1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static struct type *desc_base_type (struct type *);
73 static struct type *desc_bounds_type (struct type *);
75 static struct value *desc_bounds (struct value *);
77 static int fat_pntr_bounds_bitpos (struct type *);
79 static int fat_pntr_bounds_bitsize (struct type *);
81 static struct type *desc_data_target_type (struct type *);
83 static struct value *desc_data (struct value *);
85 static int fat_pntr_data_bitpos (struct type *);
87 static int fat_pntr_data_bitsize (struct type *);
89 static struct value *desc_one_bound (struct value *, int, int);
91 static int desc_bound_bitpos (struct type *, int, int);
93 static int desc_bound_bitsize (struct type *, int, int);
95 static struct type *desc_index_type (struct type *, int);
97 static int desc_arity (struct type *);
99 static int ada_args_match (struct symbol *, struct value **, int);
101 static struct value *make_array_descriptor (struct type *, struct value *);
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 const struct block *);
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
121 static const char *ada_decoded_op_name (enum exp_opcode);
123 static int numeric_type_p (struct type *);
125 static int integer_type_p (struct type *);
127 static int scalar_type_p (struct type *);
129 static int discrete_type_p (struct type *);
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
134 static struct type *ada_find_parallel_type_with_name (struct type *,
137 static int is_dynamic_field (struct type *, int);
139 static struct type *to_fixed_variant_branch_type (struct type *,
141 CORE_ADDR, struct value *);
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145 static struct type *to_fixed_range_type (struct type *, struct value *);
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
150 static struct value *unwrap_value (struct value *);
152 static struct type *constrained_packed_array_type (struct type *, long *);
154 static struct type *decode_constrained_packed_array_type (struct type *);
156 static long decode_packed_array_bitsize (struct type *);
158 static struct value *decode_constrained_packed_array (struct value *);
160 static int ada_is_unconstrained_packed_array_type (struct type *);
162 static struct value *value_subscript_packed (struct value *, int,
165 static struct value *coerce_unspec_val_to_type (struct value *,
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
170 static int equiv_types (struct type *, struct type *);
172 static int is_name_suffix (const char *);
174 static int advance_wild_match (const char **, const char *, char);
176 static bool wild_match (const char *name, const char *patn);
178 static struct value *ada_coerce_ref (struct value *);
180 static LONGEST pos_atr (struct value *);
182 static struct value *val_atr (struct type *, LONGEST);
184 static struct symbol *standard_lookup (const char *, const struct block *,
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
197 static int ada_is_direct_array_type (struct type *);
199 static struct value *ada_index_struct_field (int, struct value *, int,
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
205 static struct type *ada_find_any_type (const char *name);
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
212 /* The result of a symbol lookup to be stored in our symbol cache. */
216 /* The name used to perform the lookup. */
218 /* The namespace used during the lookup. */
220 /* The symbol returned by the lookup, or NULL if no matching symbol
223 /* The block where the symbol was found, or NULL if no matching
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
239 #define HASH_SIZE 1009
241 struct ada_symbol_cache
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
250 static const char ada_completer_word_break_characters[] =
252 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
254 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
257 /* The name of the symbol to use to get the name of the main subprogram. */
258 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
259 = "__gnat_ada_main_program_name";
261 /* Limit on the number of warnings to raise per expression evaluation. */
262 static int warning_limit = 2;
264 /* Number of warning messages issued; reset to 0 by cleanups after
265 expression evaluation. */
266 static int warnings_issued = 0;
268 static const char * const known_runtime_file_name_patterns[] = {
269 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
272 static const char * const known_auxiliary_function_name_patterns[] = {
273 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
276 /* Maintenance-related settings for this module. */
278 static struct cmd_list_element *maint_set_ada_cmdlist;
279 static struct cmd_list_element *maint_show_ada_cmdlist;
281 /* The "maintenance ada set/show ignore-descriptive-type" value. */
283 static bool ada_ignore_descriptive_types_p = false;
285 /* Inferior-specific data. */
287 /* Per-inferior data for this module. */
289 struct ada_inferior_data
291 /* The ada__tags__type_specific_data type, which is used when decoding
292 tagged types. With older versions of GNAT, this type was directly
293 accessible through a component ("tsd") in the object tag. But this
294 is no longer the case, so we cache it for each inferior. */
295 struct type *tsd_type = nullptr;
297 /* The exception_support_info data. This data is used to determine
298 how to implement support for Ada exception catchpoints in a given
300 const struct exception_support_info *exception_info = nullptr;
303 /* Our key to this module's inferior data. */
304 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
306 /* Return our inferior data for the given inferior (INF).
308 This function always returns a valid pointer to an allocated
309 ada_inferior_data structure. If INF's inferior data has not
310 been previously set, this functions creates a new one with all
311 fields set to zero, sets INF's inferior to it, and then returns
312 a pointer to that newly allocated ada_inferior_data. */
314 static struct ada_inferior_data *
315 get_ada_inferior_data (struct inferior *inf)
317 struct ada_inferior_data *data;
319 data = ada_inferior_data.get (inf);
321 data = ada_inferior_data.emplace (inf);
326 /* Perform all necessary cleanups regarding our module's inferior data
327 that is required after the inferior INF just exited. */
330 ada_inferior_exit (struct inferior *inf)
332 ada_inferior_data.clear (inf);
336 /* program-space-specific data. */
338 /* This module's per-program-space data. */
339 struct ada_pspace_data
341 /* The Ada symbol cache. */
342 std::unique_ptr<ada_symbol_cache> sym_cache;
345 /* Key to our per-program-space data. */
346 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
348 /* Return this module's data for the given program space (PSPACE).
349 If not is found, add a zero'ed one now.
351 This function always returns a valid object. */
353 static struct ada_pspace_data *
354 get_ada_pspace_data (struct program_space *pspace)
356 struct ada_pspace_data *data;
358 data = ada_pspace_data_handle.get (pspace);
360 data = ada_pspace_data_handle.emplace (pspace);
367 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
368 all typedef layers have been peeled. Otherwise, return TYPE.
370 Normally, we really expect a typedef type to only have 1 typedef layer.
371 In other words, we really expect the target type of a typedef type to be
372 a non-typedef type. This is particularly true for Ada units, because
373 the language does not have a typedef vs not-typedef distinction.
374 In that respect, the Ada compiler has been trying to eliminate as many
375 typedef definitions in the debugging information, since they generally
376 do not bring any extra information (we still use typedef under certain
377 circumstances related mostly to the GNAT encoding).
379 Unfortunately, we have seen situations where the debugging information
380 generated by the compiler leads to such multiple typedef layers. For
381 instance, consider the following example with stabs:
383 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
384 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
386 This is an error in the debugging information which causes type
387 pck__float_array___XUP to be defined twice, and the second time,
388 it is defined as a typedef of a typedef.
390 This is on the fringe of legality as far as debugging information is
391 concerned, and certainly unexpected. But it is easy to handle these
392 situations correctly, so we can afford to be lenient in this case. */
395 ada_typedef_target_type (struct type *type)
397 while (type->code () == TYPE_CODE_TYPEDEF)
398 type = TYPE_TARGET_TYPE (type);
402 /* Given DECODED_NAME a string holding a symbol name in its
403 decoded form (ie using the Ada dotted notation), returns
404 its unqualified name. */
407 ada_unqualified_name (const char *decoded_name)
411 /* If the decoded name starts with '<', it means that the encoded
412 name does not follow standard naming conventions, and thus that
413 it is not your typical Ada symbol name. Trying to unqualify it
414 is therefore pointless and possibly erroneous. */
415 if (decoded_name[0] == '<')
418 result = strrchr (decoded_name, '.');
420 result++; /* Skip the dot... */
422 result = decoded_name;
427 /* Return a string starting with '<', followed by STR, and '>'. */
430 add_angle_brackets (const char *str)
432 return string_printf ("<%s>", str);
435 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
436 suffix of FIELD_NAME beginning "___". */
439 field_name_match (const char *field_name, const char *target)
441 int len = strlen (target);
444 (strncmp (field_name, target, len) == 0
445 && (field_name[len] == '\0'
446 || (startswith (field_name + len, "___")
447 && strcmp (field_name + strlen (field_name) - 6,
452 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
453 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
454 and return its index. This function also handles fields whose name
455 have ___ suffixes because the compiler sometimes alters their name
456 by adding such a suffix to represent fields with certain constraints.
457 If the field could not be found, return a negative number if
458 MAYBE_MISSING is set. Otherwise raise an error. */
461 ada_get_field_index (const struct type *type, const char *field_name,
465 struct type *struct_type = check_typedef ((struct type *) type);
467 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
468 if (field_name_match (struct_type->field (fieldno).name (), field_name))
472 error (_("Unable to find field %s in struct %s. Aborting"),
473 field_name, struct_type->name ());
478 /* The length of the prefix of NAME prior to any "___" suffix. */
481 ada_name_prefix_len (const char *name)
487 const char *p = strstr (name, "___");
490 return strlen (name);
496 /* Return non-zero if SUFFIX is a suffix of STR.
497 Return zero if STR is null. */
500 is_suffix (const char *str, const char *suffix)
507 len2 = strlen (suffix);
508 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
511 /* The contents of value VAL, treated as a value of type TYPE. The
512 result is an lval in memory if VAL is. */
514 static struct value *
515 coerce_unspec_val_to_type (struct value *val, struct type *type)
517 type = ada_check_typedef (type);
518 if (value_type (val) == type)
522 struct value *result;
524 if (value_optimized_out (val))
525 result = allocate_optimized_out_value (type);
526 else if (value_lazy (val)
527 /* Be careful not to make a lazy not_lval value. */
528 || (VALUE_LVAL (val) != not_lval
529 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
530 result = allocate_value_lazy (type);
533 result = allocate_value (type);
534 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
536 set_value_component_location (result, val);
537 set_value_bitsize (result, value_bitsize (val));
538 set_value_bitpos (result, value_bitpos (val));
539 if (VALUE_LVAL (result) == lval_memory)
540 set_value_address (result, value_address (val));
545 static const gdb_byte *
546 cond_offset_host (const gdb_byte *valaddr, long offset)
551 return valaddr + offset;
555 cond_offset_target (CORE_ADDR address, long offset)
560 return address + offset;
563 /* Issue a warning (as for the definition of warning in utils.c, but
564 with exactly one argument rather than ...), unless the limit on the
565 number of warnings has passed during the evaluation of the current
568 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
569 provided by "complaint". */
570 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
573 lim_warning (const char *format, ...)
577 va_start (args, format);
578 warnings_issued += 1;
579 if (warnings_issued <= warning_limit)
580 vwarning (format, args);
585 /* Maximum value of a SIZE-byte signed integer type. */
587 max_of_size (int size)
589 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
591 return top_bit | (top_bit - 1);
594 /* Minimum value of a SIZE-byte signed integer type. */
596 min_of_size (int size)
598 return -max_of_size (size) - 1;
601 /* Maximum value of a SIZE-byte unsigned integer type. */
603 umax_of_size (int size)
605 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
607 return top_bit | (top_bit - 1);
610 /* Maximum value of integral type T, as a signed quantity. */
612 max_of_type (struct type *t)
614 if (t->is_unsigned ())
615 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
617 return max_of_size (TYPE_LENGTH (t));
620 /* Minimum value of integral type T, as a signed quantity. */
622 min_of_type (struct type *t)
624 if (t->is_unsigned ())
627 return min_of_size (TYPE_LENGTH (t));
630 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
632 ada_discrete_type_high_bound (struct type *type)
634 type = resolve_dynamic_type (type, {}, 0);
635 switch (type->code ())
637 case TYPE_CODE_RANGE:
639 const dynamic_prop &high = type->bounds ()->high;
641 if (high.kind () == PROP_CONST)
642 return high.const_val ();
645 gdb_assert (high.kind () == PROP_UNDEFINED);
647 /* This happens when trying to evaluate a type's dynamic bound
648 without a live target. There is nothing relevant for us to
649 return here, so return 0. */
654 return type->field (type->num_fields () - 1).loc_enumval ();
659 return max_of_type (type);
661 error (_("Unexpected type in ada_discrete_type_high_bound."));
665 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
667 ada_discrete_type_low_bound (struct type *type)
669 type = resolve_dynamic_type (type, {}, 0);
670 switch (type->code ())
672 case TYPE_CODE_RANGE:
674 const dynamic_prop &low = type->bounds ()->low;
676 if (low.kind () == PROP_CONST)
677 return low.const_val ();
680 gdb_assert (low.kind () == PROP_UNDEFINED);
682 /* This happens when trying to evaluate a type's dynamic bound
683 without a live target. There is nothing relevant for us to
684 return here, so return 0. */
689 return type->field (0).loc_enumval ();
694 return min_of_type (type);
696 error (_("Unexpected type in ada_discrete_type_low_bound."));
700 /* The identity on non-range types. For range types, the underlying
701 non-range scalar type. */
704 get_base_type (struct type *type)
706 while (type != NULL && type->code () == TYPE_CODE_RANGE)
708 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
710 type = TYPE_TARGET_TYPE (type);
715 /* Return a decoded version of the given VALUE. This means returning
716 a value whose type is obtained by applying all the GNAT-specific
717 encodings, making the resulting type a static but standard description
718 of the initial type. */
721 ada_get_decoded_value (struct value *value)
723 struct type *type = ada_check_typedef (value_type (value));
725 if (ada_is_array_descriptor_type (type)
726 || (ada_is_constrained_packed_array_type (type)
727 && type->code () != TYPE_CODE_PTR))
729 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
730 value = ada_coerce_to_simple_array_ptr (value);
732 value = ada_coerce_to_simple_array (value);
735 value = ada_to_fixed_value (value);
740 /* Same as ada_get_decoded_value, but with the given TYPE.
741 Because there is no associated actual value for this type,
742 the resulting type might be a best-effort approximation in
743 the case of dynamic types. */
746 ada_get_decoded_type (struct type *type)
748 type = to_static_fixed_type (type);
749 if (ada_is_constrained_packed_array_type (type))
750 type = ada_coerce_to_simple_array_type (type);
756 /* Language Selection */
758 /* If the main program is in Ada, return language_ada, otherwise return LANG
759 (the main program is in Ada iif the adainit symbol is found). */
762 ada_update_initial_language (enum language lang)
764 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
770 /* If the main procedure is written in Ada, then return its name.
771 The result is good until the next call. Return NULL if the main
772 procedure doesn't appear to be in Ada. */
777 struct bound_minimal_symbol msym;
778 static gdb::unique_xmalloc_ptr<char> main_program_name;
780 /* For Ada, the name of the main procedure is stored in a specific
781 string constant, generated by the binder. Look for that symbol,
782 extract its address, and then read that string. If we didn't find
783 that string, then most probably the main procedure is not written
785 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
787 if (msym.minsym != NULL)
789 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
790 if (main_program_name_addr == 0)
791 error (_("Invalid address for Ada main program name."));
793 main_program_name = target_read_string (main_program_name_addr, 1024);
794 return main_program_name.get ();
797 /* The main procedure doesn't seem to be in Ada. */
803 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
806 const struct ada_opname_map ada_opname_table[] = {
807 {"Oadd", "\"+\"", BINOP_ADD},
808 {"Osubtract", "\"-\"", BINOP_SUB},
809 {"Omultiply", "\"*\"", BINOP_MUL},
810 {"Odivide", "\"/\"", BINOP_DIV},
811 {"Omod", "\"mod\"", BINOP_MOD},
812 {"Orem", "\"rem\"", BINOP_REM},
813 {"Oexpon", "\"**\"", BINOP_EXP},
814 {"Olt", "\"<\"", BINOP_LESS},
815 {"Ole", "\"<=\"", BINOP_LEQ},
816 {"Ogt", "\">\"", BINOP_GTR},
817 {"Oge", "\">=\"", BINOP_GEQ},
818 {"Oeq", "\"=\"", BINOP_EQUAL},
819 {"One", "\"/=\"", BINOP_NOTEQUAL},
820 {"Oand", "\"and\"", BINOP_BITWISE_AND},
821 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
822 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
823 {"Oconcat", "\"&\"", BINOP_CONCAT},
824 {"Oabs", "\"abs\"", UNOP_ABS},
825 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
826 {"Oadd", "\"+\"", UNOP_PLUS},
827 {"Osubtract", "\"-\"", UNOP_NEG},
831 /* If STR is a decoded version of a compiler-provided suffix (like the
832 "[cold]" in "symbol[cold]"), return true. Otherwise, return
836 is_compiler_suffix (const char *str)
838 gdb_assert (*str == '[');
840 while (*str != '\0' && isalpha (*str))
842 /* We accept a missing "]" in order to support completion. */
843 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
846 /* The "encoded" form of DECODED, according to GNAT conventions. If
847 THROW_ERRORS, throw an error if invalid operator name is found.
848 Otherwise, return the empty string in that case. */
851 ada_encode_1 (const char *decoded, bool throw_errors)
856 std::string encoding_buffer;
857 for (const char *p = decoded; *p != '\0'; p += 1)
860 encoding_buffer.append ("__");
861 else if (*p == '[' && is_compiler_suffix (p))
863 encoding_buffer = encoding_buffer + "." + (p + 1);
864 if (encoding_buffer.back () == ']')
865 encoding_buffer.pop_back ();
870 const struct ada_opname_map *mapping;
872 for (mapping = ada_opname_table;
873 mapping->encoded != NULL
874 && !startswith (p, mapping->decoded); mapping += 1)
876 if (mapping->encoded == NULL)
879 error (_("invalid Ada operator name: %s"), p);
883 encoding_buffer.append (mapping->encoded);
887 encoding_buffer.push_back (*p);
890 return encoding_buffer;
893 /* The "encoded" form of DECODED, according to GNAT conventions. */
896 ada_encode (const char *decoded)
898 return ada_encode_1 (decoded, true);
901 /* Return NAME folded to lower case, or, if surrounded by single
902 quotes, unfolded, but with the quotes stripped away. Result good
906 ada_fold_name (gdb::string_view name)
908 static std::string fold_storage;
910 if (!name.empty () && name[0] == '\'')
911 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
914 fold_storage = gdb::to_string (name);
915 for (int i = 0; i < name.size (); i += 1)
916 fold_storage[i] = tolower (fold_storage[i]);
919 return fold_storage.c_str ();
922 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
925 is_lower_alphanum (const char c)
927 return (isdigit (c) || (isalpha (c) && islower (c)));
930 /* ENCODED is the linkage name of a symbol and LEN contains its length.
931 This function saves in LEN the length of that same symbol name but
932 without either of these suffixes:
938 These are suffixes introduced by the compiler for entities such as
939 nested subprogram for instance, in order to avoid name clashes.
940 They do not serve any purpose for the debugger. */
943 ada_remove_trailing_digits (const char *encoded, int *len)
945 if (*len > 1 && isdigit (encoded[*len - 1]))
949 while (i > 0 && isdigit (encoded[i]))
951 if (i >= 0 && encoded[i] == '.')
953 else if (i >= 0 && encoded[i] == '$')
955 else if (i >= 2 && startswith (encoded + i - 2, "___"))
957 else if (i >= 1 && startswith (encoded + i - 1, "__"))
962 /* Remove the suffix introduced by the compiler for protected object
966 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
968 /* Remove trailing N. */
970 /* Protected entry subprograms are broken into two
971 separate subprograms: The first one is unprotected, and has
972 a 'N' suffix; the second is the protected version, and has
973 the 'P' suffix. The second calls the first one after handling
974 the protection. Since the P subprograms are internally generated,
975 we leave these names undecoded, giving the user a clue that this
976 entity is internal. */
979 && encoded[*len - 1] == 'N'
980 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
984 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
985 then update *LEN to remove the suffix and return the offset of the
986 character just past the ".". Otherwise, return -1. */
989 remove_compiler_suffix (const char *encoded, int *len)
991 int offset = *len - 1;
992 while (offset > 0 && isalpha (encoded[offset]))
994 if (offset > 0 && encoded[offset] == '.')
1002 /* See ada-lang.h. */
1005 ada_decode (const char *encoded, bool wrap)
1011 std::string decoded;
1014 /* With function descriptors on PPC64, the value of a symbol named
1015 ".FN", if it exists, is the entry point of the function "FN". */
1016 if (encoded[0] == '.')
1019 /* The name of the Ada main procedure starts with "_ada_".
1020 This prefix is not part of the decoded name, so skip this part
1021 if we see this prefix. */
1022 if (startswith (encoded, "_ada_"))
1025 /* If the name starts with '_', then it is not a properly encoded
1026 name, so do not attempt to decode it. Similarly, if the name
1027 starts with '<', the name should not be decoded. */
1028 if (encoded[0] == '_' || encoded[0] == '<')
1031 len0 = strlen (encoded);
1033 suffix = remove_compiler_suffix (encoded, &len0);
1035 ada_remove_trailing_digits (encoded, &len0);
1036 ada_remove_po_subprogram_suffix (encoded, &len0);
1038 /* Remove the ___X.* suffix if present. Do not forget to verify that
1039 the suffix is located before the current "end" of ENCODED. We want
1040 to avoid re-matching parts of ENCODED that have previously been
1041 marked as discarded (by decrementing LEN0). */
1042 p = strstr (encoded, "___");
1043 if (p != NULL && p - encoded < len0 - 3)
1051 /* Remove any trailing TKB suffix. It tells us that this symbol
1052 is for the body of a task, but that information does not actually
1053 appear in the decoded name. */
1055 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1058 /* Remove any trailing TB suffix. The TB suffix is slightly different
1059 from the TKB suffix because it is used for non-anonymous task
1062 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1065 /* Remove trailing "B" suffixes. */
1066 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1068 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1071 /* Make decoded big enough for possible expansion by operator name. */
1073 decoded.resize (2 * len0 + 1, 'X');
1075 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1077 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1080 while ((i >= 0 && isdigit (encoded[i]))
1081 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1083 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1085 else if (encoded[i] == '$')
1089 /* The first few characters that are not alphabetic are not part
1090 of any encoding we use, so we can copy them over verbatim. */
1092 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1093 decoded[j] = encoded[i];
1098 /* Is this a symbol function? */
1099 if (at_start_name && encoded[i] == 'O')
1103 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1105 int op_len = strlen (ada_opname_table[k].encoded);
1106 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1108 && !isalnum (encoded[i + op_len]))
1110 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1113 j += strlen (ada_opname_table[k].decoded);
1117 if (ada_opname_table[k].encoded != NULL)
1122 /* Replace "TK__" with "__", which will eventually be translated
1123 into "." (just below). */
1125 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1128 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1129 be translated into "." (just below). These are internal names
1130 generated for anonymous blocks inside which our symbol is nested. */
1132 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1133 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1134 && isdigit (encoded [i+4]))
1138 while (k < len0 && isdigit (encoded[k]))
1139 k++; /* Skip any extra digit. */
1141 /* Double-check that the "__B_{DIGITS}+" sequence we found
1142 is indeed followed by "__". */
1143 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1147 /* Remove _E{DIGITS}+[sb] */
1149 /* Just as for protected object subprograms, there are 2 categories
1150 of subprograms created by the compiler for each entry. The first
1151 one implements the actual entry code, and has a suffix following
1152 the convention above; the second one implements the barrier and
1153 uses the same convention as above, except that the 'E' is replaced
1156 Just as above, we do not decode the name of barrier functions
1157 to give the user a clue that the code he is debugging has been
1158 internally generated. */
1160 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1161 && isdigit (encoded[i+2]))
1165 while (k < len0 && isdigit (encoded[k]))
1169 && (encoded[k] == 'b' || encoded[k] == 's'))
1172 /* Just as an extra precaution, make sure that if this
1173 suffix is followed by anything else, it is a '_'.
1174 Otherwise, we matched this sequence by accident. */
1176 || (k < len0 && encoded[k] == '_'))
1181 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1182 the GNAT front-end in protected object subprograms. */
1185 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1187 /* Backtrack a bit up until we reach either the begining of
1188 the encoded name, or "__". Make sure that we only find
1189 digits or lowercase characters. */
1190 const char *ptr = encoded + i - 1;
1192 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1195 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1199 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1201 /* This is a X[bn]* sequence not separated from the previous
1202 part of the name with a non-alpha-numeric character (in other
1203 words, immediately following an alpha-numeric character), then
1204 verify that it is placed at the end of the encoded name. If
1205 not, then the encoding is not valid and we should abort the
1206 decoding. Otherwise, just skip it, it is used in body-nested
1210 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1214 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1216 /* Replace '__' by '.'. */
1224 /* It's a character part of the decoded name, so just copy it
1226 decoded[j] = encoded[i];
1233 /* Decoded names should never contain any uppercase character.
1234 Double-check this, and abort the decoding if we find one. */
1236 for (i = 0; i < decoded.length(); ++i)
1237 if (isupper (decoded[i]) || decoded[i] == ' ')
1240 /* If the compiler added a suffix, append it now. */
1242 decoded = decoded + "[" + &encoded[suffix] + "]";
1250 if (encoded[0] == '<')
1253 decoded = '<' + std::string(encoded) + '>';
1257 /* Table for keeping permanent unique copies of decoded names. Once
1258 allocated, names in this table are never released. While this is a
1259 storage leak, it should not be significant unless there are massive
1260 changes in the set of decoded names in successive versions of a
1261 symbol table loaded during a single session. */
1262 static struct htab *decoded_names_store;
1264 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1265 in the language-specific part of GSYMBOL, if it has not been
1266 previously computed. Tries to save the decoded name in the same
1267 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1268 in any case, the decoded symbol has a lifetime at least that of
1270 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1271 const, but nevertheless modified to a semantically equivalent form
1272 when a decoded name is cached in it. */
1275 ada_decode_symbol (const struct general_symbol_info *arg)
1277 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1278 const char **resultp =
1279 &gsymbol->language_specific.demangled_name;
1281 if (!gsymbol->ada_mangled)
1283 std::string decoded = ada_decode (gsymbol->linkage_name ());
1284 struct obstack *obstack = gsymbol->language_specific.obstack;
1286 gsymbol->ada_mangled = 1;
1288 if (obstack != NULL)
1289 *resultp = obstack_strdup (obstack, decoded.c_str ());
1292 /* Sometimes, we can't find a corresponding objfile, in
1293 which case, we put the result on the heap. Since we only
1294 decode when needed, we hope this usually does not cause a
1295 significant memory leak (FIXME). */
1297 char **slot = (char **) htab_find_slot (decoded_names_store,
1298 decoded.c_str (), INSERT);
1301 *slot = xstrdup (decoded.c_str ());
1313 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1320 The GNAT encoding used to describe the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1337 ada_fixup_array_indexes_type (struct type *index_desc_type)
1341 if (index_desc_type == NULL)
1343 gdb_assert (index_desc_type->num_fields () > 0);
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (index_desc_type->field (0).type ()->name () != NULL
1353 && strcmp (index_desc_type->field (0).type ()->name (),
1354 index_desc_type->field (0).name ()) == 0)
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i = 0; i < index_desc_type->num_fields (); i++)
1360 const char *name = index_desc_type->field (i).name ();
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1364 index_desc_type->field (i).set_type (raw_type);
1368 /* The desc_* routines return primitive portions of array descriptors
1371 /* The descriptor or array type, if any, indicated by TYPE; removes
1372 level of indirection, if needed. */
1374 static struct type *
1375 desc_base_type (struct type *type)
1379 type = ada_check_typedef (type);
1380 if (type->code () == TYPE_CODE_TYPEDEF)
1381 type = ada_typedef_target_type (type);
1384 && (type->code () == TYPE_CODE_PTR
1385 || type->code () == TYPE_CODE_REF))
1386 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1391 /* True iff TYPE indicates a "thin" array pointer type. */
1394 is_thin_pntr (struct type *type)
1397 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1398 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1401 /* The descriptor type for thin pointer type TYPE. */
1403 static struct type *
1404 thin_descriptor_type (struct type *type)
1406 struct type *base_type = desc_base_type (type);
1408 if (base_type == NULL)
1410 if (is_suffix (ada_type_name (base_type), "___XVE"))
1414 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1416 if (alt_type == NULL)
1423 /* A pointer to the array data for thin-pointer value VAL. */
1425 static struct value *
1426 thin_data_pntr (struct value *val)
1428 struct type *type = ada_check_typedef (value_type (val));
1429 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1431 data_type = lookup_pointer_type (data_type);
1433 if (type->code () == TYPE_CODE_PTR)
1434 return value_cast (data_type, value_copy (val));
1436 return value_from_longest (data_type, value_address (val));
1439 /* True iff TYPE indicates a "thick" array pointer type. */
1442 is_thick_pntr (struct type *type)
1444 type = desc_base_type (type);
1445 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1446 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1449 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1450 pointer to one, the type of its bounds data; otherwise, NULL. */
1452 static struct type *
1453 desc_bounds_type (struct type *type)
1457 type = desc_base_type (type);
1461 else if (is_thin_pntr (type))
1463 type = thin_descriptor_type (type);
1466 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1468 return ada_check_typedef (r);
1470 else if (type->code () == TYPE_CODE_STRUCT)
1472 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1474 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1479 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1480 one, a pointer to its bounds data. Otherwise NULL. */
1482 static struct value *
1483 desc_bounds (struct value *arr)
1485 struct type *type = ada_check_typedef (value_type (arr));
1487 if (is_thin_pntr (type))
1489 struct type *bounds_type =
1490 desc_bounds_type (thin_descriptor_type (type));
1493 if (bounds_type == NULL)
1494 error (_("Bad GNAT array descriptor"));
1496 /* NOTE: The following calculation is not really kosher, but
1497 since desc_type is an XVE-encoded type (and shouldn't be),
1498 the correct calculation is a real pain. FIXME (and fix GCC). */
1499 if (type->code () == TYPE_CODE_PTR)
1500 addr = value_as_long (arr);
1502 addr = value_address (arr);
1505 value_from_longest (lookup_pointer_type (bounds_type),
1506 addr - TYPE_LENGTH (bounds_type));
1509 else if (is_thick_pntr (type))
1511 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1512 _("Bad GNAT array descriptor"));
1513 struct type *p_bounds_type = value_type (p_bounds);
1516 && p_bounds_type->code () == TYPE_CODE_PTR)
1518 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1520 if (target_type->is_stub ())
1521 p_bounds = value_cast (lookup_pointer_type
1522 (ada_check_typedef (target_type)),
1526 error (_("Bad GNAT array descriptor"));
1534 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1535 position of the field containing the address of the bounds data. */
1538 fat_pntr_bounds_bitpos (struct type *type)
1540 return desc_base_type (type)->field (1).loc_bitpos ();
1543 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1544 size of the field containing the address of the bounds data. */
1547 fat_pntr_bounds_bitsize (struct type *type)
1549 type = desc_base_type (type);
1551 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1552 return TYPE_FIELD_BITSIZE (type, 1);
1554 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1557 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1558 pointer to one, the type of its array data (a array-with-no-bounds type);
1559 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1562 static struct type *
1563 desc_data_target_type (struct type *type)
1565 type = desc_base_type (type);
1567 /* NOTE: The following is bogus; see comment in desc_bounds. */
1568 if (is_thin_pntr (type))
1569 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1570 else if (is_thick_pntr (type))
1572 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1575 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1576 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1582 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1585 static struct value *
1586 desc_data (struct value *arr)
1588 struct type *type = value_type (arr);
1590 if (is_thin_pntr (type))
1591 return thin_data_pntr (arr);
1592 else if (is_thick_pntr (type))
1593 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1594 _("Bad GNAT array descriptor"));
1600 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1601 position of the field containing the address of the data. */
1604 fat_pntr_data_bitpos (struct type *type)
1606 return desc_base_type (type)->field (0).loc_bitpos ();
1609 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1610 size of the field containing the address of the data. */
1613 fat_pntr_data_bitsize (struct type *type)
1615 type = desc_base_type (type);
1617 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1618 return TYPE_FIELD_BITSIZE (type, 0);
1620 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1623 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1624 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1625 bound, if WHICH is 1. The first bound is I=1. */
1627 static struct value *
1628 desc_one_bound (struct value *bounds, int i, int which)
1630 char bound_name[20];
1631 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1632 which ? 'U' : 'L', i - 1);
1633 return value_struct_elt (&bounds, {}, bound_name, NULL,
1634 _("Bad GNAT array descriptor bounds"));
1637 /* If BOUNDS is an array-bounds structure type, return the bit position
1638 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1639 bound, if WHICH is 1. The first bound is I=1. */
1642 desc_bound_bitpos (struct type *type, int i, int which)
1644 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1647 /* If BOUNDS is an array-bounds structure type, return the bit field size
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649 bound, if WHICH is 1. The first bound is I=1. */
1652 desc_bound_bitsize (struct type *type, int i, int which)
1654 type = desc_base_type (type);
1656 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1657 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1659 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1662 /* If TYPE is the type of an array-bounds structure, the type of its
1663 Ith bound (numbering from 1). Otherwise, NULL. */
1665 static struct type *
1666 desc_index_type (struct type *type, int i)
1668 type = desc_base_type (type);
1670 if (type->code () == TYPE_CODE_STRUCT)
1672 char bound_name[20];
1673 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1674 return lookup_struct_elt_type (type, bound_name, 1);
1680 /* The number of index positions in the array-bounds type TYPE.
1681 Return 0 if TYPE is NULL. */
1684 desc_arity (struct type *type)
1686 type = desc_base_type (type);
1689 return type->num_fields () / 2;
1693 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1694 an array descriptor type (representing an unconstrained array
1698 ada_is_direct_array_type (struct type *type)
1702 type = ada_check_typedef (type);
1703 return (type->code () == TYPE_CODE_ARRAY
1704 || ada_is_array_descriptor_type (type));
1707 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1711 ada_is_array_type (struct type *type)
1714 && (type->code () == TYPE_CODE_PTR
1715 || type->code () == TYPE_CODE_REF))
1716 type = TYPE_TARGET_TYPE (type);
1717 return ada_is_direct_array_type (type);
1720 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1723 ada_is_simple_array_type (struct type *type)
1727 type = ada_check_typedef (type);
1728 return (type->code () == TYPE_CODE_ARRAY
1729 || (type->code () == TYPE_CODE_PTR
1730 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1731 == TYPE_CODE_ARRAY)));
1734 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1737 ada_is_array_descriptor_type (struct type *type)
1739 struct type *data_type = desc_data_target_type (type);
1743 type = ada_check_typedef (type);
1744 return (data_type != NULL
1745 && data_type->code () == TYPE_CODE_ARRAY
1746 && desc_arity (desc_bounds_type (type)) > 0);
1749 /* Non-zero iff type is a partially mal-formed GNAT array
1750 descriptor. FIXME: This is to compensate for some problems with
1751 debugging output from GNAT. Re-examine periodically to see if it
1755 ada_is_bogus_array_descriptor (struct type *type)
1759 && type->code () == TYPE_CODE_STRUCT
1760 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1761 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1762 && !ada_is_array_descriptor_type (type);
1766 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1767 (fat pointer) returns the type of the array data described---specifically,
1768 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1769 in from the descriptor; otherwise, they are left unspecified. If
1770 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1771 returns NULL. The result is simply the type of ARR if ARR is not
1774 static struct type *
1775 ada_type_of_array (struct value *arr, int bounds)
1777 if (ada_is_constrained_packed_array_type (value_type (arr)))
1778 return decode_constrained_packed_array_type (value_type (arr));
1780 if (!ada_is_array_descriptor_type (value_type (arr)))
1781 return value_type (arr);
1785 struct type *array_type =
1786 ada_check_typedef (desc_data_target_type (value_type (arr)));
1788 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1789 TYPE_FIELD_BITSIZE (array_type, 0) =
1790 decode_packed_array_bitsize (value_type (arr));
1796 struct type *elt_type;
1798 struct value *descriptor;
1800 elt_type = ada_array_element_type (value_type (arr), -1);
1801 arity = ada_array_arity (value_type (arr));
1803 if (elt_type == NULL || arity == 0)
1804 return ada_check_typedef (value_type (arr));
1806 descriptor = desc_bounds (arr);
1807 if (value_as_long (descriptor) == 0)
1811 struct type *range_type = alloc_type_copy (value_type (arr));
1812 struct type *array_type = alloc_type_copy (value_type (arr));
1813 struct value *low = desc_one_bound (descriptor, arity, 0);
1814 struct value *high = desc_one_bound (descriptor, arity, 1);
1817 create_static_range_type (range_type, value_type (low),
1818 longest_to_int (value_as_long (low)),
1819 longest_to_int (value_as_long (high)));
1820 elt_type = create_array_type (array_type, elt_type, range_type);
1822 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1824 /* We need to store the element packed bitsize, as well as
1825 recompute the array size, because it was previously
1826 computed based on the unpacked element size. */
1827 LONGEST lo = value_as_long (low);
1828 LONGEST hi = value_as_long (high);
1830 TYPE_FIELD_BITSIZE (elt_type, 0) =
1831 decode_packed_array_bitsize (value_type (arr));
1832 /* If the array has no element, then the size is already
1833 zero, and does not need to be recomputed. */
1837 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1839 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1844 return lookup_pointer_type (elt_type);
1848 /* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns either a standard GDB array with bounds set
1850 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1851 GDB array. Returns NULL if ARR is a null fat pointer. */
1854 ada_coerce_to_simple_array_ptr (struct value *arr)
1856 if (ada_is_array_descriptor_type (value_type (arr)))
1858 struct type *arrType = ada_type_of_array (arr, 1);
1860 if (arrType == NULL)
1862 return value_cast (arrType, value_copy (desc_data (arr)));
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
1870 /* If ARR does not represent an array, returns ARR unchanged.
1871 Otherwise, returns a standard GDB array describing ARR (which may
1872 be ARR itself if it already is in the proper form). */
1875 ada_coerce_to_simple_array (struct value *arr)
1877 if (ada_is_array_descriptor_type (value_type (arr)))
1879 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1882 error (_("Bounds unavailable for null array pointer."));
1883 return value_ind (arrVal);
1885 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1886 return decode_constrained_packed_array (arr);
1891 /* If TYPE represents a GNAT array type, return it translated to an
1892 ordinary GDB array type (possibly with BITSIZE fields indicating
1893 packing). For other types, is the identity. */
1896 ada_coerce_to_simple_array_type (struct type *type)
1898 if (ada_is_constrained_packed_array_type (type))
1899 return decode_constrained_packed_array_type (type);
1901 if (ada_is_array_descriptor_type (type))
1902 return ada_check_typedef (desc_data_target_type (type));
1907 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1910 ada_is_gnat_encoded_packed_array_type (struct type *type)
1914 type = desc_base_type (type);
1915 type = ada_check_typedef (type);
1917 ada_type_name (type) != NULL
1918 && strstr (ada_type_name (type), "___XP") != NULL;
1921 /* Non-zero iff TYPE represents a standard GNAT constrained
1922 packed-array type. */
1925 ada_is_constrained_packed_array_type (struct type *type)
1927 return ada_is_gnat_encoded_packed_array_type (type)
1928 && !ada_is_array_descriptor_type (type);
1931 /* Non-zero iff TYPE represents an array descriptor for a
1932 unconstrained packed-array type. */
1935 ada_is_unconstrained_packed_array_type (struct type *type)
1937 if (!ada_is_array_descriptor_type (type))
1940 if (ada_is_gnat_encoded_packed_array_type (type))
1943 /* If we saw GNAT encodings, then the above code is sufficient.
1944 However, with minimal encodings, we will just have a thick
1946 if (is_thick_pntr (type))
1948 type = desc_base_type (type);
1949 /* The structure's first field is a pointer to an array, so this
1950 fetches the array type. */
1951 type = TYPE_TARGET_TYPE (type->field (0).type ());
1952 /* Now we can see if the array elements are packed. */
1953 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1959 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1960 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1963 ada_is_any_packed_array_type (struct type *type)
1965 return (ada_is_constrained_packed_array_type (type)
1966 || (type->code () == TYPE_CODE_ARRAY
1967 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1970 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1971 return the size of its elements in bits. */
1974 decode_packed_array_bitsize (struct type *type)
1976 const char *raw_name;
1980 /* Access to arrays implemented as fat pointers are encoded as a typedef
1981 of the fat pointer type. We need the name of the fat pointer type
1982 to do the decoding, so strip the typedef layer. */
1983 if (type->code () == TYPE_CODE_TYPEDEF)
1984 type = ada_typedef_target_type (type);
1986 raw_name = ada_type_name (ada_check_typedef (type));
1988 raw_name = ada_type_name (desc_base_type (type));
1993 tail = strstr (raw_name, "___XP");
1994 if (tail == nullptr)
1996 gdb_assert (is_thick_pntr (type));
1997 /* The structure's first field is a pointer to an array, so this
1998 fetches the array type. */
1999 type = TYPE_TARGET_TYPE (type->field (0).type ());
2000 /* Now we can see if the array elements are packed. */
2001 return TYPE_FIELD_BITSIZE (type, 0);
2004 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2007 (_("could not understand bit size information on packed array"));
2014 /* Given that TYPE is a standard GDB array type with all bounds filled
2015 in, and that the element size of its ultimate scalar constituents
2016 (that is, either its elements, or, if it is an array of arrays, its
2017 elements' elements, etc.) is *ELT_BITS, return an identical type,
2018 but with the bit sizes of its elements (and those of any
2019 constituent arrays) recorded in the BITSIZE components of its
2020 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2023 Note that, for arrays whose index type has an XA encoding where
2024 a bound references a record discriminant, getting that discriminant,
2025 and therefore the actual value of that bound, is not possible
2026 because none of the given parameters gives us access to the record.
2027 This function assumes that it is OK in the context where it is being
2028 used to return an array whose bounds are still dynamic and where
2029 the length is arbitrary. */
2031 static struct type *
2032 constrained_packed_array_type (struct type *type, long *elt_bits)
2034 struct type *new_elt_type;
2035 struct type *new_type;
2036 struct type *index_type_desc;
2037 struct type *index_type;
2038 LONGEST low_bound, high_bound;
2040 type = ada_check_typedef (type);
2041 if (type->code () != TYPE_CODE_ARRAY)
2044 index_type_desc = ada_find_parallel_type (type, "___XA");
2045 if (index_type_desc)
2046 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2049 index_type = type->index_type ();
2051 new_type = alloc_type_copy (type);
2053 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2055 create_array_type (new_type, new_elt_type, index_type);
2056 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2057 new_type->set_name (ada_type_name (type));
2059 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2060 && is_dynamic_type (check_typedef (index_type)))
2061 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2062 low_bound = high_bound = 0;
2063 if (high_bound < low_bound)
2064 *elt_bits = TYPE_LENGTH (new_type) = 0;
2067 *elt_bits *= (high_bound - low_bound + 1);
2068 TYPE_LENGTH (new_type) =
2069 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2072 new_type->set_is_fixed_instance (true);
2076 /* The array type encoded by TYPE, where
2077 ada_is_constrained_packed_array_type (TYPE). */
2079 static struct type *
2080 decode_constrained_packed_array_type (struct type *type)
2082 const char *raw_name = ada_type_name (ada_check_typedef (type));
2085 struct type *shadow_type;
2089 raw_name = ada_type_name (desc_base_type (type));
2094 name = (char *) alloca (strlen (raw_name) + 1);
2095 tail = strstr (raw_name, "___XP");
2096 type = desc_base_type (type);
2098 memcpy (name, raw_name, tail - raw_name);
2099 name[tail - raw_name] = '\000';
2101 shadow_type = ada_find_parallel_type_with_name (type, name);
2103 if (shadow_type == NULL)
2105 lim_warning (_("could not find bounds information on packed array"));
2108 shadow_type = check_typedef (shadow_type);
2110 if (shadow_type->code () != TYPE_CODE_ARRAY)
2112 lim_warning (_("could not understand bounds "
2113 "information on packed array"));
2117 bits = decode_packed_array_bitsize (type);
2118 return constrained_packed_array_type (shadow_type, &bits);
2121 /* Helper function for decode_constrained_packed_array. Set the field
2122 bitsize on a series of packed arrays. Returns the number of
2123 elements in TYPE. */
2126 recursively_update_array_bitsize (struct type *type)
2128 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2131 if (!get_discrete_bounds (type->index_type (), &low, &high)
2134 LONGEST our_len = high - low + 1;
2136 struct type *elt_type = TYPE_TARGET_TYPE (type);
2137 if (elt_type->code () == TYPE_CODE_ARRAY)
2139 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2140 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2141 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2143 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2150 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2151 array, returns a simple array that denotes that array. Its type is a
2152 standard GDB array type except that the BITSIZEs of the array
2153 target types are set to the number of bits in each element, and the
2154 type length is set appropriately. */
2156 static struct value *
2157 decode_constrained_packed_array (struct value *arr)
2161 /* If our value is a pointer, then dereference it. Likewise if
2162 the value is a reference. Make sure that this operation does not
2163 cause the target type to be fixed, as this would indirectly cause
2164 this array to be decoded. The rest of the routine assumes that
2165 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2166 and "value_ind" routines to perform the dereferencing, as opposed
2167 to using "ada_coerce_ref" or "ada_value_ind". */
2168 arr = coerce_ref (arr);
2169 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2170 arr = value_ind (arr);
2172 type = decode_constrained_packed_array_type (value_type (arr));
2175 error (_("can't unpack array"));
2179 /* Decoding the packed array type could not correctly set the field
2180 bitsizes for any dimension except the innermost, because the
2181 bounds may be variable and were not passed to that function. So,
2182 we further resolve the array bounds here and then update the
2184 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2185 CORE_ADDR address = value_address (arr);
2186 gdb::array_view<const gdb_byte> view
2187 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2188 type = resolve_dynamic_type (type, view, address);
2189 recursively_update_array_bitsize (type);
2191 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2192 && ada_is_modular_type (value_type (arr)))
2194 /* This is a (right-justified) modular type representing a packed
2195 array with no wrapper. In order to interpret the value through
2196 the (left-justified) packed array type we just built, we must
2197 first left-justify it. */
2198 int bit_size, bit_pos;
2201 mod = ada_modulus (value_type (arr)) - 1;
2208 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2209 arr = ada_value_primitive_packed_val (arr, NULL,
2210 bit_pos / HOST_CHAR_BIT,
2211 bit_pos % HOST_CHAR_BIT,
2216 return coerce_unspec_val_to_type (arr, type);
2220 /* The value of the element of packed array ARR at the ARITY indices
2221 given in IND. ARR must be a simple array. */
2223 static struct value *
2224 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2227 int bits, elt_off, bit_off;
2228 long elt_total_bit_offset;
2229 struct type *elt_type;
2233 elt_total_bit_offset = 0;
2234 elt_type = ada_check_typedef (value_type (arr));
2235 for (i = 0; i < arity; i += 1)
2237 if (elt_type->code () != TYPE_CODE_ARRAY
2238 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2240 (_("attempt to do packed indexing of "
2241 "something other than a packed array"));
2244 struct type *range_type = elt_type->index_type ();
2245 LONGEST lowerbound, upperbound;
2248 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2250 lim_warning (_("don't know bounds of array"));
2251 lowerbound = upperbound = 0;
2254 idx = pos_atr (ind[i]);
2255 if (idx < lowerbound || idx > upperbound)
2256 lim_warning (_("packed array index %ld out of bounds"),
2258 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2259 elt_total_bit_offset += (idx - lowerbound) * bits;
2260 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2263 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2264 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2266 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2271 /* Non-zero iff TYPE includes negative integer values. */
2274 has_negatives (struct type *type)
2276 switch (type->code ())
2281 return !type->is_unsigned ();
2282 case TYPE_CODE_RANGE:
2283 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2287 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2288 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2289 the unpacked buffer.
2291 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2292 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2294 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2297 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2299 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2302 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2303 gdb_byte *unpacked, int unpacked_len,
2304 int is_big_endian, int is_signed_type,
2307 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2308 int src_idx; /* Index into the source area */
2309 int src_bytes_left; /* Number of source bytes left to process. */
2310 int srcBitsLeft; /* Number of source bits left to move */
2311 int unusedLS; /* Number of bits in next significant
2312 byte of source that are unused */
2314 int unpacked_idx; /* Index into the unpacked buffer */
2315 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2317 unsigned long accum; /* Staging area for bits being transferred */
2318 int accumSize; /* Number of meaningful bits in accum */
2321 /* Transmit bytes from least to most significant; delta is the direction
2322 the indices move. */
2323 int delta = is_big_endian ? -1 : 1;
2325 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2327 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2328 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2329 bit_size, unpacked_len);
2331 srcBitsLeft = bit_size;
2332 src_bytes_left = src_len;
2333 unpacked_bytes_left = unpacked_len;
2338 src_idx = src_len - 1;
2340 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2344 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2350 unpacked_idx = unpacked_len - 1;
2354 /* Non-scalar values must be aligned at a byte boundary... */
2356 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2357 /* ... And are placed at the beginning (most-significant) bytes
2359 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2360 unpacked_bytes_left = unpacked_idx + 1;
2365 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2367 src_idx = unpacked_idx = 0;
2368 unusedLS = bit_offset;
2371 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2376 while (src_bytes_left > 0)
2378 /* Mask for removing bits of the next source byte that are not
2379 part of the value. */
2380 unsigned int unusedMSMask =
2381 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2383 /* Sign-extend bits for this byte. */
2384 unsigned int signMask = sign & ~unusedMSMask;
2387 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2388 accumSize += HOST_CHAR_BIT - unusedLS;
2389 if (accumSize >= HOST_CHAR_BIT)
2391 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2392 accumSize -= HOST_CHAR_BIT;
2393 accum >>= HOST_CHAR_BIT;
2394 unpacked_bytes_left -= 1;
2395 unpacked_idx += delta;
2397 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2399 src_bytes_left -= 1;
2402 while (unpacked_bytes_left > 0)
2404 accum |= sign << accumSize;
2405 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2406 accumSize -= HOST_CHAR_BIT;
2409 accum >>= HOST_CHAR_BIT;
2410 unpacked_bytes_left -= 1;
2411 unpacked_idx += delta;
2415 /* Create a new value of type TYPE from the contents of OBJ starting
2416 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2417 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2418 assigning through the result will set the field fetched from.
2419 VALADDR is ignored unless OBJ is NULL, in which case,
2420 VALADDR+OFFSET must address the start of storage containing the
2421 packed value. The value returned in this case is never an lval.
2422 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2425 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2426 long offset, int bit_offset, int bit_size,
2430 const gdb_byte *src; /* First byte containing data to unpack */
2432 const int is_scalar = is_scalar_type (type);
2433 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2434 gdb::byte_vector staging;
2436 type = ada_check_typedef (type);
2439 src = valaddr + offset;
2441 src = value_contents (obj).data () + offset;
2443 if (is_dynamic_type (type))
2445 /* The length of TYPE might by dynamic, so we need to resolve
2446 TYPE in order to know its actual size, which we then use
2447 to create the contents buffer of the value we return.
2448 The difficulty is that the data containing our object is
2449 packed, and therefore maybe not at a byte boundary. So, what
2450 we do, is unpack the data into a byte-aligned buffer, and then
2451 use that buffer as our object's value for resolving the type. */
2452 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2453 staging.resize (staging_len);
2455 ada_unpack_from_contents (src, bit_offset, bit_size,
2456 staging.data (), staging.size (),
2457 is_big_endian, has_negatives (type),
2459 type = resolve_dynamic_type (type, staging, 0);
2460 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2462 /* This happens when the length of the object is dynamic,
2463 and is actually smaller than the space reserved for it.
2464 For instance, in an array of variant records, the bit_size
2465 we're given is the array stride, which is constant and
2466 normally equal to the maximum size of its element.
2467 But, in reality, each element only actually spans a portion
2469 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2475 v = allocate_value (type);
2476 src = valaddr + offset;
2478 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2480 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2483 v = value_at (type, value_address (obj) + offset);
2484 buf = (gdb_byte *) alloca (src_len);
2485 read_memory (value_address (v), buf, src_len);
2490 v = allocate_value (type);
2491 src = value_contents (obj).data () + offset;
2496 long new_offset = offset;
2498 set_value_component_location (v, obj);
2499 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2500 set_value_bitsize (v, bit_size);
2501 if (value_bitpos (v) >= HOST_CHAR_BIT)
2504 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2506 set_value_offset (v, new_offset);
2508 /* Also set the parent value. This is needed when trying to
2509 assign a new value (in inferior memory). */
2510 set_value_parent (v, obj);
2513 set_value_bitsize (v, bit_size);
2514 unpacked = value_contents_writeable (v).data ();
2518 memset (unpacked, 0, TYPE_LENGTH (type));
2522 if (staging.size () == TYPE_LENGTH (type))
2524 /* Small short-cut: If we've unpacked the data into a buffer
2525 of the same size as TYPE's length, then we can reuse that,
2526 instead of doing the unpacking again. */
2527 memcpy (unpacked, staging.data (), staging.size ());
2530 ada_unpack_from_contents (src, bit_offset, bit_size,
2531 unpacked, TYPE_LENGTH (type),
2532 is_big_endian, has_negatives (type), is_scalar);
2537 /* Store the contents of FROMVAL into the location of TOVAL.
2538 Return a new value with the location of TOVAL and contents of
2539 FROMVAL. Handles assignment into packed fields that have
2540 floating-point or non-scalar types. */
2542 static struct value *
2543 ada_value_assign (struct value *toval, struct value *fromval)
2545 struct type *type = value_type (toval);
2546 int bits = value_bitsize (toval);
2548 toval = ada_coerce_ref (toval);
2549 fromval = ada_coerce_ref (fromval);
2551 if (ada_is_direct_array_type (value_type (toval)))
2552 toval = ada_coerce_to_simple_array (toval);
2553 if (ada_is_direct_array_type (value_type (fromval)))
2554 fromval = ada_coerce_to_simple_array (fromval);
2556 if (!deprecated_value_modifiable (toval))
2557 error (_("Left operand of assignment is not a modifiable lvalue."));
2559 if (VALUE_LVAL (toval) == lval_memory
2561 && (type->code () == TYPE_CODE_FLT
2562 || type->code () == TYPE_CODE_STRUCT))
2564 int len = (value_bitpos (toval)
2565 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2567 gdb_byte *buffer = (gdb_byte *) alloca (len);
2569 CORE_ADDR to_addr = value_address (toval);
2571 if (type->code () == TYPE_CODE_FLT)
2572 fromval = value_cast (type, fromval);
2574 read_memory (to_addr, buffer, len);
2575 from_size = value_bitsize (fromval);
2577 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2579 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2580 ULONGEST from_offset = 0;
2581 if (is_big_endian && is_scalar_type (value_type (fromval)))
2582 from_offset = from_size - bits;
2583 copy_bitwise (buffer, value_bitpos (toval),
2584 value_contents (fromval).data (), from_offset,
2585 bits, is_big_endian);
2586 write_memory_with_notification (to_addr, buffer, len);
2588 val = value_copy (toval);
2589 memcpy (value_contents_raw (val).data (),
2590 value_contents (fromval).data (),
2591 TYPE_LENGTH (type));
2592 deprecated_set_value_type (val, type);
2597 return value_assign (toval, fromval);
2601 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2602 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2603 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2604 COMPONENT, and not the inferior's memory. The current contents
2605 of COMPONENT are ignored.
2607 Although not part of the initial design, this function also works
2608 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2609 had a null address, and COMPONENT had an address which is equal to
2610 its offset inside CONTAINER. */
2613 value_assign_to_component (struct value *container, struct value *component,
2616 LONGEST offset_in_container =
2617 (LONGEST) (value_address (component) - value_address (container));
2618 int bit_offset_in_container =
2619 value_bitpos (component) - value_bitpos (container);
2622 val = value_cast (value_type (component), val);
2624 if (value_bitsize (component) == 0)
2625 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2627 bits = value_bitsize (component);
2629 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2633 if (is_scalar_type (check_typedef (value_type (component))))
2635 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2638 copy_bitwise ((value_contents_writeable (container).data ()
2639 + offset_in_container),
2640 value_bitpos (container) + bit_offset_in_container,
2641 value_contents (val).data (), src_offset, bits, 1);
2644 copy_bitwise ((value_contents_writeable (container).data ()
2645 + offset_in_container),
2646 value_bitpos (container) + bit_offset_in_container,
2647 value_contents (val).data (), 0, bits, 0);
2650 /* Determine if TYPE is an access to an unconstrained array. */
2653 ada_is_access_to_unconstrained_array (struct type *type)
2655 return (type->code () == TYPE_CODE_TYPEDEF
2656 && is_thick_pntr (ada_typedef_target_type (type)));
2659 /* The value of the element of array ARR at the ARITY indices given in IND.
2660 ARR may be either a simple array, GNAT array descriptor, or pointer
2664 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2668 struct type *elt_type;
2670 elt = ada_coerce_to_simple_array (arr);
2672 elt_type = ada_check_typedef (value_type (elt));
2673 if (elt_type->code () == TYPE_CODE_ARRAY
2674 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2675 return value_subscript_packed (elt, arity, ind);
2677 for (k = 0; k < arity; k += 1)
2679 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2681 if (elt_type->code () != TYPE_CODE_ARRAY)
2682 error (_("too many subscripts (%d expected)"), k);
2684 elt = value_subscript (elt, pos_atr (ind[k]));
2686 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2687 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2689 /* The element is a typedef to an unconstrained array,
2690 except that the value_subscript call stripped the
2691 typedef layer. The typedef layer is GNAT's way to
2692 specify that the element is, at the source level, an
2693 access to the unconstrained array, rather than the
2694 unconstrained array. So, we need to restore that
2695 typedef layer, which we can do by forcing the element's
2696 type back to its original type. Otherwise, the returned
2697 value is going to be printed as the array, rather
2698 than as an access. Another symptom of the same issue
2699 would be that an expression trying to dereference the
2700 element would also be improperly rejected. */
2701 deprecated_set_value_type (elt, saved_elt_type);
2704 elt_type = ada_check_typedef (value_type (elt));
2710 /* Assuming ARR is a pointer to a GDB array, the value of the element
2711 of *ARR at the ARITY indices given in IND.
2712 Does not read the entire array into memory.
2714 Note: Unlike what one would expect, this function is used instead of
2715 ada_value_subscript for basically all non-packed array types. The reason
2716 for this is that a side effect of doing our own pointer arithmetics instead
2717 of relying on value_subscript is that there is no implicit typedef peeling.
2718 This is important for arrays of array accesses, where it allows us to
2719 preserve the fact that the array's element is an array access, where the
2720 access part os encoded in a typedef layer. */
2722 static struct value *
2723 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2726 struct value *array_ind = ada_value_ind (arr);
2728 = check_typedef (value_enclosing_type (array_ind));
2730 if (type->code () == TYPE_CODE_ARRAY
2731 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2732 return value_subscript_packed (array_ind, arity, ind);
2734 for (k = 0; k < arity; k += 1)
2738 if (type->code () != TYPE_CODE_ARRAY)
2739 error (_("too many subscripts (%d expected)"), k);
2740 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2742 get_discrete_bounds (type->index_type (), &lwb, &upb);
2743 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2744 type = TYPE_TARGET_TYPE (type);
2747 return value_ind (arr);
2750 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2751 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2752 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2753 this array is LOW, as per Ada rules. */
2754 static struct value *
2755 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2758 struct type *type0 = ada_check_typedef (type);
2759 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2760 struct type *index_type
2761 = create_static_range_type (NULL, base_index_type, low, high);
2762 struct type *slice_type = create_array_type_with_stride
2763 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2764 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2765 TYPE_FIELD_BITSIZE (type0, 0));
2766 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2767 gdb::optional<LONGEST> base_low_pos, low_pos;
2770 low_pos = discrete_position (base_index_type, low);
2771 base_low_pos = discrete_position (base_index_type, base_low);
2773 if (!low_pos.has_value () || !base_low_pos.has_value ())
2775 warning (_("unable to get positions in slice, use bounds instead"));
2777 base_low_pos = base_low;
2780 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2782 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2784 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2785 return value_at_lazy (slice_type, base);
2789 static struct value *
2790 ada_value_slice (struct value *array, int low, int high)
2792 struct type *type = ada_check_typedef (value_type (array));
2793 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2794 struct type *index_type
2795 = create_static_range_type (NULL, type->index_type (), low, high);
2796 struct type *slice_type = create_array_type_with_stride
2797 (NULL, TYPE_TARGET_TYPE (type), index_type,
2798 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2799 TYPE_FIELD_BITSIZE (type, 0));
2800 gdb::optional<LONGEST> low_pos, high_pos;
2803 low_pos = discrete_position (base_index_type, low);
2804 high_pos = discrete_position (base_index_type, high);
2806 if (!low_pos.has_value () || !high_pos.has_value ())
2808 warning (_("unable to get positions in slice, use bounds instead"));
2813 return value_cast (slice_type,
2814 value_slice (array, low, *high_pos - *low_pos + 1));
2817 /* If type is a record type in the form of a standard GNAT array
2818 descriptor, returns the number of dimensions for type. If arr is a
2819 simple array, returns the number of "array of"s that prefix its
2820 type designation. Otherwise, returns 0. */
2823 ada_array_arity (struct type *type)
2830 type = desc_base_type (type);
2833 if (type->code () == TYPE_CODE_STRUCT)
2834 return desc_arity (desc_bounds_type (type));
2836 while (type->code () == TYPE_CODE_ARRAY)
2839 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2845 /* If TYPE is a record type in the form of a standard GNAT array
2846 descriptor or a simple array type, returns the element type for
2847 TYPE after indexing by NINDICES indices, or by all indices if
2848 NINDICES is -1. Otherwise, returns NULL. */
2851 ada_array_element_type (struct type *type, int nindices)
2853 type = desc_base_type (type);
2855 if (type->code () == TYPE_CODE_STRUCT)
2858 struct type *p_array_type;
2860 p_array_type = desc_data_target_type (type);
2862 k = ada_array_arity (type);
2866 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2867 if (nindices >= 0 && k > nindices)
2869 while (k > 0 && p_array_type != NULL)
2871 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2874 return p_array_type;
2876 else if (type->code () == TYPE_CODE_ARRAY)
2878 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2880 type = TYPE_TARGET_TYPE (type);
2889 /* See ada-lang.h. */
2892 ada_index_type (struct type *type, int n, const char *name)
2894 struct type *result_type;
2896 type = desc_base_type (type);
2898 if (n < 0 || n > ada_array_arity (type))
2899 error (_("invalid dimension number to '%s"), name);
2901 if (ada_is_simple_array_type (type))
2905 for (i = 1; i < n; i += 1)
2907 type = ada_check_typedef (type);
2908 type = TYPE_TARGET_TYPE (type);
2910 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2911 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2912 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2913 perhaps stabsread.c would make more sense. */
2914 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2919 result_type = desc_index_type (desc_bounds_type (type), n);
2920 if (result_type == NULL)
2921 error (_("attempt to take bound of something that is not an array"));
2927 /* Given that arr is an array type, returns the lower bound of the
2928 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2929 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2930 array-descriptor type. It works for other arrays with bounds supplied
2931 by run-time quantities other than discriminants. */
2934 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2936 struct type *type, *index_type_desc, *index_type;
2939 gdb_assert (which == 0 || which == 1);
2941 if (ada_is_constrained_packed_array_type (arr_type))
2942 arr_type = decode_constrained_packed_array_type (arr_type);
2944 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2945 return (LONGEST) - which;
2947 if (arr_type->code () == TYPE_CODE_PTR)
2948 type = TYPE_TARGET_TYPE (arr_type);
2952 if (type->is_fixed_instance ())
2954 /* The array has already been fixed, so we do not need to
2955 check the parallel ___XA type again. That encoding has
2956 already been applied, so ignore it now. */
2957 index_type_desc = NULL;
2961 index_type_desc = ada_find_parallel_type (type, "___XA");
2962 ada_fixup_array_indexes_type (index_type_desc);
2965 if (index_type_desc != NULL)
2966 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2970 struct type *elt_type = check_typedef (type);
2972 for (i = 1; i < n; i++)
2973 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2975 index_type = elt_type->index_type ();
2979 (LONGEST) (which == 0
2980 ? ada_discrete_type_low_bound (index_type)
2981 : ada_discrete_type_high_bound (index_type));
2984 /* Given that arr is an array value, returns the lower bound of the
2985 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2986 WHICH is 1. This routine will also work for arrays with bounds
2987 supplied by run-time quantities other than discriminants. */
2990 ada_array_bound (struct value *arr, int n, int which)
2992 struct type *arr_type;
2994 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2995 arr = value_ind (arr);
2996 arr_type = value_enclosing_type (arr);
2998 if (ada_is_constrained_packed_array_type (arr_type))
2999 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3000 else if (ada_is_simple_array_type (arr_type))
3001 return ada_array_bound_from_type (arr_type, n, which);
3003 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3006 /* Given that arr is an array value, returns the length of the
3007 nth index. This routine will also work for arrays with bounds
3008 supplied by run-time quantities other than discriminants.
3009 Does not work for arrays indexed by enumeration types with representation
3010 clauses at the moment. */
3013 ada_array_length (struct value *arr, int n)
3015 struct type *arr_type, *index_type;
3018 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3019 arr = value_ind (arr);
3020 arr_type = value_enclosing_type (arr);
3022 if (ada_is_constrained_packed_array_type (arr_type))
3023 return ada_array_length (decode_constrained_packed_array (arr), n);
3025 if (ada_is_simple_array_type (arr_type))
3027 low = ada_array_bound_from_type (arr_type, n, 0);
3028 high = ada_array_bound_from_type (arr_type, n, 1);
3032 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3033 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3036 arr_type = check_typedef (arr_type);
3037 index_type = ada_index_type (arr_type, n, "length");
3038 if (index_type != NULL)
3040 struct type *base_type;
3041 if (index_type->code () == TYPE_CODE_RANGE)
3042 base_type = TYPE_TARGET_TYPE (index_type);
3044 base_type = index_type;
3046 low = pos_atr (value_from_longest (base_type, low));
3047 high = pos_atr (value_from_longest (base_type, high));
3049 return high - low + 1;
3052 /* An array whose type is that of ARR_TYPE (an array type), with
3053 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3054 less than LOW, then LOW-1 is used. */
3056 static struct value *
3057 empty_array (struct type *arr_type, int low, int high)
3059 struct type *arr_type0 = ada_check_typedef (arr_type);
3060 struct type *index_type
3061 = create_static_range_type
3062 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3063 high < low ? low - 1 : high);
3064 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3066 return allocate_value (create_array_type (NULL, elt_type, index_type));
3070 /* Name resolution */
3072 /* The "decoded" name for the user-definable Ada operator corresponding
3076 ada_decoded_op_name (enum exp_opcode op)
3080 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3082 if (ada_opname_table[i].op == op)
3083 return ada_opname_table[i].decoded;
3085 error (_("Could not find operator name for opcode"));
3088 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3089 in a listing of choices during disambiguation (see sort_choices, below).
3090 The idea is that overloadings of a subprogram name from the
3091 same package should sort in their source order. We settle for ordering
3092 such symbols by their trailing number (__N or $N). */
3095 encoded_ordered_before (const char *N0, const char *N1)
3099 else if (N0 == NULL)
3105 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3107 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3109 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3110 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3115 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3118 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3120 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3121 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3123 return (strcmp (N0, N1) < 0);
3127 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3131 sort_choices (struct block_symbol syms[], int nsyms)
3135 for (i = 1; i < nsyms; i += 1)
3137 struct block_symbol sym = syms[i];
3140 for (j = i - 1; j >= 0; j -= 1)
3142 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3143 sym.symbol->linkage_name ()))
3145 syms[j + 1] = syms[j];
3151 /* Whether GDB should display formals and return types for functions in the
3152 overloads selection menu. */
3153 static bool print_signatures = true;
3155 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3156 all but functions, the signature is just the name of the symbol. For
3157 functions, this is the name of the function, the list of types for formals
3158 and the return type (if any). */
3161 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3162 const struct type_print_options *flags)
3164 struct type *type = SYMBOL_TYPE (sym);
3166 fprintf_filtered (stream, "%s", sym->print_name ());
3167 if (!print_signatures
3169 || type->code () != TYPE_CODE_FUNC)
3172 if (type->num_fields () > 0)
3176 fprintf_filtered (stream, " (");
3177 for (i = 0; i < type->num_fields (); ++i)
3180 fprintf_filtered (stream, "; ");
3181 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3184 fprintf_filtered (stream, ")");
3186 if (TYPE_TARGET_TYPE (type) != NULL
3187 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3189 fprintf_filtered (stream, " return ");
3190 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3194 /* Read and validate a set of numeric choices from the user in the
3195 range 0 .. N_CHOICES-1. Place the results in increasing
3196 order in CHOICES[0 .. N-1], and return N.
3198 The user types choices as a sequence of numbers on one line
3199 separated by blanks, encoding them as follows:
3201 + A choice of 0 means to cancel the selection, throwing an error.
3202 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3203 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3205 The user is not allowed to choose more than MAX_RESULTS values.
3207 ANNOTATION_SUFFIX, if present, is used to annotate the input
3208 prompts (for use with the -f switch). */
3211 get_selections (int *choices, int n_choices, int max_results,
3212 int is_all_choice, const char *annotation_suffix)
3217 int first_choice = is_all_choice ? 2 : 1;
3219 prompt = getenv ("PS2");
3223 args = command_line_input (prompt, annotation_suffix);
3226 error_no_arg (_("one or more choice numbers"));
3230 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3231 order, as given in args. Choices are validated. */
3237 args = skip_spaces (args);
3238 if (*args == '\0' && n_chosen == 0)
3239 error_no_arg (_("one or more choice numbers"));
3240 else if (*args == '\0')
3243 choice = strtol (args, &args2, 10);
3244 if (args == args2 || choice < 0
3245 || choice > n_choices + first_choice - 1)
3246 error (_("Argument must be choice number"));
3250 error (_("cancelled"));
3252 if (choice < first_choice)
3254 n_chosen = n_choices;
3255 for (j = 0; j < n_choices; j += 1)
3259 choice -= first_choice;
3261 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3265 if (j < 0 || choice != choices[j])
3269 for (k = n_chosen - 1; k > j; k -= 1)
3270 choices[k + 1] = choices[k];
3271 choices[j + 1] = choice;
3276 if (n_chosen > max_results)
3277 error (_("Select no more than %d of the above"), max_results);
3282 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3283 by asking the user (if necessary), returning the number selected,
3284 and setting the first elements of SYMS items. Error if no symbols
3287 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3288 to be re-integrated one of these days. */
3291 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3294 int *chosen = XALLOCAVEC (int , nsyms);
3296 int first_choice = (max_results == 1) ? 1 : 2;
3297 const char *select_mode = multiple_symbols_select_mode ();
3299 if (max_results < 1)
3300 error (_("Request to select 0 symbols!"));
3304 if (select_mode == multiple_symbols_cancel)
3306 canceled because the command is ambiguous\n\
3307 See set/show multiple-symbol."));
3309 /* If select_mode is "all", then return all possible symbols.
3310 Only do that if more than one symbol can be selected, of course.
3311 Otherwise, display the menu as usual. */
3312 if (select_mode == multiple_symbols_all && max_results > 1)
3315 printf_filtered (_("[0] cancel\n"));
3316 if (max_results > 1)
3317 printf_filtered (_("[1] all\n"));
3319 sort_choices (syms, nsyms);
3321 for (i = 0; i < nsyms; i += 1)
3323 if (syms[i].symbol == NULL)
3326 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3328 struct symtab_and_line sal =
3329 find_function_start_sal (syms[i].symbol, 1);
3331 printf_filtered ("[%d] ", i + first_choice);
3332 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3333 &type_print_raw_options);
3334 if (sal.symtab == NULL)
3335 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3336 metadata_style.style ().ptr (), nullptr, sal.line);
3340 styled_string (file_name_style.style (),
3341 symtab_to_filename_for_display (sal.symtab)),
3348 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3349 && SYMBOL_TYPE (syms[i].symbol) != NULL
3350 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3351 struct symtab *symtab = NULL;
3353 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3354 symtab = symbol_symtab (syms[i].symbol);
3356 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3358 printf_filtered ("[%d] ", i + first_choice);
3359 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3360 &type_print_raw_options);
3361 printf_filtered (_(" at %s:%d\n"),
3362 symtab_to_filename_for_display (symtab),
3363 SYMBOL_LINE (syms[i].symbol));
3365 else if (is_enumeral
3366 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3368 printf_filtered (("[%d] "), i + first_choice);
3369 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3370 gdb_stdout, -1, 0, &type_print_raw_options);
3371 printf_filtered (_("'(%s) (enumeral)\n"),
3372 syms[i].symbol->print_name ());
3376 printf_filtered ("[%d] ", i + first_choice);
3377 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3378 &type_print_raw_options);
3381 printf_filtered (is_enumeral
3382 ? _(" in %s (enumeral)\n")
3384 symtab_to_filename_for_display (symtab));
3386 printf_filtered (is_enumeral
3387 ? _(" (enumeral)\n")
3393 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3396 for (i = 0; i < n_chosen; i += 1)
3397 syms[i] = syms[chosen[i]];
3402 /* See ada-lang.h. */
3405 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3406 int nargs, value *argvec[])
3408 if (possible_user_operator_p (op, argvec))
3410 std::vector<struct block_symbol> candidates
3411 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3414 int i = ada_resolve_function (candidates, argvec,
3415 nargs, ada_decoded_op_name (op), NULL,
3418 return candidates[i];
3423 /* See ada-lang.h. */
3426 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3427 struct type *context_type,
3428 bool parse_completion,
3429 int nargs, value *argvec[],
3430 innermost_block_tracker *tracker)
3432 std::vector<struct block_symbol> candidates
3433 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3436 if (candidates.size () == 1)
3440 i = ada_resolve_function
3443 sym->linkage_name (),
3444 context_type, parse_completion);
3446 error (_("Could not find a match for %s"), sym->print_name ());
3449 tracker->update (candidates[i]);
3450 return candidates[i];
3453 /* Resolve a mention of a name where the context type is an
3454 enumeration type. */
3457 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3458 const char *name, struct type *context_type,
3459 bool parse_completion)
3461 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3462 context_type = ada_check_typedef (context_type);
3464 for (int i = 0; i < syms.size (); ++i)
3466 /* We already know the name matches, so we're just looking for
3467 an element of the correct enum type. */
3468 if (ada_check_typedef (SYMBOL_TYPE (syms[i].symbol)) == context_type)
3472 error (_("No name '%s' in enumeration type '%s'"), name,
3473 ada_type_name (context_type));
3476 /* See ada-lang.h. */
3479 ada_resolve_variable (struct symbol *sym, const struct block *block,
3480 struct type *context_type,
3481 bool parse_completion,
3483 innermost_block_tracker *tracker)
3485 std::vector<struct block_symbol> candidates
3486 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3488 if (std::any_of (candidates.begin (),
3490 [] (block_symbol &bsym)
3492 switch (SYMBOL_CLASS (bsym.symbol))
3497 case LOC_REGPARM_ADDR:
3506 /* Types tend to get re-introduced locally, so if there
3507 are any local symbols that are not types, first filter
3511 (candidates.begin (),
3513 [] (block_symbol &bsym)
3515 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3520 /* Filter out artificial symbols. */
3523 (candidates.begin (),
3525 [] (block_symbol &bsym)
3527 return bsym.symbol->artificial;
3532 if (candidates.empty ())
3533 error (_("No definition found for %s"), sym->print_name ());
3534 else if (candidates.size () == 1)
3536 else if (context_type != nullptr
3537 && context_type->code () == TYPE_CODE_ENUM)
3538 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3540 else if (deprocedure_p && !is_nonfunction (candidates))
3542 i = ada_resolve_function
3543 (candidates, NULL, 0,
3544 sym->linkage_name (),
3545 context_type, parse_completion);
3547 error (_("Could not find a match for %s"), sym->print_name ());
3551 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3552 user_select_syms (candidates.data (), candidates.size (), 1);
3556 tracker->update (candidates[i]);
3557 return candidates[i];
3560 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3561 /* The term "match" here is rather loose. The match is heuristic and
3565 ada_type_match (struct type *ftype, struct type *atype)
3567 ftype = ada_check_typedef (ftype);
3568 atype = ada_check_typedef (atype);
3570 if (ftype->code () == TYPE_CODE_REF)
3571 ftype = TYPE_TARGET_TYPE (ftype);
3572 if (atype->code () == TYPE_CODE_REF)
3573 atype = TYPE_TARGET_TYPE (atype);
3575 switch (ftype->code ())
3578 return ftype->code () == atype->code ();
3580 if (atype->code () != TYPE_CODE_PTR)
3582 atype = TYPE_TARGET_TYPE (atype);
3583 /* This can only happen if the actual argument is 'null'. */
3584 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3586 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3588 case TYPE_CODE_ENUM:
3589 case TYPE_CODE_RANGE:
3590 switch (atype->code ())
3593 case TYPE_CODE_ENUM:
3594 case TYPE_CODE_RANGE:
3600 case TYPE_CODE_ARRAY:
3601 return (atype->code () == TYPE_CODE_ARRAY
3602 || ada_is_array_descriptor_type (atype));
3604 case TYPE_CODE_STRUCT:
3605 if (ada_is_array_descriptor_type (ftype))
3606 return (atype->code () == TYPE_CODE_ARRAY
3607 || ada_is_array_descriptor_type (atype));
3609 return (atype->code () == TYPE_CODE_STRUCT
3610 && !ada_is_array_descriptor_type (atype));
3612 case TYPE_CODE_UNION:
3614 return (atype->code () == ftype->code ());
3618 /* Return non-zero if the formals of FUNC "sufficiently match" the
3619 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3620 may also be an enumeral, in which case it is treated as a 0-
3621 argument function. */
3624 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3627 struct type *func_type = SYMBOL_TYPE (func);
3629 if (SYMBOL_CLASS (func) == LOC_CONST
3630 && func_type->code () == TYPE_CODE_ENUM)
3631 return (n_actuals == 0);
3632 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3635 if (func_type->num_fields () != n_actuals)
3638 for (i = 0; i < n_actuals; i += 1)
3640 if (actuals[i] == NULL)
3644 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3645 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3647 if (!ada_type_match (ftype, atype))
3654 /* False iff function type FUNC_TYPE definitely does not produce a value
3655 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3656 FUNC_TYPE is not a valid function type with a non-null return type
3657 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3660 return_match (struct type *func_type, struct type *context_type)
3662 struct type *return_type;
3664 if (func_type == NULL)
3667 if (func_type->code () == TYPE_CODE_FUNC)
3668 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3670 return_type = get_base_type (func_type);
3671 if (return_type == NULL)
3674 context_type = get_base_type (context_type);
3676 if (return_type->code () == TYPE_CODE_ENUM)
3677 return context_type == NULL || return_type == context_type;
3678 else if (context_type == NULL)
3679 return return_type->code () != TYPE_CODE_VOID;
3681 return return_type->code () == context_type->code ();
3685 /* Returns the index in SYMS that contains the symbol for the
3686 function (if any) that matches the types of the NARGS arguments in
3687 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3688 that returns that type, then eliminate matches that don't. If
3689 CONTEXT_TYPE is void and there is at least one match that does not
3690 return void, eliminate all matches that do.
3692 Asks the user if there is more than one match remaining. Returns -1
3693 if there is no such symbol or none is selected. NAME is used
3694 solely for messages. May re-arrange and modify SYMS in
3695 the process; the index returned is for the modified vector. */
3698 ada_resolve_function (std::vector<struct block_symbol> &syms,
3699 struct value **args, int nargs,
3700 const char *name, struct type *context_type,
3701 bool parse_completion)
3705 int m; /* Number of hits */
3708 /* In the first pass of the loop, we only accept functions matching
3709 context_type. If none are found, we add a second pass of the loop
3710 where every function is accepted. */
3711 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3713 for (k = 0; k < syms.size (); k += 1)
3715 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3717 if (ada_args_match (syms[k].symbol, args, nargs)
3718 && (fallback || return_match (type, context_type)))
3726 /* If we got multiple matches, ask the user which one to use. Don't do this
3727 interactive thing during completion, though, as the purpose of the
3728 completion is providing a list of all possible matches. Prompting the
3729 user to filter it down would be completely unexpected in this case. */
3732 else if (m > 1 && !parse_completion)
3734 printf_filtered (_("Multiple matches for %s\n"), name);
3735 user_select_syms (syms.data (), m, 1);
3741 /* Type-class predicates */
3743 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3747 numeric_type_p (struct type *type)
3753 switch (type->code ())
3757 case TYPE_CODE_FIXED_POINT:
3759 case TYPE_CODE_RANGE:
3760 return (type == TYPE_TARGET_TYPE (type)
3761 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3771 integer_type_p (struct type *type)
3777 switch (type->code ())
3781 case TYPE_CODE_RANGE:
3782 return (type == TYPE_TARGET_TYPE (type)
3783 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3793 scalar_type_p (struct type *type)
3799 switch (type->code ())
3802 case TYPE_CODE_RANGE:
3803 case TYPE_CODE_ENUM:
3805 case TYPE_CODE_FIXED_POINT:
3813 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3816 discrete_type_p (struct type *type)
3822 switch (type->code ())
3825 case TYPE_CODE_RANGE:
3826 case TYPE_CODE_ENUM:
3827 case TYPE_CODE_BOOL:
3835 /* Returns non-zero if OP with operands in the vector ARGS could be
3836 a user-defined function. Errs on the side of pre-defined operators
3837 (i.e., result 0). */
3840 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3842 struct type *type0 =
3843 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3844 struct type *type1 =
3845 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3859 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3863 case BINOP_BITWISE_AND:
3864 case BINOP_BITWISE_IOR:
3865 case BINOP_BITWISE_XOR:
3866 return (!(integer_type_p (type0) && integer_type_p (type1)));
3869 case BINOP_NOTEQUAL:
3874 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3877 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3880 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3884 case UNOP_LOGICAL_NOT:
3886 return (!numeric_type_p (type0));
3895 1. In the following, we assume that a renaming type's name may
3896 have an ___XD suffix. It would be nice if this went away at some
3898 2. We handle both the (old) purely type-based representation of
3899 renamings and the (new) variable-based encoding. At some point,
3900 it is devoutly to be hoped that the former goes away
3901 (FIXME: hilfinger-2007-07-09).
3902 3. Subprogram renamings are not implemented, although the XRS
3903 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3905 /* If SYM encodes a renaming,
3907 <renaming> renames <renamed entity>,
3909 sets *LEN to the length of the renamed entity's name,
3910 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3911 the string describing the subcomponent selected from the renamed
3912 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3913 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3914 are undefined). Otherwise, returns a value indicating the category
3915 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3916 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3917 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3918 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3919 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3920 may be NULL, in which case they are not assigned.
3922 [Currently, however, GCC does not generate subprogram renamings.] */
3924 enum ada_renaming_category
3925 ada_parse_renaming (struct symbol *sym,
3926 const char **renamed_entity, int *len,
3927 const char **renaming_expr)
3929 enum ada_renaming_category kind;
3934 return ADA_NOT_RENAMING;
3935 switch (SYMBOL_CLASS (sym))
3938 return ADA_NOT_RENAMING;
3942 case LOC_OPTIMIZED_OUT:
3943 info = strstr (sym->linkage_name (), "___XR");
3945 return ADA_NOT_RENAMING;
3949 kind = ADA_OBJECT_RENAMING;
3953 kind = ADA_EXCEPTION_RENAMING;
3957 kind = ADA_PACKAGE_RENAMING;
3961 kind = ADA_SUBPROGRAM_RENAMING;
3965 return ADA_NOT_RENAMING;
3969 if (renamed_entity != NULL)
3970 *renamed_entity = info;
3971 suffix = strstr (info, "___XE");
3972 if (suffix == NULL || suffix == info)
3973 return ADA_NOT_RENAMING;
3975 *len = strlen (info) - strlen (suffix);
3977 if (renaming_expr != NULL)
3978 *renaming_expr = suffix;
3982 /* Compute the value of the given RENAMING_SYM, which is expected to
3983 be a symbol encoding a renaming expression. BLOCK is the block
3984 used to evaluate the renaming. */
3986 static struct value *
3987 ada_read_renaming_var_value (struct symbol *renaming_sym,
3988 const struct block *block)
3990 const char *sym_name;
3992 sym_name = renaming_sym->linkage_name ();
3993 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3994 return evaluate_expression (expr.get ());
3998 /* Evaluation: Function Calls */
4000 /* Return an lvalue containing the value VAL. This is the identity on
4001 lvalues, and otherwise has the side-effect of allocating memory
4002 in the inferior where a copy of the value contents is copied. */
4004 static struct value *
4005 ensure_lval (struct value *val)
4007 if (VALUE_LVAL (val) == not_lval
4008 || VALUE_LVAL (val) == lval_internalvar)
4010 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4011 const CORE_ADDR addr =
4012 value_as_long (value_allocate_space_in_inferior (len));
4014 VALUE_LVAL (val) = lval_memory;
4015 set_value_address (val, addr);
4016 write_memory (addr, value_contents (val).data (), len);
4022 /* Given ARG, a value of type (pointer or reference to a)*
4023 structure/union, extract the component named NAME from the ultimate
4024 target structure/union and return it as a value with its
4027 The routine searches for NAME among all members of the structure itself
4028 and (recursively) among all members of any wrapper members
4031 If NO_ERR, then simply return NULL in case of error, rather than
4034 static struct value *
4035 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4037 struct type *t, *t1;
4042 t1 = t = ada_check_typedef (value_type (arg));
4043 if (t->code () == TYPE_CODE_REF)
4045 t1 = TYPE_TARGET_TYPE (t);
4048 t1 = ada_check_typedef (t1);
4049 if (t1->code () == TYPE_CODE_PTR)
4051 arg = coerce_ref (arg);
4056 while (t->code () == TYPE_CODE_PTR)
4058 t1 = TYPE_TARGET_TYPE (t);
4061 t1 = ada_check_typedef (t1);
4062 if (t1->code () == TYPE_CODE_PTR)
4064 arg = value_ind (arg);
4071 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4075 v = ada_search_struct_field (name, arg, 0, t);
4078 int bit_offset, bit_size, byte_offset;
4079 struct type *field_type;
4082 if (t->code () == TYPE_CODE_PTR)
4083 address = value_address (ada_value_ind (arg));
4085 address = value_address (ada_coerce_ref (arg));
4087 /* Check to see if this is a tagged type. We also need to handle
4088 the case where the type is a reference to a tagged type, but
4089 we have to be careful to exclude pointers to tagged types.
4090 The latter should be shown as usual (as a pointer), whereas
4091 a reference should mostly be transparent to the user. */
4093 if (ada_is_tagged_type (t1, 0)
4094 || (t1->code () == TYPE_CODE_REF
4095 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4097 /* We first try to find the searched field in the current type.
4098 If not found then let's look in the fixed type. */
4100 if (!find_struct_field (name, t1, 0,
4101 nullptr, nullptr, nullptr,
4110 /* Convert to fixed type in all cases, so that we have proper
4111 offsets to each field in unconstrained record types. */
4112 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4113 address, NULL, check_tag);
4115 /* Resolve the dynamic type as well. */
4116 arg = value_from_contents_and_address (t1, nullptr, address);
4117 t1 = value_type (arg);
4119 if (find_struct_field (name, t1, 0,
4120 &field_type, &byte_offset, &bit_offset,
4125 if (t->code () == TYPE_CODE_REF)
4126 arg = ada_coerce_ref (arg);
4128 arg = ada_value_ind (arg);
4129 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4130 bit_offset, bit_size,
4134 v = value_at_lazy (field_type, address + byte_offset);
4138 if (v != NULL || no_err)
4141 error (_("There is no member named %s."), name);
4147 error (_("Attempt to extract a component of "
4148 "a value that is not a record."));
4151 /* Return the value ACTUAL, converted to be an appropriate value for a
4152 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4153 allocating any necessary descriptors (fat pointers), or copies of
4154 values not residing in memory, updating it as needed. */
4157 ada_convert_actual (struct value *actual, struct type *formal_type0)
4159 struct type *actual_type = ada_check_typedef (value_type (actual));
4160 struct type *formal_type = ada_check_typedef (formal_type0);
4161 struct type *formal_target =
4162 formal_type->code () == TYPE_CODE_PTR
4163 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4164 struct type *actual_target =
4165 actual_type->code () == TYPE_CODE_PTR
4166 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4168 if (ada_is_array_descriptor_type (formal_target)
4169 && actual_target->code () == TYPE_CODE_ARRAY)
4170 return make_array_descriptor (formal_type, actual);
4171 else if (formal_type->code () == TYPE_CODE_PTR
4172 || formal_type->code () == TYPE_CODE_REF)
4174 struct value *result;
4176 if (formal_target->code () == TYPE_CODE_ARRAY
4177 && ada_is_array_descriptor_type (actual_target))
4178 result = desc_data (actual);
4179 else if (formal_type->code () != TYPE_CODE_PTR)
4181 if (VALUE_LVAL (actual) != lval_memory)
4185 actual_type = ada_check_typedef (value_type (actual));
4186 val = allocate_value (actual_type);
4187 copy (value_contents (actual), value_contents_raw (val));
4188 actual = ensure_lval (val);
4190 result = value_addr (actual);
4194 return value_cast_pointers (formal_type, result, 0);
4196 else if (actual_type->code () == TYPE_CODE_PTR)
4197 return ada_value_ind (actual);
4198 else if (ada_is_aligner_type (formal_type))
4200 /* We need to turn this parameter into an aligner type
4202 struct value *aligner = allocate_value (formal_type);
4203 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4205 value_assign_to_component (aligner, component, actual);
4212 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4213 type TYPE. This is usually an inefficient no-op except on some targets
4214 (such as AVR) where the representation of a pointer and an address
4218 value_pointer (struct value *value, struct type *type)
4220 unsigned len = TYPE_LENGTH (type);
4221 gdb_byte *buf = (gdb_byte *) alloca (len);
4224 addr = value_address (value);
4225 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4226 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4231 /* Push a descriptor of type TYPE for array value ARR on the stack at
4232 *SP, updating *SP to reflect the new descriptor. Return either
4233 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4234 to-descriptor type rather than a descriptor type), a struct value *
4235 representing a pointer to this descriptor. */
4237 static struct value *
4238 make_array_descriptor (struct type *type, struct value *arr)
4240 struct type *bounds_type = desc_bounds_type (type);
4241 struct type *desc_type = desc_base_type (type);
4242 struct value *descriptor = allocate_value (desc_type);
4243 struct value *bounds = allocate_value (bounds_type);
4246 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4249 modify_field (value_type (bounds),
4250 value_contents_writeable (bounds).data (),
4251 ada_array_bound (arr, i, 0),
4252 desc_bound_bitpos (bounds_type, i, 0),
4253 desc_bound_bitsize (bounds_type, i, 0));
4254 modify_field (value_type (bounds),
4255 value_contents_writeable (bounds).data (),
4256 ada_array_bound (arr, i, 1),
4257 desc_bound_bitpos (bounds_type, i, 1),
4258 desc_bound_bitsize (bounds_type, i, 1));
4261 bounds = ensure_lval (bounds);
4263 modify_field (value_type (descriptor),
4264 value_contents_writeable (descriptor).data (),
4265 value_pointer (ensure_lval (arr),
4266 desc_type->field (0).type ()),
4267 fat_pntr_data_bitpos (desc_type),
4268 fat_pntr_data_bitsize (desc_type));
4270 modify_field (value_type (descriptor),
4271 value_contents_writeable (descriptor).data (),
4272 value_pointer (bounds,
4273 desc_type->field (1).type ()),
4274 fat_pntr_bounds_bitpos (desc_type),
4275 fat_pntr_bounds_bitsize (desc_type));
4277 descriptor = ensure_lval (descriptor);
4279 if (type->code () == TYPE_CODE_PTR)
4280 return value_addr (descriptor);
4285 /* Symbol Cache Module */
4287 /* Performance measurements made as of 2010-01-15 indicate that
4288 this cache does bring some noticeable improvements. Depending
4289 on the type of entity being printed, the cache can make it as much
4290 as an order of magnitude faster than without it.
4292 The descriptive type DWARF extension has significantly reduced
4293 the need for this cache, at least when DWARF is being used. However,
4294 even in this case, some expensive name-based symbol searches are still
4295 sometimes necessary - to find an XVZ variable, mostly. */
4297 /* Return the symbol cache associated to the given program space PSPACE.
4298 If not allocated for this PSPACE yet, allocate and initialize one. */
4300 static struct ada_symbol_cache *
4301 ada_get_symbol_cache (struct program_space *pspace)
4303 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4305 if (pspace_data->sym_cache == nullptr)
4306 pspace_data->sym_cache.reset (new ada_symbol_cache);
4308 return pspace_data->sym_cache.get ();
4311 /* Clear all entries from the symbol cache. */
4314 ada_clear_symbol_cache ()
4316 struct ada_pspace_data *pspace_data
4317 = get_ada_pspace_data (current_program_space);
4319 if (pspace_data->sym_cache != nullptr)
4320 pspace_data->sym_cache.reset ();
4323 /* Search our cache for an entry matching NAME and DOMAIN.
4324 Return it if found, or NULL otherwise. */
4326 static struct cache_entry **
4327 find_entry (const char *name, domain_enum domain)
4329 struct ada_symbol_cache *sym_cache
4330 = ada_get_symbol_cache (current_program_space);
4331 int h = msymbol_hash (name) % HASH_SIZE;
4332 struct cache_entry **e;
4334 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4336 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4342 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4343 Return 1 if found, 0 otherwise.
4345 If an entry was found and SYM is not NULL, set *SYM to the entry's
4346 SYM. Same principle for BLOCK if not NULL. */
4349 lookup_cached_symbol (const char *name, domain_enum domain,
4350 struct symbol **sym, const struct block **block)
4352 struct cache_entry **e = find_entry (name, domain);
4359 *block = (*e)->block;
4363 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4364 in domain DOMAIN, save this result in our symbol cache. */
4367 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4368 const struct block *block)
4370 struct ada_symbol_cache *sym_cache
4371 = ada_get_symbol_cache (current_program_space);
4373 struct cache_entry *e;
4375 /* Symbols for builtin types don't have a block.
4376 For now don't cache such symbols. */
4377 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4380 /* If the symbol is a local symbol, then do not cache it, as a search
4381 for that symbol depends on the context. To determine whether
4382 the symbol is local or not, we check the block where we found it
4383 against the global and static blocks of its associated symtab. */
4385 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4386 GLOBAL_BLOCK) != block
4387 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4388 STATIC_BLOCK) != block)
4391 h = msymbol_hash (name) % HASH_SIZE;
4392 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4393 e->next = sym_cache->root[h];
4394 sym_cache->root[h] = e;
4395 e->name = obstack_strdup (&sym_cache->cache_space, name);
4403 /* Return the symbol name match type that should be used used when
4404 searching for all symbols matching LOOKUP_NAME.
4406 LOOKUP_NAME is expected to be a symbol name after transformation
4409 static symbol_name_match_type
4410 name_match_type_from_name (const char *lookup_name)
4412 return (strstr (lookup_name, "__") == NULL
4413 ? symbol_name_match_type::WILD
4414 : symbol_name_match_type::FULL);
4417 /* Return the result of a standard (literal, C-like) lookup of NAME in
4418 given DOMAIN, visible from lexical block BLOCK. */
4420 static struct symbol *
4421 standard_lookup (const char *name, const struct block *block,
4424 /* Initialize it just to avoid a GCC false warning. */
4425 struct block_symbol sym = {};
4427 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4429 ada_lookup_encoded_symbol (name, block, domain, &sym);
4430 cache_symbol (name, domain, sym.symbol, sym.block);
4435 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4436 in the symbol fields of SYMS. We treat enumerals as functions,
4437 since they contend in overloading in the same way. */
4439 is_nonfunction (const std::vector<struct block_symbol> &syms)
4441 for (const block_symbol &sym : syms)
4442 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4443 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4444 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4450 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4451 struct types. Otherwise, they may not. */
4454 equiv_types (struct type *type0, struct type *type1)
4458 if (type0 == NULL || type1 == NULL
4459 || type0->code () != type1->code ())
4461 if ((type0->code () == TYPE_CODE_STRUCT
4462 || type0->code () == TYPE_CODE_ENUM)
4463 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4464 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4470 /* True iff SYM0 represents the same entity as SYM1, or one that is
4471 no more defined than that of SYM1. */
4474 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4478 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4479 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4482 switch (SYMBOL_CLASS (sym0))
4488 struct type *type0 = SYMBOL_TYPE (sym0);
4489 struct type *type1 = SYMBOL_TYPE (sym1);
4490 const char *name0 = sym0->linkage_name ();
4491 const char *name1 = sym1->linkage_name ();
4492 int len0 = strlen (name0);
4495 type0->code () == type1->code ()
4496 && (equiv_types (type0, type1)
4497 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4498 && startswith (name1 + len0, "___XV")));
4501 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4502 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4506 const char *name0 = sym0->linkage_name ();
4507 const char *name1 = sym1->linkage_name ();
4508 return (strcmp (name0, name1) == 0
4509 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4517 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4518 records in RESULT. Do nothing if SYM is a duplicate. */
4521 add_defn_to_vec (std::vector<struct block_symbol> &result,
4523 const struct block *block)
4525 /* Do not try to complete stub types, as the debugger is probably
4526 already scanning all symbols matching a certain name at the
4527 time when this function is called. Trying to replace the stub
4528 type by its associated full type will cause us to restart a scan
4529 which may lead to an infinite recursion. Instead, the client
4530 collecting the matching symbols will end up collecting several
4531 matches, with at least one of them complete. It can then filter
4532 out the stub ones if needed. */
4534 for (int i = result.size () - 1; i >= 0; i -= 1)
4536 if (lesseq_defined_than (sym, result[i].symbol))
4538 else if (lesseq_defined_than (result[i].symbol, sym))
4540 result[i].symbol = sym;
4541 result[i].block = block;
4546 struct block_symbol info;
4549 result.push_back (info);
4552 /* Return a bound minimal symbol matching NAME according to Ada
4553 decoding rules. Returns an invalid symbol if there is no such
4554 minimal symbol. Names prefixed with "standard__" are handled
4555 specially: "standard__" is first stripped off, and only static and
4556 global symbols are searched. */
4558 struct bound_minimal_symbol
4559 ada_lookup_simple_minsym (const char *name)
4561 struct bound_minimal_symbol result;
4563 memset (&result, 0, sizeof (result));
4565 symbol_name_match_type match_type = name_match_type_from_name (name);
4566 lookup_name_info lookup_name (name, match_type);
4568 symbol_name_matcher_ftype *match_name
4569 = ada_get_symbol_name_matcher (lookup_name);
4571 for (objfile *objfile : current_program_space->objfiles ())
4573 for (minimal_symbol *msymbol : objfile->msymbols ())
4575 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4576 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4578 result.minsym = msymbol;
4579 result.objfile = objfile;
4588 /* True if TYPE is definitely an artificial type supplied to a symbol
4589 for which no debugging information was given in the symbol file. */
4592 is_nondebugging_type (struct type *type)
4594 const char *name = ada_type_name (type);
4596 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4599 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4600 that are deemed "identical" for practical purposes.
4602 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4603 types and that their number of enumerals is identical (in other
4604 words, type1->num_fields () == type2->num_fields ()). */
4607 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4611 /* The heuristic we use here is fairly conservative. We consider
4612 that 2 enumerate types are identical if they have the same
4613 number of enumerals and that all enumerals have the same
4614 underlying value and name. */
4616 /* All enums in the type should have an identical underlying value. */
4617 for (i = 0; i < type1->num_fields (); i++)
4618 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4621 /* All enumerals should also have the same name (modulo any numerical
4623 for (i = 0; i < type1->num_fields (); i++)
4625 const char *name_1 = type1->field (i).name ();
4626 const char *name_2 = type2->field (i).name ();
4627 int len_1 = strlen (name_1);
4628 int len_2 = strlen (name_2);
4630 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4631 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4633 || strncmp (type1->field (i).name (),
4634 type2->field (i).name (),
4642 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4643 that are deemed "identical" for practical purposes. Sometimes,
4644 enumerals are not strictly identical, but their types are so similar
4645 that they can be considered identical.
4647 For instance, consider the following code:
4649 type Color is (Black, Red, Green, Blue, White);
4650 type RGB_Color is new Color range Red .. Blue;
4652 Type RGB_Color is a subrange of an implicit type which is a copy
4653 of type Color. If we call that implicit type RGB_ColorB ("B" is
4654 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4655 As a result, when an expression references any of the enumeral
4656 by name (Eg. "print green"), the expression is technically
4657 ambiguous and the user should be asked to disambiguate. But
4658 doing so would only hinder the user, since it wouldn't matter
4659 what choice he makes, the outcome would always be the same.
4660 So, for practical purposes, we consider them as the same. */
4663 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4667 /* Before performing a thorough comparison check of each type,
4668 we perform a series of inexpensive checks. We expect that these
4669 checks will quickly fail in the vast majority of cases, and thus
4670 help prevent the unnecessary use of a more expensive comparison.
4671 Said comparison also expects us to make some of these checks
4672 (see ada_identical_enum_types_p). */
4674 /* Quick check: All symbols should have an enum type. */
4675 for (i = 0; i < syms.size (); i++)
4676 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4679 /* Quick check: They should all have the same value. */
4680 for (i = 1; i < syms.size (); i++)
4681 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4684 /* Quick check: They should all have the same number of enumerals. */
4685 for (i = 1; i < syms.size (); i++)
4686 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4687 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4690 /* All the sanity checks passed, so we might have a set of
4691 identical enumeration types. Perform a more complete
4692 comparison of the type of each symbol. */
4693 for (i = 1; i < syms.size (); i++)
4694 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4695 SYMBOL_TYPE (syms[0].symbol)))
4701 /* Remove any non-debugging symbols in SYMS that definitely
4702 duplicate other symbols in the list (The only case I know of where
4703 this happens is when object files containing stabs-in-ecoff are
4704 linked with files containing ordinary ecoff debugging symbols (or no
4705 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4708 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4712 /* We should never be called with less than 2 symbols, as there
4713 cannot be any extra symbol in that case. But it's easy to
4714 handle, since we have nothing to do in that case. */
4715 if (syms->size () < 2)
4719 while (i < syms->size ())
4723 /* If two symbols have the same name and one of them is a stub type,
4724 the get rid of the stub. */
4726 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4727 && (*syms)[i].symbol->linkage_name () != NULL)
4729 for (j = 0; j < syms->size (); j++)
4732 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4733 && (*syms)[j].symbol->linkage_name () != NULL
4734 && strcmp ((*syms)[i].symbol->linkage_name (),
4735 (*syms)[j].symbol->linkage_name ()) == 0)
4740 /* Two symbols with the same name, same class and same address
4741 should be identical. */
4743 else if ((*syms)[i].symbol->linkage_name () != NULL
4744 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4745 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4747 for (j = 0; j < syms->size (); j += 1)
4750 && (*syms)[j].symbol->linkage_name () != NULL
4751 && strcmp ((*syms)[i].symbol->linkage_name (),
4752 (*syms)[j].symbol->linkage_name ()) == 0
4753 && SYMBOL_CLASS ((*syms)[i].symbol)
4754 == SYMBOL_CLASS ((*syms)[j].symbol)
4755 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4756 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4762 syms->erase (syms->begin () + i);
4767 /* If all the remaining symbols are identical enumerals, then
4768 just keep the first one and discard the rest.
4770 Unlike what we did previously, we do not discard any entry
4771 unless they are ALL identical. This is because the symbol
4772 comparison is not a strict comparison, but rather a practical
4773 comparison. If all symbols are considered identical, then
4774 we can just go ahead and use the first one and discard the rest.
4775 But if we cannot reduce the list to a single element, we have
4776 to ask the user to disambiguate anyways. And if we have to
4777 present a multiple-choice menu, it's less confusing if the list
4778 isn't missing some choices that were identical and yet distinct. */
4779 if (symbols_are_identical_enums (*syms))
4783 /* Given a type that corresponds to a renaming entity, use the type name
4784 to extract the scope (package name or function name, fully qualified,
4785 and following the GNAT encoding convention) where this renaming has been
4789 xget_renaming_scope (struct type *renaming_type)
4791 /* The renaming types adhere to the following convention:
4792 <scope>__<rename>___<XR extension>.
4793 So, to extract the scope, we search for the "___XR" extension,
4794 and then backtrack until we find the first "__". */
4796 const char *name = renaming_type->name ();
4797 const char *suffix = strstr (name, "___XR");
4800 /* Now, backtrack a bit until we find the first "__". Start looking
4801 at suffix - 3, as the <rename> part is at least one character long. */
4803 for (last = suffix - 3; last > name; last--)
4804 if (last[0] == '_' && last[1] == '_')
4807 /* Make a copy of scope and return it. */
4808 return std::string (name, last);
4811 /* Return nonzero if NAME corresponds to a package name. */
4814 is_package_name (const char *name)
4816 /* Here, We take advantage of the fact that no symbols are generated
4817 for packages, while symbols are generated for each function.
4818 So the condition for NAME represent a package becomes equivalent
4819 to NAME not existing in our list of symbols. There is only one
4820 small complication with library-level functions (see below). */
4822 /* If it is a function that has not been defined at library level,
4823 then we should be able to look it up in the symbols. */
4824 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4827 /* Library-level function names start with "_ada_". See if function
4828 "_ada_" followed by NAME can be found. */
4830 /* Do a quick check that NAME does not contain "__", since library-level
4831 functions names cannot contain "__" in them. */
4832 if (strstr (name, "__") != NULL)
4835 std::string fun_name = string_printf ("_ada_%s", name);
4837 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4840 /* Return nonzero if SYM corresponds to a renaming entity that is
4841 not visible from FUNCTION_NAME. */
4844 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4846 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4849 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4851 /* If the rename has been defined in a package, then it is visible. */
4852 if (is_package_name (scope.c_str ()))
4855 /* Check that the rename is in the current function scope by checking
4856 that its name starts with SCOPE. */
4858 /* If the function name starts with "_ada_", it means that it is
4859 a library-level function. Strip this prefix before doing the
4860 comparison, as the encoding for the renaming does not contain
4862 if (startswith (function_name, "_ada_"))
4865 return !startswith (function_name, scope.c_str ());
4868 /* Remove entries from SYMS that corresponds to a renaming entity that
4869 is not visible from the function associated with CURRENT_BLOCK or
4870 that is superfluous due to the presence of more specific renaming
4871 information. Places surviving symbols in the initial entries of
4875 First, in cases where an object renaming is implemented as a
4876 reference variable, GNAT may produce both the actual reference
4877 variable and the renaming encoding. In this case, we discard the
4880 Second, GNAT emits a type following a specified encoding for each renaming
4881 entity. Unfortunately, STABS currently does not support the definition
4882 of types that are local to a given lexical block, so all renamings types
4883 are emitted at library level. As a consequence, if an application
4884 contains two renaming entities using the same name, and a user tries to
4885 print the value of one of these entities, the result of the ada symbol
4886 lookup will also contain the wrong renaming type.
4888 This function partially covers for this limitation by attempting to
4889 remove from the SYMS list renaming symbols that should be visible
4890 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4891 method with the current information available. The implementation
4892 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4894 - When the user tries to print a rename in a function while there
4895 is another rename entity defined in a package: Normally, the
4896 rename in the function has precedence over the rename in the
4897 package, so the latter should be removed from the list. This is
4898 currently not the case.
4900 - This function will incorrectly remove valid renames if
4901 the CURRENT_BLOCK corresponds to a function which symbol name
4902 has been changed by an "Export" pragma. As a consequence,
4903 the user will be unable to print such rename entities. */
4906 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4907 const struct block *current_block)
4909 struct symbol *current_function;
4910 const char *current_function_name;
4912 int is_new_style_renaming;
4914 /* If there is both a renaming foo___XR... encoded as a variable and
4915 a simple variable foo in the same block, discard the latter.
4916 First, zero out such symbols, then compress. */
4917 is_new_style_renaming = 0;
4918 for (i = 0; i < syms->size (); i += 1)
4920 struct symbol *sym = (*syms)[i].symbol;
4921 const struct block *block = (*syms)[i].block;
4925 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4927 name = sym->linkage_name ();
4928 suffix = strstr (name, "___XR");
4932 int name_len = suffix - name;
4935 is_new_style_renaming = 1;
4936 for (j = 0; j < syms->size (); j += 1)
4937 if (i != j && (*syms)[j].symbol != NULL
4938 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4940 && block == (*syms)[j].block)
4941 (*syms)[j].symbol = NULL;
4944 if (is_new_style_renaming)
4948 for (j = k = 0; j < syms->size (); j += 1)
4949 if ((*syms)[j].symbol != NULL)
4951 (*syms)[k] = (*syms)[j];
4958 /* Extract the function name associated to CURRENT_BLOCK.
4959 Abort if unable to do so. */
4961 if (current_block == NULL)
4964 current_function = block_linkage_function (current_block);
4965 if (current_function == NULL)
4968 current_function_name = current_function->linkage_name ();
4969 if (current_function_name == NULL)
4972 /* Check each of the symbols, and remove it from the list if it is
4973 a type corresponding to a renaming that is out of the scope of
4974 the current block. */
4977 while (i < syms->size ())
4979 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4980 == ADA_OBJECT_RENAMING
4981 && old_renaming_is_invisible ((*syms)[i].symbol,
4982 current_function_name))
4983 syms->erase (syms->begin () + i);
4989 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4990 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
4992 Note: This function assumes that RESULT is empty. */
4995 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4996 const lookup_name_info &lookup_name,
4997 const struct block *block, domain_enum domain)
4999 while (block != NULL)
5001 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5003 /* If we found a non-function match, assume that's the one. We
5004 only check this when finding a function boundary, so that we
5005 can accumulate all results from intervening blocks first. */
5006 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5009 block = BLOCK_SUPERBLOCK (block);
5013 /* An object of this type is used as the callback argument when
5014 calling the map_matching_symbols method. */
5018 explicit match_data (std::vector<struct block_symbol> *rp)
5022 DISABLE_COPY_AND_ASSIGN (match_data);
5024 bool operator() (struct block_symbol *bsym);
5026 struct objfile *objfile = nullptr;
5027 std::vector<struct block_symbol> *resultp;
5028 struct symbol *arg_sym = nullptr;
5029 bool found_sym = false;
5032 /* A callback for add_nonlocal_symbols that adds symbol, found in
5033 BSYM, to a list of symbols. */
5036 match_data::operator() (struct block_symbol *bsym)
5038 const struct block *block = bsym->block;
5039 struct symbol *sym = bsym->symbol;
5043 if (!found_sym && arg_sym != NULL)
5044 add_defn_to_vec (*resultp,
5045 fixup_symbol_section (arg_sym, objfile),
5052 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5054 else if (SYMBOL_IS_ARGUMENT (sym))
5059 add_defn_to_vec (*resultp,
5060 fixup_symbol_section (sym, objfile),
5067 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5068 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5069 symbols to RESULT. Return whether we found such symbols. */
5072 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5073 const struct block *block,
5074 const lookup_name_info &lookup_name,
5077 struct using_direct *renaming;
5078 int defns_mark = result.size ();
5080 symbol_name_matcher_ftype *name_match
5081 = ada_get_symbol_name_matcher (lookup_name);
5083 for (renaming = block_using (block);
5085 renaming = renaming->next)
5089 /* Avoid infinite recursions: skip this renaming if we are actually
5090 already traversing it.
5092 Currently, symbol lookup in Ada don't use the namespace machinery from
5093 C++/Fortran support: skip namespace imports that use them. */
5094 if (renaming->searched
5095 || (renaming->import_src != NULL
5096 && renaming->import_src[0] != '\0')
5097 || (renaming->import_dest != NULL
5098 && renaming->import_dest[0] != '\0'))
5100 renaming->searched = 1;
5102 /* TODO: here, we perform another name-based symbol lookup, which can
5103 pull its own multiple overloads. In theory, we should be able to do
5104 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5105 not a simple name. But in order to do this, we would need to enhance
5106 the DWARF reader to associate a symbol to this renaming, instead of a
5107 name. So, for now, we do something simpler: re-use the C++/Fortran
5108 namespace machinery. */
5109 r_name = (renaming->alias != NULL
5111 : renaming->declaration);
5112 if (name_match (r_name, lookup_name, NULL))
5114 lookup_name_info decl_lookup_name (renaming->declaration,
5115 lookup_name.match_type ());
5116 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5119 renaming->searched = 0;
5121 return result.size () != defns_mark;
5124 /* Implements compare_names, but only applying the comparision using
5125 the given CASING. */
5128 compare_names_with_case (const char *string1, const char *string2,
5129 enum case_sensitivity casing)
5131 while (*string1 != '\0' && *string2 != '\0')
5135 if (isspace (*string1) || isspace (*string2))
5136 return strcmp_iw_ordered (string1, string2);
5138 if (casing == case_sensitive_off)
5140 c1 = tolower (*string1);
5141 c2 = tolower (*string2);
5158 return strcmp_iw_ordered (string1, string2);
5160 if (*string2 == '\0')
5162 if (is_name_suffix (string1))
5169 if (*string2 == '(')
5170 return strcmp_iw_ordered (string1, string2);
5173 if (casing == case_sensitive_off)
5174 return tolower (*string1) - tolower (*string2);
5176 return *string1 - *string2;
5181 /* Compare STRING1 to STRING2, with results as for strcmp.
5182 Compatible with strcmp_iw_ordered in that...
5184 strcmp_iw_ordered (STRING1, STRING2) <= 0
5188 compare_names (STRING1, STRING2) <= 0
5190 (they may differ as to what symbols compare equal). */
5193 compare_names (const char *string1, const char *string2)
5197 /* Similar to what strcmp_iw_ordered does, we need to perform
5198 a case-insensitive comparison first, and only resort to
5199 a second, case-sensitive, comparison if the first one was
5200 not sufficient to differentiate the two strings. */
5202 result = compare_names_with_case (string1, string2, case_sensitive_off);
5204 result = compare_names_with_case (string1, string2, case_sensitive_on);
5209 /* Convenience function to get at the Ada encoded lookup name for
5210 LOOKUP_NAME, as a C string. */
5213 ada_lookup_name (const lookup_name_info &lookup_name)
5215 return lookup_name.ada ().lookup_name ().c_str ();
5218 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5219 for OBJFILE, then walk the objfile's symtabs and update the
5223 map_matching_symbols (struct objfile *objfile,
5224 const lookup_name_info &lookup_name,
5230 data.objfile = objfile;
5231 objfile->expand_matching_symbols (lookup_name, domain, global,
5232 is_wild_match ? nullptr : compare_names);
5234 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5235 for (compunit_symtab *symtab : objfile->compunits ())
5237 const struct block *block
5238 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5239 if (!iterate_over_symbols_terminated (block, lookup_name,
5245 /* Add to RESULT all non-local symbols whose name and domain match
5246 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5247 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5248 symbols otherwise. */
5251 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5252 const lookup_name_info &lookup_name,
5253 domain_enum domain, int global)
5255 struct match_data data (&result);
5257 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5259 for (objfile *objfile : current_program_space->objfiles ())
5261 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5264 for (compunit_symtab *cu : objfile->compunits ())
5266 const struct block *global_block
5267 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5269 if (ada_add_block_renamings (result, global_block, lookup_name,
5271 data.found_sym = true;
5275 if (result.empty () && global && !is_wild_match)
5277 const char *name = ada_lookup_name (lookup_name);
5278 std::string bracket_name = std::string ("<_ada_") + name + '>';
5279 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5281 for (objfile *objfile : current_program_space->objfiles ())
5282 map_matching_symbols (objfile, name1, false, domain, global, data);
5286 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5287 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5288 returning the number of matches. Add these to RESULT.
5290 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5291 symbol match within the nest of blocks whose innermost member is BLOCK,
5292 is the one match returned (no other matches in that or
5293 enclosing blocks is returned). If there are any matches in or
5294 surrounding BLOCK, then these alone are returned.
5296 Names prefixed with "standard__" are handled specially:
5297 "standard__" is first stripped off (by the lookup_name
5298 constructor), and only static and global symbols are searched.
5300 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5301 to lookup global symbols. */
5304 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5305 const struct block *block,
5306 const lookup_name_info &lookup_name,
5309 int *made_global_lookup_p)
5313 if (made_global_lookup_p)
5314 *made_global_lookup_p = 0;
5316 /* Special case: If the user specifies a symbol name inside package
5317 Standard, do a non-wild matching of the symbol name without
5318 the "standard__" prefix. This was primarily introduced in order
5319 to allow the user to specifically access the standard exceptions
5320 using, for instance, Standard.Constraint_Error when Constraint_Error
5321 is ambiguous (due to the user defining its own Constraint_Error
5322 entity inside its program). */
5323 if (lookup_name.ada ().standard_p ())
5326 /* Check the non-global symbols. If we have ANY match, then we're done. */
5331 ada_add_local_symbols (result, lookup_name, block, domain);
5334 /* In the !full_search case we're are being called by
5335 iterate_over_symbols, and we don't want to search
5337 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5339 if (!result.empty () || !full_search)
5343 /* No non-global symbols found. Check our cache to see if we have
5344 already performed this search before. If we have, then return
5347 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5348 domain, &sym, &block))
5351 add_defn_to_vec (result, sym, block);
5355 if (made_global_lookup_p)
5356 *made_global_lookup_p = 1;
5358 /* Search symbols from all global blocks. */
5360 add_nonlocal_symbols (result, lookup_name, domain, 1);
5362 /* Now add symbols from all per-file blocks if we've gotten no hits
5363 (not strictly correct, but perhaps better than an error). */
5365 if (result.empty ())
5366 add_nonlocal_symbols (result, lookup_name, domain, 0);
5369 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5370 is non-zero, enclosing scope and in global scopes.
5372 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5373 blocks and symbol tables (if any) in which they were found.
5375 When full_search is non-zero, any non-function/non-enumeral
5376 symbol match within the nest of blocks whose innermost member is BLOCK,
5377 is the one match returned (no other matches in that or
5378 enclosing blocks is returned). If there are any matches in or
5379 surrounding BLOCK, then these alone are returned.
5381 Names prefixed with "standard__" are handled specially: "standard__"
5382 is first stripped off, and only static and global symbols are searched. */
5384 static std::vector<struct block_symbol>
5385 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5386 const struct block *block,
5390 int syms_from_global_search;
5391 std::vector<struct block_symbol> results;
5393 ada_add_all_symbols (results, block, lookup_name,
5394 domain, full_search, &syms_from_global_search);
5396 remove_extra_symbols (&results);
5398 if (results.empty () && full_search && syms_from_global_search)
5399 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5401 if (results.size () == 1 && full_search && syms_from_global_search)
5402 cache_symbol (ada_lookup_name (lookup_name), domain,
5403 results[0].symbol, results[0].block);
5405 remove_irrelevant_renamings (&results, block);
5409 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5410 in global scopes, returning (SYM,BLOCK) tuples.
5412 See ada_lookup_symbol_list_worker for further details. */
5414 std::vector<struct block_symbol>
5415 ada_lookup_symbol_list (const char *name, const struct block *block,
5418 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5419 lookup_name_info lookup_name (name, name_match_type);
5421 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5424 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5425 to 1, but choosing the first symbol found if there are multiple
5428 The result is stored in *INFO, which must be non-NULL.
5429 If no match is found, INFO->SYM is set to NULL. */
5432 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5434 struct block_symbol *info)
5436 /* Since we already have an encoded name, wrap it in '<>' to force a
5437 verbatim match. Otherwise, if the name happens to not look like
5438 an encoded name (because it doesn't include a "__"),
5439 ada_lookup_name_info would re-encode/fold it again, and that
5440 would e.g., incorrectly lowercase object renaming names like
5441 "R28b" -> "r28b". */
5442 std::string verbatim = add_angle_brackets (name);
5444 gdb_assert (info != NULL);
5445 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5448 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5449 scope and in global scopes, or NULL if none. NAME is folded and
5450 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5451 choosing the first symbol if there are multiple choices. */
5454 ada_lookup_symbol (const char *name, const struct block *block0,
5457 std::vector<struct block_symbol> candidates
5458 = ada_lookup_symbol_list (name, block0, domain);
5460 if (candidates.empty ())
5463 block_symbol info = candidates[0];
5464 info.symbol = fixup_symbol_section (info.symbol, NULL);
5469 /* True iff STR is a possible encoded suffix of a normal Ada name
5470 that is to be ignored for matching purposes. Suffixes of parallel
5471 names (e.g., XVE) are not included here. Currently, the possible suffixes
5472 are given by any of the regular expressions:
5474 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5475 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5476 TKB [subprogram suffix for task bodies]
5477 _E[0-9]+[bs]$ [protected object entry suffixes]
5478 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5480 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5481 match is performed. This sequence is used to differentiate homonyms,
5482 is an optional part of a valid name suffix. */
5485 is_name_suffix (const char *str)
5488 const char *matching;
5489 const int len = strlen (str);
5491 /* Skip optional leading __[0-9]+. */
5493 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5496 while (isdigit (str[0]))
5502 if (str[0] == '.' || str[0] == '$')
5505 while (isdigit (matching[0]))
5507 if (matching[0] == '\0')
5513 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5516 while (isdigit (matching[0]))
5518 if (matching[0] == '\0')
5522 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5524 if (strcmp (str, "TKB") == 0)
5528 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5529 with a N at the end. Unfortunately, the compiler uses the same
5530 convention for other internal types it creates. So treating
5531 all entity names that end with an "N" as a name suffix causes
5532 some regressions. For instance, consider the case of an enumerated
5533 type. To support the 'Image attribute, it creates an array whose
5535 Having a single character like this as a suffix carrying some
5536 information is a bit risky. Perhaps we should change the encoding
5537 to be something like "_N" instead. In the meantime, do not do
5538 the following check. */
5539 /* Protected Object Subprograms */
5540 if (len == 1 && str [0] == 'N')
5545 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5548 while (isdigit (matching[0]))
5550 if ((matching[0] == 'b' || matching[0] == 's')
5551 && matching [1] == '\0')
5555 /* ??? We should not modify STR directly, as we are doing below. This
5556 is fine in this case, but may become problematic later if we find
5557 that this alternative did not work, and want to try matching
5558 another one from the begining of STR. Since we modified it, we
5559 won't be able to find the begining of the string anymore! */
5563 while (str[0] != '_' && str[0] != '\0')
5565 if (str[0] != 'n' && str[0] != 'b')
5571 if (str[0] == '\000')
5576 if (str[1] != '_' || str[2] == '\000')
5580 if (strcmp (str + 3, "JM") == 0)
5582 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5583 the LJM suffix in favor of the JM one. But we will
5584 still accept LJM as a valid suffix for a reasonable
5585 amount of time, just to allow ourselves to debug programs
5586 compiled using an older version of GNAT. */
5587 if (strcmp (str + 3, "LJM") == 0)
5591 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5592 || str[4] == 'U' || str[4] == 'P')
5594 if (str[4] == 'R' && str[5] != 'T')
5598 if (!isdigit (str[2]))
5600 for (k = 3; str[k] != '\0'; k += 1)
5601 if (!isdigit (str[k]) && str[k] != '_')
5605 if (str[0] == '$' && isdigit (str[1]))
5607 for (k = 2; str[k] != '\0'; k += 1)
5608 if (!isdigit (str[k]) && str[k] != '_')
5615 /* Return non-zero if the string starting at NAME and ending before
5616 NAME_END contains no capital letters. */
5619 is_valid_name_for_wild_match (const char *name0)
5621 std::string decoded_name = ada_decode (name0);
5624 /* If the decoded name starts with an angle bracket, it means that
5625 NAME0 does not follow the GNAT encoding format. It should then
5626 not be allowed as a possible wild match. */
5627 if (decoded_name[0] == '<')
5630 for (i=0; decoded_name[i] != '\0'; i++)
5631 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5637 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5638 character which could start a simple name. Assumes that *NAMEP points
5639 somewhere inside the string beginning at NAME0. */
5642 advance_wild_match (const char **namep, const char *name0, char target0)
5644 const char *name = *namep;
5654 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5657 if (name == name0 + 5 && startswith (name0, "_ada"))
5662 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5663 || name[2] == target0))
5668 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5670 /* Names like "pkg__B_N__name", where N is a number, are
5671 block-local. We can handle these by simply skipping
5678 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5688 /* Return true iff NAME encodes a name of the form prefix.PATN.
5689 Ignores any informational suffixes of NAME (i.e., for which
5690 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5694 wild_match (const char *name, const char *patn)
5697 const char *name0 = name;
5701 const char *match = name;
5705 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5708 if (*p == '\0' && is_name_suffix (name))
5709 return match == name0 || is_valid_name_for_wild_match (name0);
5711 if (name[-1] == '_')
5714 if (!advance_wild_match (&name, name0, *patn))
5719 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5720 necessary). OBJFILE is the section containing BLOCK. */
5723 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5724 const struct block *block,
5725 const lookup_name_info &lookup_name,
5726 domain_enum domain, struct objfile *objfile)
5728 struct block_iterator iter;
5729 /* A matching argument symbol, if any. */
5730 struct symbol *arg_sym;
5731 /* Set true when we find a matching non-argument symbol. */
5737 for (sym = block_iter_match_first (block, lookup_name, &iter);
5739 sym = block_iter_match_next (lookup_name, &iter))
5741 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5743 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5745 if (SYMBOL_IS_ARGUMENT (sym))
5750 add_defn_to_vec (result,
5751 fixup_symbol_section (sym, objfile),
5758 /* Handle renamings. */
5760 if (ada_add_block_renamings (result, block, lookup_name, domain))
5763 if (!found_sym && arg_sym != NULL)
5765 add_defn_to_vec (result,
5766 fixup_symbol_section (arg_sym, objfile),
5770 if (!lookup_name.ada ().wild_match_p ())
5774 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5775 const char *name = ada_lookup_name.c_str ();
5776 size_t name_len = ada_lookup_name.size ();
5778 ALL_BLOCK_SYMBOLS (block, iter, sym)
5780 if (symbol_matches_domain (sym->language (),
5781 SYMBOL_DOMAIN (sym), domain))
5785 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5788 cmp = !startswith (sym->linkage_name (), "_ada_");
5790 cmp = strncmp (name, sym->linkage_name () + 5,
5795 && is_name_suffix (sym->linkage_name () + name_len + 5))
5797 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5799 if (SYMBOL_IS_ARGUMENT (sym))
5804 add_defn_to_vec (result,
5805 fixup_symbol_section (sym, objfile),
5813 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5814 They aren't parameters, right? */
5815 if (!found_sym && arg_sym != NULL)
5817 add_defn_to_vec (result,
5818 fixup_symbol_section (arg_sym, objfile),
5825 /* Symbol Completion */
5830 ada_lookup_name_info::matches
5831 (const char *sym_name,
5832 symbol_name_match_type match_type,
5833 completion_match_result *comp_match_res) const
5836 const char *text = m_encoded_name.c_str ();
5837 size_t text_len = m_encoded_name.size ();
5839 /* First, test against the fully qualified name of the symbol. */
5841 if (strncmp (sym_name, text, text_len) == 0)
5844 std::string decoded_name = ada_decode (sym_name);
5845 if (match && !m_encoded_p)
5847 /* One needed check before declaring a positive match is to verify
5848 that iff we are doing a verbatim match, the decoded version
5849 of the symbol name starts with '<'. Otherwise, this symbol name
5850 is not a suitable completion. */
5852 bool has_angle_bracket = (decoded_name[0] == '<');
5853 match = (has_angle_bracket == m_verbatim_p);
5856 if (match && !m_verbatim_p)
5858 /* When doing non-verbatim match, another check that needs to
5859 be done is to verify that the potentially matching symbol name
5860 does not include capital letters, because the ada-mode would
5861 not be able to understand these symbol names without the
5862 angle bracket notation. */
5865 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5870 /* Second: Try wild matching... */
5872 if (!match && m_wild_match_p)
5874 /* Since we are doing wild matching, this means that TEXT
5875 may represent an unqualified symbol name. We therefore must
5876 also compare TEXT against the unqualified name of the symbol. */
5877 sym_name = ada_unqualified_name (decoded_name.c_str ());
5879 if (strncmp (sym_name, text, text_len) == 0)
5883 /* Finally: If we found a match, prepare the result to return. */
5888 if (comp_match_res != NULL)
5890 std::string &match_str = comp_match_res->match.storage ();
5893 match_str = ada_decode (sym_name);
5897 match_str = add_angle_brackets (sym_name);
5899 match_str = sym_name;
5903 comp_match_res->set_match (match_str.c_str ());
5911 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5912 for tagged types. */
5915 ada_is_dispatch_table_ptr_type (struct type *type)
5919 if (type->code () != TYPE_CODE_PTR)
5922 name = TYPE_TARGET_TYPE (type)->name ();
5926 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5929 /* Return non-zero if TYPE is an interface tag. */
5932 ada_is_interface_tag (struct type *type)
5934 const char *name = type->name ();
5939 return (strcmp (name, "ada__tags__interface_tag") == 0);
5942 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5943 to be invisible to users. */
5946 ada_is_ignored_field (struct type *type, int field_num)
5948 if (field_num < 0 || field_num > type->num_fields ())
5951 /* Check the name of that field. */
5953 const char *name = type->field (field_num).name ();
5955 /* Anonymous field names should not be printed.
5956 brobecker/2007-02-20: I don't think this can actually happen
5957 but we don't want to print the value of anonymous fields anyway. */
5961 /* Normally, fields whose name start with an underscore ("_")
5962 are fields that have been internally generated by the compiler,
5963 and thus should not be printed. The "_parent" field is special,
5964 however: This is a field internally generated by the compiler
5965 for tagged types, and it contains the components inherited from
5966 the parent type. This field should not be printed as is, but
5967 should not be ignored either. */
5968 if (name[0] == '_' && !startswith (name, "_parent"))
5972 /* If this is the dispatch table of a tagged type or an interface tag,
5974 if (ada_is_tagged_type (type, 1)
5975 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5976 || ada_is_interface_tag (type->field (field_num).type ())))
5979 /* Not a special field, so it should not be ignored. */
5983 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5984 pointer or reference type whose ultimate target has a tag field. */
5987 ada_is_tagged_type (struct type *type, int refok)
5989 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5992 /* True iff TYPE represents the type of X'Tag */
5995 ada_is_tag_type (struct type *type)
5997 type = ada_check_typedef (type);
5999 if (type == NULL || type->code () != TYPE_CODE_PTR)
6003 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6005 return (name != NULL
6006 && strcmp (name, "ada__tags__dispatch_table") == 0);
6010 /* The type of the tag on VAL. */
6012 static struct type *
6013 ada_tag_type (struct value *val)
6015 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6018 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6019 retired at Ada 05). */
6022 is_ada95_tag (struct value *tag)
6024 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6027 /* The value of the tag on VAL. */
6029 static struct value *
6030 ada_value_tag (struct value *val)
6032 return ada_value_struct_elt (val, "_tag", 0);
6035 /* The value of the tag on the object of type TYPE whose contents are
6036 saved at VALADDR, if it is non-null, or is at memory address
6039 static struct value *
6040 value_tag_from_contents_and_address (struct type *type,
6041 const gdb_byte *valaddr,
6044 int tag_byte_offset;
6045 struct type *tag_type;
6047 gdb::array_view<const gdb_byte> contents;
6048 if (valaddr != nullptr)
6049 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6050 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6051 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6054 const gdb_byte *valaddr1 = ((valaddr == NULL)
6056 : valaddr + tag_byte_offset);
6057 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6059 return value_from_contents_and_address (tag_type, valaddr1, address1);
6064 static struct type *
6065 type_from_tag (struct value *tag)
6067 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6069 if (type_name != NULL)
6070 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6074 /* Given a value OBJ of a tagged type, return a value of this
6075 type at the base address of the object. The base address, as
6076 defined in Ada.Tags, it is the address of the primary tag of
6077 the object, and therefore where the field values of its full
6078 view can be fetched. */
6081 ada_tag_value_at_base_address (struct value *obj)
6084 LONGEST offset_to_top = 0;
6085 struct type *ptr_type, *obj_type;
6087 CORE_ADDR base_address;
6089 obj_type = value_type (obj);
6091 /* It is the responsability of the caller to deref pointers. */
6093 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6096 tag = ada_value_tag (obj);
6100 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6102 if (is_ada95_tag (tag))
6105 ptr_type = language_lookup_primitive_type
6106 (language_def (language_ada), target_gdbarch(), "storage_offset");
6107 ptr_type = lookup_pointer_type (ptr_type);
6108 val = value_cast (ptr_type, tag);
6112 /* It is perfectly possible that an exception be raised while
6113 trying to determine the base address, just like for the tag;
6114 see ada_tag_name for more details. We do not print the error
6115 message for the same reason. */
6119 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6122 catch (const gdb_exception_error &e)
6127 /* If offset is null, nothing to do. */
6129 if (offset_to_top == 0)
6132 /* -1 is a special case in Ada.Tags; however, what should be done
6133 is not quite clear from the documentation. So do nothing for
6136 if (offset_to_top == -1)
6139 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6140 from the base address. This was however incompatible with
6141 C++ dispatch table: C++ uses a *negative* value to *add*
6142 to the base address. Ada's convention has therefore been
6143 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6144 use the same convention. Here, we support both cases by
6145 checking the sign of OFFSET_TO_TOP. */
6147 if (offset_to_top > 0)
6148 offset_to_top = -offset_to_top;
6150 base_address = value_address (obj) + offset_to_top;
6151 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6153 /* Make sure that we have a proper tag at the new address.
6154 Otherwise, offset_to_top is bogus (which can happen when
6155 the object is not initialized yet). */
6160 obj_type = type_from_tag (tag);
6165 return value_from_contents_and_address (obj_type, NULL, base_address);
6168 /* Return the "ada__tags__type_specific_data" type. */
6170 static struct type *
6171 ada_get_tsd_type (struct inferior *inf)
6173 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6175 if (data->tsd_type == 0)
6176 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6177 return data->tsd_type;
6180 /* Return the TSD (type-specific data) associated to the given TAG.
6181 TAG is assumed to be the tag of a tagged-type entity.
6183 May return NULL if we are unable to get the TSD. */
6185 static struct value *
6186 ada_get_tsd_from_tag (struct value *tag)
6191 /* First option: The TSD is simply stored as a field of our TAG.
6192 Only older versions of GNAT would use this format, but we have
6193 to test it first, because there are no visible markers for
6194 the current approach except the absence of that field. */
6196 val = ada_value_struct_elt (tag, "tsd", 1);
6200 /* Try the second representation for the dispatch table (in which
6201 there is no explicit 'tsd' field in the referent of the tag pointer,
6202 and instead the tsd pointer is stored just before the dispatch
6205 type = ada_get_tsd_type (current_inferior());
6208 type = lookup_pointer_type (lookup_pointer_type (type));
6209 val = value_cast (type, tag);
6212 return value_ind (value_ptradd (val, -1));
6215 /* Given the TSD of a tag (type-specific data), return a string
6216 containing the name of the associated type.
6218 May return NULL if we are unable to determine the tag name. */
6220 static gdb::unique_xmalloc_ptr<char>
6221 ada_tag_name_from_tsd (struct value *tsd)
6226 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6229 gdb::unique_xmalloc_ptr<char> buffer
6230 = target_read_string (value_as_address (val), INT_MAX);
6231 if (buffer == nullptr)
6234 for (p = buffer.get (); *p != '\0'; ++p)
6243 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6246 Return NULL if the TAG is not an Ada tag, or if we were unable to
6247 determine the name of that tag. */
6249 gdb::unique_xmalloc_ptr<char>
6250 ada_tag_name (struct value *tag)
6252 gdb::unique_xmalloc_ptr<char> name;
6254 if (!ada_is_tag_type (value_type (tag)))
6257 /* It is perfectly possible that an exception be raised while trying
6258 to determine the TAG's name, even under normal circumstances:
6259 The associated variable may be uninitialized or corrupted, for
6260 instance. We do not let any exception propagate past this point.
6261 instead we return NULL.
6263 We also do not print the error message either (which often is very
6264 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6265 the caller print a more meaningful message if necessary. */
6268 struct value *tsd = ada_get_tsd_from_tag (tag);
6271 name = ada_tag_name_from_tsd (tsd);
6273 catch (const gdb_exception_error &e)
6280 /* The parent type of TYPE, or NULL if none. */
6283 ada_parent_type (struct type *type)
6287 type = ada_check_typedef (type);
6289 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6292 for (i = 0; i < type->num_fields (); i += 1)
6293 if (ada_is_parent_field (type, i))
6295 struct type *parent_type = type->field (i).type ();
6297 /* If the _parent field is a pointer, then dereference it. */
6298 if (parent_type->code () == TYPE_CODE_PTR)
6299 parent_type = TYPE_TARGET_TYPE (parent_type);
6300 /* If there is a parallel XVS type, get the actual base type. */
6301 parent_type = ada_get_base_type (parent_type);
6303 return ada_check_typedef (parent_type);
6309 /* True iff field number FIELD_NUM of structure type TYPE contains the
6310 parent-type (inherited) fields of a derived type. Assumes TYPE is
6311 a structure type with at least FIELD_NUM+1 fields. */
6314 ada_is_parent_field (struct type *type, int field_num)
6316 const char *name = ada_check_typedef (type)->field (field_num).name ();
6318 return (name != NULL
6319 && (startswith (name, "PARENT")
6320 || startswith (name, "_parent")));
6323 /* True iff field number FIELD_NUM of structure type TYPE is a
6324 transparent wrapper field (which should be silently traversed when doing
6325 field selection and flattened when printing). Assumes TYPE is a
6326 structure type with at least FIELD_NUM+1 fields. Such fields are always
6330 ada_is_wrapper_field (struct type *type, int field_num)
6332 const char *name = type->field (field_num).name ();
6334 if (name != NULL && strcmp (name, "RETVAL") == 0)
6336 /* This happens in functions with "out" or "in out" parameters
6337 which are passed by copy. For such functions, GNAT describes
6338 the function's return type as being a struct where the return
6339 value is in a field called RETVAL, and where the other "out"
6340 or "in out" parameters are fields of that struct. This is not
6345 return (name != NULL
6346 && (startswith (name, "PARENT")
6347 || strcmp (name, "REP") == 0
6348 || startswith (name, "_parent")
6349 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6352 /* True iff field number FIELD_NUM of structure or union type TYPE
6353 is a variant wrapper. Assumes TYPE is a structure type with at least
6354 FIELD_NUM+1 fields. */
6357 ada_is_variant_part (struct type *type, int field_num)
6359 /* Only Ada types are eligible. */
6360 if (!ADA_TYPE_P (type))
6363 struct type *field_type = type->field (field_num).type ();
6365 return (field_type->code () == TYPE_CODE_UNION
6366 || (is_dynamic_field (type, field_num)
6367 && (TYPE_TARGET_TYPE (field_type)->code ()
6368 == TYPE_CODE_UNION)));
6371 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6372 whose discriminants are contained in the record type OUTER_TYPE,
6373 returns the type of the controlling discriminant for the variant.
6374 May return NULL if the type could not be found. */
6377 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6379 const char *name = ada_variant_discrim_name (var_type);
6381 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6384 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6385 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6386 represents a 'when others' clause; otherwise 0. */
6389 ada_is_others_clause (struct type *type, int field_num)
6391 const char *name = type->field (field_num).name ();
6393 return (name != NULL && name[0] == 'O');
6396 /* Assuming that TYPE0 is the type of the variant part of a record,
6397 returns the name of the discriminant controlling the variant.
6398 The value is valid until the next call to ada_variant_discrim_name. */
6401 ada_variant_discrim_name (struct type *type0)
6403 static std::string result;
6406 const char *discrim_end;
6407 const char *discrim_start;
6409 if (type0->code () == TYPE_CODE_PTR)
6410 type = TYPE_TARGET_TYPE (type0);
6414 name = ada_type_name (type);
6416 if (name == NULL || name[0] == '\000')
6419 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6422 if (startswith (discrim_end, "___XVN"))
6425 if (discrim_end == name)
6428 for (discrim_start = discrim_end; discrim_start != name + 3;
6431 if (discrim_start == name + 1)
6433 if ((discrim_start > name + 3
6434 && startswith (discrim_start - 3, "___"))
6435 || discrim_start[-1] == '.')
6439 result = std::string (discrim_start, discrim_end - discrim_start);
6440 return result.c_str ();
6443 /* Scan STR for a subtype-encoded number, beginning at position K.
6444 Put the position of the character just past the number scanned in
6445 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6446 Return 1 if there was a valid number at the given position, and 0
6447 otherwise. A "subtype-encoded" number consists of the absolute value
6448 in decimal, followed by the letter 'm' to indicate a negative number.
6449 Assumes 0m does not occur. */
6452 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6456 if (!isdigit (str[k]))
6459 /* Do it the hard way so as not to make any assumption about
6460 the relationship of unsigned long (%lu scan format code) and
6463 while (isdigit (str[k]))
6465 RU = RU * 10 + (str[k] - '0');
6472 *R = (-(LONGEST) (RU - 1)) - 1;
6478 /* NOTE on the above: Technically, C does not say what the results of
6479 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6480 number representable as a LONGEST (although either would probably work
6481 in most implementations). When RU>0, the locution in the then branch
6482 above is always equivalent to the negative of RU. */
6489 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6490 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6491 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6494 ada_in_variant (LONGEST val, struct type *type, int field_num)
6496 const char *name = type->field (field_num).name ();
6510 if (!ada_scan_number (name, p + 1, &W, &p))
6520 if (!ada_scan_number (name, p + 1, &L, &p)
6521 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6523 if (val >= L && val <= U)
6535 /* FIXME: Lots of redundancy below. Try to consolidate. */
6537 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6538 ARG_TYPE, extract and return the value of one of its (non-static)
6539 fields. FIELDNO says which field. Differs from value_primitive_field
6540 only in that it can handle packed values of arbitrary type. */
6543 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6544 struct type *arg_type)
6548 arg_type = ada_check_typedef (arg_type);
6549 type = arg_type->field (fieldno).type ();
6551 /* Handle packed fields. It might be that the field is not packed
6552 relative to its containing structure, but the structure itself is
6553 packed; in this case we must take the bit-field path. */
6554 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6556 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6557 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6559 return ada_value_primitive_packed_val (arg1,
6560 value_contents (arg1).data (),
6561 offset + bit_pos / 8,
6562 bit_pos % 8, bit_size, type);
6565 return value_primitive_field (arg1, offset, fieldno, arg_type);
6568 /* Find field with name NAME in object of type TYPE. If found,
6569 set the following for each argument that is non-null:
6570 - *FIELD_TYPE_P to the field's type;
6571 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6572 an object of that type;
6573 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6574 - *BIT_SIZE_P to its size in bits if the field is packed, and
6576 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6577 fields up to but not including the desired field, or by the total
6578 number of fields if not found. A NULL value of NAME never
6579 matches; the function just counts visible fields in this case.
6581 Notice that we need to handle when a tagged record hierarchy
6582 has some components with the same name, like in this scenario:
6584 type Top_T is tagged record
6590 type Middle_T is new Top.Top_T with record
6591 N : Character := 'a';
6595 type Bottom_T is new Middle.Middle_T with record
6597 C : Character := '5';
6599 A : Character := 'J';
6602 Let's say we now have a variable declared and initialized as follow:
6604 TC : Top_A := new Bottom_T;
6606 And then we use this variable to call this function
6608 procedure Assign (Obj: in out Top_T; TV : Integer);
6612 Assign (Top_T (B), 12);
6614 Now, we're in the debugger, and we're inside that procedure
6615 then and we want to print the value of obj.c:
6617 Usually, the tagged record or one of the parent type owns the
6618 component to print and there's no issue but in this particular
6619 case, what does it mean to ask for Obj.C? Since the actual
6620 type for object is type Bottom_T, it could mean two things: type
6621 component C from the Middle_T view, but also component C from
6622 Bottom_T. So in that "undefined" case, when the component is
6623 not found in the non-resolved type (which includes all the
6624 components of the parent type), then resolve it and see if we
6625 get better luck once expanded.
6627 In the case of homonyms in the derived tagged type, we don't
6628 guaranty anything, and pick the one that's easiest for us
6631 Returns 1 if found, 0 otherwise. */
6634 find_struct_field (const char *name, struct type *type, int offset,
6635 struct type **field_type_p,
6636 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6640 int parent_offset = -1;
6642 type = ada_check_typedef (type);
6644 if (field_type_p != NULL)
6645 *field_type_p = NULL;
6646 if (byte_offset_p != NULL)
6648 if (bit_offset_p != NULL)
6650 if (bit_size_p != NULL)
6653 for (i = 0; i < type->num_fields (); i += 1)
6655 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
6656 type. However, we only need the values to be correct when
6657 the caller asks for them. */
6658 int bit_pos = 0, fld_offset = 0;
6659 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6661 bit_pos = type->field (i).loc_bitpos ();
6662 fld_offset = offset + bit_pos / 8;
6665 const char *t_field_name = type->field (i).name ();
6667 if (t_field_name == NULL)
6670 else if (ada_is_parent_field (type, i))
6672 /* This is a field pointing us to the parent type of a tagged
6673 type. As hinted in this function's documentation, we give
6674 preference to fields in the current record first, so what
6675 we do here is just record the index of this field before
6676 we skip it. If it turns out we couldn't find our field
6677 in the current record, then we'll get back to it and search
6678 inside it whether the field might exist in the parent. */
6684 else if (name != NULL && field_name_match (t_field_name, name))
6686 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6688 if (field_type_p != NULL)
6689 *field_type_p = type->field (i).type ();
6690 if (byte_offset_p != NULL)
6691 *byte_offset_p = fld_offset;
6692 if (bit_offset_p != NULL)
6693 *bit_offset_p = bit_pos % 8;
6694 if (bit_size_p != NULL)
6695 *bit_size_p = bit_size;
6698 else if (ada_is_wrapper_field (type, i))
6700 if (find_struct_field (name, type->field (i).type (), fld_offset,
6701 field_type_p, byte_offset_p, bit_offset_p,
6702 bit_size_p, index_p))
6705 else if (ada_is_variant_part (type, i))
6707 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6710 struct type *field_type
6711 = ada_check_typedef (type->field (i).type ());
6713 for (j = 0; j < field_type->num_fields (); j += 1)
6715 if (find_struct_field (name, field_type->field (j).type (),
6717 + field_type->field (j).loc_bitpos () / 8,
6718 field_type_p, byte_offset_p,
6719 bit_offset_p, bit_size_p, index_p))
6723 else if (index_p != NULL)
6727 /* Field not found so far. If this is a tagged type which
6728 has a parent, try finding that field in the parent now. */
6730 if (parent_offset != -1)
6732 /* As above, only compute the offset when truly needed. */
6733 int fld_offset = offset;
6734 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6736 int bit_pos = type->field (parent_offset).loc_bitpos ();
6737 fld_offset += bit_pos / 8;
6740 if (find_struct_field (name, type->field (parent_offset).type (),
6741 fld_offset, field_type_p, byte_offset_p,
6742 bit_offset_p, bit_size_p, index_p))
6749 /* Number of user-visible fields in record type TYPE. */
6752 num_visible_fields (struct type *type)
6757 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6761 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6762 and search in it assuming it has (class) type TYPE.
6763 If found, return value, else return NULL.
6765 Searches recursively through wrapper fields (e.g., '_parent').
6767 In the case of homonyms in the tagged types, please refer to the
6768 long explanation in find_struct_field's function documentation. */
6770 static struct value *
6771 ada_search_struct_field (const char *name, struct value *arg, int offset,
6775 int parent_offset = -1;
6777 type = ada_check_typedef (type);
6778 for (i = 0; i < type->num_fields (); i += 1)
6780 const char *t_field_name = type->field (i).name ();
6782 if (t_field_name == NULL)
6785 else if (ada_is_parent_field (type, i))
6787 /* This is a field pointing us to the parent type of a tagged
6788 type. As hinted in this function's documentation, we give
6789 preference to fields in the current record first, so what
6790 we do here is just record the index of this field before
6791 we skip it. If it turns out we couldn't find our field
6792 in the current record, then we'll get back to it and search
6793 inside it whether the field might exist in the parent. */
6799 else if (field_name_match (t_field_name, name))
6800 return ada_value_primitive_field (arg, offset, i, type);
6802 else if (ada_is_wrapper_field (type, i))
6804 struct value *v = /* Do not let indent join lines here. */
6805 ada_search_struct_field (name, arg,
6806 offset + type->field (i).loc_bitpos () / 8,
6807 type->field (i).type ());
6813 else if (ada_is_variant_part (type, i))
6815 /* PNH: Do we ever get here? See find_struct_field. */
6817 struct type *field_type = ada_check_typedef (type->field (i).type ());
6818 int var_offset = offset + type->field (i).loc_bitpos () / 8;
6820 for (j = 0; j < field_type->num_fields (); j += 1)
6822 struct value *v = ada_search_struct_field /* Force line
6825 var_offset + field_type->field (j).loc_bitpos () / 8,
6826 field_type->field (j).type ());
6834 /* Field not found so far. If this is a tagged type which
6835 has a parent, try finding that field in the parent now. */
6837 if (parent_offset != -1)
6839 struct value *v = ada_search_struct_field (
6840 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
6841 type->field (parent_offset).type ());
6850 static struct value *ada_index_struct_field_1 (int *, struct value *,
6851 int, struct type *);
6854 /* Return field #INDEX in ARG, where the index is that returned by
6855 * find_struct_field through its INDEX_P argument. Adjust the address
6856 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6857 * If found, return value, else return NULL. */
6859 static struct value *
6860 ada_index_struct_field (int index, struct value *arg, int offset,
6863 return ada_index_struct_field_1 (&index, arg, offset, type);
6867 /* Auxiliary function for ada_index_struct_field. Like
6868 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6871 static struct value *
6872 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6876 type = ada_check_typedef (type);
6878 for (i = 0; i < type->num_fields (); i += 1)
6880 if (type->field (i).name () == NULL)
6882 else if (ada_is_wrapper_field (type, i))
6884 struct value *v = /* Do not let indent join lines here. */
6885 ada_index_struct_field_1 (index_p, arg,
6886 offset + type->field (i).loc_bitpos () / 8,
6887 type->field (i).type ());
6893 else if (ada_is_variant_part (type, i))
6895 /* PNH: Do we ever get here? See ada_search_struct_field,
6896 find_struct_field. */
6897 error (_("Cannot assign this kind of variant record"));
6899 else if (*index_p == 0)
6900 return ada_value_primitive_field (arg, offset, i, type);
6907 /* Return a string representation of type TYPE. */
6910 type_as_string (struct type *type)
6912 string_file tmp_stream;
6914 type_print (type, "", &tmp_stream, -1);
6916 return std::move (tmp_stream.string ());
6919 /* Given a type TYPE, look up the type of the component of type named NAME.
6920 If DISPP is non-null, add its byte displacement from the beginning of a
6921 structure (pointed to by a value) of type TYPE to *DISPP (does not
6922 work for packed fields).
6924 Matches any field whose name has NAME as a prefix, possibly
6927 TYPE can be either a struct or union. If REFOK, TYPE may also
6928 be a (pointer or reference)+ to a struct or union, and the
6929 ultimate target type will be searched.
6931 Looks recursively into variant clauses and parent types.
6933 In the case of homonyms in the tagged types, please refer to the
6934 long explanation in find_struct_field's function documentation.
6936 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6937 TYPE is not a type of the right kind. */
6939 static struct type *
6940 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6944 int parent_offset = -1;
6949 if (refok && type != NULL)
6952 type = ada_check_typedef (type);
6953 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6955 type = TYPE_TARGET_TYPE (type);
6959 || (type->code () != TYPE_CODE_STRUCT
6960 && type->code () != TYPE_CODE_UNION))
6965 error (_("Type %s is not a structure or union type"),
6966 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6969 type = to_static_fixed_type (type);
6971 for (i = 0; i < type->num_fields (); i += 1)
6973 const char *t_field_name = type->field (i).name ();
6976 if (t_field_name == NULL)
6979 else if (ada_is_parent_field (type, i))
6981 /* This is a field pointing us to the parent type of a tagged
6982 type. As hinted in this function's documentation, we give
6983 preference to fields in the current record first, so what
6984 we do here is just record the index of this field before
6985 we skip it. If it turns out we couldn't find our field
6986 in the current record, then we'll get back to it and search
6987 inside it whether the field might exist in the parent. */
6993 else if (field_name_match (t_field_name, name))
6994 return type->field (i).type ();
6996 else if (ada_is_wrapper_field (type, i))
6998 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7004 else if (ada_is_variant_part (type, i))
7007 struct type *field_type = ada_check_typedef (type->field (i).type ());
7009 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7011 /* FIXME pnh 2008/01/26: We check for a field that is
7012 NOT wrapped in a struct, since the compiler sometimes
7013 generates these for unchecked variant types. Revisit
7014 if the compiler changes this practice. */
7015 const char *v_field_name = field_type->field (j).name ();
7017 if (v_field_name != NULL
7018 && field_name_match (v_field_name, name))
7019 t = field_type->field (j).type ();
7021 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7031 /* Field not found so far. If this is a tagged type which
7032 has a parent, try finding that field in the parent now. */
7034 if (parent_offset != -1)
7038 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7047 const char *name_str = name != NULL ? name : _("<null>");
7049 error (_("Type %s has no component named %s"),
7050 type_as_string (type).c_str (), name_str);
7056 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7057 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7058 represents an unchecked union (that is, the variant part of a
7059 record that is named in an Unchecked_Union pragma). */
7062 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7064 const char *discrim_name = ada_variant_discrim_name (var_type);
7066 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7070 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7071 within OUTER, determine which variant clause (field number in VAR_TYPE,
7072 numbering from 0) is applicable. Returns -1 if none are. */
7075 ada_which_variant_applies (struct type *var_type, struct value *outer)
7079 const char *discrim_name = ada_variant_discrim_name (var_type);
7080 struct value *discrim;
7081 LONGEST discrim_val;
7083 /* Using plain value_from_contents_and_address here causes problems
7084 because we will end up trying to resolve a type that is currently
7085 being constructed. */
7086 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7087 if (discrim == NULL)
7089 discrim_val = value_as_long (discrim);
7092 for (i = 0; i < var_type->num_fields (); i += 1)
7094 if (ada_is_others_clause (var_type, i))
7096 else if (ada_in_variant (discrim_val, var_type, i))
7100 return others_clause;
7105 /* Dynamic-Sized Records */
7107 /* Strategy: The type ostensibly attached to a value with dynamic size
7108 (i.e., a size that is not statically recorded in the debugging
7109 data) does not accurately reflect the size or layout of the value.
7110 Our strategy is to convert these values to values with accurate,
7111 conventional types that are constructed on the fly. */
7113 /* There is a subtle and tricky problem here. In general, we cannot
7114 determine the size of dynamic records without its data. However,
7115 the 'struct value' data structure, which GDB uses to represent
7116 quantities in the inferior process (the target), requires the size
7117 of the type at the time of its allocation in order to reserve space
7118 for GDB's internal copy of the data. That's why the
7119 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7120 rather than struct value*s.
7122 However, GDB's internal history variables ($1, $2, etc.) are
7123 struct value*s containing internal copies of the data that are not, in
7124 general, the same as the data at their corresponding addresses in
7125 the target. Fortunately, the types we give to these values are all
7126 conventional, fixed-size types (as per the strategy described
7127 above), so that we don't usually have to perform the
7128 'to_fixed_xxx_type' conversions to look at their values.
7129 Unfortunately, there is one exception: if one of the internal
7130 history variables is an array whose elements are unconstrained
7131 records, then we will need to create distinct fixed types for each
7132 element selected. */
7134 /* The upshot of all of this is that many routines take a (type, host
7135 address, target address) triple as arguments to represent a value.
7136 The host address, if non-null, is supposed to contain an internal
7137 copy of the relevant data; otherwise, the program is to consult the
7138 target at the target address. */
7140 /* Assuming that VAL0 represents a pointer value, the result of
7141 dereferencing it. Differs from value_ind in its treatment of
7142 dynamic-sized types. */
7145 ada_value_ind (struct value *val0)
7147 struct value *val = value_ind (val0);
7149 if (ada_is_tagged_type (value_type (val), 0))
7150 val = ada_tag_value_at_base_address (val);
7152 return ada_to_fixed_value (val);
7155 /* The value resulting from dereferencing any "reference to"
7156 qualifiers on VAL0. */
7158 static struct value *
7159 ada_coerce_ref (struct value *val0)
7161 if (value_type (val0)->code () == TYPE_CODE_REF)
7163 struct value *val = val0;
7165 val = coerce_ref (val);
7167 if (ada_is_tagged_type (value_type (val), 0))
7168 val = ada_tag_value_at_base_address (val);
7170 return ada_to_fixed_value (val);
7176 /* Return the bit alignment required for field #F of template type TYPE. */
7179 field_alignment (struct type *type, int f)
7181 const char *name = type->field (f).name ();
7185 /* The field name should never be null, unless the debugging information
7186 is somehow malformed. In this case, we assume the field does not
7187 require any alignment. */
7191 len = strlen (name);
7193 if (!isdigit (name[len - 1]))
7196 if (isdigit (name[len - 2]))
7197 align_offset = len - 2;
7199 align_offset = len - 1;
7201 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7202 return TARGET_CHAR_BIT;
7204 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7207 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7209 static struct symbol *
7210 ada_find_any_type_symbol (const char *name)
7214 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7215 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7218 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7222 /* Find a type named NAME. Ignores ambiguity. This routine will look
7223 solely for types defined by debug info, it will not search the GDB
7226 static struct type *
7227 ada_find_any_type (const char *name)
7229 struct symbol *sym = ada_find_any_type_symbol (name);
7232 return SYMBOL_TYPE (sym);
7237 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7238 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7239 symbol, in which case it is returned. Otherwise, this looks for
7240 symbols whose name is that of NAME_SYM suffixed with "___XR".
7241 Return symbol if found, and NULL otherwise. */
7244 ada_is_renaming_symbol (struct symbol *name_sym)
7246 const char *name = name_sym->linkage_name ();
7247 return strstr (name, "___XR") != NULL;
7250 /* Because of GNAT encoding conventions, several GDB symbols may match a
7251 given type name. If the type denoted by TYPE0 is to be preferred to
7252 that of TYPE1 for purposes of type printing, return non-zero;
7253 otherwise return 0. */
7256 ada_prefer_type (struct type *type0, struct type *type1)
7260 else if (type0 == NULL)
7262 else if (type1->code () == TYPE_CODE_VOID)
7264 else if (type0->code () == TYPE_CODE_VOID)
7266 else if (type1->name () == NULL && type0->name () != NULL)
7268 else if (ada_is_constrained_packed_array_type (type0))
7270 else if (ada_is_array_descriptor_type (type0)
7271 && !ada_is_array_descriptor_type (type1))
7275 const char *type0_name = type0->name ();
7276 const char *type1_name = type1->name ();
7278 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7279 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7285 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7289 ada_type_name (struct type *type)
7293 return type->name ();
7296 /* Search the list of "descriptive" types associated to TYPE for a type
7297 whose name is NAME. */
7299 static struct type *
7300 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7302 struct type *result, *tmp;
7304 if (ada_ignore_descriptive_types_p)
7307 /* If there no descriptive-type info, then there is no parallel type
7309 if (!HAVE_GNAT_AUX_INFO (type))
7312 result = TYPE_DESCRIPTIVE_TYPE (type);
7313 while (result != NULL)
7315 const char *result_name = ada_type_name (result);
7317 if (result_name == NULL)
7319 warning (_("unexpected null name on descriptive type"));
7323 /* If the names match, stop. */
7324 if (strcmp (result_name, name) == 0)
7327 /* Otherwise, look at the next item on the list, if any. */
7328 if (HAVE_GNAT_AUX_INFO (result))
7329 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7333 /* If not found either, try after having resolved the typedef. */
7338 result = check_typedef (result);
7339 if (HAVE_GNAT_AUX_INFO (result))
7340 result = TYPE_DESCRIPTIVE_TYPE (result);
7346 /* If we didn't find a match, see whether this is a packed array. With
7347 older compilers, the descriptive type information is either absent or
7348 irrelevant when it comes to packed arrays so the above lookup fails.
7349 Fall back to using a parallel lookup by name in this case. */
7350 if (result == NULL && ada_is_constrained_packed_array_type (type))
7351 return ada_find_any_type (name);
7356 /* Find a parallel type to TYPE with the specified NAME, using the
7357 descriptive type taken from the debugging information, if available,
7358 and otherwise using the (slower) name-based method. */
7360 static struct type *
7361 ada_find_parallel_type_with_name (struct type *type, const char *name)
7363 struct type *result = NULL;
7365 if (HAVE_GNAT_AUX_INFO (type))
7366 result = find_parallel_type_by_descriptive_type (type, name);
7368 result = ada_find_any_type (name);
7373 /* Same as above, but specify the name of the parallel type by appending
7374 SUFFIX to the name of TYPE. */
7377 ada_find_parallel_type (struct type *type, const char *suffix)
7380 const char *type_name = ada_type_name (type);
7383 if (type_name == NULL)
7386 len = strlen (type_name);
7388 name = (char *) alloca (len + strlen (suffix) + 1);
7390 strcpy (name, type_name);
7391 strcpy (name + len, suffix);
7393 return ada_find_parallel_type_with_name (type, name);
7396 /* If TYPE is a variable-size record type, return the corresponding template
7397 type describing its fields. Otherwise, return NULL. */
7399 static struct type *
7400 dynamic_template_type (struct type *type)
7402 type = ada_check_typedef (type);
7404 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7405 || ada_type_name (type) == NULL)
7409 int len = strlen (ada_type_name (type));
7411 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7414 return ada_find_parallel_type (type, "___XVE");
7418 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7419 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7422 is_dynamic_field (struct type *templ_type, int field_num)
7424 const char *name = templ_type->field (field_num).name ();
7427 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7428 && strstr (name, "___XVL") != NULL;
7431 /* The index of the variant field of TYPE, or -1 if TYPE does not
7432 represent a variant record type. */
7435 variant_field_index (struct type *type)
7439 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7442 for (f = 0; f < type->num_fields (); f += 1)
7444 if (ada_is_variant_part (type, f))
7450 /* A record type with no fields. */
7452 static struct type *
7453 empty_record (struct type *templ)
7455 struct type *type = alloc_type_copy (templ);
7457 type->set_code (TYPE_CODE_STRUCT);
7458 INIT_NONE_SPECIFIC (type);
7459 type->set_name ("<empty>");
7460 TYPE_LENGTH (type) = 0;
7464 /* An ordinary record type (with fixed-length fields) that describes
7465 the value of type TYPE at VALADDR or ADDRESS (see comments at
7466 the beginning of this section) VAL according to GNAT conventions.
7467 DVAL0 should describe the (portion of a) record that contains any
7468 necessary discriminants. It should be NULL if value_type (VAL) is
7469 an outer-level type (i.e., as opposed to a branch of a variant.) A
7470 variant field (unless unchecked) is replaced by a particular branch
7473 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7474 length are not statically known are discarded. As a consequence,
7475 VALADDR, ADDRESS and DVAL0 are ignored.
7477 NOTE: Limitations: For now, we assume that dynamic fields and
7478 variants occupy whole numbers of bytes. However, they need not be
7482 ada_template_to_fixed_record_type_1 (struct type *type,
7483 const gdb_byte *valaddr,
7484 CORE_ADDR address, struct value *dval0,
7485 int keep_dynamic_fields)
7487 struct value *mark = value_mark ();
7490 int nfields, bit_len;
7496 /* Compute the number of fields in this record type that are going
7497 to be processed: unless keep_dynamic_fields, this includes only
7498 fields whose position and length are static will be processed. */
7499 if (keep_dynamic_fields)
7500 nfields = type->num_fields ();
7504 while (nfields < type->num_fields ()
7505 && !ada_is_variant_part (type, nfields)
7506 && !is_dynamic_field (type, nfields))
7510 rtype = alloc_type_copy (type);
7511 rtype->set_code (TYPE_CODE_STRUCT);
7512 INIT_NONE_SPECIFIC (rtype);
7513 rtype->set_num_fields (nfields);
7515 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7516 rtype->set_name (ada_type_name (type));
7517 rtype->set_is_fixed_instance (true);
7523 for (f = 0; f < nfields; f += 1)
7525 off = align_up (off, field_alignment (type, f))
7526 + type->field (f).loc_bitpos ();
7527 rtype->field (f).set_loc_bitpos (off);
7528 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7530 if (ada_is_variant_part (type, f))
7535 else if (is_dynamic_field (type, f))
7537 const gdb_byte *field_valaddr = valaddr;
7538 CORE_ADDR field_address = address;
7539 struct type *field_type =
7540 TYPE_TARGET_TYPE (type->field (f).type ());
7544 /* Using plain value_from_contents_and_address here
7545 causes problems because we will end up trying to
7546 resolve a type that is currently being
7548 dval = value_from_contents_and_address_unresolved (rtype,
7551 rtype = value_type (dval);
7556 /* If the type referenced by this field is an aligner type, we need
7557 to unwrap that aligner type, because its size might not be set.
7558 Keeping the aligner type would cause us to compute the wrong
7559 size for this field, impacting the offset of the all the fields
7560 that follow this one. */
7561 if (ada_is_aligner_type (field_type))
7563 long field_offset = type->field (f).loc_bitpos ();
7565 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7566 field_address = cond_offset_target (field_address, field_offset);
7567 field_type = ada_aligned_type (field_type);
7570 field_valaddr = cond_offset_host (field_valaddr,
7571 off / TARGET_CHAR_BIT);
7572 field_address = cond_offset_target (field_address,
7573 off / TARGET_CHAR_BIT);
7575 /* Get the fixed type of the field. Note that, in this case,
7576 we do not want to get the real type out of the tag: if
7577 the current field is the parent part of a tagged record,
7578 we will get the tag of the object. Clearly wrong: the real
7579 type of the parent is not the real type of the child. We
7580 would end up in an infinite loop. */
7581 field_type = ada_get_base_type (field_type);
7582 field_type = ada_to_fixed_type (field_type, field_valaddr,
7583 field_address, dval, 0);
7585 rtype->field (f).set_type (field_type);
7586 rtype->field (f).set_name (type->field (f).name ());
7587 /* The multiplication can potentially overflow. But because
7588 the field length has been size-checked just above, and
7589 assuming that the maximum size is a reasonable value,
7590 an overflow should not happen in practice. So rather than
7591 adding overflow recovery code to this already complex code,
7592 we just assume that it's not going to happen. */
7594 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7598 /* Note: If this field's type is a typedef, it is important
7599 to preserve the typedef layer.
7601 Otherwise, we might be transforming a typedef to a fat
7602 pointer (encoding a pointer to an unconstrained array),
7603 into a basic fat pointer (encoding an unconstrained
7604 array). As both types are implemented using the same
7605 structure, the typedef is the only clue which allows us
7606 to distinguish between the two options. Stripping it
7607 would prevent us from printing this field appropriately. */
7608 rtype->field (f).set_type (type->field (f).type ());
7609 rtype->field (f).set_name (type->field (f).name ());
7610 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7612 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7615 struct type *field_type = type->field (f).type ();
7617 /* We need to be careful of typedefs when computing
7618 the length of our field. If this is a typedef,
7619 get the length of the target type, not the length
7621 if (field_type->code () == TYPE_CODE_TYPEDEF)
7622 field_type = ada_typedef_target_type (field_type);
7625 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7628 if (off + fld_bit_len > bit_len)
7629 bit_len = off + fld_bit_len;
7631 TYPE_LENGTH (rtype) =
7632 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7635 /* We handle the variant part, if any, at the end because of certain
7636 odd cases in which it is re-ordered so as NOT to be the last field of
7637 the record. This can happen in the presence of representation
7639 if (variant_field >= 0)
7641 struct type *branch_type;
7643 off = rtype->field (variant_field).loc_bitpos ();
7647 /* Using plain value_from_contents_and_address here causes
7648 problems because we will end up trying to resolve a type
7649 that is currently being constructed. */
7650 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7652 rtype = value_type (dval);
7658 to_fixed_variant_branch_type
7659 (type->field (variant_field).type (),
7660 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7661 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7662 if (branch_type == NULL)
7664 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7665 rtype->field (f - 1) = rtype->field (f);
7666 rtype->set_num_fields (rtype->num_fields () - 1);
7670 rtype->field (variant_field).set_type (branch_type);
7671 rtype->field (variant_field).set_name ("S");
7673 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7675 if (off + fld_bit_len > bit_len)
7676 bit_len = off + fld_bit_len;
7677 TYPE_LENGTH (rtype) =
7678 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7682 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7683 should contain the alignment of that record, which should be a strictly
7684 positive value. If null or negative, then something is wrong, most
7685 probably in the debug info. In that case, we don't round up the size
7686 of the resulting type. If this record is not part of another structure,
7687 the current RTYPE length might be good enough for our purposes. */
7688 if (TYPE_LENGTH (type) <= 0)
7691 warning (_("Invalid type size for `%s' detected: %s."),
7692 rtype->name (), pulongest (TYPE_LENGTH (type)));
7694 warning (_("Invalid type size for <unnamed> detected: %s."),
7695 pulongest (TYPE_LENGTH (type)));
7699 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7700 TYPE_LENGTH (type));
7703 value_free_to_mark (mark);
7707 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7710 static struct type *
7711 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7712 CORE_ADDR address, struct value *dval0)
7714 return ada_template_to_fixed_record_type_1 (type, valaddr,
7718 /* An ordinary record type in which ___XVL-convention fields and
7719 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7720 static approximations, containing all possible fields. Uses
7721 no runtime values. Useless for use in values, but that's OK,
7722 since the results are used only for type determinations. Works on both
7723 structs and unions. Representation note: to save space, we memorize
7724 the result of this function in the TYPE_TARGET_TYPE of the
7727 static struct type *
7728 template_to_static_fixed_type (struct type *type0)
7734 /* No need no do anything if the input type is already fixed. */
7735 if (type0->is_fixed_instance ())
7738 /* Likewise if we already have computed the static approximation. */
7739 if (TYPE_TARGET_TYPE (type0) != NULL)
7740 return TYPE_TARGET_TYPE (type0);
7742 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7744 nfields = type0->num_fields ();
7746 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7747 recompute all over next time. */
7748 TYPE_TARGET_TYPE (type0) = type;
7750 for (f = 0; f < nfields; f += 1)
7752 struct type *field_type = type0->field (f).type ();
7753 struct type *new_type;
7755 if (is_dynamic_field (type0, f))
7757 field_type = ada_check_typedef (field_type);
7758 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7761 new_type = static_unwrap_type (field_type);
7763 if (new_type != field_type)
7765 /* Clone TYPE0 only the first time we get a new field type. */
7768 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7769 type->set_code (type0->code ());
7770 INIT_NONE_SPECIFIC (type);
7771 type->set_num_fields (nfields);
7775 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7776 memcpy (fields, type0->fields (),
7777 sizeof (struct field) * nfields);
7778 type->set_fields (fields);
7780 type->set_name (ada_type_name (type0));
7781 type->set_is_fixed_instance (true);
7782 TYPE_LENGTH (type) = 0;
7784 type->field (f).set_type (new_type);
7785 type->field (f).set_name (type0->field (f).name ());
7792 /* Given an object of type TYPE whose contents are at VALADDR and
7793 whose address in memory is ADDRESS, returns a revision of TYPE,
7794 which should be a non-dynamic-sized record, in which the variant
7795 part, if any, is replaced with the appropriate branch. Looks
7796 for discriminant values in DVAL0, which can be NULL if the record
7797 contains the necessary discriminant values. */
7799 static struct type *
7800 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7801 CORE_ADDR address, struct value *dval0)
7803 struct value *mark = value_mark ();
7806 struct type *branch_type;
7807 int nfields = type->num_fields ();
7808 int variant_field = variant_field_index (type);
7810 if (variant_field == -1)
7815 dval = value_from_contents_and_address (type, valaddr, address);
7816 type = value_type (dval);
7821 rtype = alloc_type_copy (type);
7822 rtype->set_code (TYPE_CODE_STRUCT);
7823 INIT_NONE_SPECIFIC (rtype);
7824 rtype->set_num_fields (nfields);
7827 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7828 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7829 rtype->set_fields (fields);
7831 rtype->set_name (ada_type_name (type));
7832 rtype->set_is_fixed_instance (true);
7833 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7835 branch_type = to_fixed_variant_branch_type
7836 (type->field (variant_field).type (),
7837 cond_offset_host (valaddr,
7838 type->field (variant_field).loc_bitpos ()
7840 cond_offset_target (address,
7841 type->field (variant_field).loc_bitpos ()
7842 / TARGET_CHAR_BIT), dval);
7843 if (branch_type == NULL)
7847 for (f = variant_field + 1; f < nfields; f += 1)
7848 rtype->field (f - 1) = rtype->field (f);
7849 rtype->set_num_fields (rtype->num_fields () - 1);
7853 rtype->field (variant_field).set_type (branch_type);
7854 rtype->field (variant_field).set_name ("S");
7855 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7856 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7858 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7860 value_free_to_mark (mark);
7864 /* An ordinary record type (with fixed-length fields) that describes
7865 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7866 beginning of this section]. Any necessary discriminants' values
7867 should be in DVAL, a record value; it may be NULL if the object
7868 at ADDR itself contains any necessary discriminant values.
7869 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7870 values from the record are needed. Except in the case that DVAL,
7871 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7872 unchecked) is replaced by a particular branch of the variant.
7874 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7875 is questionable and may be removed. It can arise during the
7876 processing of an unconstrained-array-of-record type where all the
7877 variant branches have exactly the same size. This is because in
7878 such cases, the compiler does not bother to use the XVS convention
7879 when encoding the record. I am currently dubious of this
7880 shortcut and suspect the compiler should be altered. FIXME. */
7882 static struct type *
7883 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7884 CORE_ADDR address, struct value *dval)
7886 struct type *templ_type;
7888 if (type0->is_fixed_instance ())
7891 templ_type = dynamic_template_type (type0);
7893 if (templ_type != NULL)
7894 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7895 else if (variant_field_index (type0) >= 0)
7897 if (dval == NULL && valaddr == NULL && address == 0)
7899 return to_record_with_fixed_variant_part (type0, valaddr, address,
7904 type0->set_is_fixed_instance (true);
7910 /* An ordinary record type (with fixed-length fields) that describes
7911 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7912 union type. Any necessary discriminants' values should be in DVAL,
7913 a record value. That is, this routine selects the appropriate
7914 branch of the union at ADDR according to the discriminant value
7915 indicated in the union's type name. Returns VAR_TYPE0 itself if
7916 it represents a variant subject to a pragma Unchecked_Union. */
7918 static struct type *
7919 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7920 CORE_ADDR address, struct value *dval)
7923 struct type *templ_type;
7924 struct type *var_type;
7926 if (var_type0->code () == TYPE_CODE_PTR)
7927 var_type = TYPE_TARGET_TYPE (var_type0);
7929 var_type = var_type0;
7931 templ_type = ada_find_parallel_type (var_type, "___XVU");
7933 if (templ_type != NULL)
7934 var_type = templ_type;
7936 if (is_unchecked_variant (var_type, value_type (dval)))
7938 which = ada_which_variant_applies (var_type, dval);
7941 return empty_record (var_type);
7942 else if (is_dynamic_field (var_type, which))
7943 return to_fixed_record_type
7944 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7945 valaddr, address, dval);
7946 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7948 to_fixed_record_type
7949 (var_type->field (which).type (), valaddr, address, dval);
7951 return var_type->field (which).type ();
7954 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7955 ENCODING_TYPE, a type following the GNAT conventions for discrete
7956 type encodings, only carries redundant information. */
7959 ada_is_redundant_range_encoding (struct type *range_type,
7960 struct type *encoding_type)
7962 const char *bounds_str;
7966 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7968 if (get_base_type (range_type)->code ()
7969 != get_base_type (encoding_type)->code ())
7971 /* The compiler probably used a simple base type to describe
7972 the range type instead of the range's actual base type,
7973 expecting us to get the real base type from the encoding
7974 anyway. In this situation, the encoding cannot be ignored
7979 if (is_dynamic_type (range_type))
7982 if (encoding_type->name () == NULL)
7985 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7986 if (bounds_str == NULL)
7989 n = 8; /* Skip "___XDLU_". */
7990 if (!ada_scan_number (bounds_str, n, &lo, &n))
7992 if (range_type->bounds ()->low.const_val () != lo)
7995 n += 2; /* Skip the "__" separator between the two bounds. */
7996 if (!ada_scan_number (bounds_str, n, &hi, &n))
7998 if (range_type->bounds ()->high.const_val () != hi)
8004 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8005 a type following the GNAT encoding for describing array type
8006 indices, only carries redundant information. */
8009 ada_is_redundant_index_type_desc (struct type *array_type,
8010 struct type *desc_type)
8012 struct type *this_layer = check_typedef (array_type);
8015 for (i = 0; i < desc_type->num_fields (); i++)
8017 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8018 desc_type->field (i).type ()))
8020 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8026 /* Assuming that TYPE0 is an array type describing the type of a value
8027 at ADDR, and that DVAL describes a record containing any
8028 discriminants used in TYPE0, returns a type for the value that
8029 contains no dynamic components (that is, no components whose sizes
8030 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8031 true, gives an error message if the resulting type's size is over
8034 static struct type *
8035 to_fixed_array_type (struct type *type0, struct value *dval,
8038 struct type *index_type_desc;
8039 struct type *result;
8040 int constrained_packed_array_p;
8041 static const char *xa_suffix = "___XA";
8043 type0 = ada_check_typedef (type0);
8044 if (type0->is_fixed_instance ())
8047 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8048 if (constrained_packed_array_p)
8050 type0 = decode_constrained_packed_array_type (type0);
8051 if (type0 == nullptr)
8052 error (_("could not decode constrained packed array type"));
8055 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8057 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8058 encoding suffixed with 'P' may still be generated. If so,
8059 it should be used to find the XA type. */
8061 if (index_type_desc == NULL)
8063 const char *type_name = ada_type_name (type0);
8065 if (type_name != NULL)
8067 const int len = strlen (type_name);
8068 char *name = (char *) alloca (len + strlen (xa_suffix));
8070 if (type_name[len - 1] == 'P')
8072 strcpy (name, type_name);
8073 strcpy (name + len - 1, xa_suffix);
8074 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8079 ada_fixup_array_indexes_type (index_type_desc);
8080 if (index_type_desc != NULL
8081 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8083 /* Ignore this ___XA parallel type, as it does not bring any
8084 useful information. This allows us to avoid creating fixed
8085 versions of the array's index types, which would be identical
8086 to the original ones. This, in turn, can also help avoid
8087 the creation of fixed versions of the array itself. */
8088 index_type_desc = NULL;
8091 if (index_type_desc == NULL)
8093 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8095 /* NOTE: elt_type---the fixed version of elt_type0---should never
8096 depend on the contents of the array in properly constructed
8098 /* Create a fixed version of the array element type.
8099 We're not providing the address of an element here,
8100 and thus the actual object value cannot be inspected to do
8101 the conversion. This should not be a problem, since arrays of
8102 unconstrained objects are not allowed. In particular, all
8103 the elements of an array of a tagged type should all be of
8104 the same type specified in the debugging info. No need to
8105 consult the object tag. */
8106 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8108 /* Make sure we always create a new array type when dealing with
8109 packed array types, since we're going to fix-up the array
8110 type length and element bitsize a little further down. */
8111 if (elt_type0 == elt_type && !constrained_packed_array_p)
8114 result = create_array_type (alloc_type_copy (type0),
8115 elt_type, type0->index_type ());
8120 struct type *elt_type0;
8123 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8124 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8126 /* NOTE: result---the fixed version of elt_type0---should never
8127 depend on the contents of the array in properly constructed
8129 /* Create a fixed version of the array element type.
8130 We're not providing the address of an element here,
8131 and thus the actual object value cannot be inspected to do
8132 the conversion. This should not be a problem, since arrays of
8133 unconstrained objects are not allowed. In particular, all
8134 the elements of an array of a tagged type should all be of
8135 the same type specified in the debugging info. No need to
8136 consult the object tag. */
8138 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8141 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8143 struct type *range_type =
8144 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8146 result = create_array_type (alloc_type_copy (elt_type0),
8147 result, range_type);
8148 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8152 /* We want to preserve the type name. This can be useful when
8153 trying to get the type name of a value that has already been
8154 printed (for instance, if the user did "print VAR; whatis $". */
8155 result->set_name (type0->name ());
8157 if (constrained_packed_array_p)
8159 /* So far, the resulting type has been created as if the original
8160 type was a regular (non-packed) array type. As a result, the
8161 bitsize of the array elements needs to be set again, and the array
8162 length needs to be recomputed based on that bitsize. */
8163 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8164 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8166 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8167 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8168 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8169 TYPE_LENGTH (result)++;
8172 result->set_is_fixed_instance (true);
8177 /* A standard type (containing no dynamically sized components)
8178 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8179 DVAL describes a record containing any discriminants used in TYPE0,
8180 and may be NULL if there are none, or if the object of type TYPE at
8181 ADDRESS or in VALADDR contains these discriminants.
8183 If CHECK_TAG is not null, in the case of tagged types, this function
8184 attempts to locate the object's tag and use it to compute the actual
8185 type. However, when ADDRESS is null, we cannot use it to determine the
8186 location of the tag, and therefore compute the tagged type's actual type.
8187 So we return the tagged type without consulting the tag. */
8189 static struct type *
8190 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8191 CORE_ADDR address, struct value *dval, int check_tag)
8193 type = ada_check_typedef (type);
8195 /* Only un-fixed types need to be handled here. */
8196 if (!HAVE_GNAT_AUX_INFO (type))
8199 switch (type->code ())
8203 case TYPE_CODE_STRUCT:
8205 struct type *static_type = to_static_fixed_type (type);
8206 struct type *fixed_record_type =
8207 to_fixed_record_type (type, valaddr, address, NULL);
8209 /* If STATIC_TYPE is a tagged type and we know the object's address,
8210 then we can determine its tag, and compute the object's actual
8211 type from there. Note that we have to use the fixed record
8212 type (the parent part of the record may have dynamic fields
8213 and the way the location of _tag is expressed may depend on
8216 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8219 value_tag_from_contents_and_address
8223 struct type *real_type = type_from_tag (tag);
8225 value_from_contents_and_address (fixed_record_type,
8228 fixed_record_type = value_type (obj);
8229 if (real_type != NULL)
8230 return to_fixed_record_type
8232 value_address (ada_tag_value_at_base_address (obj)), NULL);
8235 /* Check to see if there is a parallel ___XVZ variable.
8236 If there is, then it provides the actual size of our type. */
8237 else if (ada_type_name (fixed_record_type) != NULL)
8239 const char *name = ada_type_name (fixed_record_type);
8241 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8242 bool xvz_found = false;
8245 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8248 xvz_found = get_int_var_value (xvz_name, size);
8250 catch (const gdb_exception_error &except)
8252 /* We found the variable, but somehow failed to read
8253 its value. Rethrow the same error, but with a little
8254 bit more information, to help the user understand
8255 what went wrong (Eg: the variable might have been
8257 throw_error (except.error,
8258 _("unable to read value of %s (%s)"),
8259 xvz_name, except.what ());
8262 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8264 fixed_record_type = copy_type (fixed_record_type);
8265 TYPE_LENGTH (fixed_record_type) = size;
8267 /* The FIXED_RECORD_TYPE may have be a stub. We have
8268 observed this when the debugging info is STABS, and
8269 apparently it is something that is hard to fix.
8271 In practice, we don't need the actual type definition
8272 at all, because the presence of the XVZ variable allows us
8273 to assume that there must be a XVS type as well, which we
8274 should be able to use later, when we need the actual type
8277 In the meantime, pretend that the "fixed" type we are
8278 returning is NOT a stub, because this can cause trouble
8279 when using this type to create new types targeting it.
8280 Indeed, the associated creation routines often check
8281 whether the target type is a stub and will try to replace
8282 it, thus using a type with the wrong size. This, in turn,
8283 might cause the new type to have the wrong size too.
8284 Consider the case of an array, for instance, where the size
8285 of the array is computed from the number of elements in
8286 our array multiplied by the size of its element. */
8287 fixed_record_type->set_is_stub (false);
8290 return fixed_record_type;
8292 case TYPE_CODE_ARRAY:
8293 return to_fixed_array_type (type, dval, 1);
8294 case TYPE_CODE_UNION:
8298 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8302 /* The same as ada_to_fixed_type_1, except that it preserves the type
8303 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8305 The typedef layer needs be preserved in order to differentiate between
8306 arrays and array pointers when both types are implemented using the same
8307 fat pointer. In the array pointer case, the pointer is encoded as
8308 a typedef of the pointer type. For instance, considering:
8310 type String_Access is access String;
8311 S1 : String_Access := null;
8313 To the debugger, S1 is defined as a typedef of type String. But
8314 to the user, it is a pointer. So if the user tries to print S1,
8315 we should not dereference the array, but print the array address
8318 If we didn't preserve the typedef layer, we would lose the fact that
8319 the type is to be presented as a pointer (needs de-reference before
8320 being printed). And we would also use the source-level type name. */
8323 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8324 CORE_ADDR address, struct value *dval, int check_tag)
8327 struct type *fixed_type =
8328 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8330 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8331 then preserve the typedef layer.
8333 Implementation note: We can only check the main-type portion of
8334 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8335 from TYPE now returns a type that has the same instance flags
8336 as TYPE. For instance, if TYPE is a "typedef const", and its
8337 target type is a "struct", then the typedef elimination will return
8338 a "const" version of the target type. See check_typedef for more
8339 details about how the typedef layer elimination is done.
8341 brobecker/2010-11-19: It seems to me that the only case where it is
8342 useful to preserve the typedef layer is when dealing with fat pointers.
8343 Perhaps, we could add a check for that and preserve the typedef layer
8344 only in that situation. But this seems unnecessary so far, probably
8345 because we call check_typedef/ada_check_typedef pretty much everywhere.
8347 if (type->code () == TYPE_CODE_TYPEDEF
8348 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8349 == TYPE_MAIN_TYPE (fixed_type)))
8355 /* A standard (static-sized) type corresponding as well as possible to
8356 TYPE0, but based on no runtime data. */
8358 static struct type *
8359 to_static_fixed_type (struct type *type0)
8366 if (type0->is_fixed_instance ())
8369 type0 = ada_check_typedef (type0);
8371 switch (type0->code ())
8375 case TYPE_CODE_STRUCT:
8376 type = dynamic_template_type (type0);
8378 return template_to_static_fixed_type (type);
8380 return template_to_static_fixed_type (type0);
8381 case TYPE_CODE_UNION:
8382 type = ada_find_parallel_type (type0, "___XVU");
8384 return template_to_static_fixed_type (type);
8386 return template_to_static_fixed_type (type0);
8390 /* A static approximation of TYPE with all type wrappers removed. */
8392 static struct type *
8393 static_unwrap_type (struct type *type)
8395 if (ada_is_aligner_type (type))
8397 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8398 if (ada_type_name (type1) == NULL)
8399 type1->set_name (ada_type_name (type));
8401 return static_unwrap_type (type1);
8405 struct type *raw_real_type = ada_get_base_type (type);
8407 if (raw_real_type == type)
8410 return to_static_fixed_type (raw_real_type);
8414 /* In some cases, incomplete and private types require
8415 cross-references that are not resolved as records (for example,
8417 type FooP is access Foo;
8419 type Foo is array ...;
8420 ). In these cases, since there is no mechanism for producing
8421 cross-references to such types, we instead substitute for FooP a
8422 stub enumeration type that is nowhere resolved, and whose tag is
8423 the name of the actual type. Call these types "non-record stubs". */
8425 /* A type equivalent to TYPE that is not a non-record stub, if one
8426 exists, otherwise TYPE. */
8429 ada_check_typedef (struct type *type)
8434 /* If our type is an access to an unconstrained array, which is encoded
8435 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8436 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8437 what allows us to distinguish between fat pointers that represent
8438 array types, and fat pointers that represent array access types
8439 (in both cases, the compiler implements them as fat pointers). */
8440 if (ada_is_access_to_unconstrained_array (type))
8443 type = check_typedef (type);
8444 if (type == NULL || type->code () != TYPE_CODE_ENUM
8445 || !type->is_stub ()
8446 || type->name () == NULL)
8450 const char *name = type->name ();
8451 struct type *type1 = ada_find_any_type (name);
8456 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8457 stubs pointing to arrays, as we don't create symbols for array
8458 types, only for the typedef-to-array types). If that's the case,
8459 strip the typedef layer. */
8460 if (type1->code () == TYPE_CODE_TYPEDEF)
8461 type1 = ada_check_typedef (type1);
8467 /* A value representing the data at VALADDR/ADDRESS as described by
8468 type TYPE0, but with a standard (static-sized) type that correctly
8469 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8470 type, then return VAL0 [this feature is simply to avoid redundant
8471 creation of struct values]. */
8473 static struct value *
8474 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8477 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8479 if (type == type0 && val0 != NULL)
8482 if (VALUE_LVAL (val0) != lval_memory)
8484 /* Our value does not live in memory; it could be a convenience
8485 variable, for instance. Create a not_lval value using val0's
8487 return value_from_contents (type, value_contents (val0).data ());
8490 return value_from_contents_and_address (type, 0, address);
8493 /* A value representing VAL, but with a standard (static-sized) type
8494 that correctly describes it. Does not necessarily create a new
8498 ada_to_fixed_value (struct value *val)
8500 val = unwrap_value (val);
8501 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8508 /* Table mapping attribute numbers to names.
8509 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8511 static const char * const attribute_names[] = {
8529 ada_attribute_name (enum exp_opcode n)
8531 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8532 return attribute_names[n - OP_ATR_FIRST + 1];
8534 return attribute_names[0];
8537 /* Evaluate the 'POS attribute applied to ARG. */
8540 pos_atr (struct value *arg)
8542 struct value *val = coerce_ref (arg);
8543 struct type *type = value_type (val);
8545 if (!discrete_type_p (type))
8546 error (_("'POS only defined on discrete types"));
8548 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8549 if (!result.has_value ())
8550 error (_("enumeration value is invalid: can't find 'POS"));
8556 ada_pos_atr (struct type *expect_type,
8557 struct expression *exp,
8558 enum noside noside, enum exp_opcode op,
8561 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8562 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8563 return value_zero (type, not_lval);
8564 return value_from_longest (type, pos_atr (arg));
8567 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8569 static struct value *
8570 val_atr (struct type *type, LONGEST val)
8572 gdb_assert (discrete_type_p (type));
8573 if (type->code () == TYPE_CODE_RANGE)
8574 type = TYPE_TARGET_TYPE (type);
8575 if (type->code () == TYPE_CODE_ENUM)
8577 if (val < 0 || val >= type->num_fields ())
8578 error (_("argument to 'VAL out of range"));
8579 val = type->field (val).loc_enumval ();
8581 return value_from_longest (type, val);
8585 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8588 return value_zero (type, not_lval);
8590 if (!discrete_type_p (type))
8591 error (_("'VAL only defined on discrete types"));
8592 if (!integer_type_p (value_type (arg)))
8593 error (_("'VAL requires integral argument"));
8595 return val_atr (type, value_as_long (arg));
8601 /* True if TYPE appears to be an Ada character type.
8602 [At the moment, this is true only for Character and Wide_Character;
8603 It is a heuristic test that could stand improvement]. */
8606 ada_is_character_type (struct type *type)
8610 /* If the type code says it's a character, then assume it really is,
8611 and don't check any further. */
8612 if (type->code () == TYPE_CODE_CHAR)
8615 /* Otherwise, assume it's a character type iff it is a discrete type
8616 with a known character type name. */
8617 name = ada_type_name (type);
8618 return (name != NULL
8619 && (type->code () == TYPE_CODE_INT
8620 || type->code () == TYPE_CODE_RANGE)
8621 && (strcmp (name, "character") == 0
8622 || strcmp (name, "wide_character") == 0
8623 || strcmp (name, "wide_wide_character") == 0
8624 || strcmp (name, "unsigned char") == 0));
8627 /* True if TYPE appears to be an Ada string type. */
8630 ada_is_string_type (struct type *type)
8632 type = ada_check_typedef (type);
8634 && type->code () != TYPE_CODE_PTR
8635 && (ada_is_simple_array_type (type)
8636 || ada_is_array_descriptor_type (type))
8637 && ada_array_arity (type) == 1)
8639 struct type *elttype = ada_array_element_type (type, 1);
8641 return ada_is_character_type (elttype);
8647 /* The compiler sometimes provides a parallel XVS type for a given
8648 PAD type. Normally, it is safe to follow the PAD type directly,
8649 but older versions of the compiler have a bug that causes the offset
8650 of its "F" field to be wrong. Following that field in that case
8651 would lead to incorrect results, but this can be worked around
8652 by ignoring the PAD type and using the associated XVS type instead.
8654 Set to True if the debugger should trust the contents of PAD types.
8655 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8656 static bool trust_pad_over_xvs = true;
8658 /* True if TYPE is a struct type introduced by the compiler to force the
8659 alignment of a value. Such types have a single field with a
8660 distinctive name. */
8663 ada_is_aligner_type (struct type *type)
8665 type = ada_check_typedef (type);
8667 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8670 return (type->code () == TYPE_CODE_STRUCT
8671 && type->num_fields () == 1
8672 && strcmp (type->field (0).name (), "F") == 0);
8675 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8676 the parallel type. */
8679 ada_get_base_type (struct type *raw_type)
8681 struct type *real_type_namer;
8682 struct type *raw_real_type;
8684 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8687 if (ada_is_aligner_type (raw_type))
8688 /* The encoding specifies that we should always use the aligner type.
8689 So, even if this aligner type has an associated XVS type, we should
8692 According to the compiler gurus, an XVS type parallel to an aligner
8693 type may exist because of a stabs limitation. In stabs, aligner
8694 types are empty because the field has a variable-sized type, and
8695 thus cannot actually be used as an aligner type. As a result,
8696 we need the associated parallel XVS type to decode the type.
8697 Since the policy in the compiler is to not change the internal
8698 representation based on the debugging info format, we sometimes
8699 end up having a redundant XVS type parallel to the aligner type. */
8702 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8703 if (real_type_namer == NULL
8704 || real_type_namer->code () != TYPE_CODE_STRUCT
8705 || real_type_namer->num_fields () != 1)
8708 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8710 /* This is an older encoding form where the base type needs to be
8711 looked up by name. We prefer the newer encoding because it is
8713 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
8714 if (raw_real_type == NULL)
8717 return raw_real_type;
8720 /* The field in our XVS type is a reference to the base type. */
8721 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8724 /* The type of value designated by TYPE, with all aligners removed. */
8727 ada_aligned_type (struct type *type)
8729 if (ada_is_aligner_type (type))
8730 return ada_aligned_type (type->field (0).type ());
8732 return ada_get_base_type (type);
8736 /* The address of the aligned value in an object at address VALADDR
8737 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8740 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8742 if (ada_is_aligner_type (type))
8743 return ada_aligned_value_addr
8744 (type->field (0).type (),
8745 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
8752 /* The printed representation of an enumeration literal with encoded
8753 name NAME. The value is good to the next call of ada_enum_name. */
8755 ada_enum_name (const char *name)
8757 static std::string storage;
8760 /* First, unqualify the enumeration name:
8761 1. Search for the last '.' character. If we find one, then skip
8762 all the preceding characters, the unqualified name starts
8763 right after that dot.
8764 2. Otherwise, we may be debugging on a target where the compiler
8765 translates dots into "__". Search forward for double underscores,
8766 but stop searching when we hit an overloading suffix, which is
8767 of the form "__" followed by digits. */
8769 tmp = strrchr (name, '.');
8774 while ((tmp = strstr (name, "__")) != NULL)
8776 if (isdigit (tmp[2]))
8787 if (name[1] == 'U' || name[1] == 'W')
8789 if (sscanf (name + 2, "%x", &v) != 1)
8792 else if (((name[1] >= '0' && name[1] <= '9')
8793 || (name[1] >= 'a' && name[1] <= 'z'))
8796 storage = string_printf ("'%c'", name[1]);
8797 return storage.c_str ();
8802 if (isascii (v) && isprint (v))
8803 storage = string_printf ("'%c'", v);
8804 else if (name[1] == 'U')
8805 storage = string_printf ("[\"%02x\"]", v);
8807 storage = string_printf ("[\"%04x\"]", v);
8809 return storage.c_str ();
8813 tmp = strstr (name, "__");
8815 tmp = strstr (name, "$");
8818 storage = std::string (name, tmp - name);
8819 return storage.c_str ();
8826 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8829 static struct value *
8830 unwrap_value (struct value *val)
8832 struct type *type = ada_check_typedef (value_type (val));
8834 if (ada_is_aligner_type (type))
8836 struct value *v = ada_value_struct_elt (val, "F", 0);
8837 struct type *val_type = ada_check_typedef (value_type (v));
8839 if (ada_type_name (val_type) == NULL)
8840 val_type->set_name (ada_type_name (type));
8842 return unwrap_value (v);
8846 struct type *raw_real_type =
8847 ada_check_typedef (ada_get_base_type (type));
8849 /* If there is no parallel XVS or XVE type, then the value is
8850 already unwrapped. Return it without further modification. */
8851 if ((type == raw_real_type)
8852 && ada_find_parallel_type (type, "___XVE") == NULL)
8856 coerce_unspec_val_to_type
8857 (val, ada_to_fixed_type (raw_real_type, 0,
8858 value_address (val),
8863 /* Given two array types T1 and T2, return nonzero iff both arrays
8864 contain the same number of elements. */
8867 ada_same_array_size_p (struct type *t1, struct type *t2)
8869 LONGEST lo1, hi1, lo2, hi2;
8871 /* Get the array bounds in order to verify that the size of
8872 the two arrays match. */
8873 if (!get_array_bounds (t1, &lo1, &hi1)
8874 || !get_array_bounds (t2, &lo2, &hi2))
8875 error (_("unable to determine array bounds"));
8877 /* To make things easier for size comparison, normalize a bit
8878 the case of empty arrays by making sure that the difference
8879 between upper bound and lower bound is always -1. */
8885 return (hi1 - lo1 == hi2 - lo2);
8888 /* Assuming that VAL is an array of integrals, and TYPE represents
8889 an array with the same number of elements, but with wider integral
8890 elements, return an array "casted" to TYPE. In practice, this
8891 means that the returned array is built by casting each element
8892 of the original array into TYPE's (wider) element type. */
8894 static struct value *
8895 ada_promote_array_of_integrals (struct type *type, struct value *val)
8897 struct type *elt_type = TYPE_TARGET_TYPE (type);
8901 /* Verify that both val and type are arrays of scalars, and
8902 that the size of val's elements is smaller than the size
8903 of type's element. */
8904 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8905 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8906 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8907 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8908 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8909 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8911 if (!get_array_bounds (type, &lo, &hi))
8912 error (_("unable to determine array bounds"));
8914 value *res = allocate_value (type);
8915 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
8917 /* Promote each array element. */
8918 for (i = 0; i < hi - lo + 1; i++)
8920 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8921 int elt_len = TYPE_LENGTH (elt_type);
8923 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
8929 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8930 return the converted value. */
8932 static struct value *
8933 coerce_for_assign (struct type *type, struct value *val)
8935 struct type *type2 = value_type (val);
8940 type2 = ada_check_typedef (type2);
8941 type = ada_check_typedef (type);
8943 if (type2->code () == TYPE_CODE_PTR
8944 && type->code () == TYPE_CODE_ARRAY)
8946 val = ada_value_ind (val);
8947 type2 = value_type (val);
8950 if (type2->code () == TYPE_CODE_ARRAY
8951 && type->code () == TYPE_CODE_ARRAY)
8953 if (!ada_same_array_size_p (type, type2))
8954 error (_("cannot assign arrays of different length"));
8956 if (is_integral_type (TYPE_TARGET_TYPE (type))
8957 && is_integral_type (TYPE_TARGET_TYPE (type2))
8958 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8959 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8961 /* Allow implicit promotion of the array elements to
8963 return ada_promote_array_of_integrals (type, val);
8966 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8967 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8968 error (_("Incompatible types in assignment"));
8969 deprecated_set_value_type (val, type);
8974 static struct value *
8975 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8978 struct type *type1, *type2;
8981 arg1 = coerce_ref (arg1);
8982 arg2 = coerce_ref (arg2);
8983 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8984 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8986 if (type1->code () != TYPE_CODE_INT
8987 || type2->code () != TYPE_CODE_INT)
8988 return value_binop (arg1, arg2, op);
8997 return value_binop (arg1, arg2, op);
9000 v2 = value_as_long (arg2);
9004 if (op == BINOP_MOD)
9006 else if (op == BINOP_DIV)
9010 gdb_assert (op == BINOP_REM);
9014 error (_("second operand of %s must not be zero."), name);
9017 if (type1->is_unsigned () || op == BINOP_MOD)
9018 return value_binop (arg1, arg2, op);
9020 v1 = value_as_long (arg1);
9025 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9026 v += v > 0 ? -1 : 1;
9034 /* Should not reach this point. */
9038 val = allocate_value (type1);
9039 store_unsigned_integer (value_contents_raw (val).data (),
9040 TYPE_LENGTH (value_type (val)),
9041 type_byte_order (type1), v);
9046 ada_value_equal (struct value *arg1, struct value *arg2)
9048 if (ada_is_direct_array_type (value_type (arg1))
9049 || ada_is_direct_array_type (value_type (arg2)))
9051 struct type *arg1_type, *arg2_type;
9053 /* Automatically dereference any array reference before
9054 we attempt to perform the comparison. */
9055 arg1 = ada_coerce_ref (arg1);
9056 arg2 = ada_coerce_ref (arg2);
9058 arg1 = ada_coerce_to_simple_array (arg1);
9059 arg2 = ada_coerce_to_simple_array (arg2);
9061 arg1_type = ada_check_typedef (value_type (arg1));
9062 arg2_type = ada_check_typedef (value_type (arg2));
9064 if (arg1_type->code () != TYPE_CODE_ARRAY
9065 || arg2_type->code () != TYPE_CODE_ARRAY)
9066 error (_("Attempt to compare array with non-array"));
9067 /* FIXME: The following works only for types whose
9068 representations use all bits (no padding or undefined bits)
9069 and do not have user-defined equality. */
9070 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9071 && memcmp (value_contents (arg1).data (),
9072 value_contents (arg2).data (),
9073 TYPE_LENGTH (arg1_type)) == 0);
9075 return value_equal (arg1, arg2);
9082 check_objfile (const std::unique_ptr<ada_component> &comp,
9083 struct objfile *objfile)
9085 return comp->uses_objfile (objfile);
9088 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9089 component of LHS (a simple array or a record). Does not modify the
9090 inferior's memory, nor does it modify LHS (unless LHS ==
9094 assign_component (struct value *container, struct value *lhs, LONGEST index,
9095 struct expression *exp, operation_up &arg)
9097 scoped_value_mark mark;
9100 struct type *lhs_type = check_typedef (value_type (lhs));
9102 if (lhs_type->code () == TYPE_CODE_ARRAY)
9104 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9105 struct value *index_val = value_from_longest (index_type, index);
9107 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9111 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9112 elt = ada_to_fixed_value (elt);
9115 ada_aggregate_operation *ag_op
9116 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9117 if (ag_op != nullptr)
9118 ag_op->assign_aggregate (container, elt, exp);
9120 value_assign_to_component (container, elt,
9121 arg->evaluate (nullptr, exp,
9126 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9128 for (const auto &item : m_components)
9129 if (item->uses_objfile (objfile))
9135 ada_aggregate_component::dump (ui_file *stream, int depth)
9137 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9138 for (const auto &item : m_components)
9139 item->dump (stream, depth + 1);
9143 ada_aggregate_component::assign (struct value *container,
9144 struct value *lhs, struct expression *exp,
9145 std::vector<LONGEST> &indices,
9146 LONGEST low, LONGEST high)
9148 for (auto &item : m_components)
9149 item->assign (container, lhs, exp, indices, low, high);
9152 /* See ada-exp.h. */
9155 ada_aggregate_operation::assign_aggregate (struct value *container,
9157 struct expression *exp)
9159 struct type *lhs_type;
9160 LONGEST low_index, high_index;
9162 container = ada_coerce_ref (container);
9163 if (ada_is_direct_array_type (value_type (container)))
9164 container = ada_coerce_to_simple_array (container);
9165 lhs = ada_coerce_ref (lhs);
9166 if (!deprecated_value_modifiable (lhs))
9167 error (_("Left operand of assignment is not a modifiable lvalue."));
9169 lhs_type = check_typedef (value_type (lhs));
9170 if (ada_is_direct_array_type (lhs_type))
9172 lhs = ada_coerce_to_simple_array (lhs);
9173 lhs_type = check_typedef (value_type (lhs));
9174 low_index = lhs_type->bounds ()->low.const_val ();
9175 high_index = lhs_type->bounds ()->high.const_val ();
9177 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9180 high_index = num_visible_fields (lhs_type) - 1;
9183 error (_("Left-hand side must be array or record."));
9185 std::vector<LONGEST> indices (4);
9186 indices[0] = indices[1] = low_index - 1;
9187 indices[2] = indices[3] = high_index + 1;
9189 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9190 low_index, high_index);
9196 ada_positional_component::uses_objfile (struct objfile *objfile)
9198 return m_op->uses_objfile (objfile);
9202 ada_positional_component::dump (ui_file *stream, int depth)
9204 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9205 depth, "", m_index);
9206 m_op->dump (stream, depth + 1);
9209 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9210 construct, given that the positions are relative to lower bound
9211 LOW, where HIGH is the upper bound. Record the position in
9212 INDICES. CONTAINER is as for assign_aggregate. */
9214 ada_positional_component::assign (struct value *container,
9215 struct value *lhs, struct expression *exp,
9216 std::vector<LONGEST> &indices,
9217 LONGEST low, LONGEST high)
9219 LONGEST ind = m_index + low;
9221 if (ind - 1 == high)
9222 warning (_("Extra components in aggregate ignored."));
9225 add_component_interval (ind, ind, indices);
9226 assign_component (container, lhs, ind, exp, m_op);
9231 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9233 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9237 ada_discrete_range_association::dump (ui_file *stream, int depth)
9239 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9240 m_low->dump (stream, depth + 1);
9241 m_high->dump (stream, depth + 1);
9245 ada_discrete_range_association::assign (struct value *container,
9247 struct expression *exp,
9248 std::vector<LONGEST> &indices,
9249 LONGEST low, LONGEST high,
9252 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9253 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9255 if (lower <= upper && (lower < low || upper > high))
9256 error (_("Index in component association out of bounds."));
9258 add_component_interval (lower, upper, indices);
9259 while (lower <= upper)
9261 assign_component (container, lhs, lower, exp, op);
9267 ada_name_association::uses_objfile (struct objfile *objfile)
9269 return m_val->uses_objfile (objfile);
9273 ada_name_association::dump (ui_file *stream, int depth)
9275 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9276 m_val->dump (stream, depth + 1);
9280 ada_name_association::assign (struct value *container,
9282 struct expression *exp,
9283 std::vector<LONGEST> &indices,
9284 LONGEST low, LONGEST high,
9289 if (ada_is_direct_array_type (value_type (lhs)))
9290 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9294 ada_string_operation *strop
9295 = dynamic_cast<ada_string_operation *> (m_val.get ());
9298 if (strop != nullptr)
9299 name = strop->get_name ();
9302 ada_var_value_operation *vvo
9303 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9305 error (_("Invalid record component association."));
9306 name = vvo->get_symbol ()->natural_name ();
9310 if (! find_struct_field (name, value_type (lhs), 0,
9311 NULL, NULL, NULL, NULL, &index))
9312 error (_("Unknown component name: %s."), name);
9315 add_component_interval (index, index, indices);
9316 assign_component (container, lhs, index, exp, op);
9320 ada_choices_component::uses_objfile (struct objfile *objfile)
9322 if (m_op->uses_objfile (objfile))
9324 for (const auto &item : m_assocs)
9325 if (item->uses_objfile (objfile))
9331 ada_choices_component::dump (ui_file *stream, int depth)
9333 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9334 m_op->dump (stream, depth + 1);
9335 for (const auto &item : m_assocs)
9336 item->dump (stream, depth + 1);
9339 /* Assign into the components of LHS indexed by the OP_CHOICES
9340 construct at *POS, updating *POS past the construct, given that
9341 the allowable indices are LOW..HIGH. Record the indices assigned
9342 to in INDICES. CONTAINER is as for assign_aggregate. */
9344 ada_choices_component::assign (struct value *container,
9345 struct value *lhs, struct expression *exp,
9346 std::vector<LONGEST> &indices,
9347 LONGEST low, LONGEST high)
9349 for (auto &item : m_assocs)
9350 item->assign (container, lhs, exp, indices, low, high, m_op);
9354 ada_others_component::uses_objfile (struct objfile *objfile)
9356 return m_op->uses_objfile (objfile);
9360 ada_others_component::dump (ui_file *stream, int depth)
9362 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9363 m_op->dump (stream, depth + 1);
9366 /* Assign the value of the expression in the OP_OTHERS construct in
9367 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9368 have not been previously assigned. The index intervals already assigned
9369 are in INDICES. CONTAINER is as for assign_aggregate. */
9371 ada_others_component::assign (struct value *container,
9372 struct value *lhs, struct expression *exp,
9373 std::vector<LONGEST> &indices,
9374 LONGEST low, LONGEST high)
9376 int num_indices = indices.size ();
9377 for (int i = 0; i < num_indices - 2; i += 2)
9379 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9380 assign_component (container, lhs, ind, exp, m_op);
9385 ada_assign_operation::evaluate (struct type *expect_type,
9386 struct expression *exp,
9389 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9391 ada_aggregate_operation *ag_op
9392 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9393 if (ag_op != nullptr)
9395 if (noside != EVAL_NORMAL)
9398 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9399 return ada_value_assign (arg1, arg1);
9401 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9402 except if the lhs of our assignment is a convenience variable.
9403 In the case of assigning to a convenience variable, the lhs
9404 should be exactly the result of the evaluation of the rhs. */
9405 struct type *type = value_type (arg1);
9406 if (VALUE_LVAL (arg1) == lval_internalvar)
9408 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9409 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9411 if (VALUE_LVAL (arg1) == lval_internalvar)
9416 arg2 = coerce_for_assign (value_type (arg1), arg2);
9417 return ada_value_assign (arg1, arg2);
9420 } /* namespace expr */
9422 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9423 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9426 add_component_interval (LONGEST low, LONGEST high,
9427 std::vector<LONGEST> &indices)
9431 int size = indices.size ();
9432 for (i = 0; i < size; i += 2) {
9433 if (high >= indices[i] && low <= indices[i + 1])
9437 for (kh = i + 2; kh < size; kh += 2)
9438 if (high < indices[kh])
9440 if (low < indices[i])
9442 indices[i + 1] = indices[kh - 1];
9443 if (high > indices[i + 1])
9444 indices[i + 1] = high;
9445 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9446 indices.resize (kh - i - 2);
9449 else if (high < indices[i])
9453 indices.resize (indices.size () + 2);
9454 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9455 indices[j] = indices[j - 2];
9457 indices[i + 1] = high;
9460 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9463 static struct value *
9464 ada_value_cast (struct type *type, struct value *arg2)
9466 if (type == ada_check_typedef (value_type (arg2)))
9469 return value_cast (type, arg2);
9472 /* Evaluating Ada expressions, and printing their result.
9473 ------------------------------------------------------
9478 We usually evaluate an Ada expression in order to print its value.
9479 We also evaluate an expression in order to print its type, which
9480 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9481 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9482 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9483 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9486 Evaluating expressions is a little more complicated for Ada entities
9487 than it is for entities in languages such as C. The main reason for
9488 this is that Ada provides types whose definition might be dynamic.
9489 One example of such types is variant records. Or another example
9490 would be an array whose bounds can only be known at run time.
9492 The following description is a general guide as to what should be
9493 done (and what should NOT be done) in order to evaluate an expression
9494 involving such types, and when. This does not cover how the semantic
9495 information is encoded by GNAT as this is covered separatly. For the
9496 document used as the reference for the GNAT encoding, see exp_dbug.ads
9497 in the GNAT sources.
9499 Ideally, we should embed each part of this description next to its
9500 associated code. Unfortunately, the amount of code is so vast right
9501 now that it's hard to see whether the code handling a particular
9502 situation might be duplicated or not. One day, when the code is
9503 cleaned up, this guide might become redundant with the comments
9504 inserted in the code, and we might want to remove it.
9506 2. ``Fixing'' an Entity, the Simple Case:
9507 -----------------------------------------
9509 When evaluating Ada expressions, the tricky issue is that they may
9510 reference entities whose type contents and size are not statically
9511 known. Consider for instance a variant record:
9513 type Rec (Empty : Boolean := True) is record
9516 when False => Value : Integer;
9519 Yes : Rec := (Empty => False, Value => 1);
9520 No : Rec := (empty => True);
9522 The size and contents of that record depends on the value of the
9523 descriminant (Rec.Empty). At this point, neither the debugging
9524 information nor the associated type structure in GDB are able to
9525 express such dynamic types. So what the debugger does is to create
9526 "fixed" versions of the type that applies to the specific object.
9527 We also informally refer to this operation as "fixing" an object,
9528 which means creating its associated fixed type.
9530 Example: when printing the value of variable "Yes" above, its fixed
9531 type would look like this:
9538 On the other hand, if we printed the value of "No", its fixed type
9545 Things become a little more complicated when trying to fix an entity
9546 with a dynamic type that directly contains another dynamic type,
9547 such as an array of variant records, for instance. There are
9548 two possible cases: Arrays, and records.
9550 3. ``Fixing'' Arrays:
9551 ---------------------
9553 The type structure in GDB describes an array in terms of its bounds,
9554 and the type of its elements. By design, all elements in the array
9555 have the same type and we cannot represent an array of variant elements
9556 using the current type structure in GDB. When fixing an array,
9557 we cannot fix the array element, as we would potentially need one
9558 fixed type per element of the array. As a result, the best we can do
9559 when fixing an array is to produce an array whose bounds and size
9560 are correct (allowing us to read it from memory), but without having
9561 touched its element type. Fixing each element will be done later,
9562 when (if) necessary.
9564 Arrays are a little simpler to handle than records, because the same
9565 amount of memory is allocated for each element of the array, even if
9566 the amount of space actually used by each element differs from element
9567 to element. Consider for instance the following array of type Rec:
9569 type Rec_Array is array (1 .. 2) of Rec;
9571 The actual amount of memory occupied by each element might be different
9572 from element to element, depending on the value of their discriminant.
9573 But the amount of space reserved for each element in the array remains
9574 fixed regardless. So we simply need to compute that size using
9575 the debugging information available, from which we can then determine
9576 the array size (we multiply the number of elements of the array by
9577 the size of each element).
9579 The simplest case is when we have an array of a constrained element
9580 type. For instance, consider the following type declarations:
9582 type Bounded_String (Max_Size : Integer) is
9584 Buffer : String (1 .. Max_Size);
9586 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9588 In this case, the compiler describes the array as an array of
9589 variable-size elements (identified by its XVS suffix) for which
9590 the size can be read in the parallel XVZ variable.
9592 In the case of an array of an unconstrained element type, the compiler
9593 wraps the array element inside a private PAD type. This type should not
9594 be shown to the user, and must be "unwrap"'ed before printing. Note
9595 that we also use the adjective "aligner" in our code to designate
9596 these wrapper types.
9598 In some cases, the size allocated for each element is statically
9599 known. In that case, the PAD type already has the correct size,
9600 and the array element should remain unfixed.
9602 But there are cases when this size is not statically known.
9603 For instance, assuming that "Five" is an integer variable:
9605 type Dynamic is array (1 .. Five) of Integer;
9606 type Wrapper (Has_Length : Boolean := False) is record
9609 when True => Length : Integer;
9613 type Wrapper_Array is array (1 .. 2) of Wrapper;
9615 Hello : Wrapper_Array := (others => (Has_Length => True,
9616 Data => (others => 17),
9620 The debugging info would describe variable Hello as being an
9621 array of a PAD type. The size of that PAD type is not statically
9622 known, but can be determined using a parallel XVZ variable.
9623 In that case, a copy of the PAD type with the correct size should
9624 be used for the fixed array.
9626 3. ``Fixing'' record type objects:
9627 ----------------------------------
9629 Things are slightly different from arrays in the case of dynamic
9630 record types. In this case, in order to compute the associated
9631 fixed type, we need to determine the size and offset of each of
9632 its components. This, in turn, requires us to compute the fixed
9633 type of each of these components.
9635 Consider for instance the example:
9637 type Bounded_String (Max_Size : Natural) is record
9638 Str : String (1 .. Max_Size);
9641 My_String : Bounded_String (Max_Size => 10);
9643 In that case, the position of field "Length" depends on the size
9644 of field Str, which itself depends on the value of the Max_Size
9645 discriminant. In order to fix the type of variable My_String,
9646 we need to fix the type of field Str. Therefore, fixing a variant
9647 record requires us to fix each of its components.
9649 However, if a component does not have a dynamic size, the component
9650 should not be fixed. In particular, fields that use a PAD type
9651 should not fixed. Here is an example where this might happen
9652 (assuming type Rec above):
9654 type Container (Big : Boolean) is record
9658 when True => Another : Integer;
9662 My_Container : Container := (Big => False,
9663 First => (Empty => True),
9666 In that example, the compiler creates a PAD type for component First,
9667 whose size is constant, and then positions the component After just
9668 right after it. The offset of component After is therefore constant
9671 The debugger computes the position of each field based on an algorithm
9672 that uses, among other things, the actual position and size of the field
9673 preceding it. Let's now imagine that the user is trying to print
9674 the value of My_Container. If the type fixing was recursive, we would
9675 end up computing the offset of field After based on the size of the
9676 fixed version of field First. And since in our example First has
9677 only one actual field, the size of the fixed type is actually smaller
9678 than the amount of space allocated to that field, and thus we would
9679 compute the wrong offset of field After.
9681 To make things more complicated, we need to watch out for dynamic
9682 components of variant records (identified by the ___XVL suffix in
9683 the component name). Even if the target type is a PAD type, the size
9684 of that type might not be statically known. So the PAD type needs
9685 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9686 we might end up with the wrong size for our component. This can be
9687 observed with the following type declarations:
9689 type Octal is new Integer range 0 .. 7;
9690 type Octal_Array is array (Positive range <>) of Octal;
9691 pragma Pack (Octal_Array);
9693 type Octal_Buffer (Size : Positive) is record
9694 Buffer : Octal_Array (1 .. Size);
9698 In that case, Buffer is a PAD type whose size is unset and needs
9699 to be computed by fixing the unwrapped type.
9701 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9702 ----------------------------------------------------------
9704 Lastly, when should the sub-elements of an entity that remained unfixed
9705 thus far, be actually fixed?
9707 The answer is: Only when referencing that element. For instance
9708 when selecting one component of a record, this specific component
9709 should be fixed at that point in time. Or when printing the value
9710 of a record, each component should be fixed before its value gets
9711 printed. Similarly for arrays, the element of the array should be
9712 fixed when printing each element of the array, or when extracting
9713 one element out of that array. On the other hand, fixing should
9714 not be performed on the elements when taking a slice of an array!
9716 Note that one of the side effects of miscomputing the offset and
9717 size of each field is that we end up also miscomputing the size
9718 of the containing type. This can have adverse results when computing
9719 the value of an entity. GDB fetches the value of an entity based
9720 on the size of its type, and thus a wrong size causes GDB to fetch
9721 the wrong amount of memory. In the case where the computed size is
9722 too small, GDB fetches too little data to print the value of our
9723 entity. Results in this case are unpredictable, as we usually read
9724 past the buffer containing the data =:-o. */
9726 /* A helper function for TERNOP_IN_RANGE. */
9729 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9731 value *arg1, value *arg2, value *arg3)
9733 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9734 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9735 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9737 value_from_longest (type,
9738 (value_less (arg1, arg3)
9739 || value_equal (arg1, arg3))
9740 && (value_less (arg2, arg1)
9741 || value_equal (arg2, arg1)));
9744 /* A helper function for UNOP_NEG. */
9747 ada_unop_neg (struct type *expect_type,
9748 struct expression *exp,
9749 enum noside noside, enum exp_opcode op,
9752 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9753 return value_neg (arg1);
9756 /* A helper function for UNOP_IN_RANGE. */
9759 ada_unop_in_range (struct type *expect_type,
9760 struct expression *exp,
9761 enum noside noside, enum exp_opcode op,
9762 struct value *arg1, struct type *type)
9764 struct value *arg2, *arg3;
9765 switch (type->code ())
9768 lim_warning (_("Membership test incompletely implemented; "
9769 "always returns true"));
9770 type = language_bool_type (exp->language_defn, exp->gdbarch);
9771 return value_from_longest (type, (LONGEST) 1);
9773 case TYPE_CODE_RANGE:
9774 arg2 = value_from_longest (type,
9775 type->bounds ()->low.const_val ());
9776 arg3 = value_from_longest (type,
9777 type->bounds ()->high.const_val ());
9778 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9779 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9780 type = language_bool_type (exp->language_defn, exp->gdbarch);
9782 value_from_longest (type,
9783 (value_less (arg1, arg3)
9784 || value_equal (arg1, arg3))
9785 && (value_less (arg2, arg1)
9786 || value_equal (arg2, arg1)));
9790 /* A helper function for OP_ATR_TAG. */
9793 ada_atr_tag (struct type *expect_type,
9794 struct expression *exp,
9795 enum noside noside, enum exp_opcode op,
9798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9799 return value_zero (ada_tag_type (arg1), not_lval);
9801 return ada_value_tag (arg1);
9804 /* A helper function for OP_ATR_SIZE. */
9807 ada_atr_size (struct type *expect_type,
9808 struct expression *exp,
9809 enum noside noside, enum exp_opcode op,
9812 struct type *type = value_type (arg1);
9814 /* If the argument is a reference, then dereference its type, since
9815 the user is really asking for the size of the actual object,
9816 not the size of the pointer. */
9817 if (type->code () == TYPE_CODE_REF)
9818 type = TYPE_TARGET_TYPE (type);
9820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9821 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9823 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9824 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9827 /* A helper function for UNOP_ABS. */
9830 ada_abs (struct type *expect_type,
9831 struct expression *exp,
9832 enum noside noside, enum exp_opcode op,
9835 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9836 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9837 return value_neg (arg1);
9842 /* A helper function for BINOP_MUL. */
9845 ada_mult_binop (struct type *expect_type,
9846 struct expression *exp,
9847 enum noside noside, enum exp_opcode op,
9848 struct value *arg1, struct value *arg2)
9850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9852 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9853 return value_zero (value_type (arg1), not_lval);
9857 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9858 return ada_value_binop (arg1, arg2, op);
9862 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9865 ada_equal_binop (struct type *expect_type,
9866 struct expression *exp,
9867 enum noside noside, enum exp_opcode op,
9868 struct value *arg1, struct value *arg2)
9871 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9875 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9876 tem = ada_value_equal (arg1, arg2);
9878 if (op == BINOP_NOTEQUAL)
9880 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9881 return value_from_longest (type, (LONGEST) tem);
9884 /* A helper function for TERNOP_SLICE. */
9887 ada_ternop_slice (struct expression *exp,
9889 struct value *array, struct value *low_bound_val,
9890 struct value *high_bound_val)
9895 low_bound_val = coerce_ref (low_bound_val);
9896 high_bound_val = coerce_ref (high_bound_val);
9897 low_bound = value_as_long (low_bound_val);
9898 high_bound = value_as_long (high_bound_val);
9900 /* If this is a reference to an aligner type, then remove all
9902 if (value_type (array)->code () == TYPE_CODE_REF
9903 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9904 TYPE_TARGET_TYPE (value_type (array)) =
9905 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9907 if (ada_is_any_packed_array_type (value_type (array)))
9908 error (_("cannot slice a packed array"));
9910 /* If this is a reference to an array or an array lvalue,
9911 convert to a pointer. */
9912 if (value_type (array)->code () == TYPE_CODE_REF
9913 || (value_type (array)->code () == TYPE_CODE_ARRAY
9914 && VALUE_LVAL (array) == lval_memory))
9915 array = value_addr (array);
9917 if (noside == EVAL_AVOID_SIDE_EFFECTS
9918 && ada_is_array_descriptor_type (ada_check_typedef
9919 (value_type (array))))
9920 return empty_array (ada_type_of_array (array, 0), low_bound,
9923 array = ada_coerce_to_simple_array_ptr (array);
9925 /* If we have more than one level of pointer indirection,
9926 dereference the value until we get only one level. */
9927 while (value_type (array)->code () == TYPE_CODE_PTR
9928 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9930 array = value_ind (array);
9932 /* Make sure we really do have an array type before going further,
9933 to avoid a SEGV when trying to get the index type or the target
9934 type later down the road if the debug info generated by
9935 the compiler is incorrect or incomplete. */
9936 if (!ada_is_simple_array_type (value_type (array)))
9937 error (_("cannot take slice of non-array"));
9939 if (ada_check_typedef (value_type (array))->code ()
9942 struct type *type0 = ada_check_typedef (value_type (array));
9944 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9945 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9948 struct type *arr_type0 =
9949 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9951 return ada_value_slice_from_ptr (array, arr_type0,
9952 longest_to_int (low_bound),
9953 longest_to_int (high_bound));
9956 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9958 else if (high_bound < low_bound)
9959 return empty_array (value_type (array), low_bound, high_bound);
9961 return ada_value_slice (array, longest_to_int (low_bound),
9962 longest_to_int (high_bound));
9965 /* A helper function for BINOP_IN_BOUNDS. */
9968 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9969 struct value *arg1, struct value *arg2, int n)
9971 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9973 struct type *type = language_bool_type (exp->language_defn,
9975 return value_zero (type, not_lval);
9978 struct type *type = ada_index_type (value_type (arg2), n, "range");
9980 type = value_type (arg1);
9982 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9983 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9985 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9986 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9987 type = language_bool_type (exp->language_defn, exp->gdbarch);
9988 return value_from_longest (type,
9989 (value_less (arg1, arg3)
9990 || value_equal (arg1, arg3))
9991 && (value_less (arg2, arg1)
9992 || value_equal (arg2, arg1)));
9995 /* A helper function for some attribute operations. */
9998 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9999 struct value *arg1, struct type *type_arg, int tem)
10001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10003 if (type_arg == NULL)
10004 type_arg = value_type (arg1);
10006 if (ada_is_constrained_packed_array_type (type_arg))
10007 type_arg = decode_constrained_packed_array_type (type_arg);
10009 if (!discrete_type_p (type_arg))
10013 default: /* Should never happen. */
10014 error (_("unexpected attribute encountered"));
10017 type_arg = ada_index_type (type_arg, tem,
10018 ada_attribute_name (op));
10020 case OP_ATR_LENGTH:
10021 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10026 return value_zero (type_arg, not_lval);
10028 else if (type_arg == NULL)
10030 arg1 = ada_coerce_ref (arg1);
10032 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10033 arg1 = ada_coerce_to_simple_array (arg1);
10036 if (op == OP_ATR_LENGTH)
10037 type = builtin_type (exp->gdbarch)->builtin_int;
10040 type = ada_index_type (value_type (arg1), tem,
10041 ada_attribute_name (op));
10043 type = builtin_type (exp->gdbarch)->builtin_int;
10048 default: /* Should never happen. */
10049 error (_("unexpected attribute encountered"));
10051 return value_from_longest
10052 (type, ada_array_bound (arg1, tem, 0));
10054 return value_from_longest
10055 (type, ada_array_bound (arg1, tem, 1));
10056 case OP_ATR_LENGTH:
10057 return value_from_longest
10058 (type, ada_array_length (arg1, tem));
10061 else if (discrete_type_p (type_arg))
10063 struct type *range_type;
10064 const char *name = ada_type_name (type_arg);
10067 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10068 range_type = to_fixed_range_type (type_arg, NULL);
10069 if (range_type == NULL)
10070 range_type = type_arg;
10074 error (_("unexpected attribute encountered"));
10076 return value_from_longest
10077 (range_type, ada_discrete_type_low_bound (range_type));
10079 return value_from_longest
10080 (range_type, ada_discrete_type_high_bound (range_type));
10081 case OP_ATR_LENGTH:
10082 error (_("the 'length attribute applies only to array types"));
10085 else if (type_arg->code () == TYPE_CODE_FLT)
10086 error (_("unimplemented type attribute"));
10091 if (ada_is_constrained_packed_array_type (type_arg))
10092 type_arg = decode_constrained_packed_array_type (type_arg);
10095 if (op == OP_ATR_LENGTH)
10096 type = builtin_type (exp->gdbarch)->builtin_int;
10099 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10101 type = builtin_type (exp->gdbarch)->builtin_int;
10107 error (_("unexpected attribute encountered"));
10109 low = ada_array_bound_from_type (type_arg, tem, 0);
10110 return value_from_longest (type, low);
10112 high = ada_array_bound_from_type (type_arg, tem, 1);
10113 return value_from_longest (type, high);
10114 case OP_ATR_LENGTH:
10115 low = ada_array_bound_from_type (type_arg, tem, 0);
10116 high = ada_array_bound_from_type (type_arg, tem, 1);
10117 return value_from_longest (type, high - low + 1);
10122 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10125 ada_binop_minmax (struct type *expect_type,
10126 struct expression *exp,
10127 enum noside noside, enum exp_opcode op,
10128 struct value *arg1, struct value *arg2)
10130 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10131 return value_zero (value_type (arg1), not_lval);
10134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10135 return value_binop (arg1, arg2, op);
10139 /* A helper function for BINOP_EXP. */
10142 ada_binop_exp (struct type *expect_type,
10143 struct expression *exp,
10144 enum noside noside, enum exp_opcode op,
10145 struct value *arg1, struct value *arg2)
10147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10148 return value_zero (value_type (arg1), not_lval);
10151 /* For integer exponentiation operations,
10152 only promote the first argument. */
10153 if (is_integral_type (value_type (arg2)))
10154 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10158 return value_binop (arg1, arg2, op);
10165 /* See ada-exp.h. */
10168 ada_resolvable::replace (operation_up &&owner,
10169 struct expression *exp,
10170 bool deprocedure_p,
10171 bool parse_completion,
10172 innermost_block_tracker *tracker,
10173 struct type *context_type)
10175 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10176 return (make_operation<ada_funcall_operation>
10177 (std::move (owner),
10178 std::vector<operation_up> ()));
10179 return std::move (owner);
10182 /* Convert the character literal whose ASCII value would be VAL to the
10183 appropriate value of type TYPE, if there is a translation.
10184 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10185 the literal 'A' (VAL == 65), returns 0. */
10188 convert_char_literal (struct type *type, LONGEST val)
10195 type = check_typedef (type);
10196 if (type->code () != TYPE_CODE_ENUM)
10199 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10200 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10202 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10203 size_t len = strlen (name);
10204 for (f = 0; f < type->num_fields (); f += 1)
10206 /* Check the suffix because an enum constant in a package will
10207 have a name like "pkg__QUxx". This is safe enough because we
10208 already have the correct type, and because mangling means
10209 there can't be clashes. */
10210 const char *ename = type->field (f).name ();
10211 size_t elen = strlen (ename);
10213 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10214 return type->field (f).loc_enumval ();
10219 /* See ada-exp.h. */
10222 ada_char_operation::replace (operation_up &&owner,
10223 struct expression *exp,
10224 bool deprocedure_p,
10225 bool parse_completion,
10226 innermost_block_tracker *tracker,
10227 struct type *context_type)
10229 operation_up result = std::move (owner);
10231 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10233 gdb_assert (result.get () == this);
10234 std::get<0> (m_storage) = context_type;
10235 std::get<1> (m_storage)
10236 = convert_char_literal (context_type, std::get<1> (m_storage));
10239 return make_operation<ada_wrapped_operation> (std::move (result));
10243 ada_wrapped_operation::evaluate (struct type *expect_type,
10244 struct expression *exp,
10245 enum noside noside)
10247 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10248 if (noside == EVAL_NORMAL)
10249 result = unwrap_value (result);
10251 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10252 then we need to perform the conversion manually, because
10253 evaluate_subexp_standard doesn't do it. This conversion is
10254 necessary in Ada because the different kinds of float/fixed
10255 types in Ada have different representations.
10257 Similarly, we need to perform the conversion from OP_LONG
10259 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10260 result = ada_value_cast (expect_type, result);
10266 ada_string_operation::evaluate (struct type *expect_type,
10267 struct expression *exp,
10268 enum noside noside)
10270 value *result = string_operation::evaluate (expect_type, exp, noside);
10271 /* The result type will have code OP_STRING, bashed there from
10272 OP_ARRAY. Bash it back. */
10273 if (value_type (result)->code () == TYPE_CODE_STRING)
10274 value_type (result)->set_code (TYPE_CODE_ARRAY);
10279 ada_qual_operation::evaluate (struct type *expect_type,
10280 struct expression *exp,
10281 enum noside noside)
10283 struct type *type = std::get<1> (m_storage);
10284 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10288 ada_ternop_range_operation::evaluate (struct type *expect_type,
10289 struct expression *exp,
10290 enum noside noside)
10292 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10293 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10294 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10295 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10299 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10300 struct expression *exp,
10301 enum noside noside)
10303 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10304 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10306 auto do_op = [=] (LONGEST x, LONGEST y)
10308 if (std::get<0> (m_storage) == BINOP_ADD)
10313 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10314 return (value_from_longest
10315 (value_type (arg1),
10316 do_op (value_as_long (arg1), value_as_long (arg2))));
10317 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10318 return (value_from_longest
10319 (value_type (arg2),
10320 do_op (value_as_long (arg1), value_as_long (arg2))));
10321 /* Preserve the original type for use by the range case below.
10322 We cannot cast the result to a reference type, so if ARG1 is
10323 a reference type, find its underlying type. */
10324 struct type *type = value_type (arg1);
10325 while (type->code () == TYPE_CODE_REF)
10326 type = TYPE_TARGET_TYPE (type);
10327 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10328 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10329 /* We need to special-case the result with a range.
10330 This is done for the benefit of "ptype". gdb's Ada support
10331 historically used the LHS to set the result type here, so
10332 preserve this behavior. */
10333 if (type->code () == TYPE_CODE_RANGE)
10334 arg1 = value_cast (type, arg1);
10339 ada_unop_atr_operation::evaluate (struct type *expect_type,
10340 struct expression *exp,
10341 enum noside noside)
10343 struct type *type_arg = nullptr;
10344 value *val = nullptr;
10346 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10348 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10349 EVAL_AVOID_SIDE_EFFECTS);
10350 type_arg = value_type (tem);
10353 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10355 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10356 val, type_arg, std::get<2> (m_storage));
10360 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10361 struct expression *exp,
10362 enum noside noside)
10364 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10365 return value_zero (expect_type, not_lval);
10367 const bound_minimal_symbol &b = std::get<0> (m_storage);
10368 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10370 val = ada_value_cast (expect_type, val);
10372 /* Follow the Ada language semantics that do not allow taking
10373 an address of the result of a cast (view conversion in Ada). */
10374 if (VALUE_LVAL (val) == lval_memory)
10376 if (value_lazy (val))
10377 value_fetch_lazy (val);
10378 VALUE_LVAL (val) = not_lval;
10384 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10385 struct expression *exp,
10386 enum noside noside)
10388 value *val = evaluate_var_value (noside,
10389 std::get<0> (m_storage).block,
10390 std::get<0> (m_storage).symbol);
10392 val = ada_value_cast (expect_type, val);
10394 /* Follow the Ada language semantics that do not allow taking
10395 an address of the result of a cast (view conversion in Ada). */
10396 if (VALUE_LVAL (val) == lval_memory)
10398 if (value_lazy (val))
10399 value_fetch_lazy (val);
10400 VALUE_LVAL (val) = not_lval;
10406 ada_var_value_operation::evaluate (struct type *expect_type,
10407 struct expression *exp,
10408 enum noside noside)
10410 symbol *sym = std::get<0> (m_storage).symbol;
10412 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10413 /* Only encountered when an unresolved symbol occurs in a
10414 context other than a function call, in which case, it is
10416 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10417 sym->print_name ());
10419 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10421 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10422 /* Check to see if this is a tagged type. We also need to handle
10423 the case where the type is a reference to a tagged type, but
10424 we have to be careful to exclude pointers to tagged types.
10425 The latter should be shown as usual (as a pointer), whereas
10426 a reference should mostly be transparent to the user. */
10427 if (ada_is_tagged_type (type, 0)
10428 || (type->code () == TYPE_CODE_REF
10429 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10431 /* Tagged types are a little special in the fact that the real
10432 type is dynamic and can only be determined by inspecting the
10433 object's tag. This means that we need to get the object's
10434 value first (EVAL_NORMAL) and then extract the actual object
10437 Note that we cannot skip the final step where we extract
10438 the object type from its tag, because the EVAL_NORMAL phase
10439 results in dynamic components being resolved into fixed ones.
10440 This can cause problems when trying to print the type
10441 description of tagged types whose parent has a dynamic size:
10442 We use the type name of the "_parent" component in order
10443 to print the name of the ancestor type in the type description.
10444 If that component had a dynamic size, the resolution into
10445 a fixed type would result in the loss of that type name,
10446 thus preventing us from printing the name of the ancestor
10447 type in the type description. */
10448 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10450 if (type->code () != TYPE_CODE_REF)
10452 struct type *actual_type;
10454 actual_type = type_from_tag (ada_value_tag (arg1));
10455 if (actual_type == NULL)
10456 /* If, for some reason, we were unable to determine
10457 the actual type from the tag, then use the static
10458 approximation that we just computed as a fallback.
10459 This can happen if the debugging information is
10460 incomplete, for instance. */
10461 actual_type = type;
10462 return value_zero (actual_type, not_lval);
10466 /* In the case of a ref, ada_coerce_ref takes care
10467 of determining the actual type. But the evaluation
10468 should return a ref as it should be valid to ask
10469 for its address; so rebuild a ref after coerce. */
10470 arg1 = ada_coerce_ref (arg1);
10471 return value_ref (arg1, TYPE_CODE_REF);
10475 /* Records and unions for which GNAT encodings have been
10476 generated need to be statically fixed as well.
10477 Otherwise, non-static fixing produces a type where
10478 all dynamic properties are removed, which prevents "ptype"
10479 from being able to completely describe the type.
10480 For instance, a case statement in a variant record would be
10481 replaced by the relevant components based on the actual
10482 value of the discriminants. */
10483 if ((type->code () == TYPE_CODE_STRUCT
10484 && dynamic_template_type (type) != NULL)
10485 || (type->code () == TYPE_CODE_UNION
10486 && ada_find_parallel_type (type, "___XVU") != NULL))
10487 return value_zero (to_static_fixed_type (type), not_lval);
10490 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10491 return ada_to_fixed_value (arg1);
10495 ada_var_value_operation::resolve (struct expression *exp,
10496 bool deprocedure_p,
10497 bool parse_completion,
10498 innermost_block_tracker *tracker,
10499 struct type *context_type)
10501 symbol *sym = std::get<0> (m_storage).symbol;
10502 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10504 block_symbol resolved
10505 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10506 context_type, parse_completion,
10507 deprocedure_p, tracker);
10508 std::get<0> (m_storage) = resolved;
10512 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10513 == TYPE_CODE_FUNC))
10520 ada_atr_val_operation::evaluate (struct type *expect_type,
10521 struct expression *exp,
10522 enum noside noside)
10524 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10525 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10529 ada_unop_ind_operation::evaluate (struct type *expect_type,
10530 struct expression *exp,
10531 enum noside noside)
10533 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10535 struct type *type = ada_check_typedef (value_type (arg1));
10536 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10538 if (ada_is_array_descriptor_type (type))
10539 /* GDB allows dereferencing GNAT array descriptors. */
10541 struct type *arrType = ada_type_of_array (arg1, 0);
10543 if (arrType == NULL)
10544 error (_("Attempt to dereference null array pointer."));
10545 return value_at_lazy (arrType, 0);
10547 else if (type->code () == TYPE_CODE_PTR
10548 || type->code () == TYPE_CODE_REF
10549 /* In C you can dereference an array to get the 1st elt. */
10550 || type->code () == TYPE_CODE_ARRAY)
10552 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10553 only be determined by inspecting the object's tag.
10554 This means that we need to evaluate completely the
10555 expression in order to get its type. */
10557 if ((type->code () == TYPE_CODE_REF
10558 || type->code () == TYPE_CODE_PTR)
10559 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10561 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10563 type = value_type (ada_value_ind (arg1));
10567 type = to_static_fixed_type
10569 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10571 return value_zero (type, lval_memory);
10573 else if (type->code () == TYPE_CODE_INT)
10575 /* GDB allows dereferencing an int. */
10576 if (expect_type == NULL)
10577 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10582 to_static_fixed_type (ada_aligned_type (expect_type));
10583 return value_zero (expect_type, lval_memory);
10587 error (_("Attempt to take contents of a non-pointer value."));
10589 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10590 type = ada_check_typedef (value_type (arg1));
10592 if (type->code () == TYPE_CODE_INT)
10593 /* GDB allows dereferencing an int. If we were given
10594 the expect_type, then use that as the target type.
10595 Otherwise, assume that the target type is an int. */
10597 if (expect_type != NULL)
10598 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10601 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10602 (CORE_ADDR) value_as_address (arg1));
10605 if (ada_is_array_descriptor_type (type))
10606 /* GDB allows dereferencing GNAT array descriptors. */
10607 return ada_coerce_to_simple_array (arg1);
10609 return ada_value_ind (arg1);
10613 ada_structop_operation::evaluate (struct type *expect_type,
10614 struct expression *exp,
10615 enum noside noside)
10617 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10618 const char *str = std::get<1> (m_storage).c_str ();
10619 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10622 struct type *type1 = value_type (arg1);
10624 if (ada_is_tagged_type (type1, 1))
10626 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10628 /* If the field is not found, check if it exists in the
10629 extension of this object's type. This means that we
10630 need to evaluate completely the expression. */
10634 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10636 arg1 = ada_value_struct_elt (arg1, str, 0);
10637 arg1 = unwrap_value (arg1);
10638 type = value_type (ada_to_fixed_value (arg1));
10642 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10644 return value_zero (ada_aligned_type (type), lval_memory);
10648 arg1 = ada_value_struct_elt (arg1, str, 0);
10649 arg1 = unwrap_value (arg1);
10650 return ada_to_fixed_value (arg1);
10655 ada_funcall_operation::evaluate (struct type *expect_type,
10656 struct expression *exp,
10657 enum noside noside)
10659 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10660 int nargs = args_up.size ();
10661 std::vector<value *> argvec (nargs);
10662 operation_up &callee_op = std::get<0> (m_storage);
10664 ada_var_value_operation *avv
10665 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10667 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10668 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10669 avv->get_symbol ()->print_name ());
10671 value *callee = callee_op->evaluate (nullptr, exp, noside);
10672 for (int i = 0; i < args_up.size (); ++i)
10673 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10675 if (ada_is_constrained_packed_array_type
10676 (desc_base_type (value_type (callee))))
10677 callee = ada_coerce_to_simple_array (callee);
10678 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10679 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10680 /* This is a packed array that has already been fixed, and
10681 therefore already coerced to a simple array. Nothing further
10684 else if (value_type (callee)->code () == TYPE_CODE_REF)
10686 /* Make sure we dereference references so that all the code below
10687 feels like it's really handling the referenced value. Wrapping
10688 types (for alignment) may be there, so make sure we strip them as
10690 callee = ada_to_fixed_value (coerce_ref (callee));
10692 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10693 && VALUE_LVAL (callee) == lval_memory)
10694 callee = value_addr (callee);
10696 struct type *type = ada_check_typedef (value_type (callee));
10698 /* Ada allows us to implicitly dereference arrays when subscripting
10699 them. So, if this is an array typedef (encoding use for array
10700 access types encoded as fat pointers), strip it now. */
10701 if (type->code () == TYPE_CODE_TYPEDEF)
10702 type = ada_typedef_target_type (type);
10704 if (type->code () == TYPE_CODE_PTR)
10706 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10708 case TYPE_CODE_FUNC:
10709 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10711 case TYPE_CODE_ARRAY:
10713 case TYPE_CODE_STRUCT:
10714 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10715 callee = ada_value_ind (callee);
10716 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10719 error (_("cannot subscript or call something of type `%s'"),
10720 ada_type_name (value_type (callee)));
10725 switch (type->code ())
10727 case TYPE_CODE_FUNC:
10728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10730 if (TYPE_TARGET_TYPE (type) == NULL)
10731 error_call_unknown_return_type (NULL);
10732 return allocate_value (TYPE_TARGET_TYPE (type));
10734 return call_function_by_hand (callee, NULL, argvec);
10735 case TYPE_CODE_INTERNAL_FUNCTION:
10736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10737 /* We don't know anything about what the internal
10738 function might return, but we have to return
10740 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10743 return call_internal_function (exp->gdbarch, exp->language_defn,
10747 case TYPE_CODE_STRUCT:
10751 arity = ada_array_arity (type);
10752 type = ada_array_element_type (type, nargs);
10754 error (_("cannot subscript or call a record"));
10755 if (arity != nargs)
10756 error (_("wrong number of subscripts; expecting %d"), arity);
10757 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10758 return value_zero (ada_aligned_type (type), lval_memory);
10760 unwrap_value (ada_value_subscript
10761 (callee, nargs, argvec.data ()));
10763 case TYPE_CODE_ARRAY:
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10766 type = ada_array_element_type (type, nargs);
10768 error (_("element type of array unknown"));
10770 return value_zero (ada_aligned_type (type), lval_memory);
10773 unwrap_value (ada_value_subscript
10774 (ada_coerce_to_simple_array (callee),
10775 nargs, argvec.data ()));
10776 case TYPE_CODE_PTR: /* Pointer to array */
10777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10779 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10780 type = ada_array_element_type (type, nargs);
10782 error (_("element type of array unknown"));
10784 return value_zero (ada_aligned_type (type), lval_memory);
10787 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10791 error (_("Attempt to index or call something other than an "
10792 "array or function"));
10797 ada_funcall_operation::resolve (struct expression *exp,
10798 bool deprocedure_p,
10799 bool parse_completion,
10800 innermost_block_tracker *tracker,
10801 struct type *context_type)
10803 operation_up &callee_op = std::get<0> (m_storage);
10805 ada_var_value_operation *avv
10806 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10807 if (avv == nullptr)
10810 symbol *sym = avv->get_symbol ();
10811 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10814 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10815 int nargs = args_up.size ();
10816 std::vector<value *> argvec (nargs);
10818 for (int i = 0; i < args_up.size (); ++i)
10819 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10821 const block *block = avv->get_block ();
10822 block_symbol resolved
10823 = ada_resolve_funcall (sym, block,
10824 context_type, parse_completion,
10825 nargs, argvec.data (),
10828 std::get<0> (m_storage)
10829 = make_operation<ada_var_value_operation> (resolved);
10834 ada_ternop_slice_operation::resolve (struct expression *exp,
10835 bool deprocedure_p,
10836 bool parse_completion,
10837 innermost_block_tracker *tracker,
10838 struct type *context_type)
10840 /* Historically this check was done during resolution, so we
10841 continue that here. */
10842 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10843 EVAL_AVOID_SIDE_EFFECTS);
10844 if (ada_is_any_packed_array_type (value_type (v)))
10845 error (_("cannot slice a packed array"));
10853 /* Return non-zero iff TYPE represents a System.Address type. */
10856 ada_is_system_address_type (struct type *type)
10858 return (type->name () && strcmp (type->name (), "system__address") == 0);
10865 /* Scan STR beginning at position K for a discriminant name, and
10866 return the value of that discriminant field of DVAL in *PX. If
10867 PNEW_K is not null, put the position of the character beyond the
10868 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10869 not alter *PX and *PNEW_K if unsuccessful. */
10872 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10875 static std::string storage;
10876 const char *pstart, *pend, *bound;
10877 struct value *bound_val;
10879 if (dval == NULL || str == NULL || str[k] == '\0')
10883 pend = strstr (pstart, "__");
10887 k += strlen (bound);
10891 int len = pend - pstart;
10893 /* Strip __ and beyond. */
10894 storage = std::string (pstart, len);
10895 bound = storage.c_str ();
10899 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10900 if (bound_val == NULL)
10903 *px = value_as_long (bound_val);
10904 if (pnew_k != NULL)
10909 /* Value of variable named NAME. Only exact matches are considered.
10910 If no such variable found, then if ERR_MSG is null, returns 0, and
10911 otherwise causes an error with message ERR_MSG. */
10913 static struct value *
10914 get_var_value (const char *name, const char *err_msg)
10916 std::string quoted_name = add_angle_brackets (name);
10918 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10920 std::vector<struct block_symbol> syms
10921 = ada_lookup_symbol_list_worker (lookup_name,
10922 get_selected_block (0),
10925 if (syms.size () != 1)
10927 if (err_msg == NULL)
10930 error (("%s"), err_msg);
10933 return value_of_variable (syms[0].symbol, syms[0].block);
10936 /* Value of integer variable named NAME in the current environment.
10937 If no such variable is found, returns false. Otherwise, sets VALUE
10938 to the variable's value and returns true. */
10941 get_int_var_value (const char *name, LONGEST &value)
10943 struct value *var_val = get_var_value (name, 0);
10948 value = value_as_long (var_val);
10953 /* Return a range type whose base type is that of the range type named
10954 NAME in the current environment, and whose bounds are calculated
10955 from NAME according to the GNAT range encoding conventions.
10956 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10957 corresponding range type from debug information; fall back to using it
10958 if symbol lookup fails. If a new type must be created, allocate it
10959 like ORIG_TYPE was. The bounds information, in general, is encoded
10960 in NAME, the base type given in the named range type. */
10962 static struct type *
10963 to_fixed_range_type (struct type *raw_type, struct value *dval)
10966 struct type *base_type;
10967 const char *subtype_info;
10969 gdb_assert (raw_type != NULL);
10970 gdb_assert (raw_type->name () != NULL);
10972 if (raw_type->code () == TYPE_CODE_RANGE)
10973 base_type = TYPE_TARGET_TYPE (raw_type);
10975 base_type = raw_type;
10977 name = raw_type->name ();
10978 subtype_info = strstr (name, "___XD");
10979 if (subtype_info == NULL)
10981 LONGEST L = ada_discrete_type_low_bound (raw_type);
10982 LONGEST U = ada_discrete_type_high_bound (raw_type);
10984 if (L < INT_MIN || U > INT_MAX)
10987 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10992 int prefix_len = subtype_info - name;
10995 const char *bounds_str;
10999 bounds_str = strchr (subtype_info, '_');
11002 if (*subtype_info == 'L')
11004 if (!ada_scan_number (bounds_str, n, &L, &n)
11005 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11007 if (bounds_str[n] == '_')
11009 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11015 std::string name_buf = std::string (name, prefix_len) + "___L";
11016 if (!get_int_var_value (name_buf.c_str (), L))
11018 lim_warning (_("Unknown lower bound, using 1."));
11023 if (*subtype_info == 'U')
11025 if (!ada_scan_number (bounds_str, n, &U, &n)
11026 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11031 std::string name_buf = std::string (name, prefix_len) + "___U";
11032 if (!get_int_var_value (name_buf.c_str (), U))
11034 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11039 type = create_static_range_type (alloc_type_copy (raw_type),
11041 /* create_static_range_type alters the resulting type's length
11042 to match the size of the base_type, which is not what we want.
11043 Set it back to the original range type's length. */
11044 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11045 type->set_name (name);
11050 /* True iff NAME is the name of a range type. */
11053 ada_is_range_type_name (const char *name)
11055 return (name != NULL && strstr (name, "___XD"));
11059 /* Modular types */
11061 /* True iff TYPE is an Ada modular type. */
11064 ada_is_modular_type (struct type *type)
11066 struct type *subranged_type = get_base_type (type);
11068 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11069 && subranged_type->code () == TYPE_CODE_INT
11070 && subranged_type->is_unsigned ());
11073 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11076 ada_modulus (struct type *type)
11078 const dynamic_prop &high = type->bounds ()->high;
11080 if (high.kind () == PROP_CONST)
11081 return (ULONGEST) high.const_val () + 1;
11083 /* If TYPE is unresolved, the high bound might be a location list. Return
11084 0, for lack of a better value to return. */
11089 /* Ada exception catchpoint support:
11090 ---------------------------------
11092 We support 3 kinds of exception catchpoints:
11093 . catchpoints on Ada exceptions
11094 . catchpoints on unhandled Ada exceptions
11095 . catchpoints on failed assertions
11097 Exceptions raised during failed assertions, or unhandled exceptions
11098 could perfectly be caught with the general catchpoint on Ada exceptions.
11099 However, we can easily differentiate these two special cases, and having
11100 the option to distinguish these two cases from the rest can be useful
11101 to zero-in on certain situations.
11103 Exception catchpoints are a specialized form of breakpoint,
11104 since they rely on inserting breakpoints inside known routines
11105 of the GNAT runtime. The implementation therefore uses a standard
11106 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11109 Support in the runtime for exception catchpoints have been changed
11110 a few times already, and these changes affect the implementation
11111 of these catchpoints. In order to be able to support several
11112 variants of the runtime, we use a sniffer that will determine
11113 the runtime variant used by the program being debugged. */
11115 /* Ada's standard exceptions.
11117 The Ada 83 standard also defined Numeric_Error. But there so many
11118 situations where it was unclear from the Ada 83 Reference Manual
11119 (RM) whether Constraint_Error or Numeric_Error should be raised,
11120 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11121 Interpretation saying that anytime the RM says that Numeric_Error
11122 should be raised, the implementation may raise Constraint_Error.
11123 Ada 95 went one step further and pretty much removed Numeric_Error
11124 from the list of standard exceptions (it made it a renaming of
11125 Constraint_Error, to help preserve compatibility when compiling
11126 an Ada83 compiler). As such, we do not include Numeric_Error from
11127 this list of standard exceptions. */
11129 static const char * const standard_exc[] = {
11130 "constraint_error",
11136 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11138 /* A structure that describes how to support exception catchpoints
11139 for a given executable. */
11141 struct exception_support_info
11143 /* The name of the symbol to break on in order to insert
11144 a catchpoint on exceptions. */
11145 const char *catch_exception_sym;
11147 /* The name of the symbol to break on in order to insert
11148 a catchpoint on unhandled exceptions. */
11149 const char *catch_exception_unhandled_sym;
11151 /* The name of the symbol to break on in order to insert
11152 a catchpoint on failed assertions. */
11153 const char *catch_assert_sym;
11155 /* The name of the symbol to break on in order to insert
11156 a catchpoint on exception handling. */
11157 const char *catch_handlers_sym;
11159 /* Assuming that the inferior just triggered an unhandled exception
11160 catchpoint, this function is responsible for returning the address
11161 in inferior memory where the name of that exception is stored.
11162 Return zero if the address could not be computed. */
11163 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11166 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11167 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11169 /* The following exception support info structure describes how to
11170 implement exception catchpoints with the latest version of the
11171 Ada runtime (as of 2019-08-??). */
11173 static const struct exception_support_info default_exception_support_info =
11175 "__gnat_debug_raise_exception", /* catch_exception_sym */
11176 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11177 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11178 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11179 ada_unhandled_exception_name_addr
11182 /* The following exception support info structure describes how to
11183 implement exception catchpoints with an earlier version of the
11184 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11186 static const struct exception_support_info exception_support_info_v0 =
11188 "__gnat_debug_raise_exception", /* catch_exception_sym */
11189 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11190 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11191 "__gnat_begin_handler", /* catch_handlers_sym */
11192 ada_unhandled_exception_name_addr
11195 /* The following exception support info structure describes how to
11196 implement exception catchpoints with a slightly older version
11197 of the Ada runtime. */
11199 static const struct exception_support_info exception_support_info_fallback =
11201 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11202 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11203 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11204 "__gnat_begin_handler", /* catch_handlers_sym */
11205 ada_unhandled_exception_name_addr_from_raise
11208 /* Return nonzero if we can detect the exception support routines
11209 described in EINFO.
11211 This function errors out if an abnormal situation is detected
11212 (for instance, if we find the exception support routines, but
11213 that support is found to be incomplete). */
11216 ada_has_this_exception_support (const struct exception_support_info *einfo)
11218 struct symbol *sym;
11220 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11221 that should be compiled with debugging information. As a result, we
11222 expect to find that symbol in the symtabs. */
11224 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11227 /* Perhaps we did not find our symbol because the Ada runtime was
11228 compiled without debugging info, or simply stripped of it.
11229 It happens on some GNU/Linux distributions for instance, where
11230 users have to install a separate debug package in order to get
11231 the runtime's debugging info. In that situation, let the user
11232 know why we cannot insert an Ada exception catchpoint.
11234 Note: Just for the purpose of inserting our Ada exception
11235 catchpoint, we could rely purely on the associated minimal symbol.
11236 But we would be operating in degraded mode anyway, since we are
11237 still lacking the debugging info needed later on to extract
11238 the name of the exception being raised (this name is printed in
11239 the catchpoint message, and is also used when trying to catch
11240 a specific exception). We do not handle this case for now. */
11241 struct bound_minimal_symbol msym
11242 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11244 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11245 error (_("Your Ada runtime appears to be missing some debugging "
11246 "information.\nCannot insert Ada exception catchpoint "
11247 "in this configuration."));
11252 /* Make sure that the symbol we found corresponds to a function. */
11254 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11256 error (_("Symbol \"%s\" is not a function (class = %d)"),
11257 sym->linkage_name (), SYMBOL_CLASS (sym));
11261 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11264 struct bound_minimal_symbol msym
11265 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11267 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11268 error (_("Your Ada runtime appears to be missing some debugging "
11269 "information.\nCannot insert Ada exception catchpoint "
11270 "in this configuration."));
11275 /* Make sure that the symbol we found corresponds to a function. */
11277 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11279 error (_("Symbol \"%s\" is not a function (class = %d)"),
11280 sym->linkage_name (), SYMBOL_CLASS (sym));
11287 /* Inspect the Ada runtime and determine which exception info structure
11288 should be used to provide support for exception catchpoints.
11290 This function will always set the per-inferior exception_info,
11291 or raise an error. */
11294 ada_exception_support_info_sniffer (void)
11296 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11298 /* If the exception info is already known, then no need to recompute it. */
11299 if (data->exception_info != NULL)
11302 /* Check the latest (default) exception support info. */
11303 if (ada_has_this_exception_support (&default_exception_support_info))
11305 data->exception_info = &default_exception_support_info;
11309 /* Try the v0 exception suport info. */
11310 if (ada_has_this_exception_support (&exception_support_info_v0))
11312 data->exception_info = &exception_support_info_v0;
11316 /* Try our fallback exception suport info. */
11317 if (ada_has_this_exception_support (&exception_support_info_fallback))
11319 data->exception_info = &exception_support_info_fallback;
11323 /* Sometimes, it is normal for us to not be able to find the routine
11324 we are looking for. This happens when the program is linked with
11325 the shared version of the GNAT runtime, and the program has not been
11326 started yet. Inform the user of these two possible causes if
11329 if (ada_update_initial_language (language_unknown) != language_ada)
11330 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11332 /* If the symbol does not exist, then check that the program is
11333 already started, to make sure that shared libraries have been
11334 loaded. If it is not started, this may mean that the symbol is
11335 in a shared library. */
11337 if (inferior_ptid.pid () == 0)
11338 error (_("Unable to insert catchpoint. Try to start the program first."));
11340 /* At this point, we know that we are debugging an Ada program and
11341 that the inferior has been started, but we still are not able to
11342 find the run-time symbols. That can mean that we are in
11343 configurable run time mode, or that a-except as been optimized
11344 out by the linker... In any case, at this point it is not worth
11345 supporting this feature. */
11347 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11350 /* True iff FRAME is very likely to be that of a function that is
11351 part of the runtime system. This is all very heuristic, but is
11352 intended to be used as advice as to what frames are uninteresting
11356 is_known_support_routine (struct frame_info *frame)
11358 enum language func_lang;
11360 const char *fullname;
11362 /* If this code does not have any debugging information (no symtab),
11363 This cannot be any user code. */
11365 symtab_and_line sal = find_frame_sal (frame);
11366 if (sal.symtab == NULL)
11369 /* If there is a symtab, but the associated source file cannot be
11370 located, then assume this is not user code: Selecting a frame
11371 for which we cannot display the code would not be very helpful
11372 for the user. This should also take care of case such as VxWorks
11373 where the kernel has some debugging info provided for a few units. */
11375 fullname = symtab_to_fullname (sal.symtab);
11376 if (access (fullname, R_OK) != 0)
11379 /* Check the unit filename against the Ada runtime file naming.
11380 We also check the name of the objfile against the name of some
11381 known system libraries that sometimes come with debugging info
11384 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11386 re_comp (known_runtime_file_name_patterns[i]);
11387 if (re_exec (lbasename (sal.symtab->filename)))
11389 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11390 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11394 /* Check whether the function is a GNAT-generated entity. */
11396 gdb::unique_xmalloc_ptr<char> func_name
11397 = find_frame_funname (frame, &func_lang, NULL);
11398 if (func_name == NULL)
11401 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11403 re_comp (known_auxiliary_function_name_patterns[i]);
11404 if (re_exec (func_name.get ()))
11411 /* Find the first frame that contains debugging information and that is not
11412 part of the Ada run-time, starting from FI and moving upward. */
11415 ada_find_printable_frame (struct frame_info *fi)
11417 for (; fi != NULL; fi = get_prev_frame (fi))
11419 if (!is_known_support_routine (fi))
11428 /* Assuming that the inferior just triggered an unhandled exception
11429 catchpoint, return the address in inferior memory where the name
11430 of the exception is stored.
11432 Return zero if the address could not be computed. */
11435 ada_unhandled_exception_name_addr (void)
11437 return parse_and_eval_address ("e.full_name");
11440 /* Same as ada_unhandled_exception_name_addr, except that this function
11441 should be used when the inferior uses an older version of the runtime,
11442 where the exception name needs to be extracted from a specific frame
11443 several frames up in the callstack. */
11446 ada_unhandled_exception_name_addr_from_raise (void)
11449 struct frame_info *fi;
11450 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11452 /* To determine the name of this exception, we need to select
11453 the frame corresponding to RAISE_SYM_NAME. This frame is
11454 at least 3 levels up, so we simply skip the first 3 frames
11455 without checking the name of their associated function. */
11456 fi = get_current_frame ();
11457 for (frame_level = 0; frame_level < 3; frame_level += 1)
11459 fi = get_prev_frame (fi);
11463 enum language func_lang;
11465 gdb::unique_xmalloc_ptr<char> func_name
11466 = find_frame_funname (fi, &func_lang, NULL);
11467 if (func_name != NULL)
11469 if (strcmp (func_name.get (),
11470 data->exception_info->catch_exception_sym) == 0)
11471 break; /* We found the frame we were looking for... */
11473 fi = get_prev_frame (fi);
11480 return parse_and_eval_address ("id.full_name");
11483 /* Assuming the inferior just triggered an Ada exception catchpoint
11484 (of any type), return the address in inferior memory where the name
11485 of the exception is stored, if applicable.
11487 Assumes the selected frame is the current frame.
11489 Return zero if the address could not be computed, or if not relevant. */
11492 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11493 struct breakpoint *b)
11495 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11499 case ada_catch_exception:
11500 return (parse_and_eval_address ("e.full_name"));
11503 case ada_catch_exception_unhandled:
11504 return data->exception_info->unhandled_exception_name_addr ();
11507 case ada_catch_handlers:
11508 return 0; /* The runtimes does not provide access to the exception
11512 case ada_catch_assert:
11513 return 0; /* Exception name is not relevant in this case. */
11517 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11521 return 0; /* Should never be reached. */
11524 /* Assuming the inferior is stopped at an exception catchpoint,
11525 return the message which was associated to the exception, if
11526 available. Return NULL if the message could not be retrieved.
11528 Note: The exception message can be associated to an exception
11529 either through the use of the Raise_Exception function, or
11530 more simply (Ada 2005 and later), via:
11532 raise Exception_Name with "exception message";
11536 static gdb::unique_xmalloc_ptr<char>
11537 ada_exception_message_1 (void)
11539 struct value *e_msg_val;
11542 /* For runtimes that support this feature, the exception message
11543 is passed as an unbounded string argument called "message". */
11544 e_msg_val = parse_and_eval ("message");
11545 if (e_msg_val == NULL)
11546 return NULL; /* Exception message not supported. */
11548 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11549 gdb_assert (e_msg_val != NULL);
11550 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11552 /* If the message string is empty, then treat it as if there was
11553 no exception message. */
11554 if (e_msg_len <= 0)
11557 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11558 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11560 e_msg.get ()[e_msg_len] = '\0';
11565 /* Same as ada_exception_message_1, except that all exceptions are
11566 contained here (returning NULL instead). */
11568 static gdb::unique_xmalloc_ptr<char>
11569 ada_exception_message (void)
11571 gdb::unique_xmalloc_ptr<char> e_msg;
11575 e_msg = ada_exception_message_1 ();
11577 catch (const gdb_exception_error &e)
11579 e_msg.reset (nullptr);
11585 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11586 any error that ada_exception_name_addr_1 might cause to be thrown.
11587 When an error is intercepted, a warning with the error message is printed,
11588 and zero is returned. */
11591 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11592 struct breakpoint *b)
11594 CORE_ADDR result = 0;
11598 result = ada_exception_name_addr_1 (ex, b);
11601 catch (const gdb_exception_error &e)
11603 warning (_("failed to get exception name: %s"), e.what ());
11610 static std::string ada_exception_catchpoint_cond_string
11611 (const char *excep_string,
11612 enum ada_exception_catchpoint_kind ex);
11614 /* Ada catchpoints.
11616 In the case of catchpoints on Ada exceptions, the catchpoint will
11617 stop the target on every exception the program throws. When a user
11618 specifies the name of a specific exception, we translate this
11619 request into a condition expression (in text form), and then parse
11620 it into an expression stored in each of the catchpoint's locations.
11621 We then use this condition to check whether the exception that was
11622 raised is the one the user is interested in. If not, then the
11623 target is resumed again. We store the name of the requested
11624 exception, in order to be able to re-set the condition expression
11625 when symbols change. */
11627 /* An instance of this type is used to represent an Ada catchpoint
11628 breakpoint location. */
11630 class ada_catchpoint_location : public bp_location
11633 ada_catchpoint_location (breakpoint *owner)
11634 : bp_location (owner, bp_loc_software_breakpoint)
11637 /* The condition that checks whether the exception that was raised
11638 is the specific exception the user specified on catchpoint
11640 expression_up excep_cond_expr;
11643 /* An instance of this type is used to represent an Ada catchpoint. */
11645 struct ada_catchpoint : public breakpoint
11647 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11652 /* The name of the specific exception the user specified. */
11653 std::string excep_string;
11655 /* What kind of catchpoint this is. */
11656 enum ada_exception_catchpoint_kind m_kind;
11659 /* Parse the exception condition string in the context of each of the
11660 catchpoint's locations, and store them for later evaluation. */
11663 create_excep_cond_exprs (struct ada_catchpoint *c,
11664 enum ada_exception_catchpoint_kind ex)
11666 /* Nothing to do if there's no specific exception to catch. */
11667 if (c->excep_string.empty ())
11670 /* Same if there are no locations... */
11671 if (c->loc == NULL)
11674 /* Compute the condition expression in text form, from the specific
11675 expection we want to catch. */
11676 std::string cond_string
11677 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11679 /* Iterate over all the catchpoint's locations, and parse an
11680 expression for each. */
11681 for (bp_location *bl : c->locations ())
11683 struct ada_catchpoint_location *ada_loc
11684 = (struct ada_catchpoint_location *) bl;
11687 if (!bl->shlib_disabled)
11691 s = cond_string.c_str ();
11694 exp = parse_exp_1 (&s, bl->address,
11695 block_for_pc (bl->address),
11698 catch (const gdb_exception_error &e)
11700 warning (_("failed to reevaluate internal exception condition "
11701 "for catchpoint %d: %s"),
11702 c->number, e.what ());
11706 ada_loc->excep_cond_expr = std::move (exp);
11710 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11711 structure for all exception catchpoint kinds. */
11713 static struct bp_location *
11714 allocate_location_exception (struct breakpoint *self)
11716 return new ada_catchpoint_location (self);
11719 /* Implement the RE_SET method in the breakpoint_ops structure for all
11720 exception catchpoint kinds. */
11723 re_set_exception (struct breakpoint *b)
11725 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11727 /* Call the base class's method. This updates the catchpoint's
11729 bkpt_breakpoint_ops.re_set (b);
11731 /* Reparse the exception conditional expressions. One for each
11733 create_excep_cond_exprs (c, c->m_kind);
11736 /* Returns true if we should stop for this breakpoint hit. If the
11737 user specified a specific exception, we only want to cause a stop
11738 if the program thrown that exception. */
11741 should_stop_exception (const struct bp_location *bl)
11743 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11744 const struct ada_catchpoint_location *ada_loc
11745 = (const struct ada_catchpoint_location *) bl;
11748 struct internalvar *var = lookup_internalvar ("_ada_exception");
11749 if (c->m_kind == ada_catch_assert)
11750 clear_internalvar (var);
11757 if (c->m_kind == ada_catch_handlers)
11758 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11759 ".all.occurrence.id");
11763 struct value *exc = parse_and_eval (expr);
11764 set_internalvar (var, exc);
11766 catch (const gdb_exception_error &ex)
11768 clear_internalvar (var);
11772 /* With no specific exception, should always stop. */
11773 if (c->excep_string.empty ())
11776 if (ada_loc->excep_cond_expr == NULL)
11778 /* We will have a NULL expression if back when we were creating
11779 the expressions, this location's had failed to parse. */
11786 struct value *mark;
11788 mark = value_mark ();
11789 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11790 value_free_to_mark (mark);
11792 catch (const gdb_exception &ex)
11794 exception_fprintf (gdb_stderr, ex,
11795 _("Error in testing exception condition:\n"));
11801 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11802 for all exception catchpoint kinds. */
11805 check_status_exception (bpstat *bs)
11807 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11810 /* Implement the PRINT_IT method in the breakpoint_ops structure
11811 for all exception catchpoint kinds. */
11813 static enum print_stop_action
11814 print_it_exception (bpstat *bs)
11816 struct ui_out *uiout = current_uiout;
11817 struct breakpoint *b = bs->breakpoint_at;
11819 annotate_catchpoint (b->number);
11821 if (uiout->is_mi_like_p ())
11823 uiout->field_string ("reason",
11824 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11825 uiout->field_string ("disp", bpdisp_text (b->disposition));
11828 uiout->text (b->disposition == disp_del
11829 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11830 uiout->field_signed ("bkptno", b->number);
11831 uiout->text (", ");
11833 /* ada_exception_name_addr relies on the selected frame being the
11834 current frame. Need to do this here because this function may be
11835 called more than once when printing a stop, and below, we'll
11836 select the first frame past the Ada run-time (see
11837 ada_find_printable_frame). */
11838 select_frame (get_current_frame ());
11840 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11843 case ada_catch_exception:
11844 case ada_catch_exception_unhandled:
11845 case ada_catch_handlers:
11847 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11848 char exception_name[256];
11852 read_memory (addr, (gdb_byte *) exception_name,
11853 sizeof (exception_name) - 1);
11854 exception_name [sizeof (exception_name) - 1] = '\0';
11858 /* For some reason, we were unable to read the exception
11859 name. This could happen if the Runtime was compiled
11860 without debugging info, for instance. In that case,
11861 just replace the exception name by the generic string
11862 "exception" - it will read as "an exception" in the
11863 notification we are about to print. */
11864 memcpy (exception_name, "exception", sizeof ("exception"));
11866 /* In the case of unhandled exception breakpoints, we print
11867 the exception name as "unhandled EXCEPTION_NAME", to make
11868 it clearer to the user which kind of catchpoint just got
11869 hit. We used ui_out_text to make sure that this extra
11870 info does not pollute the exception name in the MI case. */
11871 if (c->m_kind == ada_catch_exception_unhandled)
11872 uiout->text ("unhandled ");
11873 uiout->field_string ("exception-name", exception_name);
11876 case ada_catch_assert:
11877 /* In this case, the name of the exception is not really
11878 important. Just print "failed assertion" to make it clearer
11879 that his program just hit an assertion-failure catchpoint.
11880 We used ui_out_text because this info does not belong in
11882 uiout->text ("failed assertion");
11886 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11887 if (exception_message != NULL)
11889 uiout->text (" (");
11890 uiout->field_string ("exception-message", exception_message.get ());
11894 uiout->text (" at ");
11895 ada_find_printable_frame (get_current_frame ());
11897 return PRINT_SRC_AND_LOC;
11900 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11901 for all exception catchpoint kinds. */
11904 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11906 struct ui_out *uiout = current_uiout;
11907 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11908 struct value_print_options opts;
11910 get_user_print_options (&opts);
11912 if (opts.addressprint)
11913 uiout->field_skip ("addr");
11915 annotate_field (5);
11918 case ada_catch_exception:
11919 if (!c->excep_string.empty ())
11921 std::string msg = string_printf (_("`%s' Ada exception"),
11922 c->excep_string.c_str ());
11924 uiout->field_string ("what", msg);
11927 uiout->field_string ("what", "all Ada exceptions");
11931 case ada_catch_exception_unhandled:
11932 uiout->field_string ("what", "unhandled Ada exceptions");
11935 case ada_catch_handlers:
11936 if (!c->excep_string.empty ())
11938 uiout->field_fmt ("what",
11939 _("`%s' Ada exception handlers"),
11940 c->excep_string.c_str ());
11943 uiout->field_string ("what", "all Ada exceptions handlers");
11946 case ada_catch_assert:
11947 uiout->field_string ("what", "failed Ada assertions");
11951 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11956 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11957 for all exception catchpoint kinds. */
11960 print_mention_exception (struct breakpoint *b)
11962 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11963 struct ui_out *uiout = current_uiout;
11965 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11966 : _("Catchpoint "));
11967 uiout->field_signed ("bkptno", b->number);
11968 uiout->text (": ");
11972 case ada_catch_exception:
11973 if (!c->excep_string.empty ())
11975 std::string info = string_printf (_("`%s' Ada exception"),
11976 c->excep_string.c_str ());
11977 uiout->text (info);
11980 uiout->text (_("all Ada exceptions"));
11983 case ada_catch_exception_unhandled:
11984 uiout->text (_("unhandled Ada exceptions"));
11987 case ada_catch_handlers:
11988 if (!c->excep_string.empty ())
11991 = string_printf (_("`%s' Ada exception handlers"),
11992 c->excep_string.c_str ());
11993 uiout->text (info);
11996 uiout->text (_("all Ada exceptions handlers"));
11999 case ada_catch_assert:
12000 uiout->text (_("failed Ada assertions"));
12004 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12009 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12010 for all exception catchpoint kinds. */
12013 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12015 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12019 case ada_catch_exception:
12020 fprintf_filtered (fp, "catch exception");
12021 if (!c->excep_string.empty ())
12022 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12025 case ada_catch_exception_unhandled:
12026 fprintf_filtered (fp, "catch exception unhandled");
12029 case ada_catch_handlers:
12030 fprintf_filtered (fp, "catch handlers");
12033 case ada_catch_assert:
12034 fprintf_filtered (fp, "catch assert");
12038 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12040 print_recreate_thread (b, fp);
12043 /* Virtual tables for various breakpoint types. */
12044 static struct breakpoint_ops catch_exception_breakpoint_ops;
12045 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12046 static struct breakpoint_ops catch_assert_breakpoint_ops;
12047 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12049 /* See ada-lang.h. */
12052 is_ada_exception_catchpoint (breakpoint *bp)
12054 return (bp->ops == &catch_exception_breakpoint_ops
12055 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12056 || bp->ops == &catch_assert_breakpoint_ops
12057 || bp->ops == &catch_handlers_breakpoint_ops);
12060 /* Split the arguments specified in a "catch exception" command.
12061 Set EX to the appropriate catchpoint type.
12062 Set EXCEP_STRING to the name of the specific exception if
12063 specified by the user.
12064 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12065 "catch handlers" command. False otherwise.
12066 If a condition is found at the end of the arguments, the condition
12067 expression is stored in COND_STRING (memory must be deallocated
12068 after use). Otherwise COND_STRING is set to NULL. */
12071 catch_ada_exception_command_split (const char *args,
12072 bool is_catch_handlers_cmd,
12073 enum ada_exception_catchpoint_kind *ex,
12074 std::string *excep_string,
12075 std::string *cond_string)
12077 std::string exception_name;
12079 exception_name = extract_arg (&args);
12080 if (exception_name == "if")
12082 /* This is not an exception name; this is the start of a condition
12083 expression for a catchpoint on all exceptions. So, "un-get"
12084 this token, and set exception_name to NULL. */
12085 exception_name.clear ();
12089 /* Check to see if we have a condition. */
12091 args = skip_spaces (args);
12092 if (startswith (args, "if")
12093 && (isspace (args[2]) || args[2] == '\0'))
12096 args = skip_spaces (args);
12098 if (args[0] == '\0')
12099 error (_("Condition missing after `if' keyword"));
12100 *cond_string = args;
12102 args += strlen (args);
12105 /* Check that we do not have any more arguments. Anything else
12108 if (args[0] != '\0')
12109 error (_("Junk at end of expression"));
12111 if (is_catch_handlers_cmd)
12113 /* Catch handling of exceptions. */
12114 *ex = ada_catch_handlers;
12115 *excep_string = exception_name;
12117 else if (exception_name.empty ())
12119 /* Catch all exceptions. */
12120 *ex = ada_catch_exception;
12121 excep_string->clear ();
12123 else if (exception_name == "unhandled")
12125 /* Catch unhandled exceptions. */
12126 *ex = ada_catch_exception_unhandled;
12127 excep_string->clear ();
12131 /* Catch a specific exception. */
12132 *ex = ada_catch_exception;
12133 *excep_string = exception_name;
12137 /* Return the name of the symbol on which we should break in order to
12138 implement a catchpoint of the EX kind. */
12140 static const char *
12141 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12143 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12145 gdb_assert (data->exception_info != NULL);
12149 case ada_catch_exception:
12150 return (data->exception_info->catch_exception_sym);
12152 case ada_catch_exception_unhandled:
12153 return (data->exception_info->catch_exception_unhandled_sym);
12155 case ada_catch_assert:
12156 return (data->exception_info->catch_assert_sym);
12158 case ada_catch_handlers:
12159 return (data->exception_info->catch_handlers_sym);
12162 internal_error (__FILE__, __LINE__,
12163 _("unexpected catchpoint kind (%d)"), ex);
12167 /* Return the breakpoint ops "virtual table" used for catchpoints
12170 static const struct breakpoint_ops *
12171 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12175 case ada_catch_exception:
12176 return (&catch_exception_breakpoint_ops);
12178 case ada_catch_exception_unhandled:
12179 return (&catch_exception_unhandled_breakpoint_ops);
12181 case ada_catch_assert:
12182 return (&catch_assert_breakpoint_ops);
12184 case ada_catch_handlers:
12185 return (&catch_handlers_breakpoint_ops);
12188 internal_error (__FILE__, __LINE__,
12189 _("unexpected catchpoint kind (%d)"), ex);
12193 /* Return the condition that will be used to match the current exception
12194 being raised with the exception that the user wants to catch. This
12195 assumes that this condition is used when the inferior just triggered
12196 an exception catchpoint.
12197 EX: the type of catchpoints used for catching Ada exceptions. */
12200 ada_exception_catchpoint_cond_string (const char *excep_string,
12201 enum ada_exception_catchpoint_kind ex)
12204 bool is_standard_exc = false;
12205 std::string result;
12207 if (ex == ada_catch_handlers)
12209 /* For exception handlers catchpoints, the condition string does
12210 not use the same parameter as for the other exceptions. */
12211 result = ("long_integer (GNAT_GCC_exception_Access"
12212 "(gcc_exception).all.occurrence.id)");
12215 result = "long_integer (e)";
12217 /* The standard exceptions are a special case. They are defined in
12218 runtime units that have been compiled without debugging info; if
12219 EXCEP_STRING is the not-fully-qualified name of a standard
12220 exception (e.g. "constraint_error") then, during the evaluation
12221 of the condition expression, the symbol lookup on this name would
12222 *not* return this standard exception. The catchpoint condition
12223 may then be set only on user-defined exceptions which have the
12224 same not-fully-qualified name (e.g. my_package.constraint_error).
12226 To avoid this unexcepted behavior, these standard exceptions are
12227 systematically prefixed by "standard". This means that "catch
12228 exception constraint_error" is rewritten into "catch exception
12229 standard.constraint_error".
12231 If an exception named constraint_error is defined in another package of
12232 the inferior program, then the only way to specify this exception as a
12233 breakpoint condition is to use its fully-qualified named:
12234 e.g. my_package.constraint_error. */
12236 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12238 if (strcmp (standard_exc [i], excep_string) == 0)
12240 is_standard_exc = true;
12247 if (is_standard_exc)
12248 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12250 string_appendf (result, "long_integer (&%s)", excep_string);
12255 /* Return the symtab_and_line that should be used to insert an exception
12256 catchpoint of the TYPE kind.
12258 ADDR_STRING returns the name of the function where the real
12259 breakpoint that implements the catchpoints is set, depending on the
12260 type of catchpoint we need to create. */
12262 static struct symtab_and_line
12263 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12264 std::string *addr_string, const struct breakpoint_ops **ops)
12266 const char *sym_name;
12267 struct symbol *sym;
12269 /* First, find out which exception support info to use. */
12270 ada_exception_support_info_sniffer ();
12272 /* Then lookup the function on which we will break in order to catch
12273 the Ada exceptions requested by the user. */
12274 sym_name = ada_exception_sym_name (ex);
12275 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12278 error (_("Catchpoint symbol not found: %s"), sym_name);
12280 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12281 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12283 /* Set ADDR_STRING. */
12284 *addr_string = sym_name;
12287 *ops = ada_exception_breakpoint_ops (ex);
12289 return find_function_start_sal (sym, 1);
12292 /* Create an Ada exception catchpoint.
12294 EX_KIND is the kind of exception catchpoint to be created.
12296 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12297 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12298 of the exception to which this catchpoint applies.
12300 COND_STRING, if not empty, is the catchpoint condition.
12302 TEMPFLAG, if nonzero, means that the underlying breakpoint
12303 should be temporary.
12305 FROM_TTY is the usual argument passed to all commands implementations. */
12308 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12309 enum ada_exception_catchpoint_kind ex_kind,
12310 const std::string &excep_string,
12311 const std::string &cond_string,
12316 std::string addr_string;
12317 const struct breakpoint_ops *ops = NULL;
12318 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12320 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12321 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12322 ops, tempflag, disabled, from_tty);
12323 c->excep_string = excep_string;
12324 create_excep_cond_exprs (c.get (), ex_kind);
12325 if (!cond_string.empty ())
12326 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12327 install_breakpoint (0, std::move (c), 1);
12330 /* Implement the "catch exception" command. */
12333 catch_ada_exception_command (const char *arg_entry, int from_tty,
12334 struct cmd_list_element *command)
12336 const char *arg = arg_entry;
12337 struct gdbarch *gdbarch = get_current_arch ();
12339 enum ada_exception_catchpoint_kind ex_kind;
12340 std::string excep_string;
12341 std::string cond_string;
12343 tempflag = command->context () == CATCH_TEMPORARY;
12347 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12349 create_ada_exception_catchpoint (gdbarch, ex_kind,
12350 excep_string, cond_string,
12351 tempflag, 1 /* enabled */,
12355 /* Implement the "catch handlers" command. */
12358 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12359 struct cmd_list_element *command)
12361 const char *arg = arg_entry;
12362 struct gdbarch *gdbarch = get_current_arch ();
12364 enum ada_exception_catchpoint_kind ex_kind;
12365 std::string excep_string;
12366 std::string cond_string;
12368 tempflag = command->context () == CATCH_TEMPORARY;
12372 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12374 create_ada_exception_catchpoint (gdbarch, ex_kind,
12375 excep_string, cond_string,
12376 tempflag, 1 /* enabled */,
12380 /* Completion function for the Ada "catch" commands. */
12383 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12384 const char *text, const char *word)
12386 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12388 for (const ada_exc_info &info : exceptions)
12390 if (startswith (info.name, word))
12391 tracker.add_completion (make_unique_xstrdup (info.name));
12395 /* Split the arguments specified in a "catch assert" command.
12397 ARGS contains the command's arguments (or the empty string if
12398 no arguments were passed).
12400 If ARGS contains a condition, set COND_STRING to that condition
12401 (the memory needs to be deallocated after use). */
12404 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12406 args = skip_spaces (args);
12408 /* Check whether a condition was provided. */
12409 if (startswith (args, "if")
12410 && (isspace (args[2]) || args[2] == '\0'))
12413 args = skip_spaces (args);
12414 if (args[0] == '\0')
12415 error (_("condition missing after `if' keyword"));
12416 cond_string.assign (args);
12419 /* Otherwise, there should be no other argument at the end of
12421 else if (args[0] != '\0')
12422 error (_("Junk at end of arguments."));
12425 /* Implement the "catch assert" command. */
12428 catch_assert_command (const char *arg_entry, int from_tty,
12429 struct cmd_list_element *command)
12431 const char *arg = arg_entry;
12432 struct gdbarch *gdbarch = get_current_arch ();
12434 std::string cond_string;
12436 tempflag = command->context () == CATCH_TEMPORARY;
12440 catch_ada_assert_command_split (arg, cond_string);
12441 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12443 tempflag, 1 /* enabled */,
12447 /* Return non-zero if the symbol SYM is an Ada exception object. */
12450 ada_is_exception_sym (struct symbol *sym)
12452 const char *type_name = SYMBOL_TYPE (sym)->name ();
12454 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12455 && SYMBOL_CLASS (sym) != LOC_BLOCK
12456 && SYMBOL_CLASS (sym) != LOC_CONST
12457 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12458 && type_name != NULL && strcmp (type_name, "exception") == 0);
12461 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12462 Ada exception object. This matches all exceptions except the ones
12463 defined by the Ada language. */
12466 ada_is_non_standard_exception_sym (struct symbol *sym)
12470 if (!ada_is_exception_sym (sym))
12473 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12474 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12475 return 0; /* A standard exception. */
12477 /* Numeric_Error is also a standard exception, so exclude it.
12478 See the STANDARD_EXC description for more details as to why
12479 this exception is not listed in that array. */
12480 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12486 /* A helper function for std::sort, comparing two struct ada_exc_info
12489 The comparison is determined first by exception name, and then
12490 by exception address. */
12493 ada_exc_info::operator< (const ada_exc_info &other) const
12497 result = strcmp (name, other.name);
12500 if (result == 0 && addr < other.addr)
12506 ada_exc_info::operator== (const ada_exc_info &other) const
12508 return addr == other.addr && strcmp (name, other.name) == 0;
12511 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12512 routine, but keeping the first SKIP elements untouched.
12514 All duplicates are also removed. */
12517 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12520 std::sort (exceptions->begin () + skip, exceptions->end ());
12521 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12522 exceptions->end ());
12525 /* Add all exceptions defined by the Ada standard whose name match
12526 a regular expression.
12528 If PREG is not NULL, then this regexp_t object is used to
12529 perform the symbol name matching. Otherwise, no name-based
12530 filtering is performed.
12532 EXCEPTIONS is a vector of exceptions to which matching exceptions
12536 ada_add_standard_exceptions (compiled_regex *preg,
12537 std::vector<ada_exc_info> *exceptions)
12541 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12544 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12546 struct bound_minimal_symbol msymbol
12547 = ada_lookup_simple_minsym (standard_exc[i]);
12549 if (msymbol.minsym != NULL)
12551 struct ada_exc_info info
12552 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12554 exceptions->push_back (info);
12560 /* Add all Ada exceptions defined locally and accessible from the given
12563 If PREG is not NULL, then this regexp_t object is used to
12564 perform the symbol name matching. Otherwise, no name-based
12565 filtering is performed.
12567 EXCEPTIONS is a vector of exceptions to which matching exceptions
12571 ada_add_exceptions_from_frame (compiled_regex *preg,
12572 struct frame_info *frame,
12573 std::vector<ada_exc_info> *exceptions)
12575 const struct block *block = get_frame_block (frame, 0);
12579 struct block_iterator iter;
12580 struct symbol *sym;
12582 ALL_BLOCK_SYMBOLS (block, iter, sym)
12584 switch (SYMBOL_CLASS (sym))
12591 if (ada_is_exception_sym (sym))
12593 struct ada_exc_info info = {sym->print_name (),
12594 SYMBOL_VALUE_ADDRESS (sym)};
12596 exceptions->push_back (info);
12600 if (BLOCK_FUNCTION (block) != NULL)
12602 block = BLOCK_SUPERBLOCK (block);
12606 /* Return true if NAME matches PREG or if PREG is NULL. */
12609 name_matches_regex (const char *name, compiled_regex *preg)
12611 return (preg == NULL
12612 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12615 /* Add all exceptions defined globally whose name name match
12616 a regular expression, excluding standard exceptions.
12618 The reason we exclude standard exceptions is that they need
12619 to be handled separately: Standard exceptions are defined inside
12620 a runtime unit which is normally not compiled with debugging info,
12621 and thus usually do not show up in our symbol search. However,
12622 if the unit was in fact built with debugging info, we need to
12623 exclude them because they would duplicate the entry we found
12624 during the special loop that specifically searches for those
12625 standard exceptions.
12627 If PREG is not NULL, then this regexp_t object is used to
12628 perform the symbol name matching. Otherwise, no name-based
12629 filtering is performed.
12631 EXCEPTIONS is a vector of exceptions to which matching exceptions
12635 ada_add_global_exceptions (compiled_regex *preg,
12636 std::vector<ada_exc_info> *exceptions)
12638 /* In Ada, the symbol "search name" is a linkage name, whereas the
12639 regular expression used to do the matching refers to the natural
12640 name. So match against the decoded name. */
12641 expand_symtabs_matching (NULL,
12642 lookup_name_info::match_any (),
12643 [&] (const char *search_name)
12645 std::string decoded = ada_decode (search_name);
12646 return name_matches_regex (decoded.c_str (), preg);
12649 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12652 for (objfile *objfile : current_program_space->objfiles ())
12654 for (compunit_symtab *s : objfile->compunits ())
12656 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12659 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12661 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12662 struct block_iterator iter;
12663 struct symbol *sym;
12665 ALL_BLOCK_SYMBOLS (b, iter, sym)
12666 if (ada_is_non_standard_exception_sym (sym)
12667 && name_matches_regex (sym->natural_name (), preg))
12669 struct ada_exc_info info
12670 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12672 exceptions->push_back (info);
12679 /* Implements ada_exceptions_list with the regular expression passed
12680 as a regex_t, rather than a string.
12682 If not NULL, PREG is used to filter out exceptions whose names
12683 do not match. Otherwise, all exceptions are listed. */
12685 static std::vector<ada_exc_info>
12686 ada_exceptions_list_1 (compiled_regex *preg)
12688 std::vector<ada_exc_info> result;
12691 /* First, list the known standard exceptions. These exceptions
12692 need to be handled separately, as they are usually defined in
12693 runtime units that have been compiled without debugging info. */
12695 ada_add_standard_exceptions (preg, &result);
12697 /* Next, find all exceptions whose scope is local and accessible
12698 from the currently selected frame. */
12700 if (has_stack_frames ())
12702 prev_len = result.size ();
12703 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12705 if (result.size () > prev_len)
12706 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12709 /* Add all exceptions whose scope is global. */
12711 prev_len = result.size ();
12712 ada_add_global_exceptions (preg, &result);
12713 if (result.size () > prev_len)
12714 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12719 /* Return a vector of ada_exc_info.
12721 If REGEXP is NULL, all exceptions are included in the result.
12722 Otherwise, it should contain a valid regular expression,
12723 and only the exceptions whose names match that regular expression
12724 are included in the result.
12726 The exceptions are sorted in the following order:
12727 - Standard exceptions (defined by the Ada language), in
12728 alphabetical order;
12729 - Exceptions only visible from the current frame, in
12730 alphabetical order;
12731 - Exceptions whose scope is global, in alphabetical order. */
12733 std::vector<ada_exc_info>
12734 ada_exceptions_list (const char *regexp)
12736 if (regexp == NULL)
12737 return ada_exceptions_list_1 (NULL);
12739 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12740 return ada_exceptions_list_1 (®);
12743 /* Implement the "info exceptions" command. */
12746 info_exceptions_command (const char *regexp, int from_tty)
12748 struct gdbarch *gdbarch = get_current_arch ();
12750 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12752 if (regexp != NULL)
12754 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12756 printf_filtered (_("All defined Ada exceptions:\n"));
12758 for (const ada_exc_info &info : exceptions)
12759 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12763 /* Language vector */
12765 /* symbol_name_matcher_ftype adapter for wild_match. */
12768 do_wild_match (const char *symbol_search_name,
12769 const lookup_name_info &lookup_name,
12770 completion_match_result *comp_match_res)
12772 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12775 /* symbol_name_matcher_ftype adapter for full_match. */
12778 do_full_match (const char *symbol_search_name,
12779 const lookup_name_info &lookup_name,
12780 completion_match_result *comp_match_res)
12782 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12784 /* If both symbols start with "_ada_", just let the loop below
12785 handle the comparison. However, if only the symbol name starts
12786 with "_ada_", skip the prefix and let the match proceed as
12788 if (startswith (symbol_search_name, "_ada_")
12789 && !startswith (lname, "_ada"))
12790 symbol_search_name += 5;
12792 int uscore_count = 0;
12793 while (*lname != '\0')
12795 if (*symbol_search_name != *lname)
12797 if (*symbol_search_name == 'B' && uscore_count == 2
12798 && symbol_search_name[1] == '_')
12800 symbol_search_name += 2;
12801 while (isdigit (*symbol_search_name))
12802 ++symbol_search_name;
12803 if (symbol_search_name[0] == '_'
12804 && symbol_search_name[1] == '_')
12806 symbol_search_name += 2;
12813 if (*symbol_search_name == '_')
12818 ++symbol_search_name;
12822 return is_name_suffix (symbol_search_name);
12825 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12828 do_exact_match (const char *symbol_search_name,
12829 const lookup_name_info &lookup_name,
12830 completion_match_result *comp_match_res)
12832 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12835 /* Build the Ada lookup name for LOOKUP_NAME. */
12837 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12839 gdb::string_view user_name = lookup_name.name ();
12841 if (!user_name.empty () && user_name[0] == '<')
12843 if (user_name.back () == '>')
12845 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12848 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12849 m_encoded_p = true;
12850 m_verbatim_p = true;
12851 m_wild_match_p = false;
12852 m_standard_p = false;
12856 m_verbatim_p = false;
12858 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12862 const char *folded = ada_fold_name (user_name);
12863 m_encoded_name = ada_encode_1 (folded, false);
12864 if (m_encoded_name.empty ())
12865 m_encoded_name = gdb::to_string (user_name);
12868 m_encoded_name = gdb::to_string (user_name);
12870 /* Handle the 'package Standard' special case. See description
12871 of m_standard_p. */
12872 if (startswith (m_encoded_name.c_str (), "standard__"))
12874 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12875 m_standard_p = true;
12878 m_standard_p = false;
12880 /* If the name contains a ".", then the user is entering a fully
12881 qualified entity name, and the match must not be done in wild
12882 mode. Similarly, if the user wants to complete what looks
12883 like an encoded name, the match must not be done in wild
12884 mode. Also, in the standard__ special case always do
12885 non-wild matching. */
12887 = (lookup_name.match_type () != symbol_name_match_type::FULL
12890 && user_name.find ('.') == std::string::npos);
12894 /* symbol_name_matcher_ftype method for Ada. This only handles
12895 completion mode. */
12898 ada_symbol_name_matches (const char *symbol_search_name,
12899 const lookup_name_info &lookup_name,
12900 completion_match_result *comp_match_res)
12902 return lookup_name.ada ().matches (symbol_search_name,
12903 lookup_name.match_type (),
12907 /* A name matcher that matches the symbol name exactly, with
12911 literal_symbol_name_matcher (const char *symbol_search_name,
12912 const lookup_name_info &lookup_name,
12913 completion_match_result *comp_match_res)
12915 gdb::string_view name_view = lookup_name.name ();
12917 if (lookup_name.completion_mode ()
12918 ? (strncmp (symbol_search_name, name_view.data (),
12919 name_view.size ()) == 0)
12920 : symbol_search_name == name_view)
12922 if (comp_match_res != NULL)
12923 comp_match_res->set_match (symbol_search_name);
12930 /* Implement the "get_symbol_name_matcher" language_defn method for
12933 static symbol_name_matcher_ftype *
12934 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12936 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12937 return literal_symbol_name_matcher;
12939 if (lookup_name.completion_mode ())
12940 return ada_symbol_name_matches;
12943 if (lookup_name.ada ().wild_match_p ())
12944 return do_wild_match;
12945 else if (lookup_name.ada ().verbatim_p ())
12946 return do_exact_match;
12948 return do_full_match;
12952 /* Class representing the Ada language. */
12954 class ada_language : public language_defn
12958 : language_defn (language_ada)
12961 /* See language.h. */
12963 const char *name () const override
12966 /* See language.h. */
12968 const char *natural_name () const override
12971 /* See language.h. */
12973 const std::vector<const char *> &filename_extensions () const override
12975 static const std::vector<const char *> extensions
12976 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12980 /* Print an array element index using the Ada syntax. */
12982 void print_array_index (struct type *index_type,
12984 struct ui_file *stream,
12985 const value_print_options *options) const override
12987 struct value *index_value = val_atr (index_type, index);
12989 value_print (index_value, stream, options);
12990 fprintf_filtered (stream, " => ");
12993 /* Implement the "read_var_value" language_defn method for Ada. */
12995 struct value *read_var_value (struct symbol *var,
12996 const struct block *var_block,
12997 struct frame_info *frame) const override
12999 /* The only case where default_read_var_value is not sufficient
13000 is when VAR is a renaming... */
13001 if (frame != nullptr)
13003 const struct block *frame_block = get_frame_block (frame, NULL);
13004 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13005 return ada_read_renaming_var_value (var, frame_block);
13008 /* This is a typical case where we expect the default_read_var_value
13009 function to work. */
13010 return language_defn::read_var_value (var, var_block, frame);
13013 /* See language.h. */
13014 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
13016 return symbol->artificial;
13019 /* See language.h. */
13020 void language_arch_info (struct gdbarch *gdbarch,
13021 struct language_arch_info *lai) const override
13023 const struct builtin_type *builtin = builtin_type (gdbarch);
13025 /* Helper function to allow shorter lines below. */
13026 auto add = [&] (struct type *t)
13028 lai->add_primitive_type (t);
13031 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13033 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13034 0, "long_integer"));
13035 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13036 0, "short_integer"));
13037 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13039 lai->set_string_char_type (char_type);
13041 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13042 "float", gdbarch_float_format (gdbarch)));
13043 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13044 "long_float", gdbarch_double_format (gdbarch)));
13045 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13046 0, "long_long_integer"));
13047 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13049 gdbarch_long_double_format (gdbarch)));
13050 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13052 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13054 add (builtin->builtin_void);
13056 struct type *system_addr_ptr
13057 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13059 system_addr_ptr->set_name ("system__address");
13060 add (system_addr_ptr);
13062 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13063 type. This is a signed integral type whose size is the same as
13064 the size of addresses. */
13065 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13066 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13067 "storage_offset"));
13069 lai->set_bool_type (builtin->builtin_bool);
13072 /* See language.h. */
13074 bool iterate_over_symbols
13075 (const struct block *block, const lookup_name_info &name,
13076 domain_enum domain,
13077 gdb::function_view<symbol_found_callback_ftype> callback) const override
13079 std::vector<struct block_symbol> results
13080 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13081 for (block_symbol &sym : results)
13083 if (!callback (&sym))
13090 /* See language.h. */
13091 bool sniff_from_mangled_name
13092 (const char *mangled,
13093 gdb::unique_xmalloc_ptr<char> *out) const override
13095 std::string demangled = ada_decode (mangled);
13099 if (demangled != mangled && demangled[0] != '<')
13101 /* Set the gsymbol language to Ada, but still return 0.
13102 Two reasons for that:
13104 1. For Ada, we prefer computing the symbol's decoded name
13105 on the fly rather than pre-compute it, in order to save
13106 memory (Ada projects are typically very large).
13108 2. There are some areas in the definition of the GNAT
13109 encoding where, with a bit of bad luck, we might be able
13110 to decode a non-Ada symbol, generating an incorrect
13111 demangled name (Eg: names ending with "TB" for instance
13112 are identified as task bodies and so stripped from
13113 the decoded name returned).
13115 Returning true, here, but not setting *DEMANGLED, helps us get
13116 a little bit of the best of both worlds. Because we're last,
13117 we should not affect any of the other languages that were
13118 able to demangle the symbol before us; we get to correctly
13119 tag Ada symbols as such; and even if we incorrectly tagged a
13120 non-Ada symbol, which should be rare, any routing through the
13121 Ada language should be transparent (Ada tries to behave much
13122 like C/C++ with non-Ada symbols). */
13129 /* See language.h. */
13131 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13132 int options) const override
13134 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13137 /* See language.h. */
13139 void print_type (struct type *type, const char *varstring,
13140 struct ui_file *stream, int show, int level,
13141 const struct type_print_options *flags) const override
13143 ada_print_type (type, varstring, stream, show, level, flags);
13146 /* See language.h. */
13148 const char *word_break_characters (void) const override
13150 return ada_completer_word_break_characters;
13153 /* See language.h. */
13155 void collect_symbol_completion_matches (completion_tracker &tracker,
13156 complete_symbol_mode mode,
13157 symbol_name_match_type name_match_type,
13158 const char *text, const char *word,
13159 enum type_code code) const override
13161 struct symbol *sym;
13162 const struct block *b, *surrounding_static_block = 0;
13163 struct block_iterator iter;
13165 gdb_assert (code == TYPE_CODE_UNDEF);
13167 lookup_name_info lookup_name (text, name_match_type, true);
13169 /* First, look at the partial symtab symbols. */
13170 expand_symtabs_matching (NULL,
13174 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13177 /* At this point scan through the misc symbol vectors and add each
13178 symbol you find to the list. Eventually we want to ignore
13179 anything that isn't a text symbol (everything else will be
13180 handled by the psymtab code above). */
13182 for (objfile *objfile : current_program_space->objfiles ())
13184 for (minimal_symbol *msymbol : objfile->msymbols ())
13188 if (completion_skip_symbol (mode, msymbol))
13191 language symbol_language = msymbol->language ();
13193 /* Ada minimal symbols won't have their language set to Ada. If
13194 we let completion_list_add_name compare using the
13195 default/C-like matcher, then when completing e.g., symbols in a
13196 package named "pck", we'd match internal Ada symbols like
13197 "pckS", which are invalid in an Ada expression, unless you wrap
13198 them in '<' '>' to request a verbatim match.
13200 Unfortunately, some Ada encoded names successfully demangle as
13201 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13202 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13203 with the wrong language set. Paper over that issue here. */
13204 if (symbol_language == language_auto
13205 || symbol_language == language_cplus)
13206 symbol_language = language_ada;
13208 completion_list_add_name (tracker,
13210 msymbol->linkage_name (),
13211 lookup_name, text, word);
13215 /* Search upwards from currently selected frame (so that we can
13216 complete on local vars. */
13218 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13220 if (!BLOCK_SUPERBLOCK (b))
13221 surrounding_static_block = b; /* For elmin of dups */
13223 ALL_BLOCK_SYMBOLS (b, iter, sym)
13225 if (completion_skip_symbol (mode, sym))
13228 completion_list_add_name (tracker,
13230 sym->linkage_name (),
13231 lookup_name, text, word);
13235 /* Go through the symtabs and check the externs and statics for
13236 symbols which match. */
13238 for (objfile *objfile : current_program_space->objfiles ())
13240 for (compunit_symtab *s : objfile->compunits ())
13243 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13244 ALL_BLOCK_SYMBOLS (b, iter, sym)
13246 if (completion_skip_symbol (mode, sym))
13249 completion_list_add_name (tracker,
13251 sym->linkage_name (),
13252 lookup_name, text, word);
13257 for (objfile *objfile : current_program_space->objfiles ())
13259 for (compunit_symtab *s : objfile->compunits ())
13262 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13263 /* Don't do this block twice. */
13264 if (b == surrounding_static_block)
13266 ALL_BLOCK_SYMBOLS (b, iter, sym)
13268 if (completion_skip_symbol (mode, sym))
13271 completion_list_add_name (tracker,
13273 sym->linkage_name (),
13274 lookup_name, text, word);
13280 /* See language.h. */
13282 gdb::unique_xmalloc_ptr<char> watch_location_expression
13283 (struct type *type, CORE_ADDR addr) const override
13285 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13286 std::string name = type_to_string (type);
13287 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13290 /* See language.h. */
13292 void value_print (struct value *val, struct ui_file *stream,
13293 const struct value_print_options *options) const override
13295 return ada_value_print (val, stream, options);
13298 /* See language.h. */
13300 void value_print_inner
13301 (struct value *val, struct ui_file *stream, int recurse,
13302 const struct value_print_options *options) const override
13304 return ada_value_print_inner (val, stream, recurse, options);
13307 /* See language.h. */
13309 struct block_symbol lookup_symbol_nonlocal
13310 (const char *name, const struct block *block,
13311 const domain_enum domain) const override
13313 struct block_symbol sym;
13315 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13316 if (sym.symbol != NULL)
13319 /* If we haven't found a match at this point, try the primitive
13320 types. In other languages, this search is performed before
13321 searching for global symbols in order to short-circuit that
13322 global-symbol search if it happens that the name corresponds
13323 to a primitive type. But we cannot do the same in Ada, because
13324 it is perfectly legitimate for a program to declare a type which
13325 has the same name as a standard type. If looking up a type in
13326 that situation, we have traditionally ignored the primitive type
13327 in favor of user-defined types. This is why, unlike most other
13328 languages, we search the primitive types this late and only after
13329 having searched the global symbols without success. */
13331 if (domain == VAR_DOMAIN)
13333 struct gdbarch *gdbarch;
13336 gdbarch = target_gdbarch ();
13338 gdbarch = block_gdbarch (block);
13340 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13341 if (sym.symbol != NULL)
13348 /* See language.h. */
13350 int parser (struct parser_state *ps) const override
13352 warnings_issued = 0;
13353 return ada_parse (ps);
13356 /* See language.h. */
13358 void emitchar (int ch, struct type *chtype,
13359 struct ui_file *stream, int quoter) const override
13361 ada_emit_char (ch, chtype, stream, quoter, 1);
13364 /* See language.h. */
13366 void printchar (int ch, struct type *chtype,
13367 struct ui_file *stream) const override
13369 ada_printchar (ch, chtype, stream);
13372 /* See language.h. */
13374 void printstr (struct ui_file *stream, struct type *elttype,
13375 const gdb_byte *string, unsigned int length,
13376 const char *encoding, int force_ellipses,
13377 const struct value_print_options *options) const override
13379 ada_printstr (stream, elttype, string, length, encoding,
13380 force_ellipses, options);
13383 /* See language.h. */
13385 void print_typedef (struct type *type, struct symbol *new_symbol,
13386 struct ui_file *stream) const override
13388 ada_print_typedef (type, new_symbol, stream);
13391 /* See language.h. */
13393 bool is_string_type_p (struct type *type) const override
13395 return ada_is_string_type (type);
13398 /* See language.h. */
13400 const char *struct_too_deep_ellipsis () const override
13401 { return "(...)"; }
13403 /* See language.h. */
13405 bool c_style_arrays_p () const override
13408 /* See language.h. */
13410 bool store_sym_names_in_linkage_form_p () const override
13413 /* See language.h. */
13415 const struct lang_varobj_ops *varobj_ops () const override
13416 { return &ada_varobj_ops; }
13419 /* See language.h. */
13421 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13422 (const lookup_name_info &lookup_name) const override
13424 return ada_get_symbol_name_matcher (lookup_name);
13428 /* Single instance of the Ada language class. */
13430 static ada_language ada_language_defn;
13432 /* Command-list for the "set/show ada" prefix command. */
13433 static struct cmd_list_element *set_ada_list;
13434 static struct cmd_list_element *show_ada_list;
13437 initialize_ada_catchpoint_ops (void)
13439 struct breakpoint_ops *ops;
13441 initialize_breakpoint_ops ();
13443 ops = &catch_exception_breakpoint_ops;
13444 *ops = bkpt_breakpoint_ops;
13445 ops->allocate_location = allocate_location_exception;
13446 ops->re_set = re_set_exception;
13447 ops->check_status = check_status_exception;
13448 ops->print_it = print_it_exception;
13449 ops->print_one = print_one_exception;
13450 ops->print_mention = print_mention_exception;
13451 ops->print_recreate = print_recreate_exception;
13453 ops = &catch_exception_unhandled_breakpoint_ops;
13454 *ops = bkpt_breakpoint_ops;
13455 ops->allocate_location = allocate_location_exception;
13456 ops->re_set = re_set_exception;
13457 ops->check_status = check_status_exception;
13458 ops->print_it = print_it_exception;
13459 ops->print_one = print_one_exception;
13460 ops->print_mention = print_mention_exception;
13461 ops->print_recreate = print_recreate_exception;
13463 ops = &catch_assert_breakpoint_ops;
13464 *ops = bkpt_breakpoint_ops;
13465 ops->allocate_location = allocate_location_exception;
13466 ops->re_set = re_set_exception;
13467 ops->check_status = check_status_exception;
13468 ops->print_it = print_it_exception;
13469 ops->print_one = print_one_exception;
13470 ops->print_mention = print_mention_exception;
13471 ops->print_recreate = print_recreate_exception;
13473 ops = &catch_handlers_breakpoint_ops;
13474 *ops = bkpt_breakpoint_ops;
13475 ops->allocate_location = allocate_location_exception;
13476 ops->re_set = re_set_exception;
13477 ops->check_status = check_status_exception;
13478 ops->print_it = print_it_exception;
13479 ops->print_one = print_one_exception;
13480 ops->print_mention = print_mention_exception;
13481 ops->print_recreate = print_recreate_exception;
13484 /* This module's 'new_objfile' observer. */
13487 ada_new_objfile_observer (struct objfile *objfile)
13489 ada_clear_symbol_cache ();
13492 /* This module's 'free_objfile' observer. */
13495 ada_free_objfile_observer (struct objfile *objfile)
13497 ada_clear_symbol_cache ();
13500 void _initialize_ada_language ();
13502 _initialize_ada_language ()
13504 initialize_ada_catchpoint_ops ();
13506 add_setshow_prefix_cmd
13508 _("Prefix command for changing Ada-specific settings."),
13509 _("Generic command for showing Ada-specific settings."),
13510 &set_ada_list, &show_ada_list,
13511 &setlist, &showlist);
13513 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13514 &trust_pad_over_xvs, _("\
13515 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13516 Show whether an optimization trusting PAD types over XVS types is activated."),
13518 This is related to the encoding used by the GNAT compiler. The debugger\n\
13519 should normally trust the contents of PAD types, but certain older versions\n\
13520 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13521 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13522 work around this bug. It is always safe to turn this option \"off\", but\n\
13523 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13524 this option to \"off\" unless necessary."),
13525 NULL, NULL, &set_ada_list, &show_ada_list);
13527 add_setshow_boolean_cmd ("print-signatures", class_vars,
13528 &print_signatures, _("\
13529 Enable or disable the output of formal and return types for functions in the \
13530 overloads selection menu."), _("\
13531 Show whether the output of formal and return types for functions in the \
13532 overloads selection menu is activated."),
13533 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13535 add_catch_command ("exception", _("\
13536 Catch Ada exceptions, when raised.\n\
13537 Usage: catch exception [ARG] [if CONDITION]\n\
13538 Without any argument, stop when any Ada exception is raised.\n\
13539 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13540 being raised does not have a handler (and will therefore lead to the task's\n\
13542 Otherwise, the catchpoint only stops when the name of the exception being\n\
13543 raised is the same as ARG.\n\
13544 CONDITION is a boolean expression that is evaluated to see whether the\n\
13545 exception should cause a stop."),
13546 catch_ada_exception_command,
13547 catch_ada_completer,
13551 add_catch_command ("handlers", _("\
13552 Catch Ada exceptions, when handled.\n\
13553 Usage: catch handlers [ARG] [if CONDITION]\n\
13554 Without any argument, stop when any Ada exception is handled.\n\
13555 With an argument, catch only exceptions with the given name.\n\
13556 CONDITION is a boolean expression that is evaluated to see whether the\n\
13557 exception should cause a stop."),
13558 catch_ada_handlers_command,
13559 catch_ada_completer,
13562 add_catch_command ("assert", _("\
13563 Catch failed Ada assertions, when raised.\n\
13564 Usage: catch assert [if CONDITION]\n\
13565 CONDITION is a boolean expression that is evaluated to see whether the\n\
13566 exception should cause a stop."),
13567 catch_assert_command,
13572 add_info ("exceptions", info_exceptions_command,
13574 List all Ada exception names.\n\
13575 Usage: info exceptions [REGEXP]\n\
13576 If a regular expression is passed as an argument, only those matching\n\
13577 the regular expression are listed."));
13579 add_setshow_prefix_cmd ("ada", class_maintenance,
13580 _("Set Ada maintenance-related variables."),
13581 _("Show Ada maintenance-related variables."),
13582 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
13583 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
13585 add_setshow_boolean_cmd
13586 ("ignore-descriptive-types", class_maintenance,
13587 &ada_ignore_descriptive_types_p,
13588 _("Set whether descriptive types generated by GNAT should be ignored."),
13589 _("Show whether descriptive types generated by GNAT should be ignored."),
13591 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13592 DWARF attribute."),
13593 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13595 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13597 NULL, xcalloc, xfree);
13599 /* The ada-lang observers. */
13600 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13601 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13602 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");