1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdbsupport/gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdbsupport/gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_args_match (struct symbol *, struct value **, int);
102 static struct value *make_array_descriptor (struct type *, struct value *);
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
118 const struct block *);
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
122 static const char *ada_decoded_op_name (enum exp_opcode);
124 static int numeric_type_p (struct type *);
126 static int integer_type_p (struct type *);
128 static int scalar_type_p (struct type *);
130 static int discrete_type_p (struct type *);
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
135 static struct type *ada_find_parallel_type_with_name (struct type *,
138 static int is_dynamic_field (struct type *, int);
140 static struct type *to_fixed_variant_branch_type (struct type *,
142 CORE_ADDR, struct value *);
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
146 static struct type *to_fixed_range_type (struct type *, struct value *);
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
151 static struct value *unwrap_value (struct value *);
153 static struct type *constrained_packed_array_type (struct type *, long *);
155 static struct type *decode_constrained_packed_array_type (struct type *);
157 static long decode_packed_array_bitsize (struct type *);
159 static struct value *decode_constrained_packed_array (struct value *);
161 static int ada_is_unconstrained_packed_array_type (struct type *);
163 static struct value *value_subscript_packed (struct value *, int,
166 static struct value *coerce_unspec_val_to_type (struct value *,
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
171 static int equiv_types (struct type *, struct type *);
173 static int is_name_suffix (const char *);
175 static int advance_wild_match (const char **, const char *, char);
177 static bool wild_match (const char *name, const char *patn);
179 static struct value *ada_coerce_ref (struct value *);
181 static LONGEST pos_atr (struct value *);
183 static struct value *val_atr (struct type *, LONGEST);
185 static struct symbol *standard_lookup (const char *, const struct block *,
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
198 static int ada_is_direct_array_type (struct type *);
200 static struct value *ada_index_struct_field (int, struct value *, int,
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
206 static struct type *ada_find_any_type (const char *name);
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
213 /* The character set used for source files. */
214 static const char *ada_source_charset;
216 /* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218 static const char ada_utf8[] = "UTF-8";
220 /* Each entry in the UTF-32 case-folding table is of this form. */
223 /* The start and end, inclusive, of this range of codepoints. */
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
232 bool operator< (uint32_t val) const
238 static const utf8_entry ada_case_fold[] =
240 #include "ada-casefold.h"
245 /* The result of a symbol lookup to be stored in our symbol cache. */
249 /* The name used to perform the lookup. */
251 /* The namespace used during the lookup. */
253 /* The symbol returned by the lookup, or NULL if no matching symbol
256 /* The block where the symbol was found, or NULL if no matching
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
263 /* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
272 #define HASH_SIZE 1009
274 struct ada_symbol_cache
276 /* An obstack used to store the entries in our cache. */
277 struct auto_obstack cache_space;
279 /* The root of the hash table used to implement our symbol cache. */
280 struct cache_entry *root[HASH_SIZE] {};
283 static const char ada_completer_word_break_characters[] =
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
301 static const char * const known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 static const char * const known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 /* Maintenance-related settings for this module. */
311 static struct cmd_list_element *maint_set_ada_cmdlist;
312 static struct cmd_list_element *maint_show_ada_cmdlist;
314 /* The "maintenance ada set/show ignore-descriptive-type" value. */
316 static bool ada_ignore_descriptive_types_p = false;
318 /* Inferior-specific data. */
320 /* Per-inferior data for this module. */
322 struct ada_inferior_data
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
328 struct type *tsd_type = nullptr;
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
333 const struct exception_support_info *exception_info = nullptr;
336 /* Our key to this module's inferior data. */
337 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
339 /* Return our inferior data for the given inferior (INF).
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
347 static struct ada_inferior_data *
348 get_ada_inferior_data (struct inferior *inf)
350 struct ada_inferior_data *data;
352 data = ada_inferior_data.get (inf);
354 data = ada_inferior_data.emplace (inf);
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
363 ada_inferior_exit (struct inferior *inf)
365 ada_inferior_data.clear (inf);
369 /* program-space-specific data. */
371 /* This module's per-program-space data. */
372 struct ada_pspace_data
374 /* The Ada symbol cache. */
375 std::unique_ptr<ada_symbol_cache> sym_cache;
378 /* Key to our per-program-space data. */
379 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
381 /* Return this module's data for the given program space (PSPACE).
382 If not is found, add a zero'ed one now.
384 This function always returns a valid object. */
386 static struct ada_pspace_data *
387 get_ada_pspace_data (struct program_space *pspace)
389 struct ada_pspace_data *data;
391 data = ada_pspace_data_handle.get (pspace);
393 data = ada_pspace_data_handle.emplace (pspace);
400 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
401 all typedef layers have been peeled. Otherwise, return TYPE.
403 Normally, we really expect a typedef type to only have 1 typedef layer.
404 In other words, we really expect the target type of a typedef type to be
405 a non-typedef type. This is particularly true for Ada units, because
406 the language does not have a typedef vs not-typedef distinction.
407 In that respect, the Ada compiler has been trying to eliminate as many
408 typedef definitions in the debugging information, since they generally
409 do not bring any extra information (we still use typedef under certain
410 circumstances related mostly to the GNAT encoding).
412 Unfortunately, we have seen situations where the debugging information
413 generated by the compiler leads to such multiple typedef layers. For
414 instance, consider the following example with stabs:
416 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
417 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
419 This is an error in the debugging information which causes type
420 pck__float_array___XUP to be defined twice, and the second time,
421 it is defined as a typedef of a typedef.
423 This is on the fringe of legality as far as debugging information is
424 concerned, and certainly unexpected. But it is easy to handle these
425 situations correctly, so we can afford to be lenient in this case. */
428 ada_typedef_target_type (struct type *type)
430 while (type->code () == TYPE_CODE_TYPEDEF)
431 type = TYPE_TARGET_TYPE (type);
435 /* Given DECODED_NAME a string holding a symbol name in its
436 decoded form (ie using the Ada dotted notation), returns
437 its unqualified name. */
440 ada_unqualified_name (const char *decoded_name)
444 /* If the decoded name starts with '<', it means that the encoded
445 name does not follow standard naming conventions, and thus that
446 it is not your typical Ada symbol name. Trying to unqualify it
447 is therefore pointless and possibly erroneous. */
448 if (decoded_name[0] == '<')
451 result = strrchr (decoded_name, '.');
453 result++; /* Skip the dot... */
455 result = decoded_name;
460 /* Return a string starting with '<', followed by STR, and '>'. */
463 add_angle_brackets (const char *str)
465 return string_printf ("<%s>", str);
468 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
469 suffix of FIELD_NAME beginning "___". */
472 field_name_match (const char *field_name, const char *target)
474 int len = strlen (target);
477 (strncmp (field_name, target, len) == 0
478 && (field_name[len] == '\0'
479 || (startswith (field_name + len, "___")
480 && strcmp (field_name + strlen (field_name) - 6,
485 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
486 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
487 and return its index. This function also handles fields whose name
488 have ___ suffixes because the compiler sometimes alters their name
489 by adding such a suffix to represent fields with certain constraints.
490 If the field could not be found, return a negative number if
491 MAYBE_MISSING is set. Otherwise raise an error. */
494 ada_get_field_index (const struct type *type, const char *field_name,
498 struct type *struct_type = check_typedef ((struct type *) type);
500 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
501 if (field_name_match (struct_type->field (fieldno).name (), field_name))
505 error (_("Unable to find field %s in struct %s. Aborting"),
506 field_name, struct_type->name ());
511 /* The length of the prefix of NAME prior to any "___" suffix. */
514 ada_name_prefix_len (const char *name)
520 const char *p = strstr (name, "___");
523 return strlen (name);
529 /* Return non-zero if SUFFIX is a suffix of STR.
530 Return zero if STR is null. */
533 is_suffix (const char *str, const char *suffix)
540 len2 = strlen (suffix);
541 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
544 /* The contents of value VAL, treated as a value of type TYPE. The
545 result is an lval in memory if VAL is. */
547 static struct value *
548 coerce_unspec_val_to_type (struct value *val, struct type *type)
550 type = ada_check_typedef (type);
551 if (value_type (val) == type)
555 struct value *result;
557 if (value_optimized_out (val))
558 result = allocate_optimized_out_value (type);
559 else if (value_lazy (val)
560 /* Be careful not to make a lazy not_lval value. */
561 || (VALUE_LVAL (val) != not_lval
562 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
563 result = allocate_value_lazy (type);
566 result = allocate_value (type);
567 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
569 set_value_component_location (result, val);
570 set_value_bitsize (result, value_bitsize (val));
571 set_value_bitpos (result, value_bitpos (val));
572 if (VALUE_LVAL (result) == lval_memory)
573 set_value_address (result, value_address (val));
578 static const gdb_byte *
579 cond_offset_host (const gdb_byte *valaddr, long offset)
584 return valaddr + offset;
588 cond_offset_target (CORE_ADDR address, long offset)
593 return address + offset;
596 /* Issue a warning (as for the definition of warning in utils.c, but
597 with exactly one argument rather than ...), unless the limit on the
598 number of warnings has passed during the evaluation of the current
601 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
602 provided by "complaint". */
603 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
606 lim_warning (const char *format, ...)
610 va_start (args, format);
611 warnings_issued += 1;
612 if (warnings_issued <= warning_limit)
613 vwarning (format, args);
618 /* Maximum value of a SIZE-byte signed integer type. */
620 max_of_size (int size)
622 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
624 return top_bit | (top_bit - 1);
627 /* Minimum value of a SIZE-byte signed integer type. */
629 min_of_size (int size)
631 return -max_of_size (size) - 1;
634 /* Maximum value of a SIZE-byte unsigned integer type. */
636 umax_of_size (int size)
638 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
640 return top_bit | (top_bit - 1);
643 /* Maximum value of integral type T, as a signed quantity. */
645 max_of_type (struct type *t)
647 if (t->is_unsigned ())
648 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
650 return max_of_size (TYPE_LENGTH (t));
653 /* Minimum value of integral type T, as a signed quantity. */
655 min_of_type (struct type *t)
657 if (t->is_unsigned ())
660 return min_of_size (TYPE_LENGTH (t));
663 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
665 ada_discrete_type_high_bound (struct type *type)
667 type = resolve_dynamic_type (type, {}, 0);
668 switch (type->code ())
670 case TYPE_CODE_RANGE:
672 const dynamic_prop &high = type->bounds ()->high;
674 if (high.kind () == PROP_CONST)
675 return high.const_val ();
678 gdb_assert (high.kind () == PROP_UNDEFINED);
680 /* This happens when trying to evaluate a type's dynamic bound
681 without a live target. There is nothing relevant for us to
682 return here, so return 0. */
687 return type->field (type->num_fields () - 1).loc_enumval ();
692 return max_of_type (type);
694 error (_("Unexpected type in ada_discrete_type_high_bound."));
698 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
700 ada_discrete_type_low_bound (struct type *type)
702 type = resolve_dynamic_type (type, {}, 0);
703 switch (type->code ())
705 case TYPE_CODE_RANGE:
707 const dynamic_prop &low = type->bounds ()->low;
709 if (low.kind () == PROP_CONST)
710 return low.const_val ();
713 gdb_assert (low.kind () == PROP_UNDEFINED);
715 /* This happens when trying to evaluate a type's dynamic bound
716 without a live target. There is nothing relevant for us to
717 return here, so return 0. */
722 return type->field (0).loc_enumval ();
727 return min_of_type (type);
729 error (_("Unexpected type in ada_discrete_type_low_bound."));
733 /* The identity on non-range types. For range types, the underlying
734 non-range scalar type. */
737 get_base_type (struct type *type)
739 while (type != NULL && type->code () == TYPE_CODE_RANGE)
741 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
743 type = TYPE_TARGET_TYPE (type);
748 /* Return a decoded version of the given VALUE. This means returning
749 a value whose type is obtained by applying all the GNAT-specific
750 encodings, making the resulting type a static but standard description
751 of the initial type. */
754 ada_get_decoded_value (struct value *value)
756 struct type *type = ada_check_typedef (value_type (value));
758 if (ada_is_array_descriptor_type (type)
759 || (ada_is_constrained_packed_array_type (type)
760 && type->code () != TYPE_CODE_PTR))
762 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
763 value = ada_coerce_to_simple_array_ptr (value);
765 value = ada_coerce_to_simple_array (value);
768 value = ada_to_fixed_value (value);
773 /* Same as ada_get_decoded_value, but with the given TYPE.
774 Because there is no associated actual value for this type,
775 the resulting type might be a best-effort approximation in
776 the case of dynamic types. */
779 ada_get_decoded_type (struct type *type)
781 type = to_static_fixed_type (type);
782 if (ada_is_constrained_packed_array_type (type))
783 type = ada_coerce_to_simple_array_type (type);
789 /* Language Selection */
791 /* If the main program is in Ada, return language_ada, otherwise return LANG
792 (the main program is in Ada iif the adainit symbol is found). */
795 ada_update_initial_language (enum language lang)
797 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
803 /* If the main procedure is written in Ada, then return its name.
804 The result is good until the next call. Return NULL if the main
805 procedure doesn't appear to be in Ada. */
810 struct bound_minimal_symbol msym;
811 static gdb::unique_xmalloc_ptr<char> main_program_name;
813 /* For Ada, the name of the main procedure is stored in a specific
814 string constant, generated by the binder. Look for that symbol,
815 extract its address, and then read that string. If we didn't find
816 that string, then most probably the main procedure is not written
818 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
820 if (msym.minsym != NULL)
822 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
823 if (main_program_name_addr == 0)
824 error (_("Invalid address for Ada main program name."));
826 main_program_name = target_read_string (main_program_name_addr, 1024);
827 return main_program_name.get ();
830 /* The main procedure doesn't seem to be in Ada. */
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
864 /* If STR is a decoded version of a compiler-provided suffix (like the
865 "[cold]" in "symbol[cold]"), return true. Otherwise, return
869 is_compiler_suffix (const char *str)
871 gdb_assert (*str == '[');
873 while (*str != '\0' && isalpha (*str))
875 /* We accept a missing "]" in order to support completion. */
876 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
879 /* Append a non-ASCII character to RESULT. */
881 append_hex_encoded (std::string &result, uint32_t one_char)
883 if (one_char <= 0xff)
886 result.append (phex (one_char, 1));
888 else if (one_char <= 0xffff)
891 result.append (phex (one_char, 2));
895 result.append ("WW");
896 result.append (phex (one_char, 4));
900 /* Return a string that is a copy of the data in STORAGE, with
901 non-ASCII characters replaced by the appropriate hex encoding. A
902 template is used because, for UTF-8, we actually want to work with
903 UTF-32 codepoints. */
906 copy_and_hex_encode (struct obstack *storage)
908 const T *chars = (T *) obstack_base (storage);
909 int num_chars = obstack_object_size (storage) / sizeof (T);
911 for (int i = 0; i < num_chars; ++i)
913 if (chars[i] <= 0x7f)
915 /* The host character set has to be a superset of ASCII, as
916 are all the other character sets we can use. */
917 result.push_back (chars[i]);
920 append_hex_encoded (result, chars[i]);
925 /* The "encoded" form of DECODED, according to GNAT conventions. If
926 THROW_ERRORS, throw an error if invalid operator name is found.
927 Otherwise, return the empty string in that case. */
930 ada_encode_1 (const char *decoded, bool throw_errors)
935 std::string encoding_buffer;
936 bool saw_non_ascii = false;
937 for (const char *p = decoded; *p != '\0'; p += 1)
939 if ((*p & 0x80) != 0)
940 saw_non_ascii = true;
943 encoding_buffer.append ("__");
944 else if (*p == '[' && is_compiler_suffix (p))
946 encoding_buffer = encoding_buffer + "." + (p + 1);
947 if (encoding_buffer.back () == ']')
948 encoding_buffer.pop_back ();
953 const struct ada_opname_map *mapping;
955 for (mapping = ada_opname_table;
956 mapping->encoded != NULL
957 && !startswith (p, mapping->decoded); mapping += 1)
959 if (mapping->encoded == NULL)
962 error (_("invalid Ada operator name: %s"), p);
966 encoding_buffer.append (mapping->encoded);
970 encoding_buffer.push_back (*p);
973 /* If a non-ASCII character is seen, we must convert it to the
974 appropriate hex form. As this is more expensive, we keep track
975 of whether it is even necessary. */
978 auto_obstack storage;
979 bool is_utf8 = ada_source_charset == ada_utf8;
982 convert_between_encodings
984 is_utf8 ? HOST_UTF32 : ada_source_charset,
985 (const gdb_byte *) encoding_buffer.c_str (),
986 encoding_buffer.length (), 1,
987 &storage, translit_none);
989 catch (const gdb_exception &)
991 static bool warned = false;
993 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
994 might like to know why. */
998 warning (_("charset conversion failure for '%s'.\n"
999 "You may have the wrong value for 'set ada source-charset'."),
1000 encoding_buffer.c_str ());
1003 /* We don't try to recover from errors. */
1004 return encoding_buffer;
1008 return copy_and_hex_encode<uint32_t> (&storage);
1009 return copy_and_hex_encode<gdb_byte> (&storage);
1012 return encoding_buffer;
1015 /* Find the entry for C in the case-folding table. Return nullptr if
1016 the entry does not cover C. */
1017 static const utf8_entry *
1018 find_case_fold_entry (uint32_t c)
1020 auto iter = std::lower_bound (std::begin (ada_case_fold),
1021 std::end (ada_case_fold),
1023 if (iter == std::end (ada_case_fold)
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. If
1032 THROW_ON_ERROR is true, encoding failures will throw an exception
1033 rather than emitting a warning. Result good to next call. */
1036 ada_fold_name (gdb::string_view name, bool throw_on_error = false)
1038 static std::string fold_storage;
1040 if (!name.empty () && name[0] == '\'')
1041 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
1044 /* Why convert to UTF-32 and implement our own case-folding,
1045 rather than convert to wchar_t and use the platform's
1046 functions? I'm glad you asked.
1048 The main problem is that GNAT implements an unusual rule for
1049 case folding. For ASCII letters, letters in single-byte
1050 encodings (such as ISO-8859-*), and Unicode letters that fit
1051 in a single byte (i.e., code point is <= 0xff), the letter is
1052 folded to lower case. Other Unicode letters are folded to
1055 This rule means that the code must be able to examine the
1056 value of the character. And, some hosts do not use Unicode
1057 for wchar_t, so examining the value of such characters is
1059 auto_obstack storage;
1062 convert_between_encodings
1063 (host_charset (), HOST_UTF32,
1064 (const gdb_byte *) name.data (),
1066 &storage, translit_none);
1068 catch (const gdb_exception &)
1073 static bool warned = false;
1075 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1076 might like to know why. */
1080 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1081 "This normally should not happen, please file a bug report."),
1082 gdb::to_string (name).c_str (), host_charset ());
1085 /* We don't try to recover from errors; just return the
1087 fold_storage = gdb::to_string (name);
1088 return fold_storage.c_str ();
1091 bool is_utf8 = ada_source_charset == ada_utf8;
1092 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1093 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1094 for (int i = 0; i < num_chars; ++i)
1096 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1097 if (entry != nullptr)
1099 uint32_t low = chars[i] + entry->lower_delta;
1100 if (!is_utf8 || low <= 0xff)
1103 chars[i] = chars[i] + entry->upper_delta;
1107 /* Now convert back to ordinary characters. */
1108 auto_obstack reconverted;
1111 convert_between_encodings (HOST_UTF32,
1113 (const gdb_byte *) chars,
1114 num_chars * sizeof (uint32_t),
1118 obstack_1grow (&reconverted, '\0');
1119 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1121 catch (const gdb_exception &)
1126 static bool warned = false;
1128 /* Converting back from UTF-32 shouldn't normally fail, but
1129 there are some host encodings without upper/lower
1134 warning (_("could not convert the lower-cased variant of '%s'\n"
1135 "from UTF-32 to the host encoding (%s)."),
1136 gdb::to_string (name).c_str (), host_charset ());
1139 /* We don't try to recover from errors; just return the
1141 fold_storage = gdb::to_string (name);
1145 return fold_storage.c_str ();
1148 /* The "encoded" form of DECODED, according to GNAT conventions. */
1151 ada_encode (const char *decoded)
1153 if (decoded[0] != '<')
1154 decoded = ada_fold_name (decoded);
1155 return ada_encode_1 (decoded, true);
1158 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1161 is_lower_alphanum (const char c)
1163 return (isdigit (c) || (isalpha (c) && islower (c)));
1166 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1167 This function saves in LEN the length of that same symbol name but
1168 without either of these suffixes:
1174 These are suffixes introduced by the compiler for entities such as
1175 nested subprogram for instance, in order to avoid name clashes.
1176 They do not serve any purpose for the debugger. */
1179 ada_remove_trailing_digits (const char *encoded, int *len)
1181 if (*len > 1 && isdigit (encoded[*len - 1]))
1185 while (i > 0 && isdigit (encoded[i]))
1187 if (i >= 0 && encoded[i] == '.')
1189 else if (i >= 0 && encoded[i] == '$')
1191 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1193 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1198 /* Remove the suffix introduced by the compiler for protected object
1202 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1204 /* Remove trailing N. */
1206 /* Protected entry subprograms are broken into two
1207 separate subprograms: The first one is unprotected, and has
1208 a 'N' suffix; the second is the protected version, and has
1209 the 'P' suffix. The second calls the first one after handling
1210 the protection. Since the P subprograms are internally generated,
1211 we leave these names undecoded, giving the user a clue that this
1212 entity is internal. */
1215 && encoded[*len - 1] == 'N'
1216 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1220 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1221 then update *LEN to remove the suffix and return the offset of the
1222 character just past the ".". Otherwise, return -1. */
1225 remove_compiler_suffix (const char *encoded, int *len)
1227 int offset = *len - 1;
1228 while (offset > 0 && isalpha (encoded[offset]))
1230 if (offset > 0 && encoded[offset] == '.')
1238 /* Convert an ASCII hex string to a number. Reads exactly N
1239 characters from STR. Returns true on success, false if one of the
1240 digits was not a hex digit. */
1242 convert_hex (const char *str, int n, uint32_t *out)
1244 uint32_t result = 0;
1246 for (int i = 0; i < n; ++i)
1248 if (!isxdigit (str[i]))
1251 result |= fromhex (str[i]);
1258 /* Convert a wide character from its ASCII hex representation in STR
1259 (consisting of exactly N characters) to the host encoding,
1260 appending the resulting bytes to OUT. If N==2 and the Ada source
1261 charset is not UTF-8, then hex refers to an encoding in the
1262 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1263 Return false and do not modify OUT on conversion failure. */
1265 convert_from_hex_encoded (std::string &out, const char *str, int n)
1269 if (!convert_hex (str, n, &value))
1274 /* In the 'U' case, the hex digits encode the character in the
1275 Ada source charset. However, if the source charset is UTF-8,
1276 this really means it is a single-byte UTF-32 character. */
1277 if (n == 2 && ada_source_charset != ada_utf8)
1279 gdb_byte one_char = (gdb_byte) value;
1281 convert_between_encodings (ada_source_charset, host_charset (),
1283 sizeof (one_char), sizeof (one_char),
1284 &bytes, translit_none);
1287 convert_between_encodings (HOST_UTF32, host_charset (),
1288 (const gdb_byte *) &value,
1289 sizeof (value), sizeof (value),
1290 &bytes, translit_none);
1291 obstack_1grow (&bytes, '\0');
1292 out.append ((const char *) obstack_base (&bytes));
1294 catch (const gdb_exception &)
1296 /* On failure, the caller will just let the encoded form
1297 through, which seems basically reasonable. */
1304 /* See ada-lang.h. */
1307 ada_decode (const char *encoded, bool wrap)
1313 std::string decoded;
1316 /* With function descriptors on PPC64, the value of a symbol named
1317 ".FN", if it exists, is the entry point of the function "FN". */
1318 if (encoded[0] == '.')
1321 /* The name of the Ada main procedure starts with "_ada_".
1322 This prefix is not part of the decoded name, so skip this part
1323 if we see this prefix. */
1324 if (startswith (encoded, "_ada_"))
1327 /* If the name starts with '_', then it is not a properly encoded
1328 name, so do not attempt to decode it. Similarly, if the name
1329 starts with '<', the name should not be decoded. */
1330 if (encoded[0] == '_' || encoded[0] == '<')
1333 len0 = strlen (encoded);
1335 suffix = remove_compiler_suffix (encoded, &len0);
1337 ada_remove_trailing_digits (encoded, &len0);
1338 ada_remove_po_subprogram_suffix (encoded, &len0);
1340 /* Remove the ___X.* suffix if present. Do not forget to verify that
1341 the suffix is located before the current "end" of ENCODED. We want
1342 to avoid re-matching parts of ENCODED that have previously been
1343 marked as discarded (by decrementing LEN0). */
1344 p = strstr (encoded, "___");
1345 if (p != NULL && p - encoded < len0 - 3)
1353 /* Remove any trailing TKB suffix. It tells us that this symbol
1354 is for the body of a task, but that information does not actually
1355 appear in the decoded name. */
1357 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1360 /* Remove any trailing TB suffix. The TB suffix is slightly different
1361 from the TKB suffix because it is used for non-anonymous task
1364 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1367 /* Remove trailing "B" suffixes. */
1368 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1370 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1373 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1375 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1378 while ((i >= 0 && isdigit (encoded[i]))
1379 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1381 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1383 else if (encoded[i] == '$')
1387 /* The first few characters that are not alphabetic are not part
1388 of any encoding we use, so we can copy them over verbatim. */
1390 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1391 decoded.push_back (encoded[i]);
1396 /* Is this a symbol function? */
1397 if (at_start_name && encoded[i] == 'O')
1401 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1403 int op_len = strlen (ada_opname_table[k].encoded);
1404 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1406 && !isalnum (encoded[i + op_len]))
1408 decoded.append (ada_opname_table[k].decoded);
1414 if (ada_opname_table[k].encoded != NULL)
1419 /* Replace "TK__" with "__", which will eventually be translated
1420 into "." (just below). */
1422 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1425 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1426 be translated into "." (just below). These are internal names
1427 generated for anonymous blocks inside which our symbol is nested. */
1429 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1430 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1431 && isdigit (encoded [i+4]))
1435 while (k < len0 && isdigit (encoded[k]))
1436 k++; /* Skip any extra digit. */
1438 /* Double-check that the "__B_{DIGITS}+" sequence we found
1439 is indeed followed by "__". */
1440 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1444 /* Remove _E{DIGITS}+[sb] */
1446 /* Just as for protected object subprograms, there are 2 categories
1447 of subprograms created by the compiler for each entry. The first
1448 one implements the actual entry code, and has a suffix following
1449 the convention above; the second one implements the barrier and
1450 uses the same convention as above, except that the 'E' is replaced
1453 Just as above, we do not decode the name of barrier functions
1454 to give the user a clue that the code he is debugging has been
1455 internally generated. */
1457 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1458 && isdigit (encoded[i+2]))
1462 while (k < len0 && isdigit (encoded[k]))
1466 && (encoded[k] == 'b' || encoded[k] == 's'))
1469 /* Just as an extra precaution, make sure that if this
1470 suffix is followed by anything else, it is a '_'.
1471 Otherwise, we matched this sequence by accident. */
1473 || (k < len0 && encoded[k] == '_'))
1478 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1479 the GNAT front-end in protected object subprograms. */
1482 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1484 /* Backtrack a bit up until we reach either the begining of
1485 the encoded name, or "__". Make sure that we only find
1486 digits or lowercase characters. */
1487 const char *ptr = encoded + i - 1;
1489 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1492 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1496 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1498 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1504 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1506 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1512 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1513 && isxdigit (encoded[i + 2]))
1515 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1522 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1524 /* This is a X[bn]* sequence not separated from the previous
1525 part of the name with a non-alpha-numeric character (in other
1526 words, immediately following an alpha-numeric character), then
1527 verify that it is placed at the end of the encoded name. If
1528 not, then the encoding is not valid and we should abort the
1529 decoding. Otherwise, just skip it, it is used in body-nested
1533 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1537 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1539 /* Replace '__' by '.'. */
1540 decoded.push_back ('.');
1546 /* It's a character part of the decoded name, so just copy it
1548 decoded.push_back (encoded[i]);
1553 /* Decoded names should never contain any uppercase character.
1554 Double-check this, and abort the decoding if we find one. */
1556 for (i = 0; i < decoded.length(); ++i)
1557 if (isupper (decoded[i]) || decoded[i] == ' ')
1560 /* If the compiler added a suffix, append it now. */
1562 decoded = decoded + "[" + &encoded[suffix] + "]";
1570 if (encoded[0] == '<')
1573 decoded = '<' + std::string(encoded) + '>';
1577 /* Table for keeping permanent unique copies of decoded names. Once
1578 allocated, names in this table are never released. While this is a
1579 storage leak, it should not be significant unless there are massive
1580 changes in the set of decoded names in successive versions of a
1581 symbol table loaded during a single session. */
1582 static struct htab *decoded_names_store;
1584 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1585 in the language-specific part of GSYMBOL, if it has not been
1586 previously computed. Tries to save the decoded name in the same
1587 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1588 in any case, the decoded symbol has a lifetime at least that of
1590 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1591 const, but nevertheless modified to a semantically equivalent form
1592 when a decoded name is cached in it. */
1595 ada_decode_symbol (const struct general_symbol_info *arg)
1597 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1598 const char **resultp =
1599 &gsymbol->language_specific.demangled_name;
1601 if (!gsymbol->ada_mangled)
1603 std::string decoded = ada_decode (gsymbol->linkage_name ());
1604 struct obstack *obstack = gsymbol->language_specific.obstack;
1606 gsymbol->ada_mangled = 1;
1608 if (obstack != NULL)
1609 *resultp = obstack_strdup (obstack, decoded.c_str ());
1612 /* Sometimes, we can't find a corresponding objfile, in
1613 which case, we put the result on the heap. Since we only
1614 decode when needed, we hope this usually does not cause a
1615 significant memory leak (FIXME). */
1617 char **slot = (char **) htab_find_slot (decoded_names_store,
1618 decoded.c_str (), INSERT);
1621 *slot = xstrdup (decoded.c_str ());
1633 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1634 generated by the GNAT compiler to describe the index type used
1635 for each dimension of an array, check whether it follows the latest
1636 known encoding. If not, fix it up to conform to the latest encoding.
1637 Otherwise, do nothing. This function also does nothing if
1638 INDEX_DESC_TYPE is NULL.
1640 The GNAT encoding used to describe the array index type evolved a bit.
1641 Initially, the information would be provided through the name of each
1642 field of the structure type only, while the type of these fields was
1643 described as unspecified and irrelevant. The debugger was then expected
1644 to perform a global type lookup using the name of that field in order
1645 to get access to the full index type description. Because these global
1646 lookups can be very expensive, the encoding was later enhanced to make
1647 the global lookup unnecessary by defining the field type as being
1648 the full index type description.
1650 The purpose of this routine is to allow us to support older versions
1651 of the compiler by detecting the use of the older encoding, and by
1652 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1653 we essentially replace each field's meaningless type by the associated
1657 ada_fixup_array_indexes_type (struct type *index_desc_type)
1661 if (index_desc_type == NULL)
1663 gdb_assert (index_desc_type->num_fields () > 0);
1665 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1666 to check one field only, no need to check them all). If not, return
1669 If our INDEX_DESC_TYPE was generated using the older encoding,
1670 the field type should be a meaningless integer type whose name
1671 is not equal to the field name. */
1672 if (index_desc_type->field (0).type ()->name () != NULL
1673 && strcmp (index_desc_type->field (0).type ()->name (),
1674 index_desc_type->field (0).name ()) == 0)
1677 /* Fixup each field of INDEX_DESC_TYPE. */
1678 for (i = 0; i < index_desc_type->num_fields (); i++)
1680 const char *name = index_desc_type->field (i).name ();
1681 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1684 index_desc_type->field (i).set_type (raw_type);
1688 /* The desc_* routines return primitive portions of array descriptors
1691 /* The descriptor or array type, if any, indicated by TYPE; removes
1692 level of indirection, if needed. */
1694 static struct type *
1695 desc_base_type (struct type *type)
1699 type = ada_check_typedef (type);
1700 if (type->code () == TYPE_CODE_TYPEDEF)
1701 type = ada_typedef_target_type (type);
1704 && (type->code () == TYPE_CODE_PTR
1705 || type->code () == TYPE_CODE_REF))
1706 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1711 /* True iff TYPE indicates a "thin" array pointer type. */
1714 is_thin_pntr (struct type *type)
1717 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1718 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1721 /* The descriptor type for thin pointer type TYPE. */
1723 static struct type *
1724 thin_descriptor_type (struct type *type)
1726 struct type *base_type = desc_base_type (type);
1728 if (base_type == NULL)
1730 if (is_suffix (ada_type_name (base_type), "___XVE"))
1734 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1736 if (alt_type == NULL)
1743 /* A pointer to the array data for thin-pointer value VAL. */
1745 static struct value *
1746 thin_data_pntr (struct value *val)
1748 struct type *type = ada_check_typedef (value_type (val));
1749 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1751 data_type = lookup_pointer_type (data_type);
1753 if (type->code () == TYPE_CODE_PTR)
1754 return value_cast (data_type, value_copy (val));
1756 return value_from_longest (data_type, value_address (val));
1759 /* True iff TYPE indicates a "thick" array pointer type. */
1762 is_thick_pntr (struct type *type)
1764 type = desc_base_type (type);
1765 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1766 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1769 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1770 pointer to one, the type of its bounds data; otherwise, NULL. */
1772 static struct type *
1773 desc_bounds_type (struct type *type)
1777 type = desc_base_type (type);
1781 else if (is_thin_pntr (type))
1783 type = thin_descriptor_type (type);
1786 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1788 return ada_check_typedef (r);
1790 else if (type->code () == TYPE_CODE_STRUCT)
1792 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1794 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1799 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1800 one, a pointer to its bounds data. Otherwise NULL. */
1802 static struct value *
1803 desc_bounds (struct value *arr)
1805 struct type *type = ada_check_typedef (value_type (arr));
1807 if (is_thin_pntr (type))
1809 struct type *bounds_type =
1810 desc_bounds_type (thin_descriptor_type (type));
1813 if (bounds_type == NULL)
1814 error (_("Bad GNAT array descriptor"));
1816 /* NOTE: The following calculation is not really kosher, but
1817 since desc_type is an XVE-encoded type (and shouldn't be),
1818 the correct calculation is a real pain. FIXME (and fix GCC). */
1819 if (type->code () == TYPE_CODE_PTR)
1820 addr = value_as_long (arr);
1822 addr = value_address (arr);
1825 value_from_longest (lookup_pointer_type (bounds_type),
1826 addr - TYPE_LENGTH (bounds_type));
1829 else if (is_thick_pntr (type))
1831 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1832 _("Bad GNAT array descriptor"));
1833 struct type *p_bounds_type = value_type (p_bounds);
1836 && p_bounds_type->code () == TYPE_CODE_PTR)
1838 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1840 if (target_type->is_stub ())
1841 p_bounds = value_cast (lookup_pointer_type
1842 (ada_check_typedef (target_type)),
1846 error (_("Bad GNAT array descriptor"));
1854 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1855 position of the field containing the address of the bounds data. */
1858 fat_pntr_bounds_bitpos (struct type *type)
1860 return desc_base_type (type)->field (1).loc_bitpos ();
1863 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1864 size of the field containing the address of the bounds data. */
1867 fat_pntr_bounds_bitsize (struct type *type)
1869 type = desc_base_type (type);
1871 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 1);
1874 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1877 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1878 pointer to one, the type of its array data (a array-with-no-bounds type);
1879 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1882 static struct type *
1883 desc_data_target_type (struct type *type)
1885 type = desc_base_type (type);
1887 /* NOTE: The following is bogus; see comment in desc_bounds. */
1888 if (is_thin_pntr (type))
1889 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1890 else if (is_thick_pntr (type))
1892 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1895 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1896 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1902 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1905 static struct value *
1906 desc_data (struct value *arr)
1908 struct type *type = value_type (arr);
1910 if (is_thin_pntr (type))
1911 return thin_data_pntr (arr);
1912 else if (is_thick_pntr (type))
1913 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1914 _("Bad GNAT array descriptor"));
1920 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1921 position of the field containing the address of the data. */
1924 fat_pntr_data_bitpos (struct type *type)
1926 return desc_base_type (type)->field (0).loc_bitpos ();
1929 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1930 size of the field containing the address of the data. */
1933 fat_pntr_data_bitsize (struct type *type)
1935 type = desc_base_type (type);
1937 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1938 return TYPE_FIELD_BITSIZE (type, 0);
1940 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1943 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1944 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1945 bound, if WHICH is 1. The first bound is I=1. */
1947 static struct value *
1948 desc_one_bound (struct value *bounds, int i, int which)
1950 char bound_name[20];
1951 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1952 which ? 'U' : 'L', i - 1);
1953 return value_struct_elt (&bounds, {}, bound_name, NULL,
1954 _("Bad GNAT array descriptor bounds"));
1957 /* If BOUNDS is an array-bounds structure type, return the bit position
1958 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1959 bound, if WHICH is 1. The first bound is I=1. */
1962 desc_bound_bitpos (struct type *type, int i, int which)
1964 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1967 /* If BOUNDS is an array-bounds structure type, return the bit field size
1968 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1969 bound, if WHICH is 1. The first bound is I=1. */
1972 desc_bound_bitsize (struct type *type, int i, int which)
1974 type = desc_base_type (type);
1976 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1977 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1979 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1982 /* If TYPE is the type of an array-bounds structure, the type of its
1983 Ith bound (numbering from 1). Otherwise, NULL. */
1985 static struct type *
1986 desc_index_type (struct type *type, int i)
1988 type = desc_base_type (type);
1990 if (type->code () == TYPE_CODE_STRUCT)
1992 char bound_name[20];
1993 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1994 return lookup_struct_elt_type (type, bound_name, 1);
2000 /* The number of index positions in the array-bounds type TYPE.
2001 Return 0 if TYPE is NULL. */
2004 desc_arity (struct type *type)
2006 type = desc_base_type (type);
2009 return type->num_fields () / 2;
2013 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2014 an array descriptor type (representing an unconstrained array
2018 ada_is_direct_array_type (struct type *type)
2022 type = ada_check_typedef (type);
2023 return (type->code () == TYPE_CODE_ARRAY
2024 || ada_is_array_descriptor_type (type));
2027 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
2031 ada_is_array_type (struct type *type)
2034 && (type->code () == TYPE_CODE_PTR
2035 || type->code () == TYPE_CODE_REF))
2036 type = TYPE_TARGET_TYPE (type);
2037 return ada_is_direct_array_type (type);
2040 /* Non-zero iff TYPE is a simple array type or pointer to one. */
2043 ada_is_simple_array_type (struct type *type)
2047 type = ada_check_typedef (type);
2048 return (type->code () == TYPE_CODE_ARRAY
2049 || (type->code () == TYPE_CODE_PTR
2050 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
2051 == TYPE_CODE_ARRAY)));
2054 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2057 ada_is_array_descriptor_type (struct type *type)
2059 struct type *data_type = desc_data_target_type (type);
2063 type = ada_check_typedef (type);
2064 return (data_type != NULL
2065 && data_type->code () == TYPE_CODE_ARRAY
2066 && desc_arity (desc_bounds_type (type)) > 0);
2069 /* Non-zero iff type is a partially mal-formed GNAT array
2070 descriptor. FIXME: This is to compensate for some problems with
2071 debugging output from GNAT. Re-examine periodically to see if it
2075 ada_is_bogus_array_descriptor (struct type *type)
2079 && type->code () == TYPE_CODE_STRUCT
2080 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
2081 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
2082 && !ada_is_array_descriptor_type (type);
2086 /* If ARR has a record type in the form of a standard GNAT array descriptor,
2087 (fat pointer) returns the type of the array data described---specifically,
2088 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
2089 in from the descriptor; otherwise, they are left unspecified. If
2090 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2091 returns NULL. The result is simply the type of ARR if ARR is not
2094 static struct type *
2095 ada_type_of_array (struct value *arr, int bounds)
2097 if (ada_is_constrained_packed_array_type (value_type (arr)))
2098 return decode_constrained_packed_array_type (value_type (arr));
2100 if (!ada_is_array_descriptor_type (value_type (arr)))
2101 return value_type (arr);
2105 struct type *array_type =
2106 ada_check_typedef (desc_data_target_type (value_type (arr)));
2108 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2109 TYPE_FIELD_BITSIZE (array_type, 0) =
2110 decode_packed_array_bitsize (value_type (arr));
2116 struct type *elt_type;
2118 struct value *descriptor;
2120 elt_type = ada_array_element_type (value_type (arr), -1);
2121 arity = ada_array_arity (value_type (arr));
2123 if (elt_type == NULL || arity == 0)
2124 return ada_check_typedef (value_type (arr));
2126 descriptor = desc_bounds (arr);
2127 if (value_as_long (descriptor) == 0)
2131 struct type *range_type = alloc_type_copy (value_type (arr));
2132 struct type *array_type = alloc_type_copy (value_type (arr));
2133 struct value *low = desc_one_bound (descriptor, arity, 0);
2134 struct value *high = desc_one_bound (descriptor, arity, 1);
2137 create_static_range_type (range_type, value_type (low),
2138 longest_to_int (value_as_long (low)),
2139 longest_to_int (value_as_long (high)));
2140 elt_type = create_array_type (array_type, elt_type, range_type);
2142 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2144 /* We need to store the element packed bitsize, as well as
2145 recompute the array size, because it was previously
2146 computed based on the unpacked element size. */
2147 LONGEST lo = value_as_long (low);
2148 LONGEST hi = value_as_long (high);
2150 TYPE_FIELD_BITSIZE (elt_type, 0) =
2151 decode_packed_array_bitsize (value_type (arr));
2152 /* If the array has no element, then the size is already
2153 zero, and does not need to be recomputed. */
2157 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2159 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2164 return lookup_pointer_type (elt_type);
2168 /* If ARR does not represent an array, returns ARR unchanged.
2169 Otherwise, returns either a standard GDB array with bounds set
2170 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2171 GDB array. Returns NULL if ARR is a null fat pointer. */
2174 ada_coerce_to_simple_array_ptr (struct value *arr)
2176 if (ada_is_array_descriptor_type (value_type (arr)))
2178 struct type *arrType = ada_type_of_array (arr, 1);
2180 if (arrType == NULL)
2182 return value_cast (arrType, value_copy (desc_data (arr)));
2184 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2185 return decode_constrained_packed_array (arr);
2190 /* If ARR does not represent an array, returns ARR unchanged.
2191 Otherwise, returns a standard GDB array describing ARR (which may
2192 be ARR itself if it already is in the proper form). */
2195 ada_coerce_to_simple_array (struct value *arr)
2197 if (ada_is_array_descriptor_type (value_type (arr)))
2199 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2202 error (_("Bounds unavailable for null array pointer."));
2203 return value_ind (arrVal);
2205 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2206 return decode_constrained_packed_array (arr);
2211 /* If TYPE represents a GNAT array type, return it translated to an
2212 ordinary GDB array type (possibly with BITSIZE fields indicating
2213 packing). For other types, is the identity. */
2216 ada_coerce_to_simple_array_type (struct type *type)
2218 if (ada_is_constrained_packed_array_type (type))
2219 return decode_constrained_packed_array_type (type);
2221 if (ada_is_array_descriptor_type (type))
2222 return ada_check_typedef (desc_data_target_type (type));
2227 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2230 ada_is_gnat_encoded_packed_array_type (struct type *type)
2234 type = desc_base_type (type);
2235 type = ada_check_typedef (type);
2237 ada_type_name (type) != NULL
2238 && strstr (ada_type_name (type), "___XP") != NULL;
2241 /* Non-zero iff TYPE represents a standard GNAT constrained
2242 packed-array type. */
2245 ada_is_constrained_packed_array_type (struct type *type)
2247 return ada_is_gnat_encoded_packed_array_type (type)
2248 && !ada_is_array_descriptor_type (type);
2251 /* Non-zero iff TYPE represents an array descriptor for a
2252 unconstrained packed-array type. */
2255 ada_is_unconstrained_packed_array_type (struct type *type)
2257 if (!ada_is_array_descriptor_type (type))
2260 if (ada_is_gnat_encoded_packed_array_type (type))
2263 /* If we saw GNAT encodings, then the above code is sufficient.
2264 However, with minimal encodings, we will just have a thick
2266 if (is_thick_pntr (type))
2268 type = desc_base_type (type);
2269 /* The structure's first field is a pointer to an array, so this
2270 fetches the array type. */
2271 type = TYPE_TARGET_TYPE (type->field (0).type ());
2272 if (type->code () == TYPE_CODE_TYPEDEF)
2273 type = ada_typedef_target_type (type);
2274 /* Now we can see if the array elements are packed. */
2275 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2281 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2282 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2285 ada_is_any_packed_array_type (struct type *type)
2287 return (ada_is_constrained_packed_array_type (type)
2288 || (type->code () == TYPE_CODE_ARRAY
2289 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2292 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2293 return the size of its elements in bits. */
2296 decode_packed_array_bitsize (struct type *type)
2298 const char *raw_name;
2302 /* Access to arrays implemented as fat pointers are encoded as a typedef
2303 of the fat pointer type. We need the name of the fat pointer type
2304 to do the decoding, so strip the typedef layer. */
2305 if (type->code () == TYPE_CODE_TYPEDEF)
2306 type = ada_typedef_target_type (type);
2308 raw_name = ada_type_name (ada_check_typedef (type));
2310 raw_name = ada_type_name (desc_base_type (type));
2315 tail = strstr (raw_name, "___XP");
2316 if (tail == nullptr)
2318 gdb_assert (is_thick_pntr (type));
2319 /* The structure's first field is a pointer to an array, so this
2320 fetches the array type. */
2321 type = TYPE_TARGET_TYPE (type->field (0).type ());
2322 /* Now we can see if the array elements are packed. */
2323 return TYPE_FIELD_BITSIZE (type, 0);
2326 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2329 (_("could not understand bit size information on packed array"));
2336 /* Given that TYPE is a standard GDB array type with all bounds filled
2337 in, and that the element size of its ultimate scalar constituents
2338 (that is, either its elements, or, if it is an array of arrays, its
2339 elements' elements, etc.) is *ELT_BITS, return an identical type,
2340 but with the bit sizes of its elements (and those of any
2341 constituent arrays) recorded in the BITSIZE components of its
2342 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2345 Note that, for arrays whose index type has an XA encoding where
2346 a bound references a record discriminant, getting that discriminant,
2347 and therefore the actual value of that bound, is not possible
2348 because none of the given parameters gives us access to the record.
2349 This function assumes that it is OK in the context where it is being
2350 used to return an array whose bounds are still dynamic and where
2351 the length is arbitrary. */
2353 static struct type *
2354 constrained_packed_array_type (struct type *type, long *elt_bits)
2356 struct type *new_elt_type;
2357 struct type *new_type;
2358 struct type *index_type_desc;
2359 struct type *index_type;
2360 LONGEST low_bound, high_bound;
2362 type = ada_check_typedef (type);
2363 if (type->code () != TYPE_CODE_ARRAY)
2366 index_type_desc = ada_find_parallel_type (type, "___XA");
2367 if (index_type_desc)
2368 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2371 index_type = type->index_type ();
2373 new_type = alloc_type_copy (type);
2375 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2377 create_array_type (new_type, new_elt_type, index_type);
2378 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2379 new_type->set_name (ada_type_name (type));
2381 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2382 && is_dynamic_type (check_typedef (index_type)))
2383 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2384 low_bound = high_bound = 0;
2385 if (high_bound < low_bound)
2386 *elt_bits = TYPE_LENGTH (new_type) = 0;
2389 *elt_bits *= (high_bound - low_bound + 1);
2390 TYPE_LENGTH (new_type) =
2391 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2394 new_type->set_is_fixed_instance (true);
2398 /* The array type encoded by TYPE, where
2399 ada_is_constrained_packed_array_type (TYPE). */
2401 static struct type *
2402 decode_constrained_packed_array_type (struct type *type)
2404 const char *raw_name = ada_type_name (ada_check_typedef (type));
2407 struct type *shadow_type;
2411 raw_name = ada_type_name (desc_base_type (type));
2416 name = (char *) alloca (strlen (raw_name) + 1);
2417 tail = strstr (raw_name, "___XP");
2418 type = desc_base_type (type);
2420 memcpy (name, raw_name, tail - raw_name);
2421 name[tail - raw_name] = '\000';
2423 shadow_type = ada_find_parallel_type_with_name (type, name);
2425 if (shadow_type == NULL)
2427 lim_warning (_("could not find bounds information on packed array"));
2430 shadow_type = check_typedef (shadow_type);
2432 if (shadow_type->code () != TYPE_CODE_ARRAY)
2434 lim_warning (_("could not understand bounds "
2435 "information on packed array"));
2439 bits = decode_packed_array_bitsize (type);
2440 return constrained_packed_array_type (shadow_type, &bits);
2443 /* Helper function for decode_constrained_packed_array. Set the field
2444 bitsize on a series of packed arrays. Returns the number of
2445 elements in TYPE. */
2448 recursively_update_array_bitsize (struct type *type)
2450 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2453 if (!get_discrete_bounds (type->index_type (), &low, &high)
2456 LONGEST our_len = high - low + 1;
2458 struct type *elt_type = TYPE_TARGET_TYPE (type);
2459 if (elt_type->code () == TYPE_CODE_ARRAY)
2461 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2462 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2463 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2465 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2472 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2473 array, returns a simple array that denotes that array. Its type is a
2474 standard GDB array type except that the BITSIZEs of the array
2475 target types are set to the number of bits in each element, and the
2476 type length is set appropriately. */
2478 static struct value *
2479 decode_constrained_packed_array (struct value *arr)
2483 /* If our value is a pointer, then dereference it. Likewise if
2484 the value is a reference. Make sure that this operation does not
2485 cause the target type to be fixed, as this would indirectly cause
2486 this array to be decoded. The rest of the routine assumes that
2487 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2488 and "value_ind" routines to perform the dereferencing, as opposed
2489 to using "ada_coerce_ref" or "ada_value_ind". */
2490 arr = coerce_ref (arr);
2491 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2492 arr = value_ind (arr);
2494 type = decode_constrained_packed_array_type (value_type (arr));
2497 error (_("can't unpack array"));
2501 /* Decoding the packed array type could not correctly set the field
2502 bitsizes for any dimension except the innermost, because the
2503 bounds may be variable and were not passed to that function. So,
2504 we further resolve the array bounds here and then update the
2506 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2507 CORE_ADDR address = value_address (arr);
2508 gdb::array_view<const gdb_byte> view
2509 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2510 type = resolve_dynamic_type (type, view, address);
2511 recursively_update_array_bitsize (type);
2513 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2514 && ada_is_modular_type (value_type (arr)))
2516 /* This is a (right-justified) modular type representing a packed
2517 array with no wrapper. In order to interpret the value through
2518 the (left-justified) packed array type we just built, we must
2519 first left-justify it. */
2520 int bit_size, bit_pos;
2523 mod = ada_modulus (value_type (arr)) - 1;
2530 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2531 arr = ada_value_primitive_packed_val (arr, NULL,
2532 bit_pos / HOST_CHAR_BIT,
2533 bit_pos % HOST_CHAR_BIT,
2538 return coerce_unspec_val_to_type (arr, type);
2542 /* The value of the element of packed array ARR at the ARITY indices
2543 given in IND. ARR must be a simple array. */
2545 static struct value *
2546 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2549 int bits, elt_off, bit_off;
2550 long elt_total_bit_offset;
2551 struct type *elt_type;
2555 elt_total_bit_offset = 0;
2556 elt_type = ada_check_typedef (value_type (arr));
2557 for (i = 0; i < arity; i += 1)
2559 if (elt_type->code () != TYPE_CODE_ARRAY
2560 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2562 (_("attempt to do packed indexing of "
2563 "something other than a packed array"));
2566 struct type *range_type = elt_type->index_type ();
2567 LONGEST lowerbound, upperbound;
2570 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2572 lim_warning (_("don't know bounds of array"));
2573 lowerbound = upperbound = 0;
2576 idx = pos_atr (ind[i]);
2577 if (idx < lowerbound || idx > upperbound)
2578 lim_warning (_("packed array index %ld out of bounds"),
2580 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2581 elt_total_bit_offset += (idx - lowerbound) * bits;
2582 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2585 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2586 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2588 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2593 /* Non-zero iff TYPE includes negative integer values. */
2596 has_negatives (struct type *type)
2598 switch (type->code ())
2603 return !type->is_unsigned ();
2604 case TYPE_CODE_RANGE:
2605 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2609 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2610 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2611 the unpacked buffer.
2613 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2614 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2616 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2619 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2621 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2624 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2625 gdb_byte *unpacked, int unpacked_len,
2626 int is_big_endian, int is_signed_type,
2629 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2630 int src_idx; /* Index into the source area */
2631 int src_bytes_left; /* Number of source bytes left to process. */
2632 int srcBitsLeft; /* Number of source bits left to move */
2633 int unusedLS; /* Number of bits in next significant
2634 byte of source that are unused */
2636 int unpacked_idx; /* Index into the unpacked buffer */
2637 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2639 unsigned long accum; /* Staging area for bits being transferred */
2640 int accumSize; /* Number of meaningful bits in accum */
2643 /* Transmit bytes from least to most significant; delta is the direction
2644 the indices move. */
2645 int delta = is_big_endian ? -1 : 1;
2647 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2649 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2650 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2651 bit_size, unpacked_len);
2653 srcBitsLeft = bit_size;
2654 src_bytes_left = src_len;
2655 unpacked_bytes_left = unpacked_len;
2660 src_idx = src_len - 1;
2662 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2666 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2672 unpacked_idx = unpacked_len - 1;
2676 /* Non-scalar values must be aligned at a byte boundary... */
2678 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2679 /* ... And are placed at the beginning (most-significant) bytes
2681 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2682 unpacked_bytes_left = unpacked_idx + 1;
2687 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2689 src_idx = unpacked_idx = 0;
2690 unusedLS = bit_offset;
2693 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2698 while (src_bytes_left > 0)
2700 /* Mask for removing bits of the next source byte that are not
2701 part of the value. */
2702 unsigned int unusedMSMask =
2703 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2705 /* Sign-extend bits for this byte. */
2706 unsigned int signMask = sign & ~unusedMSMask;
2709 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2710 accumSize += HOST_CHAR_BIT - unusedLS;
2711 if (accumSize >= HOST_CHAR_BIT)
2713 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2714 accumSize -= HOST_CHAR_BIT;
2715 accum >>= HOST_CHAR_BIT;
2716 unpacked_bytes_left -= 1;
2717 unpacked_idx += delta;
2719 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2721 src_bytes_left -= 1;
2724 while (unpacked_bytes_left > 0)
2726 accum |= sign << accumSize;
2727 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2728 accumSize -= HOST_CHAR_BIT;
2731 accum >>= HOST_CHAR_BIT;
2732 unpacked_bytes_left -= 1;
2733 unpacked_idx += delta;
2737 /* Create a new value of type TYPE from the contents of OBJ starting
2738 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2739 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2740 assigning through the result will set the field fetched from.
2741 VALADDR is ignored unless OBJ is NULL, in which case,
2742 VALADDR+OFFSET must address the start of storage containing the
2743 packed value. The value returned in this case is never an lval.
2744 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2747 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2748 long offset, int bit_offset, int bit_size,
2752 const gdb_byte *src; /* First byte containing data to unpack */
2754 const int is_scalar = is_scalar_type (type);
2755 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2756 gdb::byte_vector staging;
2758 type = ada_check_typedef (type);
2761 src = valaddr + offset;
2763 src = value_contents (obj).data () + offset;
2765 if (is_dynamic_type (type))
2767 /* The length of TYPE might by dynamic, so we need to resolve
2768 TYPE in order to know its actual size, which we then use
2769 to create the contents buffer of the value we return.
2770 The difficulty is that the data containing our object is
2771 packed, and therefore maybe not at a byte boundary. So, what
2772 we do, is unpack the data into a byte-aligned buffer, and then
2773 use that buffer as our object's value for resolving the type. */
2774 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2775 staging.resize (staging_len);
2777 ada_unpack_from_contents (src, bit_offset, bit_size,
2778 staging.data (), staging.size (),
2779 is_big_endian, has_negatives (type),
2781 type = resolve_dynamic_type (type, staging, 0);
2782 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2784 /* This happens when the length of the object is dynamic,
2785 and is actually smaller than the space reserved for it.
2786 For instance, in an array of variant records, the bit_size
2787 we're given is the array stride, which is constant and
2788 normally equal to the maximum size of its element.
2789 But, in reality, each element only actually spans a portion
2791 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2797 v = allocate_value (type);
2798 src = valaddr + offset;
2800 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2802 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2805 v = value_at (type, value_address (obj) + offset);
2806 buf = (gdb_byte *) alloca (src_len);
2807 read_memory (value_address (v), buf, src_len);
2812 v = allocate_value (type);
2813 src = value_contents (obj).data () + offset;
2818 long new_offset = offset;
2820 set_value_component_location (v, obj);
2821 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2822 set_value_bitsize (v, bit_size);
2823 if (value_bitpos (v) >= HOST_CHAR_BIT)
2826 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2828 set_value_offset (v, new_offset);
2830 /* Also set the parent value. This is needed when trying to
2831 assign a new value (in inferior memory). */
2832 set_value_parent (v, obj);
2835 set_value_bitsize (v, bit_size);
2836 unpacked = value_contents_writeable (v).data ();
2840 memset (unpacked, 0, TYPE_LENGTH (type));
2844 if (staging.size () == TYPE_LENGTH (type))
2846 /* Small short-cut: If we've unpacked the data into a buffer
2847 of the same size as TYPE's length, then we can reuse that,
2848 instead of doing the unpacking again. */
2849 memcpy (unpacked, staging.data (), staging.size ());
2852 ada_unpack_from_contents (src, bit_offset, bit_size,
2853 unpacked, TYPE_LENGTH (type),
2854 is_big_endian, has_negatives (type), is_scalar);
2859 /* Store the contents of FROMVAL into the location of TOVAL.
2860 Return a new value with the location of TOVAL and contents of
2861 FROMVAL. Handles assignment into packed fields that have
2862 floating-point or non-scalar types. */
2864 static struct value *
2865 ada_value_assign (struct value *toval, struct value *fromval)
2867 struct type *type = value_type (toval);
2868 int bits = value_bitsize (toval);
2870 toval = ada_coerce_ref (toval);
2871 fromval = ada_coerce_ref (fromval);
2873 if (ada_is_direct_array_type (value_type (toval)))
2874 toval = ada_coerce_to_simple_array (toval);
2875 if (ada_is_direct_array_type (value_type (fromval)))
2876 fromval = ada_coerce_to_simple_array (fromval);
2878 if (!deprecated_value_modifiable (toval))
2879 error (_("Left operand of assignment is not a modifiable lvalue."));
2881 if (VALUE_LVAL (toval) == lval_memory
2883 && (type->code () == TYPE_CODE_FLT
2884 || type->code () == TYPE_CODE_STRUCT))
2886 int len = (value_bitpos (toval)
2887 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2889 gdb_byte *buffer = (gdb_byte *) alloca (len);
2891 CORE_ADDR to_addr = value_address (toval);
2893 if (type->code () == TYPE_CODE_FLT)
2894 fromval = value_cast (type, fromval);
2896 read_memory (to_addr, buffer, len);
2897 from_size = value_bitsize (fromval);
2899 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2901 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2902 ULONGEST from_offset = 0;
2903 if (is_big_endian && is_scalar_type (value_type (fromval)))
2904 from_offset = from_size - bits;
2905 copy_bitwise (buffer, value_bitpos (toval),
2906 value_contents (fromval).data (), from_offset,
2907 bits, is_big_endian);
2908 write_memory_with_notification (to_addr, buffer, len);
2910 val = value_copy (toval);
2911 memcpy (value_contents_raw (val).data (),
2912 value_contents (fromval).data (),
2913 TYPE_LENGTH (type));
2914 deprecated_set_value_type (val, type);
2919 return value_assign (toval, fromval);
2923 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2924 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2925 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2926 COMPONENT, and not the inferior's memory. The current contents
2927 of COMPONENT are ignored.
2929 Although not part of the initial design, this function also works
2930 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2931 had a null address, and COMPONENT had an address which is equal to
2932 its offset inside CONTAINER. */
2935 value_assign_to_component (struct value *container, struct value *component,
2938 LONGEST offset_in_container =
2939 (LONGEST) (value_address (component) - value_address (container));
2940 int bit_offset_in_container =
2941 value_bitpos (component) - value_bitpos (container);
2944 val = value_cast (value_type (component), val);
2946 if (value_bitsize (component) == 0)
2947 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2949 bits = value_bitsize (component);
2951 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2955 if (is_scalar_type (check_typedef (value_type (component))))
2957 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2960 copy_bitwise ((value_contents_writeable (container).data ()
2961 + offset_in_container),
2962 value_bitpos (container) + bit_offset_in_container,
2963 value_contents (val).data (), src_offset, bits, 1);
2966 copy_bitwise ((value_contents_writeable (container).data ()
2967 + offset_in_container),
2968 value_bitpos (container) + bit_offset_in_container,
2969 value_contents (val).data (), 0, bits, 0);
2972 /* Determine if TYPE is an access to an unconstrained array. */
2975 ada_is_access_to_unconstrained_array (struct type *type)
2977 return (type->code () == TYPE_CODE_TYPEDEF
2978 && is_thick_pntr (ada_typedef_target_type (type)));
2981 /* The value of the element of array ARR at the ARITY indices given in IND.
2982 ARR may be either a simple array, GNAT array descriptor, or pointer
2986 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2990 struct type *elt_type;
2992 elt = ada_coerce_to_simple_array (arr);
2994 elt_type = ada_check_typedef (value_type (elt));
2995 if (elt_type->code () == TYPE_CODE_ARRAY
2996 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2997 return value_subscript_packed (elt, arity, ind);
2999 for (k = 0; k < arity; k += 1)
3001 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
3003 if (elt_type->code () != TYPE_CODE_ARRAY)
3004 error (_("too many subscripts (%d expected)"), k);
3006 elt = value_subscript (elt, pos_atr (ind[k]));
3008 if (ada_is_access_to_unconstrained_array (saved_elt_type)
3009 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
3011 /* The element is a typedef to an unconstrained array,
3012 except that the value_subscript call stripped the
3013 typedef layer. The typedef layer is GNAT's way to
3014 specify that the element is, at the source level, an
3015 access to the unconstrained array, rather than the
3016 unconstrained array. So, we need to restore that
3017 typedef layer, which we can do by forcing the element's
3018 type back to its original type. Otherwise, the returned
3019 value is going to be printed as the array, rather
3020 than as an access. Another symptom of the same issue
3021 would be that an expression trying to dereference the
3022 element would also be improperly rejected. */
3023 deprecated_set_value_type (elt, saved_elt_type);
3026 elt_type = ada_check_typedef (value_type (elt));
3032 /* Assuming ARR is a pointer to a GDB array, the value of the element
3033 of *ARR at the ARITY indices given in IND.
3034 Does not read the entire array into memory.
3036 Note: Unlike what one would expect, this function is used instead of
3037 ada_value_subscript for basically all non-packed array types. The reason
3038 for this is that a side effect of doing our own pointer arithmetics instead
3039 of relying on value_subscript is that there is no implicit typedef peeling.
3040 This is important for arrays of array accesses, where it allows us to
3041 preserve the fact that the array's element is an array access, where the
3042 access part os encoded in a typedef layer. */
3044 static struct value *
3045 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
3048 struct value *array_ind = ada_value_ind (arr);
3050 = check_typedef (value_enclosing_type (array_ind));
3052 if (type->code () == TYPE_CODE_ARRAY
3053 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3054 return value_subscript_packed (array_ind, arity, ind);
3056 for (k = 0; k < arity; k += 1)
3060 if (type->code () != TYPE_CODE_ARRAY)
3061 error (_("too many subscripts (%d expected)"), k);
3062 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3064 get_discrete_bounds (type->index_type (), &lwb, &upb);
3065 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
3066 type = TYPE_TARGET_TYPE (type);
3069 return value_ind (arr);
3072 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
3073 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3074 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3075 this array is LOW, as per Ada rules. */
3076 static struct value *
3077 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
3080 struct type *type0 = ada_check_typedef (type);
3081 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
3082 struct type *index_type
3083 = create_static_range_type (NULL, base_index_type, low, high);
3084 struct type *slice_type = create_array_type_with_stride
3085 (NULL, TYPE_TARGET_TYPE (type0), index_type,
3086 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
3087 TYPE_FIELD_BITSIZE (type0, 0));
3088 int base_low = ada_discrete_type_low_bound (type0->index_type ());
3089 gdb::optional<LONGEST> base_low_pos, low_pos;
3092 low_pos = discrete_position (base_index_type, low);
3093 base_low_pos = discrete_position (base_index_type, base_low);
3095 if (!low_pos.has_value () || !base_low_pos.has_value ())
3097 warning (_("unable to get positions in slice, use bounds instead"));
3099 base_low_pos = base_low;
3102 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3104 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
3106 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
3107 return value_at_lazy (slice_type, base);
3111 static struct value *
3112 ada_value_slice (struct value *array, int low, int high)
3114 struct type *type = ada_check_typedef (value_type (array));
3115 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
3116 struct type *index_type
3117 = create_static_range_type (NULL, type->index_type (), low, high);
3118 struct type *slice_type = create_array_type_with_stride
3119 (NULL, TYPE_TARGET_TYPE (type), index_type,
3120 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
3121 TYPE_FIELD_BITSIZE (type, 0));
3122 gdb::optional<LONGEST> low_pos, high_pos;
3125 low_pos = discrete_position (base_index_type, low);
3126 high_pos = discrete_position (base_index_type, high);
3128 if (!low_pos.has_value () || !high_pos.has_value ())
3130 warning (_("unable to get positions in slice, use bounds instead"));
3135 return value_cast (slice_type,
3136 value_slice (array, low, *high_pos - *low_pos + 1));
3139 /* If type is a record type in the form of a standard GNAT array
3140 descriptor, returns the number of dimensions for type. If arr is a
3141 simple array, returns the number of "array of"s that prefix its
3142 type designation. Otherwise, returns 0. */
3145 ada_array_arity (struct type *type)
3152 type = desc_base_type (type);
3155 if (type->code () == TYPE_CODE_STRUCT)
3156 return desc_arity (desc_bounds_type (type));
3158 while (type->code () == TYPE_CODE_ARRAY)
3161 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
3167 /* If TYPE is a record type in the form of a standard GNAT array
3168 descriptor or a simple array type, returns the element type for
3169 TYPE after indexing by NINDICES indices, or by all indices if
3170 NINDICES is -1. Otherwise, returns NULL. */
3173 ada_array_element_type (struct type *type, int nindices)
3175 type = desc_base_type (type);
3177 if (type->code () == TYPE_CODE_STRUCT)
3180 struct type *p_array_type;
3182 p_array_type = desc_data_target_type (type);
3184 k = ada_array_arity (type);
3188 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3189 if (nindices >= 0 && k > nindices)
3191 while (k > 0 && p_array_type != NULL)
3193 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3196 return p_array_type;
3198 else if (type->code () == TYPE_CODE_ARRAY)
3200 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
3202 type = TYPE_TARGET_TYPE (type);
3211 /* See ada-lang.h. */
3214 ada_index_type (struct type *type, int n, const char *name)
3216 struct type *result_type;
3218 type = desc_base_type (type);
3220 if (n < 0 || n > ada_array_arity (type))
3221 error (_("invalid dimension number to '%s"), name);
3223 if (ada_is_simple_array_type (type))
3227 for (i = 1; i < n; i += 1)
3229 type = ada_check_typedef (type);
3230 type = TYPE_TARGET_TYPE (type);
3232 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
3233 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3234 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3235 perhaps stabsread.c would make more sense. */
3236 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
3241 result_type = desc_index_type (desc_bounds_type (type), n);
3242 if (result_type == NULL)
3243 error (_("attempt to take bound of something that is not an array"));
3249 /* Given that arr is an array type, returns the lower bound of the
3250 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3251 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3252 array-descriptor type. It works for other arrays with bounds supplied
3253 by run-time quantities other than discriminants. */
3256 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3258 struct type *type, *index_type_desc, *index_type;
3261 gdb_assert (which == 0 || which == 1);
3263 if (ada_is_constrained_packed_array_type (arr_type))
3264 arr_type = decode_constrained_packed_array_type (arr_type);
3266 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3267 return (LONGEST) - which;
3269 if (arr_type->code () == TYPE_CODE_PTR)
3270 type = TYPE_TARGET_TYPE (arr_type);
3274 if (type->is_fixed_instance ())
3276 /* The array has already been fixed, so we do not need to
3277 check the parallel ___XA type again. That encoding has
3278 already been applied, so ignore it now. */
3279 index_type_desc = NULL;
3283 index_type_desc = ada_find_parallel_type (type, "___XA");
3284 ada_fixup_array_indexes_type (index_type_desc);
3287 if (index_type_desc != NULL)
3288 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3292 struct type *elt_type = check_typedef (type);
3294 for (i = 1; i < n; i++)
3295 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3297 index_type = elt_type->index_type ();
3301 (LONGEST) (which == 0
3302 ? ada_discrete_type_low_bound (index_type)
3303 : ada_discrete_type_high_bound (index_type));
3306 /* Given that arr is an array value, returns the lower bound of the
3307 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3308 WHICH is 1. This routine will also work for arrays with bounds
3309 supplied by run-time quantities other than discriminants. */
3312 ada_array_bound (struct value *arr, int n, int which)
3314 struct type *arr_type;
3316 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3317 arr = value_ind (arr);
3318 arr_type = value_enclosing_type (arr);
3320 if (ada_is_constrained_packed_array_type (arr_type))
3321 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3322 else if (ada_is_simple_array_type (arr_type))
3323 return ada_array_bound_from_type (arr_type, n, which);
3325 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3328 /* Given that arr is an array value, returns the length of the
3329 nth index. This routine will also work for arrays with bounds
3330 supplied by run-time quantities other than discriminants.
3331 Does not work for arrays indexed by enumeration types with representation
3332 clauses at the moment. */
3335 ada_array_length (struct value *arr, int n)
3337 struct type *arr_type, *index_type;
3340 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3341 arr = value_ind (arr);
3342 arr_type = value_enclosing_type (arr);
3344 if (ada_is_constrained_packed_array_type (arr_type))
3345 return ada_array_length (decode_constrained_packed_array (arr), n);
3347 if (ada_is_simple_array_type (arr_type))
3349 low = ada_array_bound_from_type (arr_type, n, 0);
3350 high = ada_array_bound_from_type (arr_type, n, 1);
3354 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3355 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3358 arr_type = check_typedef (arr_type);
3359 index_type = ada_index_type (arr_type, n, "length");
3360 if (index_type != NULL)
3362 struct type *base_type;
3363 if (index_type->code () == TYPE_CODE_RANGE)
3364 base_type = TYPE_TARGET_TYPE (index_type);
3366 base_type = index_type;
3368 low = pos_atr (value_from_longest (base_type, low));
3369 high = pos_atr (value_from_longest (base_type, high));
3371 return high - low + 1;
3374 /* An array whose type is that of ARR_TYPE (an array type), with
3375 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3376 less than LOW, then LOW-1 is used. */
3378 static struct value *
3379 empty_array (struct type *arr_type, int low, int high)
3381 struct type *arr_type0 = ada_check_typedef (arr_type);
3382 struct type *index_type
3383 = create_static_range_type
3384 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3385 high < low ? low - 1 : high);
3386 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3388 return allocate_value (create_array_type (NULL, elt_type, index_type));
3392 /* Name resolution */
3394 /* The "decoded" name for the user-definable Ada operator corresponding
3398 ada_decoded_op_name (enum exp_opcode op)
3402 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3404 if (ada_opname_table[i].op == op)
3405 return ada_opname_table[i].decoded;
3407 error (_("Could not find operator name for opcode"));
3410 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3411 in a listing of choices during disambiguation (see sort_choices, below).
3412 The idea is that overloadings of a subprogram name from the
3413 same package should sort in their source order. We settle for ordering
3414 such symbols by their trailing number (__N or $N). */
3417 encoded_ordered_before (const char *N0, const char *N1)
3421 else if (N0 == NULL)
3427 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3429 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3431 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3432 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3437 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3440 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3442 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3443 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3445 return (strcmp (N0, N1) < 0);
3449 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3453 sort_choices (struct block_symbol syms[], int nsyms)
3457 for (i = 1; i < nsyms; i += 1)
3459 struct block_symbol sym = syms[i];
3462 for (j = i - 1; j >= 0; j -= 1)
3464 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3465 sym.symbol->linkage_name ()))
3467 syms[j + 1] = syms[j];
3473 /* Whether GDB should display formals and return types for functions in the
3474 overloads selection menu. */
3475 static bool print_signatures = true;
3477 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3478 all but functions, the signature is just the name of the symbol. For
3479 functions, this is the name of the function, the list of types for formals
3480 and the return type (if any). */
3483 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3484 const struct type_print_options *flags)
3486 struct type *type = sym->type ();
3488 fprintf_filtered (stream, "%s", sym->print_name ());
3489 if (!print_signatures
3491 || type->code () != TYPE_CODE_FUNC)
3494 if (type->num_fields () > 0)
3498 fprintf_filtered (stream, " (");
3499 for (i = 0; i < type->num_fields (); ++i)
3502 fprintf_filtered (stream, "; ");
3503 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3506 fprintf_filtered (stream, ")");
3508 if (TYPE_TARGET_TYPE (type) != NULL
3509 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3511 fprintf_filtered (stream, " return ");
3512 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3516 /* Read and validate a set of numeric choices from the user in the
3517 range 0 .. N_CHOICES-1. Place the results in increasing
3518 order in CHOICES[0 .. N-1], and return N.
3520 The user types choices as a sequence of numbers on one line
3521 separated by blanks, encoding them as follows:
3523 + A choice of 0 means to cancel the selection, throwing an error.
3524 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3525 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3527 The user is not allowed to choose more than MAX_RESULTS values.
3529 ANNOTATION_SUFFIX, if present, is used to annotate the input
3530 prompts (for use with the -f switch). */
3533 get_selections (int *choices, int n_choices, int max_results,
3534 int is_all_choice, const char *annotation_suffix)
3539 int first_choice = is_all_choice ? 2 : 1;
3541 prompt = getenv ("PS2");
3545 args = command_line_input (prompt, annotation_suffix);
3548 error_no_arg (_("one or more choice numbers"));
3552 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3553 order, as given in args. Choices are validated. */
3559 args = skip_spaces (args);
3560 if (*args == '\0' && n_chosen == 0)
3561 error_no_arg (_("one or more choice numbers"));
3562 else if (*args == '\0')
3565 choice = strtol (args, &args2, 10);
3566 if (args == args2 || choice < 0
3567 || choice > n_choices + first_choice - 1)
3568 error (_("Argument must be choice number"));
3572 error (_("cancelled"));
3574 if (choice < first_choice)
3576 n_chosen = n_choices;
3577 for (j = 0; j < n_choices; j += 1)
3581 choice -= first_choice;
3583 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3587 if (j < 0 || choice != choices[j])
3591 for (k = n_chosen - 1; k > j; k -= 1)
3592 choices[k + 1] = choices[k];
3593 choices[j + 1] = choice;
3598 if (n_chosen > max_results)
3599 error (_("Select no more than %d of the above"), max_results);
3604 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3605 by asking the user (if necessary), returning the number selected,
3606 and setting the first elements of SYMS items. Error if no symbols
3609 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3610 to be re-integrated one of these days. */
3613 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3616 int *chosen = XALLOCAVEC (int , nsyms);
3618 int first_choice = (max_results == 1) ? 1 : 2;
3619 const char *select_mode = multiple_symbols_select_mode ();
3621 if (max_results < 1)
3622 error (_("Request to select 0 symbols!"));
3626 if (select_mode == multiple_symbols_cancel)
3628 canceled because the command is ambiguous\n\
3629 See set/show multiple-symbol."));
3631 /* If select_mode is "all", then return all possible symbols.
3632 Only do that if more than one symbol can be selected, of course.
3633 Otherwise, display the menu as usual. */
3634 if (select_mode == multiple_symbols_all && max_results > 1)
3637 printf_filtered (_("[0] cancel\n"));
3638 if (max_results > 1)
3639 printf_filtered (_("[1] all\n"));
3641 sort_choices (syms, nsyms);
3643 for (i = 0; i < nsyms; i += 1)
3645 if (syms[i].symbol == NULL)
3648 if (syms[i].symbol->aclass () == LOC_BLOCK)
3650 struct symtab_and_line sal =
3651 find_function_start_sal (syms[i].symbol, 1);
3653 printf_filtered ("[%d] ", i + first_choice);
3654 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3655 &type_print_raw_options);
3656 if (sal.symtab == NULL)
3657 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3658 metadata_style.style ().ptr (), nullptr, sal.line);
3662 styled_string (file_name_style.style (),
3663 symtab_to_filename_for_display (sal.symtab)),
3670 (syms[i].symbol->aclass () == LOC_CONST
3671 && syms[i].symbol->type () != NULL
3672 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
3673 struct symtab *symtab = NULL;
3675 if (syms[i].symbol->is_objfile_owned ())
3676 symtab = symbol_symtab (syms[i].symbol);
3678 if (syms[i].symbol->line () != 0 && symtab != NULL)
3680 printf_filtered ("[%d] ", i + first_choice);
3681 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3682 &type_print_raw_options);
3683 printf_filtered (_(" at %s:%d\n"),
3684 symtab_to_filename_for_display (symtab),
3685 syms[i].symbol->line ());
3687 else if (is_enumeral
3688 && syms[i].symbol->type ()->name () != NULL)
3690 printf_filtered (("[%d] "), i + first_choice);
3691 ada_print_type (syms[i].symbol->type (), NULL,
3692 gdb_stdout, -1, 0, &type_print_raw_options);
3693 printf_filtered (_("'(%s) (enumeral)\n"),
3694 syms[i].symbol->print_name ());
3698 printf_filtered ("[%d] ", i + first_choice);
3699 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3700 &type_print_raw_options);
3703 printf_filtered (is_enumeral
3704 ? _(" in %s (enumeral)\n")
3706 symtab_to_filename_for_display (symtab));
3708 printf_filtered (is_enumeral
3709 ? _(" (enumeral)\n")
3715 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3718 for (i = 0; i < n_chosen; i += 1)
3719 syms[i] = syms[chosen[i]];
3724 /* See ada-lang.h. */
3727 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3728 int nargs, value *argvec[])
3730 if (possible_user_operator_p (op, argvec))
3732 std::vector<struct block_symbol> candidates
3733 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3736 int i = ada_resolve_function (candidates, argvec,
3737 nargs, ada_decoded_op_name (op), NULL,
3740 return candidates[i];
3745 /* See ada-lang.h. */
3748 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3749 struct type *context_type,
3750 bool parse_completion,
3751 int nargs, value *argvec[],
3752 innermost_block_tracker *tracker)
3754 std::vector<struct block_symbol> candidates
3755 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3758 if (candidates.size () == 1)
3762 i = ada_resolve_function
3765 sym->linkage_name (),
3766 context_type, parse_completion);
3768 error (_("Could not find a match for %s"), sym->print_name ());
3771 tracker->update (candidates[i]);
3772 return candidates[i];
3775 /* Resolve a mention of a name where the context type is an
3776 enumeration type. */
3779 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3780 const char *name, struct type *context_type,
3781 bool parse_completion)
3783 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3784 context_type = ada_check_typedef (context_type);
3786 for (int i = 0; i < syms.size (); ++i)
3788 /* We already know the name matches, so we're just looking for
3789 an element of the correct enum type. */
3790 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
3794 error (_("No name '%s' in enumeration type '%s'"), name,
3795 ada_type_name (context_type));
3798 /* See ada-lang.h. */
3801 ada_resolve_variable (struct symbol *sym, const struct block *block,
3802 struct type *context_type,
3803 bool parse_completion,
3805 innermost_block_tracker *tracker)
3807 std::vector<struct block_symbol> candidates
3808 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3810 if (std::any_of (candidates.begin (),
3812 [] (block_symbol &bsym)
3814 switch (bsym.symbol->aclass ())
3819 case LOC_REGPARM_ADDR:
3828 /* Types tend to get re-introduced locally, so if there
3829 are any local symbols that are not types, first filter
3833 (candidates.begin (),
3835 [] (block_symbol &bsym)
3837 return bsym.symbol->aclass () == LOC_TYPEDEF;
3842 /* Filter out artificial symbols. */
3845 (candidates.begin (),
3847 [] (block_symbol &bsym)
3849 return bsym.symbol->artificial;
3854 if (candidates.empty ())
3855 error (_("No definition found for %s"), sym->print_name ());
3856 else if (candidates.size () == 1)
3858 else if (context_type != nullptr
3859 && context_type->code () == TYPE_CODE_ENUM)
3860 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3862 else if (deprocedure_p && !is_nonfunction (candidates))
3864 i = ada_resolve_function
3865 (candidates, NULL, 0,
3866 sym->linkage_name (),
3867 context_type, parse_completion);
3869 error (_("Could not find a match for %s"), sym->print_name ());
3873 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3874 user_select_syms (candidates.data (), candidates.size (), 1);
3878 tracker->update (candidates[i]);
3879 return candidates[i];
3882 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3883 /* The term "match" here is rather loose. The match is heuristic and
3887 ada_type_match (struct type *ftype, struct type *atype)
3889 ftype = ada_check_typedef (ftype);
3890 atype = ada_check_typedef (atype);
3892 if (ftype->code () == TYPE_CODE_REF)
3893 ftype = TYPE_TARGET_TYPE (ftype);
3894 if (atype->code () == TYPE_CODE_REF)
3895 atype = TYPE_TARGET_TYPE (atype);
3897 switch (ftype->code ())
3900 return ftype->code () == atype->code ();
3902 if (atype->code () != TYPE_CODE_PTR)
3904 atype = TYPE_TARGET_TYPE (atype);
3905 /* This can only happen if the actual argument is 'null'. */
3906 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3908 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3910 case TYPE_CODE_ENUM:
3911 case TYPE_CODE_RANGE:
3912 switch (atype->code ())
3915 case TYPE_CODE_ENUM:
3916 case TYPE_CODE_RANGE:
3922 case TYPE_CODE_ARRAY:
3923 return (atype->code () == TYPE_CODE_ARRAY
3924 || ada_is_array_descriptor_type (atype));
3926 case TYPE_CODE_STRUCT:
3927 if (ada_is_array_descriptor_type (ftype))
3928 return (atype->code () == TYPE_CODE_ARRAY
3929 || ada_is_array_descriptor_type (atype));
3931 return (atype->code () == TYPE_CODE_STRUCT
3932 && !ada_is_array_descriptor_type (atype));
3934 case TYPE_CODE_UNION:
3936 return (atype->code () == ftype->code ());
3940 /* Return non-zero if the formals of FUNC "sufficiently match" the
3941 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3942 may also be an enumeral, in which case it is treated as a 0-
3943 argument function. */
3946 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3949 struct type *func_type = func->type ();
3951 if (func->aclass () == LOC_CONST
3952 && func_type->code () == TYPE_CODE_ENUM)
3953 return (n_actuals == 0);
3954 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3957 if (func_type->num_fields () != n_actuals)
3960 for (i = 0; i < n_actuals; i += 1)
3962 if (actuals[i] == NULL)
3966 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3967 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3969 if (!ada_type_match (ftype, atype))
3976 /* False iff function type FUNC_TYPE definitely does not produce a value
3977 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3978 FUNC_TYPE is not a valid function type with a non-null return type
3979 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3982 return_match (struct type *func_type, struct type *context_type)
3984 struct type *return_type;
3986 if (func_type == NULL)
3989 if (func_type->code () == TYPE_CODE_FUNC)
3990 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3992 return_type = get_base_type (func_type);
3993 if (return_type == NULL)
3996 context_type = get_base_type (context_type);
3998 if (return_type->code () == TYPE_CODE_ENUM)
3999 return context_type == NULL || return_type == context_type;
4000 else if (context_type == NULL)
4001 return return_type->code () != TYPE_CODE_VOID;
4003 return return_type->code () == context_type->code ();
4007 /* Returns the index in SYMS that contains the symbol for the
4008 function (if any) that matches the types of the NARGS arguments in
4009 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4010 that returns that type, then eliminate matches that don't. If
4011 CONTEXT_TYPE is void and there is at least one match that does not
4012 return void, eliminate all matches that do.
4014 Asks the user if there is more than one match remaining. Returns -1
4015 if there is no such symbol or none is selected. NAME is used
4016 solely for messages. May re-arrange and modify SYMS in
4017 the process; the index returned is for the modified vector. */
4020 ada_resolve_function (std::vector<struct block_symbol> &syms,
4021 struct value **args, int nargs,
4022 const char *name, struct type *context_type,
4023 bool parse_completion)
4027 int m; /* Number of hits */
4030 /* In the first pass of the loop, we only accept functions matching
4031 context_type. If none are found, we add a second pass of the loop
4032 where every function is accepted. */
4033 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4035 for (k = 0; k < syms.size (); k += 1)
4037 struct type *type = ada_check_typedef (syms[k].symbol->type ());
4039 if (ada_args_match (syms[k].symbol, args, nargs)
4040 && (fallback || return_match (type, context_type)))
4048 /* If we got multiple matches, ask the user which one to use. Don't do this
4049 interactive thing during completion, though, as the purpose of the
4050 completion is providing a list of all possible matches. Prompting the
4051 user to filter it down would be completely unexpected in this case. */
4054 else if (m > 1 && !parse_completion)
4056 printf_filtered (_("Multiple matches for %s\n"), name);
4057 user_select_syms (syms.data (), m, 1);
4063 /* Type-class predicates */
4065 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4069 numeric_type_p (struct type *type)
4075 switch (type->code ())
4079 case TYPE_CODE_FIXED_POINT:
4081 case TYPE_CODE_RANGE:
4082 return (type == TYPE_TARGET_TYPE (type)
4083 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4090 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4093 integer_type_p (struct type *type)
4099 switch (type->code ())
4103 case TYPE_CODE_RANGE:
4104 return (type == TYPE_TARGET_TYPE (type)
4105 || integer_type_p (TYPE_TARGET_TYPE (type)));
4112 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4115 scalar_type_p (struct type *type)
4121 switch (type->code ())
4124 case TYPE_CODE_RANGE:
4125 case TYPE_CODE_ENUM:
4127 case TYPE_CODE_FIXED_POINT:
4135 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4138 discrete_type_p (struct type *type)
4144 switch (type->code ())
4147 case TYPE_CODE_RANGE:
4148 case TYPE_CODE_ENUM:
4149 case TYPE_CODE_BOOL:
4157 /* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
4162 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4164 struct type *type0 =
4165 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4166 struct type *type1 =
4167 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4181 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4185 case BINOP_BITWISE_AND:
4186 case BINOP_BITWISE_IOR:
4187 case BINOP_BITWISE_XOR:
4188 return (!(integer_type_p (type0) && integer_type_p (type1)));
4191 case BINOP_NOTEQUAL:
4196 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4199 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4202 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4206 case UNOP_LOGICAL_NOT:
4208 return (!numeric_type_p (type0));
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4227 /* If SYM encodes a renaming,
4229 <renaming> renames <renamed entity>,
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4246 enum ada_renaming_category
4247 ada_parse_renaming (struct symbol *sym,
4248 const char **renamed_entity, int *len,
4249 const char **renaming_expr)
4251 enum ada_renaming_category kind;
4256 return ADA_NOT_RENAMING;
4257 switch (sym->aclass ())
4260 return ADA_NOT_RENAMING;
4264 case LOC_OPTIMIZED_OUT:
4265 info = strstr (sym->linkage_name (), "___XR");
4267 return ADA_NOT_RENAMING;
4271 kind = ADA_OBJECT_RENAMING;
4275 kind = ADA_EXCEPTION_RENAMING;
4279 kind = ADA_PACKAGE_RENAMING;
4283 kind = ADA_SUBPROGRAM_RENAMING;
4287 return ADA_NOT_RENAMING;
4291 if (renamed_entity != NULL)
4292 *renamed_entity = info;
4293 suffix = strstr (info, "___XE");
4294 if (suffix == NULL || suffix == info)
4295 return ADA_NOT_RENAMING;
4297 *len = strlen (info) - strlen (suffix);
4299 if (renaming_expr != NULL)
4300 *renaming_expr = suffix;
4304 /* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4308 static struct value *
4309 ada_read_renaming_var_value (struct symbol *renaming_sym,
4310 const struct block *block)
4312 const char *sym_name;
4314 sym_name = renaming_sym->linkage_name ();
4315 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4316 return evaluate_expression (expr.get ());
4320 /* Evaluation: Function Calls */
4322 /* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4326 static struct value *
4327 ensure_lval (struct value *val)
4329 if (VALUE_LVAL (val) == not_lval
4330 || VALUE_LVAL (val) == lval_internalvar)
4332 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4333 const CORE_ADDR addr =
4334 value_as_long (value_allocate_space_in_inferior (len));
4336 VALUE_LVAL (val) = lval_memory;
4337 set_value_address (val, addr);
4338 write_memory (addr, value_contents (val).data (), len);
4344 /* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4353 If NO_ERR, then simply return NULL in case of error, rather than
4356 static struct value *
4357 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4359 struct type *t, *t1;
4364 t1 = t = ada_check_typedef (value_type (arg));
4365 if (t->code () == TYPE_CODE_REF)
4367 t1 = TYPE_TARGET_TYPE (t);
4370 t1 = ada_check_typedef (t1);
4371 if (t1->code () == TYPE_CODE_PTR)
4373 arg = coerce_ref (arg);
4378 while (t->code () == TYPE_CODE_PTR)
4380 t1 = TYPE_TARGET_TYPE (t);
4383 t1 = ada_check_typedef (t1);
4384 if (t1->code () == TYPE_CODE_PTR)
4386 arg = value_ind (arg);
4393 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4397 v = ada_search_struct_field (name, arg, 0, t);
4400 int bit_offset, bit_size, byte_offset;
4401 struct type *field_type;
4404 if (t->code () == TYPE_CODE_PTR)
4405 address = value_address (ada_value_ind (arg));
4407 address = value_address (ada_coerce_ref (arg));
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
4415 if (ada_is_tagged_type (t1, 0)
4416 || (t1->code () == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
4422 if (!find_struct_field (name, t1, 0,
4423 nullptr, nullptr, nullptr,
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4435 address, NULL, check_tag);
4437 /* Resolve the dynamic type as well. */
4438 arg = value_from_contents_and_address (t1, nullptr, address);
4439 t1 = value_type (arg);
4441 if (find_struct_field (name, t1, 0,
4442 &field_type, &byte_offset, &bit_offset,
4447 if (t->code () == TYPE_CODE_REF)
4448 arg = ada_coerce_ref (arg);
4450 arg = ada_value_ind (arg);
4451 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4452 bit_offset, bit_size,
4456 v = value_at_lazy (field_type, address + byte_offset);
4460 if (v != NULL || no_err)
4463 error (_("There is no member named %s."), name);
4469 error (_("Attempt to extract a component of "
4470 "a value that is not a record."));
4473 /* Return the value ACTUAL, converted to be an appropriate value for a
4474 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4475 allocating any necessary descriptors (fat pointers), or copies of
4476 values not residing in memory, updating it as needed. */
4479 ada_convert_actual (struct value *actual, struct type *formal_type0)
4481 struct type *actual_type = ada_check_typedef (value_type (actual));
4482 struct type *formal_type = ada_check_typedef (formal_type0);
4483 struct type *formal_target =
4484 formal_type->code () == TYPE_CODE_PTR
4485 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4486 struct type *actual_target =
4487 actual_type->code () == TYPE_CODE_PTR
4488 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4490 if (ada_is_array_descriptor_type (formal_target)
4491 && actual_target->code () == TYPE_CODE_ARRAY)
4492 return make_array_descriptor (formal_type, actual);
4493 else if (formal_type->code () == TYPE_CODE_PTR
4494 || formal_type->code () == TYPE_CODE_REF)
4496 struct value *result;
4498 if (formal_target->code () == TYPE_CODE_ARRAY
4499 && ada_is_array_descriptor_type (actual_target))
4500 result = desc_data (actual);
4501 else if (formal_type->code () != TYPE_CODE_PTR)
4503 if (VALUE_LVAL (actual) != lval_memory)
4507 actual_type = ada_check_typedef (value_type (actual));
4508 val = allocate_value (actual_type);
4509 copy (value_contents (actual), value_contents_raw (val));
4510 actual = ensure_lval (val);
4512 result = value_addr (actual);
4516 return value_cast_pointers (formal_type, result, 0);
4518 else if (actual_type->code () == TYPE_CODE_PTR)
4519 return ada_value_ind (actual);
4520 else if (ada_is_aligner_type (formal_type))
4522 /* We need to turn this parameter into an aligner type
4524 struct value *aligner = allocate_value (formal_type);
4525 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4527 value_assign_to_component (aligner, component, actual);
4534 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4535 type TYPE. This is usually an inefficient no-op except on some targets
4536 (such as AVR) where the representation of a pointer and an address
4540 value_pointer (struct value *value, struct type *type)
4542 unsigned len = TYPE_LENGTH (type);
4543 gdb_byte *buf = (gdb_byte *) alloca (len);
4546 addr = value_address (value);
4547 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4548 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4553 /* Push a descriptor of type TYPE for array value ARR on the stack at
4554 *SP, updating *SP to reflect the new descriptor. Return either
4555 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4556 to-descriptor type rather than a descriptor type), a struct value *
4557 representing a pointer to this descriptor. */
4559 static struct value *
4560 make_array_descriptor (struct type *type, struct value *arr)
4562 struct type *bounds_type = desc_bounds_type (type);
4563 struct type *desc_type = desc_base_type (type);
4564 struct value *descriptor = allocate_value (desc_type);
4565 struct value *bounds = allocate_value (bounds_type);
4568 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4571 modify_field (value_type (bounds),
4572 value_contents_writeable (bounds).data (),
4573 ada_array_bound (arr, i, 0),
4574 desc_bound_bitpos (bounds_type, i, 0),
4575 desc_bound_bitsize (bounds_type, i, 0));
4576 modify_field (value_type (bounds),
4577 value_contents_writeable (bounds).data (),
4578 ada_array_bound (arr, i, 1),
4579 desc_bound_bitpos (bounds_type, i, 1),
4580 desc_bound_bitsize (bounds_type, i, 1));
4583 bounds = ensure_lval (bounds);
4585 modify_field (value_type (descriptor),
4586 value_contents_writeable (descriptor).data (),
4587 value_pointer (ensure_lval (arr),
4588 desc_type->field (0).type ()),
4589 fat_pntr_data_bitpos (desc_type),
4590 fat_pntr_data_bitsize (desc_type));
4592 modify_field (value_type (descriptor),
4593 value_contents_writeable (descriptor).data (),
4594 value_pointer (bounds,
4595 desc_type->field (1).type ()),
4596 fat_pntr_bounds_bitpos (desc_type),
4597 fat_pntr_bounds_bitsize (desc_type));
4599 descriptor = ensure_lval (descriptor);
4601 if (type->code () == TYPE_CODE_PTR)
4602 return value_addr (descriptor);
4607 /* Symbol Cache Module */
4609 /* Performance measurements made as of 2010-01-15 indicate that
4610 this cache does bring some noticeable improvements. Depending
4611 on the type of entity being printed, the cache can make it as much
4612 as an order of magnitude faster than without it.
4614 The descriptive type DWARF extension has significantly reduced
4615 the need for this cache, at least when DWARF is being used. However,
4616 even in this case, some expensive name-based symbol searches are still
4617 sometimes necessary - to find an XVZ variable, mostly. */
4619 /* Return the symbol cache associated to the given program space PSPACE.
4620 If not allocated for this PSPACE yet, allocate and initialize one. */
4622 static struct ada_symbol_cache *
4623 ada_get_symbol_cache (struct program_space *pspace)
4625 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4627 if (pspace_data->sym_cache == nullptr)
4628 pspace_data->sym_cache.reset (new ada_symbol_cache);
4630 return pspace_data->sym_cache.get ();
4633 /* Clear all entries from the symbol cache. */
4636 ada_clear_symbol_cache ()
4638 struct ada_pspace_data *pspace_data
4639 = get_ada_pspace_data (current_program_space);
4641 if (pspace_data->sym_cache != nullptr)
4642 pspace_data->sym_cache.reset ();
4645 /* Search our cache for an entry matching NAME and DOMAIN.
4646 Return it if found, or NULL otherwise. */
4648 static struct cache_entry **
4649 find_entry (const char *name, domain_enum domain)
4651 struct ada_symbol_cache *sym_cache
4652 = ada_get_symbol_cache (current_program_space);
4653 int h = msymbol_hash (name) % HASH_SIZE;
4654 struct cache_entry **e;
4656 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4658 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4664 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4665 Return 1 if found, 0 otherwise.
4667 If an entry was found and SYM is not NULL, set *SYM to the entry's
4668 SYM. Same principle for BLOCK if not NULL. */
4671 lookup_cached_symbol (const char *name, domain_enum domain,
4672 struct symbol **sym, const struct block **block)
4674 struct cache_entry **e = find_entry (name, domain);
4681 *block = (*e)->block;
4685 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4686 in domain DOMAIN, save this result in our symbol cache. */
4689 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4690 const struct block *block)
4692 struct ada_symbol_cache *sym_cache
4693 = ada_get_symbol_cache (current_program_space);
4695 struct cache_entry *e;
4697 /* Symbols for builtin types don't have a block.
4698 For now don't cache such symbols. */
4699 if (sym != NULL && !sym->is_objfile_owned ())
4702 /* If the symbol is a local symbol, then do not cache it, as a search
4703 for that symbol depends on the context. To determine whether
4704 the symbol is local or not, we check the block where we found it
4705 against the global and static blocks of its associated symtab. */
4707 && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (),
4708 GLOBAL_BLOCK) != block
4709 && BLOCKVECTOR_BLOCK (symbol_symtab (sym)->blockvector (),
4710 STATIC_BLOCK) != block)
4713 h = msymbol_hash (name) % HASH_SIZE;
4714 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4715 e->next = sym_cache->root[h];
4716 sym_cache->root[h] = e;
4717 e->name = obstack_strdup (&sym_cache->cache_space, name);
4725 /* Return the symbol name match type that should be used used when
4726 searching for all symbols matching LOOKUP_NAME.
4728 LOOKUP_NAME is expected to be a symbol name after transformation
4731 static symbol_name_match_type
4732 name_match_type_from_name (const char *lookup_name)
4734 return (strstr (lookup_name, "__") == NULL
4735 ? symbol_name_match_type::WILD
4736 : symbol_name_match_type::FULL);
4739 /* Return the result of a standard (literal, C-like) lookup of NAME in
4740 given DOMAIN, visible from lexical block BLOCK. */
4742 static struct symbol *
4743 standard_lookup (const char *name, const struct block *block,
4746 /* Initialize it just to avoid a GCC false warning. */
4747 struct block_symbol sym = {};
4749 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4751 ada_lookup_encoded_symbol (name, block, domain, &sym);
4752 cache_symbol (name, domain, sym.symbol, sym.block);
4757 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4758 in the symbol fields of SYMS. We treat enumerals as functions,
4759 since they contend in overloading in the same way. */
4761 is_nonfunction (const std::vector<struct block_symbol> &syms)
4763 for (const block_symbol &sym : syms)
4764 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4765 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
4766 || sym.symbol->aclass () != LOC_CONST))
4772 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4773 struct types. Otherwise, they may not. */
4776 equiv_types (struct type *type0, struct type *type1)
4780 if (type0 == NULL || type1 == NULL
4781 || type0->code () != type1->code ())
4783 if ((type0->code () == TYPE_CODE_STRUCT
4784 || type0->code () == TYPE_CODE_ENUM)
4785 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4786 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4792 /* True iff SYM0 represents the same entity as SYM1, or one that is
4793 no more defined than that of SYM1. */
4796 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4800 if (sym0->domain () != sym1->domain ()
4801 || sym0->aclass () != sym1->aclass ())
4804 switch (sym0->aclass ())
4810 struct type *type0 = sym0->type ();
4811 struct type *type1 = sym1->type ();
4812 const char *name0 = sym0->linkage_name ();
4813 const char *name1 = sym1->linkage_name ();
4814 int len0 = strlen (name0);
4817 type0->code () == type1->code ()
4818 && (equiv_types (type0, type1)
4819 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4820 && startswith (name1 + len0, "___XV")));
4823 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4824 && equiv_types (sym0->type (), sym1->type ());
4828 const char *name0 = sym0->linkage_name ();
4829 const char *name1 = sym1->linkage_name ();
4830 return (strcmp (name0, name1) == 0
4831 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4839 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4840 records in RESULT. Do nothing if SYM is a duplicate. */
4843 add_defn_to_vec (std::vector<struct block_symbol> &result,
4845 const struct block *block)
4847 /* Do not try to complete stub types, as the debugger is probably
4848 already scanning all symbols matching a certain name at the
4849 time when this function is called. Trying to replace the stub
4850 type by its associated full type will cause us to restart a scan
4851 which may lead to an infinite recursion. Instead, the client
4852 collecting the matching symbols will end up collecting several
4853 matches, with at least one of them complete. It can then filter
4854 out the stub ones if needed. */
4856 for (int i = result.size () - 1; i >= 0; i -= 1)
4858 if (lesseq_defined_than (sym, result[i].symbol))
4860 else if (lesseq_defined_than (result[i].symbol, sym))
4862 result[i].symbol = sym;
4863 result[i].block = block;
4868 struct block_symbol info;
4871 result.push_back (info);
4874 /* Return a bound minimal symbol matching NAME according to Ada
4875 decoding rules. Returns an invalid symbol if there is no such
4876 minimal symbol. Names prefixed with "standard__" are handled
4877 specially: "standard__" is first stripped off, and only static and
4878 global symbols are searched. */
4880 struct bound_minimal_symbol
4881 ada_lookup_simple_minsym (const char *name)
4883 struct bound_minimal_symbol result;
4885 symbol_name_match_type match_type = name_match_type_from_name (name);
4886 lookup_name_info lookup_name (name, match_type);
4888 symbol_name_matcher_ftype *match_name
4889 = ada_get_symbol_name_matcher (lookup_name);
4891 for (objfile *objfile : current_program_space->objfiles ())
4893 for (minimal_symbol *msymbol : objfile->msymbols ())
4895 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4896 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4898 result.minsym = msymbol;
4899 result.objfile = objfile;
4908 /* True if TYPE is definitely an artificial type supplied to a symbol
4909 for which no debugging information was given in the symbol file. */
4912 is_nondebugging_type (struct type *type)
4914 const char *name = ada_type_name (type);
4916 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4919 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4920 that are deemed "identical" for practical purposes.
4922 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4923 types and that their number of enumerals is identical (in other
4924 words, type1->num_fields () == type2->num_fields ()). */
4927 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4931 /* The heuristic we use here is fairly conservative. We consider
4932 that 2 enumerate types are identical if they have the same
4933 number of enumerals and that all enumerals have the same
4934 underlying value and name. */
4936 /* All enums in the type should have an identical underlying value. */
4937 for (i = 0; i < type1->num_fields (); i++)
4938 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4941 /* All enumerals should also have the same name (modulo any numerical
4943 for (i = 0; i < type1->num_fields (); i++)
4945 const char *name_1 = type1->field (i).name ();
4946 const char *name_2 = type2->field (i).name ();
4947 int len_1 = strlen (name_1);
4948 int len_2 = strlen (name_2);
4950 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4951 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4953 || strncmp (type1->field (i).name (),
4954 type2->field (i).name (),
4962 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4963 that are deemed "identical" for practical purposes. Sometimes,
4964 enumerals are not strictly identical, but their types are so similar
4965 that they can be considered identical.
4967 For instance, consider the following code:
4969 type Color is (Black, Red, Green, Blue, White);
4970 type RGB_Color is new Color range Red .. Blue;
4972 Type RGB_Color is a subrange of an implicit type which is a copy
4973 of type Color. If we call that implicit type RGB_ColorB ("B" is
4974 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4975 As a result, when an expression references any of the enumeral
4976 by name (Eg. "print green"), the expression is technically
4977 ambiguous and the user should be asked to disambiguate. But
4978 doing so would only hinder the user, since it wouldn't matter
4979 what choice he makes, the outcome would always be the same.
4980 So, for practical purposes, we consider them as the same. */
4983 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4987 /* Before performing a thorough comparison check of each type,
4988 we perform a series of inexpensive checks. We expect that these
4989 checks will quickly fail in the vast majority of cases, and thus
4990 help prevent the unnecessary use of a more expensive comparison.
4991 Said comparison also expects us to make some of these checks
4992 (see ada_identical_enum_types_p). */
4994 /* Quick check: All symbols should have an enum type. */
4995 for (i = 0; i < syms.size (); i++)
4996 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
4999 /* Quick check: They should all have the same value. */
5000 for (i = 1; i < syms.size (); i++)
5001 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5004 /* Quick check: They should all have the same number of enumerals. */
5005 for (i = 1; i < syms.size (); i++)
5006 if (syms[i].symbol->type ()->num_fields ()
5007 != syms[0].symbol->type ()->num_fields ())
5010 /* All the sanity checks passed, so we might have a set of
5011 identical enumeration types. Perform a more complete
5012 comparison of the type of each symbol. */
5013 for (i = 1; i < syms.size (); i++)
5014 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5015 syms[0].symbol->type ()))
5021 /* Remove any non-debugging symbols in SYMS that definitely
5022 duplicate other symbols in the list (The only case I know of where
5023 this happens is when object files containing stabs-in-ecoff are
5024 linked with files containing ordinary ecoff debugging symbols (or no
5025 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
5028 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5032 /* We should never be called with less than 2 symbols, as there
5033 cannot be any extra symbol in that case. But it's easy to
5034 handle, since we have nothing to do in that case. */
5035 if (syms->size () < 2)
5039 while (i < syms->size ())
5043 /* If two symbols have the same name and one of them is a stub type,
5044 the get rid of the stub. */
5046 if ((*syms)[i].symbol->type ()->is_stub ()
5047 && (*syms)[i].symbol->linkage_name () != NULL)
5049 for (j = 0; j < syms->size (); j++)
5052 && !(*syms)[j].symbol->type ()->is_stub ()
5053 && (*syms)[j].symbol->linkage_name () != NULL
5054 && strcmp ((*syms)[i].symbol->linkage_name (),
5055 (*syms)[j].symbol->linkage_name ()) == 0)
5060 /* Two symbols with the same name, same class and same address
5061 should be identical. */
5063 else if ((*syms)[i].symbol->linkage_name () != NULL
5064 && (*syms)[i].symbol->aclass () == LOC_STATIC
5065 && is_nondebugging_type ((*syms)[i].symbol->type ()))
5067 for (j = 0; j < syms->size (); j += 1)
5070 && (*syms)[j].symbol->linkage_name () != NULL
5071 && strcmp ((*syms)[i].symbol->linkage_name (),
5072 (*syms)[j].symbol->linkage_name ()) == 0
5073 && ((*syms)[i].symbol->aclass ()
5074 == (*syms)[j].symbol->aclass ())
5075 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5076 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5082 syms->erase (syms->begin () + i);
5087 /* If all the remaining symbols are identical enumerals, then
5088 just keep the first one and discard the rest.
5090 Unlike what we did previously, we do not discard any entry
5091 unless they are ALL identical. This is because the symbol
5092 comparison is not a strict comparison, but rather a practical
5093 comparison. If all symbols are considered identical, then
5094 we can just go ahead and use the first one and discard the rest.
5095 But if we cannot reduce the list to a single element, we have
5096 to ask the user to disambiguate anyways. And if we have to
5097 present a multiple-choice menu, it's less confusing if the list
5098 isn't missing some choices that were identical and yet distinct. */
5099 if (symbols_are_identical_enums (*syms))
5103 /* Given a type that corresponds to a renaming entity, use the type name
5104 to extract the scope (package name or function name, fully qualified,
5105 and following the GNAT encoding convention) where this renaming has been
5109 xget_renaming_scope (struct type *renaming_type)
5111 /* The renaming types adhere to the following convention:
5112 <scope>__<rename>___<XR extension>.
5113 So, to extract the scope, we search for the "___XR" extension,
5114 and then backtrack until we find the first "__". */
5116 const char *name = renaming_type->name ();
5117 const char *suffix = strstr (name, "___XR");
5120 /* Now, backtrack a bit until we find the first "__". Start looking
5121 at suffix - 3, as the <rename> part is at least one character long. */
5123 for (last = suffix - 3; last > name; last--)
5124 if (last[0] == '_' && last[1] == '_')
5127 /* Make a copy of scope and return it. */
5128 return std::string (name, last);
5131 /* Return nonzero if NAME corresponds to a package name. */
5134 is_package_name (const char *name)
5136 /* Here, We take advantage of the fact that no symbols are generated
5137 for packages, while symbols are generated for each function.
5138 So the condition for NAME represent a package becomes equivalent
5139 to NAME not existing in our list of symbols. There is only one
5140 small complication with library-level functions (see below). */
5142 /* If it is a function that has not been defined at library level,
5143 then we should be able to look it up in the symbols. */
5144 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5147 /* Library-level function names start with "_ada_". See if function
5148 "_ada_" followed by NAME can be found. */
5150 /* Do a quick check that NAME does not contain "__", since library-level
5151 functions names cannot contain "__" in them. */
5152 if (strstr (name, "__") != NULL)
5155 std::string fun_name = string_printf ("_ada_%s", name);
5157 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5160 /* Return nonzero if SYM corresponds to a renaming entity that is
5161 not visible from FUNCTION_NAME. */
5164 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5166 if (sym->aclass () != LOC_TYPEDEF)
5169 std::string scope = xget_renaming_scope (sym->type ());
5171 /* If the rename has been defined in a package, then it is visible. */
5172 if (is_package_name (scope.c_str ()))
5175 /* Check that the rename is in the current function scope by checking
5176 that its name starts with SCOPE. */
5178 /* If the function name starts with "_ada_", it means that it is
5179 a library-level function. Strip this prefix before doing the
5180 comparison, as the encoding for the renaming does not contain
5182 if (startswith (function_name, "_ada_"))
5185 return !startswith (function_name, scope.c_str ());
5188 /* Remove entries from SYMS that corresponds to a renaming entity that
5189 is not visible from the function associated with CURRENT_BLOCK or
5190 that is superfluous due to the presence of more specific renaming
5191 information. Places surviving symbols in the initial entries of
5195 First, in cases where an object renaming is implemented as a
5196 reference variable, GNAT may produce both the actual reference
5197 variable and the renaming encoding. In this case, we discard the
5200 Second, GNAT emits a type following a specified encoding for each renaming
5201 entity. Unfortunately, STABS currently does not support the definition
5202 of types that are local to a given lexical block, so all renamings types
5203 are emitted at library level. As a consequence, if an application
5204 contains two renaming entities using the same name, and a user tries to
5205 print the value of one of these entities, the result of the ada symbol
5206 lookup will also contain the wrong renaming type.
5208 This function partially covers for this limitation by attempting to
5209 remove from the SYMS list renaming symbols that should be visible
5210 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5211 method with the current information available. The implementation
5212 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5214 - When the user tries to print a rename in a function while there
5215 is another rename entity defined in a package: Normally, the
5216 rename in the function has precedence over the rename in the
5217 package, so the latter should be removed from the list. This is
5218 currently not the case.
5220 - This function will incorrectly remove valid renames if
5221 the CURRENT_BLOCK corresponds to a function which symbol name
5222 has been changed by an "Export" pragma. As a consequence,
5223 the user will be unable to print such rename entities. */
5226 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5227 const struct block *current_block)
5229 struct symbol *current_function;
5230 const char *current_function_name;
5232 int is_new_style_renaming;
5234 /* If there is both a renaming foo___XR... encoded as a variable and
5235 a simple variable foo in the same block, discard the latter.
5236 First, zero out such symbols, then compress. */
5237 is_new_style_renaming = 0;
5238 for (i = 0; i < syms->size (); i += 1)
5240 struct symbol *sym = (*syms)[i].symbol;
5241 const struct block *block = (*syms)[i].block;
5245 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
5247 name = sym->linkage_name ();
5248 suffix = strstr (name, "___XR");
5252 int name_len = suffix - name;
5255 is_new_style_renaming = 1;
5256 for (j = 0; j < syms->size (); j += 1)
5257 if (i != j && (*syms)[j].symbol != NULL
5258 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5260 && block == (*syms)[j].block)
5261 (*syms)[j].symbol = NULL;
5264 if (is_new_style_renaming)
5268 for (j = k = 0; j < syms->size (); j += 1)
5269 if ((*syms)[j].symbol != NULL)
5271 (*syms)[k] = (*syms)[j];
5278 /* Extract the function name associated to CURRENT_BLOCK.
5279 Abort if unable to do so. */
5281 if (current_block == NULL)
5284 current_function = block_linkage_function (current_block);
5285 if (current_function == NULL)
5288 current_function_name = current_function->linkage_name ();
5289 if (current_function_name == NULL)
5292 /* Check each of the symbols, and remove it from the list if it is
5293 a type corresponding to a renaming that is out of the scope of
5294 the current block. */
5297 while (i < syms->size ())
5299 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5300 == ADA_OBJECT_RENAMING
5301 && old_renaming_is_invisible ((*syms)[i].symbol,
5302 current_function_name))
5303 syms->erase (syms->begin () + i);
5309 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5310 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5312 Note: This function assumes that RESULT is empty. */
5315 ada_add_local_symbols (std::vector<struct block_symbol> &result,
5316 const lookup_name_info &lookup_name,
5317 const struct block *block, domain_enum domain)
5319 while (block != NULL)
5321 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5323 /* If we found a non-function match, assume that's the one. We
5324 only check this when finding a function boundary, so that we
5325 can accumulate all results from intervening blocks first. */
5326 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5329 block = BLOCK_SUPERBLOCK (block);
5333 /* An object of this type is used as the callback argument when
5334 calling the map_matching_symbols method. */
5338 explicit match_data (std::vector<struct block_symbol> *rp)
5342 DISABLE_COPY_AND_ASSIGN (match_data);
5344 bool operator() (struct block_symbol *bsym);
5346 struct objfile *objfile = nullptr;
5347 std::vector<struct block_symbol> *resultp;
5348 struct symbol *arg_sym = nullptr;
5349 bool found_sym = false;
5352 /* A callback for add_nonlocal_symbols that adds symbol, found in
5353 BSYM, to a list of symbols. */
5356 match_data::operator() (struct block_symbol *bsym)
5358 const struct block *block = bsym->block;
5359 struct symbol *sym = bsym->symbol;
5363 if (!found_sym && arg_sym != NULL)
5364 add_defn_to_vec (*resultp,
5365 fixup_symbol_section (arg_sym, objfile),
5372 if (sym->aclass () == LOC_UNRESOLVED)
5374 else if (sym->is_argument ())
5379 add_defn_to_vec (*resultp,
5380 fixup_symbol_section (sym, objfile),
5387 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5388 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5389 symbols to RESULT. Return whether we found such symbols. */
5392 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5393 const struct block *block,
5394 const lookup_name_info &lookup_name,
5397 struct using_direct *renaming;
5398 int defns_mark = result.size ();
5400 symbol_name_matcher_ftype *name_match
5401 = ada_get_symbol_name_matcher (lookup_name);
5403 for (renaming = block_using (block);
5405 renaming = renaming->next)
5409 /* Avoid infinite recursions: skip this renaming if we are actually
5410 already traversing it.
5412 Currently, symbol lookup in Ada don't use the namespace machinery from
5413 C++/Fortran support: skip namespace imports that use them. */
5414 if (renaming->searched
5415 || (renaming->import_src != NULL
5416 && renaming->import_src[0] != '\0')
5417 || (renaming->import_dest != NULL
5418 && renaming->import_dest[0] != '\0'))
5420 renaming->searched = 1;
5422 /* TODO: here, we perform another name-based symbol lookup, which can
5423 pull its own multiple overloads. In theory, we should be able to do
5424 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5425 not a simple name. But in order to do this, we would need to enhance
5426 the DWARF reader to associate a symbol to this renaming, instead of a
5427 name. So, for now, we do something simpler: re-use the C++/Fortran
5428 namespace machinery. */
5429 r_name = (renaming->alias != NULL
5431 : renaming->declaration);
5432 if (name_match (r_name, lookup_name, NULL))
5434 lookup_name_info decl_lookup_name (renaming->declaration,
5435 lookup_name.match_type ());
5436 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5439 renaming->searched = 0;
5441 return result.size () != defns_mark;
5444 /* Implements compare_names, but only applying the comparision using
5445 the given CASING. */
5448 compare_names_with_case (const char *string1, const char *string2,
5449 enum case_sensitivity casing)
5451 while (*string1 != '\0' && *string2 != '\0')
5455 if (isspace (*string1) || isspace (*string2))
5456 return strcmp_iw_ordered (string1, string2);
5458 if (casing == case_sensitive_off)
5460 c1 = tolower (*string1);
5461 c2 = tolower (*string2);
5478 return strcmp_iw_ordered (string1, string2);
5480 if (*string2 == '\0')
5482 if (is_name_suffix (string1))
5489 if (*string2 == '(')
5490 return strcmp_iw_ordered (string1, string2);
5493 if (casing == case_sensitive_off)
5494 return tolower (*string1) - tolower (*string2);
5496 return *string1 - *string2;
5501 /* Compare STRING1 to STRING2, with results as for strcmp.
5502 Compatible with strcmp_iw_ordered in that...
5504 strcmp_iw_ordered (STRING1, STRING2) <= 0
5508 compare_names (STRING1, STRING2) <= 0
5510 (they may differ as to what symbols compare equal). */
5513 compare_names (const char *string1, const char *string2)
5517 /* Similar to what strcmp_iw_ordered does, we need to perform
5518 a case-insensitive comparison first, and only resort to
5519 a second, case-sensitive, comparison if the first one was
5520 not sufficient to differentiate the two strings. */
5522 result = compare_names_with_case (string1, string2, case_sensitive_off);
5524 result = compare_names_with_case (string1, string2, case_sensitive_on);
5529 /* Convenience function to get at the Ada encoded lookup name for
5530 LOOKUP_NAME, as a C string. */
5533 ada_lookup_name (const lookup_name_info &lookup_name)
5535 return lookup_name.ada ().lookup_name ().c_str ();
5538 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5539 for OBJFILE, then walk the objfile's symtabs and update the
5543 map_matching_symbols (struct objfile *objfile,
5544 const lookup_name_info &lookup_name,
5550 data.objfile = objfile;
5551 objfile->expand_matching_symbols (lookup_name, domain, global,
5552 is_wild_match ? nullptr : compare_names);
5554 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5555 for (compunit_symtab *symtab : objfile->compunits ())
5557 const struct block *block
5558 = BLOCKVECTOR_BLOCK (symtab->blockvector (), block_kind);
5559 if (!iterate_over_symbols_terminated (block, lookup_name,
5565 /* Add to RESULT all non-local symbols whose name and domain match
5566 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5567 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5568 symbols otherwise. */
5571 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5572 const lookup_name_info &lookup_name,
5573 domain_enum domain, int global)
5575 struct match_data data (&result);
5577 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5579 for (objfile *objfile : current_program_space->objfiles ())
5581 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5584 for (compunit_symtab *cu : objfile->compunits ())
5586 const struct block *global_block
5587 = BLOCKVECTOR_BLOCK (cu->blockvector (), GLOBAL_BLOCK);
5589 if (ada_add_block_renamings (result, global_block, lookup_name,
5591 data.found_sym = true;
5595 if (result.empty () && global && !is_wild_match)
5597 const char *name = ada_lookup_name (lookup_name);
5598 std::string bracket_name = std::string ("<_ada_") + name + '>';
5599 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5601 for (objfile *objfile : current_program_space->objfiles ())
5602 map_matching_symbols (objfile, name1, false, domain, global, data);
5606 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5607 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5608 returning the number of matches. Add these to RESULT.
5610 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5611 symbol match within the nest of blocks whose innermost member is BLOCK,
5612 is the one match returned (no other matches in that or
5613 enclosing blocks is returned). If there are any matches in or
5614 surrounding BLOCK, then these alone are returned.
5616 Names prefixed with "standard__" are handled specially:
5617 "standard__" is first stripped off (by the lookup_name
5618 constructor), and only static and global symbols are searched.
5620 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5621 to lookup global symbols. */
5624 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5625 const struct block *block,
5626 const lookup_name_info &lookup_name,
5629 int *made_global_lookup_p)
5633 if (made_global_lookup_p)
5634 *made_global_lookup_p = 0;
5636 /* Special case: If the user specifies a symbol name inside package
5637 Standard, do a non-wild matching of the symbol name without
5638 the "standard__" prefix. This was primarily introduced in order
5639 to allow the user to specifically access the standard exceptions
5640 using, for instance, Standard.Constraint_Error when Constraint_Error
5641 is ambiguous (due to the user defining its own Constraint_Error
5642 entity inside its program). */
5643 if (lookup_name.ada ().standard_p ())
5646 /* Check the non-global symbols. If we have ANY match, then we're done. */
5651 ada_add_local_symbols (result, lookup_name, block, domain);
5654 /* In the !full_search case we're are being called by
5655 iterate_over_symbols, and we don't want to search
5657 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5659 if (!result.empty () || !full_search)
5663 /* No non-global symbols found. Check our cache to see if we have
5664 already performed this search before. If we have, then return
5667 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5668 domain, &sym, &block))
5671 add_defn_to_vec (result, sym, block);
5675 if (made_global_lookup_p)
5676 *made_global_lookup_p = 1;
5678 /* Search symbols from all global blocks. */
5680 add_nonlocal_symbols (result, lookup_name, domain, 1);
5682 /* Now add symbols from all per-file blocks if we've gotten no hits
5683 (not strictly correct, but perhaps better than an error). */
5685 if (result.empty ())
5686 add_nonlocal_symbols (result, lookup_name, domain, 0);
5689 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5690 is non-zero, enclosing scope and in global scopes.
5692 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5693 blocks and symbol tables (if any) in which they were found.
5695 When full_search is non-zero, any non-function/non-enumeral
5696 symbol match within the nest of blocks whose innermost member is BLOCK,
5697 is the one match returned (no other matches in that or
5698 enclosing blocks is returned). If there are any matches in or
5699 surrounding BLOCK, then these alone are returned.
5701 Names prefixed with "standard__" are handled specially: "standard__"
5702 is first stripped off, and only static and global symbols are searched. */
5704 static std::vector<struct block_symbol>
5705 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5706 const struct block *block,
5710 int syms_from_global_search;
5711 std::vector<struct block_symbol> results;
5713 ada_add_all_symbols (results, block, lookup_name,
5714 domain, full_search, &syms_from_global_search);
5716 remove_extra_symbols (&results);
5718 if (results.empty () && full_search && syms_from_global_search)
5719 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5721 if (results.size () == 1 && full_search && syms_from_global_search)
5722 cache_symbol (ada_lookup_name (lookup_name), domain,
5723 results[0].symbol, results[0].block);
5725 remove_irrelevant_renamings (&results, block);
5729 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5730 in global scopes, returning (SYM,BLOCK) tuples.
5732 See ada_lookup_symbol_list_worker for further details. */
5734 std::vector<struct block_symbol>
5735 ada_lookup_symbol_list (const char *name, const struct block *block,
5738 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5739 lookup_name_info lookup_name (name, name_match_type);
5741 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5744 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5745 to 1, but choosing the first symbol found if there are multiple
5748 The result is stored in *INFO, which must be non-NULL.
5749 If no match is found, INFO->SYM is set to NULL. */
5752 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5754 struct block_symbol *info)
5756 /* Since we already have an encoded name, wrap it in '<>' to force a
5757 verbatim match. Otherwise, if the name happens to not look like
5758 an encoded name (because it doesn't include a "__"),
5759 ada_lookup_name_info would re-encode/fold it again, and that
5760 would e.g., incorrectly lowercase object renaming names like
5761 "R28b" -> "r28b". */
5762 std::string verbatim = add_angle_brackets (name);
5764 gdb_assert (info != NULL);
5765 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5768 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5769 scope and in global scopes, or NULL if none. NAME is folded and
5770 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5771 choosing the first symbol if there are multiple choices. */
5774 ada_lookup_symbol (const char *name, const struct block *block0,
5777 std::vector<struct block_symbol> candidates
5778 = ada_lookup_symbol_list (name, block0, domain);
5780 if (candidates.empty ())
5783 block_symbol info = candidates[0];
5784 info.symbol = fixup_symbol_section (info.symbol, NULL);
5789 /* True iff STR is a possible encoded suffix of a normal Ada name
5790 that is to be ignored for matching purposes. Suffixes of parallel
5791 names (e.g., XVE) are not included here. Currently, the possible suffixes
5792 are given by any of the regular expressions:
5794 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5795 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5796 TKB [subprogram suffix for task bodies]
5797 _E[0-9]+[bs]$ [protected object entry suffixes]
5798 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5800 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5801 match is performed. This sequence is used to differentiate homonyms,
5802 is an optional part of a valid name suffix. */
5805 is_name_suffix (const char *str)
5808 const char *matching;
5809 const int len = strlen (str);
5811 /* Skip optional leading __[0-9]+. */
5813 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5816 while (isdigit (str[0]))
5822 if (str[0] == '.' || str[0] == '$')
5825 while (isdigit (matching[0]))
5827 if (matching[0] == '\0')
5833 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5836 while (isdigit (matching[0]))
5838 if (matching[0] == '\0')
5842 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5844 if (strcmp (str, "TKB") == 0)
5848 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5849 with a N at the end. Unfortunately, the compiler uses the same
5850 convention for other internal types it creates. So treating
5851 all entity names that end with an "N" as a name suffix causes
5852 some regressions. For instance, consider the case of an enumerated
5853 type. To support the 'Image attribute, it creates an array whose
5855 Having a single character like this as a suffix carrying some
5856 information is a bit risky. Perhaps we should change the encoding
5857 to be something like "_N" instead. In the meantime, do not do
5858 the following check. */
5859 /* Protected Object Subprograms */
5860 if (len == 1 && str [0] == 'N')
5865 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5868 while (isdigit (matching[0]))
5870 if ((matching[0] == 'b' || matching[0] == 's')
5871 && matching [1] == '\0')
5875 /* ??? We should not modify STR directly, as we are doing below. This
5876 is fine in this case, but may become problematic later if we find
5877 that this alternative did not work, and want to try matching
5878 another one from the begining of STR. Since we modified it, we
5879 won't be able to find the begining of the string anymore! */
5883 while (str[0] != '_' && str[0] != '\0')
5885 if (str[0] != 'n' && str[0] != 'b')
5891 if (str[0] == '\000')
5896 if (str[1] != '_' || str[2] == '\000')
5900 if (strcmp (str + 3, "JM") == 0)
5902 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5903 the LJM suffix in favor of the JM one. But we will
5904 still accept LJM as a valid suffix for a reasonable
5905 amount of time, just to allow ourselves to debug programs
5906 compiled using an older version of GNAT. */
5907 if (strcmp (str + 3, "LJM") == 0)
5911 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5912 || str[4] == 'U' || str[4] == 'P')
5914 if (str[4] == 'R' && str[5] != 'T')
5918 if (!isdigit (str[2]))
5920 for (k = 3; str[k] != '\0'; k += 1)
5921 if (!isdigit (str[k]) && str[k] != '_')
5925 if (str[0] == '$' && isdigit (str[1]))
5927 for (k = 2; str[k] != '\0'; k += 1)
5928 if (!isdigit (str[k]) && str[k] != '_')
5935 /* Return non-zero if the string starting at NAME and ending before
5936 NAME_END contains no capital letters. */
5939 is_valid_name_for_wild_match (const char *name0)
5941 std::string decoded_name = ada_decode (name0);
5944 /* If the decoded name starts with an angle bracket, it means that
5945 NAME0 does not follow the GNAT encoding format. It should then
5946 not be allowed as a possible wild match. */
5947 if (decoded_name[0] == '<')
5950 for (i=0; decoded_name[i] != '\0'; i++)
5951 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5957 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5958 character which could start a simple name. Assumes that *NAMEP points
5959 somewhere inside the string beginning at NAME0. */
5962 advance_wild_match (const char **namep, const char *name0, char target0)
5964 const char *name = *namep;
5974 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5977 if (name == name0 + 5 && startswith (name0, "_ada"))
5982 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5983 || name[2] == target0))
5988 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5990 /* Names like "pkg__B_N__name", where N is a number, are
5991 block-local. We can handle these by simply skipping
5998 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6008 /* Return true iff NAME encodes a name of the form prefix.PATN.
6009 Ignores any informational suffixes of NAME (i.e., for which
6010 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6014 wild_match (const char *name, const char *patn)
6017 const char *name0 = name;
6021 const char *match = name;
6025 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6028 if (*p == '\0' && is_name_suffix (name))
6029 return match == name0 || is_valid_name_for_wild_match (name0);
6031 if (name[-1] == '_')
6034 if (!advance_wild_match (&name, name0, *patn))
6039 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
6040 necessary). OBJFILE is the section containing BLOCK. */
6043 ada_add_block_symbols (std::vector<struct block_symbol> &result,
6044 const struct block *block,
6045 const lookup_name_info &lookup_name,
6046 domain_enum domain, struct objfile *objfile)
6048 struct block_iterator iter;
6049 /* A matching argument symbol, if any. */
6050 struct symbol *arg_sym;
6051 /* Set true when we find a matching non-argument symbol. */
6057 for (sym = block_iter_match_first (block, lookup_name, &iter);
6059 sym = block_iter_match_next (lookup_name, &iter))
6061 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
6063 if (sym->aclass () != LOC_UNRESOLVED)
6065 if (sym->is_argument ())
6070 add_defn_to_vec (result,
6071 fixup_symbol_section (sym, objfile),
6078 /* Handle renamings. */
6080 if (ada_add_block_renamings (result, block, lookup_name, domain))
6083 if (!found_sym && arg_sym != NULL)
6085 add_defn_to_vec (result,
6086 fixup_symbol_section (arg_sym, objfile),
6090 if (!lookup_name.ada ().wild_match_p ())
6094 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6095 const char *name = ada_lookup_name.c_str ();
6096 size_t name_len = ada_lookup_name.size ();
6098 ALL_BLOCK_SYMBOLS (block, iter, sym)
6100 if (symbol_matches_domain (sym->language (),
6101 sym->domain (), domain))
6105 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6108 cmp = !startswith (sym->linkage_name (), "_ada_");
6110 cmp = strncmp (name, sym->linkage_name () + 5,
6115 && is_name_suffix (sym->linkage_name () + name_len + 5))
6117 if (sym->aclass () != LOC_UNRESOLVED)
6119 if (sym->is_argument ())
6124 add_defn_to_vec (result,
6125 fixup_symbol_section (sym, objfile),
6133 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6134 They aren't parameters, right? */
6135 if (!found_sym && arg_sym != NULL)
6137 add_defn_to_vec (result,
6138 fixup_symbol_section (arg_sym, objfile),
6145 /* Symbol Completion */
6150 ada_lookup_name_info::matches
6151 (const char *sym_name,
6152 symbol_name_match_type match_type,
6153 completion_match_result *comp_match_res) const
6156 const char *text = m_encoded_name.c_str ();
6157 size_t text_len = m_encoded_name.size ();
6159 /* First, test against the fully qualified name of the symbol. */
6161 if (strncmp (sym_name, text, text_len) == 0)
6164 std::string decoded_name = ada_decode (sym_name);
6165 if (match && !m_encoded_p)
6167 /* One needed check before declaring a positive match is to verify
6168 that iff we are doing a verbatim match, the decoded version
6169 of the symbol name starts with '<'. Otherwise, this symbol name
6170 is not a suitable completion. */
6172 bool has_angle_bracket = (decoded_name[0] == '<');
6173 match = (has_angle_bracket == m_verbatim_p);
6176 if (match && !m_verbatim_p)
6178 /* When doing non-verbatim match, another check that needs to
6179 be done is to verify that the potentially matching symbol name
6180 does not include capital letters, because the ada-mode would
6181 not be able to understand these symbol names without the
6182 angle bracket notation. */
6185 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6190 /* Second: Try wild matching... */
6192 if (!match && m_wild_match_p)
6194 /* Since we are doing wild matching, this means that TEXT
6195 may represent an unqualified symbol name. We therefore must
6196 also compare TEXT against the unqualified name of the symbol. */
6197 sym_name = ada_unqualified_name (decoded_name.c_str ());
6199 if (strncmp (sym_name, text, text_len) == 0)
6203 /* Finally: If we found a match, prepare the result to return. */
6208 if (comp_match_res != NULL)
6210 std::string &match_str = comp_match_res->match.storage ();
6213 match_str = ada_decode (sym_name);
6217 match_str = add_angle_brackets (sym_name);
6219 match_str = sym_name;
6223 comp_match_res->set_match (match_str.c_str ());
6231 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6232 for tagged types. */
6235 ada_is_dispatch_table_ptr_type (struct type *type)
6239 if (type->code () != TYPE_CODE_PTR)
6242 name = TYPE_TARGET_TYPE (type)->name ();
6246 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6249 /* Return non-zero if TYPE is an interface tag. */
6252 ada_is_interface_tag (struct type *type)
6254 const char *name = type->name ();
6259 return (strcmp (name, "ada__tags__interface_tag") == 0);
6262 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6263 to be invisible to users. */
6266 ada_is_ignored_field (struct type *type, int field_num)
6268 if (field_num < 0 || field_num > type->num_fields ())
6271 /* Check the name of that field. */
6273 const char *name = type->field (field_num).name ();
6275 /* Anonymous field names should not be printed.
6276 brobecker/2007-02-20: I don't think this can actually happen
6277 but we don't want to print the value of anonymous fields anyway. */
6281 /* Normally, fields whose name start with an underscore ("_")
6282 are fields that have been internally generated by the compiler,
6283 and thus should not be printed. The "_parent" field is special,
6284 however: This is a field internally generated by the compiler
6285 for tagged types, and it contains the components inherited from
6286 the parent type. This field should not be printed as is, but
6287 should not be ignored either. */
6288 if (name[0] == '_' && !startswith (name, "_parent"))
6292 /* If this is the dispatch table of a tagged type or an interface tag,
6294 if (ada_is_tagged_type (type, 1)
6295 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6296 || ada_is_interface_tag (type->field (field_num).type ())))
6299 /* Not a special field, so it should not be ignored. */
6303 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6304 pointer or reference type whose ultimate target has a tag field. */
6307 ada_is_tagged_type (struct type *type, int refok)
6309 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6312 /* True iff TYPE represents the type of X'Tag */
6315 ada_is_tag_type (struct type *type)
6317 type = ada_check_typedef (type);
6319 if (type == NULL || type->code () != TYPE_CODE_PTR)
6323 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6325 return (name != NULL
6326 && strcmp (name, "ada__tags__dispatch_table") == 0);
6330 /* The type of the tag on VAL. */
6332 static struct type *
6333 ada_tag_type (struct value *val)
6335 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6338 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6339 retired at Ada 05). */
6342 is_ada95_tag (struct value *tag)
6344 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6347 /* The value of the tag on VAL. */
6349 static struct value *
6350 ada_value_tag (struct value *val)
6352 return ada_value_struct_elt (val, "_tag", 0);
6355 /* The value of the tag on the object of type TYPE whose contents are
6356 saved at VALADDR, if it is non-null, or is at memory address
6359 static struct value *
6360 value_tag_from_contents_and_address (struct type *type,
6361 const gdb_byte *valaddr,
6364 int tag_byte_offset;
6365 struct type *tag_type;
6367 gdb::array_view<const gdb_byte> contents;
6368 if (valaddr != nullptr)
6369 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6370 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6371 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6374 const gdb_byte *valaddr1 = ((valaddr == NULL)
6376 : valaddr + tag_byte_offset);
6377 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6379 return value_from_contents_and_address (tag_type, valaddr1, address1);
6384 static struct type *
6385 type_from_tag (struct value *tag)
6387 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6389 if (type_name != NULL)
6390 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6394 /* Given a value OBJ of a tagged type, return a value of this
6395 type at the base address of the object. The base address, as
6396 defined in Ada.Tags, it is the address of the primary tag of
6397 the object, and therefore where the field values of its full
6398 view can be fetched. */
6401 ada_tag_value_at_base_address (struct value *obj)
6404 LONGEST offset_to_top = 0;
6405 struct type *ptr_type, *obj_type;
6407 CORE_ADDR base_address;
6409 obj_type = value_type (obj);
6411 /* It is the responsability of the caller to deref pointers. */
6413 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6416 tag = ada_value_tag (obj);
6420 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6422 if (is_ada95_tag (tag))
6425 ptr_type = language_lookup_primitive_type
6426 (language_def (language_ada), target_gdbarch(), "storage_offset");
6427 ptr_type = lookup_pointer_type (ptr_type);
6428 val = value_cast (ptr_type, tag);
6432 /* It is perfectly possible that an exception be raised while
6433 trying to determine the base address, just like for the tag;
6434 see ada_tag_name for more details. We do not print the error
6435 message for the same reason. */
6439 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6442 catch (const gdb_exception_error &e)
6447 /* If offset is null, nothing to do. */
6449 if (offset_to_top == 0)
6452 /* -1 is a special case in Ada.Tags; however, what should be done
6453 is not quite clear from the documentation. So do nothing for
6456 if (offset_to_top == -1)
6459 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6460 from the base address. This was however incompatible with
6461 C++ dispatch table: C++ uses a *negative* value to *add*
6462 to the base address. Ada's convention has therefore been
6463 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6464 use the same convention. Here, we support both cases by
6465 checking the sign of OFFSET_TO_TOP. */
6467 if (offset_to_top > 0)
6468 offset_to_top = -offset_to_top;
6470 base_address = value_address (obj) + offset_to_top;
6471 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6473 /* Make sure that we have a proper tag at the new address.
6474 Otherwise, offset_to_top is bogus (which can happen when
6475 the object is not initialized yet). */
6480 obj_type = type_from_tag (tag);
6485 return value_from_contents_and_address (obj_type, NULL, base_address);
6488 /* Return the "ada__tags__type_specific_data" type. */
6490 static struct type *
6491 ada_get_tsd_type (struct inferior *inf)
6493 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6495 if (data->tsd_type == 0)
6496 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6497 return data->tsd_type;
6500 /* Return the TSD (type-specific data) associated to the given TAG.
6501 TAG is assumed to be the tag of a tagged-type entity.
6503 May return NULL if we are unable to get the TSD. */
6505 static struct value *
6506 ada_get_tsd_from_tag (struct value *tag)
6511 /* First option: The TSD is simply stored as a field of our TAG.
6512 Only older versions of GNAT would use this format, but we have
6513 to test it first, because there are no visible markers for
6514 the current approach except the absence of that field. */
6516 val = ada_value_struct_elt (tag, "tsd", 1);
6520 /* Try the second representation for the dispatch table (in which
6521 there is no explicit 'tsd' field in the referent of the tag pointer,
6522 and instead the tsd pointer is stored just before the dispatch
6525 type = ada_get_tsd_type (current_inferior());
6528 type = lookup_pointer_type (lookup_pointer_type (type));
6529 val = value_cast (type, tag);
6532 return value_ind (value_ptradd (val, -1));
6535 /* Given the TSD of a tag (type-specific data), return a string
6536 containing the name of the associated type.
6538 May return NULL if we are unable to determine the tag name. */
6540 static gdb::unique_xmalloc_ptr<char>
6541 ada_tag_name_from_tsd (struct value *tsd)
6545 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6548 gdb::unique_xmalloc_ptr<char> buffer
6549 = target_read_string (value_as_address (val), INT_MAX);
6550 if (buffer == nullptr)
6555 /* Let this throw an exception on error. If the data is
6556 uninitialized, we'd rather not have the user see a
6558 const char *folded = ada_fold_name (buffer.get (), true);
6559 return make_unique_xstrdup (folded);
6561 catch (const gdb_exception &)
6567 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6570 Return NULL if the TAG is not an Ada tag, or if we were unable to
6571 determine the name of that tag. */
6573 gdb::unique_xmalloc_ptr<char>
6574 ada_tag_name (struct value *tag)
6576 gdb::unique_xmalloc_ptr<char> name;
6578 if (!ada_is_tag_type (value_type (tag)))
6581 /* It is perfectly possible that an exception be raised while trying
6582 to determine the TAG's name, even under normal circumstances:
6583 The associated variable may be uninitialized or corrupted, for
6584 instance. We do not let any exception propagate past this point.
6585 instead we return NULL.
6587 We also do not print the error message either (which often is very
6588 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6589 the caller print a more meaningful message if necessary. */
6592 struct value *tsd = ada_get_tsd_from_tag (tag);
6595 name = ada_tag_name_from_tsd (tsd);
6597 catch (const gdb_exception_error &e)
6604 /* The parent type of TYPE, or NULL if none. */
6607 ada_parent_type (struct type *type)
6611 type = ada_check_typedef (type);
6613 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6616 for (i = 0; i < type->num_fields (); i += 1)
6617 if (ada_is_parent_field (type, i))
6619 struct type *parent_type = type->field (i).type ();
6621 /* If the _parent field is a pointer, then dereference it. */
6622 if (parent_type->code () == TYPE_CODE_PTR)
6623 parent_type = TYPE_TARGET_TYPE (parent_type);
6624 /* If there is a parallel XVS type, get the actual base type. */
6625 parent_type = ada_get_base_type (parent_type);
6627 return ada_check_typedef (parent_type);
6633 /* True iff field number FIELD_NUM of structure type TYPE contains the
6634 parent-type (inherited) fields of a derived type. Assumes TYPE is
6635 a structure type with at least FIELD_NUM+1 fields. */
6638 ada_is_parent_field (struct type *type, int field_num)
6640 const char *name = ada_check_typedef (type)->field (field_num).name ();
6642 return (name != NULL
6643 && (startswith (name, "PARENT")
6644 || startswith (name, "_parent")));
6647 /* True iff field number FIELD_NUM of structure type TYPE is a
6648 transparent wrapper field (which should be silently traversed when doing
6649 field selection and flattened when printing). Assumes TYPE is a
6650 structure type with at least FIELD_NUM+1 fields. Such fields are always
6654 ada_is_wrapper_field (struct type *type, int field_num)
6656 const char *name = type->field (field_num).name ();
6658 if (name != NULL && strcmp (name, "RETVAL") == 0)
6660 /* This happens in functions with "out" or "in out" parameters
6661 which are passed by copy. For such functions, GNAT describes
6662 the function's return type as being a struct where the return
6663 value is in a field called RETVAL, and where the other "out"
6664 or "in out" parameters are fields of that struct. This is not
6669 return (name != NULL
6670 && (startswith (name, "PARENT")
6671 || strcmp (name, "REP") == 0
6672 || startswith (name, "_parent")
6673 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6676 /* True iff field number FIELD_NUM of structure or union type TYPE
6677 is a variant wrapper. Assumes TYPE is a structure type with at least
6678 FIELD_NUM+1 fields. */
6681 ada_is_variant_part (struct type *type, int field_num)
6683 /* Only Ada types are eligible. */
6684 if (!ADA_TYPE_P (type))
6687 struct type *field_type = type->field (field_num).type ();
6689 return (field_type->code () == TYPE_CODE_UNION
6690 || (is_dynamic_field (type, field_num)
6691 && (TYPE_TARGET_TYPE (field_type)->code ()
6692 == TYPE_CODE_UNION)));
6695 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6696 whose discriminants are contained in the record type OUTER_TYPE,
6697 returns the type of the controlling discriminant for the variant.
6698 May return NULL if the type could not be found. */
6701 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6703 const char *name = ada_variant_discrim_name (var_type);
6705 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6708 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6709 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6710 represents a 'when others' clause; otherwise 0. */
6713 ada_is_others_clause (struct type *type, int field_num)
6715 const char *name = type->field (field_num).name ();
6717 return (name != NULL && name[0] == 'O');
6720 /* Assuming that TYPE0 is the type of the variant part of a record,
6721 returns the name of the discriminant controlling the variant.
6722 The value is valid until the next call to ada_variant_discrim_name. */
6725 ada_variant_discrim_name (struct type *type0)
6727 static std::string result;
6730 const char *discrim_end;
6731 const char *discrim_start;
6733 if (type0->code () == TYPE_CODE_PTR)
6734 type = TYPE_TARGET_TYPE (type0);
6738 name = ada_type_name (type);
6740 if (name == NULL || name[0] == '\000')
6743 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6746 if (startswith (discrim_end, "___XVN"))
6749 if (discrim_end == name)
6752 for (discrim_start = discrim_end; discrim_start != name + 3;
6755 if (discrim_start == name + 1)
6757 if ((discrim_start > name + 3
6758 && startswith (discrim_start - 3, "___"))
6759 || discrim_start[-1] == '.')
6763 result = std::string (discrim_start, discrim_end - discrim_start);
6764 return result.c_str ();
6767 /* Scan STR for a subtype-encoded number, beginning at position K.
6768 Put the position of the character just past the number scanned in
6769 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6770 Return 1 if there was a valid number at the given position, and 0
6771 otherwise. A "subtype-encoded" number consists of the absolute value
6772 in decimal, followed by the letter 'm' to indicate a negative number.
6773 Assumes 0m does not occur. */
6776 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6780 if (!isdigit (str[k]))
6783 /* Do it the hard way so as not to make any assumption about
6784 the relationship of unsigned long (%lu scan format code) and
6787 while (isdigit (str[k]))
6789 RU = RU * 10 + (str[k] - '0');
6796 *R = (-(LONGEST) (RU - 1)) - 1;
6802 /* NOTE on the above: Technically, C does not say what the results of
6803 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6804 number representable as a LONGEST (although either would probably work
6805 in most implementations). When RU>0, the locution in the then branch
6806 above is always equivalent to the negative of RU. */
6813 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6814 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6815 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6818 ada_in_variant (LONGEST val, struct type *type, int field_num)
6820 const char *name = type->field (field_num).name ();
6834 if (!ada_scan_number (name, p + 1, &W, &p))
6844 if (!ada_scan_number (name, p + 1, &L, &p)
6845 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6847 if (val >= L && val <= U)
6859 /* FIXME: Lots of redundancy below. Try to consolidate. */
6861 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6862 ARG_TYPE, extract and return the value of one of its (non-static)
6863 fields. FIELDNO says which field. Differs from value_primitive_field
6864 only in that it can handle packed values of arbitrary type. */
6867 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6868 struct type *arg_type)
6872 arg_type = ada_check_typedef (arg_type);
6873 type = arg_type->field (fieldno).type ();
6875 /* Handle packed fields. It might be that the field is not packed
6876 relative to its containing structure, but the structure itself is
6877 packed; in this case we must take the bit-field path. */
6878 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6880 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6881 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6883 return ada_value_primitive_packed_val (arg1,
6884 value_contents (arg1).data (),
6885 offset + bit_pos / 8,
6886 bit_pos % 8, bit_size, type);
6889 return value_primitive_field (arg1, offset, fieldno, arg_type);
6892 /* Find field with name NAME in object of type TYPE. If found,
6893 set the following for each argument that is non-null:
6894 - *FIELD_TYPE_P to the field's type;
6895 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6896 an object of that type;
6897 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6898 - *BIT_SIZE_P to its size in bits if the field is packed, and
6900 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6901 fields up to but not including the desired field, or by the total
6902 number of fields if not found. A NULL value of NAME never
6903 matches; the function just counts visible fields in this case.
6905 Notice that we need to handle when a tagged record hierarchy
6906 has some components with the same name, like in this scenario:
6908 type Top_T is tagged record
6914 type Middle_T is new Top.Top_T with record
6915 N : Character := 'a';
6919 type Bottom_T is new Middle.Middle_T with record
6921 C : Character := '5';
6923 A : Character := 'J';
6926 Let's say we now have a variable declared and initialized as follow:
6928 TC : Top_A := new Bottom_T;
6930 And then we use this variable to call this function
6932 procedure Assign (Obj: in out Top_T; TV : Integer);
6936 Assign (Top_T (B), 12);
6938 Now, we're in the debugger, and we're inside that procedure
6939 then and we want to print the value of obj.c:
6941 Usually, the tagged record or one of the parent type owns the
6942 component to print and there's no issue but in this particular
6943 case, what does it mean to ask for Obj.C? Since the actual
6944 type for object is type Bottom_T, it could mean two things: type
6945 component C from the Middle_T view, but also component C from
6946 Bottom_T. So in that "undefined" case, when the component is
6947 not found in the non-resolved type (which includes all the
6948 components of the parent type), then resolve it and see if we
6949 get better luck once expanded.
6951 In the case of homonyms in the derived tagged type, we don't
6952 guaranty anything, and pick the one that's easiest for us
6955 Returns 1 if found, 0 otherwise. */
6958 find_struct_field (const char *name, struct type *type, int offset,
6959 struct type **field_type_p,
6960 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6964 int parent_offset = -1;
6966 type = ada_check_typedef (type);
6968 if (field_type_p != NULL)
6969 *field_type_p = NULL;
6970 if (byte_offset_p != NULL)
6972 if (bit_offset_p != NULL)
6974 if (bit_size_p != NULL)
6977 for (i = 0; i < type->num_fields (); i += 1)
6979 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
6980 type. However, we only need the values to be correct when
6981 the caller asks for them. */
6982 int bit_pos = 0, fld_offset = 0;
6983 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6985 bit_pos = type->field (i).loc_bitpos ();
6986 fld_offset = offset + bit_pos / 8;
6989 const char *t_field_name = type->field (i).name ();
6991 if (t_field_name == NULL)
6994 else if (ada_is_parent_field (type, i))
6996 /* This is a field pointing us to the parent type of a tagged
6997 type. As hinted in this function's documentation, we give
6998 preference to fields in the current record first, so what
6999 we do here is just record the index of this field before
7000 we skip it. If it turns out we couldn't find our field
7001 in the current record, then we'll get back to it and search
7002 inside it whether the field might exist in the parent. */
7008 else if (name != NULL && field_name_match (t_field_name, name))
7010 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7012 if (field_type_p != NULL)
7013 *field_type_p = type->field (i).type ();
7014 if (byte_offset_p != NULL)
7015 *byte_offset_p = fld_offset;
7016 if (bit_offset_p != NULL)
7017 *bit_offset_p = bit_pos % 8;
7018 if (bit_size_p != NULL)
7019 *bit_size_p = bit_size;
7022 else if (ada_is_wrapper_field (type, i))
7024 if (find_struct_field (name, type->field (i).type (), fld_offset,
7025 field_type_p, byte_offset_p, bit_offset_p,
7026 bit_size_p, index_p))
7029 else if (ada_is_variant_part (type, i))
7031 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7034 struct type *field_type
7035 = ada_check_typedef (type->field (i).type ());
7037 for (j = 0; j < field_type->num_fields (); j += 1)
7039 if (find_struct_field (name, field_type->field (j).type (),
7041 + field_type->field (j).loc_bitpos () / 8,
7042 field_type_p, byte_offset_p,
7043 bit_offset_p, bit_size_p, index_p))
7047 else if (index_p != NULL)
7051 /* Field not found so far. If this is a tagged type which
7052 has a parent, try finding that field in the parent now. */
7054 if (parent_offset != -1)
7056 /* As above, only compute the offset when truly needed. */
7057 int fld_offset = offset;
7058 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7060 int bit_pos = type->field (parent_offset).loc_bitpos ();
7061 fld_offset += bit_pos / 8;
7064 if (find_struct_field (name, type->field (parent_offset).type (),
7065 fld_offset, field_type_p, byte_offset_p,
7066 bit_offset_p, bit_size_p, index_p))
7073 /* Number of user-visible fields in record type TYPE. */
7076 num_visible_fields (struct type *type)
7081 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7085 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7086 and search in it assuming it has (class) type TYPE.
7087 If found, return value, else return NULL.
7089 Searches recursively through wrapper fields (e.g., '_parent').
7091 In the case of homonyms in the tagged types, please refer to the
7092 long explanation in find_struct_field's function documentation. */
7094 static struct value *
7095 ada_search_struct_field (const char *name, struct value *arg, int offset,
7099 int parent_offset = -1;
7101 type = ada_check_typedef (type);
7102 for (i = 0; i < type->num_fields (); i += 1)
7104 const char *t_field_name = type->field (i).name ();
7106 if (t_field_name == NULL)
7109 else if (ada_is_parent_field (type, i))
7111 /* This is a field pointing us to the parent type of a tagged
7112 type. As hinted in this function's documentation, we give
7113 preference to fields in the current record first, so what
7114 we do here is just record the index of this field before
7115 we skip it. If it turns out we couldn't find our field
7116 in the current record, then we'll get back to it and search
7117 inside it whether the field might exist in the parent. */
7123 else if (field_name_match (t_field_name, name))
7124 return ada_value_primitive_field (arg, offset, i, type);
7126 else if (ada_is_wrapper_field (type, i))
7128 struct value *v = /* Do not let indent join lines here. */
7129 ada_search_struct_field (name, arg,
7130 offset + type->field (i).loc_bitpos () / 8,
7131 type->field (i).type ());
7137 else if (ada_is_variant_part (type, i))
7139 /* PNH: Do we ever get here? See find_struct_field. */
7141 struct type *field_type = ada_check_typedef (type->field (i).type ());
7142 int var_offset = offset + type->field (i).loc_bitpos () / 8;
7144 for (j = 0; j < field_type->num_fields (); j += 1)
7146 struct value *v = ada_search_struct_field /* Force line
7149 var_offset + field_type->field (j).loc_bitpos () / 8,
7150 field_type->field (j).type ());
7158 /* Field not found so far. If this is a tagged type which
7159 has a parent, try finding that field in the parent now. */
7161 if (parent_offset != -1)
7163 struct value *v = ada_search_struct_field (
7164 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
7165 type->field (parent_offset).type ());
7174 static struct value *ada_index_struct_field_1 (int *, struct value *,
7175 int, struct type *);
7178 /* Return field #INDEX in ARG, where the index is that returned by
7179 * find_struct_field through its INDEX_P argument. Adjust the address
7180 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7181 * If found, return value, else return NULL. */
7183 static struct value *
7184 ada_index_struct_field (int index, struct value *arg, int offset,
7187 return ada_index_struct_field_1 (&index, arg, offset, type);
7191 /* Auxiliary function for ada_index_struct_field. Like
7192 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7195 static struct value *
7196 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7200 type = ada_check_typedef (type);
7202 for (i = 0; i < type->num_fields (); i += 1)
7204 if (type->field (i).name () == NULL)
7206 else if (ada_is_wrapper_field (type, i))
7208 struct value *v = /* Do not let indent join lines here. */
7209 ada_index_struct_field_1 (index_p, arg,
7210 offset + type->field (i).loc_bitpos () / 8,
7211 type->field (i).type ());
7217 else if (ada_is_variant_part (type, i))
7219 /* PNH: Do we ever get here? See ada_search_struct_field,
7220 find_struct_field. */
7221 error (_("Cannot assign this kind of variant record"));
7223 else if (*index_p == 0)
7224 return ada_value_primitive_field (arg, offset, i, type);
7231 /* Return a string representation of type TYPE. */
7234 type_as_string (struct type *type)
7236 string_file tmp_stream;
7238 type_print (type, "", &tmp_stream, -1);
7240 return tmp_stream.release ();
7243 /* Given a type TYPE, look up the type of the component of type named NAME.
7244 If DISPP is non-null, add its byte displacement from the beginning of a
7245 structure (pointed to by a value) of type TYPE to *DISPP (does not
7246 work for packed fields).
7248 Matches any field whose name has NAME as a prefix, possibly
7251 TYPE can be either a struct or union. If REFOK, TYPE may also
7252 be a (pointer or reference)+ to a struct or union, and the
7253 ultimate target type will be searched.
7255 Looks recursively into variant clauses and parent types.
7257 In the case of homonyms in the tagged types, please refer to the
7258 long explanation in find_struct_field's function documentation.
7260 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7261 TYPE is not a type of the right kind. */
7263 static struct type *
7264 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7268 int parent_offset = -1;
7273 if (refok && type != NULL)
7276 type = ada_check_typedef (type);
7277 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7279 type = TYPE_TARGET_TYPE (type);
7283 || (type->code () != TYPE_CODE_STRUCT
7284 && type->code () != TYPE_CODE_UNION))
7289 error (_("Type %s is not a structure or union type"),
7290 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7293 type = to_static_fixed_type (type);
7295 for (i = 0; i < type->num_fields (); i += 1)
7297 const char *t_field_name = type->field (i).name ();
7300 if (t_field_name == NULL)
7303 else if (ada_is_parent_field (type, i))
7305 /* This is a field pointing us to the parent type of a tagged
7306 type. As hinted in this function's documentation, we give
7307 preference to fields in the current record first, so what
7308 we do here is just record the index of this field before
7309 we skip it. If it turns out we couldn't find our field
7310 in the current record, then we'll get back to it and search
7311 inside it whether the field might exist in the parent. */
7317 else if (field_name_match (t_field_name, name))
7318 return type->field (i).type ();
7320 else if (ada_is_wrapper_field (type, i))
7322 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7328 else if (ada_is_variant_part (type, i))
7331 struct type *field_type = ada_check_typedef (type->field (i).type ());
7333 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7335 /* FIXME pnh 2008/01/26: We check for a field that is
7336 NOT wrapped in a struct, since the compiler sometimes
7337 generates these for unchecked variant types. Revisit
7338 if the compiler changes this practice. */
7339 const char *v_field_name = field_type->field (j).name ();
7341 if (v_field_name != NULL
7342 && field_name_match (v_field_name, name))
7343 t = field_type->field (j).type ();
7345 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7355 /* Field not found so far. If this is a tagged type which
7356 has a parent, try finding that field in the parent now. */
7358 if (parent_offset != -1)
7362 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7371 const char *name_str = name != NULL ? name : _("<null>");
7373 error (_("Type %s has no component named %s"),
7374 type_as_string (type).c_str (), name_str);
7380 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7381 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7382 represents an unchecked union (that is, the variant part of a
7383 record that is named in an Unchecked_Union pragma). */
7386 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7388 const char *discrim_name = ada_variant_discrim_name (var_type);
7390 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7394 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7395 within OUTER, determine which variant clause (field number in VAR_TYPE,
7396 numbering from 0) is applicable. Returns -1 if none are. */
7399 ada_which_variant_applies (struct type *var_type, struct value *outer)
7403 const char *discrim_name = ada_variant_discrim_name (var_type);
7404 struct value *discrim;
7405 LONGEST discrim_val;
7407 /* Using plain value_from_contents_and_address here causes problems
7408 because we will end up trying to resolve a type that is currently
7409 being constructed. */
7410 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7411 if (discrim == NULL)
7413 discrim_val = value_as_long (discrim);
7416 for (i = 0; i < var_type->num_fields (); i += 1)
7418 if (ada_is_others_clause (var_type, i))
7420 else if (ada_in_variant (discrim_val, var_type, i))
7424 return others_clause;
7429 /* Dynamic-Sized Records */
7431 /* Strategy: The type ostensibly attached to a value with dynamic size
7432 (i.e., a size that is not statically recorded in the debugging
7433 data) does not accurately reflect the size or layout of the value.
7434 Our strategy is to convert these values to values with accurate,
7435 conventional types that are constructed on the fly. */
7437 /* There is a subtle and tricky problem here. In general, we cannot
7438 determine the size of dynamic records without its data. However,
7439 the 'struct value' data structure, which GDB uses to represent
7440 quantities in the inferior process (the target), requires the size
7441 of the type at the time of its allocation in order to reserve space
7442 for GDB's internal copy of the data. That's why the
7443 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7444 rather than struct value*s.
7446 However, GDB's internal history variables ($1, $2, etc.) are
7447 struct value*s containing internal copies of the data that are not, in
7448 general, the same as the data at their corresponding addresses in
7449 the target. Fortunately, the types we give to these values are all
7450 conventional, fixed-size types (as per the strategy described
7451 above), so that we don't usually have to perform the
7452 'to_fixed_xxx_type' conversions to look at their values.
7453 Unfortunately, there is one exception: if one of the internal
7454 history variables is an array whose elements are unconstrained
7455 records, then we will need to create distinct fixed types for each
7456 element selected. */
7458 /* The upshot of all of this is that many routines take a (type, host
7459 address, target address) triple as arguments to represent a value.
7460 The host address, if non-null, is supposed to contain an internal
7461 copy of the relevant data; otherwise, the program is to consult the
7462 target at the target address. */
7464 /* Assuming that VAL0 represents a pointer value, the result of
7465 dereferencing it. Differs from value_ind in its treatment of
7466 dynamic-sized types. */
7469 ada_value_ind (struct value *val0)
7471 struct value *val = value_ind (val0);
7473 if (ada_is_tagged_type (value_type (val), 0))
7474 val = ada_tag_value_at_base_address (val);
7476 return ada_to_fixed_value (val);
7479 /* The value resulting from dereferencing any "reference to"
7480 qualifiers on VAL0. */
7482 static struct value *
7483 ada_coerce_ref (struct value *val0)
7485 if (value_type (val0)->code () == TYPE_CODE_REF)
7487 struct value *val = val0;
7489 val = coerce_ref (val);
7491 if (ada_is_tagged_type (value_type (val), 0))
7492 val = ada_tag_value_at_base_address (val);
7494 return ada_to_fixed_value (val);
7500 /* Return the bit alignment required for field #F of template type TYPE. */
7503 field_alignment (struct type *type, int f)
7505 const char *name = type->field (f).name ();
7509 /* The field name should never be null, unless the debugging information
7510 is somehow malformed. In this case, we assume the field does not
7511 require any alignment. */
7515 len = strlen (name);
7517 if (!isdigit (name[len - 1]))
7520 if (isdigit (name[len - 2]))
7521 align_offset = len - 2;
7523 align_offset = len - 1;
7525 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7526 return TARGET_CHAR_BIT;
7528 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7531 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7533 static struct symbol *
7534 ada_find_any_type_symbol (const char *name)
7538 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7539 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
7542 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7546 /* Find a type named NAME. Ignores ambiguity. This routine will look
7547 solely for types defined by debug info, it will not search the GDB
7550 static struct type *
7551 ada_find_any_type (const char *name)
7553 struct symbol *sym = ada_find_any_type_symbol (name);
7556 return sym->type ();
7561 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7562 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7563 symbol, in which case it is returned. Otherwise, this looks for
7564 symbols whose name is that of NAME_SYM suffixed with "___XR".
7565 Return symbol if found, and NULL otherwise. */
7568 ada_is_renaming_symbol (struct symbol *name_sym)
7570 const char *name = name_sym->linkage_name ();
7571 return strstr (name, "___XR") != NULL;
7574 /* Because of GNAT encoding conventions, several GDB symbols may match a
7575 given type name. If the type denoted by TYPE0 is to be preferred to
7576 that of TYPE1 for purposes of type printing, return non-zero;
7577 otherwise return 0. */
7580 ada_prefer_type (struct type *type0, struct type *type1)
7584 else if (type0 == NULL)
7586 else if (type1->code () == TYPE_CODE_VOID)
7588 else if (type0->code () == TYPE_CODE_VOID)
7590 else if (type1->name () == NULL && type0->name () != NULL)
7592 else if (ada_is_constrained_packed_array_type (type0))
7594 else if (ada_is_array_descriptor_type (type0)
7595 && !ada_is_array_descriptor_type (type1))
7599 const char *type0_name = type0->name ();
7600 const char *type1_name = type1->name ();
7602 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7603 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7609 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7613 ada_type_name (struct type *type)
7617 return type->name ();
7620 /* Search the list of "descriptive" types associated to TYPE for a type
7621 whose name is NAME. */
7623 static struct type *
7624 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7626 struct type *result, *tmp;
7628 if (ada_ignore_descriptive_types_p)
7631 /* If there no descriptive-type info, then there is no parallel type
7633 if (!HAVE_GNAT_AUX_INFO (type))
7636 result = TYPE_DESCRIPTIVE_TYPE (type);
7637 while (result != NULL)
7639 const char *result_name = ada_type_name (result);
7641 if (result_name == NULL)
7643 warning (_("unexpected null name on descriptive type"));
7647 /* If the names match, stop. */
7648 if (strcmp (result_name, name) == 0)
7651 /* Otherwise, look at the next item on the list, if any. */
7652 if (HAVE_GNAT_AUX_INFO (result))
7653 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7657 /* If not found either, try after having resolved the typedef. */
7662 result = check_typedef (result);
7663 if (HAVE_GNAT_AUX_INFO (result))
7664 result = TYPE_DESCRIPTIVE_TYPE (result);
7670 /* If we didn't find a match, see whether this is a packed array. With
7671 older compilers, the descriptive type information is either absent or
7672 irrelevant when it comes to packed arrays so the above lookup fails.
7673 Fall back to using a parallel lookup by name in this case. */
7674 if (result == NULL && ada_is_constrained_packed_array_type (type))
7675 return ada_find_any_type (name);
7680 /* Find a parallel type to TYPE with the specified NAME, using the
7681 descriptive type taken from the debugging information, if available,
7682 and otherwise using the (slower) name-based method. */
7684 static struct type *
7685 ada_find_parallel_type_with_name (struct type *type, const char *name)
7687 struct type *result = NULL;
7689 if (HAVE_GNAT_AUX_INFO (type))
7690 result = find_parallel_type_by_descriptive_type (type, name);
7692 result = ada_find_any_type (name);
7697 /* Same as above, but specify the name of the parallel type by appending
7698 SUFFIX to the name of TYPE. */
7701 ada_find_parallel_type (struct type *type, const char *suffix)
7704 const char *type_name = ada_type_name (type);
7707 if (type_name == NULL)
7710 len = strlen (type_name);
7712 name = (char *) alloca (len + strlen (suffix) + 1);
7714 strcpy (name, type_name);
7715 strcpy (name + len, suffix);
7717 return ada_find_parallel_type_with_name (type, name);
7720 /* If TYPE is a variable-size record type, return the corresponding template
7721 type describing its fields. Otherwise, return NULL. */
7723 static struct type *
7724 dynamic_template_type (struct type *type)
7726 type = ada_check_typedef (type);
7728 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7729 || ada_type_name (type) == NULL)
7733 int len = strlen (ada_type_name (type));
7735 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7738 return ada_find_parallel_type (type, "___XVE");
7742 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7743 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7746 is_dynamic_field (struct type *templ_type, int field_num)
7748 const char *name = templ_type->field (field_num).name ();
7751 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7752 && strstr (name, "___XVL") != NULL;
7755 /* The index of the variant field of TYPE, or -1 if TYPE does not
7756 represent a variant record type. */
7759 variant_field_index (struct type *type)
7763 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7766 for (f = 0; f < type->num_fields (); f += 1)
7768 if (ada_is_variant_part (type, f))
7774 /* A record type with no fields. */
7776 static struct type *
7777 empty_record (struct type *templ)
7779 struct type *type = alloc_type_copy (templ);
7781 type->set_code (TYPE_CODE_STRUCT);
7782 INIT_NONE_SPECIFIC (type);
7783 type->set_name ("<empty>");
7784 TYPE_LENGTH (type) = 0;
7788 /* An ordinary record type (with fixed-length fields) that describes
7789 the value of type TYPE at VALADDR or ADDRESS (see comments at
7790 the beginning of this section) VAL according to GNAT conventions.
7791 DVAL0 should describe the (portion of a) record that contains any
7792 necessary discriminants. It should be NULL if value_type (VAL) is
7793 an outer-level type (i.e., as opposed to a branch of a variant.) A
7794 variant field (unless unchecked) is replaced by a particular branch
7797 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7798 length are not statically known are discarded. As a consequence,
7799 VALADDR, ADDRESS and DVAL0 are ignored.
7801 NOTE: Limitations: For now, we assume that dynamic fields and
7802 variants occupy whole numbers of bytes. However, they need not be
7806 ada_template_to_fixed_record_type_1 (struct type *type,
7807 const gdb_byte *valaddr,
7808 CORE_ADDR address, struct value *dval0,
7809 int keep_dynamic_fields)
7811 struct value *mark = value_mark ();
7814 int nfields, bit_len;
7820 /* Compute the number of fields in this record type that are going
7821 to be processed: unless keep_dynamic_fields, this includes only
7822 fields whose position and length are static will be processed. */
7823 if (keep_dynamic_fields)
7824 nfields = type->num_fields ();
7828 while (nfields < type->num_fields ()
7829 && !ada_is_variant_part (type, nfields)
7830 && !is_dynamic_field (type, nfields))
7834 rtype = alloc_type_copy (type);
7835 rtype->set_code (TYPE_CODE_STRUCT);
7836 INIT_NONE_SPECIFIC (rtype);
7837 rtype->set_num_fields (nfields);
7839 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7840 rtype->set_name (ada_type_name (type));
7841 rtype->set_is_fixed_instance (true);
7847 for (f = 0; f < nfields; f += 1)
7849 off = align_up (off, field_alignment (type, f))
7850 + type->field (f).loc_bitpos ();
7851 rtype->field (f).set_loc_bitpos (off);
7852 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7854 if (ada_is_variant_part (type, f))
7859 else if (is_dynamic_field (type, f))
7861 const gdb_byte *field_valaddr = valaddr;
7862 CORE_ADDR field_address = address;
7863 struct type *field_type =
7864 TYPE_TARGET_TYPE (type->field (f).type ());
7868 /* Using plain value_from_contents_and_address here
7869 causes problems because we will end up trying to
7870 resolve a type that is currently being
7872 dval = value_from_contents_and_address_unresolved (rtype,
7875 rtype = value_type (dval);
7880 /* If the type referenced by this field is an aligner type, we need
7881 to unwrap that aligner type, because its size might not be set.
7882 Keeping the aligner type would cause us to compute the wrong
7883 size for this field, impacting the offset of the all the fields
7884 that follow this one. */
7885 if (ada_is_aligner_type (field_type))
7887 long field_offset = type->field (f).loc_bitpos ();
7889 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7890 field_address = cond_offset_target (field_address, field_offset);
7891 field_type = ada_aligned_type (field_type);
7894 field_valaddr = cond_offset_host (field_valaddr,
7895 off / TARGET_CHAR_BIT);
7896 field_address = cond_offset_target (field_address,
7897 off / TARGET_CHAR_BIT);
7899 /* Get the fixed type of the field. Note that, in this case,
7900 we do not want to get the real type out of the tag: if
7901 the current field is the parent part of a tagged record,
7902 we will get the tag of the object. Clearly wrong: the real
7903 type of the parent is not the real type of the child. We
7904 would end up in an infinite loop. */
7905 field_type = ada_get_base_type (field_type);
7906 field_type = ada_to_fixed_type (field_type, field_valaddr,
7907 field_address, dval, 0);
7909 rtype->field (f).set_type (field_type);
7910 rtype->field (f).set_name (type->field (f).name ());
7911 /* The multiplication can potentially overflow. But because
7912 the field length has been size-checked just above, and
7913 assuming that the maximum size is a reasonable value,
7914 an overflow should not happen in practice. So rather than
7915 adding overflow recovery code to this already complex code,
7916 we just assume that it's not going to happen. */
7918 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7922 /* Note: If this field's type is a typedef, it is important
7923 to preserve the typedef layer.
7925 Otherwise, we might be transforming a typedef to a fat
7926 pointer (encoding a pointer to an unconstrained array),
7927 into a basic fat pointer (encoding an unconstrained
7928 array). As both types are implemented using the same
7929 structure, the typedef is the only clue which allows us
7930 to distinguish between the two options. Stripping it
7931 would prevent us from printing this field appropriately. */
7932 rtype->field (f).set_type (type->field (f).type ());
7933 rtype->field (f).set_name (type->field (f).name ());
7934 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7936 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7939 struct type *field_type = type->field (f).type ();
7941 /* We need to be careful of typedefs when computing
7942 the length of our field. If this is a typedef,
7943 get the length of the target type, not the length
7945 if (field_type->code () == TYPE_CODE_TYPEDEF)
7946 field_type = ada_typedef_target_type (field_type);
7949 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7952 if (off + fld_bit_len > bit_len)
7953 bit_len = off + fld_bit_len;
7955 TYPE_LENGTH (rtype) =
7956 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7959 /* We handle the variant part, if any, at the end because of certain
7960 odd cases in which it is re-ordered so as NOT to be the last field of
7961 the record. This can happen in the presence of representation
7963 if (variant_field >= 0)
7965 struct type *branch_type;
7967 off = rtype->field (variant_field).loc_bitpos ();
7971 /* Using plain value_from_contents_and_address here causes
7972 problems because we will end up trying to resolve a type
7973 that is currently being constructed. */
7974 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7976 rtype = value_type (dval);
7982 to_fixed_variant_branch_type
7983 (type->field (variant_field).type (),
7984 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7985 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7986 if (branch_type == NULL)
7988 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7989 rtype->field (f - 1) = rtype->field (f);
7990 rtype->set_num_fields (rtype->num_fields () - 1);
7994 rtype->field (variant_field).set_type (branch_type);
7995 rtype->field (variant_field).set_name ("S");
7997 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7999 if (off + fld_bit_len > bit_len)
8000 bit_len = off + fld_bit_len;
8001 TYPE_LENGTH (rtype) =
8002 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8006 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8007 should contain the alignment of that record, which should be a strictly
8008 positive value. If null or negative, then something is wrong, most
8009 probably in the debug info. In that case, we don't round up the size
8010 of the resulting type. If this record is not part of another structure,
8011 the current RTYPE length might be good enough for our purposes. */
8012 if (TYPE_LENGTH (type) <= 0)
8015 warning (_("Invalid type size for `%s' detected: %s."),
8016 rtype->name (), pulongest (TYPE_LENGTH (type)));
8018 warning (_("Invalid type size for <unnamed> detected: %s."),
8019 pulongest (TYPE_LENGTH (type)));
8023 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8024 TYPE_LENGTH (type));
8027 value_free_to_mark (mark);
8031 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8034 static struct type *
8035 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8036 CORE_ADDR address, struct value *dval0)
8038 return ada_template_to_fixed_record_type_1 (type, valaddr,
8042 /* An ordinary record type in which ___XVL-convention fields and
8043 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8044 static approximations, containing all possible fields. Uses
8045 no runtime values. Useless for use in values, but that's OK,
8046 since the results are used only for type determinations. Works on both
8047 structs and unions. Representation note: to save space, we memorize
8048 the result of this function in the TYPE_TARGET_TYPE of the
8051 static struct type *
8052 template_to_static_fixed_type (struct type *type0)
8058 /* No need no do anything if the input type is already fixed. */
8059 if (type0->is_fixed_instance ())
8062 /* Likewise if we already have computed the static approximation. */
8063 if (TYPE_TARGET_TYPE (type0) != NULL)
8064 return TYPE_TARGET_TYPE (type0);
8066 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8068 nfields = type0->num_fields ();
8070 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8071 recompute all over next time. */
8072 TYPE_TARGET_TYPE (type0) = type;
8074 for (f = 0; f < nfields; f += 1)
8076 struct type *field_type = type0->field (f).type ();
8077 struct type *new_type;
8079 if (is_dynamic_field (type0, f))
8081 field_type = ada_check_typedef (field_type);
8082 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8085 new_type = static_unwrap_type (field_type);
8087 if (new_type != field_type)
8089 /* Clone TYPE0 only the first time we get a new field type. */
8092 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8093 type->set_code (type0->code ());
8094 INIT_NONE_SPECIFIC (type);
8095 type->set_num_fields (nfields);
8099 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8100 memcpy (fields, type0->fields (),
8101 sizeof (struct field) * nfields);
8102 type->set_fields (fields);
8104 type->set_name (ada_type_name (type0));
8105 type->set_is_fixed_instance (true);
8106 TYPE_LENGTH (type) = 0;
8108 type->field (f).set_type (new_type);
8109 type->field (f).set_name (type0->field (f).name ());
8116 /* Given an object of type TYPE whose contents are at VALADDR and
8117 whose address in memory is ADDRESS, returns a revision of TYPE,
8118 which should be a non-dynamic-sized record, in which the variant
8119 part, if any, is replaced with the appropriate branch. Looks
8120 for discriminant values in DVAL0, which can be NULL if the record
8121 contains the necessary discriminant values. */
8123 static struct type *
8124 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8125 CORE_ADDR address, struct value *dval0)
8127 struct value *mark = value_mark ();
8130 struct type *branch_type;
8131 int nfields = type->num_fields ();
8132 int variant_field = variant_field_index (type);
8134 if (variant_field == -1)
8139 dval = value_from_contents_and_address (type, valaddr, address);
8140 type = value_type (dval);
8145 rtype = alloc_type_copy (type);
8146 rtype->set_code (TYPE_CODE_STRUCT);
8147 INIT_NONE_SPECIFIC (rtype);
8148 rtype->set_num_fields (nfields);
8151 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8152 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8153 rtype->set_fields (fields);
8155 rtype->set_name (ada_type_name (type));
8156 rtype->set_is_fixed_instance (true);
8157 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8159 branch_type = to_fixed_variant_branch_type
8160 (type->field (variant_field).type (),
8161 cond_offset_host (valaddr,
8162 type->field (variant_field).loc_bitpos ()
8164 cond_offset_target (address,
8165 type->field (variant_field).loc_bitpos ()
8166 / TARGET_CHAR_BIT), dval);
8167 if (branch_type == NULL)
8171 for (f = variant_field + 1; f < nfields; f += 1)
8172 rtype->field (f - 1) = rtype->field (f);
8173 rtype->set_num_fields (rtype->num_fields () - 1);
8177 rtype->field (variant_field).set_type (branch_type);
8178 rtype->field (variant_field).set_name ("S");
8179 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8180 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8182 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8184 value_free_to_mark (mark);
8188 /* An ordinary record type (with fixed-length fields) that describes
8189 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8190 beginning of this section]. Any necessary discriminants' values
8191 should be in DVAL, a record value; it may be NULL if the object
8192 at ADDR itself contains any necessary discriminant values.
8193 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8194 values from the record are needed. Except in the case that DVAL,
8195 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8196 unchecked) is replaced by a particular branch of the variant.
8198 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8199 is questionable and may be removed. It can arise during the
8200 processing of an unconstrained-array-of-record type where all the
8201 variant branches have exactly the same size. This is because in
8202 such cases, the compiler does not bother to use the XVS convention
8203 when encoding the record. I am currently dubious of this
8204 shortcut and suspect the compiler should be altered. FIXME. */
8206 static struct type *
8207 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8208 CORE_ADDR address, struct value *dval)
8210 struct type *templ_type;
8212 if (type0->is_fixed_instance ())
8215 templ_type = dynamic_template_type (type0);
8217 if (templ_type != NULL)
8218 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8219 else if (variant_field_index (type0) >= 0)
8221 if (dval == NULL && valaddr == NULL && address == 0)
8223 return to_record_with_fixed_variant_part (type0, valaddr, address,
8228 type0->set_is_fixed_instance (true);
8234 /* An ordinary record type (with fixed-length fields) that describes
8235 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8236 union type. Any necessary discriminants' values should be in DVAL,
8237 a record value. That is, this routine selects the appropriate
8238 branch of the union at ADDR according to the discriminant value
8239 indicated in the union's type name. Returns VAR_TYPE0 itself if
8240 it represents a variant subject to a pragma Unchecked_Union. */
8242 static struct type *
8243 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8244 CORE_ADDR address, struct value *dval)
8247 struct type *templ_type;
8248 struct type *var_type;
8250 if (var_type0->code () == TYPE_CODE_PTR)
8251 var_type = TYPE_TARGET_TYPE (var_type0);
8253 var_type = var_type0;
8255 templ_type = ada_find_parallel_type (var_type, "___XVU");
8257 if (templ_type != NULL)
8258 var_type = templ_type;
8260 if (is_unchecked_variant (var_type, value_type (dval)))
8262 which = ada_which_variant_applies (var_type, dval);
8265 return empty_record (var_type);
8266 else if (is_dynamic_field (var_type, which))
8267 return to_fixed_record_type
8268 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8269 valaddr, address, dval);
8270 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8272 to_fixed_record_type
8273 (var_type->field (which).type (), valaddr, address, dval);
8275 return var_type->field (which).type ();
8278 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8279 ENCODING_TYPE, a type following the GNAT conventions for discrete
8280 type encodings, only carries redundant information. */
8283 ada_is_redundant_range_encoding (struct type *range_type,
8284 struct type *encoding_type)
8286 const char *bounds_str;
8290 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8292 if (get_base_type (range_type)->code ()
8293 != get_base_type (encoding_type)->code ())
8295 /* The compiler probably used a simple base type to describe
8296 the range type instead of the range's actual base type,
8297 expecting us to get the real base type from the encoding
8298 anyway. In this situation, the encoding cannot be ignored
8303 if (is_dynamic_type (range_type))
8306 if (encoding_type->name () == NULL)
8309 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8310 if (bounds_str == NULL)
8313 n = 8; /* Skip "___XDLU_". */
8314 if (!ada_scan_number (bounds_str, n, &lo, &n))
8316 if (range_type->bounds ()->low.const_val () != lo)
8319 n += 2; /* Skip the "__" separator between the two bounds. */
8320 if (!ada_scan_number (bounds_str, n, &hi, &n))
8322 if (range_type->bounds ()->high.const_val () != hi)
8328 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8329 a type following the GNAT encoding for describing array type
8330 indices, only carries redundant information. */
8333 ada_is_redundant_index_type_desc (struct type *array_type,
8334 struct type *desc_type)
8336 struct type *this_layer = check_typedef (array_type);
8339 for (i = 0; i < desc_type->num_fields (); i++)
8341 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8342 desc_type->field (i).type ()))
8344 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8350 /* Assuming that TYPE0 is an array type describing the type of a value
8351 at ADDR, and that DVAL describes a record containing any
8352 discriminants used in TYPE0, returns a type for the value that
8353 contains no dynamic components (that is, no components whose sizes
8354 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8355 true, gives an error message if the resulting type's size is over
8358 static struct type *
8359 to_fixed_array_type (struct type *type0, struct value *dval,
8362 struct type *index_type_desc;
8363 struct type *result;
8364 int constrained_packed_array_p;
8365 static const char *xa_suffix = "___XA";
8367 type0 = ada_check_typedef (type0);
8368 if (type0->is_fixed_instance ())
8371 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8372 if (constrained_packed_array_p)
8374 type0 = decode_constrained_packed_array_type (type0);
8375 if (type0 == nullptr)
8376 error (_("could not decode constrained packed array type"));
8379 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8381 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8382 encoding suffixed with 'P' may still be generated. If so,
8383 it should be used to find the XA type. */
8385 if (index_type_desc == NULL)
8387 const char *type_name = ada_type_name (type0);
8389 if (type_name != NULL)
8391 const int len = strlen (type_name);
8392 char *name = (char *) alloca (len + strlen (xa_suffix));
8394 if (type_name[len - 1] == 'P')
8396 strcpy (name, type_name);
8397 strcpy (name + len - 1, xa_suffix);
8398 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8403 ada_fixup_array_indexes_type (index_type_desc);
8404 if (index_type_desc != NULL
8405 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8407 /* Ignore this ___XA parallel type, as it does not bring any
8408 useful information. This allows us to avoid creating fixed
8409 versions of the array's index types, which would be identical
8410 to the original ones. This, in turn, can also help avoid
8411 the creation of fixed versions of the array itself. */
8412 index_type_desc = NULL;
8415 if (index_type_desc == NULL)
8417 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8419 /* NOTE: elt_type---the fixed version of elt_type0---should never
8420 depend on the contents of the array in properly constructed
8422 /* Create a fixed version of the array element type.
8423 We're not providing the address of an element here,
8424 and thus the actual object value cannot be inspected to do
8425 the conversion. This should not be a problem, since arrays of
8426 unconstrained objects are not allowed. In particular, all
8427 the elements of an array of a tagged type should all be of
8428 the same type specified in the debugging info. No need to
8429 consult the object tag. */
8430 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8432 /* Make sure we always create a new array type when dealing with
8433 packed array types, since we're going to fix-up the array
8434 type length and element bitsize a little further down. */
8435 if (elt_type0 == elt_type && !constrained_packed_array_p)
8438 result = create_array_type (alloc_type_copy (type0),
8439 elt_type, type0->index_type ());
8444 struct type *elt_type0;
8447 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8448 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8450 /* NOTE: result---the fixed version of elt_type0---should never
8451 depend on the contents of the array in properly constructed
8453 /* Create a fixed version of the array element type.
8454 We're not providing the address of an element here,
8455 and thus the actual object value cannot be inspected to do
8456 the conversion. This should not be a problem, since arrays of
8457 unconstrained objects are not allowed. In particular, all
8458 the elements of an array of a tagged type should all be of
8459 the same type specified in the debugging info. No need to
8460 consult the object tag. */
8462 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8465 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8467 struct type *range_type =
8468 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8470 result = create_array_type (alloc_type_copy (elt_type0),
8471 result, range_type);
8472 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8476 /* We want to preserve the type name. This can be useful when
8477 trying to get the type name of a value that has already been
8478 printed (for instance, if the user did "print VAR; whatis $". */
8479 result->set_name (type0->name ());
8481 if (constrained_packed_array_p)
8483 /* So far, the resulting type has been created as if the original
8484 type was a regular (non-packed) array type. As a result, the
8485 bitsize of the array elements needs to be set again, and the array
8486 length needs to be recomputed based on that bitsize. */
8487 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8488 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8490 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8491 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8492 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8493 TYPE_LENGTH (result)++;
8496 result->set_is_fixed_instance (true);
8501 /* A standard type (containing no dynamically sized components)
8502 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8503 DVAL describes a record containing any discriminants used in TYPE0,
8504 and may be NULL if there are none, or if the object of type TYPE at
8505 ADDRESS or in VALADDR contains these discriminants.
8507 If CHECK_TAG is not null, in the case of tagged types, this function
8508 attempts to locate the object's tag and use it to compute the actual
8509 type. However, when ADDRESS is null, we cannot use it to determine the
8510 location of the tag, and therefore compute the tagged type's actual type.
8511 So we return the tagged type without consulting the tag. */
8513 static struct type *
8514 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8515 CORE_ADDR address, struct value *dval, int check_tag)
8517 type = ada_check_typedef (type);
8519 /* Only un-fixed types need to be handled here. */
8520 if (!HAVE_GNAT_AUX_INFO (type))
8523 switch (type->code ())
8527 case TYPE_CODE_STRUCT:
8529 struct type *static_type = to_static_fixed_type (type);
8530 struct type *fixed_record_type =
8531 to_fixed_record_type (type, valaddr, address, NULL);
8533 /* If STATIC_TYPE is a tagged type and we know the object's address,
8534 then we can determine its tag, and compute the object's actual
8535 type from there. Note that we have to use the fixed record
8536 type (the parent part of the record may have dynamic fields
8537 and the way the location of _tag is expressed may depend on
8540 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8543 value_tag_from_contents_and_address
8547 struct type *real_type = type_from_tag (tag);
8549 value_from_contents_and_address (fixed_record_type,
8552 fixed_record_type = value_type (obj);
8553 if (real_type != NULL)
8554 return to_fixed_record_type
8556 value_address (ada_tag_value_at_base_address (obj)), NULL);
8559 /* Check to see if there is a parallel ___XVZ variable.
8560 If there is, then it provides the actual size of our type. */
8561 else if (ada_type_name (fixed_record_type) != NULL)
8563 const char *name = ada_type_name (fixed_record_type);
8565 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8566 bool xvz_found = false;
8569 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8572 xvz_found = get_int_var_value (xvz_name, size);
8574 catch (const gdb_exception_error &except)
8576 /* We found the variable, but somehow failed to read
8577 its value. Rethrow the same error, but with a little
8578 bit more information, to help the user understand
8579 what went wrong (Eg: the variable might have been
8581 throw_error (except.error,
8582 _("unable to read value of %s (%s)"),
8583 xvz_name, except.what ());
8586 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8588 fixed_record_type = copy_type (fixed_record_type);
8589 TYPE_LENGTH (fixed_record_type) = size;
8591 /* The FIXED_RECORD_TYPE may have be a stub. We have
8592 observed this when the debugging info is STABS, and
8593 apparently it is something that is hard to fix.
8595 In practice, we don't need the actual type definition
8596 at all, because the presence of the XVZ variable allows us
8597 to assume that there must be a XVS type as well, which we
8598 should be able to use later, when we need the actual type
8601 In the meantime, pretend that the "fixed" type we are
8602 returning is NOT a stub, because this can cause trouble
8603 when using this type to create new types targeting it.
8604 Indeed, the associated creation routines often check
8605 whether the target type is a stub and will try to replace
8606 it, thus using a type with the wrong size. This, in turn,
8607 might cause the new type to have the wrong size too.
8608 Consider the case of an array, for instance, where the size
8609 of the array is computed from the number of elements in
8610 our array multiplied by the size of its element. */
8611 fixed_record_type->set_is_stub (false);
8614 return fixed_record_type;
8616 case TYPE_CODE_ARRAY:
8617 return to_fixed_array_type (type, dval, 1);
8618 case TYPE_CODE_UNION:
8622 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8626 /* The same as ada_to_fixed_type_1, except that it preserves the type
8627 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8629 The typedef layer needs be preserved in order to differentiate between
8630 arrays and array pointers when both types are implemented using the same
8631 fat pointer. In the array pointer case, the pointer is encoded as
8632 a typedef of the pointer type. For instance, considering:
8634 type String_Access is access String;
8635 S1 : String_Access := null;
8637 To the debugger, S1 is defined as a typedef of type String. But
8638 to the user, it is a pointer. So if the user tries to print S1,
8639 we should not dereference the array, but print the array address
8642 If we didn't preserve the typedef layer, we would lose the fact that
8643 the type is to be presented as a pointer (needs de-reference before
8644 being printed). And we would also use the source-level type name. */
8647 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8648 CORE_ADDR address, struct value *dval, int check_tag)
8651 struct type *fixed_type =
8652 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8654 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8655 then preserve the typedef layer.
8657 Implementation note: We can only check the main-type portion of
8658 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8659 from TYPE now returns a type that has the same instance flags
8660 as TYPE. For instance, if TYPE is a "typedef const", and its
8661 target type is a "struct", then the typedef elimination will return
8662 a "const" version of the target type. See check_typedef for more
8663 details about how the typedef layer elimination is done.
8665 brobecker/2010-11-19: It seems to me that the only case where it is
8666 useful to preserve the typedef layer is when dealing with fat pointers.
8667 Perhaps, we could add a check for that and preserve the typedef layer
8668 only in that situation. But this seems unnecessary so far, probably
8669 because we call check_typedef/ada_check_typedef pretty much everywhere.
8671 if (type->code () == TYPE_CODE_TYPEDEF
8672 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8673 == TYPE_MAIN_TYPE (fixed_type)))
8679 /* A standard (static-sized) type corresponding as well as possible to
8680 TYPE0, but based on no runtime data. */
8682 static struct type *
8683 to_static_fixed_type (struct type *type0)
8690 if (type0->is_fixed_instance ())
8693 type0 = ada_check_typedef (type0);
8695 switch (type0->code ())
8699 case TYPE_CODE_STRUCT:
8700 type = dynamic_template_type (type0);
8702 return template_to_static_fixed_type (type);
8704 return template_to_static_fixed_type (type0);
8705 case TYPE_CODE_UNION:
8706 type = ada_find_parallel_type (type0, "___XVU");
8708 return template_to_static_fixed_type (type);
8710 return template_to_static_fixed_type (type0);
8714 /* A static approximation of TYPE with all type wrappers removed. */
8716 static struct type *
8717 static_unwrap_type (struct type *type)
8719 if (ada_is_aligner_type (type))
8721 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8722 if (ada_type_name (type1) == NULL)
8723 type1->set_name (ada_type_name (type));
8725 return static_unwrap_type (type1);
8729 struct type *raw_real_type = ada_get_base_type (type);
8731 if (raw_real_type == type)
8734 return to_static_fixed_type (raw_real_type);
8738 /* In some cases, incomplete and private types require
8739 cross-references that are not resolved as records (for example,
8741 type FooP is access Foo;
8743 type Foo is array ...;
8744 ). In these cases, since there is no mechanism for producing
8745 cross-references to such types, we instead substitute for FooP a
8746 stub enumeration type that is nowhere resolved, and whose tag is
8747 the name of the actual type. Call these types "non-record stubs". */
8749 /* A type equivalent to TYPE that is not a non-record stub, if one
8750 exists, otherwise TYPE. */
8753 ada_check_typedef (struct type *type)
8758 /* If our type is an access to an unconstrained array, which is encoded
8759 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8760 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8761 what allows us to distinguish between fat pointers that represent
8762 array types, and fat pointers that represent array access types
8763 (in both cases, the compiler implements them as fat pointers). */
8764 if (ada_is_access_to_unconstrained_array (type))
8767 type = check_typedef (type);
8768 if (type == NULL || type->code () != TYPE_CODE_ENUM
8769 || !type->is_stub ()
8770 || type->name () == NULL)
8774 const char *name = type->name ();
8775 struct type *type1 = ada_find_any_type (name);
8780 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8781 stubs pointing to arrays, as we don't create symbols for array
8782 types, only for the typedef-to-array types). If that's the case,
8783 strip the typedef layer. */
8784 if (type1->code () == TYPE_CODE_TYPEDEF)
8785 type1 = ada_check_typedef (type1);
8791 /* A value representing the data at VALADDR/ADDRESS as described by
8792 type TYPE0, but with a standard (static-sized) type that correctly
8793 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8794 type, then return VAL0 [this feature is simply to avoid redundant
8795 creation of struct values]. */
8797 static struct value *
8798 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8801 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8803 if (type == type0 && val0 != NULL)
8806 if (VALUE_LVAL (val0) != lval_memory)
8808 /* Our value does not live in memory; it could be a convenience
8809 variable, for instance. Create a not_lval value using val0's
8811 return value_from_contents (type, value_contents (val0).data ());
8814 return value_from_contents_and_address (type, 0, address);
8817 /* A value representing VAL, but with a standard (static-sized) type
8818 that correctly describes it. Does not necessarily create a new
8822 ada_to_fixed_value (struct value *val)
8824 val = unwrap_value (val);
8825 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8832 /* Table mapping attribute numbers to names.
8833 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8835 static const char * const attribute_names[] = {
8853 ada_attribute_name (enum exp_opcode n)
8855 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8856 return attribute_names[n - OP_ATR_FIRST + 1];
8858 return attribute_names[0];
8861 /* Evaluate the 'POS attribute applied to ARG. */
8864 pos_atr (struct value *arg)
8866 struct value *val = coerce_ref (arg);
8867 struct type *type = value_type (val);
8869 if (!discrete_type_p (type))
8870 error (_("'POS only defined on discrete types"));
8872 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8873 if (!result.has_value ())
8874 error (_("enumeration value is invalid: can't find 'POS"));
8880 ada_pos_atr (struct type *expect_type,
8881 struct expression *exp,
8882 enum noside noside, enum exp_opcode op,
8885 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8886 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8887 return value_zero (type, not_lval);
8888 return value_from_longest (type, pos_atr (arg));
8891 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8893 static struct value *
8894 val_atr (struct type *type, LONGEST val)
8896 gdb_assert (discrete_type_p (type));
8897 if (type->code () == TYPE_CODE_RANGE)
8898 type = TYPE_TARGET_TYPE (type);
8899 if (type->code () == TYPE_CODE_ENUM)
8901 if (val < 0 || val >= type->num_fields ())
8902 error (_("argument to 'VAL out of range"));
8903 val = type->field (val).loc_enumval ();
8905 return value_from_longest (type, val);
8909 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8911 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8912 return value_zero (type, not_lval);
8914 if (!discrete_type_p (type))
8915 error (_("'VAL only defined on discrete types"));
8916 if (!integer_type_p (value_type (arg)))
8917 error (_("'VAL requires integral argument"));
8919 return val_atr (type, value_as_long (arg));
8925 /* True if TYPE appears to be an Ada character type.
8926 [At the moment, this is true only for Character and Wide_Character;
8927 It is a heuristic test that could stand improvement]. */
8930 ada_is_character_type (struct type *type)
8934 /* If the type code says it's a character, then assume it really is,
8935 and don't check any further. */
8936 if (type->code () == TYPE_CODE_CHAR)
8939 /* Otherwise, assume it's a character type iff it is a discrete type
8940 with a known character type name. */
8941 name = ada_type_name (type);
8942 return (name != NULL
8943 && (type->code () == TYPE_CODE_INT
8944 || type->code () == TYPE_CODE_RANGE)
8945 && (strcmp (name, "character") == 0
8946 || strcmp (name, "wide_character") == 0
8947 || strcmp (name, "wide_wide_character") == 0
8948 || strcmp (name, "unsigned char") == 0));
8951 /* True if TYPE appears to be an Ada string type. */
8954 ada_is_string_type (struct type *type)
8956 type = ada_check_typedef (type);
8958 && type->code () != TYPE_CODE_PTR
8959 && (ada_is_simple_array_type (type)
8960 || ada_is_array_descriptor_type (type))
8961 && ada_array_arity (type) == 1)
8963 struct type *elttype = ada_array_element_type (type, 1);
8965 return ada_is_character_type (elttype);
8971 /* The compiler sometimes provides a parallel XVS type for a given
8972 PAD type. Normally, it is safe to follow the PAD type directly,
8973 but older versions of the compiler have a bug that causes the offset
8974 of its "F" field to be wrong. Following that field in that case
8975 would lead to incorrect results, but this can be worked around
8976 by ignoring the PAD type and using the associated XVS type instead.
8978 Set to True if the debugger should trust the contents of PAD types.
8979 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8980 static bool trust_pad_over_xvs = true;
8982 /* True if TYPE is a struct type introduced by the compiler to force the
8983 alignment of a value. Such types have a single field with a
8984 distinctive name. */
8987 ada_is_aligner_type (struct type *type)
8989 type = ada_check_typedef (type);
8991 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8994 return (type->code () == TYPE_CODE_STRUCT
8995 && type->num_fields () == 1
8996 && strcmp (type->field (0).name (), "F") == 0);
8999 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9000 the parallel type. */
9003 ada_get_base_type (struct type *raw_type)
9005 struct type *real_type_namer;
9006 struct type *raw_real_type;
9008 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9011 if (ada_is_aligner_type (raw_type))
9012 /* The encoding specifies that we should always use the aligner type.
9013 So, even if this aligner type has an associated XVS type, we should
9016 According to the compiler gurus, an XVS type parallel to an aligner
9017 type may exist because of a stabs limitation. In stabs, aligner
9018 types are empty because the field has a variable-sized type, and
9019 thus cannot actually be used as an aligner type. As a result,
9020 we need the associated parallel XVS type to decode the type.
9021 Since the policy in the compiler is to not change the internal
9022 representation based on the debugging info format, we sometimes
9023 end up having a redundant XVS type parallel to the aligner type. */
9026 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9027 if (real_type_namer == NULL
9028 || real_type_namer->code () != TYPE_CODE_STRUCT
9029 || real_type_namer->num_fields () != 1)
9032 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9034 /* This is an older encoding form where the base type needs to be
9035 looked up by name. We prefer the newer encoding because it is
9037 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
9038 if (raw_real_type == NULL)
9041 return raw_real_type;
9044 /* The field in our XVS type is a reference to the base type. */
9045 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9048 /* The type of value designated by TYPE, with all aligners removed. */
9051 ada_aligned_type (struct type *type)
9053 if (ada_is_aligner_type (type))
9054 return ada_aligned_type (type->field (0).type ());
9056 return ada_get_base_type (type);
9060 /* The address of the aligned value in an object at address VALADDR
9061 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9064 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9066 if (ada_is_aligner_type (type))
9067 return ada_aligned_value_addr
9068 (type->field (0).type (),
9069 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
9076 /* The printed representation of an enumeration literal with encoded
9077 name NAME. The value is good to the next call of ada_enum_name. */
9079 ada_enum_name (const char *name)
9081 static std::string storage;
9084 /* First, unqualify the enumeration name:
9085 1. Search for the last '.' character. If we find one, then skip
9086 all the preceding characters, the unqualified name starts
9087 right after that dot.
9088 2. Otherwise, we may be debugging on a target where the compiler
9089 translates dots into "__". Search forward for double underscores,
9090 but stop searching when we hit an overloading suffix, which is
9091 of the form "__" followed by digits. */
9093 tmp = strrchr (name, '.');
9098 while ((tmp = strstr (name, "__")) != NULL)
9100 if (isdigit (tmp[2]))
9111 if (name[1] == 'U' || name[1] == 'W')
9114 if (name[1] == 'W' && name[2] == 'W')
9116 /* Also handle the QWW case. */
9119 if (sscanf (name + offset, "%x", &v) != 1)
9122 else if (((name[1] >= '0' && name[1] <= '9')
9123 || (name[1] >= 'a' && name[1] <= 'z'))
9126 storage = string_printf ("'%c'", name[1]);
9127 return storage.c_str ();
9132 if (isascii (v) && isprint (v))
9133 storage = string_printf ("'%c'", v);
9134 else if (name[1] == 'U')
9135 storage = string_printf ("'[\"%02x\"]'", v);
9136 else if (name[2] != 'W')
9137 storage = string_printf ("'[\"%04x\"]'", v);
9139 storage = string_printf ("'[\"%06x\"]'", v);
9141 return storage.c_str ();
9145 tmp = strstr (name, "__");
9147 tmp = strstr (name, "$");
9150 storage = std::string (name, tmp - name);
9151 return storage.c_str ();
9158 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9161 static struct value *
9162 unwrap_value (struct value *val)
9164 struct type *type = ada_check_typedef (value_type (val));
9166 if (ada_is_aligner_type (type))
9168 struct value *v = ada_value_struct_elt (val, "F", 0);
9169 struct type *val_type = ada_check_typedef (value_type (v));
9171 if (ada_type_name (val_type) == NULL)
9172 val_type->set_name (ada_type_name (type));
9174 return unwrap_value (v);
9178 struct type *raw_real_type =
9179 ada_check_typedef (ada_get_base_type (type));
9181 /* If there is no parallel XVS or XVE type, then the value is
9182 already unwrapped. Return it without further modification. */
9183 if ((type == raw_real_type)
9184 && ada_find_parallel_type (type, "___XVE") == NULL)
9188 coerce_unspec_val_to_type
9189 (val, ada_to_fixed_type (raw_real_type, 0,
9190 value_address (val),
9195 /* Given two array types T1 and T2, return nonzero iff both arrays
9196 contain the same number of elements. */
9199 ada_same_array_size_p (struct type *t1, struct type *t2)
9201 LONGEST lo1, hi1, lo2, hi2;
9203 /* Get the array bounds in order to verify that the size of
9204 the two arrays match. */
9205 if (!get_array_bounds (t1, &lo1, &hi1)
9206 || !get_array_bounds (t2, &lo2, &hi2))
9207 error (_("unable to determine array bounds"));
9209 /* To make things easier for size comparison, normalize a bit
9210 the case of empty arrays by making sure that the difference
9211 between upper bound and lower bound is always -1. */
9217 return (hi1 - lo1 == hi2 - lo2);
9220 /* Assuming that VAL is an array of integrals, and TYPE represents
9221 an array with the same number of elements, but with wider integral
9222 elements, return an array "casted" to TYPE. In practice, this
9223 means that the returned array is built by casting each element
9224 of the original array into TYPE's (wider) element type. */
9226 static struct value *
9227 ada_promote_array_of_integrals (struct type *type, struct value *val)
9229 struct type *elt_type = TYPE_TARGET_TYPE (type);
9233 /* Verify that both val and type are arrays of scalars, and
9234 that the size of val's elements is smaller than the size
9235 of type's element. */
9236 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9237 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9238 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9239 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9240 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9241 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9243 if (!get_array_bounds (type, &lo, &hi))
9244 error (_("unable to determine array bounds"));
9246 value *res = allocate_value (type);
9247 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
9249 /* Promote each array element. */
9250 for (i = 0; i < hi - lo + 1; i++)
9252 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9253 int elt_len = TYPE_LENGTH (elt_type);
9255 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
9261 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9262 return the converted value. */
9264 static struct value *
9265 coerce_for_assign (struct type *type, struct value *val)
9267 struct type *type2 = value_type (val);
9272 type2 = ada_check_typedef (type2);
9273 type = ada_check_typedef (type);
9275 if (type2->code () == TYPE_CODE_PTR
9276 && type->code () == TYPE_CODE_ARRAY)
9278 val = ada_value_ind (val);
9279 type2 = value_type (val);
9282 if (type2->code () == TYPE_CODE_ARRAY
9283 && type->code () == TYPE_CODE_ARRAY)
9285 if (!ada_same_array_size_p (type, type2))
9286 error (_("cannot assign arrays of different length"));
9288 if (is_integral_type (TYPE_TARGET_TYPE (type))
9289 && is_integral_type (TYPE_TARGET_TYPE (type2))
9290 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9291 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9293 /* Allow implicit promotion of the array elements to
9295 return ada_promote_array_of_integrals (type, val);
9298 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9299 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9300 error (_("Incompatible types in assignment"));
9301 deprecated_set_value_type (val, type);
9306 static struct value *
9307 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9310 struct type *type1, *type2;
9313 arg1 = coerce_ref (arg1);
9314 arg2 = coerce_ref (arg2);
9315 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9316 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9318 if (type1->code () != TYPE_CODE_INT
9319 || type2->code () != TYPE_CODE_INT)
9320 return value_binop (arg1, arg2, op);
9329 return value_binop (arg1, arg2, op);
9332 v2 = value_as_long (arg2);
9336 if (op == BINOP_MOD)
9338 else if (op == BINOP_DIV)
9342 gdb_assert (op == BINOP_REM);
9346 error (_("second operand of %s must not be zero."), name);
9349 if (type1->is_unsigned () || op == BINOP_MOD)
9350 return value_binop (arg1, arg2, op);
9352 v1 = value_as_long (arg1);
9357 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9358 v += v > 0 ? -1 : 1;
9366 /* Should not reach this point. */
9370 val = allocate_value (type1);
9371 store_unsigned_integer (value_contents_raw (val).data (),
9372 TYPE_LENGTH (value_type (val)),
9373 type_byte_order (type1), v);
9378 ada_value_equal (struct value *arg1, struct value *arg2)
9380 if (ada_is_direct_array_type (value_type (arg1))
9381 || ada_is_direct_array_type (value_type (arg2)))
9383 struct type *arg1_type, *arg2_type;
9385 /* Automatically dereference any array reference before
9386 we attempt to perform the comparison. */
9387 arg1 = ada_coerce_ref (arg1);
9388 arg2 = ada_coerce_ref (arg2);
9390 arg1 = ada_coerce_to_simple_array (arg1);
9391 arg2 = ada_coerce_to_simple_array (arg2);
9393 arg1_type = ada_check_typedef (value_type (arg1));
9394 arg2_type = ada_check_typedef (value_type (arg2));
9396 if (arg1_type->code () != TYPE_CODE_ARRAY
9397 || arg2_type->code () != TYPE_CODE_ARRAY)
9398 error (_("Attempt to compare array with non-array"));
9399 /* FIXME: The following works only for types whose
9400 representations use all bits (no padding or undefined bits)
9401 and do not have user-defined equality. */
9402 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9403 && memcmp (value_contents (arg1).data (),
9404 value_contents (arg2).data (),
9405 TYPE_LENGTH (arg1_type)) == 0);
9407 return value_equal (arg1, arg2);
9414 check_objfile (const std::unique_ptr<ada_component> &comp,
9415 struct objfile *objfile)
9417 return comp->uses_objfile (objfile);
9420 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9421 component of LHS (a simple array or a record). Does not modify the
9422 inferior's memory, nor does it modify LHS (unless LHS ==
9426 assign_component (struct value *container, struct value *lhs, LONGEST index,
9427 struct expression *exp, operation_up &arg)
9429 scoped_value_mark mark;
9432 struct type *lhs_type = check_typedef (value_type (lhs));
9434 if (lhs_type->code () == TYPE_CODE_ARRAY)
9436 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9437 struct value *index_val = value_from_longest (index_type, index);
9439 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9443 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9444 elt = ada_to_fixed_value (elt);
9447 ada_aggregate_operation *ag_op
9448 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9449 if (ag_op != nullptr)
9450 ag_op->assign_aggregate (container, elt, exp);
9452 value_assign_to_component (container, elt,
9453 arg->evaluate (nullptr, exp,
9458 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9460 for (const auto &item : m_components)
9461 if (item->uses_objfile (objfile))
9467 ada_aggregate_component::dump (ui_file *stream, int depth)
9469 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9470 for (const auto &item : m_components)
9471 item->dump (stream, depth + 1);
9475 ada_aggregate_component::assign (struct value *container,
9476 struct value *lhs, struct expression *exp,
9477 std::vector<LONGEST> &indices,
9478 LONGEST low, LONGEST high)
9480 for (auto &item : m_components)
9481 item->assign (container, lhs, exp, indices, low, high);
9484 /* See ada-exp.h. */
9487 ada_aggregate_operation::assign_aggregate (struct value *container,
9489 struct expression *exp)
9491 struct type *lhs_type;
9492 LONGEST low_index, high_index;
9494 container = ada_coerce_ref (container);
9495 if (ada_is_direct_array_type (value_type (container)))
9496 container = ada_coerce_to_simple_array (container);
9497 lhs = ada_coerce_ref (lhs);
9498 if (!deprecated_value_modifiable (lhs))
9499 error (_("Left operand of assignment is not a modifiable lvalue."));
9501 lhs_type = check_typedef (value_type (lhs));
9502 if (ada_is_direct_array_type (lhs_type))
9504 lhs = ada_coerce_to_simple_array (lhs);
9505 lhs_type = check_typedef (value_type (lhs));
9506 low_index = lhs_type->bounds ()->low.const_val ();
9507 high_index = lhs_type->bounds ()->high.const_val ();
9509 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9512 high_index = num_visible_fields (lhs_type) - 1;
9515 error (_("Left-hand side must be array or record."));
9517 std::vector<LONGEST> indices (4);
9518 indices[0] = indices[1] = low_index - 1;
9519 indices[2] = indices[3] = high_index + 1;
9521 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9522 low_index, high_index);
9528 ada_positional_component::uses_objfile (struct objfile *objfile)
9530 return m_op->uses_objfile (objfile);
9534 ada_positional_component::dump (ui_file *stream, int depth)
9536 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9537 depth, "", m_index);
9538 m_op->dump (stream, depth + 1);
9541 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9542 construct, given that the positions are relative to lower bound
9543 LOW, where HIGH is the upper bound. Record the position in
9544 INDICES. CONTAINER is as for assign_aggregate. */
9546 ada_positional_component::assign (struct value *container,
9547 struct value *lhs, struct expression *exp,
9548 std::vector<LONGEST> &indices,
9549 LONGEST low, LONGEST high)
9551 LONGEST ind = m_index + low;
9553 if (ind - 1 == high)
9554 warning (_("Extra components in aggregate ignored."));
9557 add_component_interval (ind, ind, indices);
9558 assign_component (container, lhs, ind, exp, m_op);
9563 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9565 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9569 ada_discrete_range_association::dump (ui_file *stream, int depth)
9571 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9572 m_low->dump (stream, depth + 1);
9573 m_high->dump (stream, depth + 1);
9577 ada_discrete_range_association::assign (struct value *container,
9579 struct expression *exp,
9580 std::vector<LONGEST> &indices,
9581 LONGEST low, LONGEST high,
9584 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9585 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9587 if (lower <= upper && (lower < low || upper > high))
9588 error (_("Index in component association out of bounds."));
9590 add_component_interval (lower, upper, indices);
9591 while (lower <= upper)
9593 assign_component (container, lhs, lower, exp, op);
9599 ada_name_association::uses_objfile (struct objfile *objfile)
9601 return m_val->uses_objfile (objfile);
9605 ada_name_association::dump (ui_file *stream, int depth)
9607 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9608 m_val->dump (stream, depth + 1);
9612 ada_name_association::assign (struct value *container,
9614 struct expression *exp,
9615 std::vector<LONGEST> &indices,
9616 LONGEST low, LONGEST high,
9621 if (ada_is_direct_array_type (value_type (lhs)))
9622 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9626 ada_string_operation *strop
9627 = dynamic_cast<ada_string_operation *> (m_val.get ());
9630 if (strop != nullptr)
9631 name = strop->get_name ();
9634 ada_var_value_operation *vvo
9635 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9637 error (_("Invalid record component association."));
9638 name = vvo->get_symbol ()->natural_name ();
9642 if (! find_struct_field (name, value_type (lhs), 0,
9643 NULL, NULL, NULL, NULL, &index))
9644 error (_("Unknown component name: %s."), name);
9647 add_component_interval (index, index, indices);
9648 assign_component (container, lhs, index, exp, op);
9652 ada_choices_component::uses_objfile (struct objfile *objfile)
9654 if (m_op->uses_objfile (objfile))
9656 for (const auto &item : m_assocs)
9657 if (item->uses_objfile (objfile))
9663 ada_choices_component::dump (ui_file *stream, int depth)
9665 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9666 m_op->dump (stream, depth + 1);
9667 for (const auto &item : m_assocs)
9668 item->dump (stream, depth + 1);
9671 /* Assign into the components of LHS indexed by the OP_CHOICES
9672 construct at *POS, updating *POS past the construct, given that
9673 the allowable indices are LOW..HIGH. Record the indices assigned
9674 to in INDICES. CONTAINER is as for assign_aggregate. */
9676 ada_choices_component::assign (struct value *container,
9677 struct value *lhs, struct expression *exp,
9678 std::vector<LONGEST> &indices,
9679 LONGEST low, LONGEST high)
9681 for (auto &item : m_assocs)
9682 item->assign (container, lhs, exp, indices, low, high, m_op);
9686 ada_others_component::uses_objfile (struct objfile *objfile)
9688 return m_op->uses_objfile (objfile);
9692 ada_others_component::dump (ui_file *stream, int depth)
9694 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9695 m_op->dump (stream, depth + 1);
9698 /* Assign the value of the expression in the OP_OTHERS construct in
9699 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9700 have not been previously assigned. The index intervals already assigned
9701 are in INDICES. CONTAINER is as for assign_aggregate. */
9703 ada_others_component::assign (struct value *container,
9704 struct value *lhs, struct expression *exp,
9705 std::vector<LONGEST> &indices,
9706 LONGEST low, LONGEST high)
9708 int num_indices = indices.size ();
9709 for (int i = 0; i < num_indices - 2; i += 2)
9711 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9712 assign_component (container, lhs, ind, exp, m_op);
9717 ada_assign_operation::evaluate (struct type *expect_type,
9718 struct expression *exp,
9721 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9723 ada_aggregate_operation *ag_op
9724 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9725 if (ag_op != nullptr)
9727 if (noside != EVAL_NORMAL)
9730 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9731 return ada_value_assign (arg1, arg1);
9733 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9734 except if the lhs of our assignment is a convenience variable.
9735 In the case of assigning to a convenience variable, the lhs
9736 should be exactly the result of the evaluation of the rhs. */
9737 struct type *type = value_type (arg1);
9738 if (VALUE_LVAL (arg1) == lval_internalvar)
9740 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9741 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9743 if (VALUE_LVAL (arg1) == lval_internalvar)
9748 arg2 = coerce_for_assign (value_type (arg1), arg2);
9749 return ada_value_assign (arg1, arg2);
9752 } /* namespace expr */
9754 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9755 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9758 add_component_interval (LONGEST low, LONGEST high,
9759 std::vector<LONGEST> &indices)
9763 int size = indices.size ();
9764 for (i = 0; i < size; i += 2) {
9765 if (high >= indices[i] && low <= indices[i + 1])
9769 for (kh = i + 2; kh < size; kh += 2)
9770 if (high < indices[kh])
9772 if (low < indices[i])
9774 indices[i + 1] = indices[kh - 1];
9775 if (high > indices[i + 1])
9776 indices[i + 1] = high;
9777 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9778 indices.resize (kh - i - 2);
9781 else if (high < indices[i])
9785 indices.resize (indices.size () + 2);
9786 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9787 indices[j] = indices[j - 2];
9789 indices[i + 1] = high;
9792 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9795 static struct value *
9796 ada_value_cast (struct type *type, struct value *arg2)
9798 if (type == ada_check_typedef (value_type (arg2)))
9801 return value_cast (type, arg2);
9804 /* Evaluating Ada expressions, and printing their result.
9805 ------------------------------------------------------
9810 We usually evaluate an Ada expression in order to print its value.
9811 We also evaluate an expression in order to print its type, which
9812 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9813 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9814 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9815 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9818 Evaluating expressions is a little more complicated for Ada entities
9819 than it is for entities in languages such as C. The main reason for
9820 this is that Ada provides types whose definition might be dynamic.
9821 One example of such types is variant records. Or another example
9822 would be an array whose bounds can only be known at run time.
9824 The following description is a general guide as to what should be
9825 done (and what should NOT be done) in order to evaluate an expression
9826 involving such types, and when. This does not cover how the semantic
9827 information is encoded by GNAT as this is covered separatly. For the
9828 document used as the reference for the GNAT encoding, see exp_dbug.ads
9829 in the GNAT sources.
9831 Ideally, we should embed each part of this description next to its
9832 associated code. Unfortunately, the amount of code is so vast right
9833 now that it's hard to see whether the code handling a particular
9834 situation might be duplicated or not. One day, when the code is
9835 cleaned up, this guide might become redundant with the comments
9836 inserted in the code, and we might want to remove it.
9838 2. ``Fixing'' an Entity, the Simple Case:
9839 -----------------------------------------
9841 When evaluating Ada expressions, the tricky issue is that they may
9842 reference entities whose type contents and size are not statically
9843 known. Consider for instance a variant record:
9845 type Rec (Empty : Boolean := True) is record
9848 when False => Value : Integer;
9851 Yes : Rec := (Empty => False, Value => 1);
9852 No : Rec := (empty => True);
9854 The size and contents of that record depends on the value of the
9855 descriminant (Rec.Empty). At this point, neither the debugging
9856 information nor the associated type structure in GDB are able to
9857 express such dynamic types. So what the debugger does is to create
9858 "fixed" versions of the type that applies to the specific object.
9859 We also informally refer to this operation as "fixing" an object,
9860 which means creating its associated fixed type.
9862 Example: when printing the value of variable "Yes" above, its fixed
9863 type would look like this:
9870 On the other hand, if we printed the value of "No", its fixed type
9877 Things become a little more complicated when trying to fix an entity
9878 with a dynamic type that directly contains another dynamic type,
9879 such as an array of variant records, for instance. There are
9880 two possible cases: Arrays, and records.
9882 3. ``Fixing'' Arrays:
9883 ---------------------
9885 The type structure in GDB describes an array in terms of its bounds,
9886 and the type of its elements. By design, all elements in the array
9887 have the same type and we cannot represent an array of variant elements
9888 using the current type structure in GDB. When fixing an array,
9889 we cannot fix the array element, as we would potentially need one
9890 fixed type per element of the array. As a result, the best we can do
9891 when fixing an array is to produce an array whose bounds and size
9892 are correct (allowing us to read it from memory), but without having
9893 touched its element type. Fixing each element will be done later,
9894 when (if) necessary.
9896 Arrays are a little simpler to handle than records, because the same
9897 amount of memory is allocated for each element of the array, even if
9898 the amount of space actually used by each element differs from element
9899 to element. Consider for instance the following array of type Rec:
9901 type Rec_Array is array (1 .. 2) of Rec;
9903 The actual amount of memory occupied by each element might be different
9904 from element to element, depending on the value of their discriminant.
9905 But the amount of space reserved for each element in the array remains
9906 fixed regardless. So we simply need to compute that size using
9907 the debugging information available, from which we can then determine
9908 the array size (we multiply the number of elements of the array by
9909 the size of each element).
9911 The simplest case is when we have an array of a constrained element
9912 type. For instance, consider the following type declarations:
9914 type Bounded_String (Max_Size : Integer) is
9916 Buffer : String (1 .. Max_Size);
9918 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9920 In this case, the compiler describes the array as an array of
9921 variable-size elements (identified by its XVS suffix) for which
9922 the size can be read in the parallel XVZ variable.
9924 In the case of an array of an unconstrained element type, the compiler
9925 wraps the array element inside a private PAD type. This type should not
9926 be shown to the user, and must be "unwrap"'ed before printing. Note
9927 that we also use the adjective "aligner" in our code to designate
9928 these wrapper types.
9930 In some cases, the size allocated for each element is statically
9931 known. In that case, the PAD type already has the correct size,
9932 and the array element should remain unfixed.
9934 But there are cases when this size is not statically known.
9935 For instance, assuming that "Five" is an integer variable:
9937 type Dynamic is array (1 .. Five) of Integer;
9938 type Wrapper (Has_Length : Boolean := False) is record
9941 when True => Length : Integer;
9945 type Wrapper_Array is array (1 .. 2) of Wrapper;
9947 Hello : Wrapper_Array := (others => (Has_Length => True,
9948 Data => (others => 17),
9952 The debugging info would describe variable Hello as being an
9953 array of a PAD type. The size of that PAD type is not statically
9954 known, but can be determined using a parallel XVZ variable.
9955 In that case, a copy of the PAD type with the correct size should
9956 be used for the fixed array.
9958 3. ``Fixing'' record type objects:
9959 ----------------------------------
9961 Things are slightly different from arrays in the case of dynamic
9962 record types. In this case, in order to compute the associated
9963 fixed type, we need to determine the size and offset of each of
9964 its components. This, in turn, requires us to compute the fixed
9965 type of each of these components.
9967 Consider for instance the example:
9969 type Bounded_String (Max_Size : Natural) is record
9970 Str : String (1 .. Max_Size);
9973 My_String : Bounded_String (Max_Size => 10);
9975 In that case, the position of field "Length" depends on the size
9976 of field Str, which itself depends on the value of the Max_Size
9977 discriminant. In order to fix the type of variable My_String,
9978 we need to fix the type of field Str. Therefore, fixing a variant
9979 record requires us to fix each of its components.
9981 However, if a component does not have a dynamic size, the component
9982 should not be fixed. In particular, fields that use a PAD type
9983 should not fixed. Here is an example where this might happen
9984 (assuming type Rec above):
9986 type Container (Big : Boolean) is record
9990 when True => Another : Integer;
9994 My_Container : Container := (Big => False,
9995 First => (Empty => True),
9998 In that example, the compiler creates a PAD type for component First,
9999 whose size is constant, and then positions the component After just
10000 right after it. The offset of component After is therefore constant
10003 The debugger computes the position of each field based on an algorithm
10004 that uses, among other things, the actual position and size of the field
10005 preceding it. Let's now imagine that the user is trying to print
10006 the value of My_Container. If the type fixing was recursive, we would
10007 end up computing the offset of field After based on the size of the
10008 fixed version of field First. And since in our example First has
10009 only one actual field, the size of the fixed type is actually smaller
10010 than the amount of space allocated to that field, and thus we would
10011 compute the wrong offset of field After.
10013 To make things more complicated, we need to watch out for dynamic
10014 components of variant records (identified by the ___XVL suffix in
10015 the component name). Even if the target type is a PAD type, the size
10016 of that type might not be statically known. So the PAD type needs
10017 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10018 we might end up with the wrong size for our component. This can be
10019 observed with the following type declarations:
10021 type Octal is new Integer range 0 .. 7;
10022 type Octal_Array is array (Positive range <>) of Octal;
10023 pragma Pack (Octal_Array);
10025 type Octal_Buffer (Size : Positive) is record
10026 Buffer : Octal_Array (1 .. Size);
10030 In that case, Buffer is a PAD type whose size is unset and needs
10031 to be computed by fixing the unwrapped type.
10033 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10034 ----------------------------------------------------------
10036 Lastly, when should the sub-elements of an entity that remained unfixed
10037 thus far, be actually fixed?
10039 The answer is: Only when referencing that element. For instance
10040 when selecting one component of a record, this specific component
10041 should be fixed at that point in time. Or when printing the value
10042 of a record, each component should be fixed before its value gets
10043 printed. Similarly for arrays, the element of the array should be
10044 fixed when printing each element of the array, or when extracting
10045 one element out of that array. On the other hand, fixing should
10046 not be performed on the elements when taking a slice of an array!
10048 Note that one of the side effects of miscomputing the offset and
10049 size of each field is that we end up also miscomputing the size
10050 of the containing type. This can have adverse results when computing
10051 the value of an entity. GDB fetches the value of an entity based
10052 on the size of its type, and thus a wrong size causes GDB to fetch
10053 the wrong amount of memory. In the case where the computed size is
10054 too small, GDB fetches too little data to print the value of our
10055 entity. Results in this case are unpredictable, as we usually read
10056 past the buffer containing the data =:-o. */
10058 /* A helper function for TERNOP_IN_RANGE. */
10061 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10062 enum noside noside,
10063 value *arg1, value *arg2, value *arg3)
10065 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10066 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10067 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10069 value_from_longest (type,
10070 (value_less (arg1, arg3)
10071 || value_equal (arg1, arg3))
10072 && (value_less (arg2, arg1)
10073 || value_equal (arg2, arg1)));
10076 /* A helper function for UNOP_NEG. */
10079 ada_unop_neg (struct type *expect_type,
10080 struct expression *exp,
10081 enum noside noside, enum exp_opcode op,
10082 struct value *arg1)
10084 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10085 return value_neg (arg1);
10088 /* A helper function for UNOP_IN_RANGE. */
10091 ada_unop_in_range (struct type *expect_type,
10092 struct expression *exp,
10093 enum noside noside, enum exp_opcode op,
10094 struct value *arg1, struct type *type)
10096 struct value *arg2, *arg3;
10097 switch (type->code ())
10100 lim_warning (_("Membership test incompletely implemented; "
10101 "always returns true"));
10102 type = language_bool_type (exp->language_defn, exp->gdbarch);
10103 return value_from_longest (type, (LONGEST) 1);
10105 case TYPE_CODE_RANGE:
10106 arg2 = value_from_longest (type,
10107 type->bounds ()->low.const_val ());
10108 arg3 = value_from_longest (type,
10109 type->bounds ()->high.const_val ());
10110 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10111 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10112 type = language_bool_type (exp->language_defn, exp->gdbarch);
10114 value_from_longest (type,
10115 (value_less (arg1, arg3)
10116 || value_equal (arg1, arg3))
10117 && (value_less (arg2, arg1)
10118 || value_equal (arg2, arg1)));
10122 /* A helper function for OP_ATR_TAG. */
10125 ada_atr_tag (struct type *expect_type,
10126 struct expression *exp,
10127 enum noside noside, enum exp_opcode op,
10128 struct value *arg1)
10130 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10131 return value_zero (ada_tag_type (arg1), not_lval);
10133 return ada_value_tag (arg1);
10136 /* A helper function for OP_ATR_SIZE. */
10139 ada_atr_size (struct type *expect_type,
10140 struct expression *exp,
10141 enum noside noside, enum exp_opcode op,
10142 struct value *arg1)
10144 struct type *type = value_type (arg1);
10146 /* If the argument is a reference, then dereference its type, since
10147 the user is really asking for the size of the actual object,
10148 not the size of the pointer. */
10149 if (type->code () == TYPE_CODE_REF)
10150 type = TYPE_TARGET_TYPE (type);
10152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10153 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10155 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10156 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10159 /* A helper function for UNOP_ABS. */
10162 ada_abs (struct type *expect_type,
10163 struct expression *exp,
10164 enum noside noside, enum exp_opcode op,
10165 struct value *arg1)
10167 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10168 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10169 return value_neg (arg1);
10174 /* A helper function for BINOP_MUL. */
10177 ada_mult_binop (struct type *expect_type,
10178 struct expression *exp,
10179 enum noside noside, enum exp_opcode op,
10180 struct value *arg1, struct value *arg2)
10182 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10185 return value_zero (value_type (arg1), not_lval);
10189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10190 return ada_value_binop (arg1, arg2, op);
10194 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10197 ada_equal_binop (struct type *expect_type,
10198 struct expression *exp,
10199 enum noside noside, enum exp_opcode op,
10200 struct value *arg1, struct value *arg2)
10203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10207 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10208 tem = ada_value_equal (arg1, arg2);
10210 if (op == BINOP_NOTEQUAL)
10212 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10213 return value_from_longest (type, (LONGEST) tem);
10216 /* A helper function for TERNOP_SLICE. */
10219 ada_ternop_slice (struct expression *exp,
10220 enum noside noside,
10221 struct value *array, struct value *low_bound_val,
10222 struct value *high_bound_val)
10225 LONGEST high_bound;
10227 low_bound_val = coerce_ref (low_bound_val);
10228 high_bound_val = coerce_ref (high_bound_val);
10229 low_bound = value_as_long (low_bound_val);
10230 high_bound = value_as_long (high_bound_val);
10232 /* If this is a reference to an aligner type, then remove all
10234 if (value_type (array)->code () == TYPE_CODE_REF
10235 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10236 TYPE_TARGET_TYPE (value_type (array)) =
10237 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10239 if (ada_is_any_packed_array_type (value_type (array)))
10240 error (_("cannot slice a packed array"));
10242 /* If this is a reference to an array or an array lvalue,
10243 convert to a pointer. */
10244 if (value_type (array)->code () == TYPE_CODE_REF
10245 || (value_type (array)->code () == TYPE_CODE_ARRAY
10246 && VALUE_LVAL (array) == lval_memory))
10247 array = value_addr (array);
10249 if (noside == EVAL_AVOID_SIDE_EFFECTS
10250 && ada_is_array_descriptor_type (ada_check_typedef
10251 (value_type (array))))
10252 return empty_array (ada_type_of_array (array, 0), low_bound,
10255 array = ada_coerce_to_simple_array_ptr (array);
10257 /* If we have more than one level of pointer indirection,
10258 dereference the value until we get only one level. */
10259 while (value_type (array)->code () == TYPE_CODE_PTR
10260 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10262 array = value_ind (array);
10264 /* Make sure we really do have an array type before going further,
10265 to avoid a SEGV when trying to get the index type or the target
10266 type later down the road if the debug info generated by
10267 the compiler is incorrect or incomplete. */
10268 if (!ada_is_simple_array_type (value_type (array)))
10269 error (_("cannot take slice of non-array"));
10271 if (ada_check_typedef (value_type (array))->code ()
10274 struct type *type0 = ada_check_typedef (value_type (array));
10276 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10277 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10280 struct type *arr_type0 =
10281 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10283 return ada_value_slice_from_ptr (array, arr_type0,
10284 longest_to_int (low_bound),
10285 longest_to_int (high_bound));
10288 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10290 else if (high_bound < low_bound)
10291 return empty_array (value_type (array), low_bound, high_bound);
10293 return ada_value_slice (array, longest_to_int (low_bound),
10294 longest_to_int (high_bound));
10297 /* A helper function for BINOP_IN_BOUNDS. */
10300 ada_binop_in_bounds (struct expression *exp, enum noside noside,
10301 struct value *arg1, struct value *arg2, int n)
10303 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10305 struct type *type = language_bool_type (exp->language_defn,
10307 return value_zero (type, not_lval);
10310 struct type *type = ada_index_type (value_type (arg2), n, "range");
10312 type = value_type (arg1);
10314 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10315 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10317 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10318 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10319 type = language_bool_type (exp->language_defn, exp->gdbarch);
10320 return value_from_longest (type,
10321 (value_less (arg1, arg3)
10322 || value_equal (arg1, arg3))
10323 && (value_less (arg2, arg1)
10324 || value_equal (arg2, arg1)));
10327 /* A helper function for some attribute operations. */
10330 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10331 struct value *arg1, struct type *type_arg, int tem)
10333 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10335 if (type_arg == NULL)
10336 type_arg = value_type (arg1);
10338 if (ada_is_constrained_packed_array_type (type_arg))
10339 type_arg = decode_constrained_packed_array_type (type_arg);
10341 if (!discrete_type_p (type_arg))
10345 default: /* Should never happen. */
10346 error (_("unexpected attribute encountered"));
10349 type_arg = ada_index_type (type_arg, tem,
10350 ada_attribute_name (op));
10352 case OP_ATR_LENGTH:
10353 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10358 return value_zero (type_arg, not_lval);
10360 else if (type_arg == NULL)
10362 arg1 = ada_coerce_ref (arg1);
10364 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10365 arg1 = ada_coerce_to_simple_array (arg1);
10368 if (op == OP_ATR_LENGTH)
10369 type = builtin_type (exp->gdbarch)->builtin_int;
10372 type = ada_index_type (value_type (arg1), tem,
10373 ada_attribute_name (op));
10375 type = builtin_type (exp->gdbarch)->builtin_int;
10380 default: /* Should never happen. */
10381 error (_("unexpected attribute encountered"));
10383 return value_from_longest
10384 (type, ada_array_bound (arg1, tem, 0));
10386 return value_from_longest
10387 (type, ada_array_bound (arg1, tem, 1));
10388 case OP_ATR_LENGTH:
10389 return value_from_longest
10390 (type, ada_array_length (arg1, tem));
10393 else if (discrete_type_p (type_arg))
10395 struct type *range_type;
10396 const char *name = ada_type_name (type_arg);
10399 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10400 range_type = to_fixed_range_type (type_arg, NULL);
10401 if (range_type == NULL)
10402 range_type = type_arg;
10406 error (_("unexpected attribute encountered"));
10408 return value_from_longest
10409 (range_type, ada_discrete_type_low_bound (range_type));
10411 return value_from_longest
10412 (range_type, ada_discrete_type_high_bound (range_type));
10413 case OP_ATR_LENGTH:
10414 error (_("the 'length attribute applies only to array types"));
10417 else if (type_arg->code () == TYPE_CODE_FLT)
10418 error (_("unimplemented type attribute"));
10423 if (ada_is_constrained_packed_array_type (type_arg))
10424 type_arg = decode_constrained_packed_array_type (type_arg);
10427 if (op == OP_ATR_LENGTH)
10428 type = builtin_type (exp->gdbarch)->builtin_int;
10431 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10433 type = builtin_type (exp->gdbarch)->builtin_int;
10439 error (_("unexpected attribute encountered"));
10441 low = ada_array_bound_from_type (type_arg, tem, 0);
10442 return value_from_longest (type, low);
10444 high = ada_array_bound_from_type (type_arg, tem, 1);
10445 return value_from_longest (type, high);
10446 case OP_ATR_LENGTH:
10447 low = ada_array_bound_from_type (type_arg, tem, 0);
10448 high = ada_array_bound_from_type (type_arg, tem, 1);
10449 return value_from_longest (type, high - low + 1);
10454 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10457 ada_binop_minmax (struct type *expect_type,
10458 struct expression *exp,
10459 enum noside noside, enum exp_opcode op,
10460 struct value *arg1, struct value *arg2)
10462 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10463 return value_zero (value_type (arg1), not_lval);
10466 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10467 return value_binop (arg1, arg2, op);
10471 /* A helper function for BINOP_EXP. */
10474 ada_binop_exp (struct type *expect_type,
10475 struct expression *exp,
10476 enum noside noside, enum exp_opcode op,
10477 struct value *arg1, struct value *arg2)
10479 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10480 return value_zero (value_type (arg1), not_lval);
10483 /* For integer exponentiation operations,
10484 only promote the first argument. */
10485 if (is_integral_type (value_type (arg2)))
10486 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10490 return value_binop (arg1, arg2, op);
10497 /* See ada-exp.h. */
10500 ada_resolvable::replace (operation_up &&owner,
10501 struct expression *exp,
10502 bool deprocedure_p,
10503 bool parse_completion,
10504 innermost_block_tracker *tracker,
10505 struct type *context_type)
10507 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10508 return (make_operation<ada_funcall_operation>
10509 (std::move (owner),
10510 std::vector<operation_up> ()));
10511 return std::move (owner);
10514 /* Convert the character literal whose value would be VAL to the
10515 appropriate value of type TYPE, if there is a translation.
10516 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10517 the literal 'A' (VAL == 65), returns 0. */
10520 convert_char_literal (struct type *type, LONGEST val)
10527 type = check_typedef (type);
10528 if (type->code () != TYPE_CODE_ENUM)
10531 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10532 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10533 else if (val >= 0 && val < 256)
10534 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10535 else if (val >= 0 && val < 0x10000)
10536 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
10538 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
10539 size_t len = strlen (name);
10540 for (f = 0; f < type->num_fields (); f += 1)
10542 /* Check the suffix because an enum constant in a package will
10543 have a name like "pkg__QUxx". This is safe enough because we
10544 already have the correct type, and because mangling means
10545 there can't be clashes. */
10546 const char *ename = type->field (f).name ();
10547 size_t elen = strlen (ename);
10549 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10550 return type->field (f).loc_enumval ();
10555 /* See ada-exp.h. */
10558 ada_char_operation::replace (operation_up &&owner,
10559 struct expression *exp,
10560 bool deprocedure_p,
10561 bool parse_completion,
10562 innermost_block_tracker *tracker,
10563 struct type *context_type)
10565 operation_up result = std::move (owner);
10567 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10569 gdb_assert (result.get () == this);
10570 std::get<0> (m_storage) = context_type;
10571 std::get<1> (m_storage)
10572 = convert_char_literal (context_type, std::get<1> (m_storage));
10575 return make_operation<ada_wrapped_operation> (std::move (result));
10579 ada_wrapped_operation::evaluate (struct type *expect_type,
10580 struct expression *exp,
10581 enum noside noside)
10583 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10584 if (noside == EVAL_NORMAL)
10585 result = unwrap_value (result);
10587 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10588 then we need to perform the conversion manually, because
10589 evaluate_subexp_standard doesn't do it. This conversion is
10590 necessary in Ada because the different kinds of float/fixed
10591 types in Ada have different representations.
10593 Similarly, we need to perform the conversion from OP_LONG
10595 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10596 result = ada_value_cast (expect_type, result);
10602 ada_string_operation::evaluate (struct type *expect_type,
10603 struct expression *exp,
10604 enum noside noside)
10606 struct type *char_type;
10607 if (expect_type != nullptr && ada_is_string_type (expect_type))
10608 char_type = ada_array_element_type (expect_type, 1);
10610 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10612 const std::string &str = std::get<0> (m_storage);
10613 const char *encoding;
10614 switch (TYPE_LENGTH (char_type))
10618 /* Simply copy over the data -- this isn't perhaps strictly
10619 correct according to the encodings, but it is gdb's
10620 historical behavior. */
10621 struct type *stringtype
10622 = lookup_array_range_type (char_type, 1, str.length ());
10623 struct value *val = allocate_value (stringtype);
10624 memcpy (value_contents_raw (val).data (), str.c_str (),
10630 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10631 encoding = "UTF-16BE";
10633 encoding = "UTF-16LE";
10637 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10638 encoding = "UTF-32BE";
10640 encoding = "UTF-32LE";
10644 error (_("unexpected character type size %s"),
10645 pulongest (TYPE_LENGTH (char_type)));
10648 auto_obstack converted;
10649 convert_between_encodings (host_charset (), encoding,
10650 (const gdb_byte *) str.c_str (),
10652 &converted, translit_none);
10654 struct type *stringtype
10655 = lookup_array_range_type (char_type, 1,
10656 obstack_object_size (&converted)
10657 / TYPE_LENGTH (char_type));
10658 struct value *val = allocate_value (stringtype);
10659 memcpy (value_contents_raw (val).data (),
10660 obstack_base (&converted),
10661 obstack_object_size (&converted));
10666 ada_qual_operation::evaluate (struct type *expect_type,
10667 struct expression *exp,
10668 enum noside noside)
10670 struct type *type = std::get<1> (m_storage);
10671 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10675 ada_ternop_range_operation::evaluate (struct type *expect_type,
10676 struct expression *exp,
10677 enum noside noside)
10679 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10680 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10681 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10682 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10686 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10687 struct expression *exp,
10688 enum noside noside)
10690 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10691 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10693 auto do_op = [=] (LONGEST x, LONGEST y)
10695 if (std::get<0> (m_storage) == BINOP_ADD)
10700 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10701 return (value_from_longest
10702 (value_type (arg1),
10703 do_op (value_as_long (arg1), value_as_long (arg2))));
10704 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10705 return (value_from_longest
10706 (value_type (arg2),
10707 do_op (value_as_long (arg1), value_as_long (arg2))));
10708 /* Preserve the original type for use by the range case below.
10709 We cannot cast the result to a reference type, so if ARG1 is
10710 a reference type, find its underlying type. */
10711 struct type *type = value_type (arg1);
10712 while (type->code () == TYPE_CODE_REF)
10713 type = TYPE_TARGET_TYPE (type);
10714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10715 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10716 /* We need to special-case the result with a range.
10717 This is done for the benefit of "ptype". gdb's Ada support
10718 historically used the LHS to set the result type here, so
10719 preserve this behavior. */
10720 if (type->code () == TYPE_CODE_RANGE)
10721 arg1 = value_cast (type, arg1);
10726 ada_unop_atr_operation::evaluate (struct type *expect_type,
10727 struct expression *exp,
10728 enum noside noside)
10730 struct type *type_arg = nullptr;
10731 value *val = nullptr;
10733 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10735 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10736 EVAL_AVOID_SIDE_EFFECTS);
10737 type_arg = value_type (tem);
10740 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10742 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10743 val, type_arg, std::get<2> (m_storage));
10747 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10748 struct expression *exp,
10749 enum noside noside)
10751 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10752 return value_zero (expect_type, not_lval);
10754 const bound_minimal_symbol &b = std::get<0> (m_storage);
10755 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10757 val = ada_value_cast (expect_type, val);
10759 /* Follow the Ada language semantics that do not allow taking
10760 an address of the result of a cast (view conversion in Ada). */
10761 if (VALUE_LVAL (val) == lval_memory)
10763 if (value_lazy (val))
10764 value_fetch_lazy (val);
10765 VALUE_LVAL (val) = not_lval;
10771 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10772 struct expression *exp,
10773 enum noside noside)
10775 value *val = evaluate_var_value (noside,
10776 std::get<0> (m_storage).block,
10777 std::get<0> (m_storage).symbol);
10779 val = ada_value_cast (expect_type, val);
10781 /* Follow the Ada language semantics that do not allow taking
10782 an address of the result of a cast (view conversion in Ada). */
10783 if (VALUE_LVAL (val) == lval_memory)
10785 if (value_lazy (val))
10786 value_fetch_lazy (val);
10787 VALUE_LVAL (val) = not_lval;
10793 ada_var_value_operation::evaluate (struct type *expect_type,
10794 struct expression *exp,
10795 enum noside noside)
10797 symbol *sym = std::get<0> (m_storage).symbol;
10799 if (sym->domain () == UNDEF_DOMAIN)
10800 /* Only encountered when an unresolved symbol occurs in a
10801 context other than a function call, in which case, it is
10803 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10804 sym->print_name ());
10806 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10808 struct type *type = static_unwrap_type (sym->type ());
10809 /* Check to see if this is a tagged type. We also need to handle
10810 the case where the type is a reference to a tagged type, but
10811 we have to be careful to exclude pointers to tagged types.
10812 The latter should be shown as usual (as a pointer), whereas
10813 a reference should mostly be transparent to the user. */
10814 if (ada_is_tagged_type (type, 0)
10815 || (type->code () == TYPE_CODE_REF
10816 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10818 /* Tagged types are a little special in the fact that the real
10819 type is dynamic and can only be determined by inspecting the
10820 object's tag. This means that we need to get the object's
10821 value first (EVAL_NORMAL) and then extract the actual object
10824 Note that we cannot skip the final step where we extract
10825 the object type from its tag, because the EVAL_NORMAL phase
10826 results in dynamic components being resolved into fixed ones.
10827 This can cause problems when trying to print the type
10828 description of tagged types whose parent has a dynamic size:
10829 We use the type name of the "_parent" component in order
10830 to print the name of the ancestor type in the type description.
10831 If that component had a dynamic size, the resolution into
10832 a fixed type would result in the loss of that type name,
10833 thus preventing us from printing the name of the ancestor
10834 type in the type description. */
10835 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10837 if (type->code () != TYPE_CODE_REF)
10839 struct type *actual_type;
10841 actual_type = type_from_tag (ada_value_tag (arg1));
10842 if (actual_type == NULL)
10843 /* If, for some reason, we were unable to determine
10844 the actual type from the tag, then use the static
10845 approximation that we just computed as a fallback.
10846 This can happen if the debugging information is
10847 incomplete, for instance. */
10848 actual_type = type;
10849 return value_zero (actual_type, not_lval);
10853 /* In the case of a ref, ada_coerce_ref takes care
10854 of determining the actual type. But the evaluation
10855 should return a ref as it should be valid to ask
10856 for its address; so rebuild a ref after coerce. */
10857 arg1 = ada_coerce_ref (arg1);
10858 return value_ref (arg1, TYPE_CODE_REF);
10862 /* Records and unions for which GNAT encodings have been
10863 generated need to be statically fixed as well.
10864 Otherwise, non-static fixing produces a type where
10865 all dynamic properties are removed, which prevents "ptype"
10866 from being able to completely describe the type.
10867 For instance, a case statement in a variant record would be
10868 replaced by the relevant components based on the actual
10869 value of the discriminants. */
10870 if ((type->code () == TYPE_CODE_STRUCT
10871 && dynamic_template_type (type) != NULL)
10872 || (type->code () == TYPE_CODE_UNION
10873 && ada_find_parallel_type (type, "___XVU") != NULL))
10874 return value_zero (to_static_fixed_type (type), not_lval);
10877 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10878 return ada_to_fixed_value (arg1);
10882 ada_var_value_operation::resolve (struct expression *exp,
10883 bool deprocedure_p,
10884 bool parse_completion,
10885 innermost_block_tracker *tracker,
10886 struct type *context_type)
10888 symbol *sym = std::get<0> (m_storage).symbol;
10889 if (sym->domain () == UNDEF_DOMAIN)
10891 block_symbol resolved
10892 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10893 context_type, parse_completion,
10894 deprocedure_p, tracker);
10895 std::get<0> (m_storage) = resolved;
10899 && (std::get<0> (m_storage).symbol->type ()->code ()
10900 == TYPE_CODE_FUNC))
10907 ada_atr_val_operation::evaluate (struct type *expect_type,
10908 struct expression *exp,
10909 enum noside noside)
10911 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10912 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10916 ada_unop_ind_operation::evaluate (struct type *expect_type,
10917 struct expression *exp,
10918 enum noside noside)
10920 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10922 struct type *type = ada_check_typedef (value_type (arg1));
10923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10925 if (ada_is_array_descriptor_type (type))
10926 /* GDB allows dereferencing GNAT array descriptors. */
10928 struct type *arrType = ada_type_of_array (arg1, 0);
10930 if (arrType == NULL)
10931 error (_("Attempt to dereference null array pointer."));
10932 return value_at_lazy (arrType, 0);
10934 else if (type->code () == TYPE_CODE_PTR
10935 || type->code () == TYPE_CODE_REF
10936 /* In C you can dereference an array to get the 1st elt. */
10937 || type->code () == TYPE_CODE_ARRAY)
10939 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10940 only be determined by inspecting the object's tag.
10941 This means that we need to evaluate completely the
10942 expression in order to get its type. */
10944 if ((type->code () == TYPE_CODE_REF
10945 || type->code () == TYPE_CODE_PTR)
10946 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10948 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10950 type = value_type (ada_value_ind (arg1));
10954 type = to_static_fixed_type
10956 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10958 return value_zero (type, lval_memory);
10960 else if (type->code () == TYPE_CODE_INT)
10962 /* GDB allows dereferencing an int. */
10963 if (expect_type == NULL)
10964 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10969 to_static_fixed_type (ada_aligned_type (expect_type));
10970 return value_zero (expect_type, lval_memory);
10974 error (_("Attempt to take contents of a non-pointer value."));
10976 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10977 type = ada_check_typedef (value_type (arg1));
10979 if (type->code () == TYPE_CODE_INT)
10980 /* GDB allows dereferencing an int. If we were given
10981 the expect_type, then use that as the target type.
10982 Otherwise, assume that the target type is an int. */
10984 if (expect_type != NULL)
10985 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10988 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10989 (CORE_ADDR) value_as_address (arg1));
10992 if (ada_is_array_descriptor_type (type))
10993 /* GDB allows dereferencing GNAT array descriptors. */
10994 return ada_coerce_to_simple_array (arg1);
10996 return ada_value_ind (arg1);
11000 ada_structop_operation::evaluate (struct type *expect_type,
11001 struct expression *exp,
11002 enum noside noside)
11004 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11005 const char *str = std::get<1> (m_storage).c_str ();
11006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11009 struct type *type1 = value_type (arg1);
11011 if (ada_is_tagged_type (type1, 1))
11013 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11015 /* If the field is not found, check if it exists in the
11016 extension of this object's type. This means that we
11017 need to evaluate completely the expression. */
11021 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11023 arg1 = ada_value_struct_elt (arg1, str, 0);
11024 arg1 = unwrap_value (arg1);
11025 type = value_type (ada_to_fixed_value (arg1));
11029 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11031 return value_zero (ada_aligned_type (type), lval_memory);
11035 arg1 = ada_value_struct_elt (arg1, str, 0);
11036 arg1 = unwrap_value (arg1);
11037 return ada_to_fixed_value (arg1);
11042 ada_funcall_operation::evaluate (struct type *expect_type,
11043 struct expression *exp,
11044 enum noside noside)
11046 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11047 int nargs = args_up.size ();
11048 std::vector<value *> argvec (nargs);
11049 operation_up &callee_op = std::get<0> (m_storage);
11051 ada_var_value_operation *avv
11052 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11054 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
11055 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11056 avv->get_symbol ()->print_name ());
11058 value *callee = callee_op->evaluate (nullptr, exp, noside);
11059 for (int i = 0; i < args_up.size (); ++i)
11060 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11062 if (ada_is_constrained_packed_array_type
11063 (desc_base_type (value_type (callee))))
11064 callee = ada_coerce_to_simple_array (callee);
11065 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11066 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
11067 /* This is a packed array that has already been fixed, and
11068 therefore already coerced to a simple array. Nothing further
11071 else if (value_type (callee)->code () == TYPE_CODE_REF)
11073 /* Make sure we dereference references so that all the code below
11074 feels like it's really handling the referenced value. Wrapping
11075 types (for alignment) may be there, so make sure we strip them as
11077 callee = ada_to_fixed_value (coerce_ref (callee));
11079 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11080 && VALUE_LVAL (callee) == lval_memory)
11081 callee = value_addr (callee);
11083 struct type *type = ada_check_typedef (value_type (callee));
11085 /* Ada allows us to implicitly dereference arrays when subscripting
11086 them. So, if this is an array typedef (encoding use for array
11087 access types encoded as fat pointers), strip it now. */
11088 if (type->code () == TYPE_CODE_TYPEDEF)
11089 type = ada_typedef_target_type (type);
11091 if (type->code () == TYPE_CODE_PTR)
11093 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
11095 case TYPE_CODE_FUNC:
11096 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
11098 case TYPE_CODE_ARRAY:
11100 case TYPE_CODE_STRUCT:
11101 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11102 callee = ada_value_ind (callee);
11103 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
11106 error (_("cannot subscript or call something of type `%s'"),
11107 ada_type_name (value_type (callee)));
11112 switch (type->code ())
11114 case TYPE_CODE_FUNC:
11115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11117 if (TYPE_TARGET_TYPE (type) == NULL)
11118 error_call_unknown_return_type (NULL);
11119 return allocate_value (TYPE_TARGET_TYPE (type));
11121 return call_function_by_hand (callee, NULL, argvec);
11122 case TYPE_CODE_INTERNAL_FUNCTION:
11123 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11124 /* We don't know anything about what the internal
11125 function might return, but we have to return
11127 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11130 return call_internal_function (exp->gdbarch, exp->language_defn,
11134 case TYPE_CODE_STRUCT:
11138 arity = ada_array_arity (type);
11139 type = ada_array_element_type (type, nargs);
11141 error (_("cannot subscript or call a record"));
11142 if (arity != nargs)
11143 error (_("wrong number of subscripts; expecting %d"), arity);
11144 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11145 return value_zero (ada_aligned_type (type), lval_memory);
11147 unwrap_value (ada_value_subscript
11148 (callee, nargs, argvec.data ()));
11150 case TYPE_CODE_ARRAY:
11151 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11153 type = ada_array_element_type (type, nargs);
11155 error (_("element type of array unknown"));
11157 return value_zero (ada_aligned_type (type), lval_memory);
11160 unwrap_value (ada_value_subscript
11161 (ada_coerce_to_simple_array (callee),
11162 nargs, argvec.data ()));
11163 case TYPE_CODE_PTR: /* Pointer to array */
11164 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11166 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11167 type = ada_array_element_type (type, nargs);
11169 error (_("element type of array unknown"));
11171 return value_zero (ada_aligned_type (type), lval_memory);
11174 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11178 error (_("Attempt to index or call something other than an "
11179 "array or function"));
11184 ada_funcall_operation::resolve (struct expression *exp,
11185 bool deprocedure_p,
11186 bool parse_completion,
11187 innermost_block_tracker *tracker,
11188 struct type *context_type)
11190 operation_up &callee_op = std::get<0> (m_storage);
11192 ada_var_value_operation *avv
11193 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11194 if (avv == nullptr)
11197 symbol *sym = avv->get_symbol ();
11198 if (sym->domain () != UNDEF_DOMAIN)
11201 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11202 int nargs = args_up.size ();
11203 std::vector<value *> argvec (nargs);
11205 for (int i = 0; i < args_up.size (); ++i)
11206 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
11208 const block *block = avv->get_block ();
11209 block_symbol resolved
11210 = ada_resolve_funcall (sym, block,
11211 context_type, parse_completion,
11212 nargs, argvec.data (),
11215 std::get<0> (m_storage)
11216 = make_operation<ada_var_value_operation> (resolved);
11221 ada_ternop_slice_operation::resolve (struct expression *exp,
11222 bool deprocedure_p,
11223 bool parse_completion,
11224 innermost_block_tracker *tracker,
11225 struct type *context_type)
11227 /* Historically this check was done during resolution, so we
11228 continue that here. */
11229 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11230 EVAL_AVOID_SIDE_EFFECTS);
11231 if (ada_is_any_packed_array_type (value_type (v)))
11232 error (_("cannot slice a packed array"));
11240 /* Return non-zero iff TYPE represents a System.Address type. */
11243 ada_is_system_address_type (struct type *type)
11245 return (type->name () && strcmp (type->name (), "system__address") == 0);
11252 /* Scan STR beginning at position K for a discriminant name, and
11253 return the value of that discriminant field of DVAL in *PX. If
11254 PNEW_K is not null, put the position of the character beyond the
11255 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11256 not alter *PX and *PNEW_K if unsuccessful. */
11259 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11262 static std::string storage;
11263 const char *pstart, *pend, *bound;
11264 struct value *bound_val;
11266 if (dval == NULL || str == NULL || str[k] == '\0')
11270 pend = strstr (pstart, "__");
11274 k += strlen (bound);
11278 int len = pend - pstart;
11280 /* Strip __ and beyond. */
11281 storage = std::string (pstart, len);
11282 bound = storage.c_str ();
11286 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11287 if (bound_val == NULL)
11290 *px = value_as_long (bound_val);
11291 if (pnew_k != NULL)
11296 /* Value of variable named NAME. Only exact matches are considered.
11297 If no such variable found, then if ERR_MSG is null, returns 0, and
11298 otherwise causes an error with message ERR_MSG. */
11300 static struct value *
11301 get_var_value (const char *name, const char *err_msg)
11303 std::string quoted_name = add_angle_brackets (name);
11305 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11307 std::vector<struct block_symbol> syms
11308 = ada_lookup_symbol_list_worker (lookup_name,
11309 get_selected_block (0),
11312 if (syms.size () != 1)
11314 if (err_msg == NULL)
11317 error (("%s"), err_msg);
11320 return value_of_variable (syms[0].symbol, syms[0].block);
11323 /* Value of integer variable named NAME in the current environment.
11324 If no such variable is found, returns false. Otherwise, sets VALUE
11325 to the variable's value and returns true. */
11328 get_int_var_value (const char *name, LONGEST &value)
11330 struct value *var_val = get_var_value (name, 0);
11335 value = value_as_long (var_val);
11340 /* Return a range type whose base type is that of the range type named
11341 NAME in the current environment, and whose bounds are calculated
11342 from NAME according to the GNAT range encoding conventions.
11343 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11344 corresponding range type from debug information; fall back to using it
11345 if symbol lookup fails. If a new type must be created, allocate it
11346 like ORIG_TYPE was. The bounds information, in general, is encoded
11347 in NAME, the base type given in the named range type. */
11349 static struct type *
11350 to_fixed_range_type (struct type *raw_type, struct value *dval)
11353 struct type *base_type;
11354 const char *subtype_info;
11356 gdb_assert (raw_type != NULL);
11357 gdb_assert (raw_type->name () != NULL);
11359 if (raw_type->code () == TYPE_CODE_RANGE)
11360 base_type = TYPE_TARGET_TYPE (raw_type);
11362 base_type = raw_type;
11364 name = raw_type->name ();
11365 subtype_info = strstr (name, "___XD");
11366 if (subtype_info == NULL)
11368 LONGEST L = ada_discrete_type_low_bound (raw_type);
11369 LONGEST U = ada_discrete_type_high_bound (raw_type);
11371 if (L < INT_MIN || U > INT_MAX)
11374 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11379 int prefix_len = subtype_info - name;
11382 const char *bounds_str;
11386 bounds_str = strchr (subtype_info, '_');
11389 if (*subtype_info == 'L')
11391 if (!ada_scan_number (bounds_str, n, &L, &n)
11392 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11394 if (bounds_str[n] == '_')
11396 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11402 std::string name_buf = std::string (name, prefix_len) + "___L";
11403 if (!get_int_var_value (name_buf.c_str (), L))
11405 lim_warning (_("Unknown lower bound, using 1."));
11410 if (*subtype_info == 'U')
11412 if (!ada_scan_number (bounds_str, n, &U, &n)
11413 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11418 std::string name_buf = std::string (name, prefix_len) + "___U";
11419 if (!get_int_var_value (name_buf.c_str (), U))
11421 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11426 type = create_static_range_type (alloc_type_copy (raw_type),
11428 /* create_static_range_type alters the resulting type's length
11429 to match the size of the base_type, which is not what we want.
11430 Set it back to the original range type's length. */
11431 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11432 type->set_name (name);
11437 /* True iff NAME is the name of a range type. */
11440 ada_is_range_type_name (const char *name)
11442 return (name != NULL && strstr (name, "___XD"));
11446 /* Modular types */
11448 /* True iff TYPE is an Ada modular type. */
11451 ada_is_modular_type (struct type *type)
11453 struct type *subranged_type = get_base_type (type);
11455 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11456 && subranged_type->code () == TYPE_CODE_INT
11457 && subranged_type->is_unsigned ());
11460 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11463 ada_modulus (struct type *type)
11465 const dynamic_prop &high = type->bounds ()->high;
11467 if (high.kind () == PROP_CONST)
11468 return (ULONGEST) high.const_val () + 1;
11470 /* If TYPE is unresolved, the high bound might be a location list. Return
11471 0, for lack of a better value to return. */
11476 /* Ada exception catchpoint support:
11477 ---------------------------------
11479 We support 3 kinds of exception catchpoints:
11480 . catchpoints on Ada exceptions
11481 . catchpoints on unhandled Ada exceptions
11482 . catchpoints on failed assertions
11484 Exceptions raised during failed assertions, or unhandled exceptions
11485 could perfectly be caught with the general catchpoint on Ada exceptions.
11486 However, we can easily differentiate these two special cases, and having
11487 the option to distinguish these two cases from the rest can be useful
11488 to zero-in on certain situations.
11490 Exception catchpoints are a specialized form of breakpoint,
11491 since they rely on inserting breakpoints inside known routines
11492 of the GNAT runtime. The implementation therefore uses a standard
11493 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11496 Support in the runtime for exception catchpoints have been changed
11497 a few times already, and these changes affect the implementation
11498 of these catchpoints. In order to be able to support several
11499 variants of the runtime, we use a sniffer that will determine
11500 the runtime variant used by the program being debugged. */
11502 /* Ada's standard exceptions.
11504 The Ada 83 standard also defined Numeric_Error. But there so many
11505 situations where it was unclear from the Ada 83 Reference Manual
11506 (RM) whether Constraint_Error or Numeric_Error should be raised,
11507 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11508 Interpretation saying that anytime the RM says that Numeric_Error
11509 should be raised, the implementation may raise Constraint_Error.
11510 Ada 95 went one step further and pretty much removed Numeric_Error
11511 from the list of standard exceptions (it made it a renaming of
11512 Constraint_Error, to help preserve compatibility when compiling
11513 an Ada83 compiler). As such, we do not include Numeric_Error from
11514 this list of standard exceptions. */
11516 static const char * const standard_exc[] = {
11517 "constraint_error",
11523 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11525 /* A structure that describes how to support exception catchpoints
11526 for a given executable. */
11528 struct exception_support_info
11530 /* The name of the symbol to break on in order to insert
11531 a catchpoint on exceptions. */
11532 const char *catch_exception_sym;
11534 /* The name of the symbol to break on in order to insert
11535 a catchpoint on unhandled exceptions. */
11536 const char *catch_exception_unhandled_sym;
11538 /* The name of the symbol to break on in order to insert
11539 a catchpoint on failed assertions. */
11540 const char *catch_assert_sym;
11542 /* The name of the symbol to break on in order to insert
11543 a catchpoint on exception handling. */
11544 const char *catch_handlers_sym;
11546 /* Assuming that the inferior just triggered an unhandled exception
11547 catchpoint, this function is responsible for returning the address
11548 in inferior memory where the name of that exception is stored.
11549 Return zero if the address could not be computed. */
11550 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11553 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11554 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11556 /* The following exception support info structure describes how to
11557 implement exception catchpoints with the latest version of the
11558 Ada runtime (as of 2019-08-??). */
11560 static const struct exception_support_info default_exception_support_info =
11562 "__gnat_debug_raise_exception", /* catch_exception_sym */
11563 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11564 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11565 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11566 ada_unhandled_exception_name_addr
11569 /* The following exception support info structure describes how to
11570 implement exception catchpoints with an earlier version of the
11571 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11573 static const struct exception_support_info exception_support_info_v0 =
11575 "__gnat_debug_raise_exception", /* catch_exception_sym */
11576 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11577 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11578 "__gnat_begin_handler", /* catch_handlers_sym */
11579 ada_unhandled_exception_name_addr
11582 /* The following exception support info structure describes how to
11583 implement exception catchpoints with a slightly older version
11584 of the Ada runtime. */
11586 static const struct exception_support_info exception_support_info_fallback =
11588 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11589 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11590 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11591 "__gnat_begin_handler", /* catch_handlers_sym */
11592 ada_unhandled_exception_name_addr_from_raise
11595 /* Return nonzero if we can detect the exception support routines
11596 described in EINFO.
11598 This function errors out if an abnormal situation is detected
11599 (for instance, if we find the exception support routines, but
11600 that support is found to be incomplete). */
11603 ada_has_this_exception_support (const struct exception_support_info *einfo)
11605 struct symbol *sym;
11607 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11608 that should be compiled with debugging information. As a result, we
11609 expect to find that symbol in the symtabs. */
11611 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11614 /* Perhaps we did not find our symbol because the Ada runtime was
11615 compiled without debugging info, or simply stripped of it.
11616 It happens on some GNU/Linux distributions for instance, where
11617 users have to install a separate debug package in order to get
11618 the runtime's debugging info. In that situation, let the user
11619 know why we cannot insert an Ada exception catchpoint.
11621 Note: Just for the purpose of inserting our Ada exception
11622 catchpoint, we could rely purely on the associated minimal symbol.
11623 But we would be operating in degraded mode anyway, since we are
11624 still lacking the debugging info needed later on to extract
11625 the name of the exception being raised (this name is printed in
11626 the catchpoint message, and is also used when trying to catch
11627 a specific exception). We do not handle this case for now. */
11628 struct bound_minimal_symbol msym
11629 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11631 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11632 error (_("Your Ada runtime appears to be missing some debugging "
11633 "information.\nCannot insert Ada exception catchpoint "
11634 "in this configuration."));
11639 /* Make sure that the symbol we found corresponds to a function. */
11641 if (sym->aclass () != LOC_BLOCK)
11643 error (_("Symbol \"%s\" is not a function (class = %d)"),
11644 sym->linkage_name (), sym->aclass ());
11648 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11651 struct bound_minimal_symbol msym
11652 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11654 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11655 error (_("Your Ada runtime appears to be missing some debugging "
11656 "information.\nCannot insert Ada exception catchpoint "
11657 "in this configuration."));
11662 /* Make sure that the symbol we found corresponds to a function. */
11664 if (sym->aclass () != LOC_BLOCK)
11666 error (_("Symbol \"%s\" is not a function (class = %d)"),
11667 sym->linkage_name (), sym->aclass ());
11674 /* Inspect the Ada runtime and determine which exception info structure
11675 should be used to provide support for exception catchpoints.
11677 This function will always set the per-inferior exception_info,
11678 or raise an error. */
11681 ada_exception_support_info_sniffer (void)
11683 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11685 /* If the exception info is already known, then no need to recompute it. */
11686 if (data->exception_info != NULL)
11689 /* Check the latest (default) exception support info. */
11690 if (ada_has_this_exception_support (&default_exception_support_info))
11692 data->exception_info = &default_exception_support_info;
11696 /* Try the v0 exception suport info. */
11697 if (ada_has_this_exception_support (&exception_support_info_v0))
11699 data->exception_info = &exception_support_info_v0;
11703 /* Try our fallback exception suport info. */
11704 if (ada_has_this_exception_support (&exception_support_info_fallback))
11706 data->exception_info = &exception_support_info_fallback;
11710 /* Sometimes, it is normal for us to not be able to find the routine
11711 we are looking for. This happens when the program is linked with
11712 the shared version of the GNAT runtime, and the program has not been
11713 started yet. Inform the user of these two possible causes if
11716 if (ada_update_initial_language (language_unknown) != language_ada)
11717 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11719 /* If the symbol does not exist, then check that the program is
11720 already started, to make sure that shared libraries have been
11721 loaded. If it is not started, this may mean that the symbol is
11722 in a shared library. */
11724 if (inferior_ptid.pid () == 0)
11725 error (_("Unable to insert catchpoint. Try to start the program first."));
11727 /* At this point, we know that we are debugging an Ada program and
11728 that the inferior has been started, but we still are not able to
11729 find the run-time symbols. That can mean that we are in
11730 configurable run time mode, or that a-except as been optimized
11731 out by the linker... In any case, at this point it is not worth
11732 supporting this feature. */
11734 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11737 /* True iff FRAME is very likely to be that of a function that is
11738 part of the runtime system. This is all very heuristic, but is
11739 intended to be used as advice as to what frames are uninteresting
11743 is_known_support_routine (struct frame_info *frame)
11745 enum language func_lang;
11747 const char *fullname;
11749 /* If this code does not have any debugging information (no symtab),
11750 This cannot be any user code. */
11752 symtab_and_line sal = find_frame_sal (frame);
11753 if (sal.symtab == NULL)
11756 /* If there is a symtab, but the associated source file cannot be
11757 located, then assume this is not user code: Selecting a frame
11758 for which we cannot display the code would not be very helpful
11759 for the user. This should also take care of case such as VxWorks
11760 where the kernel has some debugging info provided for a few units. */
11762 fullname = symtab_to_fullname (sal.symtab);
11763 if (access (fullname, R_OK) != 0)
11766 /* Check the unit filename against the Ada runtime file naming.
11767 We also check the name of the objfile against the name of some
11768 known system libraries that sometimes come with debugging info
11771 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11773 re_comp (known_runtime_file_name_patterns[i]);
11774 if (re_exec (lbasename (sal.symtab->filename)))
11776 if (sal.symtab->objfile () != NULL
11777 && re_exec (objfile_name (sal.symtab->objfile ())))
11781 /* Check whether the function is a GNAT-generated entity. */
11783 gdb::unique_xmalloc_ptr<char> func_name
11784 = find_frame_funname (frame, &func_lang, NULL);
11785 if (func_name == NULL)
11788 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11790 re_comp (known_auxiliary_function_name_patterns[i]);
11791 if (re_exec (func_name.get ()))
11798 /* Find the first frame that contains debugging information and that is not
11799 part of the Ada run-time, starting from FI and moving upward. */
11802 ada_find_printable_frame (struct frame_info *fi)
11804 for (; fi != NULL; fi = get_prev_frame (fi))
11806 if (!is_known_support_routine (fi))
11815 /* Assuming that the inferior just triggered an unhandled exception
11816 catchpoint, return the address in inferior memory where the name
11817 of the exception is stored.
11819 Return zero if the address could not be computed. */
11822 ada_unhandled_exception_name_addr (void)
11824 return parse_and_eval_address ("e.full_name");
11827 /* Same as ada_unhandled_exception_name_addr, except that this function
11828 should be used when the inferior uses an older version of the runtime,
11829 where the exception name needs to be extracted from a specific frame
11830 several frames up in the callstack. */
11833 ada_unhandled_exception_name_addr_from_raise (void)
11836 struct frame_info *fi;
11837 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11839 /* To determine the name of this exception, we need to select
11840 the frame corresponding to RAISE_SYM_NAME. This frame is
11841 at least 3 levels up, so we simply skip the first 3 frames
11842 without checking the name of their associated function. */
11843 fi = get_current_frame ();
11844 for (frame_level = 0; frame_level < 3; frame_level += 1)
11846 fi = get_prev_frame (fi);
11850 enum language func_lang;
11852 gdb::unique_xmalloc_ptr<char> func_name
11853 = find_frame_funname (fi, &func_lang, NULL);
11854 if (func_name != NULL)
11856 if (strcmp (func_name.get (),
11857 data->exception_info->catch_exception_sym) == 0)
11858 break; /* We found the frame we were looking for... */
11860 fi = get_prev_frame (fi);
11867 return parse_and_eval_address ("id.full_name");
11870 /* Assuming the inferior just triggered an Ada exception catchpoint
11871 (of any type), return the address in inferior memory where the name
11872 of the exception is stored, if applicable.
11874 Assumes the selected frame is the current frame.
11876 Return zero if the address could not be computed, or if not relevant. */
11879 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11880 struct breakpoint *b)
11882 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11886 case ada_catch_exception:
11887 return (parse_and_eval_address ("e.full_name"));
11890 case ada_catch_exception_unhandled:
11891 return data->exception_info->unhandled_exception_name_addr ();
11894 case ada_catch_handlers:
11895 return 0; /* The runtimes does not provide access to the exception
11899 case ada_catch_assert:
11900 return 0; /* Exception name is not relevant in this case. */
11904 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11908 return 0; /* Should never be reached. */
11911 /* Assuming the inferior is stopped at an exception catchpoint,
11912 return the message which was associated to the exception, if
11913 available. Return NULL if the message could not be retrieved.
11915 Note: The exception message can be associated to an exception
11916 either through the use of the Raise_Exception function, or
11917 more simply (Ada 2005 and later), via:
11919 raise Exception_Name with "exception message";
11923 static gdb::unique_xmalloc_ptr<char>
11924 ada_exception_message_1 (void)
11926 struct value *e_msg_val;
11929 /* For runtimes that support this feature, the exception message
11930 is passed as an unbounded string argument called "message". */
11931 e_msg_val = parse_and_eval ("message");
11932 if (e_msg_val == NULL)
11933 return NULL; /* Exception message not supported. */
11935 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11936 gdb_assert (e_msg_val != NULL);
11937 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11939 /* If the message string is empty, then treat it as if there was
11940 no exception message. */
11941 if (e_msg_len <= 0)
11944 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11945 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11947 e_msg.get ()[e_msg_len] = '\0';
11952 /* Same as ada_exception_message_1, except that all exceptions are
11953 contained here (returning NULL instead). */
11955 static gdb::unique_xmalloc_ptr<char>
11956 ada_exception_message (void)
11958 gdb::unique_xmalloc_ptr<char> e_msg;
11962 e_msg = ada_exception_message_1 ();
11964 catch (const gdb_exception_error &e)
11966 e_msg.reset (nullptr);
11972 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11973 any error that ada_exception_name_addr_1 might cause to be thrown.
11974 When an error is intercepted, a warning with the error message is printed,
11975 and zero is returned. */
11978 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11979 struct breakpoint *b)
11981 CORE_ADDR result = 0;
11985 result = ada_exception_name_addr_1 (ex, b);
11988 catch (const gdb_exception_error &e)
11990 warning (_("failed to get exception name: %s"), e.what ());
11997 static std::string ada_exception_catchpoint_cond_string
11998 (const char *excep_string,
11999 enum ada_exception_catchpoint_kind ex);
12001 /* Ada catchpoints.
12003 In the case of catchpoints on Ada exceptions, the catchpoint will
12004 stop the target on every exception the program throws. When a user
12005 specifies the name of a specific exception, we translate this
12006 request into a condition expression (in text form), and then parse
12007 it into an expression stored in each of the catchpoint's locations.
12008 We then use this condition to check whether the exception that was
12009 raised is the one the user is interested in. If not, then the
12010 target is resumed again. We store the name of the requested
12011 exception, in order to be able to re-set the condition expression
12012 when symbols change. */
12014 /* An instance of this type is used to represent an Ada catchpoint
12015 breakpoint location. */
12017 class ada_catchpoint_location : public bp_location
12020 ada_catchpoint_location (breakpoint *owner)
12021 : bp_location (owner, bp_loc_software_breakpoint)
12024 /* The condition that checks whether the exception that was raised
12025 is the specific exception the user specified on catchpoint
12027 expression_up excep_cond_expr;
12030 /* An instance of this type is used to represent an Ada catchpoint. */
12032 struct ada_catchpoint : public breakpoint
12034 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12039 /* The name of the specific exception the user specified. */
12040 std::string excep_string;
12042 /* What kind of catchpoint this is. */
12043 enum ada_exception_catchpoint_kind m_kind;
12046 /* Parse the exception condition string in the context of each of the
12047 catchpoint's locations, and store them for later evaluation. */
12050 create_excep_cond_exprs (struct ada_catchpoint *c,
12051 enum ada_exception_catchpoint_kind ex)
12053 /* Nothing to do if there's no specific exception to catch. */
12054 if (c->excep_string.empty ())
12057 /* Same if there are no locations... */
12058 if (c->loc == NULL)
12061 /* Compute the condition expression in text form, from the specific
12062 expection we want to catch. */
12063 std::string cond_string
12064 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12066 /* Iterate over all the catchpoint's locations, and parse an
12067 expression for each. */
12068 for (bp_location *bl : c->locations ())
12070 struct ada_catchpoint_location *ada_loc
12071 = (struct ada_catchpoint_location *) bl;
12074 if (!bl->shlib_disabled)
12078 s = cond_string.c_str ();
12081 exp = parse_exp_1 (&s, bl->address,
12082 block_for_pc (bl->address),
12085 catch (const gdb_exception_error &e)
12087 warning (_("failed to reevaluate internal exception condition "
12088 "for catchpoint %d: %s"),
12089 c->number, e.what ());
12093 ada_loc->excep_cond_expr = std::move (exp);
12097 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12098 structure for all exception catchpoint kinds. */
12100 static struct bp_location *
12101 allocate_location_exception (struct breakpoint *self)
12103 return new ada_catchpoint_location (self);
12106 /* Implement the RE_SET method in the breakpoint_ops structure for all
12107 exception catchpoint kinds. */
12110 re_set_exception (struct breakpoint *b)
12112 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12114 /* Call the base class's method. This updates the catchpoint's
12116 bkpt_breakpoint_ops.re_set (b);
12118 /* Reparse the exception conditional expressions. One for each
12120 create_excep_cond_exprs (c, c->m_kind);
12123 /* Returns true if we should stop for this breakpoint hit. If the
12124 user specified a specific exception, we only want to cause a stop
12125 if the program thrown that exception. */
12128 should_stop_exception (const struct bp_location *bl)
12130 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12131 const struct ada_catchpoint_location *ada_loc
12132 = (const struct ada_catchpoint_location *) bl;
12135 struct internalvar *var = lookup_internalvar ("_ada_exception");
12136 if (c->m_kind == ada_catch_assert)
12137 clear_internalvar (var);
12144 if (c->m_kind == ada_catch_handlers)
12145 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12146 ".all.occurrence.id");
12150 struct value *exc = parse_and_eval (expr);
12151 set_internalvar (var, exc);
12153 catch (const gdb_exception_error &ex)
12155 clear_internalvar (var);
12159 /* With no specific exception, should always stop. */
12160 if (c->excep_string.empty ())
12163 if (ada_loc->excep_cond_expr == NULL)
12165 /* We will have a NULL expression if back when we were creating
12166 the expressions, this location's had failed to parse. */
12173 struct value *mark;
12175 mark = value_mark ();
12176 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12177 value_free_to_mark (mark);
12179 catch (const gdb_exception &ex)
12181 exception_fprintf (gdb_stderr, ex,
12182 _("Error in testing exception condition:\n"));
12188 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12189 for all exception catchpoint kinds. */
12192 check_status_exception (bpstat *bs)
12194 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12197 /* Implement the PRINT_IT method in the breakpoint_ops structure
12198 for all exception catchpoint kinds. */
12200 static enum print_stop_action
12201 print_it_exception (bpstat *bs)
12203 struct ui_out *uiout = current_uiout;
12204 struct breakpoint *b = bs->breakpoint_at;
12206 annotate_catchpoint (b->number);
12208 if (uiout->is_mi_like_p ())
12210 uiout->field_string ("reason",
12211 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12212 uiout->field_string ("disp", bpdisp_text (b->disposition));
12215 uiout->text (b->disposition == disp_del
12216 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12217 uiout->field_signed ("bkptno", b->number);
12218 uiout->text (", ");
12220 /* ada_exception_name_addr relies on the selected frame being the
12221 current frame. Need to do this here because this function may be
12222 called more than once when printing a stop, and below, we'll
12223 select the first frame past the Ada run-time (see
12224 ada_find_printable_frame). */
12225 select_frame (get_current_frame ());
12227 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12230 case ada_catch_exception:
12231 case ada_catch_exception_unhandled:
12232 case ada_catch_handlers:
12234 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12235 char exception_name[256];
12239 read_memory (addr, (gdb_byte *) exception_name,
12240 sizeof (exception_name) - 1);
12241 exception_name [sizeof (exception_name) - 1] = '\0';
12245 /* For some reason, we were unable to read the exception
12246 name. This could happen if the Runtime was compiled
12247 without debugging info, for instance. In that case,
12248 just replace the exception name by the generic string
12249 "exception" - it will read as "an exception" in the
12250 notification we are about to print. */
12251 memcpy (exception_name, "exception", sizeof ("exception"));
12253 /* In the case of unhandled exception breakpoints, we print
12254 the exception name as "unhandled EXCEPTION_NAME", to make
12255 it clearer to the user which kind of catchpoint just got
12256 hit. We used ui_out_text to make sure that this extra
12257 info does not pollute the exception name in the MI case. */
12258 if (c->m_kind == ada_catch_exception_unhandled)
12259 uiout->text ("unhandled ");
12260 uiout->field_string ("exception-name", exception_name);
12263 case ada_catch_assert:
12264 /* In this case, the name of the exception is not really
12265 important. Just print "failed assertion" to make it clearer
12266 that his program just hit an assertion-failure catchpoint.
12267 We used ui_out_text because this info does not belong in
12269 uiout->text ("failed assertion");
12273 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12274 if (exception_message != NULL)
12276 uiout->text (" (");
12277 uiout->field_string ("exception-message", exception_message.get ());
12281 uiout->text (" at ");
12282 ada_find_printable_frame (get_current_frame ());
12284 return PRINT_SRC_AND_LOC;
12287 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12288 for all exception catchpoint kinds. */
12291 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12293 struct ui_out *uiout = current_uiout;
12294 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12295 struct value_print_options opts;
12297 get_user_print_options (&opts);
12299 if (opts.addressprint)
12300 uiout->field_skip ("addr");
12302 annotate_field (5);
12305 case ada_catch_exception:
12306 if (!c->excep_string.empty ())
12308 std::string msg = string_printf (_("`%s' Ada exception"),
12309 c->excep_string.c_str ());
12311 uiout->field_string ("what", msg);
12314 uiout->field_string ("what", "all Ada exceptions");
12318 case ada_catch_exception_unhandled:
12319 uiout->field_string ("what", "unhandled Ada exceptions");
12322 case ada_catch_handlers:
12323 if (!c->excep_string.empty ())
12325 uiout->field_fmt ("what",
12326 _("`%s' Ada exception handlers"),
12327 c->excep_string.c_str ());
12330 uiout->field_string ("what", "all Ada exceptions handlers");
12333 case ada_catch_assert:
12334 uiout->field_string ("what", "failed Ada assertions");
12338 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12343 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12344 for all exception catchpoint kinds. */
12347 print_mention_exception (struct breakpoint *b)
12349 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12350 struct ui_out *uiout = current_uiout;
12352 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12353 : _("Catchpoint "));
12354 uiout->field_signed ("bkptno", b->number);
12355 uiout->text (": ");
12359 case ada_catch_exception:
12360 if (!c->excep_string.empty ())
12362 std::string info = string_printf (_("`%s' Ada exception"),
12363 c->excep_string.c_str ());
12364 uiout->text (info);
12367 uiout->text (_("all Ada exceptions"));
12370 case ada_catch_exception_unhandled:
12371 uiout->text (_("unhandled Ada exceptions"));
12374 case ada_catch_handlers:
12375 if (!c->excep_string.empty ())
12378 = string_printf (_("`%s' Ada exception handlers"),
12379 c->excep_string.c_str ());
12380 uiout->text (info);
12383 uiout->text (_("all Ada exceptions handlers"));
12386 case ada_catch_assert:
12387 uiout->text (_("failed Ada assertions"));
12391 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12396 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12397 for all exception catchpoint kinds. */
12400 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12402 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12406 case ada_catch_exception:
12407 fprintf_filtered (fp, "catch exception");
12408 if (!c->excep_string.empty ())
12409 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12412 case ada_catch_exception_unhandled:
12413 fprintf_filtered (fp, "catch exception unhandled");
12416 case ada_catch_handlers:
12417 fprintf_filtered (fp, "catch handlers");
12420 case ada_catch_assert:
12421 fprintf_filtered (fp, "catch assert");
12425 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12427 print_recreate_thread (b, fp);
12430 /* Virtual table for breakpoint type. */
12431 static struct breakpoint_ops catch_exception_breakpoint_ops;
12433 /* See ada-lang.h. */
12436 is_ada_exception_catchpoint (breakpoint *bp)
12438 return bp->ops == &catch_exception_breakpoint_ops;
12441 /* Split the arguments specified in a "catch exception" command.
12442 Set EX to the appropriate catchpoint type.
12443 Set EXCEP_STRING to the name of the specific exception if
12444 specified by the user.
12445 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12446 "catch handlers" command. False otherwise.
12447 If a condition is found at the end of the arguments, the condition
12448 expression is stored in COND_STRING (memory must be deallocated
12449 after use). Otherwise COND_STRING is set to NULL. */
12452 catch_ada_exception_command_split (const char *args,
12453 bool is_catch_handlers_cmd,
12454 enum ada_exception_catchpoint_kind *ex,
12455 std::string *excep_string,
12456 std::string *cond_string)
12458 std::string exception_name;
12460 exception_name = extract_arg (&args);
12461 if (exception_name == "if")
12463 /* This is not an exception name; this is the start of a condition
12464 expression for a catchpoint on all exceptions. So, "un-get"
12465 this token, and set exception_name to NULL. */
12466 exception_name.clear ();
12470 /* Check to see if we have a condition. */
12472 args = skip_spaces (args);
12473 if (startswith (args, "if")
12474 && (isspace (args[2]) || args[2] == '\0'))
12477 args = skip_spaces (args);
12479 if (args[0] == '\0')
12480 error (_("Condition missing after `if' keyword"));
12481 *cond_string = args;
12483 args += strlen (args);
12486 /* Check that we do not have any more arguments. Anything else
12489 if (args[0] != '\0')
12490 error (_("Junk at end of expression"));
12492 if (is_catch_handlers_cmd)
12494 /* Catch handling of exceptions. */
12495 *ex = ada_catch_handlers;
12496 *excep_string = exception_name;
12498 else if (exception_name.empty ())
12500 /* Catch all exceptions. */
12501 *ex = ada_catch_exception;
12502 excep_string->clear ();
12504 else if (exception_name == "unhandled")
12506 /* Catch unhandled exceptions. */
12507 *ex = ada_catch_exception_unhandled;
12508 excep_string->clear ();
12512 /* Catch a specific exception. */
12513 *ex = ada_catch_exception;
12514 *excep_string = exception_name;
12518 /* Return the name of the symbol on which we should break in order to
12519 implement a catchpoint of the EX kind. */
12521 static const char *
12522 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12524 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12526 gdb_assert (data->exception_info != NULL);
12530 case ada_catch_exception:
12531 return (data->exception_info->catch_exception_sym);
12533 case ada_catch_exception_unhandled:
12534 return (data->exception_info->catch_exception_unhandled_sym);
12536 case ada_catch_assert:
12537 return (data->exception_info->catch_assert_sym);
12539 case ada_catch_handlers:
12540 return (data->exception_info->catch_handlers_sym);
12543 internal_error (__FILE__, __LINE__,
12544 _("unexpected catchpoint kind (%d)"), ex);
12548 /* Return the condition that will be used to match the current exception
12549 being raised with the exception that the user wants to catch. This
12550 assumes that this condition is used when the inferior just triggered
12551 an exception catchpoint.
12552 EX: the type of catchpoints used for catching Ada exceptions. */
12555 ada_exception_catchpoint_cond_string (const char *excep_string,
12556 enum ada_exception_catchpoint_kind ex)
12558 bool is_standard_exc = false;
12559 std::string result;
12561 if (ex == ada_catch_handlers)
12563 /* For exception handlers catchpoints, the condition string does
12564 not use the same parameter as for the other exceptions. */
12565 result = ("long_integer (GNAT_GCC_exception_Access"
12566 "(gcc_exception).all.occurrence.id)");
12569 result = "long_integer (e)";
12571 /* The standard exceptions are a special case. They are defined in
12572 runtime units that have been compiled without debugging info; if
12573 EXCEP_STRING is the not-fully-qualified name of a standard
12574 exception (e.g. "constraint_error") then, during the evaluation
12575 of the condition expression, the symbol lookup on this name would
12576 *not* return this standard exception. The catchpoint condition
12577 may then be set only on user-defined exceptions which have the
12578 same not-fully-qualified name (e.g. my_package.constraint_error).
12580 To avoid this unexcepted behavior, these standard exceptions are
12581 systematically prefixed by "standard". This means that "catch
12582 exception constraint_error" is rewritten into "catch exception
12583 standard.constraint_error".
12585 If an exception named constraint_error is defined in another package of
12586 the inferior program, then the only way to specify this exception as a
12587 breakpoint condition is to use its fully-qualified named:
12588 e.g. my_package.constraint_error. */
12590 for (const char *name : standard_exc)
12592 if (strcmp (name, excep_string) == 0)
12594 is_standard_exc = true;
12601 if (is_standard_exc)
12602 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12604 string_appendf (result, "long_integer (&%s)", excep_string);
12609 /* Return the symtab_and_line that should be used to insert an exception
12610 catchpoint of the TYPE kind.
12612 ADDR_STRING returns the name of the function where the real
12613 breakpoint that implements the catchpoints is set, depending on the
12614 type of catchpoint we need to create. */
12616 static struct symtab_and_line
12617 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12618 std::string *addr_string, const struct breakpoint_ops **ops)
12620 const char *sym_name;
12621 struct symbol *sym;
12623 /* First, find out which exception support info to use. */
12624 ada_exception_support_info_sniffer ();
12626 /* Then lookup the function on which we will break in order to catch
12627 the Ada exceptions requested by the user. */
12628 sym_name = ada_exception_sym_name (ex);
12629 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12632 error (_("Catchpoint symbol not found: %s"), sym_name);
12634 if (sym->aclass () != LOC_BLOCK)
12635 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12637 /* Set ADDR_STRING. */
12638 *addr_string = sym_name;
12641 *ops = &catch_exception_breakpoint_ops;
12643 return find_function_start_sal (sym, 1);
12646 /* Create an Ada exception catchpoint.
12648 EX_KIND is the kind of exception catchpoint to be created.
12650 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12651 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12652 of the exception to which this catchpoint applies.
12654 COND_STRING, if not empty, is the catchpoint condition.
12656 TEMPFLAG, if nonzero, means that the underlying breakpoint
12657 should be temporary.
12659 FROM_TTY is the usual argument passed to all commands implementations. */
12662 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12663 enum ada_exception_catchpoint_kind ex_kind,
12664 const std::string &excep_string,
12665 const std::string &cond_string,
12670 std::string addr_string;
12671 const struct breakpoint_ops *ops = NULL;
12672 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12674 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12675 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12676 ops, tempflag, disabled, from_tty);
12677 c->excep_string = excep_string;
12678 create_excep_cond_exprs (c.get (), ex_kind);
12679 if (!cond_string.empty ())
12680 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12681 install_breakpoint (0, std::move (c), 1);
12684 /* Implement the "catch exception" command. */
12687 catch_ada_exception_command (const char *arg_entry, int from_tty,
12688 struct cmd_list_element *command)
12690 const char *arg = arg_entry;
12691 struct gdbarch *gdbarch = get_current_arch ();
12693 enum ada_exception_catchpoint_kind ex_kind;
12694 std::string excep_string;
12695 std::string cond_string;
12697 tempflag = command->context () == CATCH_TEMPORARY;
12701 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12703 create_ada_exception_catchpoint (gdbarch, ex_kind,
12704 excep_string, cond_string,
12705 tempflag, 1 /* enabled */,
12709 /* Implement the "catch handlers" command. */
12712 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12713 struct cmd_list_element *command)
12715 const char *arg = arg_entry;
12716 struct gdbarch *gdbarch = get_current_arch ();
12718 enum ada_exception_catchpoint_kind ex_kind;
12719 std::string excep_string;
12720 std::string cond_string;
12722 tempflag = command->context () == CATCH_TEMPORARY;
12726 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12728 create_ada_exception_catchpoint (gdbarch, ex_kind,
12729 excep_string, cond_string,
12730 tempflag, 1 /* enabled */,
12734 /* Completion function for the Ada "catch" commands. */
12737 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12738 const char *text, const char *word)
12740 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12742 for (const ada_exc_info &info : exceptions)
12744 if (startswith (info.name, word))
12745 tracker.add_completion (make_unique_xstrdup (info.name));
12749 /* Split the arguments specified in a "catch assert" command.
12751 ARGS contains the command's arguments (or the empty string if
12752 no arguments were passed).
12754 If ARGS contains a condition, set COND_STRING to that condition
12755 (the memory needs to be deallocated after use). */
12758 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12760 args = skip_spaces (args);
12762 /* Check whether a condition was provided. */
12763 if (startswith (args, "if")
12764 && (isspace (args[2]) || args[2] == '\0'))
12767 args = skip_spaces (args);
12768 if (args[0] == '\0')
12769 error (_("condition missing after `if' keyword"));
12770 cond_string.assign (args);
12773 /* Otherwise, there should be no other argument at the end of
12775 else if (args[0] != '\0')
12776 error (_("Junk at end of arguments."));
12779 /* Implement the "catch assert" command. */
12782 catch_assert_command (const char *arg_entry, int from_tty,
12783 struct cmd_list_element *command)
12785 const char *arg = arg_entry;
12786 struct gdbarch *gdbarch = get_current_arch ();
12788 std::string cond_string;
12790 tempflag = command->context () == CATCH_TEMPORARY;
12794 catch_ada_assert_command_split (arg, cond_string);
12795 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12797 tempflag, 1 /* enabled */,
12801 /* Return non-zero if the symbol SYM is an Ada exception object. */
12804 ada_is_exception_sym (struct symbol *sym)
12806 const char *type_name = sym->type ()->name ();
12808 return (sym->aclass () != LOC_TYPEDEF
12809 && sym->aclass () != LOC_BLOCK
12810 && sym->aclass () != LOC_CONST
12811 && sym->aclass () != LOC_UNRESOLVED
12812 && type_name != NULL && strcmp (type_name, "exception") == 0);
12815 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12816 Ada exception object. This matches all exceptions except the ones
12817 defined by the Ada language. */
12820 ada_is_non_standard_exception_sym (struct symbol *sym)
12822 if (!ada_is_exception_sym (sym))
12825 for (const char *name : standard_exc)
12826 if (strcmp (sym->linkage_name (), name) == 0)
12827 return 0; /* A standard exception. */
12829 /* Numeric_Error is also a standard exception, so exclude it.
12830 See the STANDARD_EXC description for more details as to why
12831 this exception is not listed in that array. */
12832 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12838 /* A helper function for std::sort, comparing two struct ada_exc_info
12841 The comparison is determined first by exception name, and then
12842 by exception address. */
12845 ada_exc_info::operator< (const ada_exc_info &other) const
12849 result = strcmp (name, other.name);
12852 if (result == 0 && addr < other.addr)
12858 ada_exc_info::operator== (const ada_exc_info &other) const
12860 return addr == other.addr && strcmp (name, other.name) == 0;
12863 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12864 routine, but keeping the first SKIP elements untouched.
12866 All duplicates are also removed. */
12869 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12872 std::sort (exceptions->begin () + skip, exceptions->end ());
12873 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12874 exceptions->end ());
12877 /* Add all exceptions defined by the Ada standard whose name match
12878 a regular expression.
12880 If PREG is not NULL, then this regexp_t object is used to
12881 perform the symbol name matching. Otherwise, no name-based
12882 filtering is performed.
12884 EXCEPTIONS is a vector of exceptions to which matching exceptions
12888 ada_add_standard_exceptions (compiled_regex *preg,
12889 std::vector<ada_exc_info> *exceptions)
12891 for (const char *name : standard_exc)
12893 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
12895 struct bound_minimal_symbol msymbol
12896 = ada_lookup_simple_minsym (name);
12898 if (msymbol.minsym != NULL)
12900 struct ada_exc_info info
12901 = {name, BMSYMBOL_VALUE_ADDRESS (msymbol)};
12903 exceptions->push_back (info);
12909 /* Add all Ada exceptions defined locally and accessible from the given
12912 If PREG is not NULL, then this regexp_t object is used to
12913 perform the symbol name matching. Otherwise, no name-based
12914 filtering is performed.
12916 EXCEPTIONS is a vector of exceptions to which matching exceptions
12920 ada_add_exceptions_from_frame (compiled_regex *preg,
12921 struct frame_info *frame,
12922 std::vector<ada_exc_info> *exceptions)
12924 const struct block *block = get_frame_block (frame, 0);
12928 struct block_iterator iter;
12929 struct symbol *sym;
12931 ALL_BLOCK_SYMBOLS (block, iter, sym)
12933 switch (sym->aclass ())
12940 if (ada_is_exception_sym (sym))
12942 struct ada_exc_info info = {sym->print_name (),
12943 SYMBOL_VALUE_ADDRESS (sym)};
12945 exceptions->push_back (info);
12949 if (BLOCK_FUNCTION (block) != NULL)
12951 block = BLOCK_SUPERBLOCK (block);
12955 /* Return true if NAME matches PREG or if PREG is NULL. */
12958 name_matches_regex (const char *name, compiled_regex *preg)
12960 return (preg == NULL
12961 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12964 /* Add all exceptions defined globally whose name name match
12965 a regular expression, excluding standard exceptions.
12967 The reason we exclude standard exceptions is that they need
12968 to be handled separately: Standard exceptions are defined inside
12969 a runtime unit which is normally not compiled with debugging info,
12970 and thus usually do not show up in our symbol search. However,
12971 if the unit was in fact built with debugging info, we need to
12972 exclude them because they would duplicate the entry we found
12973 during the special loop that specifically searches for those
12974 standard exceptions.
12976 If PREG is not NULL, then this regexp_t object is used to
12977 perform the symbol name matching. Otherwise, no name-based
12978 filtering is performed.
12980 EXCEPTIONS is a vector of exceptions to which matching exceptions
12984 ada_add_global_exceptions (compiled_regex *preg,
12985 std::vector<ada_exc_info> *exceptions)
12987 /* In Ada, the symbol "search name" is a linkage name, whereas the
12988 regular expression used to do the matching refers to the natural
12989 name. So match against the decoded name. */
12990 expand_symtabs_matching (NULL,
12991 lookup_name_info::match_any (),
12992 [&] (const char *search_name)
12994 std::string decoded = ada_decode (search_name);
12995 return name_matches_regex (decoded.c_str (), preg);
12998 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13001 for (objfile *objfile : current_program_space->objfiles ())
13003 for (compunit_symtab *s : objfile->compunits ())
13005 const struct blockvector *bv = s->blockvector ();
13008 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13010 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13011 struct block_iterator iter;
13012 struct symbol *sym;
13014 ALL_BLOCK_SYMBOLS (b, iter, sym)
13015 if (ada_is_non_standard_exception_sym (sym)
13016 && name_matches_regex (sym->natural_name (), preg))
13018 struct ada_exc_info info
13019 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13021 exceptions->push_back (info);
13028 /* Implements ada_exceptions_list with the regular expression passed
13029 as a regex_t, rather than a string.
13031 If not NULL, PREG is used to filter out exceptions whose names
13032 do not match. Otherwise, all exceptions are listed. */
13034 static std::vector<ada_exc_info>
13035 ada_exceptions_list_1 (compiled_regex *preg)
13037 std::vector<ada_exc_info> result;
13040 /* First, list the known standard exceptions. These exceptions
13041 need to be handled separately, as they are usually defined in
13042 runtime units that have been compiled without debugging info. */
13044 ada_add_standard_exceptions (preg, &result);
13046 /* Next, find all exceptions whose scope is local and accessible
13047 from the currently selected frame. */
13049 if (has_stack_frames ())
13051 prev_len = result.size ();
13052 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13054 if (result.size () > prev_len)
13055 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13058 /* Add all exceptions whose scope is global. */
13060 prev_len = result.size ();
13061 ada_add_global_exceptions (preg, &result);
13062 if (result.size () > prev_len)
13063 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13068 /* Return a vector of ada_exc_info.
13070 If REGEXP is NULL, all exceptions are included in the result.
13071 Otherwise, it should contain a valid regular expression,
13072 and only the exceptions whose names match that regular expression
13073 are included in the result.
13075 The exceptions are sorted in the following order:
13076 - Standard exceptions (defined by the Ada language), in
13077 alphabetical order;
13078 - Exceptions only visible from the current frame, in
13079 alphabetical order;
13080 - Exceptions whose scope is global, in alphabetical order. */
13082 std::vector<ada_exc_info>
13083 ada_exceptions_list (const char *regexp)
13085 if (regexp == NULL)
13086 return ada_exceptions_list_1 (NULL);
13088 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13089 return ada_exceptions_list_1 (®);
13092 /* Implement the "info exceptions" command. */
13095 info_exceptions_command (const char *regexp, int from_tty)
13097 struct gdbarch *gdbarch = get_current_arch ();
13099 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13101 if (regexp != NULL)
13103 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13105 printf_filtered (_("All defined Ada exceptions:\n"));
13107 for (const ada_exc_info &info : exceptions)
13108 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13112 /* Language vector */
13114 /* symbol_name_matcher_ftype adapter for wild_match. */
13117 do_wild_match (const char *symbol_search_name,
13118 const lookup_name_info &lookup_name,
13119 completion_match_result *comp_match_res)
13121 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13124 /* symbol_name_matcher_ftype adapter for full_match. */
13127 do_full_match (const char *symbol_search_name,
13128 const lookup_name_info &lookup_name,
13129 completion_match_result *comp_match_res)
13131 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13133 /* If both symbols start with "_ada_", just let the loop below
13134 handle the comparison. However, if only the symbol name starts
13135 with "_ada_", skip the prefix and let the match proceed as
13137 if (startswith (symbol_search_name, "_ada_")
13138 && !startswith (lname, "_ada"))
13139 symbol_search_name += 5;
13141 int uscore_count = 0;
13142 while (*lname != '\0')
13144 if (*symbol_search_name != *lname)
13146 if (*symbol_search_name == 'B' && uscore_count == 2
13147 && symbol_search_name[1] == '_')
13149 symbol_search_name += 2;
13150 while (isdigit (*symbol_search_name))
13151 ++symbol_search_name;
13152 if (symbol_search_name[0] == '_'
13153 && symbol_search_name[1] == '_')
13155 symbol_search_name += 2;
13162 if (*symbol_search_name == '_')
13167 ++symbol_search_name;
13171 return is_name_suffix (symbol_search_name);
13174 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13177 do_exact_match (const char *symbol_search_name,
13178 const lookup_name_info &lookup_name,
13179 completion_match_result *comp_match_res)
13181 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13184 /* Build the Ada lookup name for LOOKUP_NAME. */
13186 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13188 gdb::string_view user_name = lookup_name.name ();
13190 if (!user_name.empty () && user_name[0] == '<')
13192 if (user_name.back () == '>')
13194 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13197 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13198 m_encoded_p = true;
13199 m_verbatim_p = true;
13200 m_wild_match_p = false;
13201 m_standard_p = false;
13205 m_verbatim_p = false;
13207 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13211 const char *folded = ada_fold_name (user_name);
13212 m_encoded_name = ada_encode_1 (folded, false);
13213 if (m_encoded_name.empty ())
13214 m_encoded_name = gdb::to_string (user_name);
13217 m_encoded_name = gdb::to_string (user_name);
13219 /* Handle the 'package Standard' special case. See description
13220 of m_standard_p. */
13221 if (startswith (m_encoded_name.c_str (), "standard__"))
13223 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13224 m_standard_p = true;
13227 m_standard_p = false;
13229 /* If the name contains a ".", then the user is entering a fully
13230 qualified entity name, and the match must not be done in wild
13231 mode. Similarly, if the user wants to complete what looks
13232 like an encoded name, the match must not be done in wild
13233 mode. Also, in the standard__ special case always do
13234 non-wild matching. */
13236 = (lookup_name.match_type () != symbol_name_match_type::FULL
13239 && user_name.find ('.') == std::string::npos);
13243 /* symbol_name_matcher_ftype method for Ada. This only handles
13244 completion mode. */
13247 ada_symbol_name_matches (const char *symbol_search_name,
13248 const lookup_name_info &lookup_name,
13249 completion_match_result *comp_match_res)
13251 return lookup_name.ada ().matches (symbol_search_name,
13252 lookup_name.match_type (),
13256 /* A name matcher that matches the symbol name exactly, with
13260 literal_symbol_name_matcher (const char *symbol_search_name,
13261 const lookup_name_info &lookup_name,
13262 completion_match_result *comp_match_res)
13264 gdb::string_view name_view = lookup_name.name ();
13266 if (lookup_name.completion_mode ()
13267 ? (strncmp (symbol_search_name, name_view.data (),
13268 name_view.size ()) == 0)
13269 : symbol_search_name == name_view)
13271 if (comp_match_res != NULL)
13272 comp_match_res->set_match (symbol_search_name);
13279 /* Implement the "get_symbol_name_matcher" language_defn method for
13282 static symbol_name_matcher_ftype *
13283 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13285 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13286 return literal_symbol_name_matcher;
13288 if (lookup_name.completion_mode ())
13289 return ada_symbol_name_matches;
13292 if (lookup_name.ada ().wild_match_p ())
13293 return do_wild_match;
13294 else if (lookup_name.ada ().verbatim_p ())
13295 return do_exact_match;
13297 return do_full_match;
13301 /* Class representing the Ada language. */
13303 class ada_language : public language_defn
13307 : language_defn (language_ada)
13310 /* See language.h. */
13312 const char *name () const override
13315 /* See language.h. */
13317 const char *natural_name () const override
13320 /* See language.h. */
13322 const std::vector<const char *> &filename_extensions () const override
13324 static const std::vector<const char *> extensions
13325 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13329 /* Print an array element index using the Ada syntax. */
13331 void print_array_index (struct type *index_type,
13333 struct ui_file *stream,
13334 const value_print_options *options) const override
13336 struct value *index_value = val_atr (index_type, index);
13338 value_print (index_value, stream, options);
13339 fprintf_filtered (stream, " => ");
13342 /* Implement the "read_var_value" language_defn method for Ada. */
13344 struct value *read_var_value (struct symbol *var,
13345 const struct block *var_block,
13346 struct frame_info *frame) const override
13348 /* The only case where default_read_var_value is not sufficient
13349 is when VAR is a renaming... */
13350 if (frame != nullptr)
13352 const struct block *frame_block = get_frame_block (frame, NULL);
13353 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13354 return ada_read_renaming_var_value (var, frame_block);
13357 /* This is a typical case where we expect the default_read_var_value
13358 function to work. */
13359 return language_defn::read_var_value (var, var_block, frame);
13362 /* See language.h. */
13363 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
13365 return symbol->artificial;
13368 /* See language.h. */
13369 void language_arch_info (struct gdbarch *gdbarch,
13370 struct language_arch_info *lai) const override
13372 const struct builtin_type *builtin = builtin_type (gdbarch);
13374 /* Helper function to allow shorter lines below. */
13375 auto add = [&] (struct type *t)
13377 lai->add_primitive_type (t);
13380 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13382 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13383 0, "long_integer"));
13384 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13385 0, "short_integer"));
13386 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13388 lai->set_string_char_type (char_type);
13390 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13391 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
13392 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13393 "float", gdbarch_float_format (gdbarch)));
13394 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13395 "long_float", gdbarch_double_format (gdbarch)));
13396 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13397 0, "long_long_integer"));
13398 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13400 gdbarch_long_double_format (gdbarch)));
13401 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13403 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13405 add (builtin->builtin_void);
13407 struct type *system_addr_ptr
13408 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13410 system_addr_ptr->set_name ("system__address");
13411 add (system_addr_ptr);
13413 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13414 type. This is a signed integral type whose size is the same as
13415 the size of addresses. */
13416 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13417 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13418 "storage_offset"));
13420 lai->set_bool_type (builtin->builtin_bool);
13423 /* See language.h. */
13425 bool iterate_over_symbols
13426 (const struct block *block, const lookup_name_info &name,
13427 domain_enum domain,
13428 gdb::function_view<symbol_found_callback_ftype> callback) const override
13430 std::vector<struct block_symbol> results
13431 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13432 for (block_symbol &sym : results)
13434 if (!callback (&sym))
13441 /* See language.h. */
13442 bool sniff_from_mangled_name
13443 (const char *mangled,
13444 gdb::unique_xmalloc_ptr<char> *out) const override
13446 std::string demangled = ada_decode (mangled);
13450 if (demangled != mangled && demangled[0] != '<')
13452 /* Set the gsymbol language to Ada, but still return 0.
13453 Two reasons for that:
13455 1. For Ada, we prefer computing the symbol's decoded name
13456 on the fly rather than pre-compute it, in order to save
13457 memory (Ada projects are typically very large).
13459 2. There are some areas in the definition of the GNAT
13460 encoding where, with a bit of bad luck, we might be able
13461 to decode a non-Ada symbol, generating an incorrect
13462 demangled name (Eg: names ending with "TB" for instance
13463 are identified as task bodies and so stripped from
13464 the decoded name returned).
13466 Returning true, here, but not setting *DEMANGLED, helps us get
13467 a little bit of the best of both worlds. Because we're last,
13468 we should not affect any of the other languages that were
13469 able to demangle the symbol before us; we get to correctly
13470 tag Ada symbols as such; and even if we incorrectly tagged a
13471 non-Ada symbol, which should be rare, any routing through the
13472 Ada language should be transparent (Ada tries to behave much
13473 like C/C++ with non-Ada symbols). */
13480 /* See language.h. */
13482 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13483 int options) const override
13485 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13488 /* See language.h. */
13490 void print_type (struct type *type, const char *varstring,
13491 struct ui_file *stream, int show, int level,
13492 const struct type_print_options *flags) const override
13494 ada_print_type (type, varstring, stream, show, level, flags);
13497 /* See language.h. */
13499 const char *word_break_characters (void) const override
13501 return ada_completer_word_break_characters;
13504 /* See language.h. */
13506 void collect_symbol_completion_matches (completion_tracker &tracker,
13507 complete_symbol_mode mode,
13508 symbol_name_match_type name_match_type,
13509 const char *text, const char *word,
13510 enum type_code code) const override
13512 struct symbol *sym;
13513 const struct block *b, *surrounding_static_block = 0;
13514 struct block_iterator iter;
13516 gdb_assert (code == TYPE_CODE_UNDEF);
13518 lookup_name_info lookup_name (text, name_match_type, true);
13520 /* First, look at the partial symtab symbols. */
13521 expand_symtabs_matching (NULL,
13525 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13528 /* At this point scan through the misc symbol vectors and add each
13529 symbol you find to the list. Eventually we want to ignore
13530 anything that isn't a text symbol (everything else will be
13531 handled by the psymtab code above). */
13533 for (objfile *objfile : current_program_space->objfiles ())
13535 for (minimal_symbol *msymbol : objfile->msymbols ())
13539 if (completion_skip_symbol (mode, msymbol))
13542 language symbol_language = msymbol->language ();
13544 /* Ada minimal symbols won't have their language set to Ada. If
13545 we let completion_list_add_name compare using the
13546 default/C-like matcher, then when completing e.g., symbols in a
13547 package named "pck", we'd match internal Ada symbols like
13548 "pckS", which are invalid in an Ada expression, unless you wrap
13549 them in '<' '>' to request a verbatim match.
13551 Unfortunately, some Ada encoded names successfully demangle as
13552 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13553 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13554 with the wrong language set. Paper over that issue here. */
13555 if (symbol_language == language_auto
13556 || symbol_language == language_cplus)
13557 symbol_language = language_ada;
13559 completion_list_add_name (tracker,
13561 msymbol->linkage_name (),
13562 lookup_name, text, word);
13566 /* Search upwards from currently selected frame (so that we can
13567 complete on local vars. */
13569 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13571 if (!BLOCK_SUPERBLOCK (b))
13572 surrounding_static_block = b; /* For elmin of dups */
13574 ALL_BLOCK_SYMBOLS (b, iter, sym)
13576 if (completion_skip_symbol (mode, sym))
13579 completion_list_add_name (tracker,
13581 sym->linkage_name (),
13582 lookup_name, text, word);
13586 /* Go through the symtabs and check the externs and statics for
13587 symbols which match. */
13589 for (objfile *objfile : current_program_space->objfiles ())
13591 for (compunit_symtab *s : objfile->compunits ())
13594 b = BLOCKVECTOR_BLOCK (s->blockvector (), GLOBAL_BLOCK);
13595 ALL_BLOCK_SYMBOLS (b, iter, sym)
13597 if (completion_skip_symbol (mode, sym))
13600 completion_list_add_name (tracker,
13602 sym->linkage_name (),
13603 lookup_name, text, word);
13608 for (objfile *objfile : current_program_space->objfiles ())
13610 for (compunit_symtab *s : objfile->compunits ())
13613 b = BLOCKVECTOR_BLOCK (s->blockvector (), STATIC_BLOCK);
13614 /* Don't do this block twice. */
13615 if (b == surrounding_static_block)
13617 ALL_BLOCK_SYMBOLS (b, iter, sym)
13619 if (completion_skip_symbol (mode, sym))
13622 completion_list_add_name (tracker,
13624 sym->linkage_name (),
13625 lookup_name, text, word);
13631 /* See language.h. */
13633 gdb::unique_xmalloc_ptr<char> watch_location_expression
13634 (struct type *type, CORE_ADDR addr) const override
13636 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13637 std::string name = type_to_string (type);
13638 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13641 /* See language.h. */
13643 void value_print (struct value *val, struct ui_file *stream,
13644 const struct value_print_options *options) const override
13646 return ada_value_print (val, stream, options);
13649 /* See language.h. */
13651 void value_print_inner
13652 (struct value *val, struct ui_file *stream, int recurse,
13653 const struct value_print_options *options) const override
13655 return ada_value_print_inner (val, stream, recurse, options);
13658 /* See language.h. */
13660 struct block_symbol lookup_symbol_nonlocal
13661 (const char *name, const struct block *block,
13662 const domain_enum domain) const override
13664 struct block_symbol sym;
13666 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13667 if (sym.symbol != NULL)
13670 /* If we haven't found a match at this point, try the primitive
13671 types. In other languages, this search is performed before
13672 searching for global symbols in order to short-circuit that
13673 global-symbol search if it happens that the name corresponds
13674 to a primitive type. But we cannot do the same in Ada, because
13675 it is perfectly legitimate for a program to declare a type which
13676 has the same name as a standard type. If looking up a type in
13677 that situation, we have traditionally ignored the primitive type
13678 in favor of user-defined types. This is why, unlike most other
13679 languages, we search the primitive types this late and only after
13680 having searched the global symbols without success. */
13682 if (domain == VAR_DOMAIN)
13684 struct gdbarch *gdbarch;
13687 gdbarch = target_gdbarch ();
13689 gdbarch = block_gdbarch (block);
13691 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13692 if (sym.symbol != NULL)
13699 /* See language.h. */
13701 int parser (struct parser_state *ps) const override
13703 warnings_issued = 0;
13704 return ada_parse (ps);
13707 /* See language.h. */
13709 void emitchar (int ch, struct type *chtype,
13710 struct ui_file *stream, int quoter) const override
13712 ada_emit_char (ch, chtype, stream, quoter, 1);
13715 /* See language.h. */
13717 void printchar (int ch, struct type *chtype,
13718 struct ui_file *stream) const override
13720 ada_printchar (ch, chtype, stream);
13723 /* See language.h. */
13725 void printstr (struct ui_file *stream, struct type *elttype,
13726 const gdb_byte *string, unsigned int length,
13727 const char *encoding, int force_ellipses,
13728 const struct value_print_options *options) const override
13730 ada_printstr (stream, elttype, string, length, encoding,
13731 force_ellipses, options);
13734 /* See language.h. */
13736 void print_typedef (struct type *type, struct symbol *new_symbol,
13737 struct ui_file *stream) const override
13739 ada_print_typedef (type, new_symbol, stream);
13742 /* See language.h. */
13744 bool is_string_type_p (struct type *type) const override
13746 return ada_is_string_type (type);
13749 /* See language.h. */
13751 const char *struct_too_deep_ellipsis () const override
13752 { return "(...)"; }
13754 /* See language.h. */
13756 bool c_style_arrays_p () const override
13759 /* See language.h. */
13761 bool store_sym_names_in_linkage_form_p () const override
13764 /* See language.h. */
13766 const struct lang_varobj_ops *varobj_ops () const override
13767 { return &ada_varobj_ops; }
13770 /* See language.h. */
13772 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13773 (const lookup_name_info &lookup_name) const override
13775 return ada_get_symbol_name_matcher (lookup_name);
13779 /* Single instance of the Ada language class. */
13781 static ada_language ada_language_defn;
13783 /* Command-list for the "set/show ada" prefix command. */
13784 static struct cmd_list_element *set_ada_list;
13785 static struct cmd_list_element *show_ada_list;
13788 initialize_ada_catchpoint_ops (void)
13790 struct breakpoint_ops *ops;
13792 initialize_breakpoint_ops ();
13794 ops = &catch_exception_breakpoint_ops;
13795 *ops = bkpt_breakpoint_ops;
13796 ops->allocate_location = allocate_location_exception;
13797 ops->re_set = re_set_exception;
13798 ops->check_status = check_status_exception;
13799 ops->print_it = print_it_exception;
13800 ops->print_one = print_one_exception;
13801 ops->print_mention = print_mention_exception;
13802 ops->print_recreate = print_recreate_exception;
13805 /* This module's 'new_objfile' observer. */
13808 ada_new_objfile_observer (struct objfile *objfile)
13810 ada_clear_symbol_cache ();
13813 /* This module's 'free_objfile' observer. */
13816 ada_free_objfile_observer (struct objfile *objfile)
13818 ada_clear_symbol_cache ();
13821 /* Charsets known to GNAT. */
13822 static const char * const gnat_source_charsets[] =
13824 /* Note that code below assumes that the default comes first.
13825 Latin-1 is the default here, because that is also GNAT's
13835 /* Note that this value is special-cased in the encoder and
13841 void _initialize_ada_language ();
13843 _initialize_ada_language ()
13845 initialize_ada_catchpoint_ops ();
13847 add_setshow_prefix_cmd
13849 _("Prefix command for changing Ada-specific settings."),
13850 _("Generic command for showing Ada-specific settings."),
13851 &set_ada_list, &show_ada_list,
13852 &setlist, &showlist);
13854 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13855 &trust_pad_over_xvs, _("\
13856 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13857 Show whether an optimization trusting PAD types over XVS types is activated."),
13859 This is related to the encoding used by the GNAT compiler. The debugger\n\
13860 should normally trust the contents of PAD types, but certain older versions\n\
13861 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13862 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13863 work around this bug. It is always safe to turn this option \"off\", but\n\
13864 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13865 this option to \"off\" unless necessary."),
13866 NULL, NULL, &set_ada_list, &show_ada_list);
13868 add_setshow_boolean_cmd ("print-signatures", class_vars,
13869 &print_signatures, _("\
13870 Enable or disable the output of formal and return types for functions in the \
13871 overloads selection menu."), _("\
13872 Show whether the output of formal and return types for functions in the \
13873 overloads selection menu is activated."),
13874 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13876 ada_source_charset = gnat_source_charsets[0];
13877 add_setshow_enum_cmd ("source-charset", class_files,
13878 gnat_source_charsets,
13879 &ada_source_charset, _("\
13880 Set the Ada source character set."), _("\
13881 Show the Ada source character set."), _("\
13882 The character set used for Ada source files.\n\
13883 This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
13885 &set_ada_list, &show_ada_list);
13887 add_catch_command ("exception", _("\
13888 Catch Ada exceptions, when raised.\n\
13889 Usage: catch exception [ARG] [if CONDITION]\n\
13890 Without any argument, stop when any Ada exception is raised.\n\
13891 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13892 being raised does not have a handler (and will therefore lead to the task's\n\
13894 Otherwise, the catchpoint only stops when the name of the exception being\n\
13895 raised is the same as ARG.\n\
13896 CONDITION is a boolean expression that is evaluated to see whether the\n\
13897 exception should cause a stop."),
13898 catch_ada_exception_command,
13899 catch_ada_completer,
13903 add_catch_command ("handlers", _("\
13904 Catch Ada exceptions, when handled.\n\
13905 Usage: catch handlers [ARG] [if CONDITION]\n\
13906 Without any argument, stop when any Ada exception is handled.\n\
13907 With an argument, catch only exceptions with the given name.\n\
13908 CONDITION is a boolean expression that is evaluated to see whether the\n\
13909 exception should cause a stop."),
13910 catch_ada_handlers_command,
13911 catch_ada_completer,
13914 add_catch_command ("assert", _("\
13915 Catch failed Ada assertions, when raised.\n\
13916 Usage: catch assert [if CONDITION]\n\
13917 CONDITION is a boolean expression that is evaluated to see whether the\n\
13918 exception should cause a stop."),
13919 catch_assert_command,
13924 add_info ("exceptions", info_exceptions_command,
13926 List all Ada exception names.\n\
13927 Usage: info exceptions [REGEXP]\n\
13928 If a regular expression is passed as an argument, only those matching\n\
13929 the regular expression are listed."));
13931 add_setshow_prefix_cmd ("ada", class_maintenance,
13932 _("Set Ada maintenance-related variables."),
13933 _("Show Ada maintenance-related variables."),
13934 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
13935 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
13937 add_setshow_boolean_cmd
13938 ("ignore-descriptive-types", class_maintenance,
13939 &ada_ignore_descriptive_types_p,
13940 _("Set whether descriptive types generated by GNAT should be ignored."),
13941 _("Show whether descriptive types generated by GNAT should be ignored."),
13943 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13944 DWARF attribute."),
13945 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13947 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13949 NULL, xcalloc, xfree);
13951 /* The ada-lang observers. */
13952 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13953 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13954 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");