i;
4344
4345 for (i = 0; i < WORK_NR_COLORS; i++)
4346 if (pwq->nr_in_flight[i])
4347 return true;
4348
4349 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4350 return true;
4351 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4352 return true;
4353
4354 return false;
4355}
4356
3af24433
ON
4357/**
4358 * destroy_workqueue - safely terminate a workqueue
4359 * @wq: target workqueue
4360 *
4361 * Safely destroy a workqueue. All work currently pending will be done first.
4362 */
4363void destroy_workqueue(struct workqueue_struct *wq)
4364{
49e3cf44 4365 struct pool_workqueue *pwq;
4c16bd32 4366 int node;
3af24433 4367
def98c84
TH
4368 /*
4369 * Remove it from sysfs first so that sanity check failure doesn't
4370 * lead to sysfs name conflicts.
4371 */
4372 workqueue_sysfs_unregister(wq);
4373
9c5a2ba7
TH
4374 /* drain it before proceeding with destruction */
4375 drain_workqueue(wq);
c8efcc25 4376
def98c84
TH
4377 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4378 if (wq->rescuer) {
4379 struct worker *rescuer = wq->rescuer;
4380
4381 /* this prevents new queueing */
a9b8a985 4382 raw_spin_lock_irq(&wq_mayday_lock);
def98c84 4383 wq->rescuer = NULL;
a9b8a985 4384 raw_spin_unlock_irq(&wq_mayday_lock);
def98c84
TH
4385
4386 /* rescuer will empty maydays list before exiting */
4387 kthread_stop(rescuer->task);
8efe1223 4388 kfree(rescuer);
def98c84
TH
4389 }
4390
c29eb853
TH
4391 /*
4392 * Sanity checks - grab all the locks so that we wait for all
4393 * in-flight operations which may do put_pwq().
4394 */
4395 mutex_lock(&wq_pool_mutex);
b09f4fd3 4396 mutex_lock(&wq->mutex);
49e3cf44 4397 for_each_pwq(pwq, wq) {
a9b8a985 4398 raw_spin_lock_irq(&pwq->pool->lock);
c29eb853 4399 if (WARN_ON(pwq_busy(pwq))) {
1d9a6159
KW
4400 pr_warn("%s: %s has the following busy pwq\n",
4401 __func__, wq->name);
c29eb853 4402 show_pwq(pwq);
a9b8a985 4403 raw_spin_unlock_irq(&pwq->pool->lock);
b09f4fd3 4404 mutex_unlock(&wq->mutex);
c29eb853 4405 mutex_unlock(&wq_pool_mutex);
fa07fb6a 4406 show_workqueue_state();
6183c009 4407 return;
76af4d93 4408 }
a9b8a985 4409 raw_spin_unlock_irq(&pwq->pool->lock);
6183c009 4410 }
b09f4fd3 4411 mutex_unlock(&wq->mutex);
6183c009 4412
a0a1a5fd
TH
4413 /*
4414 * wq list is used to freeze wq, remove from list after
4415 * flushing is complete in case freeze races us.
4416 */
e2dca7ad 4417 list_del_rcu(&wq->list);
68e13a67 4418 mutex_unlock(&wq_pool_mutex);
3af24433 4419
8864b4e5 4420 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4421 wq_unregister_lockdep(wq);
8864b4e5
TH
4422 /*
4423 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4424 * schedule RCU free.
8864b4e5 4425 */
25b00775 4426 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4427 } else {
4428 /*
4429 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4430 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4431 * @wq will be freed when the last pwq is released.
8864b4e5 4432 */
4c16bd32
TH
4433 for_each_node(node) {
4434 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4435 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4436 put_pwq_unlocked(pwq);
4437 }
4438
4439 /*
4440 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4441 * put. Don't access it afterwards.
4442 */
4443 pwq = wq->dfl_pwq;
4444 wq->dfl_pwq = NULL;
dce90d47 4445 put_pwq_unlocked(pwq);
29c91e99 4446 }
3af24433
ON
4447}
4448EXPORT_SYMBOL_GPL(destroy_workqueue);
4449
dcd989cb
TH
4450/**
4451 * workqueue_set_max_active - adjust max_active of a workqueue
4452 * @wq: target workqueue
4453 * @max_active: new max_active value.
4454 *
4455 * Set max_active of @wq to @max_active.
4456 *
4457 * CONTEXT:
4458 * Don't call from IRQ context.
4459 */
4460void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4461{
49e3cf44 4462 struct pool_workqueue *pwq;
dcd989cb 4463
8719dcea 4464 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4465 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4466 return;
4467
f3421797 4468 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4469
a357fc03 4470 mutex_lock(&wq->mutex);
dcd989cb 4471
0a94efb5 4472 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4473 wq->saved_max_active = max_active;
4474
699ce097
TH
4475 for_each_pwq(pwq, wq)
4476 pwq_adjust_max_active(pwq);
93981800 4477
a357fc03 4478 mutex_unlock(&wq->mutex);
15316ba8 4479}
dcd989cb 4480EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4481
27d4ee03
LW
4482/**
4483 * current_work - retrieve %current task's work struct
4484 *
4485 * Determine if %current task is a workqueue worker and what it's working on.
4486 * Useful to find out the context that the %current task is running in.
4487 *
4488 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4489 */
4490struct work_struct *current_work(void)
4491{
4492 struct worker *worker = current_wq_worker();
4493
4494 return worker ? worker->current_work : NULL;
4495}
4496EXPORT_SYMBOL(current_work);
4497
e6267616
TH
4498/**
4499 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4500 *
4501 * Determine whether %current is a workqueue rescuer. Can be used from
4502 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4503 *
4504 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4505 */
4506bool current_is_workqueue_rescuer(void)
4507{
4508 struct worker *worker = current_wq_worker();
4509
6a092dfd 4510 return worker && worker->rescue_wq;
e6267616
TH
4511}
4512
eef6a7d5 4513/**
dcd989cb
TH
4514 * workqueue_congested - test whether a workqueue is congested
4515 * @cpu: CPU in question
4516 * @wq: target workqueue
eef6a7d5 4517 *
dcd989cb
TH
4518 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4519 * no synchronization around this function and the test result is
4520 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4521 *
d3251859
TH
4522 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4523 * Note that both per-cpu and unbound workqueues may be associated with
4524 * multiple pool_workqueues which have separate congested states. A
4525 * workqueue being congested on one CPU doesn't mean the workqueue is also
4526 * contested on other CPUs / NUMA nodes.
4527 *
d185af30 4528 * Return:
dcd989cb 4529 * %true if congested, %false otherwise.
eef6a7d5 4530 */
d84ff051 4531bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4532{
7fb98ea7 4533 struct pool_workqueue *pwq;
76af4d93
TH
4534 bool ret;
4535
24acfb71
TG
4536 rcu_read_lock();
4537 preempt_disable();
7fb98ea7 4538
d3251859
TH
4539 if (cpu == WORK_CPU_UNBOUND)
4540 cpu = smp_processor_id();
4541
7fb98ea7
TH
4542 if (!(wq->flags & WQ_UNBOUND))
4543 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4544 else
df2d5ae4 4545 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4546
76af4d93 4547 ret = !list_empty(&pwq->delayed_works);
24acfb71
TG
4548 preempt_enable();
4549 rcu_read_unlock();
76af4d93
TH
4550
4551 return ret;
1da177e4 4552}
dcd989cb 4553EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4554
dcd989cb
TH
4555/**
4556 * work_busy - test whether a work is currently pending or running
4557 * @work: the work to be tested
4558 *
4559 * Test whether @work is currently pending or running. There is no
4560 * synchronization around this function and the test result is
4561 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4562 *
d185af30 4563 * Return:
dcd989cb
TH
4564 * OR'd bitmask of WORK_BUSY_* bits.
4565 */
4566unsigned int work_busy(struct work_struct *work)
1da177e4 4567{
fa1b54e6 4568 struct worker_pool *pool;
dcd989cb
TH
4569 unsigned long flags;
4570 unsigned int ret = 0;
1da177e4 4571
dcd989cb
TH
4572 if (work_pending(work))
4573 ret |= WORK_BUSY_PENDING;
1da177e4 4574
24acfb71 4575 rcu_read_lock();
fa1b54e6 4576 pool = get_work_pool(work);
038366c5 4577 if (pool) {
a9b8a985 4578 raw_spin_lock_irqsave(&pool->lock, flags);
038366c5
LJ
4579 if (find_worker_executing_work(pool, work))
4580 ret |= WORK_BUSY_RUNNING;
a9b8a985 4581 raw_spin_unlock_irqrestore(&pool->lock, flags);
038366c5 4582 }
24acfb71 4583 rcu_read_unlock();
1da177e4 4584
dcd989cb 4585 return ret;
1da177e4 4586}
dcd989cb 4587EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4588
3d1cb205
TH
4589/**
4590 * set_worker_desc - set description for the current work item
4591 * @fmt: printf-style format string
4592 * @...: arguments for the format string
4593 *
4594 * This function can be called by a running work function to describe what
4595 * the work item is about. If the worker task gets dumped, this
4596 * information will be printed out together to help debugging. The
4597 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4598 */
4599void set_worker_desc(const char *fmt, ...)
4600{
4601 struct worker *worker = current_wq_worker();
4602 va_list args;
4603
4604 if (worker) {
4605 va_start(args, fmt);
4606 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4607 va_end(args);
3d1cb205
TH
4608 }
4609}
5c750d58 4610EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4611
4612/**
4613 * print_worker_info - print out worker information and description
4614 * @log_lvl: the log level to use when printing
4615 * @task: target task
4616 *
4617 * If @task is a worker and currently executing a work item, print out the
4618 * name of the workqueue being serviced and worker description set with
4619 * set_worker_desc() by the currently executing work item.
4620 *
4621 * This function can be safely called on any task as long as the
4622 * task_struct itself is accessible. While safe, this function isn't
4623 * synchronized and may print out mixups or garbages of limited length.
4624 */
4625void print_worker_info(const char *log_lvl, struct task_struct *task)
4626{
4627 work_func_t *fn = NULL;
4628 char name[WQ_NAME_LEN] = { };
4629 char desc[WORKER_DESC_LEN] = { };
4630 struct pool_workqueue *pwq = NULL;
4631 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4632 struct worker *worker;
4633
4634 if (!(task->flags & PF_WQ_WORKER))
4635 return;
4636
4637 /*
4638 * This function is called without any synchronization and @task
4639 * could be in any state. Be careful with dereferences.
4640 */
e700591a 4641 worker = kthread_probe_data(task);
3d1cb205
TH
4642
4643 /*
8bf89593
TH
4644 * Carefully copy the associated workqueue's workfn, name and desc.
4645 * Keep the original last '\0' in case the original is garbage.
3d1cb205 4646 */
fe557319
CH
4647 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4648 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4649 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4650 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4651 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4652
4653 if (fn || name[0] || desc[0]) {
d75f773c 4654 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
8bf89593 4655 if (strcmp(name, desc))
3d1cb205
TH
4656 pr_cont(" (%s)", desc);
4657 pr_cont("\n");
4658 }
4659}
4660
3494fc30
TH
4661static void pr_cont_pool_info(struct worker_pool *pool)
4662{
4663 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4664 if (pool->node != NUMA_NO_NODE)
4665 pr_cont(" node=%d", pool->node);
4666 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4667}
4668
4669static void pr_cont_work(bool comma, struct work_struct *work)
4670{
4671 if (work->func == wq_barrier_func) {
4672 struct wq_barrier *barr;
4673
4674 barr = container_of(work, struct wq_barrier, work);
4675
4676 pr_cont("%s BAR(%d)", comma ? "," : "",
4677 task_pid_nr(barr->task));
4678 } else {
d75f773c 4679 pr_cont("%s %ps", comma ? "," : "", work->func);
3494fc30
TH
4680 }
4681}
4682
4683static void show_pwq(struct pool_workqueue *pwq)
4684{
4685 struct worker_pool *pool = pwq->pool;
4686 struct work_struct *work;
4687 struct worker *worker;
4688 bool has_in_flight = false, has_pending = false;
4689 int bkt;
4690
4691 pr_info(" pwq %d:", pool->id);
4692 pr_cont_pool_info(pool);
4693
e66b39af
TH
4694 pr_cont(" active=%d/%d refcnt=%d%s\n",
4695 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4696 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4697
4698 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4699 if (worker->current_pwq == pwq) {
4700 has_in_flight = true;
4701 break;
4702 }
4703 }
4704 if (has_in_flight) {
4705 bool comma = false;
4706
4707 pr_info(" in-flight:");
4708 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4709 if (worker->current_pwq != pwq)
4710 continue;
4711
d75f773c 4712 pr_cont("%s %d%s:%ps", comma ? "," : "",
3494fc30 4713 task_pid_nr(worker->task),
30ae2fc0 4714 worker->rescue_wq ? "(RESCUER)" : "",
3494fc30
TH
4715 worker->current_func);
4716 list_for_each_entry(work, &worker->scheduled, entry)
4717 pr_cont_work(false, work);
4718 comma = true;
4719 }
4720 pr_cont("\n");
4721 }
4722
4723 list_for_each_entry(work, &pool->worklist, entry) {
4724 if (get_work_pwq(work) == pwq) {
4725 has_pending = true;
4726 break;
4727 }
4728 }
4729 if (has_pending) {
4730 bool comma = false;
4731
4732 pr_info(" pending:");
4733 list_for_each_entry(work, &pool->worklist, entry) {
4734 if (get_work_pwq(work) != pwq)
4735 continue;
4736
4737 pr_cont_work(comma, work);
4738 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4739 }
4740 pr_cont("\n");
4741 }
4742
4743 if (!list_empty(&pwq->delayed_works)) {
4744 bool comma = false;
4745
4746 pr_info(" delayed:");
4747 list_for_each_entry(work, &pwq->delayed_works, entry) {
4748 pr_cont_work(comma, work);
4749 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4750 }
4751 pr_cont("\n");
4752 }
4753}
4754
4755/**
4756 * show_workqueue_state - dump workqueue state
4757 *
7b776af6
RL
4758 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4759 * all busy workqueues and pools.
3494fc30
TH
4760 */
4761void show_workqueue_state(void)
4762{
4763 struct workqueue_struct *wq;
4764 struct worker_pool *pool;
4765 unsigned long flags;
4766 int pi;
4767
24acfb71 4768 rcu_read_lock();
3494fc30
TH
4769
4770 pr_info("Showing busy workqueues and worker pools:\n");
4771
4772 list_for_each_entry_rcu(wq, &workqueues, list) {
4773 struct pool_workqueue *pwq;
4774 bool idle = true;
4775
4776 for_each_pwq(pwq, wq) {
4777 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4778 idle = false;
4779 break;
4780 }
4781 }
4782 if (idle)
4783 continue;
4784
4785 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4786
4787 for_each_pwq(pwq, wq) {
a9b8a985 4788 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3494fc30
TH
4789 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4790 show_pwq(pwq);
a9b8a985 4791 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4792 /*
4793 * We could be printing a lot from atomic context, e.g.
4794 * sysrq-t -> show_workqueue_state(). Avoid triggering
4795 * hard lockup.
4796 */
4797 touch_nmi_watchdog();
3494fc30
TH
4798 }
4799 }
4800
4801 for_each_pool(pool, pi) {
4802 struct worker *worker;
4803 bool first = true;
4804
a9b8a985 4805 raw_spin_lock_irqsave(&pool->lock, flags);
3494fc30
TH
4806 if (pool->nr_workers == pool->nr_idle)
4807 goto next_pool;
4808
4809 pr_info("pool %d:", pool->id);
4810 pr_cont_pool_info(pool);
82607adc
TH
4811 pr_cont(" hung=%us workers=%d",
4812 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4813 pool->nr_workers);
3494fc30
TH
4814 if (pool->manager)
4815 pr_cont(" manager: %d",
4816 task_pid_nr(pool->manager->task));
4817 list_for_each_entry(worker, &pool->idle_list, entry) {
4818 pr_cont(" %s%d", first ? "idle: " : "",
4819 task_pid_nr(worker->task));
4820 first = false;
4821 }
4822 pr_cont("\n");
4823 next_pool:
a9b8a985 4824 raw_spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4825 /*
4826 * We could be printing a lot from atomic context, e.g.
4827 * sysrq-t -> show_workqueue_state(). Avoid triggering
4828 * hard lockup.
4829 */
4830 touch_nmi_watchdog();
3494fc30
TH
4831 }
4832
24acfb71 4833 rcu_read_unlock();
3494fc30
TH
4834}
4835
6b59808b
TH
4836/* used to show worker information through /proc/PID/{comm,stat,status} */
4837void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4838{
6b59808b
TH
4839 int off;
4840
4841 /* always show the actual comm */
4842 off = strscpy(buf, task->comm, size);
4843 if (off < 0)
4844 return;
4845
197f6acc 4846 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4847 mutex_lock(&wq_pool_attach_mutex);
4848
197f6acc
TH
4849 if (task->flags & PF_WQ_WORKER) {
4850 struct worker *worker = kthread_data(task);
4851 struct worker_pool *pool = worker->pool;
6b59808b 4852
197f6acc 4853 if (pool) {
a9b8a985 4854 raw_spin_lock_irq(&pool->lock);
197f6acc
TH
4855 /*
4856 * ->desc tracks information (wq name or
4857 * set_worker_desc()) for the latest execution. If
4858 * current, prepend '+', otherwise '-'.
4859 */
4860 if (worker->desc[0] != '\0') {
4861 if (worker->current_work)
4862 scnprintf(buf + off, size - off, "+%s",
4863 worker->desc);
4864 else
4865 scnprintf(buf + off, size - off, "-%s",
4866 worker->desc);
4867 }
a9b8a985 4868 raw_spin_unlock_irq(&pool->lock);
6b59808b 4869 }
6b59808b
TH
4870 }
4871
4872 mutex_unlock(&wq_pool_attach_mutex);
4873}
4874
66448bc2
MM
4875#ifdef CONFIG_SMP
4876
db7bccf4
TH
4877/*
4878 * CPU hotplug.
4879 *
e22bee78 4880 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4881 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4882 * pool which make migrating pending and scheduled works very
e22bee78 4883 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4884 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4885 * blocked draining impractical.
4886 *
24647570 4887 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4888 * running as an unbound one and allowing it to be reattached later if the
4889 * cpu comes back online.
db7bccf4 4890 */
1da177e4 4891
e8b3f8db 4892static void unbind_workers(int cpu)
3af24433 4893{
4ce62e9e 4894 struct worker_pool *pool;
db7bccf4 4895 struct worker *worker;
3af24433 4896
f02ae73a 4897 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4898 mutex_lock(&wq_pool_attach_mutex);
a9b8a985 4899 raw_spin_lock_irq(&pool->lock);
3af24433 4900
94cf58bb 4901 /*
92f9c5c4 4902 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4903 * unbound and set DISASSOCIATED. Before this, all workers
4904 * except for the ones which are still executing works from
4905 * before the last CPU down must be on the cpu. After
4906 * this, they may become diasporas.
4907 */
da028469 4908 for_each_pool_worker(worker, pool)
c9e7cf27 4909 worker->flags |= WORKER_UNBOUND;
06ba38a9 4910
24647570 4911 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4912
a9b8a985 4913 raw_spin_unlock_irq(&pool->lock);
06249738
PZ
4914
4915 for_each_pool_worker(worker, pool)
4916 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_active_mask) < 0);
4917
1258fae7 4918 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4919
eb283428
LJ
4920 /*
4921 * Call schedule() so that we cross rq->lock and thus can
4922 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4923 * This is necessary as scheduler callbacks may be invoked
4924 * from other cpus.
4925 */
4926 schedule();
06ba38a9 4927
eb283428
LJ
4928 /*
4929 * Sched callbacks are disabled now. Zap nr_running.
4930 * After this, nr_running stays zero and need_more_worker()
4931 * and keep_working() are always true as long as the
4932 * worklist is not empty. This pool now behaves as an
4933 * unbound (in terms of concurrency management) pool which
4934 * are served by workers tied to the pool.
4935 */
e19e397a 4936 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4937
4938 /*
4939 * With concurrency management just turned off, a busy
4940 * worker blocking could lead to lengthy stalls. Kick off
4941 * unbound chain execution of currently pending work items.
4942 */
a9b8a985 4943 raw_spin_lock_irq(&pool->lock);
eb283428 4944 wake_up_worker(pool);
a9b8a985 4945 raw_spin_unlock_irq(&pool->lock);
eb283428 4946 }
3af24433 4947}
3af24433 4948
bd7c089e
TH
4949/**
4950 * rebind_workers - rebind all workers of a pool to the associated CPU
4951 * @pool: pool of interest
4952 *
a9ab775b 4953 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4954 */
4955static void rebind_workers(struct worker_pool *pool)
4956{
a9ab775b 4957 struct worker *worker;
bd7c089e 4958
1258fae7 4959 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4960
a9ab775b
TH
4961 /*
4962 * Restore CPU affinity of all workers. As all idle workers should
4963 * be on the run-queue of the associated CPU before any local
402dd89d 4964 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4965 * of all workers first and then clear UNBOUND. As we're called
4966 * from CPU_ONLINE, the following shouldn't fail.
4967 */
da028469 4968 for_each_pool_worker(worker, pool)
a9ab775b
TH
4969 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4970 pool->attrs->cpumask) < 0);
bd7c089e 4971
a9b8a985 4972 raw_spin_lock_irq(&pool->lock);
f7c17d26 4973
3de5e884 4974 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4975
da028469 4976 for_each_pool_worker(worker, pool) {
a9ab775b 4977 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4978
4979 /*
a9ab775b
TH
4980 * A bound idle worker should actually be on the runqueue
4981 * of the associated CPU for local wake-ups targeting it to
4982 * work. Kick all idle workers so that they migrate to the
4983 * associated CPU. Doing this in the same loop as
4984 * replacing UNBOUND with REBOUND is safe as no worker will
4985 * be bound before @pool->lock is released.
bd7c089e 4986 */
a9ab775b
TH
4987 if (worker_flags & WORKER_IDLE)
4988 wake_up_process(worker->task);
bd7c089e 4989
a9ab775b
TH
4990 /*
4991 * We want to clear UNBOUND but can't directly call
4992 * worker_clr_flags() or adjust nr_running. Atomically
4993 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4994 * @worker will clear REBOUND using worker_clr_flags() when
4995 * it initiates the next execution cycle thus restoring
4996 * concurrency management. Note that when or whether
4997 * @worker clears REBOUND doesn't affect correctness.
4998 *
c95491ed 4999 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b 5000 * tested without holding any lock in
6d25be57 5001 * wq_worker_running(). Without it, NOT_RUNNING test may
a9ab775b
TH
5002 * fail incorrectly leading to premature concurrency
5003 * management operations.
5004 */
5005 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5006 worker_flags |= WORKER_REBOUND;
5007 worker_flags &= ~WORKER_UNBOUND;
c95491ed 5008 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 5009 }
a9ab775b 5010
a9b8a985 5011 raw_spin_unlock_irq(&pool->lock);
bd7c089e
TH
5012}
5013
7dbc725e
TH
5014/**
5015 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5016 * @pool: unbound pool of interest
5017 * @cpu: the CPU which is coming up
5018 *
5019 * An unbound pool may end up with a cpumask which doesn't have any online
5020 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5021 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5022 * online CPU before, cpus_allowed of all its workers should be restored.
5023 */
5024static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5025{
5026 static cpumask_t cpumask;
5027 struct worker *worker;
7dbc725e 5028
1258fae7 5029 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
5030
5031 /* is @cpu allowed for @pool? */
5032 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5033 return;
5034
7dbc725e 5035 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
5036
5037 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 5038 for_each_pool_worker(worker, pool)
d945b5e9 5039 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
5040}
5041
7ee681b2
TG
5042int workqueue_prepare_cpu(unsigned int cpu)
5043{
5044 struct worker_pool *pool;
5045
5046 for_each_cpu_worker_pool(pool, cpu) {
5047 if (pool->nr_workers)
5048 continue;
5049 if (!create_worker(pool))
5050 return -ENOMEM;
5051 }
5052 return 0;
5053}
5054
5055int workqueue_online_cpu(unsigned int cpu)
3af24433 5056{
4ce62e9e 5057 struct worker_pool *pool;
4c16bd32 5058 struct workqueue_struct *wq;
7dbc725e 5059 int pi;
3ce63377 5060
7ee681b2 5061 mutex_lock(&wq_pool_mutex);
7dbc725e 5062
7ee681b2 5063 for_each_pool(pool, pi) {
1258fae7 5064 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 5065
7ee681b2
TG
5066 if (pool->cpu == cpu)
5067 rebind_workers(pool);
5068 else if (pool->cpu < 0)
5069 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5070
1258fae7 5071 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5072 }
6ba94429 5073
7ee681b2
TG
5074 /* update NUMA affinity of unbound workqueues */
5075 list_for_each_entry(wq, &workqueues, list)
5076 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5077
7ee681b2
TG
5078 mutex_unlock(&wq_pool_mutex);
5079 return 0;
6ba94429
FW
5080}
5081
7ee681b2 5082int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5083{
6ba94429
FW
5084 struct workqueue_struct *wq;
5085
7ee681b2 5086 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5087 if (WARN_ON(cpu != smp_processor_id()))
5088 return -1;
5089
5090 unbind_workers(cpu);
7ee681b2
TG
5091
5092 /* update NUMA affinity of unbound workqueues */
5093 mutex_lock(&wq_pool_mutex);
5094 list_for_each_entry(wq, &workqueues, list)
5095 wq_update_unbound_numa(wq, cpu, false);
5096 mutex_unlock(&wq_pool_mutex);
5097
7ee681b2 5098 return 0;
6ba94429
FW
5099}
5100
6ba94429
FW
5101struct work_for_cpu {
5102 struct work_struct work;
5103 long (*fn)(void *);
5104 void *arg;
5105 long ret;
5106};
5107
5108static void work_for_cpu_fn(struct work_struct *work)
5109{
5110 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5111
5112 wfc->ret = wfc->fn(wfc->arg);
5113}
5114
5115/**
22aceb31 5116 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5117 * @cpu: the cpu to run on
5118 * @fn: the function to run
5119 * @arg: the function arg
5120 *
5121 * It is up to the caller to ensure that the cpu doesn't go offline.
5122 * The caller must not hold any locks which would prevent @fn from completing.
5123 *
5124 * Return: The value @fn returns.
5125 */
5126long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5127{
5128 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5129
5130 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5131 schedule_work_on(cpu, &wfc.work);
5132 flush_work(&wfc.work);
5133 destroy_work_on_stack(&wfc.work);
5134 return wfc.ret;
5135}
5136EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5137
5138/**
5139 * work_on_cpu_safe - run a function in thread context on a particular cpu
5140 * @cpu: the cpu to run on
5141 * @fn: the function to run
5142 * @arg: the function argument
5143 *
5144 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5145 * any locks which would prevent @fn from completing.
5146 *
5147 * Return: The value @fn returns.
5148 */
5149long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5150{
5151 long ret = -ENODEV;
5152
5153 get_online_cpus();
5154 if (cpu_online(cpu))
5155 ret = work_on_cpu(cpu, fn, arg);
5156 put_online_cpus();
5157 return ret;
5158}
5159EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5160#endif /* CONFIG_SMP */
5161
5162#ifdef CONFIG_FREEZER
5163
5164/**
5165 * freeze_workqueues_begin - begin freezing workqueues
5166 *
5167 * Start freezing workqueues. After this function returns, all freezable
5168 * workqueues will queue new works to their delayed_works list instead of
5169 * pool->worklist.
5170 *
5171 * CONTEXT:
5172 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5173 */
5174void freeze_workqueues_begin(void)
5175{
5176 struct workqueue_struct *wq;
5177 struct pool_workqueue *pwq;
5178
5179 mutex_lock(&wq_pool_mutex);
5180
5181 WARN_ON_ONCE(workqueue_freezing);
5182 workqueue_freezing = true;
5183
5184 list_for_each_entry(wq, &workqueues, list) {
5185 mutex_lock(&wq->mutex);
5186 for_each_pwq(pwq, wq)
5187 pwq_adjust_max_active(pwq);
5188 mutex_unlock(&wq->mutex);
5189 }
5190
5191 mutex_unlock(&wq_pool_mutex);
5192}
5193
5194/**
5195 * freeze_workqueues_busy - are freezable workqueues still busy?
5196 *
5197 * Check whether freezing is complete. This function must be called
5198 * between freeze_workqueues_begin() and thaw_workqueues().
5199 *
5200 * CONTEXT:
5201 * Grabs and releases wq_pool_mutex.
5202 *
5203 * Return:
5204 * %true if some freezable workqueues are still busy. %false if freezing
5205 * is complete.
5206 */
5207bool freeze_workqueues_busy(void)
5208{
5209 bool busy = false;
5210 struct workqueue_struct *wq;
5211 struct pool_workqueue *pwq;
5212
5213 mutex_lock(&wq_pool_mutex);
5214
5215 WARN_ON_ONCE(!workqueue_freezing);
5216
5217 list_for_each_entry(wq, &workqueues, list) {
5218 if (!(wq->flags & WQ_FREEZABLE))
5219 continue;
5220 /*
5221 * nr_active is monotonically decreasing. It's safe
5222 * to peek without lock.
5223 */
24acfb71 5224 rcu_read_lock();
6ba94429
FW
5225 for_each_pwq(pwq, wq) {
5226 WARN_ON_ONCE(pwq->nr_active < 0);
5227 if (pwq->nr_active) {
5228 busy = true;
24acfb71 5229 rcu_read_unlock();
6ba94429
FW
5230 goto out_unlock;
5231 }
5232 }
24acfb71 5233 rcu_read_unlock();
6ba94429
FW
5234 }
5235out_unlock:
5236 mutex_unlock(&wq_pool_mutex);
5237 return busy;
5238}
5239
5240/**
5241 * thaw_workqueues - thaw workqueues
5242 *
5243 * Thaw workqueues. Normal queueing is restored and all collected
5244 * frozen works are transferred to their respective pool worklists.
5245 *
5246 * CONTEXT:
5247 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5248 */
5249void thaw_workqueues(void)
5250{
5251 struct workqueue_struct *wq;
5252 struct pool_workqueue *pwq;
5253
5254 mutex_lock(&wq_pool_mutex);
5255
5256 if (!workqueue_freezing)
5257 goto out_unlock;
5258
5259 workqueue_freezing = false;
5260
5261 /* restore max_active and repopulate worklist */
5262 list_for_each_entry(wq, &workqueues, list) {
5263 mutex_lock(&wq->mutex);
5264 for_each_pwq(pwq, wq)
5265 pwq_adjust_max_active(pwq);
5266 mutex_unlock(&wq->mutex);
5267 }
5268
5269out_unlock:
5270 mutex_unlock(&wq_pool_mutex);
5271}
5272#endif /* CONFIG_FREEZER */
5273
042f7df1
LJ
5274static int workqueue_apply_unbound_cpumask(void)
5275{
5276 LIST_HEAD(ctxs);
5277 int ret = 0;
5278 struct workqueue_struct *wq;
5279 struct apply_wqattrs_ctx *ctx, *n;
5280
5281 lockdep_assert_held(&wq_pool_mutex);
5282
5283 list_for_each_entry(wq, &workqueues, list) {
5284 if (!(wq->flags & WQ_UNBOUND))
5285 continue;
5286 /* creating multiple pwqs breaks ordering guarantee */
5287 if (wq->flags & __WQ_ORDERED)
5288 continue;
5289
5290 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5291 if (!ctx) {
5292 ret = -ENOMEM;
5293 break;
5294 }
5295
5296 list_add_tail(&ctx->list, &ctxs);
5297 }
5298
5299 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5300 if (!ret)
5301 apply_wqattrs_commit(ctx);
5302 apply_wqattrs_cleanup(ctx);
5303 }
5304
5305 return ret;
5306}
5307
5308/**
5309 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5310 * @cpumask: the cpumask to set
5311 *
5312 * The low-level workqueues cpumask is a global cpumask that limits
5313 * the affinity of all unbound workqueues. This function check the @cpumask
5314 * and apply it to all unbound workqueues and updates all pwqs of them.
5315 *
5316 * Retun: 0 - Success
5317 * -EINVAL - Invalid @cpumask
5318 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5319 */
5320int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5321{
5322 int ret = -EINVAL;
5323 cpumask_var_t saved_cpumask;
5324
5325 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5326 return -ENOMEM;
5327
c98a9805
TS
5328 /*
5329 * Not excluding isolated cpus on purpose.
5330 * If the user wishes to include them, we allow that.
5331 */
042f7df1
LJ
5332 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5333 if (!cpumask_empty(cpumask)) {
a0111cf6 5334 apply_wqattrs_lock();
042f7df1
LJ
5335
5336 /* save the old wq_unbound_cpumask. */
5337 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5338
5339 /* update wq_unbound_cpumask at first and apply it to wqs. */
5340 cpumask_copy(wq_unbound_cpumask, cpumask);
5341 ret = workqueue_apply_unbound_cpumask();
5342
5343 /* restore the wq_unbound_cpumask when failed. */
5344 if (ret < 0)
5345 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5346
a0111cf6 5347 apply_wqattrs_unlock();
042f7df1 5348 }
042f7df1
LJ
5349
5350 free_cpumask_var(saved_cpumask);
5351 return ret;
5352}
5353
6ba94429
FW
5354#ifdef CONFIG_SYSFS
5355/*
5356 * Workqueues with WQ_SYSFS flag set is visible to userland via
5357 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5358 * following attributes.
5359 *
5360 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5361 * max_active RW int : maximum number of in-flight work items
5362 *
5363 * Unbound workqueues have the following extra attributes.
5364 *
9a19b463 5365 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5366 * nice RW int : nice value of the workers
5367 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5368 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5369 */
5370struct wq_device {
5371 struct workqueue_struct *wq;
5372 struct device dev;
5373};
5374
5375static struct workqueue_struct *dev_to_wq(struct device *dev)
5376{
5377 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5378
5379 return wq_dev->wq;
5380}
5381
5382static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5383 char *buf)
5384{
5385 struct workqueue_struct *wq = dev_to_wq(dev);
5386
5387 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5388}
5389static DEVICE_ATTR_RO(per_cpu);
5390
5391static ssize_t max_active_show(struct device *dev,
5392 struct device_attribute *attr, char *buf)
5393{
5394 struct workqueue_struct *wq = dev_to_wq(dev);
5395
5396 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5397}
5398
5399static ssize_t max_active_store(struct device *dev,
5400 struct device_attribute *attr, const char *buf,
5401 size_t count)
5402{
5403 struct workqueue_struct *wq = dev_to_wq(dev);
5404 int val;
5405
5406 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5407 return -EINVAL;
5408
5409 workqueue_set_max_active(wq, val);
5410 return count;
5411}
5412static DEVICE_ATTR_RW(max_active);
5413
5414static struct attribute *wq_sysfs_attrs[] = {
5415 &dev_attr_per_cpu.attr,
5416 &dev_attr_max_active.attr,
5417 NULL,
5418};
5419ATTRIBUTE_GROUPS(wq_sysfs);
5420
5421static ssize_t wq_pool_ids_show(struct device *dev,
5422 struct device_attribute *attr, char *buf)
5423{
5424 struct workqueue_struct *wq = dev_to_wq(dev);
5425 const char *delim = "";
5426 int node, written = 0;
5427
24acfb71
TG
5428 get_online_cpus();
5429 rcu_read_lock();
6ba94429
FW
5430 for_each_node(node) {
5431 written += scnprintf(buf + written, PAGE_SIZE - written,
5432 "%s%d:%d", delim, node,
5433 unbound_pwq_by_node(wq, node)->pool->id);
5434 delim = " ";
5435 }
5436 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
24acfb71
TG
5437 rcu_read_unlock();
5438 put_online_cpus();
6ba94429
FW
5439
5440 return written;
5441}
5442
5443static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5444 char *buf)
5445{
5446 struct workqueue_struct *wq = dev_to_wq(dev);
5447 int written;
5448
5449 mutex_lock(&wq->mutex);
5450 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5451 mutex_unlock(&wq->mutex);
5452
5453 return written;
5454}
5455
5456/* prepare workqueue_attrs for sysfs store operations */
5457static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5458{
5459 struct workqueue_attrs *attrs;
5460
899a94fe
LJ
5461 lockdep_assert_held(&wq_pool_mutex);
5462
be69d00d 5463 attrs = alloc_workqueue_attrs();
6ba94429
FW
5464 if (!attrs)
5465 return NULL;
5466
6ba94429 5467 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5468 return attrs;
5469}
5470
5471static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5472 const char *buf, size_t count)
5473{
5474 struct workqueue_struct *wq = dev_to_wq(dev);
5475 struct workqueue_attrs *attrs;
d4d3e257
LJ
5476 int ret = -ENOMEM;
5477
5478 apply_wqattrs_lock();
6ba94429
FW
5479
5480 attrs = wq_sysfs_prep_attrs(wq);
5481 if (!attrs)
d4d3e257 5482 goto out_unlock;
6ba94429
FW
5483
5484 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5485 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5486 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5487 else
5488 ret = -EINVAL;
5489
d4d3e257
LJ
5490out_unlock:
5491 apply_wqattrs_unlock();
6ba94429
FW
5492 free_workqueue_attrs(attrs);
5493 return ret ?: count;
5494}
5495
5496static ssize_t wq_cpumask_show(struct device *dev,
5497 struct device_attribute *attr, char *buf)
5498{
5499 struct workqueue_struct *wq = dev_to_wq(dev);
5500 int written;
5501
5502 mutex_lock(&wq->mutex);
5503 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5504 cpumask_pr_args(wq->unbound_attrs->cpumask));
5505 mutex_unlock(&wq->mutex);
5506 return written;
5507}
5508
5509static ssize_t wq_cpumask_store(struct device *dev,
5510 struct device_attribute *attr,
5511 const char *buf, size_t count)
5512{
5513 struct workqueue_struct *wq = dev_to_wq(dev);
5514 struct workqueue_attrs *attrs;
d4d3e257
LJ
5515 int ret = -ENOMEM;
5516
5517 apply_wqattrs_lock();
6ba94429
FW
5518
5519 attrs = wq_sysfs_prep_attrs(wq);
5520 if (!attrs)
d4d3e257 5521 goto out_unlock;
6ba94429
FW
5522
5523 ret = cpumask_parse(buf, attrs->cpumask);
5524 if (!ret)
d4d3e257 5525 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5526
d4d3e257
LJ
5527out_unlock:
5528 apply_wqattrs_unlock();
6ba94429
FW
5529 free_workqueue_attrs(attrs);
5530 return ret ?: count;
5531}
5532
5533static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5534 char *buf)
5535{
5536 struct workqueue_struct *wq = dev_to_wq(dev);
5537 int written;
7dbc725e 5538
6ba94429
FW
5539 mutex_lock(&wq->mutex);
5540 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5541 !wq->unbound_attrs->no_numa);
5542 mutex_unlock(&wq->mutex);
4c16bd32 5543
6ba94429 5544 return written;
65758202
TH
5545}
5546
6ba94429
FW
5547static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5548 const char *buf, size_t count)
65758202 5549{
6ba94429
FW
5550 struct workqueue_struct *wq = dev_to_wq(dev);
5551 struct workqueue_attrs *attrs;
d4d3e257
LJ
5552 int v, ret = -ENOMEM;
5553
5554 apply_wqattrs_lock();
4c16bd32 5555
6ba94429
FW
5556 attrs = wq_sysfs_prep_attrs(wq);
5557 if (!attrs)
d4d3e257 5558 goto out_unlock;
4c16bd32 5559
6ba94429
FW
5560 ret = -EINVAL;
5561 if (sscanf(buf, "%d", &v) == 1) {
5562 attrs->no_numa = !v;
d4d3e257 5563 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5564 }
6ba94429 5565
d4d3e257
LJ
5566out_unlock:
5567 apply_wqattrs_unlock();
6ba94429
FW
5568 free_workqueue_attrs(attrs);
5569 return ret ?: count;
65758202
TH
5570}
5571
6ba94429
FW
5572static struct device_attribute wq_sysfs_unbound_attrs[] = {
5573 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5574 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5575 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5576 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5577 __ATTR_NULL,
5578};
8ccad40d 5579
6ba94429
FW
5580static struct bus_type wq_subsys = {
5581 .name = "workqueue",
5582 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5583};
5584
b05a7928
FW
5585static ssize_t wq_unbound_cpumask_show(struct device *dev,
5586 struct device_attribute *attr, char *buf)
5587{
5588 int written;
5589
042f7df1 5590 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5591 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5592 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5593 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5594
5595 return written;
5596}
5597
042f7df1
LJ
5598static ssize_t wq_unbound_cpumask_store(struct device *dev,
5599 struct device_attribute *attr, const char *buf, size_t count)
5600{
5601 cpumask_var_t cpumask;
5602 int ret;
5603
5604 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5605 return -ENOMEM;
5606
5607 ret = cpumask_parse(buf, cpumask);
5608 if (!ret)
5609 ret = workqueue_set_unbound_cpumask(cpumask);
5610
5611 free_cpumask_var(cpumask);
5612 return ret ? ret : count;
5613}
5614
b05a7928 5615static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5616 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5617 wq_unbound_cpumask_store);
b05a7928 5618
6ba94429 5619static int __init wq_sysfs_init(void)
2d3854a3 5620{
b05a7928
FW
5621 int err;
5622
5623 err = subsys_virtual_register(&wq_subsys, NULL);
5624 if (err)
5625 return err;
5626
5627 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5628}
6ba94429 5629core_initcall(wq_sysfs_init);
2d3854a3 5630
6ba94429 5631static void wq_device_release(struct device *dev)
2d3854a3 5632{
6ba94429 5633 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5634
6ba94429 5635 kfree(wq_dev);
2d3854a3 5636}
a0a1a5fd
TH
5637
5638/**
6ba94429
FW
5639 * workqueue_sysfs_register - make a workqueue visible in sysfs
5640 * @wq: the workqueue to register
a0a1a5fd 5641 *
6ba94429
FW
5642 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5643 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5644 * which is the preferred method.
a0a1a5fd 5645 *
6ba94429
FW
5646 * Workqueue user should use this function directly iff it wants to apply
5647 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5648 * apply_workqueue_attrs() may race against userland updating the
5649 * attributes.
5650 *
5651 * Return: 0 on success, -errno on failure.
a0a1a5fd 5652 */
6ba94429 5653int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5654{
6ba94429
FW
5655 struct wq_device *wq_dev;
5656 int ret;
a0a1a5fd 5657
6ba94429 5658 /*
402dd89d 5659 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5660 * attributes breaks ordering guarantee. Disallow exposing ordered
5661 * workqueues.
5662 */
0a94efb5 5663 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5664 return -EINVAL;
a0a1a5fd 5665
6ba94429
FW
5666 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5667 if (!wq_dev)
5668 return -ENOMEM;
5bcab335 5669
6ba94429
FW
5670 wq_dev->wq = wq;
5671 wq_dev->dev.bus = &wq_subsys;
6ba94429 5672 wq_dev->dev.release = wq_device_release;
23217b44 5673 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5674
6ba94429
FW
5675 /*
5676 * unbound_attrs are created separately. Suppress uevent until
5677 * everything is ready.
5678 */
5679 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5680
6ba94429
FW
5681 ret = device_register(&wq_dev->dev);
5682 if (ret) {
537f4146 5683 put_device(&wq_dev->dev);
6ba94429
FW
5684 wq->wq_dev = NULL;
5685 return ret;
5686 }
a0a1a5fd 5687
6ba94429
FW
5688 if (wq->flags & WQ_UNBOUND) {
5689 struct device_attribute *attr;
a0a1a5fd 5690
6ba94429
FW
5691 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5692 ret = device_create_file(&wq_dev->dev, attr);
5693 if (ret) {
5694 device_unregister(&wq_dev->dev);
5695 wq->wq_dev = NULL;
5696 return ret;
a0a1a5fd
TH
5697 }
5698 }
5699 }
6ba94429
FW
5700
5701 dev_set_uevent_suppress(&wq_dev->dev, false);
5702 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5703 return 0;
a0a1a5fd
TH
5704}
5705
5706/**
6ba94429
FW
5707 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5708 * @wq: the workqueue to unregister
a0a1a5fd 5709 *
6ba94429 5710 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5711 */
6ba94429 5712static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5713{
6ba94429 5714 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5715
6ba94429
FW
5716 if (!wq->wq_dev)
5717 return;
a0a1a5fd 5718
6ba94429
FW
5719 wq->wq_dev = NULL;
5720 device_unregister(&wq_dev->dev);
a0a1a5fd 5721}
6ba94429
FW
5722#else /* CONFIG_SYSFS */
5723static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5724#endif /* CONFIG_SYSFS */
a0a1a5fd 5725
82607adc
TH
5726/*
5727 * Workqueue watchdog.
5728 *
5729 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5730 * flush dependency, a concurrency managed work item which stays RUNNING
5731 * indefinitely. Workqueue stalls can be very difficult to debug as the
5732 * usual warning mechanisms don't trigger and internal workqueue state is
5733 * largely opaque.
5734 *
5735 * Workqueue watchdog monitors all worker pools periodically and dumps
5736 * state if some pools failed to make forward progress for a while where
5737 * forward progress is defined as the first item on ->worklist changing.
5738 *
5739 * This mechanism is controlled through the kernel parameter
5740 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5741 * corresponding sysfs parameter file.
5742 */
5743#ifdef CONFIG_WQ_WATCHDOG
5744
82607adc 5745static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5746static struct timer_list wq_watchdog_timer;
82607adc
TH
5747
5748static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5749static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5750
5751static void wq_watchdog_reset_touched(void)
5752{
5753 int cpu;
5754
5755 wq_watchdog_touched = jiffies;
5756 for_each_possible_cpu(cpu)
5757 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5758}
5759
5cd79d6a 5760static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5761{
5762 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5763 bool lockup_detected = false;
5764 struct worker_pool *pool;
5765 int pi;
5766
5767 if (!thresh)
5768 return;
5769
5770 rcu_read_lock();
5771
5772 for_each_pool(pool, pi) {
5773 unsigned long pool_ts, touched, ts;
5774
5775 if (list_empty(&pool->worklist))
5776 continue;
5777
5778 /* get the latest of pool and touched timestamps */
5779 pool_ts = READ_ONCE(pool->watchdog_ts);
5780 touched = READ_ONCE(wq_watchdog_touched);
5781
5782 if (time_after(pool_ts, touched))
5783 ts = pool_ts;
5784 else
5785 ts = touched;
5786
5787 if (pool->cpu >= 0) {
5788 unsigned long cpu_touched =
5789 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5790 pool->cpu));
5791 if (time_after(cpu_touched, ts))
5792 ts = cpu_touched;
5793 }
5794
5795 /* did we stall? */
5796 if (time_after(jiffies, ts + thresh)) {
5797 lockup_detected = true;
5798 pr_emerg("BUG: workqueue lockup - pool");
5799 pr_cont_pool_info(pool);
5800 pr_cont(" stuck for %us!\n",
5801 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5802 }
5803 }
5804
5805 rcu_read_unlock();
5806
5807 if (lockup_detected)
5808 show_workqueue_state();
5809
5810 wq_watchdog_reset_touched();
5811 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5812}
5813
cb9d7fd5 5814notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5815{
5816 if (cpu >= 0)
5817 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5818 else
5819 wq_watchdog_touched = jiffies;
5820}
5821
5822static void wq_watchdog_set_thresh(unsigned long thresh)
5823{
5824 wq_watchdog_thresh = 0;
5825 del_timer_sync(&wq_watchdog_timer);
5826
5827 if (thresh) {
5828 wq_watchdog_thresh = thresh;
5829 wq_watchdog_reset_touched();
5830 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5831 }
5832}
5833
5834static int wq_watchdog_param_set_thresh(const char *val,
5835 const struct kernel_param *kp)
5836{
5837 unsigned long thresh;
5838 int ret;
5839
5840 ret = kstrtoul(val, 0, &thresh);
5841 if (ret)
5842 return ret;
5843
5844 if (system_wq)
5845 wq_watchdog_set_thresh(thresh);
5846 else
5847 wq_watchdog_thresh = thresh;
5848
5849 return 0;
5850}
5851
5852static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5853 .set = wq_watchdog_param_set_thresh,
5854 .get = param_get_ulong,
5855};
5856
5857module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5858 0644);
5859
5860static void wq_watchdog_init(void)
5861{
5cd79d6a 5862 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5863 wq_watchdog_set_thresh(wq_watchdog_thresh);
5864}
5865
5866#else /* CONFIG_WQ_WATCHDOG */
5867
5868static inline void wq_watchdog_init(void) { }
5869
5870#endif /* CONFIG_WQ_WATCHDOG */
5871
bce90380
TH
5872static void __init wq_numa_init(void)
5873{
5874 cpumask_var_t *tbl;
5875 int node, cpu;
5876
bce90380
TH
5877 if (num_possible_nodes() <= 1)
5878 return;
5879
d55262c4
TH
5880 if (wq_disable_numa) {
5881 pr_info("workqueue: NUMA affinity support disabled\n");
5882 return;
5883 }
5884
be69d00d 5885 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
4c16bd32
TH
5886 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5887
bce90380
TH
5888 /*
5889 * We want masks of possible CPUs of each node which isn't readily
5890 * available. Build one from cpu_to_node() which should have been
5891 * fully initialized by now.
5892 */
6396bb22 5893 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5894 BUG_ON(!tbl);
5895
5896 for_each_node(node)
5a6024f1 5897 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5898 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5899
5900 for_each_possible_cpu(cpu) {
5901 node = cpu_to_node(cpu);
5902 if (WARN_ON(node == NUMA_NO_NODE)) {
5903 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5904 /* happens iff arch is bonkers, let's just proceed */
5905 return;
5906 }
5907 cpumask_set_cpu(cpu, tbl[node]);
5908 }
5909
5910 wq_numa_possible_cpumask = tbl;
5911 wq_numa_enabled = true;
5912}
5913
3347fa09
TH
5914/**
5915 * workqueue_init_early - early init for workqueue subsystem
5916 *
5917 * This is the first half of two-staged workqueue subsystem initialization
5918 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5919 * idr are up. It sets up all the data structures and system workqueues
5920 * and allows early boot code to create workqueues and queue/cancel work
5921 * items. Actual work item execution starts only after kthreads can be
5922 * created and scheduled right before early initcalls.
5923 */
2333e829 5924void __init workqueue_init_early(void)
1da177e4 5925{
7a4e344c 5926 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5927 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5928 int i, cpu;
c34056a3 5929
10cdb157 5930 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
e904e6c2 5931
b05a7928 5932 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5933 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5934
e904e6c2
TH
5935 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5936
706026c2 5937 /* initialize CPU pools */
29c91e99 5938 for_each_possible_cpu(cpu) {
4ce62e9e 5939 struct worker_pool *pool;
8b03ae3c 5940
7a4e344c 5941 i = 0;
f02ae73a 5942 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5943 BUG_ON(init_worker_pool(pool));
ec22ca5e 5944 pool->cpu = cpu;
29c91e99 5945 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5946 pool->attrs->nice = std_nice[i++];
f3f90ad4 5947 pool->node = cpu_to_node(cpu);
7a4e344c 5948
9daf9e67 5949 /* alloc pool ID */
68e13a67 5950 mutex_lock(&wq_pool_mutex);
9daf9e67 5951 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5952 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5953 }
8b03ae3c
TH
5954 }
5955
8a2b7538 5956 /* create default unbound and ordered wq attrs */
29c91e99
TH
5957 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5958 struct workqueue_attrs *attrs;
5959
be69d00d 5960 BUG_ON(!(attrs = alloc_workqueue_attrs()));
29c91e99 5961 attrs->nice = std_nice[i];
29c91e99 5962 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5963
5964 /*
5965 * An ordered wq should have only one pwq as ordering is
5966 * guaranteed by max_active which is enforced by pwqs.
5967 * Turn off NUMA so that dfl_pwq is used for all nodes.
5968 */
be69d00d 5969 BUG_ON(!(attrs = alloc_workqueue_attrs()));
8a2b7538
TH
5970 attrs->nice = std_nice[i];
5971 attrs->no_numa = true;
5972 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5973 }
5974
d320c038 5975 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5976 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5977 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5978 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5979 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5980 system_freezable_wq = alloc_workqueue("events_freezable",
5981 WQ_FREEZABLE, 0);
0668106c
VK
5982 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5983 WQ_POWER_EFFICIENT, 0);
5984 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5985 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5986 0);
1aabe902 5987 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5988 !system_unbound_wq || !system_freezable_wq ||
5989 !system_power_efficient_wq ||
5990 !system_freezable_power_efficient_wq);
3347fa09
TH
5991}
5992
5993/**
5994 * workqueue_init - bring workqueue subsystem fully online
5995 *
5996 * This is the latter half of two-staged workqueue subsystem initialization
5997 * and invoked as soon as kthreads can be created and scheduled.
5998 * Workqueues have been created and work items queued on them, but there
5999 * are no kworkers executing the work items yet. Populate the worker pools
6000 * with the initial workers and enable future kworker creations.
6001 */
2333e829 6002void __init workqueue_init(void)
3347fa09 6003{
2186d9f9 6004 struct workqueue_struct *wq;
3347fa09
TH
6005 struct worker_pool *pool;
6006 int cpu, bkt;
6007
2186d9f9
TH
6008 /*
6009 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6010 * CPU to node mapping may not be available that early on some
6011 * archs such as power and arm64. As per-cpu pools created
6012 * previously could be missing node hint and unbound pools NUMA
6013 * affinity, fix them up.
40c17f75
TH
6014 *
6015 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
6016 */
6017 wq_numa_init();
6018
6019 mutex_lock(&wq_pool_mutex);
6020
6021 for_each_possible_cpu(cpu) {
6022 for_each_cpu_worker_pool(pool, cpu) {
6023 pool->node = cpu_to_node(cpu);
6024 }
6025 }
6026
40c17f75 6027 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 6028 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
6029 WARN(init_rescuer(wq),
6030 "workqueue: failed to create early rescuer for %s",
6031 wq->name);
6032 }
2186d9f9
TH
6033
6034 mutex_unlock(&wq_pool_mutex);
6035
3347fa09
TH
6036 /* create the initial workers */
6037 for_each_online_cpu(cpu) {
6038 for_each_cpu_worker_pool(pool, cpu) {
6039 pool->flags &= ~POOL_DISASSOCIATED;
6040 BUG_ON(!create_worker(pool));
6041 }
6042 }
6043
6044 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6045 BUG_ON(!create_worker(pool));
6046
6047 wq_online = true;
82607adc 6048 wq_watchdog_init();
1da177e4 6049}
This page took 2.317977 seconds and 4 git commands to generate.