]> Git Repo - linux.git/blame - kernel/workqueue.c
workqueue: mark a work item being canceled as such
[linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <[email protected]>
8 * Andrew Morton
9 * Kai Petzke <[email protected]>
10 * Theodore Ts'o <[email protected]>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <[email protected]>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
3270476a 186 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 187
25511a47 188 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
189} ____cacheline_aligned_in_smp;
190
1da177e4 191/*
502ca9d8 192 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
193 * work_struct->data are used for flags and thus cwqs need to be
194 * aligned at two's power of the number of flag bits.
1da177e4
LT
195 */
196struct cpu_workqueue_struct {
bd7bdd43 197 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 198 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
199 int work_color; /* L: current color */
200 int flush_color; /* L: flushing color */
201 int nr_in_flight[WORK_NR_COLORS];
202 /* L: nr of in_flight works */
1e19ffc6 203 int nr_active; /* L: nr of active works */
a0a1a5fd 204 int max_active; /* L: max active works */
1e19ffc6 205 struct list_head delayed_works; /* L: delayed works */
0f900049 206};
1da177e4 207
73f53c4a
TH
208/*
209 * Structure used to wait for workqueue flush.
210 */
211struct wq_flusher {
212 struct list_head list; /* F: list of flushers */
213 int flush_color; /* F: flush color waiting for */
214 struct completion done; /* flush completion */
215};
216
f2e005aa
TH
217/*
218 * All cpumasks are assumed to be always set on UP and thus can't be
219 * used to determine whether there's something to be done.
220 */
221#ifdef CONFIG_SMP
222typedef cpumask_var_t mayday_mask_t;
223#define mayday_test_and_set_cpu(cpu, mask) \
224 cpumask_test_and_set_cpu((cpu), (mask))
225#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
226#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 227#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
228#define free_mayday_mask(mask) free_cpumask_var((mask))
229#else
230typedef unsigned long mayday_mask_t;
231#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
232#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
233#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
234#define alloc_mayday_mask(maskp, gfp) true
235#define free_mayday_mask(mask) do { } while (0)
236#endif
1da177e4
LT
237
238/*
239 * The externally visible workqueue abstraction is an array of
240 * per-CPU workqueues:
241 */
242struct workqueue_struct {
9c5a2ba7 243 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
244 union {
245 struct cpu_workqueue_struct __percpu *pcpu;
246 struct cpu_workqueue_struct *single;
247 unsigned long v;
248 } cpu_wq; /* I: cwq's */
4690c4ab 249 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
250
251 struct mutex flush_mutex; /* protects wq flushing */
252 int work_color; /* F: current work color */
253 int flush_color; /* F: current flush color */
254 atomic_t nr_cwqs_to_flush; /* flush in progress */
255 struct wq_flusher *first_flusher; /* F: first flusher */
256 struct list_head flusher_queue; /* F: flush waiters */
257 struct list_head flusher_overflow; /* F: flush overflow list */
258
f2e005aa 259 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
260 struct worker *rescuer; /* I: rescue worker */
261
9c5a2ba7 262 int nr_drainers; /* W: drain in progress */
dcd989cb 263 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 264#ifdef CONFIG_LOCKDEP
4690c4ab 265 struct lockdep_map lockdep_map;
4e6045f1 266#endif
b196be89 267 char name[]; /* I: workqueue name */
1da177e4
LT
268};
269
d320c038
TH
270struct workqueue_struct *system_wq __read_mostly;
271struct workqueue_struct *system_long_wq __read_mostly;
272struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 273struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 274struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 275struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
276EXPORT_SYMBOL_GPL(system_wq);
277EXPORT_SYMBOL_GPL(system_long_wq);
278EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 279EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 280EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 281EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 282
97bd2347
TH
283#define CREATE_TRACE_POINTS
284#include <trace/events/workqueue.h>
285
4ce62e9e 286#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
287 for ((pool) = &(gcwq)->pools[0]; \
288 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 289
db7bccf4
TH
290#define for_each_busy_worker(worker, i, pos, gcwq) \
291 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
292 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293
f3421797
TH
294static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 unsigned int sw)
296{
297 if (cpu < nr_cpu_ids) {
298 if (sw & 1) {
299 cpu = cpumask_next(cpu, mask);
300 if (cpu < nr_cpu_ids)
301 return cpu;
302 }
303 if (sw & 2)
304 return WORK_CPU_UNBOUND;
305 }
306 return WORK_CPU_NONE;
307}
308
309static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 struct workqueue_struct *wq)
311{
312 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313}
314
09884951
TH
315/*
316 * CPU iterators
317 *
318 * An extra gcwq is defined for an invalid cpu number
319 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320 * specific CPU. The following iterators are similar to
321 * for_each_*_cpu() iterators but also considers the unbound gcwq.
322 *
323 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
324 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
325 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
326 * WORK_CPU_UNBOUND for unbound workqueues
327 */
f3421797
TH
328#define for_each_gcwq_cpu(cpu) \
329 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
330 (cpu) < WORK_CPU_NONE; \
331 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332
333#define for_each_online_gcwq_cpu(cpu) \
334 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
335 (cpu) < WORK_CPU_NONE; \
336 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337
338#define for_each_cwq_cpu(cpu, wq) \
339 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
340 (cpu) < WORK_CPU_NONE; \
341 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342
dc186ad7
TG
343#ifdef CONFIG_DEBUG_OBJECTS_WORK
344
345static struct debug_obj_descr work_debug_descr;
346
99777288
SG
347static void *work_debug_hint(void *addr)
348{
349 return ((struct work_struct *) addr)->func;
350}
351
dc186ad7
TG
352/*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356static int work_fixup_init(void *addr, enum debug_obj_state state)
357{
358 struct work_struct *work = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 cancel_work_sync(work);
363 debug_object_init(work, &work_debug_descr);
364 return 1;
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown object is activated (might be a statically initialized object)
374 */
375static int work_fixup_activate(void *addr, enum debug_obj_state state)
376{
377 struct work_struct *work = addr;
378
379 switch (state) {
380
381 case ODEBUG_STATE_NOTAVAILABLE:
382 /*
383 * This is not really a fixup. The work struct was
384 * statically initialized. We just make sure that it
385 * is tracked in the object tracker.
386 */
22df02bb 387 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
388 debug_object_init(work, &work_debug_descr);
389 debug_object_activate(work, &work_debug_descr);
390 return 0;
391 }
392 WARN_ON_ONCE(1);
393 return 0;
394
395 case ODEBUG_STATE_ACTIVE:
396 WARN_ON(1);
397
398 default:
399 return 0;
400 }
401}
402
403/*
404 * fixup_free is called when:
405 * - an active object is freed
406 */
407static int work_fixup_free(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_free(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421static struct debug_obj_descr work_debug_descr = {
422 .name = "work_struct",
99777288 423 .debug_hint = work_debug_hint,
dc186ad7
TG
424 .fixup_init = work_fixup_init,
425 .fixup_activate = work_fixup_activate,
426 .fixup_free = work_fixup_free,
427};
428
429static inline void debug_work_activate(struct work_struct *work)
430{
431 debug_object_activate(work, &work_debug_descr);
432}
433
434static inline void debug_work_deactivate(struct work_struct *work)
435{
436 debug_object_deactivate(work, &work_debug_descr);
437}
438
439void __init_work(struct work_struct *work, int onstack)
440{
441 if (onstack)
442 debug_object_init_on_stack(work, &work_debug_descr);
443 else
444 debug_object_init(work, &work_debug_descr);
445}
446EXPORT_SYMBOL_GPL(__init_work);
447
448void destroy_work_on_stack(struct work_struct *work)
449{
450 debug_object_free(work, &work_debug_descr);
451}
452EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453
454#else
455static inline void debug_work_activate(struct work_struct *work) { }
456static inline void debug_work_deactivate(struct work_struct *work) { }
457#endif
458
95402b38
GS
459/* Serializes the accesses to the list of workqueues. */
460static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 461static LIST_HEAD(workqueues);
a0a1a5fd 462static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 463
e22bee78
TH
464/*
465 * The almighty global cpu workqueues. nr_running is the only field
466 * which is expected to be used frequently by other cpus via
467 * try_to_wake_up(). Put it in a separate cacheline.
468 */
8b03ae3c 469static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 470static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 471
f3421797
TH
472/*
473 * Global cpu workqueue and nr_running counter for unbound gcwq. The
474 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475 * workers have WORKER_UNBOUND set.
476 */
477static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
478static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
480};
f3421797 481
c34056a3 482static int worker_thread(void *__worker);
1da177e4 483
3270476a
TH
484static int worker_pool_pri(struct worker_pool *pool)
485{
486 return pool - pool->gcwq->pools;
487}
488
8b03ae3c
TH
489static struct global_cwq *get_gcwq(unsigned int cpu)
490{
f3421797
TH
491 if (cpu != WORK_CPU_UNBOUND)
492 return &per_cpu(global_cwq, cpu);
493 else
494 return &unbound_global_cwq;
8b03ae3c
TH
495}
496
63d95a91 497static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 498{
63d95a91 499 int cpu = pool->gcwq->cpu;
3270476a 500 int idx = worker_pool_pri(pool);
63d95a91 501
f3421797 502 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 503 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 504 else
4ce62e9e 505 return &unbound_pool_nr_running[idx];
e22bee78
TH
506}
507
1537663f
TH
508static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 struct workqueue_struct *wq)
b1f4ec17 510{
f3421797 511 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 512 if (likely(cpu < nr_cpu_ids))
f3421797 513 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
514 } else if (likely(cpu == WORK_CPU_UNBOUND))
515 return wq->cpu_wq.single;
516 return NULL;
b1f4ec17
ON
517}
518
73f53c4a
TH
519static unsigned int work_color_to_flags(int color)
520{
521 return color << WORK_STRUCT_COLOR_SHIFT;
522}
523
524static int get_work_color(struct work_struct *work)
525{
526 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
528}
529
530static int work_next_color(int color)
531{
532 return (color + 1) % WORK_NR_COLORS;
533}
1da177e4 534
14441960 535/*
b5490077
TH
536 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
537 * contain the pointer to the queued cwq. Once execution starts, the flag
538 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 539 *
bbb68dfa
TH
540 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
541 * and clear_work_data() can be used to set the cwq, cpu or clear
542 * work->data. These functions should only be called while the work is
543 * owned - ie. while the PENDING bit is set.
544 *
545 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
546 * a work. gcwq is available once the work has been queued anywhere after
547 * initialization until it is sync canceled. cwq is available only while
548 * the work item is queued.
549 *
550 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
551 * canceled. While being canceled, a work item may have its PENDING set
552 * but stay off timer and worklist for arbitrarily long and nobody should
553 * try to steal the PENDING bit.
14441960 554 */
7a22ad75
TH
555static inline void set_work_data(struct work_struct *work, unsigned long data,
556 unsigned long flags)
365970a1 557{
4594bf15 558 BUG_ON(!work_pending(work));
7a22ad75
TH
559 atomic_long_set(&work->data, data | flags | work_static(work));
560}
365970a1 561
7a22ad75
TH
562static void set_work_cwq(struct work_struct *work,
563 struct cpu_workqueue_struct *cwq,
564 unsigned long extra_flags)
565{
566 set_work_data(work, (unsigned long)cwq,
e120153d 567 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
568}
569
8930caba
TH
570static void set_work_cpu_and_clear_pending(struct work_struct *work,
571 unsigned int cpu)
7a22ad75 572{
b5490077 573 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 574}
f756d5e2 575
7a22ad75 576static void clear_work_data(struct work_struct *work)
1da177e4 577{
7a22ad75 578 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
579}
580
7a22ad75 581static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 582{
e120153d 583 unsigned long data = atomic_long_read(&work->data);
7a22ad75 584
e120153d
TH
585 if (data & WORK_STRUCT_CWQ)
586 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
587 else
588 return NULL;
4d707b9f
ON
589}
590
7a22ad75 591static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 592{
e120153d 593 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
594 unsigned int cpu;
595
e120153d
TH
596 if (data & WORK_STRUCT_CWQ)
597 return ((struct cpu_workqueue_struct *)
bd7bdd43 598 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 599
b5490077 600 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 601 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
602 return NULL;
603
f3421797 604 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 605 return get_gcwq(cpu);
b1f4ec17
ON
606}
607
bbb68dfa
TH
608static void mark_work_canceling(struct work_struct *work)
609{
610 struct global_cwq *gcwq = get_work_gcwq(work);
611 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
612
613 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
614 WORK_STRUCT_PENDING);
615}
616
617static bool work_is_canceling(struct work_struct *work)
618{
619 unsigned long data = atomic_long_read(&work->data);
620
621 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
622}
623
e22bee78 624/*
3270476a
TH
625 * Policy functions. These define the policies on how the global worker
626 * pools are managed. Unless noted otherwise, these functions assume that
627 * they're being called with gcwq->lock held.
e22bee78
TH
628 */
629
63d95a91 630static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 631{
3270476a 632 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
633}
634
4594bf15 635/*
e22bee78
TH
636 * Need to wake up a worker? Called from anything but currently
637 * running workers.
974271c4
TH
638 *
639 * Note that, because unbound workers never contribute to nr_running, this
640 * function will always return %true for unbound gcwq as long as the
641 * worklist isn't empty.
4594bf15 642 */
63d95a91 643static bool need_more_worker(struct worker_pool *pool)
365970a1 644{
63d95a91 645 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 646}
4594bf15 647
e22bee78 648/* Can I start working? Called from busy but !running workers. */
63d95a91 649static bool may_start_working(struct worker_pool *pool)
e22bee78 650{
63d95a91 651 return pool->nr_idle;
e22bee78
TH
652}
653
654/* Do I need to keep working? Called from currently running workers. */
63d95a91 655static bool keep_working(struct worker_pool *pool)
e22bee78 656{
63d95a91 657 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 658
3270476a 659 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
660}
661
662/* Do we need a new worker? Called from manager. */
63d95a91 663static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 664{
63d95a91 665 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 666}
365970a1 667
e22bee78 668/* Do I need to be the manager? */
63d95a91 669static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 670{
63d95a91 671 return need_to_create_worker(pool) ||
11ebea50 672 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
673}
674
675/* Do we have too many workers and should some go away? */
63d95a91 676static bool too_many_workers(struct worker_pool *pool)
e22bee78 677{
60373152 678 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
679 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
680 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
681
682 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
683}
684
4d707b9f 685/*
e22bee78
TH
686 * Wake up functions.
687 */
688
7e11629d 689/* Return the first worker. Safe with preemption disabled */
63d95a91 690static struct worker *first_worker(struct worker_pool *pool)
7e11629d 691{
63d95a91 692 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
693 return NULL;
694
63d95a91 695 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
696}
697
698/**
699 * wake_up_worker - wake up an idle worker
63d95a91 700 * @pool: worker pool to wake worker from
7e11629d 701 *
63d95a91 702 * Wake up the first idle worker of @pool.
7e11629d
TH
703 *
704 * CONTEXT:
705 * spin_lock_irq(gcwq->lock).
706 */
63d95a91 707static void wake_up_worker(struct worker_pool *pool)
7e11629d 708{
63d95a91 709 struct worker *worker = first_worker(pool);
7e11629d
TH
710
711 if (likely(worker))
712 wake_up_process(worker->task);
713}
714
d302f017 715/**
e22bee78
TH
716 * wq_worker_waking_up - a worker is waking up
717 * @task: task waking up
718 * @cpu: CPU @task is waking up to
719 *
720 * This function is called during try_to_wake_up() when a worker is
721 * being awoken.
722 *
723 * CONTEXT:
724 * spin_lock_irq(rq->lock)
725 */
726void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
727{
728 struct worker *worker = kthread_data(task);
729
2d64672e 730 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 731 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
732}
733
734/**
735 * wq_worker_sleeping - a worker is going to sleep
736 * @task: task going to sleep
737 * @cpu: CPU in question, must be the current CPU number
738 *
739 * This function is called during schedule() when a busy worker is
740 * going to sleep. Worker on the same cpu can be woken up by
741 * returning pointer to its task.
742 *
743 * CONTEXT:
744 * spin_lock_irq(rq->lock)
745 *
746 * RETURNS:
747 * Worker task on @cpu to wake up, %NULL if none.
748 */
749struct task_struct *wq_worker_sleeping(struct task_struct *task,
750 unsigned int cpu)
751{
752 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 753 struct worker_pool *pool = worker->pool;
63d95a91 754 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 755
2d64672e 756 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
757 return NULL;
758
759 /* this can only happen on the local cpu */
760 BUG_ON(cpu != raw_smp_processor_id());
761
762 /*
763 * The counterpart of the following dec_and_test, implied mb,
764 * worklist not empty test sequence is in insert_work().
765 * Please read comment there.
766 *
628c78e7
TH
767 * NOT_RUNNING is clear. This means that we're bound to and
768 * running on the local cpu w/ rq lock held and preemption
769 * disabled, which in turn means that none else could be
770 * manipulating idle_list, so dereferencing idle_list without gcwq
771 * lock is safe.
e22bee78 772 */
bd7bdd43 773 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 774 to_wakeup = first_worker(pool);
e22bee78
TH
775 return to_wakeup ? to_wakeup->task : NULL;
776}
777
778/**
779 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 780 * @worker: self
d302f017
TH
781 * @flags: flags to set
782 * @wakeup: wakeup an idle worker if necessary
783 *
e22bee78
TH
784 * Set @flags in @worker->flags and adjust nr_running accordingly. If
785 * nr_running becomes zero and @wakeup is %true, an idle worker is
786 * woken up.
d302f017 787 *
cb444766
TH
788 * CONTEXT:
789 * spin_lock_irq(gcwq->lock)
d302f017
TH
790 */
791static inline void worker_set_flags(struct worker *worker, unsigned int flags,
792 bool wakeup)
793{
bd7bdd43 794 struct worker_pool *pool = worker->pool;
e22bee78 795
cb444766
TH
796 WARN_ON_ONCE(worker->task != current);
797
e22bee78
TH
798 /*
799 * If transitioning into NOT_RUNNING, adjust nr_running and
800 * wake up an idle worker as necessary if requested by
801 * @wakeup.
802 */
803 if ((flags & WORKER_NOT_RUNNING) &&
804 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 805 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
806
807 if (wakeup) {
808 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 809 !list_empty(&pool->worklist))
63d95a91 810 wake_up_worker(pool);
e22bee78
TH
811 } else
812 atomic_dec(nr_running);
813 }
814
d302f017
TH
815 worker->flags |= flags;
816}
817
818/**
e22bee78 819 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 820 * @worker: self
d302f017
TH
821 * @flags: flags to clear
822 *
e22bee78 823 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 824 *
cb444766
TH
825 * CONTEXT:
826 * spin_lock_irq(gcwq->lock)
d302f017
TH
827 */
828static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
829{
63d95a91 830 struct worker_pool *pool = worker->pool;
e22bee78
TH
831 unsigned int oflags = worker->flags;
832
cb444766
TH
833 WARN_ON_ONCE(worker->task != current);
834
d302f017 835 worker->flags &= ~flags;
e22bee78 836
42c025f3
TH
837 /*
838 * If transitioning out of NOT_RUNNING, increment nr_running. Note
839 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
840 * of multiple flags, not a single flag.
841 */
e22bee78
TH
842 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
843 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 844 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
845}
846
c8e55f36
TH
847/**
848 * busy_worker_head - return the busy hash head for a work
849 * @gcwq: gcwq of interest
850 * @work: work to be hashed
851 *
852 * Return hash head of @gcwq for @work.
853 *
854 * CONTEXT:
855 * spin_lock_irq(gcwq->lock).
856 *
857 * RETURNS:
858 * Pointer to the hash head.
859 */
860static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
861 struct work_struct *work)
862{
863 const int base_shift = ilog2(sizeof(struct work_struct));
864 unsigned long v = (unsigned long)work;
865
866 /* simple shift and fold hash, do we need something better? */
867 v >>= base_shift;
868 v += v >> BUSY_WORKER_HASH_ORDER;
869 v &= BUSY_WORKER_HASH_MASK;
870
871 return &gcwq->busy_hash[v];
872}
873
8cca0eea
TH
874/**
875 * __find_worker_executing_work - find worker which is executing a work
876 * @gcwq: gcwq of interest
877 * @bwh: hash head as returned by busy_worker_head()
878 * @work: work to find worker for
879 *
880 * Find a worker which is executing @work on @gcwq. @bwh should be
881 * the hash head obtained by calling busy_worker_head() with the same
882 * work.
883 *
884 * CONTEXT:
885 * spin_lock_irq(gcwq->lock).
886 *
887 * RETURNS:
888 * Pointer to worker which is executing @work if found, NULL
889 * otherwise.
890 */
891static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
892 struct hlist_head *bwh,
893 struct work_struct *work)
894{
895 struct worker *worker;
896 struct hlist_node *tmp;
897
898 hlist_for_each_entry(worker, tmp, bwh, hentry)
899 if (worker->current_work == work)
900 return worker;
901 return NULL;
902}
903
904/**
905 * find_worker_executing_work - find worker which is executing a work
906 * @gcwq: gcwq of interest
907 * @work: work to find worker for
908 *
909 * Find a worker which is executing @work on @gcwq. This function is
910 * identical to __find_worker_executing_work() except that this
911 * function calculates @bwh itself.
912 *
913 * CONTEXT:
914 * spin_lock_irq(gcwq->lock).
915 *
916 * RETURNS:
917 * Pointer to worker which is executing @work if found, NULL
918 * otherwise.
4d707b9f 919 */
8cca0eea
TH
920static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
921 struct work_struct *work)
4d707b9f 922{
8cca0eea
TH
923 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
924 work);
4d707b9f
ON
925}
926
bf4ede01
TH
927/**
928 * move_linked_works - move linked works to a list
929 * @work: start of series of works to be scheduled
930 * @head: target list to append @work to
931 * @nextp: out paramter for nested worklist walking
932 *
933 * Schedule linked works starting from @work to @head. Work series to
934 * be scheduled starts at @work and includes any consecutive work with
935 * WORK_STRUCT_LINKED set in its predecessor.
936 *
937 * If @nextp is not NULL, it's updated to point to the next work of
938 * the last scheduled work. This allows move_linked_works() to be
939 * nested inside outer list_for_each_entry_safe().
940 *
941 * CONTEXT:
942 * spin_lock_irq(gcwq->lock).
943 */
944static void move_linked_works(struct work_struct *work, struct list_head *head,
945 struct work_struct **nextp)
946{
947 struct work_struct *n;
948
949 /*
950 * Linked worklist will always end before the end of the list,
951 * use NULL for list head.
952 */
953 list_for_each_entry_safe_from(work, n, NULL, entry) {
954 list_move_tail(&work->entry, head);
955 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
956 break;
957 }
958
959 /*
960 * If we're already inside safe list traversal and have moved
961 * multiple works to the scheduled queue, the next position
962 * needs to be updated.
963 */
964 if (nextp)
965 *nextp = n;
966}
967
968static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
969{
970 struct work_struct *work = list_first_entry(&cwq->delayed_works,
971 struct work_struct, entry);
972
973 trace_workqueue_activate_work(work);
974 move_linked_works(work, &cwq->pool->worklist, NULL);
975 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
976 cwq->nr_active++;
977}
978
979/**
980 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
981 * @cwq: cwq of interest
982 * @color: color of work which left the queue
983 * @delayed: for a delayed work
984 *
985 * A work either has completed or is removed from pending queue,
986 * decrement nr_in_flight of its cwq and handle workqueue flushing.
987 *
988 * CONTEXT:
989 * spin_lock_irq(gcwq->lock).
990 */
991static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
992 bool delayed)
993{
994 /* ignore uncolored works */
995 if (color == WORK_NO_COLOR)
996 return;
997
998 cwq->nr_in_flight[color]--;
999
1000 if (!delayed) {
1001 cwq->nr_active--;
1002 if (!list_empty(&cwq->delayed_works)) {
1003 /* one down, submit a delayed one */
1004 if (cwq->nr_active < cwq->max_active)
1005 cwq_activate_first_delayed(cwq);
1006 }
1007 }
1008
1009 /* is flush in progress and are we at the flushing tip? */
1010 if (likely(cwq->flush_color != color))
1011 return;
1012
1013 /* are there still in-flight works? */
1014 if (cwq->nr_in_flight[color])
1015 return;
1016
1017 /* this cwq is done, clear flush_color */
1018 cwq->flush_color = -1;
1019
1020 /*
1021 * If this was the last cwq, wake up the first flusher. It
1022 * will handle the rest.
1023 */
1024 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1025 complete(&cwq->wq->first_flusher->done);
1026}
1027
36e227d2 1028/**
bbb68dfa 1029 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1030 * @work: work item to steal
1031 * @is_dwork: @work is a delayed_work
bbb68dfa 1032 * @flags: place to store irq state
36e227d2
TH
1033 *
1034 * Try to grab PENDING bit of @work. This function can handle @work in any
1035 * stable state - idle, on timer or on worklist. Return values are
1036 *
1037 * 1 if @work was pending and we successfully stole PENDING
1038 * 0 if @work was idle and we claimed PENDING
1039 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1040 * -ENOENT if someone else is canceling @work, this state may persist
1041 * for arbitrarily long
36e227d2 1042 *
bbb68dfa
TH
1043 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1044 * preempted while holding PENDING and @work off queue, preemption must be
1045 * disabled on entry. This ensures that we don't return -EAGAIN while
1046 * another task is preempted in this function.
1047 *
1048 * On successful return, >= 0, irq is disabled and the caller is
1049 * responsible for releasing it using local_irq_restore(*@flags).
1050 *
1051 * This function is safe to call from any context other than IRQ handler.
1052 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1053 * this function return -EAGAIN perpetually.
bf4ede01 1054 */
bbb68dfa
TH
1055static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1056 unsigned long *flags)
bf4ede01
TH
1057{
1058 struct global_cwq *gcwq;
bf4ede01 1059
bbb68dfa
TH
1060 WARN_ON_ONCE(in_irq());
1061
1062 local_irq_save(*flags);
1063
36e227d2
TH
1064 /* try to steal the timer if it exists */
1065 if (is_dwork) {
1066 struct delayed_work *dwork = to_delayed_work(work);
1067
1068 if (likely(del_timer(&dwork->timer)))
1069 return 1;
1070 }
1071
1072 /* try to claim PENDING the normal way */
bf4ede01
TH
1073 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1074 return 0;
1075
1076 /*
1077 * The queueing is in progress, or it is already queued. Try to
1078 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1079 */
1080 gcwq = get_work_gcwq(work);
1081 if (!gcwq)
bbb68dfa 1082 goto fail;
bf4ede01 1083
bbb68dfa 1084 spin_lock(&gcwq->lock);
bf4ede01
TH
1085 if (!list_empty(&work->entry)) {
1086 /*
1087 * This work is queued, but perhaps we locked the wrong gcwq.
1088 * In that case we must see the new value after rmb(), see
1089 * insert_work()->wmb().
1090 */
1091 smp_rmb();
1092 if (gcwq == get_work_gcwq(work)) {
1093 debug_work_deactivate(work);
1094 list_del_init(&work->entry);
1095 cwq_dec_nr_in_flight(get_work_cwq(work),
1096 get_work_color(work),
1097 *work_data_bits(work) & WORK_STRUCT_DELAYED);
36e227d2 1098
bbb68dfa 1099 spin_unlock(&gcwq->lock);
36e227d2 1100 return 1;
bf4ede01
TH
1101 }
1102 }
bbb68dfa
TH
1103 spin_unlock(&gcwq->lock);
1104fail:
1105 local_irq_restore(*flags);
1106 if (work_is_canceling(work))
1107 return -ENOENT;
1108 cpu_relax();
36e227d2 1109 return -EAGAIN;
bf4ede01
TH
1110}
1111
4690c4ab 1112/**
7e11629d 1113 * insert_work - insert a work into gcwq
4690c4ab
TH
1114 * @cwq: cwq @work belongs to
1115 * @work: work to insert
1116 * @head: insertion point
1117 * @extra_flags: extra WORK_STRUCT_* flags to set
1118 *
7e11629d
TH
1119 * Insert @work which belongs to @cwq into @gcwq after @head.
1120 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1121 *
1122 * CONTEXT:
8b03ae3c 1123 * spin_lock_irq(gcwq->lock).
4690c4ab 1124 */
b89deed3 1125static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1126 struct work_struct *work, struct list_head *head,
1127 unsigned int extra_flags)
b89deed3 1128{
63d95a91 1129 struct worker_pool *pool = cwq->pool;
e22bee78 1130
4690c4ab 1131 /* we own @work, set data and link */
7a22ad75 1132 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1133
6e84d644
ON
1134 /*
1135 * Ensure that we get the right work->data if we see the
1136 * result of list_add() below, see try_to_grab_pending().
1137 */
1138 smp_wmb();
4690c4ab 1139
1a4d9b0a 1140 list_add_tail(&work->entry, head);
e22bee78
TH
1141
1142 /*
1143 * Ensure either worker_sched_deactivated() sees the above
1144 * list_add_tail() or we see zero nr_running to avoid workers
1145 * lying around lazily while there are works to be processed.
1146 */
1147 smp_mb();
1148
63d95a91
TH
1149 if (__need_more_worker(pool))
1150 wake_up_worker(pool);
b89deed3
ON
1151}
1152
c8efcc25
TH
1153/*
1154 * Test whether @work is being queued from another work executing on the
1155 * same workqueue. This is rather expensive and should only be used from
1156 * cold paths.
1157 */
1158static bool is_chained_work(struct workqueue_struct *wq)
1159{
1160 unsigned long flags;
1161 unsigned int cpu;
1162
1163 for_each_gcwq_cpu(cpu) {
1164 struct global_cwq *gcwq = get_gcwq(cpu);
1165 struct worker *worker;
1166 struct hlist_node *pos;
1167 int i;
1168
1169 spin_lock_irqsave(&gcwq->lock, flags);
1170 for_each_busy_worker(worker, i, pos, gcwq) {
1171 if (worker->task != current)
1172 continue;
1173 spin_unlock_irqrestore(&gcwq->lock, flags);
1174 /*
1175 * I'm @worker, no locking necessary. See if @work
1176 * is headed to the same workqueue.
1177 */
1178 return worker->current_cwq->wq == wq;
1179 }
1180 spin_unlock_irqrestore(&gcwq->lock, flags);
1181 }
1182 return false;
1183}
1184
4690c4ab 1185static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1186 struct work_struct *work)
1187{
502ca9d8
TH
1188 struct global_cwq *gcwq;
1189 struct cpu_workqueue_struct *cwq;
1e19ffc6 1190 struct list_head *worklist;
8a2e8e5d 1191 unsigned int work_flags;
8930caba
TH
1192
1193 /*
1194 * While a work item is PENDING && off queue, a task trying to
1195 * steal the PENDING will busy-loop waiting for it to either get
1196 * queued or lose PENDING. Grabbing PENDING and queueing should
1197 * happen with IRQ disabled.
1198 */
1199 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1200
dc186ad7 1201 debug_work_activate(work);
1e19ffc6 1202
c8efcc25 1203 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1204 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1205 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1206 return;
1207
c7fc77f7
TH
1208 /* determine gcwq to use */
1209 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1210 struct global_cwq *last_gcwq;
1211
57469821 1212 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1213 cpu = raw_smp_processor_id();
1214
18aa9eff
TH
1215 /*
1216 * It's multi cpu. If @wq is non-reentrant and @work
1217 * was previously on a different cpu, it might still
1218 * be running there, in which case the work needs to
1219 * be queued on that cpu to guarantee non-reentrance.
1220 */
502ca9d8 1221 gcwq = get_gcwq(cpu);
18aa9eff
TH
1222 if (wq->flags & WQ_NON_REENTRANT &&
1223 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1224 struct worker *worker;
1225
8930caba 1226 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1227
1228 worker = find_worker_executing_work(last_gcwq, work);
1229
1230 if (worker && worker->current_cwq->wq == wq)
1231 gcwq = last_gcwq;
1232 else {
1233 /* meh... not running there, queue here */
8930caba
TH
1234 spin_unlock(&last_gcwq->lock);
1235 spin_lock(&gcwq->lock);
18aa9eff 1236 }
8930caba
TH
1237 } else {
1238 spin_lock(&gcwq->lock);
1239 }
f3421797
TH
1240 } else {
1241 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1242 spin_lock(&gcwq->lock);
502ca9d8
TH
1243 }
1244
1245 /* gcwq determined, get cwq and queue */
1246 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1247 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1248
f5b2552b 1249 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1250 spin_unlock(&gcwq->lock);
f5b2552b
DC
1251 return;
1252 }
1e19ffc6 1253
73f53c4a 1254 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1255 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1256
1257 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1258 trace_workqueue_activate_work(work);
1e19ffc6 1259 cwq->nr_active++;
3270476a 1260 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1261 } else {
1262 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1263 worklist = &cwq->delayed_works;
8a2e8e5d 1264 }
1e19ffc6 1265
8a2e8e5d 1266 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1267
8930caba 1268 spin_unlock(&gcwq->lock);
1da177e4
LT
1269}
1270
c1a220e7
ZR
1271/**
1272 * queue_work_on - queue work on specific cpu
1273 * @cpu: CPU number to execute work on
1274 * @wq: workqueue to use
1275 * @work: work to queue
1276 *
d4283e93 1277 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1278 *
1279 * We queue the work to a specific CPU, the caller must ensure it
1280 * can't go away.
1281 */
d4283e93
TH
1282bool queue_work_on(int cpu, struct workqueue_struct *wq,
1283 struct work_struct *work)
c1a220e7 1284{
d4283e93 1285 bool ret = false;
8930caba
TH
1286 unsigned long flags;
1287
1288 local_irq_save(flags);
c1a220e7 1289
22df02bb 1290 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1291 __queue_work(cpu, wq, work);
d4283e93 1292 ret = true;
c1a220e7 1293 }
8930caba
TH
1294
1295 local_irq_restore(flags);
c1a220e7
ZR
1296 return ret;
1297}
1298EXPORT_SYMBOL_GPL(queue_work_on);
1299
0fcb78c2 1300/**
0a13c00e 1301 * queue_work - queue work on a workqueue
0fcb78c2 1302 * @wq: workqueue to use
0a13c00e 1303 * @work: work to queue
0fcb78c2 1304 *
d4283e93 1305 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1306 *
1307 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1308 * it can be processed by another CPU.
0fcb78c2 1309 */
d4283e93 1310bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1311{
57469821 1312 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1313}
1314EXPORT_SYMBOL_GPL(queue_work);
1315
d8e794df 1316void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1317{
1318 struct delayed_work *dwork = (struct delayed_work *)__data;
1319 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1320
8930caba 1321 local_irq_disable();
57469821 1322 __queue_work(WORK_CPU_UNBOUND, cwq->wq, &dwork->work);
8930caba 1323 local_irq_enable();
1da177e4 1324}
d8e794df 1325EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1326
7beb2edf
TH
1327static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1328 struct delayed_work *dwork, unsigned long delay)
1329{
1330 struct timer_list *timer = &dwork->timer;
1331 struct work_struct *work = &dwork->work;
1332 unsigned int lcpu;
1333
1334 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1335 timer->data != (unsigned long)dwork);
1336 BUG_ON(timer_pending(timer));
1337 BUG_ON(!list_empty(&work->entry));
1338
1339 timer_stats_timer_set_start_info(&dwork->timer);
1340
1341 /*
1342 * This stores cwq for the moment, for the timer_fn. Note that the
1343 * work's gcwq is preserved to allow reentrance detection for
1344 * delayed works.
1345 */
1346 if (!(wq->flags & WQ_UNBOUND)) {
1347 struct global_cwq *gcwq = get_work_gcwq(work);
1348
1349 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1350 lcpu = gcwq->cpu;
1351 else
1352 lcpu = raw_smp_processor_id();
1353 } else {
1354 lcpu = WORK_CPU_UNBOUND;
1355 }
1356
1357 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1358
1359 timer->expires = jiffies + delay;
1360
1361 if (unlikely(cpu != WORK_CPU_UNBOUND))
1362 add_timer_on(timer, cpu);
1363 else
1364 add_timer(timer);
1365}
1366
0fcb78c2
REB
1367/**
1368 * queue_delayed_work_on - queue work on specific CPU after delay
1369 * @cpu: CPU number to execute work on
1370 * @wq: workqueue to use
af9997e4 1371 * @dwork: work to queue
0fcb78c2
REB
1372 * @delay: number of jiffies to wait before queueing
1373 *
715f1300
TH
1374 * Returns %false if @work was already on a queue, %true otherwise. If
1375 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1376 * execution.
0fcb78c2 1377 */
d4283e93
TH
1378bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1379 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1380{
52bad64d 1381 struct work_struct *work = &dwork->work;
d4283e93 1382 bool ret = false;
8930caba
TH
1383 unsigned long flags;
1384
715f1300
TH
1385 if (!delay)
1386 return queue_work_on(cpu, wq, &dwork->work);
1387
8930caba
TH
1388 /* read the comment in __queue_work() */
1389 local_irq_save(flags);
7a6bc1cd 1390
22df02bb 1391 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1392 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1393 ret = true;
7a6bc1cd 1394 }
8930caba
TH
1395
1396 local_irq_restore(flags);
7a6bc1cd
VP
1397 return ret;
1398}
ae90dd5d 1399EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1400
0a13c00e
TH
1401/**
1402 * queue_delayed_work - queue work on a workqueue after delay
1403 * @wq: workqueue to use
1404 * @dwork: delayable work to queue
1405 * @delay: number of jiffies to wait before queueing
1406 *
715f1300 1407 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1408 */
d4283e93 1409bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1410 struct delayed_work *dwork, unsigned long delay)
1411{
57469821 1412 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1413}
1414EXPORT_SYMBOL_GPL(queue_delayed_work);
1415
c8e55f36
TH
1416/**
1417 * worker_enter_idle - enter idle state
1418 * @worker: worker which is entering idle state
1419 *
1420 * @worker is entering idle state. Update stats and idle timer if
1421 * necessary.
1422 *
1423 * LOCKING:
1424 * spin_lock_irq(gcwq->lock).
1425 */
1426static void worker_enter_idle(struct worker *worker)
1da177e4 1427{
bd7bdd43
TH
1428 struct worker_pool *pool = worker->pool;
1429 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1430
1431 BUG_ON(worker->flags & WORKER_IDLE);
1432 BUG_ON(!list_empty(&worker->entry) &&
1433 (worker->hentry.next || worker->hentry.pprev));
1434
cb444766
TH
1435 /* can't use worker_set_flags(), also called from start_worker() */
1436 worker->flags |= WORKER_IDLE;
bd7bdd43 1437 pool->nr_idle++;
e22bee78 1438 worker->last_active = jiffies;
c8e55f36
TH
1439
1440 /* idle_list is LIFO */
bd7bdd43 1441 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1442
628c78e7
TH
1443 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1444 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1445
544ecf31 1446 /*
628c78e7
TH
1447 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1448 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1449 * nr_running, the warning may trigger spuriously. Check iff
1450 * unbind is not in progress.
544ecf31 1451 */
628c78e7 1452 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1453 pool->nr_workers == pool->nr_idle &&
63d95a91 1454 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1455}
1456
1457/**
1458 * worker_leave_idle - leave idle state
1459 * @worker: worker which is leaving idle state
1460 *
1461 * @worker is leaving idle state. Update stats.
1462 *
1463 * LOCKING:
1464 * spin_lock_irq(gcwq->lock).
1465 */
1466static void worker_leave_idle(struct worker *worker)
1467{
bd7bdd43 1468 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1469
1470 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1471 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1472 pool->nr_idle--;
c8e55f36
TH
1473 list_del_init(&worker->entry);
1474}
1475
e22bee78
TH
1476/**
1477 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1478 * @worker: self
1479 *
1480 * Works which are scheduled while the cpu is online must at least be
1481 * scheduled to a worker which is bound to the cpu so that if they are
1482 * flushed from cpu callbacks while cpu is going down, they are
1483 * guaranteed to execute on the cpu.
1484 *
1485 * This function is to be used by rogue workers and rescuers to bind
1486 * themselves to the target cpu and may race with cpu going down or
1487 * coming online. kthread_bind() can't be used because it may put the
1488 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1489 * verbatim as it's best effort and blocking and gcwq may be
1490 * [dis]associated in the meantime.
1491 *
f2d5a0ee
TH
1492 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1493 * binding against %GCWQ_DISASSOCIATED which is set during
1494 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1495 * enters idle state or fetches works without dropping lock, it can
1496 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1497 *
1498 * CONTEXT:
1499 * Might sleep. Called without any lock but returns with gcwq->lock
1500 * held.
1501 *
1502 * RETURNS:
1503 * %true if the associated gcwq is online (@worker is successfully
1504 * bound), %false if offline.
1505 */
1506static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1507__acquires(&gcwq->lock)
e22bee78 1508{
bd7bdd43 1509 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1510 struct task_struct *task = worker->task;
1511
1512 while (true) {
4e6045f1 1513 /*
e22bee78
TH
1514 * The following call may fail, succeed or succeed
1515 * without actually migrating the task to the cpu if
1516 * it races with cpu hotunplug operation. Verify
1517 * against GCWQ_DISASSOCIATED.
4e6045f1 1518 */
f3421797
TH
1519 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1520 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1521
1522 spin_lock_irq(&gcwq->lock);
1523 if (gcwq->flags & GCWQ_DISASSOCIATED)
1524 return false;
1525 if (task_cpu(task) == gcwq->cpu &&
1526 cpumask_equal(&current->cpus_allowed,
1527 get_cpu_mask(gcwq->cpu)))
1528 return true;
1529 spin_unlock_irq(&gcwq->lock);
1530
5035b20f
TH
1531 /*
1532 * We've raced with CPU hot[un]plug. Give it a breather
1533 * and retry migration. cond_resched() is required here;
1534 * otherwise, we might deadlock against cpu_stop trying to
1535 * bring down the CPU on non-preemptive kernel.
1536 */
e22bee78 1537 cpu_relax();
5035b20f 1538 cond_resched();
e22bee78
TH
1539 }
1540}
1541
25511a47
TH
1542struct idle_rebind {
1543 int cnt; /* # workers to be rebound */
1544 struct completion done; /* all workers rebound */
1545};
1546
1547/*
1548 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1549 * happen synchronously for idle workers. worker_thread() will test
1550 * %WORKER_REBIND before leaving idle and call this function.
1551 */
1552static void idle_worker_rebind(struct worker *worker)
1553{
1554 struct global_cwq *gcwq = worker->pool->gcwq;
1555
1556 /* CPU must be online at this point */
1557 WARN_ON(!worker_maybe_bind_and_lock(worker));
1558 if (!--worker->idle_rebind->cnt)
1559 complete(&worker->idle_rebind->done);
1560 spin_unlock_irq(&worker->pool->gcwq->lock);
1561
1562 /* we did our part, wait for rebind_workers() to finish up */
1563 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1564}
1565
e22bee78 1566/*
25511a47 1567 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1568 * the associated cpu which is coming back online. This is scheduled by
1569 * cpu up but can race with other cpu hotplug operations and may be
1570 * executed twice without intervening cpu down.
e22bee78 1571 */
25511a47 1572static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1573{
1574 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1575 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1576
1577 if (worker_maybe_bind_and_lock(worker))
1578 worker_clr_flags(worker, WORKER_REBIND);
1579
1580 spin_unlock_irq(&gcwq->lock);
1581}
1582
25511a47
TH
1583/**
1584 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1585 * @gcwq: gcwq of interest
1586 *
1587 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1588 * is different for idle and busy ones.
1589 *
1590 * The idle ones should be rebound synchronously and idle rebinding should
1591 * be complete before any worker starts executing work items with
1592 * concurrency management enabled; otherwise, scheduler may oops trying to
1593 * wake up non-local idle worker from wq_worker_sleeping().
1594 *
1595 * This is achieved by repeatedly requesting rebinding until all idle
1596 * workers are known to have been rebound under @gcwq->lock and holding all
1597 * idle workers from becoming busy until idle rebinding is complete.
1598 *
1599 * Once idle workers are rebound, busy workers can be rebound as they
1600 * finish executing their current work items. Queueing the rebind work at
1601 * the head of their scheduled lists is enough. Note that nr_running will
1602 * be properbly bumped as busy workers rebind.
1603 *
1604 * On return, all workers are guaranteed to either be bound or have rebind
1605 * work item scheduled.
1606 */
1607static void rebind_workers(struct global_cwq *gcwq)
1608 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1609{
1610 struct idle_rebind idle_rebind;
1611 struct worker_pool *pool;
1612 struct worker *worker;
1613 struct hlist_node *pos;
1614 int i;
1615
1616 lockdep_assert_held(&gcwq->lock);
1617
1618 for_each_worker_pool(pool, gcwq)
1619 lockdep_assert_held(&pool->manager_mutex);
1620
1621 /*
1622 * Rebind idle workers. Interlocked both ways. We wait for
1623 * workers to rebind via @idle_rebind.done. Workers will wait for
1624 * us to finish up by watching %WORKER_REBIND.
1625 */
1626 init_completion(&idle_rebind.done);
1627retry:
1628 idle_rebind.cnt = 1;
1629 INIT_COMPLETION(idle_rebind.done);
1630
1631 /* set REBIND and kick idle ones, we'll wait for these later */
1632 for_each_worker_pool(pool, gcwq) {
1633 list_for_each_entry(worker, &pool->idle_list, entry) {
1634 if (worker->flags & WORKER_REBIND)
1635 continue;
1636
1637 /* morph UNBOUND to REBIND */
1638 worker->flags &= ~WORKER_UNBOUND;
1639 worker->flags |= WORKER_REBIND;
1640
1641 idle_rebind.cnt++;
1642 worker->idle_rebind = &idle_rebind;
1643
1644 /* worker_thread() will call idle_worker_rebind() */
1645 wake_up_process(worker->task);
1646 }
1647 }
1648
1649 if (--idle_rebind.cnt) {
1650 spin_unlock_irq(&gcwq->lock);
1651 wait_for_completion(&idle_rebind.done);
1652 spin_lock_irq(&gcwq->lock);
1653 /* busy ones might have become idle while waiting, retry */
1654 goto retry;
1655 }
1656
1657 /*
1658 * All idle workers are rebound and waiting for %WORKER_REBIND to
1659 * be cleared inside idle_worker_rebind(). Clear and release.
1660 * Clearing %WORKER_REBIND from this foreign context is safe
1661 * because these workers are still guaranteed to be idle.
1662 */
1663 for_each_worker_pool(pool, gcwq)
1664 list_for_each_entry(worker, &pool->idle_list, entry)
1665 worker->flags &= ~WORKER_REBIND;
1666
1667 wake_up_all(&gcwq->rebind_hold);
1668
1669 /* rebind busy workers */
1670 for_each_busy_worker(worker, i, pos, gcwq) {
1671 struct work_struct *rebind_work = &worker->rebind_work;
1672
1673 /* morph UNBOUND to REBIND */
1674 worker->flags &= ~WORKER_UNBOUND;
1675 worker->flags |= WORKER_REBIND;
1676
1677 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1678 work_data_bits(rebind_work)))
1679 continue;
1680
1681 /* wq doesn't matter, use the default one */
1682 debug_work_activate(rebind_work);
1683 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1684 worker->scheduled.next,
1685 work_color_to_flags(WORK_NO_COLOR));
1686 }
1687}
1688
c34056a3
TH
1689static struct worker *alloc_worker(void)
1690{
1691 struct worker *worker;
1692
1693 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1694 if (worker) {
1695 INIT_LIST_HEAD(&worker->entry);
affee4b2 1696 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1697 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1698 /* on creation a worker is in !idle && prep state */
1699 worker->flags = WORKER_PREP;
c8e55f36 1700 }
c34056a3
TH
1701 return worker;
1702}
1703
1704/**
1705 * create_worker - create a new workqueue worker
63d95a91 1706 * @pool: pool the new worker will belong to
c34056a3 1707 *
63d95a91 1708 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1709 * can be started by calling start_worker() or destroyed using
1710 * destroy_worker().
1711 *
1712 * CONTEXT:
1713 * Might sleep. Does GFP_KERNEL allocations.
1714 *
1715 * RETURNS:
1716 * Pointer to the newly created worker.
1717 */
bc2ae0f5 1718static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1719{
63d95a91 1720 struct global_cwq *gcwq = pool->gcwq;
3270476a 1721 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1722 struct worker *worker = NULL;
f3421797 1723 int id = -1;
c34056a3 1724
8b03ae3c 1725 spin_lock_irq(&gcwq->lock);
bd7bdd43 1726 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1727 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1728 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1729 goto fail;
8b03ae3c 1730 spin_lock_irq(&gcwq->lock);
c34056a3 1731 }
8b03ae3c 1732 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1733
1734 worker = alloc_worker();
1735 if (!worker)
1736 goto fail;
1737
bd7bdd43 1738 worker->pool = pool;
c34056a3
TH
1739 worker->id = id;
1740
bc2ae0f5 1741 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1742 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1743 worker, cpu_to_node(gcwq->cpu),
1744 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1745 else
1746 worker->task = kthread_create(worker_thread, worker,
3270476a 1747 "kworker/u:%d%s", id, pri);
c34056a3
TH
1748 if (IS_ERR(worker->task))
1749 goto fail;
1750
3270476a
TH
1751 if (worker_pool_pri(pool))
1752 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1753
db7bccf4 1754 /*
bc2ae0f5
TH
1755 * Determine CPU binding of the new worker depending on
1756 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1757 * flag remains stable across this function. See the comments
1758 * above the flag definition for details.
1759 *
1760 * As an unbound worker may later become a regular one if CPU comes
1761 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1762 */
bc2ae0f5 1763 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1764 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1765 } else {
db7bccf4 1766 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1767 worker->flags |= WORKER_UNBOUND;
f3421797 1768 }
c34056a3
TH
1769
1770 return worker;
1771fail:
1772 if (id >= 0) {
8b03ae3c 1773 spin_lock_irq(&gcwq->lock);
bd7bdd43 1774 ida_remove(&pool->worker_ida, id);
8b03ae3c 1775 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1776 }
1777 kfree(worker);
1778 return NULL;
1779}
1780
1781/**
1782 * start_worker - start a newly created worker
1783 * @worker: worker to start
1784 *
c8e55f36 1785 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1786 *
1787 * CONTEXT:
8b03ae3c 1788 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1789 */
1790static void start_worker(struct worker *worker)
1791{
cb444766 1792 worker->flags |= WORKER_STARTED;
bd7bdd43 1793 worker->pool->nr_workers++;
c8e55f36 1794 worker_enter_idle(worker);
c34056a3
TH
1795 wake_up_process(worker->task);
1796}
1797
1798/**
1799 * destroy_worker - destroy a workqueue worker
1800 * @worker: worker to be destroyed
1801 *
c8e55f36
TH
1802 * Destroy @worker and adjust @gcwq stats accordingly.
1803 *
1804 * CONTEXT:
1805 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1806 */
1807static void destroy_worker(struct worker *worker)
1808{
bd7bdd43
TH
1809 struct worker_pool *pool = worker->pool;
1810 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1811 int id = worker->id;
1812
1813 /* sanity check frenzy */
1814 BUG_ON(worker->current_work);
affee4b2 1815 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1816
c8e55f36 1817 if (worker->flags & WORKER_STARTED)
bd7bdd43 1818 pool->nr_workers--;
c8e55f36 1819 if (worker->flags & WORKER_IDLE)
bd7bdd43 1820 pool->nr_idle--;
c8e55f36
TH
1821
1822 list_del_init(&worker->entry);
cb444766 1823 worker->flags |= WORKER_DIE;
c8e55f36
TH
1824
1825 spin_unlock_irq(&gcwq->lock);
1826
c34056a3
TH
1827 kthread_stop(worker->task);
1828 kfree(worker);
1829
8b03ae3c 1830 spin_lock_irq(&gcwq->lock);
bd7bdd43 1831 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1832}
1833
63d95a91 1834static void idle_worker_timeout(unsigned long __pool)
e22bee78 1835{
63d95a91
TH
1836 struct worker_pool *pool = (void *)__pool;
1837 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1838
1839 spin_lock_irq(&gcwq->lock);
1840
63d95a91 1841 if (too_many_workers(pool)) {
e22bee78
TH
1842 struct worker *worker;
1843 unsigned long expires;
1844
1845 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1846 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1847 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1848
1849 if (time_before(jiffies, expires))
63d95a91 1850 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1851 else {
1852 /* it's been idle for too long, wake up manager */
11ebea50 1853 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1854 wake_up_worker(pool);
d5abe669 1855 }
e22bee78
TH
1856 }
1857
1858 spin_unlock_irq(&gcwq->lock);
1859}
d5abe669 1860
e22bee78
TH
1861static bool send_mayday(struct work_struct *work)
1862{
1863 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1864 struct workqueue_struct *wq = cwq->wq;
f3421797 1865 unsigned int cpu;
e22bee78
TH
1866
1867 if (!(wq->flags & WQ_RESCUER))
1868 return false;
1869
1870 /* mayday mayday mayday */
bd7bdd43 1871 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1872 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1873 if (cpu == WORK_CPU_UNBOUND)
1874 cpu = 0;
f2e005aa 1875 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1876 wake_up_process(wq->rescuer->task);
1877 return true;
1878}
1879
63d95a91 1880static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1881{
63d95a91
TH
1882 struct worker_pool *pool = (void *)__pool;
1883 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1884 struct work_struct *work;
1885
1886 spin_lock_irq(&gcwq->lock);
1887
63d95a91 1888 if (need_to_create_worker(pool)) {
e22bee78
TH
1889 /*
1890 * We've been trying to create a new worker but
1891 * haven't been successful. We might be hitting an
1892 * allocation deadlock. Send distress signals to
1893 * rescuers.
1894 */
63d95a91 1895 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1896 send_mayday(work);
1da177e4 1897 }
e22bee78
TH
1898
1899 spin_unlock_irq(&gcwq->lock);
1900
63d95a91 1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1902}
1903
e22bee78
TH
1904/**
1905 * maybe_create_worker - create a new worker if necessary
63d95a91 1906 * @pool: pool to create a new worker for
e22bee78 1907 *
63d95a91 1908 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1909 * have at least one idle worker on return from this function. If
1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1911 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1912 * possible allocation deadlock.
1913 *
1914 * On return, need_to_create_worker() is guaranteed to be false and
1915 * may_start_working() true.
1916 *
1917 * LOCKING:
1918 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1919 * multiple times. Does GFP_KERNEL allocations. Called only from
1920 * manager.
1921 *
1922 * RETURNS:
1923 * false if no action was taken and gcwq->lock stayed locked, true
1924 * otherwise.
1925 */
63d95a91 1926static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1927__releases(&gcwq->lock)
1928__acquires(&gcwq->lock)
1da177e4 1929{
63d95a91
TH
1930 struct global_cwq *gcwq = pool->gcwq;
1931
1932 if (!need_to_create_worker(pool))
e22bee78
TH
1933 return false;
1934restart:
9f9c2364
TH
1935 spin_unlock_irq(&gcwq->lock);
1936
e22bee78 1937 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1938 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1939
1940 while (true) {
1941 struct worker *worker;
1942
bc2ae0f5 1943 worker = create_worker(pool);
e22bee78 1944 if (worker) {
63d95a91 1945 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1946 spin_lock_irq(&gcwq->lock);
1947 start_worker(worker);
63d95a91 1948 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1949 return true;
1950 }
1951
63d95a91 1952 if (!need_to_create_worker(pool))
e22bee78 1953 break;
1da177e4 1954
e22bee78
TH
1955 __set_current_state(TASK_INTERRUPTIBLE);
1956 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1957
63d95a91 1958 if (!need_to_create_worker(pool))
e22bee78
TH
1959 break;
1960 }
1961
63d95a91 1962 del_timer_sync(&pool->mayday_timer);
e22bee78 1963 spin_lock_irq(&gcwq->lock);
63d95a91 1964 if (need_to_create_worker(pool))
e22bee78
TH
1965 goto restart;
1966 return true;
1967}
1968
1969/**
1970 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1971 * @pool: pool to destroy workers for
e22bee78 1972 *
63d95a91 1973 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1974 * IDLE_WORKER_TIMEOUT.
1975 *
1976 * LOCKING:
1977 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1978 * multiple times. Called only from manager.
1979 *
1980 * RETURNS:
1981 * false if no action was taken and gcwq->lock stayed locked, true
1982 * otherwise.
1983 */
63d95a91 1984static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1985{
1986 bool ret = false;
1da177e4 1987
63d95a91 1988 while (too_many_workers(pool)) {
e22bee78
TH
1989 struct worker *worker;
1990 unsigned long expires;
3af24433 1991
63d95a91 1992 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1993 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1994
e22bee78 1995 if (time_before(jiffies, expires)) {
63d95a91 1996 mod_timer(&pool->idle_timer, expires);
3af24433 1997 break;
e22bee78 1998 }
1da177e4 1999
e22bee78
TH
2000 destroy_worker(worker);
2001 ret = true;
1da177e4 2002 }
3af24433 2003
e22bee78
TH
2004 return ret;
2005}
2006
2007/**
2008 * manage_workers - manage worker pool
2009 * @worker: self
2010 *
2011 * Assume the manager role and manage gcwq worker pool @worker belongs
2012 * to. At any given time, there can be only zero or one manager per
2013 * gcwq. The exclusion is handled automatically by this function.
2014 *
2015 * The caller can safely start processing works on false return. On
2016 * true return, it's guaranteed that need_to_create_worker() is false
2017 * and may_start_working() is true.
2018 *
2019 * CONTEXT:
2020 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2021 * multiple times. Does GFP_KERNEL allocations.
2022 *
2023 * RETURNS:
2024 * false if no action was taken and gcwq->lock stayed locked, true if
2025 * some action was taken.
2026 */
2027static bool manage_workers(struct worker *worker)
2028{
63d95a91 2029 struct worker_pool *pool = worker->pool;
e22bee78
TH
2030 bool ret = false;
2031
60373152 2032 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
2033 return ret;
2034
11ebea50 2035 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2036
2037 /*
2038 * Destroy and then create so that may_start_working() is true
2039 * on return.
2040 */
63d95a91
TH
2041 ret |= maybe_destroy_workers(pool);
2042 ret |= maybe_create_worker(pool);
e22bee78 2043
60373152 2044 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
2045 return ret;
2046}
2047
a62428c0
TH
2048/**
2049 * process_one_work - process single work
c34056a3 2050 * @worker: self
a62428c0
TH
2051 * @work: work to process
2052 *
2053 * Process @work. This function contains all the logics necessary to
2054 * process a single work including synchronization against and
2055 * interaction with other workers on the same cpu, queueing and
2056 * flushing. As long as context requirement is met, any worker can
2057 * call this function to process a work.
2058 *
2059 * CONTEXT:
8b03ae3c 2060 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2061 */
c34056a3 2062static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2063__releases(&gcwq->lock)
2064__acquires(&gcwq->lock)
a62428c0 2065{
7e11629d 2066 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2067 struct worker_pool *pool = worker->pool;
2068 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2069 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2070 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2071 work_func_t f = work->func;
73f53c4a 2072 int work_color;
7e11629d 2073 struct worker *collision;
a62428c0
TH
2074#ifdef CONFIG_LOCKDEP
2075 /*
2076 * It is permissible to free the struct work_struct from
2077 * inside the function that is called from it, this we need to
2078 * take into account for lockdep too. To avoid bogus "held
2079 * lock freed" warnings as well as problems when looking into
2080 * work->lockdep_map, make a copy and use that here.
2081 */
4d82a1de
PZ
2082 struct lockdep_map lockdep_map;
2083
2084 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2085#endif
6fec10a1
TH
2086 /*
2087 * Ensure we're on the correct CPU. DISASSOCIATED test is
2088 * necessary to avoid spurious warnings from rescuers servicing the
2089 * unbound or a disassociated gcwq.
2090 */
25511a47 2091 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2092 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2093 raw_smp_processor_id() != gcwq->cpu);
2094
7e11629d
TH
2095 /*
2096 * A single work shouldn't be executed concurrently by
2097 * multiple workers on a single cpu. Check whether anyone is
2098 * already processing the work. If so, defer the work to the
2099 * currently executing one.
2100 */
2101 collision = __find_worker_executing_work(gcwq, bwh, work);
2102 if (unlikely(collision)) {
2103 move_linked_works(work, &collision->scheduled, NULL);
2104 return;
2105 }
2106
8930caba 2107 /* claim and dequeue */
a62428c0 2108 debug_work_deactivate(work);
c8e55f36 2109 hlist_add_head(&worker->hentry, bwh);
c34056a3 2110 worker->current_work = work;
8cca0eea 2111 worker->current_cwq = cwq;
73f53c4a 2112 work_color = get_work_color(work);
7a22ad75 2113
a62428c0
TH
2114 list_del_init(&work->entry);
2115
fb0e7beb
TH
2116 /*
2117 * CPU intensive works don't participate in concurrency
2118 * management. They're the scheduler's responsibility.
2119 */
2120 if (unlikely(cpu_intensive))
2121 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2122
974271c4
TH
2123 /*
2124 * Unbound gcwq isn't concurrency managed and work items should be
2125 * executed ASAP. Wake up another worker if necessary.
2126 */
63d95a91
TH
2127 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2128 wake_up_worker(pool);
974271c4 2129
8930caba
TH
2130 /*
2131 * Record the last CPU and clear PENDING. The following wmb is
2132 * paired with the implied mb in test_and_set_bit(PENDING) and
2133 * ensures all updates to @work made here are visible to and
2134 * precede any updates by the next PENDING owner. Also, clear
2135 * PENDING inside @gcwq->lock so that PENDING and queued state
2136 * changes happen together while IRQ is disabled.
2137 */
2138 smp_wmb();
2139 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2140
8930caba 2141 spin_unlock_irq(&gcwq->lock);
959d1af8 2142
e159489b 2143 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2144 lock_map_acquire(&lockdep_map);
e36c886a 2145 trace_workqueue_execute_start(work);
a62428c0 2146 f(work);
e36c886a
AV
2147 /*
2148 * While we must be careful to not use "work" after this, the trace
2149 * point will only record its address.
2150 */
2151 trace_workqueue_execute_end(work);
a62428c0
TH
2152 lock_map_release(&lockdep_map);
2153 lock_map_release(&cwq->wq->lockdep_map);
2154
2155 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2156 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2157 "%s/0x%08x/%d\n",
2158 current->comm, preempt_count(), task_pid_nr(current));
2159 printk(KERN_ERR " last function: ");
2160 print_symbol("%s\n", (unsigned long)f);
2161 debug_show_held_locks(current);
2162 dump_stack();
2163 }
2164
8b03ae3c 2165 spin_lock_irq(&gcwq->lock);
a62428c0 2166
fb0e7beb
TH
2167 /* clear cpu intensive status */
2168 if (unlikely(cpu_intensive))
2169 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2170
a62428c0 2171 /* we're done with it, release */
c8e55f36 2172 hlist_del_init(&worker->hentry);
c34056a3 2173 worker->current_work = NULL;
8cca0eea 2174 worker->current_cwq = NULL;
8a2e8e5d 2175 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2176}
2177
affee4b2
TH
2178/**
2179 * process_scheduled_works - process scheduled works
2180 * @worker: self
2181 *
2182 * Process all scheduled works. Please note that the scheduled list
2183 * may change while processing a work, so this function repeatedly
2184 * fetches a work from the top and executes it.
2185 *
2186 * CONTEXT:
8b03ae3c 2187 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2188 * multiple times.
2189 */
2190static void process_scheduled_works(struct worker *worker)
1da177e4 2191{
affee4b2
TH
2192 while (!list_empty(&worker->scheduled)) {
2193 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2194 struct work_struct, entry);
c34056a3 2195 process_one_work(worker, work);
1da177e4 2196 }
1da177e4
LT
2197}
2198
4690c4ab
TH
2199/**
2200 * worker_thread - the worker thread function
c34056a3 2201 * @__worker: self
4690c4ab 2202 *
e22bee78
TH
2203 * The gcwq worker thread function. There's a single dynamic pool of
2204 * these per each cpu. These workers process all works regardless of
2205 * their specific target workqueue. The only exception is works which
2206 * belong to workqueues with a rescuer which will be explained in
2207 * rescuer_thread().
4690c4ab 2208 */
c34056a3 2209static int worker_thread(void *__worker)
1da177e4 2210{
c34056a3 2211 struct worker *worker = __worker;
bd7bdd43
TH
2212 struct worker_pool *pool = worker->pool;
2213 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2214
e22bee78
TH
2215 /* tell the scheduler that this is a workqueue worker */
2216 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2217woke_up:
c8e55f36 2218 spin_lock_irq(&gcwq->lock);
1da177e4 2219
25511a47
TH
2220 /*
2221 * DIE can be set only while idle and REBIND set while busy has
2222 * @worker->rebind_work scheduled. Checking here is enough.
2223 */
2224 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2225 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2226
2227 if (worker->flags & WORKER_DIE) {
2228 worker->task->flags &= ~PF_WQ_WORKER;
2229 return 0;
2230 }
2231
2232 idle_worker_rebind(worker);
2233 goto woke_up;
c8e55f36 2234 }
affee4b2 2235
c8e55f36 2236 worker_leave_idle(worker);
db7bccf4 2237recheck:
e22bee78 2238 /* no more worker necessary? */
63d95a91 2239 if (!need_more_worker(pool))
e22bee78
TH
2240 goto sleep;
2241
2242 /* do we need to manage? */
63d95a91 2243 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2244 goto recheck;
2245
c8e55f36
TH
2246 /*
2247 * ->scheduled list can only be filled while a worker is
2248 * preparing to process a work or actually processing it.
2249 * Make sure nobody diddled with it while I was sleeping.
2250 */
2251 BUG_ON(!list_empty(&worker->scheduled));
2252
e22bee78
TH
2253 /*
2254 * When control reaches this point, we're guaranteed to have
2255 * at least one idle worker or that someone else has already
2256 * assumed the manager role.
2257 */
2258 worker_clr_flags(worker, WORKER_PREP);
2259
2260 do {
c8e55f36 2261 struct work_struct *work =
bd7bdd43 2262 list_first_entry(&pool->worklist,
c8e55f36
TH
2263 struct work_struct, entry);
2264
2265 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2266 /* optimization path, not strictly necessary */
2267 process_one_work(worker, work);
2268 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2269 process_scheduled_works(worker);
c8e55f36
TH
2270 } else {
2271 move_linked_works(work, &worker->scheduled, NULL);
2272 process_scheduled_works(worker);
affee4b2 2273 }
63d95a91 2274 } while (keep_working(pool));
e22bee78
TH
2275
2276 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2277sleep:
63d95a91 2278 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2279 goto recheck;
d313dd85 2280
c8e55f36 2281 /*
e22bee78
TH
2282 * gcwq->lock is held and there's no work to process and no
2283 * need to manage, sleep. Workers are woken up only while
2284 * holding gcwq->lock or from local cpu, so setting the
2285 * current state before releasing gcwq->lock is enough to
2286 * prevent losing any event.
c8e55f36
TH
2287 */
2288 worker_enter_idle(worker);
2289 __set_current_state(TASK_INTERRUPTIBLE);
2290 spin_unlock_irq(&gcwq->lock);
2291 schedule();
2292 goto woke_up;
1da177e4
LT
2293}
2294
e22bee78
TH
2295/**
2296 * rescuer_thread - the rescuer thread function
2297 * @__wq: the associated workqueue
2298 *
2299 * Workqueue rescuer thread function. There's one rescuer for each
2300 * workqueue which has WQ_RESCUER set.
2301 *
2302 * Regular work processing on a gcwq may block trying to create a new
2303 * worker which uses GFP_KERNEL allocation which has slight chance of
2304 * developing into deadlock if some works currently on the same queue
2305 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2306 * the problem rescuer solves.
2307 *
2308 * When such condition is possible, the gcwq summons rescuers of all
2309 * workqueues which have works queued on the gcwq and let them process
2310 * those works so that forward progress can be guaranteed.
2311 *
2312 * This should happen rarely.
2313 */
2314static int rescuer_thread(void *__wq)
2315{
2316 struct workqueue_struct *wq = __wq;
2317 struct worker *rescuer = wq->rescuer;
2318 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2319 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2320 unsigned int cpu;
2321
2322 set_user_nice(current, RESCUER_NICE_LEVEL);
2323repeat:
2324 set_current_state(TASK_INTERRUPTIBLE);
2325
2326 if (kthread_should_stop())
2327 return 0;
2328
f3421797
TH
2329 /*
2330 * See whether any cpu is asking for help. Unbounded
2331 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2332 */
f2e005aa 2333 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2334 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2335 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2336 struct worker_pool *pool = cwq->pool;
2337 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2338 struct work_struct *work, *n;
2339
2340 __set_current_state(TASK_RUNNING);
f2e005aa 2341 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2342
2343 /* migrate to the target cpu if possible */
bd7bdd43 2344 rescuer->pool = pool;
e22bee78
TH
2345 worker_maybe_bind_and_lock(rescuer);
2346
2347 /*
2348 * Slurp in all works issued via this workqueue and
2349 * process'em.
2350 */
2351 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2352 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2353 if (get_work_cwq(work) == cwq)
2354 move_linked_works(work, scheduled, &n);
2355
2356 process_scheduled_works(rescuer);
7576958a
TH
2357
2358 /*
2359 * Leave this gcwq. If keep_working() is %true, notify a
2360 * regular worker; otherwise, we end up with 0 concurrency
2361 * and stalling the execution.
2362 */
63d95a91
TH
2363 if (keep_working(pool))
2364 wake_up_worker(pool);
7576958a 2365
e22bee78
TH
2366 spin_unlock_irq(&gcwq->lock);
2367 }
2368
2369 schedule();
2370 goto repeat;
1da177e4
LT
2371}
2372
fc2e4d70
ON
2373struct wq_barrier {
2374 struct work_struct work;
2375 struct completion done;
2376};
2377
2378static void wq_barrier_func(struct work_struct *work)
2379{
2380 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2381 complete(&barr->done);
2382}
2383
4690c4ab
TH
2384/**
2385 * insert_wq_barrier - insert a barrier work
2386 * @cwq: cwq to insert barrier into
2387 * @barr: wq_barrier to insert
affee4b2
TH
2388 * @target: target work to attach @barr to
2389 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2390 *
affee4b2
TH
2391 * @barr is linked to @target such that @barr is completed only after
2392 * @target finishes execution. Please note that the ordering
2393 * guarantee is observed only with respect to @target and on the local
2394 * cpu.
2395 *
2396 * Currently, a queued barrier can't be canceled. This is because
2397 * try_to_grab_pending() can't determine whether the work to be
2398 * grabbed is at the head of the queue and thus can't clear LINKED
2399 * flag of the previous work while there must be a valid next work
2400 * after a work with LINKED flag set.
2401 *
2402 * Note that when @worker is non-NULL, @target may be modified
2403 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2404 *
2405 * CONTEXT:
8b03ae3c 2406 * spin_lock_irq(gcwq->lock).
4690c4ab 2407 */
83c22520 2408static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2409 struct wq_barrier *barr,
2410 struct work_struct *target, struct worker *worker)
fc2e4d70 2411{
affee4b2
TH
2412 struct list_head *head;
2413 unsigned int linked = 0;
2414
dc186ad7 2415 /*
8b03ae3c 2416 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2417 * as we know for sure that this will not trigger any of the
2418 * checks and call back into the fixup functions where we
2419 * might deadlock.
2420 */
ca1cab37 2421 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2422 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2423 init_completion(&barr->done);
83c22520 2424
affee4b2
TH
2425 /*
2426 * If @target is currently being executed, schedule the
2427 * barrier to the worker; otherwise, put it after @target.
2428 */
2429 if (worker)
2430 head = worker->scheduled.next;
2431 else {
2432 unsigned long *bits = work_data_bits(target);
2433
2434 head = target->entry.next;
2435 /* there can already be other linked works, inherit and set */
2436 linked = *bits & WORK_STRUCT_LINKED;
2437 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2438 }
2439
dc186ad7 2440 debug_work_activate(&barr->work);
affee4b2
TH
2441 insert_work(cwq, &barr->work, head,
2442 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2443}
2444
73f53c4a
TH
2445/**
2446 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2447 * @wq: workqueue being flushed
2448 * @flush_color: new flush color, < 0 for no-op
2449 * @work_color: new work color, < 0 for no-op
2450 *
2451 * Prepare cwqs for workqueue flushing.
2452 *
2453 * If @flush_color is non-negative, flush_color on all cwqs should be
2454 * -1. If no cwq has in-flight commands at the specified color, all
2455 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2456 * has in flight commands, its cwq->flush_color is set to
2457 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2458 * wakeup logic is armed and %true is returned.
2459 *
2460 * The caller should have initialized @wq->first_flusher prior to
2461 * calling this function with non-negative @flush_color. If
2462 * @flush_color is negative, no flush color update is done and %false
2463 * is returned.
2464 *
2465 * If @work_color is non-negative, all cwqs should have the same
2466 * work_color which is previous to @work_color and all will be
2467 * advanced to @work_color.
2468 *
2469 * CONTEXT:
2470 * mutex_lock(wq->flush_mutex).
2471 *
2472 * RETURNS:
2473 * %true if @flush_color >= 0 and there's something to flush. %false
2474 * otherwise.
2475 */
2476static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2477 int flush_color, int work_color)
1da177e4 2478{
73f53c4a
TH
2479 bool wait = false;
2480 unsigned int cpu;
1da177e4 2481
73f53c4a
TH
2482 if (flush_color >= 0) {
2483 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2484 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2485 }
2355b70f 2486
f3421797 2487 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2488 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2489 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2490
8b03ae3c 2491 spin_lock_irq(&gcwq->lock);
83c22520 2492
73f53c4a
TH
2493 if (flush_color >= 0) {
2494 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2495
73f53c4a
TH
2496 if (cwq->nr_in_flight[flush_color]) {
2497 cwq->flush_color = flush_color;
2498 atomic_inc(&wq->nr_cwqs_to_flush);
2499 wait = true;
2500 }
2501 }
1da177e4 2502
73f53c4a
TH
2503 if (work_color >= 0) {
2504 BUG_ON(work_color != work_next_color(cwq->work_color));
2505 cwq->work_color = work_color;
2506 }
1da177e4 2507
8b03ae3c 2508 spin_unlock_irq(&gcwq->lock);
1da177e4 2509 }
2355b70f 2510
73f53c4a
TH
2511 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2512 complete(&wq->first_flusher->done);
14441960 2513
73f53c4a 2514 return wait;
1da177e4
LT
2515}
2516
0fcb78c2 2517/**
1da177e4 2518 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2519 * @wq: workqueue to flush
1da177e4
LT
2520 *
2521 * Forces execution of the workqueue and blocks until its completion.
2522 * This is typically used in driver shutdown handlers.
2523 *
fc2e4d70
ON
2524 * We sleep until all works which were queued on entry have been handled,
2525 * but we are not livelocked by new incoming ones.
1da177e4 2526 */
7ad5b3a5 2527void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2528{
73f53c4a
TH
2529 struct wq_flusher this_flusher = {
2530 .list = LIST_HEAD_INIT(this_flusher.list),
2531 .flush_color = -1,
2532 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2533 };
2534 int next_color;
1da177e4 2535
3295f0ef
IM
2536 lock_map_acquire(&wq->lockdep_map);
2537 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2538
2539 mutex_lock(&wq->flush_mutex);
2540
2541 /*
2542 * Start-to-wait phase
2543 */
2544 next_color = work_next_color(wq->work_color);
2545
2546 if (next_color != wq->flush_color) {
2547 /*
2548 * Color space is not full. The current work_color
2549 * becomes our flush_color and work_color is advanced
2550 * by one.
2551 */
2552 BUG_ON(!list_empty(&wq->flusher_overflow));
2553 this_flusher.flush_color = wq->work_color;
2554 wq->work_color = next_color;
2555
2556 if (!wq->first_flusher) {
2557 /* no flush in progress, become the first flusher */
2558 BUG_ON(wq->flush_color != this_flusher.flush_color);
2559
2560 wq->first_flusher = &this_flusher;
2561
2562 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2563 wq->work_color)) {
2564 /* nothing to flush, done */
2565 wq->flush_color = next_color;
2566 wq->first_flusher = NULL;
2567 goto out_unlock;
2568 }
2569 } else {
2570 /* wait in queue */
2571 BUG_ON(wq->flush_color == this_flusher.flush_color);
2572 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2573 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2574 }
2575 } else {
2576 /*
2577 * Oops, color space is full, wait on overflow queue.
2578 * The next flush completion will assign us
2579 * flush_color and transfer to flusher_queue.
2580 */
2581 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2582 }
2583
2584 mutex_unlock(&wq->flush_mutex);
2585
2586 wait_for_completion(&this_flusher.done);
2587
2588 /*
2589 * Wake-up-and-cascade phase
2590 *
2591 * First flushers are responsible for cascading flushes and
2592 * handling overflow. Non-first flushers can simply return.
2593 */
2594 if (wq->first_flusher != &this_flusher)
2595 return;
2596
2597 mutex_lock(&wq->flush_mutex);
2598
4ce48b37
TH
2599 /* we might have raced, check again with mutex held */
2600 if (wq->first_flusher != &this_flusher)
2601 goto out_unlock;
2602
73f53c4a
TH
2603 wq->first_flusher = NULL;
2604
2605 BUG_ON(!list_empty(&this_flusher.list));
2606 BUG_ON(wq->flush_color != this_flusher.flush_color);
2607
2608 while (true) {
2609 struct wq_flusher *next, *tmp;
2610
2611 /* complete all the flushers sharing the current flush color */
2612 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2613 if (next->flush_color != wq->flush_color)
2614 break;
2615 list_del_init(&next->list);
2616 complete(&next->done);
2617 }
2618
2619 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2620 wq->flush_color != work_next_color(wq->work_color));
2621
2622 /* this flush_color is finished, advance by one */
2623 wq->flush_color = work_next_color(wq->flush_color);
2624
2625 /* one color has been freed, handle overflow queue */
2626 if (!list_empty(&wq->flusher_overflow)) {
2627 /*
2628 * Assign the same color to all overflowed
2629 * flushers, advance work_color and append to
2630 * flusher_queue. This is the start-to-wait
2631 * phase for these overflowed flushers.
2632 */
2633 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2634 tmp->flush_color = wq->work_color;
2635
2636 wq->work_color = work_next_color(wq->work_color);
2637
2638 list_splice_tail_init(&wq->flusher_overflow,
2639 &wq->flusher_queue);
2640 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2641 }
2642
2643 if (list_empty(&wq->flusher_queue)) {
2644 BUG_ON(wq->flush_color != wq->work_color);
2645 break;
2646 }
2647
2648 /*
2649 * Need to flush more colors. Make the next flusher
2650 * the new first flusher and arm cwqs.
2651 */
2652 BUG_ON(wq->flush_color == wq->work_color);
2653 BUG_ON(wq->flush_color != next->flush_color);
2654
2655 list_del_init(&next->list);
2656 wq->first_flusher = next;
2657
2658 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2659 break;
2660
2661 /*
2662 * Meh... this color is already done, clear first
2663 * flusher and repeat cascading.
2664 */
2665 wq->first_flusher = NULL;
2666 }
2667
2668out_unlock:
2669 mutex_unlock(&wq->flush_mutex);
1da177e4 2670}
ae90dd5d 2671EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2672
9c5a2ba7
TH
2673/**
2674 * drain_workqueue - drain a workqueue
2675 * @wq: workqueue to drain
2676 *
2677 * Wait until the workqueue becomes empty. While draining is in progress,
2678 * only chain queueing is allowed. IOW, only currently pending or running
2679 * work items on @wq can queue further work items on it. @wq is flushed
2680 * repeatedly until it becomes empty. The number of flushing is detemined
2681 * by the depth of chaining and should be relatively short. Whine if it
2682 * takes too long.
2683 */
2684void drain_workqueue(struct workqueue_struct *wq)
2685{
2686 unsigned int flush_cnt = 0;
2687 unsigned int cpu;
2688
2689 /*
2690 * __queue_work() needs to test whether there are drainers, is much
2691 * hotter than drain_workqueue() and already looks at @wq->flags.
2692 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2693 */
2694 spin_lock(&workqueue_lock);
2695 if (!wq->nr_drainers++)
2696 wq->flags |= WQ_DRAINING;
2697 spin_unlock(&workqueue_lock);
2698reflush:
2699 flush_workqueue(wq);
2700
2701 for_each_cwq_cpu(cpu, wq) {
2702 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2703 bool drained;
9c5a2ba7 2704
bd7bdd43 2705 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2706 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2707 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2708
2709 if (drained)
9c5a2ba7
TH
2710 continue;
2711
2712 if (++flush_cnt == 10 ||
2713 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2714 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2715 wq->name, flush_cnt);
2716 goto reflush;
2717 }
2718
2719 spin_lock(&workqueue_lock);
2720 if (!--wq->nr_drainers)
2721 wq->flags &= ~WQ_DRAINING;
2722 spin_unlock(&workqueue_lock);
2723}
2724EXPORT_SYMBOL_GPL(drain_workqueue);
2725
baf59022
TH
2726static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2727 bool wait_executing)
db700897 2728{
affee4b2 2729 struct worker *worker = NULL;
8b03ae3c 2730 struct global_cwq *gcwq;
db700897 2731 struct cpu_workqueue_struct *cwq;
db700897
ON
2732
2733 might_sleep();
7a22ad75
TH
2734 gcwq = get_work_gcwq(work);
2735 if (!gcwq)
baf59022 2736 return false;
db700897 2737
8b03ae3c 2738 spin_lock_irq(&gcwq->lock);
db700897
ON
2739 if (!list_empty(&work->entry)) {
2740 /*
2741 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2742 * If it was re-queued to a different gcwq under us, we
2743 * are not going to wait.
db700897
ON
2744 */
2745 smp_rmb();
7a22ad75 2746 cwq = get_work_cwq(work);
bd7bdd43 2747 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2748 goto already_gone;
baf59022 2749 } else if (wait_executing) {
7a22ad75 2750 worker = find_worker_executing_work(gcwq, work);
affee4b2 2751 if (!worker)
4690c4ab 2752 goto already_gone;
7a22ad75 2753 cwq = worker->current_cwq;
baf59022
TH
2754 } else
2755 goto already_gone;
db700897 2756
baf59022 2757 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2758 spin_unlock_irq(&gcwq->lock);
7a22ad75 2759
e159489b
TH
2760 /*
2761 * If @max_active is 1 or rescuer is in use, flushing another work
2762 * item on the same workqueue may lead to deadlock. Make sure the
2763 * flusher is not running on the same workqueue by verifying write
2764 * access.
2765 */
2766 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2767 lock_map_acquire(&cwq->wq->lockdep_map);
2768 else
2769 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2770 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2771
401a8d04 2772 return true;
4690c4ab 2773already_gone:
8b03ae3c 2774 spin_unlock_irq(&gcwq->lock);
401a8d04 2775 return false;
db700897 2776}
baf59022
TH
2777
2778/**
2779 * flush_work - wait for a work to finish executing the last queueing instance
2780 * @work: the work to flush
2781 *
2782 * Wait until @work has finished execution. This function considers
2783 * only the last queueing instance of @work. If @work has been
2784 * enqueued across different CPUs on a non-reentrant workqueue or on
2785 * multiple workqueues, @work might still be executing on return on
2786 * some of the CPUs from earlier queueing.
2787 *
2788 * If @work was queued only on a non-reentrant, ordered or unbound
2789 * workqueue, @work is guaranteed to be idle on return if it hasn't
2790 * been requeued since flush started.
2791 *
2792 * RETURNS:
2793 * %true if flush_work() waited for the work to finish execution,
2794 * %false if it was already idle.
2795 */
2796bool flush_work(struct work_struct *work)
2797{
2798 struct wq_barrier barr;
2799
0976dfc1
SB
2800 lock_map_acquire(&work->lockdep_map);
2801 lock_map_release(&work->lockdep_map);
2802
baf59022
TH
2803 if (start_flush_work(work, &barr, true)) {
2804 wait_for_completion(&barr.done);
2805 destroy_work_on_stack(&barr.work);
2806 return true;
2807 } else
2808 return false;
2809}
db700897
ON
2810EXPORT_SYMBOL_GPL(flush_work);
2811
401a8d04
TH
2812static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2813{
2814 struct wq_barrier barr;
2815 struct worker *worker;
2816
2817 spin_lock_irq(&gcwq->lock);
2818
2819 worker = find_worker_executing_work(gcwq, work);
2820 if (unlikely(worker))
2821 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2822
2823 spin_unlock_irq(&gcwq->lock);
2824
2825 if (unlikely(worker)) {
2826 wait_for_completion(&barr.done);
2827 destroy_work_on_stack(&barr.work);
2828 return true;
2829 } else
2830 return false;
2831}
2832
2833static bool wait_on_work(struct work_struct *work)
2834{
2835 bool ret = false;
2836 int cpu;
2837
2838 might_sleep();
2839
2840 lock_map_acquire(&work->lockdep_map);
2841 lock_map_release(&work->lockdep_map);
2842
2843 for_each_gcwq_cpu(cpu)
2844 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2845 return ret;
2846}
2847
09383498
TH
2848/**
2849 * flush_work_sync - wait until a work has finished execution
2850 * @work: the work to flush
2851 *
2852 * Wait until @work has finished execution. On return, it's
2853 * guaranteed that all queueing instances of @work which happened
2854 * before this function is called are finished. In other words, if
2855 * @work hasn't been requeued since this function was called, @work is
2856 * guaranteed to be idle on return.
2857 *
2858 * RETURNS:
2859 * %true if flush_work_sync() waited for the work to finish execution,
2860 * %false if it was already idle.
2861 */
2862bool flush_work_sync(struct work_struct *work)
2863{
2864 struct wq_barrier barr;
2865 bool pending, waited;
2866
2867 /* we'll wait for executions separately, queue barr only if pending */
2868 pending = start_flush_work(work, &barr, false);
2869
2870 /* wait for executions to finish */
2871 waited = wait_on_work(work);
2872
2873 /* wait for the pending one */
2874 if (pending) {
2875 wait_for_completion(&barr.done);
2876 destroy_work_on_stack(&barr.work);
2877 }
2878
2879 return pending || waited;
2880}
2881EXPORT_SYMBOL_GPL(flush_work_sync);
2882
36e227d2 2883static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2884{
bbb68dfa 2885 unsigned long flags;
1f1f642e
ON
2886 int ret;
2887
2888 do {
bbb68dfa
TH
2889 ret = try_to_grab_pending(work, is_dwork, &flags);
2890 /*
2891 * If someone else is canceling, wait for the same event it
2892 * would be waiting for before retrying.
2893 */
2894 if (unlikely(ret == -ENOENT))
2895 wait_on_work(work);
1f1f642e
ON
2896 } while (unlikely(ret < 0));
2897
bbb68dfa
TH
2898 /* tell other tasks trying to grab @work to back off */
2899 mark_work_canceling(work);
2900 local_irq_restore(flags);
2901
2902 wait_on_work(work);
7a22ad75 2903 clear_work_data(work);
1f1f642e
ON
2904 return ret;
2905}
2906
6e84d644 2907/**
401a8d04
TH
2908 * cancel_work_sync - cancel a work and wait for it to finish
2909 * @work: the work to cancel
6e84d644 2910 *
401a8d04
TH
2911 * Cancel @work and wait for its execution to finish. This function
2912 * can be used even if the work re-queues itself or migrates to
2913 * another workqueue. On return from this function, @work is
2914 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2915 *
401a8d04
TH
2916 * cancel_work_sync(&delayed_work->work) must not be used for
2917 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2918 *
401a8d04 2919 * The caller must ensure that the workqueue on which @work was last
6e84d644 2920 * queued can't be destroyed before this function returns.
401a8d04
TH
2921 *
2922 * RETURNS:
2923 * %true if @work was pending, %false otherwise.
6e84d644 2924 */
401a8d04 2925bool cancel_work_sync(struct work_struct *work)
6e84d644 2926{
36e227d2 2927 return __cancel_work_timer(work, false);
b89deed3 2928}
28e53bdd 2929EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2930
6e84d644 2931/**
401a8d04
TH
2932 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2933 * @dwork: the delayed work to flush
6e84d644 2934 *
401a8d04
TH
2935 * Delayed timer is cancelled and the pending work is queued for
2936 * immediate execution. Like flush_work(), this function only
2937 * considers the last queueing instance of @dwork.
1f1f642e 2938 *
401a8d04
TH
2939 * RETURNS:
2940 * %true if flush_work() waited for the work to finish execution,
2941 * %false if it was already idle.
6e84d644 2942 */
401a8d04
TH
2943bool flush_delayed_work(struct delayed_work *dwork)
2944{
8930caba 2945 local_irq_disable();
401a8d04 2946 if (del_timer_sync(&dwork->timer))
57469821 2947 __queue_work(WORK_CPU_UNBOUND,
401a8d04 2948 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2949 local_irq_enable();
401a8d04
TH
2950 return flush_work(&dwork->work);
2951}
2952EXPORT_SYMBOL(flush_delayed_work);
2953
09383498
TH
2954/**
2955 * flush_delayed_work_sync - wait for a dwork to finish
2956 * @dwork: the delayed work to flush
2957 *
2958 * Delayed timer is cancelled and the pending work is queued for
2959 * execution immediately. Other than timer handling, its behavior
2960 * is identical to flush_work_sync().
2961 *
2962 * RETURNS:
2963 * %true if flush_work_sync() waited for the work to finish execution,
2964 * %false if it was already idle.
2965 */
2966bool flush_delayed_work_sync(struct delayed_work *dwork)
2967{
8930caba 2968 local_irq_disable();
09383498 2969 if (del_timer_sync(&dwork->timer))
57469821 2970 __queue_work(WORK_CPU_UNBOUND,
09383498 2971 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2972 local_irq_enable();
09383498
TH
2973 return flush_work_sync(&dwork->work);
2974}
2975EXPORT_SYMBOL(flush_delayed_work_sync);
2976
401a8d04
TH
2977/**
2978 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2979 * @dwork: the delayed work cancel
2980 *
2981 * This is cancel_work_sync() for delayed works.
2982 *
2983 * RETURNS:
2984 * %true if @dwork was pending, %false otherwise.
2985 */
2986bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2987{
36e227d2 2988 return __cancel_work_timer(&dwork->work, true);
6e84d644 2989}
f5a421a4 2990EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2991
d4283e93 2992/**
0a13c00e
TH
2993 * schedule_work_on - put work task on a specific cpu
2994 * @cpu: cpu to put the work task on
2995 * @work: job to be done
2996 *
2997 * This puts a job on a specific cpu
2998 */
d4283e93 2999bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3000{
3001 return queue_work_on(cpu, system_wq, work);
3002}
3003EXPORT_SYMBOL(schedule_work_on);
3004
0fcb78c2
REB
3005/**
3006 * schedule_work - put work task in global workqueue
3007 * @work: job to be done
3008 *
d4283e93
TH
3009 * Returns %false if @work was already on the kernel-global workqueue and
3010 * %true otherwise.
5b0f437d
BVA
3011 *
3012 * This puts a job in the kernel-global workqueue if it was not already
3013 * queued and leaves it in the same position on the kernel-global
3014 * workqueue otherwise.
0fcb78c2 3015 */
d4283e93 3016bool schedule_work(struct work_struct *work)
1da177e4 3017{
d320c038 3018 return queue_work(system_wq, work);
1da177e4 3019}
ae90dd5d 3020EXPORT_SYMBOL(schedule_work);
1da177e4 3021
0a13c00e
TH
3022/**
3023 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3024 * @cpu: cpu to use
3025 * @dwork: job to be done
3026 * @delay: number of jiffies to wait
c1a220e7 3027 *
0a13c00e
TH
3028 * After waiting for a given time this puts a job in the kernel-global
3029 * workqueue on the specified CPU.
c1a220e7 3030 */
d4283e93
TH
3031bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3032 unsigned long delay)
c1a220e7 3033{
0a13c00e 3034 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3035}
0a13c00e 3036EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3037
0fcb78c2
REB
3038/**
3039 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3040 * @dwork: job to be done
3041 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3042 *
3043 * After waiting for a given time this puts a job in the kernel-global
3044 * workqueue.
3045 */
d4283e93 3046bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3047{
d320c038 3048 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3049}
ae90dd5d 3050EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3051
b6136773 3052/**
31ddd871 3053 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3054 * @func: the function to call
b6136773 3055 *
31ddd871
TH
3056 * schedule_on_each_cpu() executes @func on each online CPU using the
3057 * system workqueue and blocks until all CPUs have completed.
b6136773 3058 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3059 *
3060 * RETURNS:
3061 * 0 on success, -errno on failure.
b6136773 3062 */
65f27f38 3063int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3064{
3065 int cpu;
38f51568 3066 struct work_struct __percpu *works;
15316ba8 3067
b6136773
AM
3068 works = alloc_percpu(struct work_struct);
3069 if (!works)
15316ba8 3070 return -ENOMEM;
b6136773 3071
93981800
TH
3072 get_online_cpus();
3073
15316ba8 3074 for_each_online_cpu(cpu) {
9bfb1839
IM
3075 struct work_struct *work = per_cpu_ptr(works, cpu);
3076
3077 INIT_WORK(work, func);
b71ab8c2 3078 schedule_work_on(cpu, work);
65a64464 3079 }
93981800
TH
3080
3081 for_each_online_cpu(cpu)
3082 flush_work(per_cpu_ptr(works, cpu));
3083
95402b38 3084 put_online_cpus();
b6136773 3085 free_percpu(works);
15316ba8
CL
3086 return 0;
3087}
3088
eef6a7d5
AS
3089/**
3090 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3091 *
3092 * Forces execution of the kernel-global workqueue and blocks until its
3093 * completion.
3094 *
3095 * Think twice before calling this function! It's very easy to get into
3096 * trouble if you don't take great care. Either of the following situations
3097 * will lead to deadlock:
3098 *
3099 * One of the work items currently on the workqueue needs to acquire
3100 * a lock held by your code or its caller.
3101 *
3102 * Your code is running in the context of a work routine.
3103 *
3104 * They will be detected by lockdep when they occur, but the first might not
3105 * occur very often. It depends on what work items are on the workqueue and
3106 * what locks they need, which you have no control over.
3107 *
3108 * In most situations flushing the entire workqueue is overkill; you merely
3109 * need to know that a particular work item isn't queued and isn't running.
3110 * In such cases you should use cancel_delayed_work_sync() or
3111 * cancel_work_sync() instead.
3112 */
1da177e4
LT
3113void flush_scheduled_work(void)
3114{
d320c038 3115 flush_workqueue(system_wq);
1da177e4 3116}
ae90dd5d 3117EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3118
1fa44eca
JB
3119/**
3120 * execute_in_process_context - reliably execute the routine with user context
3121 * @fn: the function to execute
1fa44eca
JB
3122 * @ew: guaranteed storage for the execute work structure (must
3123 * be available when the work executes)
3124 *
3125 * Executes the function immediately if process context is available,
3126 * otherwise schedules the function for delayed execution.
3127 *
3128 * Returns: 0 - function was executed
3129 * 1 - function was scheduled for execution
3130 */
65f27f38 3131int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3132{
3133 if (!in_interrupt()) {
65f27f38 3134 fn(&ew->work);
1fa44eca
JB
3135 return 0;
3136 }
3137
65f27f38 3138 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3139 schedule_work(&ew->work);
3140
3141 return 1;
3142}
3143EXPORT_SYMBOL_GPL(execute_in_process_context);
3144
1da177e4
LT
3145int keventd_up(void)
3146{
d320c038 3147 return system_wq != NULL;
1da177e4
LT
3148}
3149
bdbc5dd7 3150static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3151{
65a64464 3152 /*
0f900049
TH
3153 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3154 * Make sure that the alignment isn't lower than that of
3155 * unsigned long long.
65a64464 3156 */
0f900049
TH
3157 const size_t size = sizeof(struct cpu_workqueue_struct);
3158 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3159 __alignof__(unsigned long long));
65a64464 3160
e06ffa1e 3161 if (!(wq->flags & WQ_UNBOUND))
f3421797 3162 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3163 else {
f3421797
TH
3164 void *ptr;
3165
3166 /*
3167 * Allocate enough room to align cwq and put an extra
3168 * pointer at the end pointing back to the originally
3169 * allocated pointer which will be used for free.
3170 */
3171 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3172 if (ptr) {
3173 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3174 *(void **)(wq->cpu_wq.single + 1) = ptr;
3175 }
bdbc5dd7 3176 }
f3421797 3177
0415b00d 3178 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3179 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3180 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3181}
3182
bdbc5dd7 3183static void free_cwqs(struct workqueue_struct *wq)
0f900049 3184{
e06ffa1e 3185 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3186 free_percpu(wq->cpu_wq.pcpu);
3187 else if (wq->cpu_wq.single) {
3188 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3189 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3190 }
0f900049
TH
3191}
3192
f3421797
TH
3193static int wq_clamp_max_active(int max_active, unsigned int flags,
3194 const char *name)
b71ab8c2 3195{
f3421797
TH
3196 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3197
3198 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3199 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3200 "is out of range, clamping between %d and %d\n",
f3421797 3201 max_active, name, 1, lim);
b71ab8c2 3202
f3421797 3203 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3204}
3205
b196be89 3206struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3207 unsigned int flags,
3208 int max_active,
3209 struct lock_class_key *key,
b196be89 3210 const char *lock_name, ...)
1da177e4 3211{
b196be89 3212 va_list args, args1;
1da177e4 3213 struct workqueue_struct *wq;
c34056a3 3214 unsigned int cpu;
b196be89
TH
3215 size_t namelen;
3216
3217 /* determine namelen, allocate wq and format name */
3218 va_start(args, lock_name);
3219 va_copy(args1, args);
3220 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3221
3222 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3223 if (!wq)
3224 goto err;
3225
3226 vsnprintf(wq->name, namelen, fmt, args1);
3227 va_end(args);
3228 va_end(args1);
1da177e4 3229
6370a6ad
TH
3230 /*
3231 * Workqueues which may be used during memory reclaim should
3232 * have a rescuer to guarantee forward progress.
3233 */
3234 if (flags & WQ_MEM_RECLAIM)
3235 flags |= WQ_RESCUER;
3236
d320c038 3237 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3238 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3239
b196be89 3240 /* init wq */
97e37d7b 3241 wq->flags = flags;
a0a1a5fd 3242 wq->saved_max_active = max_active;
73f53c4a
TH
3243 mutex_init(&wq->flush_mutex);
3244 atomic_set(&wq->nr_cwqs_to_flush, 0);
3245 INIT_LIST_HEAD(&wq->flusher_queue);
3246 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3247
eb13ba87 3248 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3249 INIT_LIST_HEAD(&wq->list);
3af24433 3250
bdbc5dd7
TH
3251 if (alloc_cwqs(wq) < 0)
3252 goto err;
3253
f3421797 3254 for_each_cwq_cpu(cpu, wq) {
1537663f 3255 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3256 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3257 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3258
0f900049 3259 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3260 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3261 cwq->wq = wq;
73f53c4a 3262 cwq->flush_color = -1;
1e19ffc6 3263 cwq->max_active = max_active;
1e19ffc6 3264 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3265 }
1537663f 3266
e22bee78
TH
3267 if (flags & WQ_RESCUER) {
3268 struct worker *rescuer;
3269
f2e005aa 3270 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3271 goto err;
3272
3273 wq->rescuer = rescuer = alloc_worker();
3274 if (!rescuer)
3275 goto err;
3276
b196be89
TH
3277 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3278 wq->name);
e22bee78
TH
3279 if (IS_ERR(rescuer->task))
3280 goto err;
3281
e22bee78
TH
3282 rescuer->task->flags |= PF_THREAD_BOUND;
3283 wake_up_process(rescuer->task);
3af24433
ON
3284 }
3285
a0a1a5fd
TH
3286 /*
3287 * workqueue_lock protects global freeze state and workqueues
3288 * list. Grab it, set max_active accordingly and add the new
3289 * workqueue to workqueues list.
3290 */
1537663f 3291 spin_lock(&workqueue_lock);
a0a1a5fd 3292
58a69cb4 3293 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3294 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3295 get_cwq(cpu, wq)->max_active = 0;
3296
1537663f 3297 list_add(&wq->list, &workqueues);
a0a1a5fd 3298
1537663f
TH
3299 spin_unlock(&workqueue_lock);
3300
3af24433 3301 return wq;
4690c4ab
TH
3302err:
3303 if (wq) {
bdbc5dd7 3304 free_cwqs(wq);
f2e005aa 3305 free_mayday_mask(wq->mayday_mask);
e22bee78 3306 kfree(wq->rescuer);
4690c4ab
TH
3307 kfree(wq);
3308 }
3309 return NULL;
3af24433 3310}
d320c038 3311EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3312
3af24433
ON
3313/**
3314 * destroy_workqueue - safely terminate a workqueue
3315 * @wq: target workqueue
3316 *
3317 * Safely destroy a workqueue. All work currently pending will be done first.
3318 */
3319void destroy_workqueue(struct workqueue_struct *wq)
3320{
c8e55f36 3321 unsigned int cpu;
3af24433 3322
9c5a2ba7
TH
3323 /* drain it before proceeding with destruction */
3324 drain_workqueue(wq);
c8efcc25 3325
a0a1a5fd
TH
3326 /*
3327 * wq list is used to freeze wq, remove from list after
3328 * flushing is complete in case freeze races us.
3329 */
95402b38 3330 spin_lock(&workqueue_lock);
b1f4ec17 3331 list_del(&wq->list);
95402b38 3332 spin_unlock(&workqueue_lock);
3af24433 3333
e22bee78 3334 /* sanity check */
f3421797 3335 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3336 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3337 int i;
3338
73f53c4a
TH
3339 for (i = 0; i < WORK_NR_COLORS; i++)
3340 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3341 BUG_ON(cwq->nr_active);
3342 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3343 }
9b41ea72 3344
e22bee78
TH
3345 if (wq->flags & WQ_RESCUER) {
3346 kthread_stop(wq->rescuer->task);
f2e005aa 3347 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3348 kfree(wq->rescuer);
e22bee78
TH
3349 }
3350
bdbc5dd7 3351 free_cwqs(wq);
3af24433
ON
3352 kfree(wq);
3353}
3354EXPORT_SYMBOL_GPL(destroy_workqueue);
3355
dcd989cb
TH
3356/**
3357 * workqueue_set_max_active - adjust max_active of a workqueue
3358 * @wq: target workqueue
3359 * @max_active: new max_active value.
3360 *
3361 * Set max_active of @wq to @max_active.
3362 *
3363 * CONTEXT:
3364 * Don't call from IRQ context.
3365 */
3366void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3367{
3368 unsigned int cpu;
3369
f3421797 3370 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3371
3372 spin_lock(&workqueue_lock);
3373
3374 wq->saved_max_active = max_active;
3375
f3421797 3376 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3377 struct global_cwq *gcwq = get_gcwq(cpu);
3378
3379 spin_lock_irq(&gcwq->lock);
3380
58a69cb4 3381 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3382 !(gcwq->flags & GCWQ_FREEZING))
3383 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3384
dcd989cb 3385 spin_unlock_irq(&gcwq->lock);
65a64464 3386 }
93981800 3387
dcd989cb 3388 spin_unlock(&workqueue_lock);
15316ba8 3389}
dcd989cb 3390EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3391
eef6a7d5 3392/**
dcd989cb
TH
3393 * workqueue_congested - test whether a workqueue is congested
3394 * @cpu: CPU in question
3395 * @wq: target workqueue
eef6a7d5 3396 *
dcd989cb
TH
3397 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3398 * no synchronization around this function and the test result is
3399 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3400 *
dcd989cb
TH
3401 * RETURNS:
3402 * %true if congested, %false otherwise.
eef6a7d5 3403 */
dcd989cb 3404bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3405{
dcd989cb
TH
3406 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3407
3408 return !list_empty(&cwq->delayed_works);
1da177e4 3409}
dcd989cb 3410EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3411
1fa44eca 3412/**
dcd989cb
TH
3413 * work_cpu - return the last known associated cpu for @work
3414 * @work: the work of interest
1fa44eca 3415 *
dcd989cb 3416 * RETURNS:
bdbc5dd7 3417 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3418 */
dcd989cb 3419unsigned int work_cpu(struct work_struct *work)
1fa44eca 3420{
dcd989cb 3421 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3422
bdbc5dd7 3423 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3424}
dcd989cb 3425EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3426
dcd989cb
TH
3427/**
3428 * work_busy - test whether a work is currently pending or running
3429 * @work: the work to be tested
3430 *
3431 * Test whether @work is currently pending or running. There is no
3432 * synchronization around this function and the test result is
3433 * unreliable and only useful as advisory hints or for debugging.
3434 * Especially for reentrant wqs, the pending state might hide the
3435 * running state.
3436 *
3437 * RETURNS:
3438 * OR'd bitmask of WORK_BUSY_* bits.
3439 */
3440unsigned int work_busy(struct work_struct *work)
1da177e4 3441{
dcd989cb
TH
3442 struct global_cwq *gcwq = get_work_gcwq(work);
3443 unsigned long flags;
3444 unsigned int ret = 0;
1da177e4 3445
dcd989cb
TH
3446 if (!gcwq)
3447 return false;
1da177e4 3448
dcd989cb 3449 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3450
dcd989cb
TH
3451 if (work_pending(work))
3452 ret |= WORK_BUSY_PENDING;
3453 if (find_worker_executing_work(gcwq, work))
3454 ret |= WORK_BUSY_RUNNING;
1da177e4 3455
dcd989cb 3456 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3457
dcd989cb 3458 return ret;
1da177e4 3459}
dcd989cb 3460EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3461
db7bccf4
TH
3462/*
3463 * CPU hotplug.
3464 *
e22bee78
TH
3465 * There are two challenges in supporting CPU hotplug. Firstly, there
3466 * are a lot of assumptions on strong associations among work, cwq and
3467 * gcwq which make migrating pending and scheduled works very
3468 * difficult to implement without impacting hot paths. Secondly,
3469 * gcwqs serve mix of short, long and very long running works making
3470 * blocked draining impractical.
3471 *
628c78e7
TH
3472 * This is solved by allowing a gcwq to be disassociated from the CPU
3473 * running as an unbound one and allowing it to be reattached later if the
3474 * cpu comes back online.
db7bccf4 3475 */
1da177e4 3476
60373152 3477/* claim manager positions of all pools */
8db25e78 3478static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3479{
3480 struct worker_pool *pool;
3481
3482 for_each_worker_pool(pool, gcwq)
3483 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3484 spin_lock_irq(&gcwq->lock);
60373152
TH
3485}
3486
3487/* release manager positions */
8db25e78 3488static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3489{
3490 struct worker_pool *pool;
3491
8db25e78 3492 spin_unlock_irq(&gcwq->lock);
60373152
TH
3493 for_each_worker_pool(pool, gcwq)
3494 mutex_unlock(&pool->manager_mutex);
3495}
3496
628c78e7 3497static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3498{
628c78e7 3499 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3500 struct worker_pool *pool;
db7bccf4
TH
3501 struct worker *worker;
3502 struct hlist_node *pos;
3503 int i;
3af24433 3504
db7bccf4
TH
3505 BUG_ON(gcwq->cpu != smp_processor_id());
3506
8db25e78 3507 gcwq_claim_management_and_lock(gcwq);
3af24433 3508
f2d5a0ee
TH
3509 /*
3510 * We've claimed all manager positions. Make all workers unbound
3511 * and set DISASSOCIATED. Before this, all workers except for the
3512 * ones which are still executing works from before the last CPU
3513 * down must be on the cpu. After this, they may become diasporas.
3514 */
60373152 3515 for_each_worker_pool(pool, gcwq)
4ce62e9e 3516 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3517 worker->flags |= WORKER_UNBOUND;
3af24433 3518
db7bccf4 3519 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3520 worker->flags |= WORKER_UNBOUND;
06ba38a9 3521
f2d5a0ee
TH
3522 gcwq->flags |= GCWQ_DISASSOCIATED;
3523
8db25e78 3524 gcwq_release_management_and_unlock(gcwq);
628c78e7 3525
e22bee78 3526 /*
403c821d 3527 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3528 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3529 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3530 */
e22bee78 3531 schedule();
06ba38a9 3532
e22bee78 3533 /*
628c78e7
TH
3534 * Sched callbacks are disabled now. Zap nr_running. After this,
3535 * nr_running stays zero and need_more_worker() and keep_working()
3536 * are always true as long as the worklist is not empty. @gcwq now
3537 * behaves as unbound (in terms of concurrency management) gcwq
3538 * which is served by workers tied to the CPU.
3539 *
3540 * On return from this function, the current worker would trigger
3541 * unbound chain execution of pending work items if other workers
3542 * didn't already.
e22bee78 3543 */
4ce62e9e
TH
3544 for_each_worker_pool(pool, gcwq)
3545 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3546}
3af24433 3547
8db25e78
TH
3548/*
3549 * Workqueues should be brought up before normal priority CPU notifiers.
3550 * This will be registered high priority CPU notifier.
3551 */
3552static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3553 unsigned long action,
3554 void *hcpu)
3af24433
ON
3555{
3556 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3557 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3558 struct worker_pool *pool;
3ce63377 3559
8db25e78 3560 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3561 case CPU_UP_PREPARE:
4ce62e9e 3562 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3563 struct worker *worker;
3564
3565 if (pool->nr_workers)
3566 continue;
3567
3568 worker = create_worker(pool);
3569 if (!worker)
3570 return NOTIFY_BAD;
3571
3572 spin_lock_irq(&gcwq->lock);
3573 start_worker(worker);
3574 spin_unlock_irq(&gcwq->lock);
3af24433 3575 }
8db25e78 3576 break;
3af24433 3577
db7bccf4
TH
3578 case CPU_DOWN_FAILED:
3579 case CPU_ONLINE:
8db25e78 3580 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3581 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3582 rebind_workers(gcwq);
8db25e78 3583 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3584 break;
00dfcaf7 3585 }
65758202
TH
3586 return NOTIFY_OK;
3587}
3588
3589/*
3590 * Workqueues should be brought down after normal priority CPU notifiers.
3591 * This will be registered as low priority CPU notifier.
3592 */
3593static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3594 unsigned long action,
3595 void *hcpu)
3596{
8db25e78
TH
3597 unsigned int cpu = (unsigned long)hcpu;
3598 struct work_struct unbind_work;
3599
65758202
TH
3600 switch (action & ~CPU_TASKS_FROZEN) {
3601 case CPU_DOWN_PREPARE:
8db25e78
TH
3602 /* unbinding should happen on the local CPU */
3603 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3604 schedule_work_on(cpu, &unbind_work);
3605 flush_work(&unbind_work);
3606 break;
65758202
TH
3607 }
3608 return NOTIFY_OK;
3609}
3610
2d3854a3 3611#ifdef CONFIG_SMP
8ccad40d 3612
2d3854a3 3613struct work_for_cpu {
6b44003e 3614 struct completion completion;
2d3854a3
RR
3615 long (*fn)(void *);
3616 void *arg;
3617 long ret;
3618};
3619
6b44003e 3620static int do_work_for_cpu(void *_wfc)
2d3854a3 3621{
6b44003e 3622 struct work_for_cpu *wfc = _wfc;
2d3854a3 3623 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3624 complete(&wfc->completion);
3625 return 0;
2d3854a3
RR
3626}
3627
3628/**
3629 * work_on_cpu - run a function in user context on a particular cpu
3630 * @cpu: the cpu to run on
3631 * @fn: the function to run
3632 * @arg: the function arg
3633 *
31ad9081
RR
3634 * This will return the value @fn returns.
3635 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3636 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3637 */
3638long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3639{
6b44003e
AM
3640 struct task_struct *sub_thread;
3641 struct work_for_cpu wfc = {
3642 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3643 .fn = fn,
3644 .arg = arg,
3645 };
3646
3647 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3648 if (IS_ERR(sub_thread))
3649 return PTR_ERR(sub_thread);
3650 kthread_bind(sub_thread, cpu);
3651 wake_up_process(sub_thread);
3652 wait_for_completion(&wfc.completion);
2d3854a3
RR
3653 return wfc.ret;
3654}
3655EXPORT_SYMBOL_GPL(work_on_cpu);
3656#endif /* CONFIG_SMP */
3657
a0a1a5fd
TH
3658#ifdef CONFIG_FREEZER
3659
3660/**
3661 * freeze_workqueues_begin - begin freezing workqueues
3662 *
58a69cb4
TH
3663 * Start freezing workqueues. After this function returns, all freezable
3664 * workqueues will queue new works to their frozen_works list instead of
3665 * gcwq->worklist.
a0a1a5fd
TH
3666 *
3667 * CONTEXT:
8b03ae3c 3668 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3669 */
3670void freeze_workqueues_begin(void)
3671{
a0a1a5fd
TH
3672 unsigned int cpu;
3673
3674 spin_lock(&workqueue_lock);
3675
3676 BUG_ON(workqueue_freezing);
3677 workqueue_freezing = true;
3678
f3421797 3679 for_each_gcwq_cpu(cpu) {
8b03ae3c 3680 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3681 struct workqueue_struct *wq;
8b03ae3c
TH
3682
3683 spin_lock_irq(&gcwq->lock);
3684
db7bccf4
TH
3685 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3686 gcwq->flags |= GCWQ_FREEZING;
3687
a0a1a5fd
TH
3688 list_for_each_entry(wq, &workqueues, list) {
3689 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3690
58a69cb4 3691 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3692 cwq->max_active = 0;
a0a1a5fd 3693 }
8b03ae3c
TH
3694
3695 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3696 }
3697
3698 spin_unlock(&workqueue_lock);
3699}
3700
3701/**
58a69cb4 3702 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3703 *
3704 * Check whether freezing is complete. This function must be called
3705 * between freeze_workqueues_begin() and thaw_workqueues().
3706 *
3707 * CONTEXT:
3708 * Grabs and releases workqueue_lock.
3709 *
3710 * RETURNS:
58a69cb4
TH
3711 * %true if some freezable workqueues are still busy. %false if freezing
3712 * is complete.
a0a1a5fd
TH
3713 */
3714bool freeze_workqueues_busy(void)
3715{
a0a1a5fd
TH
3716 unsigned int cpu;
3717 bool busy = false;
3718
3719 spin_lock(&workqueue_lock);
3720
3721 BUG_ON(!workqueue_freezing);
3722
f3421797 3723 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3724 struct workqueue_struct *wq;
a0a1a5fd
TH
3725 /*
3726 * nr_active is monotonically decreasing. It's safe
3727 * to peek without lock.
3728 */
3729 list_for_each_entry(wq, &workqueues, list) {
3730 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3731
58a69cb4 3732 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3733 continue;
3734
3735 BUG_ON(cwq->nr_active < 0);
3736 if (cwq->nr_active) {
3737 busy = true;
3738 goto out_unlock;
3739 }
3740 }
3741 }
3742out_unlock:
3743 spin_unlock(&workqueue_lock);
3744 return busy;
3745}
3746
3747/**
3748 * thaw_workqueues - thaw workqueues
3749 *
3750 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3751 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3752 *
3753 * CONTEXT:
8b03ae3c 3754 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3755 */
3756void thaw_workqueues(void)
3757{
a0a1a5fd
TH
3758 unsigned int cpu;
3759
3760 spin_lock(&workqueue_lock);
3761
3762 if (!workqueue_freezing)
3763 goto out_unlock;
3764
f3421797 3765 for_each_gcwq_cpu(cpu) {
8b03ae3c 3766 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3767 struct worker_pool *pool;
bdbc5dd7 3768 struct workqueue_struct *wq;
8b03ae3c
TH
3769
3770 spin_lock_irq(&gcwq->lock);
3771
db7bccf4
TH
3772 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3773 gcwq->flags &= ~GCWQ_FREEZING;
3774
a0a1a5fd
TH
3775 list_for_each_entry(wq, &workqueues, list) {
3776 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3777
58a69cb4 3778 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3779 continue;
3780
a0a1a5fd
TH
3781 /* restore max_active and repopulate worklist */
3782 cwq->max_active = wq->saved_max_active;
3783
3784 while (!list_empty(&cwq->delayed_works) &&
3785 cwq->nr_active < cwq->max_active)
3786 cwq_activate_first_delayed(cwq);
a0a1a5fd 3787 }
8b03ae3c 3788
4ce62e9e
TH
3789 for_each_worker_pool(pool, gcwq)
3790 wake_up_worker(pool);
e22bee78 3791
8b03ae3c 3792 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3793 }
3794
3795 workqueue_freezing = false;
3796out_unlock:
3797 spin_unlock(&workqueue_lock);
3798}
3799#endif /* CONFIG_FREEZER */
3800
6ee0578b 3801static int __init init_workqueues(void)
1da177e4 3802{
c34056a3 3803 unsigned int cpu;
c8e55f36 3804 int i;
c34056a3 3805
b5490077
TH
3806 /* make sure we have enough bits for OFFQ CPU number */
3807 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3808 WORK_CPU_LAST);
3809
65758202
TH
3810 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3811 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3812
3813 /* initialize gcwqs */
f3421797 3814 for_each_gcwq_cpu(cpu) {
8b03ae3c 3815 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3816 struct worker_pool *pool;
8b03ae3c
TH
3817
3818 spin_lock_init(&gcwq->lock);
3819 gcwq->cpu = cpu;
477a3c33 3820 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3821
c8e55f36
TH
3822 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3823 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3824
4ce62e9e
TH
3825 for_each_worker_pool(pool, gcwq) {
3826 pool->gcwq = gcwq;
3827 INIT_LIST_HEAD(&pool->worklist);
3828 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3829
4ce62e9e
TH
3830 init_timer_deferrable(&pool->idle_timer);
3831 pool->idle_timer.function = idle_worker_timeout;
3832 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3833
4ce62e9e
TH
3834 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3835 (unsigned long)pool);
3836
60373152 3837 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3838 ida_init(&pool->worker_ida);
3839 }
db7bccf4 3840
25511a47 3841 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3842 }
3843
e22bee78 3844 /* create the initial worker */
f3421797 3845 for_each_online_gcwq_cpu(cpu) {
e22bee78 3846 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3847 struct worker_pool *pool;
e22bee78 3848
477a3c33
TH
3849 if (cpu != WORK_CPU_UNBOUND)
3850 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3851
3852 for_each_worker_pool(pool, gcwq) {
3853 struct worker *worker;
3854
bc2ae0f5 3855 worker = create_worker(pool);
4ce62e9e
TH
3856 BUG_ON(!worker);
3857 spin_lock_irq(&gcwq->lock);
3858 start_worker(worker);
3859 spin_unlock_irq(&gcwq->lock);
3860 }
e22bee78
TH
3861 }
3862
d320c038
TH
3863 system_wq = alloc_workqueue("events", 0, 0);
3864 system_long_wq = alloc_workqueue("events_long", 0, 0);
3865 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3866 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3867 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3868 system_freezable_wq = alloc_workqueue("events_freezable",
3869 WQ_FREEZABLE, 0);
62d3c543
AS
3870 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3871 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3872 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3873 !system_unbound_wq || !system_freezable_wq ||
3874 !system_nrt_freezable_wq);
6ee0578b 3875 return 0;
1da177e4 3876}
6ee0578b 3877early_initcall(init_workqueues);
This page took 1.364493 seconds and 4 git commands to generate.