1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
37 #include "dictionary.h"
38 #include "cp-support.h"
40 #include "user-regs.h"
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
50 extern int overload_debug;
51 /* Local functions. */
53 static int typecmp (int staticp, int varargs, int nargs,
54 struct field t1[], struct value *t2[]);
56 static struct value *search_struct_field (char *, struct value *,
57 int, struct type *, int);
59 static struct value *search_struct_method (char *, struct value **,
61 int, int *, struct type *);
63 static int find_oload_champ_namespace (struct type **, int,
64 const char *, const char *,
66 struct badness_vector **);
69 int find_oload_champ_namespace_loop (struct type **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *);
74 static int find_oload_champ (struct type **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
78 static int oload_method_static (int, struct fn_field *, int);
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
83 oload_classification classify_oload_match (struct badness_vector *,
86 static struct value *value_struct_elt_for_reference (struct type *,
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
95 static struct value *value_maybe_namespace_elt (const struct type *,
99 static CORE_ADDR allocate_space_in_inferior (int);
101 static struct value *cast_into_complex (struct type *, struct value *);
103 static struct fn_field *find_method_list (struct value **, char *,
104 int, struct type *, int *,
105 struct type **, int *);
107 void _initialize_valops (void);
110 /* Flag for whether we want to abandon failed expression evals by
113 static int auto_abandon = 0;
116 int overload_resolution = 0;
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
122 fprintf_filtered (file, _("\
123 Overload resolution in evaluating C++ functions is %s.\n"),
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
135 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
140 error (_("\"%s\" exists in this program but is not a function."),
145 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
147 return value_of_variable (sym, NULL);
151 struct minimal_symbol *msymbol =
152 lookup_minimal_symbol (name, NULL, NULL);
155 struct objfile *objfile = msymbol_objfile (msymbol);
156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
161 type = lookup_function_type (type);
162 type = lookup_pointer_type (type);
163 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
168 return value_from_pointer (type, maddr);
172 if (!target_has_execution)
173 error (_("evaluation of this expression requires the target program to be active"));
175 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
180 /* Allocate NBYTES of space in the inferior using the inferior's
181 malloc and return a value that is a pointer to the allocated
185 value_allocate_space_in_inferior (int len)
187 struct objfile *objf;
188 struct value *val = find_function_in_inferior ("malloc", &objf);
189 struct gdbarch *gdbarch = get_objfile_arch (objf);
190 struct value *blocklen;
192 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
193 val = call_function_by_hand (val, 1, &blocklen);
194 if (value_logical_not (val))
196 if (!target_has_execution)
197 error (_("No memory available to program now: you need to start the target first"));
199 error (_("No memory available to program: call to malloc failed"));
205 allocate_space_in_inferior (int len)
207 return value_as_long (value_allocate_space_in_inferior (len));
210 /* Cast struct value VAL to type TYPE and return as a value.
211 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
212 for this to work. Typedef to one of the codes is permitted.
213 Returns NULL if the cast is neither an upcast nor a downcast. */
215 static struct value *
216 value_cast_structs (struct type *type, struct value *v2)
222 gdb_assert (type != NULL && v2 != NULL);
224 t1 = check_typedef (type);
225 t2 = check_typedef (value_type (v2));
227 /* Check preconditions. */
228 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
229 || TYPE_CODE (t1) == TYPE_CODE_UNION)
230 && !!"Precondition is that type is of STRUCT or UNION kind.");
231 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 || TYPE_CODE (t2) == TYPE_CODE_UNION)
233 && !!"Precondition is that value is of STRUCT or UNION kind");
235 if (TYPE_NAME (t1) != NULL
236 && TYPE_NAME (t2) != NULL
237 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
240 /* Upcasting: look in the type of the source to see if it contains the
241 type of the target as a superclass. If so, we'll need to
242 offset the pointer rather than just change its type. */
243 if (TYPE_NAME (t1) != NULL)
245 v = search_struct_field (type_name_no_tag (t1),
251 /* Downcasting: look in the type of the target to see if it contains the
252 type of the source as a superclass. If so, we'll need to
253 offset the pointer rather than just change its type.
254 FIXME: This fails silently with virtual inheritance. */
255 if (TYPE_NAME (t2) != NULL)
257 v = search_struct_field (type_name_no_tag (t2),
258 value_zero (t1, not_lval), 0, t1, 1);
261 /* Downcasting is possible (t1 is superclass of v2). */
262 CORE_ADDR addr2 = value_address (v2);
263 addr2 -= value_address (v) + value_embedded_offset (v);
264 return value_at (type, addr2);
271 /* Cast one pointer or reference type to another. Both TYPE and
272 the type of ARG2 should be pointer types, or else both should be
273 reference types. Returns the new pointer or reference. */
276 value_cast_pointers (struct type *type, struct value *arg2)
278 struct type *type1 = check_typedef (type);
279 struct type *type2 = check_typedef (value_type (arg2));
280 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
281 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
283 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
284 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
285 && !value_logical_not (arg2))
289 if (TYPE_CODE (type2) == TYPE_CODE_REF)
290 v2 = coerce_ref (arg2);
292 v2 = value_ind (arg2);
293 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
294 && !!"Why did coercion fail?");
295 v2 = value_cast_structs (t1, v2);
296 /* At this point we have what we can have, un-dereference if needed. */
299 struct value *v = value_addr (v2);
300 deprecated_set_value_type (v, type);
305 /* No superclass found, just change the pointer type. */
306 arg2 = value_copy (arg2);
307 deprecated_set_value_type (arg2, type);
308 arg2 = value_change_enclosing_type (arg2, type);
309 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
313 /* Cast value ARG2 to type TYPE and return as a value.
314 More general than a C cast: accepts any two types of the same length,
315 and if ARG2 is an lvalue it can be cast into anything at all. */
316 /* In C++, casts may change pointer or object representations. */
319 value_cast (struct type *type, struct value *arg2)
321 enum type_code code1;
322 enum type_code code2;
326 int convert_to_boolean = 0;
328 if (value_type (arg2) == type)
331 code1 = TYPE_CODE (check_typedef (type));
333 /* Check if we are casting struct reference to struct reference. */
334 if (code1 == TYPE_CODE_REF)
336 /* We dereference type; then we recurse and finally
337 we generate value of the given reference. Nothing wrong with
339 struct type *t1 = check_typedef (type);
340 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
341 struct value *val = value_cast (dereftype, arg2);
342 return value_ref (val);
345 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
347 if (code2 == TYPE_CODE_REF)
348 /* We deref the value and then do the cast. */
349 return value_cast (type, coerce_ref (arg2));
351 CHECK_TYPEDEF (type);
352 code1 = TYPE_CODE (type);
353 arg2 = coerce_ref (arg2);
354 type2 = check_typedef (value_type (arg2));
356 /* You can't cast to a reference type. See value_cast_pointers
358 gdb_assert (code1 != TYPE_CODE_REF);
360 /* A cast to an undetermined-length array_type, such as
361 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
362 where N is sizeof(OBJECT)/sizeof(TYPE). */
363 if (code1 == TYPE_CODE_ARRAY)
365 struct type *element_type = TYPE_TARGET_TYPE (type);
366 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
367 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
369 struct type *range_type = TYPE_INDEX_TYPE (type);
370 int val_length = TYPE_LENGTH (type2);
371 LONGEST low_bound, high_bound, new_length;
372 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
373 low_bound = 0, high_bound = 0;
374 new_length = val_length / element_length;
375 if (val_length % element_length != 0)
376 warning (_("array element type size does not divide object size in cast"));
377 /* FIXME-type-allocation: need a way to free this type when
378 we are done with it. */
379 range_type = create_range_type ((struct type *) NULL,
380 TYPE_TARGET_TYPE (range_type),
382 new_length + low_bound - 1);
383 deprecated_set_value_type (arg2,
384 create_array_type ((struct type *) NULL,
391 if (current_language->c_style_arrays
392 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
393 arg2 = value_coerce_array (arg2);
395 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
396 arg2 = value_coerce_function (arg2);
398 type2 = check_typedef (value_type (arg2));
399 code2 = TYPE_CODE (type2);
401 if (code1 == TYPE_CODE_COMPLEX)
402 return cast_into_complex (type, arg2);
403 if (code1 == TYPE_CODE_BOOL)
405 code1 = TYPE_CODE_INT;
406 convert_to_boolean = 1;
408 if (code1 == TYPE_CODE_CHAR)
409 code1 = TYPE_CODE_INT;
410 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
411 code2 = TYPE_CODE_INT;
413 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
414 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
415 || code2 == TYPE_CODE_RANGE);
417 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
418 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
419 && TYPE_NAME (type) != 0)
421 struct value *v = value_cast_structs (type, arg2);
426 if (code1 == TYPE_CODE_FLT && scalar)
427 return value_from_double (type, value_as_double (arg2));
428 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
430 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
431 int dec_len = TYPE_LENGTH (type);
434 if (code2 == TYPE_CODE_FLT)
435 decimal_from_floating (arg2, dec, dec_len, byte_order);
436 else if (code2 == TYPE_CODE_DECFLOAT)
437 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
438 byte_order, dec, dec_len, byte_order);
440 /* The only option left is an integral type. */
441 decimal_from_integral (arg2, dec, dec_len, byte_order);
443 return value_from_decfloat (type, dec);
445 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
446 || code1 == TYPE_CODE_RANGE)
447 && (scalar || code2 == TYPE_CODE_PTR
448 || code2 == TYPE_CODE_MEMBERPTR))
452 /* When we cast pointers to integers, we mustn't use
453 gdbarch_pointer_to_address to find the address the pointer
454 represents, as value_as_long would. GDB should evaluate
455 expressions just as the compiler would --- and the compiler
456 sees a cast as a simple reinterpretation of the pointer's
458 if (code2 == TYPE_CODE_PTR)
459 longest = extract_unsigned_integer
460 (value_contents (arg2), TYPE_LENGTH (type2),
461 gdbarch_byte_order (get_type_arch (type2)));
463 longest = value_as_long (arg2);
464 return value_from_longest (type, convert_to_boolean ?
465 (LONGEST) (longest ? 1 : 0) : longest);
467 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
468 || code2 == TYPE_CODE_ENUM
469 || code2 == TYPE_CODE_RANGE))
471 /* TYPE_LENGTH (type) is the length of a pointer, but we really
472 want the length of an address! -- we are really dealing with
473 addresses (i.e., gdb representations) not pointers (i.e.,
474 target representations) here.
476 This allows things like "print *(int *)0x01000234" to work
477 without printing a misleading message -- which would
478 otherwise occur when dealing with a target having two byte
479 pointers and four byte addresses. */
481 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
483 LONGEST longest = value_as_long (arg2);
484 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
486 if (longest >= ((LONGEST) 1 << addr_bit)
487 || longest <= -((LONGEST) 1 << addr_bit))
488 warning (_("value truncated"));
490 return value_from_longest (type, longest);
492 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
493 && value_as_long (arg2) == 0)
495 struct value *result = allocate_value (type);
496 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
499 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
500 && value_as_long (arg2) == 0)
502 /* The Itanium C++ ABI represents NULL pointers to members as
503 minus one, instead of biasing the normal case. */
504 return value_from_longest (type, -1);
506 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
508 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
509 return value_cast_pointers (type, arg2);
511 arg2 = value_copy (arg2);
512 deprecated_set_value_type (arg2, type);
513 arg2 = value_change_enclosing_type (arg2, type);
514 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
517 else if (VALUE_LVAL (arg2) == lval_memory)
518 return value_at_lazy (type, value_address (arg2));
519 else if (code1 == TYPE_CODE_VOID)
521 return value_zero (type, not_lval);
525 error (_("Invalid cast."));
530 /* Create a value of type TYPE that is zero, and return it. */
533 value_zero (struct type *type, enum lval_type lv)
535 struct value *val = allocate_value (type);
536 VALUE_LVAL (val) = lv;
541 /* Create a value of numeric type TYPE that is one, and return it. */
544 value_one (struct type *type, enum lval_type lv)
546 struct type *type1 = check_typedef (type);
549 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
551 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
553 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
554 val = value_from_decfloat (type, v);
556 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
558 val = value_from_double (type, (DOUBLEST) 1);
560 else if (is_integral_type (type1))
562 val = value_from_longest (type, (LONGEST) 1);
566 error (_("Not a numeric type."));
569 VALUE_LVAL (val) = lv;
573 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
575 static struct value *
576 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
580 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
581 error (_("Attempt to dereference a generic pointer."));
585 val = allocate_value_lazy (type);
589 val = allocate_value (type);
590 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
593 VALUE_LVAL (val) = lval_memory;
594 set_value_address (val, addr);
599 /* Return a value with type TYPE located at ADDR.
601 Call value_at only if the data needs to be fetched immediately;
602 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
603 value_at_lazy instead. value_at_lazy simply records the address of
604 the data and sets the lazy-evaluation-required flag. The lazy flag
605 is tested in the value_contents macro, which is used if and when
606 the contents are actually required.
608 Note: value_at does *NOT* handle embedded offsets; perform such
609 adjustments before or after calling it. */
612 value_at (struct type *type, CORE_ADDR addr)
614 return get_value_at (type, addr, 0);
617 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
620 value_at_lazy (struct type *type, CORE_ADDR addr)
622 return get_value_at (type, addr, 1);
625 /* Called only from the value_contents and value_contents_all()
626 macros, if the current data for a variable needs to be loaded into
627 value_contents(VAL). Fetches the data from the user's process, and
628 clears the lazy flag to indicate that the data in the buffer is
631 If the value is zero-length, we avoid calling read_memory, which
632 would abort. We mark the value as fetched anyway -- all 0 bytes of
635 This function returns a value because it is used in the
636 value_contents macro as part of an expression, where a void would
637 not work. The value is ignored. */
640 value_fetch_lazy (struct value *val)
642 gdb_assert (value_lazy (val));
643 allocate_value_contents (val);
644 if (value_bitsize (val))
646 /* To read a lazy bitfield, read the entire enclosing value. This
647 prevents reading the same block of (possibly volatile) memory once
648 per bitfield. It would be even better to read only the containing
649 word, but we have no way to record that just specific bits of a
650 value have been fetched. */
651 struct type *type = check_typedef (value_type (val));
652 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
653 struct value *parent = value_parent (val);
654 LONGEST offset = value_offset (val);
655 LONGEST num = unpack_bits_as_long (value_type (val),
656 value_contents (parent) + offset,
658 value_bitsize (val));
659 int length = TYPE_LENGTH (type);
660 store_signed_integer (value_contents_raw (val), length, byte_order, num);
662 else if (VALUE_LVAL (val) == lval_memory)
664 CORE_ADDR addr = value_address (val);
665 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
669 if (value_stack (val))
670 read_stack (addr, value_contents_all_raw (val), length);
672 read_memory (addr, value_contents_all_raw (val), length);
675 else if (VALUE_LVAL (val) == lval_register)
677 struct frame_info *frame;
679 struct type *type = check_typedef (value_type (val));
680 struct value *new_val = val, *mark = value_mark ();
682 /* Offsets are not supported here; lazy register values must
683 refer to the entire register. */
684 gdb_assert (value_offset (val) == 0);
686 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
688 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
689 regnum = VALUE_REGNUM (new_val);
691 gdb_assert (frame != NULL);
693 /* Convertible register routines are used for multi-register
694 values and for interpretation in different types
695 (e.g. float or int from a double register). Lazy
696 register values should have the register's natural type,
697 so they do not apply. */
698 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
701 new_val = get_frame_register_value (frame, regnum);
704 /* If it's still lazy (for instance, a saved register on the
706 if (value_lazy (new_val))
707 value_fetch_lazy (new_val);
709 /* If the register was not saved, mark it unavailable. */
710 if (value_optimized_out (new_val))
711 set_value_optimized_out (val, 1);
713 memcpy (value_contents_raw (val), value_contents (new_val),
718 struct gdbarch *gdbarch;
719 frame = frame_find_by_id (VALUE_FRAME_ID (val));
720 regnum = VALUE_REGNUM (val);
721 gdbarch = get_frame_arch (frame);
723 fprintf_unfiltered (gdb_stdlog, "\
724 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
725 frame_relative_level (frame), regnum,
726 user_reg_map_regnum_to_name (gdbarch, regnum));
728 fprintf_unfiltered (gdb_stdlog, "->");
729 if (value_optimized_out (new_val))
730 fprintf_unfiltered (gdb_stdlog, " optimized out");
734 const gdb_byte *buf = value_contents (new_val);
736 if (VALUE_LVAL (new_val) == lval_register)
737 fprintf_unfiltered (gdb_stdlog, " register=%d",
738 VALUE_REGNUM (new_val));
739 else if (VALUE_LVAL (new_val) == lval_memory)
740 fprintf_unfiltered (gdb_stdlog, " address=%s",
742 value_address (new_val)));
744 fprintf_unfiltered (gdb_stdlog, " computed");
746 fprintf_unfiltered (gdb_stdlog, " bytes=");
747 fprintf_unfiltered (gdb_stdlog, "[");
748 for (i = 0; i < register_size (gdbarch, regnum); i++)
749 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
750 fprintf_unfiltered (gdb_stdlog, "]");
753 fprintf_unfiltered (gdb_stdlog, " }\n");
756 /* Dispose of the intermediate values. This prevents
757 watchpoints from trying to watch the saved frame pointer. */
758 value_free_to_mark (mark);
760 else if (VALUE_LVAL (val) == lval_computed)
761 value_computed_funcs (val)->read (val);
763 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
765 set_value_lazy (val, 0);
770 /* Store the contents of FROMVAL into the location of TOVAL.
771 Return a new value with the location of TOVAL and contents of FROMVAL. */
774 value_assign (struct value *toval, struct value *fromval)
778 struct frame_id old_frame;
780 if (!deprecated_value_modifiable (toval))
781 error (_("Left operand of assignment is not a modifiable lvalue."));
783 toval = coerce_ref (toval);
785 type = value_type (toval);
786 if (VALUE_LVAL (toval) != lval_internalvar)
788 toval = value_coerce_to_target (toval);
789 fromval = value_cast (type, fromval);
793 /* Coerce arrays and functions to pointers, except for arrays
794 which only live in GDB's storage. */
795 if (!value_must_coerce_to_target (fromval))
796 fromval = coerce_array (fromval);
799 CHECK_TYPEDEF (type);
801 /* Since modifying a register can trash the frame chain, and
802 modifying memory can trash the frame cache, we save the old frame
803 and then restore the new frame afterwards. */
804 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
806 switch (VALUE_LVAL (toval))
808 case lval_internalvar:
809 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
810 val = value_copy (fromval);
811 val = value_change_enclosing_type (val,
812 value_enclosing_type (fromval));
813 set_value_embedded_offset (val, value_embedded_offset (fromval));
814 set_value_pointed_to_offset (val,
815 value_pointed_to_offset (fromval));
818 case lval_internalvar_component:
819 set_internalvar_component (VALUE_INTERNALVAR (toval),
820 value_offset (toval),
821 value_bitpos (toval),
822 value_bitsize (toval),
828 const gdb_byte *dest_buffer;
829 CORE_ADDR changed_addr;
831 gdb_byte buffer[sizeof (LONGEST)];
833 if (value_bitsize (toval))
835 struct value *parent = value_parent (toval);
836 changed_addr = value_address (parent) + value_offset (toval);
838 changed_len = (value_bitpos (toval)
839 + value_bitsize (toval)
843 /* If we can read-modify-write exactly the size of the
844 containing type (e.g. short or int) then do so. This
845 is safer for volatile bitfields mapped to hardware
847 if (changed_len < TYPE_LENGTH (type)
848 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
849 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
850 changed_len = TYPE_LENGTH (type);
852 if (changed_len > (int) sizeof (LONGEST))
853 error (_("Can't handle bitfields which don't fit in a %d bit word."),
854 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
856 read_memory (changed_addr, buffer, changed_len);
857 modify_field (type, buffer, value_as_long (fromval),
858 value_bitpos (toval), value_bitsize (toval));
859 dest_buffer = buffer;
863 changed_addr = value_address (toval);
864 changed_len = TYPE_LENGTH (type);
865 dest_buffer = value_contents (fromval);
868 write_memory (changed_addr, dest_buffer, changed_len);
869 observer_notify_memory_changed (changed_addr, changed_len,
876 struct frame_info *frame;
877 struct gdbarch *gdbarch;
880 /* Figure out which frame this is in currently. */
881 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
882 value_reg = VALUE_REGNUM (toval);
885 error (_("Value being assigned to is no longer active."));
887 gdbarch = get_frame_arch (frame);
888 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
890 /* If TOVAL is a special machine register requiring
891 conversion of program values to a special raw
893 gdbarch_value_to_register (gdbarch, frame,
894 VALUE_REGNUM (toval), type,
895 value_contents (fromval));
899 if (value_bitsize (toval))
901 struct value *parent = value_parent (toval);
902 int offset = value_offset (parent) + value_offset (toval);
904 gdb_byte buffer[sizeof (LONGEST)];
906 changed_len = (value_bitpos (toval)
907 + value_bitsize (toval)
911 if (changed_len > (int) sizeof (LONGEST))
912 error (_("Can't handle bitfields which don't fit in a %d bit word."),
913 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
915 get_frame_register_bytes (frame, value_reg, offset,
916 changed_len, buffer);
918 modify_field (type, buffer, value_as_long (fromval),
919 value_bitpos (toval), value_bitsize (toval));
921 put_frame_register_bytes (frame, value_reg, offset,
922 changed_len, buffer);
926 put_frame_register_bytes (frame, value_reg,
927 value_offset (toval),
929 value_contents (fromval));
933 if (deprecated_register_changed_hook)
934 deprecated_register_changed_hook (-1);
935 observer_notify_target_changed (¤t_target);
941 struct lval_funcs *funcs = value_computed_funcs (toval);
943 funcs->write (toval, fromval);
948 error (_("Left operand of assignment is not an lvalue."));
951 /* Assigning to the stack pointer, frame pointer, and other
952 (architecture and calling convention specific) registers may
953 cause the frame cache to be out of date. Assigning to memory
954 also can. We just do this on all assignments to registers or
955 memory, for simplicity's sake; I doubt the slowdown matters. */
956 switch (VALUE_LVAL (toval))
961 reinit_frame_cache ();
963 /* Having destroyed the frame cache, restore the selected
966 /* FIXME: cagney/2002-11-02: There has to be a better way of
967 doing this. Instead of constantly saving/restoring the
968 frame. Why not create a get_selected_frame() function that,
969 having saved the selected frame's ID can automatically
970 re-find the previously selected frame automatically. */
973 struct frame_info *fi = frame_find_by_id (old_frame);
983 /* If the field does not entirely fill a LONGEST, then zero the sign
984 bits. If the field is signed, and is negative, then sign
986 if ((value_bitsize (toval) > 0)
987 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
989 LONGEST fieldval = value_as_long (fromval);
990 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
993 if (!TYPE_UNSIGNED (type)
994 && (fieldval & (valmask ^ (valmask >> 1))))
995 fieldval |= ~valmask;
997 fromval = value_from_longest (type, fieldval);
1000 val = value_copy (toval);
1001 memcpy (value_contents_raw (val), value_contents (fromval),
1002 TYPE_LENGTH (type));
1003 deprecated_set_value_type (val, type);
1004 val = value_change_enclosing_type (val,
1005 value_enclosing_type (fromval));
1006 set_value_embedded_offset (val, value_embedded_offset (fromval));
1007 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1012 /* Extend a value VAL to COUNT repetitions of its type. */
1015 value_repeat (struct value *arg1, int count)
1019 if (VALUE_LVAL (arg1) != lval_memory)
1020 error (_("Only values in memory can be extended with '@'."));
1022 error (_("Invalid number %d of repetitions."), count);
1024 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1026 read_memory (value_address (arg1),
1027 value_contents_all_raw (val),
1028 TYPE_LENGTH (value_enclosing_type (val)));
1029 VALUE_LVAL (val) = lval_memory;
1030 set_value_address (val, value_address (arg1));
1036 value_of_variable (struct symbol *var, struct block *b)
1039 struct frame_info *frame;
1041 if (!symbol_read_needs_frame (var))
1044 frame = get_selected_frame (_("No frame selected."));
1047 frame = block_innermost_frame (b);
1050 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1051 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1052 error (_("No frame is currently executing in block %s."),
1053 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1055 error (_("No frame is currently executing in specified block"));
1059 val = read_var_value (var, frame);
1061 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1067 address_of_variable (struct symbol *var, struct block *b)
1069 struct type *type = SYMBOL_TYPE (var);
1072 /* Evaluate it first; if the result is a memory address, we're fine.
1073 Lazy evaluation pays off here. */
1075 val = value_of_variable (var, b);
1077 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1078 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1080 CORE_ADDR addr = value_address (val);
1081 return value_from_pointer (lookup_pointer_type (type), addr);
1084 /* Not a memory address; check what the problem was. */
1085 switch (VALUE_LVAL (val))
1089 struct frame_info *frame;
1090 const char *regname;
1092 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1095 regname = gdbarch_register_name (get_frame_arch (frame),
1096 VALUE_REGNUM (val));
1097 gdb_assert (regname && *regname);
1099 error (_("Address requested for identifier "
1100 "\"%s\" which is in register $%s"),
1101 SYMBOL_PRINT_NAME (var), regname);
1106 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1107 SYMBOL_PRINT_NAME (var));
1114 /* Return one if VAL does not live in target memory, but should in order
1115 to operate on it. Otherwise return zero. */
1118 value_must_coerce_to_target (struct value *val)
1120 struct type *valtype;
1122 /* The only lval kinds which do not live in target memory. */
1123 if (VALUE_LVAL (val) != not_lval
1124 && VALUE_LVAL (val) != lval_internalvar)
1127 valtype = check_typedef (value_type (val));
1129 switch (TYPE_CODE (valtype))
1131 case TYPE_CODE_ARRAY:
1132 case TYPE_CODE_STRING:
1139 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1140 strings are constructed as character arrays in GDB's storage, and this
1141 function copies them to the target. */
1144 value_coerce_to_target (struct value *val)
1149 if (!value_must_coerce_to_target (val))
1152 length = TYPE_LENGTH (check_typedef (value_type (val)));
1153 addr = allocate_space_in_inferior (length);
1154 write_memory (addr, value_contents (val), length);
1155 return value_at_lazy (value_type (val), addr);
1158 /* Given a value which is an array, return a value which is a pointer
1159 to its first element, regardless of whether or not the array has a
1160 nonzero lower bound.
1162 FIXME: A previous comment here indicated that this routine should
1163 be substracting the array's lower bound. It's not clear to me that
1164 this is correct. Given an array subscripting operation, it would
1165 certainly work to do the adjustment here, essentially computing:
1167 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1169 However I believe a more appropriate and logical place to account
1170 for the lower bound is to do so in value_subscript, essentially
1173 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1175 As further evidence consider what would happen with operations
1176 other than array subscripting, where the caller would get back a
1177 value that had an address somewhere before the actual first element
1178 of the array, and the information about the lower bound would be
1179 lost because of the coercion to pointer type.
1183 value_coerce_array (struct value *arg1)
1185 struct type *type = check_typedef (value_type (arg1));
1187 /* If the user tries to do something requiring a pointer with an
1188 array that has not yet been pushed to the target, then this would
1189 be a good time to do so. */
1190 arg1 = value_coerce_to_target (arg1);
1192 if (VALUE_LVAL (arg1) != lval_memory)
1193 error (_("Attempt to take address of value not located in memory."));
1195 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1196 value_address (arg1));
1199 /* Given a value which is a function, return a value which is a pointer
1203 value_coerce_function (struct value *arg1)
1205 struct value *retval;
1207 if (VALUE_LVAL (arg1) != lval_memory)
1208 error (_("Attempt to take address of value not located in memory."));
1210 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1211 value_address (arg1));
1215 /* Return a pointer value for the object for which ARG1 is the
1219 value_addr (struct value *arg1)
1223 struct type *type = check_typedef (value_type (arg1));
1224 if (TYPE_CODE (type) == TYPE_CODE_REF)
1226 /* Copy the value, but change the type from (T&) to (T*). We
1227 keep the same location information, which is efficient, and
1228 allows &(&X) to get the location containing the reference. */
1229 arg2 = value_copy (arg1);
1230 deprecated_set_value_type (arg2,
1231 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1234 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1235 return value_coerce_function (arg1);
1237 /* If this is an array that has not yet been pushed to the target,
1238 then this would be a good time to force it to memory. */
1239 arg1 = value_coerce_to_target (arg1);
1241 if (VALUE_LVAL (arg1) != lval_memory)
1242 error (_("Attempt to take address of value not located in memory."));
1244 /* Get target memory address */
1245 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1246 (value_address (arg1)
1247 + value_embedded_offset (arg1)));
1249 /* This may be a pointer to a base subobject; so remember the
1250 full derived object's type ... */
1251 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1252 /* ... and also the relative position of the subobject in the full
1254 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1258 /* Return a reference value for the object for which ARG1 is the
1262 value_ref (struct value *arg1)
1266 struct type *type = check_typedef (value_type (arg1));
1267 if (TYPE_CODE (type) == TYPE_CODE_REF)
1270 arg2 = value_addr (arg1);
1271 deprecated_set_value_type (arg2, lookup_reference_type (type));
1275 /* Given a value of a pointer type, apply the C unary * operator to
1279 value_ind (struct value *arg1)
1281 struct type *base_type;
1284 arg1 = coerce_array (arg1);
1286 base_type = check_typedef (value_type (arg1));
1288 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1290 struct type *enc_type;
1291 /* We may be pointing to something embedded in a larger object.
1292 Get the real type of the enclosing object. */
1293 enc_type = check_typedef (value_enclosing_type (arg1));
1294 enc_type = TYPE_TARGET_TYPE (enc_type);
1296 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1297 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1298 /* For functions, go through find_function_addr, which knows
1299 how to handle function descriptors. */
1300 arg2 = value_at_lazy (enc_type,
1301 find_function_addr (arg1, NULL));
1303 /* Retrieve the enclosing object pointed to */
1304 arg2 = value_at_lazy (enc_type,
1305 (value_as_address (arg1)
1306 - value_pointed_to_offset (arg1)));
1308 /* Re-adjust type. */
1309 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1310 /* Add embedding info. */
1311 arg2 = value_change_enclosing_type (arg2, enc_type);
1312 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1314 /* We may be pointing to an object of some derived type. */
1315 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1319 error (_("Attempt to take contents of a non-pointer value."));
1320 return 0; /* For lint -- never reached. */
1323 /* Create a value for an array by allocating space in GDB, copying
1324 copying the data into that space, and then setting up an array
1327 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1328 is populated from the values passed in ELEMVEC.
1330 The element type of the array is inherited from the type of the
1331 first element, and all elements must have the same size (though we
1332 don't currently enforce any restriction on their types). */
1335 value_array (int lowbound, int highbound, struct value **elemvec)
1339 unsigned int typelength;
1341 struct type *arraytype;
1344 /* Validate that the bounds are reasonable and that each of the
1345 elements have the same size. */
1347 nelem = highbound - lowbound + 1;
1350 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1352 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1353 for (idx = 1; idx < nelem; idx++)
1355 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1357 error (_("array elements must all be the same size"));
1361 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1362 lowbound, highbound);
1364 if (!current_language->c_style_arrays)
1366 val = allocate_value (arraytype);
1367 for (idx = 0; idx < nelem; idx++)
1369 memcpy (value_contents_all_raw (val) + (idx * typelength),
1370 value_contents_all (elemvec[idx]),
1376 /* Allocate space to store the array, and then initialize it by
1377 copying in each element. */
1379 val = allocate_value (arraytype);
1380 for (idx = 0; idx < nelem; idx++)
1381 memcpy (value_contents_writeable (val) + (idx * typelength),
1382 value_contents_all (elemvec[idx]),
1388 value_cstring (char *ptr, int len, struct type *char_type)
1391 int lowbound = current_language->string_lower_bound;
1392 int highbound = len / TYPE_LENGTH (char_type);
1393 struct type *stringtype
1394 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1396 val = allocate_value (stringtype);
1397 memcpy (value_contents_raw (val), ptr, len);
1401 /* Create a value for a string constant by allocating space in the
1402 inferior, copying the data into that space, and returning the
1403 address with type TYPE_CODE_STRING. PTR points to the string
1404 constant data; LEN is number of characters.
1406 Note that string types are like array of char types with a lower
1407 bound of zero and an upper bound of LEN - 1. Also note that the
1408 string may contain embedded null bytes. */
1411 value_string (char *ptr, int len, struct type *char_type)
1414 int lowbound = current_language->string_lower_bound;
1415 int highbound = len / TYPE_LENGTH (char_type);
1416 struct type *stringtype
1417 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1419 val = allocate_value (stringtype);
1420 memcpy (value_contents_raw (val), ptr, len);
1425 value_bitstring (char *ptr, int len, struct type *index_type)
1428 struct type *domain_type
1429 = create_range_type (NULL, index_type, 0, len - 1);
1430 struct type *type = create_set_type (NULL, domain_type);
1431 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1432 val = allocate_value (type);
1433 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1437 /* See if we can pass arguments in T2 to a function which takes
1438 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1439 a NULL-terminated vector. If some arguments need coercion of some
1440 sort, then the coerced values are written into T2. Return value is
1441 0 if the arguments could be matched, or the position at which they
1444 STATICP is nonzero if the T1 argument list came from a static
1445 member function. T2 will still include the ``this'' pointer, but
1448 For non-static member functions, we ignore the first argument,
1449 which is the type of the instance variable. This is because we
1450 want to handle calls with objects from derived classes. This is
1451 not entirely correct: we should actually check to make sure that a
1452 requested operation is type secure, shouldn't we? FIXME. */
1455 typecmp (int staticp, int varargs, int nargs,
1456 struct field t1[], struct value *t2[])
1461 internal_error (__FILE__, __LINE__,
1462 _("typecmp: no argument list"));
1464 /* Skip ``this'' argument if applicable. T2 will always include
1470 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1473 struct type *tt1, *tt2;
1478 tt1 = check_typedef (t1[i].type);
1479 tt2 = check_typedef (value_type (t2[i]));
1481 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1482 /* We should be doing hairy argument matching, as below. */
1483 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1485 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1486 t2[i] = value_coerce_array (t2[i]);
1488 t2[i] = value_ref (t2[i]);
1492 /* djb - 20000715 - Until the new type structure is in the
1493 place, and we can attempt things like implicit conversions,
1494 we need to do this so you can take something like a map<const
1495 char *>, and properly access map["hello"], because the
1496 argument to [] will be a reference to a pointer to a char,
1497 and the argument will be a pointer to a char. */
1498 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1499 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1501 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1503 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1504 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1505 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1507 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1509 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1511 /* Array to pointer is a `trivial conversion' according to the
1514 /* We should be doing much hairier argument matching (see
1515 section 13.2 of the ARM), but as a quick kludge, just check
1516 for the same type code. */
1517 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1520 if (varargs || t2[i] == NULL)
1525 /* Helper function used by value_struct_elt to recurse through
1526 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1527 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1528 TYPE. If found, return value, else return NULL.
1530 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1531 fields, look for a baseclass named NAME. */
1533 static struct value *
1534 search_struct_field (char *name, struct value *arg1, int offset,
1535 struct type *type, int looking_for_baseclass)
1538 int nbases = TYPE_N_BASECLASSES (type);
1540 CHECK_TYPEDEF (type);
1542 if (!looking_for_baseclass)
1543 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1545 char *t_field_name = TYPE_FIELD_NAME (type, i);
1547 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1550 if (field_is_static (&TYPE_FIELD (type, i)))
1552 v = value_static_field (type, i);
1554 error (_("field %s is nonexistent or has been optimised out"),
1559 v = value_primitive_field (arg1, offset, i, type);
1561 error (_("there is no field named %s"), name);
1567 && (t_field_name[0] == '\0'
1568 || (TYPE_CODE (type) == TYPE_CODE_UNION
1569 && (strcmp_iw (t_field_name, "else") == 0))))
1571 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1572 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1573 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1575 /* Look for a match through the fields of an anonymous
1576 union, or anonymous struct. C++ provides anonymous
1579 In the GNU Chill (now deleted from GDB)
1580 implementation of variant record types, each
1581 <alternative field> has an (anonymous) union type,
1582 each member of the union represents a <variant
1583 alternative>. Each <variant alternative> is
1584 represented as a struct, with a member for each
1588 int new_offset = offset;
1590 /* This is pretty gross. In G++, the offset in an
1591 anonymous union is relative to the beginning of the
1592 enclosing struct. In the GNU Chill (now deleted
1593 from GDB) implementation of variant records, the
1594 bitpos is zero in an anonymous union field, so we
1595 have to add the offset of the union here. */
1596 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1597 || (TYPE_NFIELDS (field_type) > 0
1598 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1599 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1601 v = search_struct_field (name, arg1, new_offset,
1603 looking_for_baseclass);
1610 for (i = 0; i < nbases; i++)
1613 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1614 /* If we are looking for baseclasses, this is what we get when
1615 we hit them. But it could happen that the base part's member
1616 name is not yet filled in. */
1617 int found_baseclass = (looking_for_baseclass
1618 && TYPE_BASECLASS_NAME (type, i) != NULL
1619 && (strcmp_iw (name,
1620 TYPE_BASECLASS_NAME (type,
1623 if (BASETYPE_VIA_VIRTUAL (type, i))
1628 boffset = baseclass_offset (type, i,
1629 value_contents (arg1) + offset,
1630 value_address (arg1) + offset);
1632 error (_("virtual baseclass botch"));
1634 /* The virtual base class pointer might have been clobbered
1635 by the user program. Make sure that it still points to a
1636 valid memory location. */
1639 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1641 CORE_ADDR base_addr;
1643 v2 = allocate_value (basetype);
1644 base_addr = value_address (arg1) + boffset;
1645 if (target_read_memory (base_addr,
1646 value_contents_raw (v2),
1647 TYPE_LENGTH (basetype)) != 0)
1648 error (_("virtual baseclass botch"));
1649 VALUE_LVAL (v2) = lval_memory;
1650 set_value_address (v2, base_addr);
1654 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1655 v2 = allocate_value_lazy (basetype);
1658 v2 = allocate_value (basetype);
1659 memcpy (value_contents_raw (v2),
1660 value_contents_raw (arg1) + boffset,
1661 TYPE_LENGTH (basetype));
1663 set_value_component_location (v2, arg1);
1664 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1665 set_value_offset (v2, value_offset (arg1) + boffset);
1668 if (found_baseclass)
1670 v = search_struct_field (name, v2, 0,
1671 TYPE_BASECLASS (type, i),
1672 looking_for_baseclass);
1674 else if (found_baseclass)
1675 v = value_primitive_field (arg1, offset, i, type);
1677 v = search_struct_field (name, arg1,
1678 offset + TYPE_BASECLASS_BITPOS (type,
1680 basetype, looking_for_baseclass);
1687 /* Helper function used by value_struct_elt to recurse through
1688 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1689 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1692 If found, return value, else if name matched and args not return
1693 (value) -1, else return NULL. */
1695 static struct value *
1696 search_struct_method (char *name, struct value **arg1p,
1697 struct value **args, int offset,
1698 int *static_memfuncp, struct type *type)
1702 int name_matched = 0;
1703 char dem_opname[64];
1705 CHECK_TYPEDEF (type);
1706 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1708 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1709 /* FIXME! May need to check for ARM demangling here */
1710 if (strncmp (t_field_name, "__", 2) == 0 ||
1711 strncmp (t_field_name, "op", 2) == 0 ||
1712 strncmp (t_field_name, "type", 4) == 0)
1714 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1715 t_field_name = dem_opname;
1716 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1717 t_field_name = dem_opname;
1719 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1721 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1722 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1725 check_stub_method_group (type, i);
1726 if (j > 0 && args == 0)
1727 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1728 else if (j == 0 && args == 0)
1730 v = value_fn_field (arg1p, f, j, type, offset);
1737 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1738 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1739 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1740 TYPE_FN_FIELD_ARGS (f, j), args))
1742 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1743 return value_virtual_fn_field (arg1p, f, j,
1745 if (TYPE_FN_FIELD_STATIC_P (f, j)
1747 *static_memfuncp = 1;
1748 v = value_fn_field (arg1p, f, j, type, offset);
1757 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1761 if (BASETYPE_VIA_VIRTUAL (type, i))
1763 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1764 const gdb_byte *base_valaddr;
1766 /* The virtual base class pointer might have been
1767 clobbered by the user program. Make sure that it
1768 still points to a valid memory location. */
1770 if (offset < 0 || offset >= TYPE_LENGTH (type))
1772 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1773 if (target_read_memory (value_address (*arg1p) + offset,
1774 tmp, TYPE_LENGTH (baseclass)) != 0)
1775 error (_("virtual baseclass botch"));
1779 base_valaddr = value_contents (*arg1p) + offset;
1781 base_offset = baseclass_offset (type, i, base_valaddr,
1782 value_address (*arg1p) + offset);
1783 if (base_offset == -1)
1784 error (_("virtual baseclass botch"));
1788 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1790 v = search_struct_method (name, arg1p, args, base_offset + offset,
1791 static_memfuncp, TYPE_BASECLASS (type, i));
1792 if (v == (struct value *) - 1)
1798 /* FIXME-bothner: Why is this commented out? Why is it here? */
1799 /* *arg1p = arg1_tmp; */
1804 return (struct value *) - 1;
1809 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1810 extract the component named NAME from the ultimate target
1811 structure/union and return it as a value with its appropriate type.
1812 ERR is used in the error message if *ARGP's type is wrong.
1814 C++: ARGS is a list of argument types to aid in the selection of
1815 an appropriate method. Also, handle derived types.
1817 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1818 where the truthvalue of whether the function that was resolved was
1819 a static member function or not is stored.
1821 ERR is an error message to be printed in case the field is not
1825 value_struct_elt (struct value **argp, struct value **args,
1826 char *name, int *static_memfuncp, char *err)
1831 *argp = coerce_array (*argp);
1833 t = check_typedef (value_type (*argp));
1835 /* Follow pointers until we get to a non-pointer. */
1837 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1839 *argp = value_ind (*argp);
1840 /* Don't coerce fn pointer to fn and then back again! */
1841 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1842 *argp = coerce_array (*argp);
1843 t = check_typedef (value_type (*argp));
1846 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1847 && TYPE_CODE (t) != TYPE_CODE_UNION)
1848 error (_("Attempt to extract a component of a value that is not a %s."), err);
1850 /* Assume it's not, unless we see that it is. */
1851 if (static_memfuncp)
1852 *static_memfuncp = 0;
1856 /* if there are no arguments ...do this... */
1858 /* Try as a field first, because if we succeed, there is less
1860 v = search_struct_field (name, *argp, 0, t, 0);
1864 /* C++: If it was not found as a data field, then try to
1865 return it as a pointer to a method. */
1866 v = search_struct_method (name, argp, args, 0,
1867 static_memfuncp, t);
1869 if (v == (struct value *) - 1)
1870 error (_("Cannot take address of method %s."), name);
1873 if (TYPE_NFN_FIELDS (t))
1874 error (_("There is no member or method named %s."), name);
1876 error (_("There is no member named %s."), name);
1881 v = search_struct_method (name, argp, args, 0,
1882 static_memfuncp, t);
1884 if (v == (struct value *) - 1)
1886 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1890 /* See if user tried to invoke data as function. If so, hand it
1891 back. If it's not callable (i.e., a pointer to function),
1892 gdb should give an error. */
1893 v = search_struct_field (name, *argp, 0, t, 0);
1894 /* If we found an ordinary field, then it is not a method call.
1895 So, treat it as if it were a static member function. */
1896 if (v && static_memfuncp)
1897 *static_memfuncp = 1;
1901 error (_("Structure has no component named %s."), name);
1905 /* Search through the methods of an object (and its bases) to find a
1906 specified method. Return the pointer to the fn_field list of
1907 overloaded instances.
1909 Helper function for value_find_oload_list.
1910 ARGP is a pointer to a pointer to a value (the object).
1911 METHOD is a string containing the method name.
1912 OFFSET is the offset within the value.
1913 TYPE is the assumed type of the object.
1914 NUM_FNS is the number of overloaded instances.
1915 BASETYPE is set to the actual type of the subobject where the
1917 BOFFSET is the offset of the base subobject where the method is found.
1920 static struct fn_field *
1921 find_method_list (struct value **argp, char *method,
1922 int offset, struct type *type, int *num_fns,
1923 struct type **basetype, int *boffset)
1927 CHECK_TYPEDEF (type);
1931 /* First check in object itself. */
1932 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1934 /* pai: FIXME What about operators and type conversions? */
1935 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1936 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1938 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1939 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1945 /* Resolve any stub methods. */
1946 check_stub_method_group (type, i);
1952 /* Not found in object, check in base subobjects. */
1953 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1956 if (BASETYPE_VIA_VIRTUAL (type, i))
1958 base_offset = value_offset (*argp) + offset;
1959 base_offset = baseclass_offset (type, i,
1960 value_contents (*argp) + base_offset,
1961 value_address (*argp) + base_offset);
1962 if (base_offset == -1)
1963 error (_("virtual baseclass botch"));
1965 else /* Non-virtual base, simply use bit position from debug
1968 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1970 f = find_method_list (argp, method, base_offset + offset,
1971 TYPE_BASECLASS (type, i), num_fns,
1979 /* Return the list of overloaded methods of a specified name.
1981 ARGP is a pointer to a pointer to a value (the object).
1982 METHOD is the method name.
1983 OFFSET is the offset within the value contents.
1984 NUM_FNS is the number of overloaded instances.
1985 BASETYPE is set to the type of the base subobject that defines the
1987 BOFFSET is the offset of the base subobject which defines the method.
1991 value_find_oload_method_list (struct value **argp, char *method,
1992 int offset, int *num_fns,
1993 struct type **basetype, int *boffset)
1997 t = check_typedef (value_type (*argp));
1999 /* Code snarfed from value_struct_elt. */
2000 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2002 *argp = value_ind (*argp);
2003 /* Don't coerce fn pointer to fn and then back again! */
2004 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2005 *argp = coerce_array (*argp);
2006 t = check_typedef (value_type (*argp));
2009 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2010 && TYPE_CODE (t) != TYPE_CODE_UNION)
2011 error (_("Attempt to extract a component of a value that is not a struct or union"));
2013 return find_method_list (argp, method, 0, t, num_fns,
2017 /* Given an array of argument types (ARGTYPES) (which includes an
2018 entry for "this" in the case of C++ methods), the number of
2019 arguments NARGS, the NAME of a function whether it's a method or
2020 not (METHOD), and the degree of laxness (LAX) in conforming to
2021 overload resolution rules in ANSI C++, find the best function that
2022 matches on the argument types according to the overload resolution
2025 In the case of class methods, the parameter OBJ is an object value
2026 in which to search for overloaded methods.
2028 In the case of non-method functions, the parameter FSYM is a symbol
2029 corresponding to one of the overloaded functions.
2031 Return value is an integer: 0 -> good match, 10 -> debugger applied
2032 non-standard coercions, 100 -> incompatible.
2034 If a method is being searched for, VALP will hold the value.
2035 If a non-method is being searched for, SYMP will hold the symbol
2038 If a method is being searched for, and it is a static method,
2039 then STATICP will point to a non-zero value.
2041 Note: This function does *not* check the value of
2042 overload_resolution. Caller must check it to see whether overload
2043 resolution is permitted.
2047 find_overload_match (struct type **arg_types, int nargs,
2048 char *name, int method, int lax,
2049 struct value **objp, struct symbol *fsym,
2050 struct value **valp, struct symbol **symp,
2053 struct value *obj = (objp ? *objp : NULL);
2054 /* Index of best overloaded function. */
2056 /* The measure for the current best match. */
2057 struct badness_vector *oload_champ_bv = NULL;
2058 struct value *temp = obj;
2059 /* For methods, the list of overloaded methods. */
2060 struct fn_field *fns_ptr = NULL;
2061 /* For non-methods, the list of overloaded function symbols. */
2062 struct symbol **oload_syms = NULL;
2063 /* Number of overloaded instances being considered. */
2065 struct type *basetype = NULL;
2069 struct cleanup *old_cleanups = NULL;
2071 const char *obj_type_name = NULL;
2072 char *func_name = NULL;
2073 enum oload_classification match_quality;
2075 /* Get the list of overloaded methods or functions. */
2079 obj_type_name = TYPE_NAME (value_type (obj));
2080 /* Hack: evaluate_subexp_standard often passes in a pointer
2081 value rather than the object itself, so try again. */
2082 if ((!obj_type_name || !*obj_type_name)
2083 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2084 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2086 fns_ptr = value_find_oload_method_list (&temp, name,
2088 &basetype, &boffset);
2089 if (!fns_ptr || !num_fns)
2090 error (_("Couldn't find method %s%s%s"),
2092 (obj_type_name && *obj_type_name) ? "::" : "",
2094 /* If we are dealing with stub method types, they should have
2095 been resolved by find_method_list via
2096 value_find_oload_method_list above. */
2097 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2098 oload_champ = find_oload_champ (arg_types, nargs, method,
2100 oload_syms, &oload_champ_bv);
2104 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2106 /* If we have a C++ name, try to extract just the function
2109 func_name = cp_func_name (qualified_name);
2111 /* If there was no C++ name, this must be a C-style function.
2112 Just return the same symbol. Do the same if cp_func_name
2113 fails for some reason. */
2114 if (func_name == NULL)
2120 old_cleanups = make_cleanup (xfree, func_name);
2121 make_cleanup (xfree, oload_syms);
2122 make_cleanup (xfree, oload_champ_bv);
2124 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2131 /* Check how bad the best match is. */
2134 classify_oload_match (oload_champ_bv, nargs,
2135 oload_method_static (method, fns_ptr,
2138 if (match_quality == INCOMPATIBLE)
2141 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2143 (obj_type_name && *obj_type_name) ? "::" : "",
2146 error (_("Cannot resolve function %s to any overloaded instance"),
2149 else if (match_quality == NON_STANDARD)
2152 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2154 (obj_type_name && *obj_type_name) ? "::" : "",
2157 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2163 if (staticp != NULL)
2164 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2165 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2166 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2169 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2174 *symp = oload_syms[oload_champ];
2179 struct type *temp_type = check_typedef (value_type (temp));
2180 struct type *obj_type = check_typedef (value_type (*objp));
2181 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2182 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2183 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2185 temp = value_addr (temp);
2189 if (old_cleanups != NULL)
2190 do_cleanups (old_cleanups);
2192 switch (match_quality)
2198 default: /* STANDARD */
2203 /* Find the best overload match, searching for FUNC_NAME in namespaces
2204 contained in QUALIFIED_NAME until it either finds a good match or
2205 runs out of namespaces. It stores the overloaded functions in
2206 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2207 calling function is responsible for freeing *OLOAD_SYMS and
2211 find_oload_champ_namespace (struct type **arg_types, int nargs,
2212 const char *func_name,
2213 const char *qualified_name,
2214 struct symbol ***oload_syms,
2215 struct badness_vector **oload_champ_bv)
2219 find_oload_champ_namespace_loop (arg_types, nargs,
2222 oload_syms, oload_champ_bv,
2228 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2229 how deep we've looked for namespaces, and the champ is stored in
2230 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2233 It is the caller's responsibility to free *OLOAD_SYMS and
2237 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2238 const char *func_name,
2239 const char *qualified_name,
2241 struct symbol ***oload_syms,
2242 struct badness_vector **oload_champ_bv,
2245 int next_namespace_len = namespace_len;
2246 int searched_deeper = 0;
2248 struct cleanup *old_cleanups;
2249 int new_oload_champ;
2250 struct symbol **new_oload_syms;
2251 struct badness_vector *new_oload_champ_bv;
2252 char *new_namespace;
2254 if (next_namespace_len != 0)
2256 gdb_assert (qualified_name[next_namespace_len] == ':');
2257 next_namespace_len += 2;
2259 next_namespace_len +=
2260 cp_find_first_component (qualified_name + next_namespace_len);
2262 /* Initialize these to values that can safely be xfree'd. */
2264 *oload_champ_bv = NULL;
2266 /* First, see if we have a deeper namespace we can search in.
2267 If we get a good match there, use it. */
2269 if (qualified_name[next_namespace_len] == ':')
2271 searched_deeper = 1;
2273 if (find_oload_champ_namespace_loop (arg_types, nargs,
2274 func_name, qualified_name,
2276 oload_syms, oload_champ_bv,
2283 /* If we reach here, either we're in the deepest namespace or we
2284 didn't find a good match in a deeper namespace. But, in the
2285 latter case, we still have a bad match in a deeper namespace;
2286 note that we might not find any match at all in the current
2287 namespace. (There's always a match in the deepest namespace,
2288 because this overload mechanism only gets called if there's a
2289 function symbol to start off with.) */
2291 old_cleanups = make_cleanup (xfree, *oload_syms);
2292 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2293 new_namespace = alloca (namespace_len + 1);
2294 strncpy (new_namespace, qualified_name, namespace_len);
2295 new_namespace[namespace_len] = '\0';
2296 new_oload_syms = make_symbol_overload_list (func_name,
2298 while (new_oload_syms[num_fns])
2301 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2302 NULL, new_oload_syms,
2303 &new_oload_champ_bv);
2305 /* Case 1: We found a good match. Free earlier matches (if any),
2306 and return it. Case 2: We didn't find a good match, but we're
2307 not the deepest function. Then go with the bad match that the
2308 deeper function found. Case 3: We found a bad match, and we're
2309 the deepest function. Then return what we found, even though
2310 it's a bad match. */
2312 if (new_oload_champ != -1
2313 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2315 *oload_syms = new_oload_syms;
2316 *oload_champ = new_oload_champ;
2317 *oload_champ_bv = new_oload_champ_bv;
2318 do_cleanups (old_cleanups);
2321 else if (searched_deeper)
2323 xfree (new_oload_syms);
2324 xfree (new_oload_champ_bv);
2325 discard_cleanups (old_cleanups);
2330 gdb_assert (new_oload_champ != -1);
2331 *oload_syms = new_oload_syms;
2332 *oload_champ = new_oload_champ;
2333 *oload_champ_bv = new_oload_champ_bv;
2334 discard_cleanups (old_cleanups);
2339 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2340 the best match from among the overloaded methods or functions
2341 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2342 The number of methods/functions in the list is given by NUM_FNS.
2343 Return the index of the best match; store an indication of the
2344 quality of the match in OLOAD_CHAMP_BV.
2346 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2349 find_oload_champ (struct type **arg_types, int nargs, int method,
2350 int num_fns, struct fn_field *fns_ptr,
2351 struct symbol **oload_syms,
2352 struct badness_vector **oload_champ_bv)
2355 /* A measure of how good an overloaded instance is. */
2356 struct badness_vector *bv;
2357 /* Index of best overloaded function. */
2358 int oload_champ = -1;
2359 /* Current ambiguity state for overload resolution. */
2360 int oload_ambiguous = 0;
2361 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2363 *oload_champ_bv = NULL;
2365 /* Consider each candidate in turn. */
2366 for (ix = 0; ix < num_fns; ix++)
2369 int static_offset = oload_method_static (method, fns_ptr, ix);
2371 struct type **parm_types;
2375 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2379 /* If it's not a method, this is the proper place. */
2380 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2383 /* Prepare array of parameter types. */
2384 parm_types = (struct type **)
2385 xmalloc (nparms * (sizeof (struct type *)));
2386 for (jj = 0; jj < nparms; jj++)
2387 parm_types[jj] = (method
2388 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2389 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2392 /* Compare parameter types to supplied argument types. Skip
2393 THIS for static methods. */
2394 bv = rank_function (parm_types, nparms,
2395 arg_types + static_offset,
2396 nargs - static_offset);
2398 if (!*oload_champ_bv)
2400 *oload_champ_bv = bv;
2403 else /* See whether current candidate is better or worse than
2405 switch (compare_badness (bv, *oload_champ_bv))
2407 case 0: /* Top two contenders are equally good. */
2408 oload_ambiguous = 1;
2410 case 1: /* Incomparable top contenders. */
2411 oload_ambiguous = 2;
2413 case 2: /* New champion, record details. */
2414 *oload_champ_bv = bv;
2415 oload_ambiguous = 0;
2426 fprintf_filtered (gdb_stderr,
2427 "Overloaded method instance %s, # of parms %d\n",
2428 fns_ptr[ix].physname, nparms);
2430 fprintf_filtered (gdb_stderr,
2431 "Overloaded function instance %s # of parms %d\n",
2432 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2434 for (jj = 0; jj < nargs - static_offset; jj++)
2435 fprintf_filtered (gdb_stderr,
2436 "...Badness @ %d : %d\n",
2438 fprintf_filtered (gdb_stderr,
2439 "Overload resolution champion is %d, ambiguous? %d\n",
2440 oload_champ, oload_ambiguous);
2447 /* Return 1 if we're looking at a static method, 0 if we're looking at
2448 a non-static method or a function that isn't a method. */
2451 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2453 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2459 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2461 static enum oload_classification
2462 classify_oload_match (struct badness_vector *oload_champ_bv,
2468 for (ix = 1; ix <= nargs - static_offset; ix++)
2470 if (oload_champ_bv->rank[ix] >= 100)
2471 return INCOMPATIBLE; /* Truly mismatched types. */
2472 else if (oload_champ_bv->rank[ix] >= 10)
2473 return NON_STANDARD; /* Non-standard type conversions
2477 return STANDARD; /* Only standard conversions needed. */
2480 /* C++: return 1 is NAME is a legitimate name for the destructor of
2481 type TYPE. If TYPE does not have a destructor, or if NAME is
2482 inappropriate for TYPE, an error is signaled. */
2484 destructor_name_p (const char *name, const struct type *type)
2488 char *dname = type_name_no_tag (type);
2489 char *cp = strchr (dname, '<');
2492 /* Do not compare the template part for template classes. */
2494 len = strlen (dname);
2497 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2498 error (_("name of destructor must equal name of class"));
2505 /* Given TYPE, a structure/union,
2506 return 1 if the component named NAME from the ultimate target
2507 structure/union is defined, otherwise, return 0. */
2510 check_field (struct type *type, const char *name)
2514 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2516 char *t_field_name = TYPE_FIELD_NAME (type, i);
2517 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2521 /* C++: If it was not found as a data field, then try to return it
2522 as a pointer to a method. */
2524 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2526 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2530 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2531 if (check_field (TYPE_BASECLASS (type, i), name))
2537 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2538 return the appropriate member (or the address of the member, if
2539 WANT_ADDRESS). This function is used to resolve user expressions
2540 of the form "DOMAIN::NAME". For more details on what happens, see
2541 the comment before value_struct_elt_for_reference. */
2544 value_aggregate_elt (struct type *curtype, char *name,
2545 struct type *expect_type, int want_address,
2548 switch (TYPE_CODE (curtype))
2550 case TYPE_CODE_STRUCT:
2551 case TYPE_CODE_UNION:
2552 return value_struct_elt_for_reference (curtype, 0, curtype,
2554 want_address, noside);
2555 case TYPE_CODE_NAMESPACE:
2556 return value_namespace_elt (curtype, name,
2557 want_address, noside);
2559 internal_error (__FILE__, __LINE__,
2560 _("non-aggregate type in value_aggregate_elt"));
2564 /* Compares the two method/function types T1 and T2 for "equality"
2565 with respect to the the methods' parameters. If the types of the
2566 two parameter lists are the same, returns 1; 0 otherwise. This
2567 comparison may ignore any artificial parameters in T1 if
2568 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
2569 the first artificial parameter in T1, assumed to be a 'this' pointer.
2571 The type T2 is expected to have come from make_params (in eval.c). */
2574 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
2578 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
2581 /* If skipping artificial fields, find the first real field
2583 if (skip_artificial)
2585 while (start < TYPE_NFIELDS (t1)
2586 && TYPE_FIELD_ARTIFICIAL (t1, start))
2590 /* Now compare parameters */
2592 /* Special case: a method taking void. T1 will contain no
2593 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
2594 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
2595 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
2598 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
2601 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
2603 if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
2604 TYPE_FIELD_TYPE (t2, i))
2615 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2616 return the address of this member as a "pointer to member" type.
2617 If INTYPE is non-null, then it will be the type of the member we
2618 are looking for. This will help us resolve "pointers to member
2619 functions". This function is used to resolve user expressions of
2620 the form "DOMAIN::NAME". */
2622 static struct value *
2623 value_struct_elt_for_reference (struct type *domain, int offset,
2624 struct type *curtype, char *name,
2625 struct type *intype,
2629 struct type *t = curtype;
2631 struct value *v, *result;
2633 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2634 && TYPE_CODE (t) != TYPE_CODE_UNION)
2635 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2637 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2639 char *t_field_name = TYPE_FIELD_NAME (t, i);
2641 if (t_field_name && strcmp (t_field_name, name) == 0)
2643 if (field_is_static (&TYPE_FIELD (t, i)))
2645 v = value_static_field (t, i);
2647 error (_("static field %s has been optimized out"),
2653 if (TYPE_FIELD_PACKED (t, i))
2654 error (_("pointers to bitfield members not allowed"));
2657 return value_from_longest
2658 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2659 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2660 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2661 return allocate_value (TYPE_FIELD_TYPE (t, i));
2663 error (_("Cannot reference non-static field \"%s\""), name);
2667 /* C++: If it was not found as a data field, then try to return it
2668 as a pointer to a method. */
2670 /* Perform all necessary dereferencing. */
2671 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2672 intype = TYPE_TARGET_TYPE (intype);
2674 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2676 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2677 char dem_opname[64];
2679 if (strncmp (t_field_name, "__", 2) == 0
2680 || strncmp (t_field_name, "op", 2) == 0
2681 || strncmp (t_field_name, "type", 4) == 0)
2683 if (cplus_demangle_opname (t_field_name,
2684 dem_opname, DMGL_ANSI))
2685 t_field_name = dem_opname;
2686 else if (cplus_demangle_opname (t_field_name,
2688 t_field_name = dem_opname;
2690 if (t_field_name && strcmp (t_field_name, name) == 0)
2693 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
2694 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2696 check_stub_method_group (t, i);
2700 for (j = 0; j < len; ++j)
2702 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
2703 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
2708 error (_("no member function matches that type instantiation"));
2715 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
2718 /* Skip artificial methods. This is necessary if,
2719 for example, the user wants to "print
2720 subclass::subclass" with only one user-defined
2721 constructor. There is no ambiguity in this
2723 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
2726 /* Desired method is ambiguous if more than one
2727 method is defined. */
2729 error (_("non-unique member `%s' requires type instantiation"), name);
2735 if (TYPE_FN_FIELD_STATIC_P (f, j))
2738 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2744 return value_addr (read_var_value (s, 0));
2746 return read_var_value (s, 0);
2749 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2753 result = allocate_value
2754 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2755 cplus_make_method_ptr (value_type (result),
2756 value_contents_writeable (result),
2757 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2759 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2760 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2762 error (_("Cannot reference virtual member function \"%s\""),
2768 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2773 v = read_var_value (s, 0);
2778 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2779 cplus_make_method_ptr (value_type (result),
2780 value_contents_writeable (result),
2781 value_address (v), 0);
2787 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2792 if (BASETYPE_VIA_VIRTUAL (t, i))
2795 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2796 v = value_struct_elt_for_reference (domain,
2797 offset + base_offset,
2798 TYPE_BASECLASS (t, i),
2800 want_address, noside);
2805 /* As a last chance, pretend that CURTYPE is a namespace, and look
2806 it up that way; this (frequently) works for types nested inside
2809 return value_maybe_namespace_elt (curtype, name,
2810 want_address, noside);
2813 /* C++: Return the member NAME of the namespace given by the type
2816 static struct value *
2817 value_namespace_elt (const struct type *curtype,
2818 char *name, int want_address,
2821 struct value *retval = value_maybe_namespace_elt (curtype, name,
2826 error (_("No symbol \"%s\" in namespace \"%s\"."),
2827 name, TYPE_TAG_NAME (curtype));
2832 /* A helper function used by value_namespace_elt and
2833 value_struct_elt_for_reference. It looks up NAME inside the
2834 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2835 is a class and NAME refers to a type in CURTYPE itself (as opposed
2836 to, say, some base class of CURTYPE). */
2838 static struct value *
2839 value_maybe_namespace_elt (const struct type *curtype,
2840 char *name, int want_address,
2843 const char *namespace_name = TYPE_TAG_NAME (curtype);
2845 struct value *result;
2847 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2848 get_selected_block (0),
2853 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2854 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2855 result = allocate_value (SYMBOL_TYPE (sym));
2857 result = value_of_variable (sym, get_selected_block (0));
2859 if (result && want_address)
2860 result = value_addr (result);
2865 /* Given a pointer value V, find the real (RTTI) type of the object it
2868 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2869 and refer to the values computed for the object pointed to. */
2872 value_rtti_target_type (struct value *v, int *full,
2873 int *top, int *using_enc)
2875 struct value *target;
2877 target = value_ind (v);
2879 return value_rtti_type (target, full, top, using_enc);
2882 /* Given a value pointed to by ARGP, check its real run-time type, and
2883 if that is different from the enclosing type, create a new value
2884 using the real run-time type as the enclosing type (and of the same
2885 type as ARGP) and return it, with the embedded offset adjusted to
2886 be the correct offset to the enclosed object. RTYPE is the type,
2887 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2888 by value_rtti_type(). If these are available, they can be supplied
2889 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2890 NULL if they're not available. */
2893 value_full_object (struct value *argp,
2895 int xfull, int xtop,
2898 struct type *real_type;
2902 struct value *new_val;
2909 using_enc = xusing_enc;
2912 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2914 /* If no RTTI data, or if object is already complete, do nothing. */
2915 if (!real_type || real_type == value_enclosing_type (argp))
2918 /* If we have the full object, but for some reason the enclosing
2919 type is wrong, set it. */
2920 /* pai: FIXME -- sounds iffy */
2923 argp = value_change_enclosing_type (argp, real_type);
2927 /* Check if object is in memory */
2928 if (VALUE_LVAL (argp) != lval_memory)
2930 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2931 TYPE_NAME (real_type));
2936 /* All other cases -- retrieve the complete object. */
2937 /* Go back by the computed top_offset from the beginning of the
2938 object, adjusting for the embedded offset of argp if that's what
2939 value_rtti_type used for its computation. */
2940 new_val = value_at_lazy (real_type, value_address (argp) - top +
2941 (using_enc ? 0 : value_embedded_offset (argp)));
2942 deprecated_set_value_type (new_val, value_type (argp));
2943 set_value_embedded_offset (new_val, (using_enc
2944 ? top + value_embedded_offset (argp)
2950 /* Return the value of the local variable, if one exists.
2951 Flag COMPLAIN signals an error if the request is made in an
2952 inappropriate context. */
2955 value_of_local (const char *name, int complain)
2957 struct symbol *func, *sym;
2960 struct frame_info *frame;
2963 frame = get_selected_frame (_("no frame selected"));
2966 frame = deprecated_safe_get_selected_frame ();
2971 func = get_frame_function (frame);
2975 error (_("no `%s' in nameless context"), name);
2980 b = SYMBOL_BLOCK_VALUE (func);
2981 if (dict_empty (BLOCK_DICT (b)))
2984 error (_("no args, no `%s'"), name);
2989 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2990 symbol instead of the LOC_ARG one (if both exist). */
2991 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2995 error (_("current stack frame does not contain a variable named `%s'"),
3001 ret = read_var_value (sym, frame);
3002 if (ret == 0 && complain)
3003 error (_("`%s' argument unreadable"), name);
3007 /* C++/Objective-C: return the value of the class instance variable,
3008 if one exists. Flag COMPLAIN signals an error if the request is
3009 made in an inappropriate context. */
3012 value_of_this (int complain)
3014 if (!current_language->la_name_of_this)
3016 return value_of_local (current_language->la_name_of_this, complain);
3019 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3020 elements long, starting at LOWBOUND. The result has the same lower
3021 bound as the original ARRAY. */
3024 value_slice (struct value *array, int lowbound, int length)
3026 struct type *slice_range_type, *slice_type, *range_type;
3027 LONGEST lowerbound, upperbound;
3028 struct value *slice;
3029 struct type *array_type;
3031 array_type = check_typedef (value_type (array));
3032 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3033 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3034 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3035 error (_("cannot take slice of non-array"));
3037 range_type = TYPE_INDEX_TYPE (array_type);
3038 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3039 error (_("slice from bad array or bitstring"));
3041 if (lowbound < lowerbound || length < 0
3042 || lowbound + length - 1 > upperbound)
3043 error (_("slice out of range"));
3045 /* FIXME-type-allocation: need a way to free this type when we are
3047 slice_range_type = create_range_type ((struct type *) NULL,
3048 TYPE_TARGET_TYPE (range_type),
3050 lowbound + length - 1);
3051 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3055 slice_type = create_set_type ((struct type *) NULL,
3057 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3058 slice = value_zero (slice_type, not_lval);
3060 for (i = 0; i < length; i++)
3062 int element = value_bit_index (array_type,
3063 value_contents (array),
3066 error (_("internal error accessing bitstring"));
3067 else if (element > 0)
3069 int j = i % TARGET_CHAR_BIT;
3070 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3071 j = TARGET_CHAR_BIT - 1 - j;
3072 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3075 /* We should set the address, bitssize, and bitspos, so the
3076 slice can be used on the LHS, but that may require extensions
3077 to value_assign. For now, just leave as a non_lval.
3082 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3084 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3086 slice_type = create_array_type ((struct type *) NULL,
3089 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3091 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3092 slice = allocate_value_lazy (slice_type);
3095 slice = allocate_value (slice_type);
3096 memcpy (value_contents_writeable (slice),
3097 value_contents (array) + offset,
3098 TYPE_LENGTH (slice_type));
3101 set_value_component_location (slice, array);
3102 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3103 set_value_offset (slice, value_offset (array) + offset);
3108 /* Create a value for a FORTRAN complex number. Currently most of the
3109 time values are coerced to COMPLEX*16 (i.e. a complex number
3110 composed of 2 doubles. This really should be a smarter routine
3111 that figures out precision inteligently as opposed to assuming
3112 doubles. FIXME: fmb */
3115 value_literal_complex (struct value *arg1,
3120 struct type *real_type = TYPE_TARGET_TYPE (type);
3122 val = allocate_value (type);
3123 arg1 = value_cast (real_type, arg1);
3124 arg2 = value_cast (real_type, arg2);
3126 memcpy (value_contents_raw (val),
3127 value_contents (arg1), TYPE_LENGTH (real_type));
3128 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3129 value_contents (arg2), TYPE_LENGTH (real_type));
3133 /* Cast a value into the appropriate complex data type. */
3135 static struct value *
3136 cast_into_complex (struct type *type, struct value *val)
3138 struct type *real_type = TYPE_TARGET_TYPE (type);
3140 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3142 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3143 struct value *re_val = allocate_value (val_real_type);
3144 struct value *im_val = allocate_value (val_real_type);
3146 memcpy (value_contents_raw (re_val),
3147 value_contents (val), TYPE_LENGTH (val_real_type));
3148 memcpy (value_contents_raw (im_val),
3149 value_contents (val) + TYPE_LENGTH (val_real_type),
3150 TYPE_LENGTH (val_real_type));
3152 return value_literal_complex (re_val, im_val, type);
3154 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3155 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3156 return value_literal_complex (val,
3157 value_zero (real_type, not_lval),
3160 error (_("cannot cast non-number to complex"));
3164 _initialize_valops (void)
3166 add_setshow_boolean_cmd ("overload-resolution", class_support,
3167 &overload_resolution, _("\
3168 Set overload resolution in evaluating C++ functions."), _("\
3169 Show overload resolution in evaluating C++ functions."),
3171 show_overload_resolution,
3172 &setlist, &showlist);
3173 overload_resolution = 1;