1 /* Perform non-arithmetic operations on values, for GDB.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
37 #include "dictionary.h"
38 #include "cp-support.h"
40 #include "user-regs.h"
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
48 extern int overload_debug;
49 /* Local functions. */
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
54 static struct value *search_struct_field (char *, struct value *,
55 int, struct type *, int);
57 static struct value *search_struct_method (char *, struct value **,
59 int, int *, struct type *);
61 static int find_oload_champ_namespace (struct type **, int,
62 const char *, const char *,
64 struct badness_vector **);
67 int find_oload_champ_namespace_loop (struct type **, int,
68 const char *, const char *,
69 int, struct symbol ***,
70 struct badness_vector **, int *);
72 static int find_oload_champ (struct type **, int, int, int,
73 struct fn_field *, struct symbol **,
74 struct badness_vector **);
76 static int oload_method_static (int, struct fn_field *, int);
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81 oload_classification classify_oload_match (struct badness_vector *,
84 static struct value *value_struct_elt_for_reference (struct type *,
90 static struct value *value_namespace_elt (const struct type *,
91 char *, int , enum noside);
93 static struct value *value_maybe_namespace_elt (const struct type *,
97 static CORE_ADDR allocate_space_in_inferior (int);
99 static struct value *cast_into_complex (struct type *, struct value *);
101 static struct fn_field *find_method_list (struct value **, char *,
102 int, struct type *, int *,
103 struct type **, int *);
105 void _initialize_valops (void);
108 /* Flag for whether we want to abandon failed expression evals by
111 static int auto_abandon = 0;
114 int overload_resolution = 0;
116 show_overload_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
120 fprintf_filtered (file, _("\
121 Overload resolution in evaluating C++ functions is %s.\n"),
125 /* Find the address of function name NAME in the inferior. */
128 find_function_in_inferior (const char *name)
131 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
134 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
136 error (_("\"%s\" exists in this program but is not a function."),
139 return value_of_variable (sym, NULL);
143 struct minimal_symbol *msymbol =
144 lookup_minimal_symbol (name, NULL, NULL);
149 type = lookup_pointer_type (builtin_type_char);
150 type = lookup_function_type (type);
151 type = lookup_pointer_type (type);
152 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
153 return value_from_pointer (type, maddr);
157 if (!target_has_execution)
158 error (_("evaluation of this expression requires the target program to be active"));
160 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
165 /* Allocate NBYTES of space in the inferior using the inferior's
166 malloc and return a value that is a pointer to the allocated
170 value_allocate_space_in_inferior (int len)
172 struct value *blocklen;
173 struct value *val = find_function_in_inferior ("malloc");
175 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
176 val = call_function_by_hand (val, 1, &blocklen);
177 if (value_logical_not (val))
179 if (!target_has_execution)
180 error (_("No memory available to program now: you need to start the target first"));
182 error (_("No memory available to program: call to malloc failed"));
188 allocate_space_in_inferior (int len)
190 return value_as_long (value_allocate_space_in_inferior (len));
193 /* Cast struct value VAL to type TYPE and return as a value.
194 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
195 for this to work. Typedef to one of the codes is permitted.
196 Returns NULL if the cast is neither an upcast nor a downcast. */
198 static struct value *
199 value_cast_structs (struct type *type, struct value *v2)
205 gdb_assert (type != NULL && v2 != NULL);
207 t1 = check_typedef (type);
208 t2 = check_typedef (value_type (v2));
210 /* Check preconditions. */
211 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
212 || TYPE_CODE (t1) == TYPE_CODE_UNION)
213 && !!"Precondition is that type is of STRUCT or UNION kind.");
214 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
215 || TYPE_CODE (t2) == TYPE_CODE_UNION)
216 && !!"Precondition is that value is of STRUCT or UNION kind");
218 /* Upcasting: look in the type of the source to see if it contains the
219 type of the target as a superclass. If so, we'll need to
220 offset the pointer rather than just change its type. */
221 if (TYPE_NAME (t1) != NULL)
223 v = search_struct_field (type_name_no_tag (t1),
229 /* Downcasting: look in the type of the target to see if it contains the
230 type of the source as a superclass. If so, we'll need to
231 offset the pointer rather than just change its type.
232 FIXME: This fails silently with virtual inheritance. */
233 if (TYPE_NAME (t2) != NULL)
235 v = search_struct_field (type_name_no_tag (t2),
236 value_zero (t1, not_lval), 0, t1, 1);
239 /* Downcasting is possible (t1 is superclass of v2). */
240 CORE_ADDR addr2 = VALUE_ADDRESS (v2);
241 addr2 -= (VALUE_ADDRESS (v)
243 + value_embedded_offset (v));
244 return value_at (type, addr2);
251 /* Cast one pointer or reference type to another. Both TYPE and
252 the type of ARG2 should be pointer types, or else both should be
253 reference types. Returns the new pointer or reference. */
256 value_cast_pointers (struct type *type, struct value *arg2)
258 struct type *type1 = check_typedef (type);
259 struct type *type2 = check_typedef (value_type (arg2));
260 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
261 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
263 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
264 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
265 && !value_logical_not (arg2))
269 if (TYPE_CODE (type2) == TYPE_CODE_REF)
270 v2 = coerce_ref (arg2);
272 v2 = value_ind (arg2);
273 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
274 && !!"Why did coercion fail?");
275 v2 = value_cast_structs (t1, v2);
276 /* At this point we have what we can have, un-dereference if needed. */
279 struct value *v = value_addr (v2);
280 deprecated_set_value_type (v, type);
285 /* No superclass found, just change the pointer type. */
286 arg2 = value_copy (arg2);
287 deprecated_set_value_type (arg2, type);
288 arg2 = value_change_enclosing_type (arg2, type);
289 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
293 /* Cast value ARG2 to type TYPE and return as a value.
294 More general than a C cast: accepts any two types of the same length,
295 and if ARG2 is an lvalue it can be cast into anything at all. */
296 /* In C++, casts may change pointer or object representations. */
299 value_cast (struct type *type, struct value *arg2)
301 enum type_code code1;
302 enum type_code code2;
306 int convert_to_boolean = 0;
308 if (value_type (arg2) == type)
311 code1 = TYPE_CODE (check_typedef (type));
313 /* Check if we are casting struct reference to struct reference. */
314 if (code1 == TYPE_CODE_REF)
316 /* We dereference type; then we recurse and finally
317 we generate value of the given reference. Nothing wrong with
319 struct type *t1 = check_typedef (type);
320 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
321 struct value *val = value_cast (dereftype, arg2);
322 return value_ref (val);
325 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
327 if (code2 == TYPE_CODE_REF)
328 /* We deref the value and then do the cast. */
329 return value_cast (type, coerce_ref (arg2));
331 CHECK_TYPEDEF (type);
332 code1 = TYPE_CODE (type);
333 arg2 = coerce_ref (arg2);
334 type2 = check_typedef (value_type (arg2));
336 /* You can't cast to a reference type. See value_cast_pointers
338 gdb_assert (code1 != TYPE_CODE_REF);
340 /* A cast to an undetermined-length array_type, such as
341 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
342 where N is sizeof(OBJECT)/sizeof(TYPE). */
343 if (code1 == TYPE_CODE_ARRAY)
345 struct type *element_type = TYPE_TARGET_TYPE (type);
346 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
347 if (element_length > 0
348 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
350 struct type *range_type = TYPE_INDEX_TYPE (type);
351 int val_length = TYPE_LENGTH (type2);
352 LONGEST low_bound, high_bound, new_length;
353 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
354 low_bound = 0, high_bound = 0;
355 new_length = val_length / element_length;
356 if (val_length % element_length != 0)
357 warning (_("array element type size does not divide object size in cast"));
358 /* FIXME-type-allocation: need a way to free this type when
359 we are done with it. */
360 range_type = create_range_type ((struct type *) NULL,
361 TYPE_TARGET_TYPE (range_type),
363 new_length + low_bound - 1);
364 deprecated_set_value_type (arg2,
365 create_array_type ((struct type *) NULL,
372 if (current_language->c_style_arrays
373 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
374 arg2 = value_coerce_array (arg2);
376 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
377 arg2 = value_coerce_function (arg2);
379 type2 = check_typedef (value_type (arg2));
380 code2 = TYPE_CODE (type2);
382 if (code1 == TYPE_CODE_COMPLEX)
383 return cast_into_complex (type, arg2);
384 if (code1 == TYPE_CODE_BOOL)
386 code1 = TYPE_CODE_INT;
387 convert_to_boolean = 1;
389 if (code1 == TYPE_CODE_CHAR)
390 code1 = TYPE_CODE_INT;
391 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
392 code2 = TYPE_CODE_INT;
394 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
395 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
396 || code2 == TYPE_CODE_RANGE);
398 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
399 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
400 && TYPE_NAME (type) != 0)
402 struct value *v = value_cast_structs (type, arg2);
407 if (code1 == TYPE_CODE_FLT && scalar)
408 return value_from_double (type, value_as_double (arg2));
409 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
411 int dec_len = TYPE_LENGTH (type);
414 if (code2 == TYPE_CODE_FLT)
415 decimal_from_floating (arg2, dec, dec_len);
416 else if (code2 == TYPE_CODE_DECFLOAT)
417 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
420 /* The only option left is an integral type. */
421 decimal_from_integral (arg2, dec, dec_len);
423 return value_from_decfloat (type, dec);
425 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
426 || code1 == TYPE_CODE_RANGE)
427 && (scalar || code2 == TYPE_CODE_PTR
428 || code2 == TYPE_CODE_MEMBERPTR))
432 /* When we cast pointers to integers, we mustn't use
433 gdbarch_pointer_to_address to find the address the pointer
434 represents, as value_as_long would. GDB should evaluate
435 expressions just as the compiler would --- and the compiler
436 sees a cast as a simple reinterpretation of the pointer's
438 if (code2 == TYPE_CODE_PTR)
439 longest = extract_unsigned_integer (value_contents (arg2),
440 TYPE_LENGTH (type2));
442 longest = value_as_long (arg2);
443 return value_from_longest (type, convert_to_boolean ?
444 (LONGEST) (longest ? 1 : 0) : longest);
446 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
447 || code2 == TYPE_CODE_ENUM
448 || code2 == TYPE_CODE_RANGE))
450 /* TYPE_LENGTH (type) is the length of a pointer, but we really
451 want the length of an address! -- we are really dealing with
452 addresses (i.e., gdb representations) not pointers (i.e.,
453 target representations) here.
455 This allows things like "print *(int *)0x01000234" to work
456 without printing a misleading message -- which would
457 otherwise occur when dealing with a target having two byte
458 pointers and four byte addresses. */
460 int addr_bit = gdbarch_addr_bit (current_gdbarch);
462 LONGEST longest = value_as_long (arg2);
463 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
465 if (longest >= ((LONGEST) 1 << addr_bit)
466 || longest <= -((LONGEST) 1 << addr_bit))
467 warning (_("value truncated"));
469 return value_from_longest (type, longest);
471 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
472 && value_as_long (arg2) == 0)
474 struct value *result = allocate_value (type);
475 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
478 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
479 && value_as_long (arg2) == 0)
481 /* The Itanium C++ ABI represents NULL pointers to members as
482 minus one, instead of biasing the normal case. */
483 return value_from_longest (type, -1);
485 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
487 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
488 return value_cast_pointers (type, arg2);
490 arg2 = value_copy (arg2);
491 deprecated_set_value_type (arg2, type);
492 arg2 = value_change_enclosing_type (arg2, type);
493 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
496 else if (VALUE_LVAL (arg2) == lval_memory)
497 return value_at_lazy (type,
498 VALUE_ADDRESS (arg2) + value_offset (arg2));
499 else if (code1 == TYPE_CODE_VOID)
501 return value_zero (builtin_type_void, not_lval);
505 error (_("Invalid cast."));
510 /* Create a value of type TYPE that is zero, and return it. */
513 value_zero (struct type *type, enum lval_type lv)
515 struct value *val = allocate_value (type);
516 VALUE_LVAL (val) = lv;
521 /* Create a value of numeric type TYPE that is one, and return it. */
524 value_one (struct type *type, enum lval_type lv)
526 struct type *type1 = check_typedef (type);
527 struct value *val = NULL; /* avoid -Wall warning */
529 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
531 struct value *int_one = value_from_longest (builtin_type_int32, 1);
535 decimal_from_integral (int_one, v, TYPE_LENGTH (builtin_type_int32));
536 val = value_from_decfloat (type, v);
538 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
540 val = value_from_double (type, (DOUBLEST) 1);
542 else if (is_integral_type (type1))
544 val = value_from_longest (type, (LONGEST) 1);
548 error (_("Not a numeric type."));
551 VALUE_LVAL (val) = lv;
555 /* Return a value with type TYPE located at ADDR.
557 Call value_at only if the data needs to be fetched immediately;
558 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
559 value_at_lazy instead. value_at_lazy simply records the address of
560 the data and sets the lazy-evaluation-required flag. The lazy flag
561 is tested in the value_contents macro, which is used if and when
562 the contents are actually required.
564 Note: value_at does *NOT* handle embedded offsets; perform such
565 adjustments before or after calling it. */
568 value_at (struct type *type, CORE_ADDR addr)
572 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
573 error (_("Attempt to dereference a generic pointer."));
575 val = allocate_value (type);
577 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
579 VALUE_LVAL (val) = lval_memory;
580 VALUE_ADDRESS (val) = addr;
585 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
588 value_at_lazy (struct type *type, CORE_ADDR addr)
592 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
593 error (_("Attempt to dereference a generic pointer."));
595 val = allocate_value (type);
597 VALUE_LVAL (val) = lval_memory;
598 VALUE_ADDRESS (val) = addr;
599 set_value_lazy (val, 1);
604 /* Called only from the value_contents and value_contents_all()
605 macros, if the current data for a variable needs to be loaded into
606 value_contents(VAL). Fetches the data from the user's process, and
607 clears the lazy flag to indicate that the data in the buffer is
610 If the value is zero-length, we avoid calling read_memory, which
611 would abort. We mark the value as fetched anyway -- all 0 bytes of
614 This function returns a value because it is used in the
615 value_contents macro as part of an expression, where a void would
616 not work. The value is ignored. */
619 value_fetch_lazy (struct value *val)
621 if (VALUE_LVAL (val) == lval_memory)
623 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
624 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
627 read_memory (addr, value_contents_all_raw (val), length);
629 else if (VALUE_LVAL (val) == lval_register)
631 struct frame_info *frame;
633 struct type *type = check_typedef (value_type (val));
634 struct value *new_val = val, *mark = value_mark ();
636 /* Offsets are not supported here; lazy register values must
637 refer to the entire register. */
638 gdb_assert (value_offset (val) == 0);
640 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
642 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
643 regnum = VALUE_REGNUM (new_val);
645 gdb_assert (frame != NULL);
647 /* Convertible register routines are used for multi-register
648 values and for interpretation in different types
649 (e.g. float or int from a double register). Lazy
650 register values should have the register's natural type,
651 so they do not apply. */
652 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
655 new_val = get_frame_register_value (frame, regnum);
658 /* If it's still lazy (for instance, a saved register on the
660 if (value_lazy (new_val))
661 value_fetch_lazy (new_val);
663 /* If the register was not saved, mark it unavailable. */
664 if (value_optimized_out (new_val))
665 set_value_optimized_out (val, 1);
667 memcpy (value_contents_raw (val), value_contents (new_val),
672 struct gdbarch *gdbarch;
673 frame = frame_find_by_id (VALUE_FRAME_ID (val));
674 regnum = VALUE_REGNUM (val);
675 gdbarch = get_frame_arch (frame);
677 fprintf_unfiltered (gdb_stdlog, "\
678 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
679 frame_relative_level (frame), regnum,
680 user_reg_map_regnum_to_name (gdbarch, regnum));
682 fprintf_unfiltered (gdb_stdlog, "->");
683 if (value_optimized_out (new_val))
684 fprintf_unfiltered (gdb_stdlog, " optimized out");
688 const gdb_byte *buf = value_contents (new_val);
690 if (VALUE_LVAL (new_val) == lval_register)
691 fprintf_unfiltered (gdb_stdlog, " register=%d",
692 VALUE_REGNUM (new_val));
693 else if (VALUE_LVAL (new_val) == lval_memory)
694 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
695 paddr_nz (VALUE_ADDRESS (new_val)));
697 fprintf_unfiltered (gdb_stdlog, " computed");
699 fprintf_unfiltered (gdb_stdlog, " bytes=");
700 fprintf_unfiltered (gdb_stdlog, "[");
701 for (i = 0; i < register_size (gdbarch, regnum); i++)
702 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
703 fprintf_unfiltered (gdb_stdlog, "]");
706 fprintf_unfiltered (gdb_stdlog, " }\n");
709 /* Dispose of the intermediate values. This prevents
710 watchpoints from trying to watch the saved frame pointer. */
711 value_free_to_mark (mark);
714 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
716 set_value_lazy (val, 0);
721 /* Store the contents of FROMVAL into the location of TOVAL.
722 Return a new value with the location of TOVAL and contents of FROMVAL. */
725 value_assign (struct value *toval, struct value *fromval)
729 struct frame_id old_frame;
731 if (!deprecated_value_modifiable (toval))
732 error (_("Left operand of assignment is not a modifiable lvalue."));
734 toval = coerce_ref (toval);
736 type = value_type (toval);
737 if (VALUE_LVAL (toval) != lval_internalvar)
739 toval = value_coerce_to_target (toval);
740 fromval = value_cast (type, fromval);
744 /* Coerce arrays and functions to pointers, except for arrays
745 which only live in GDB's storage. */
746 if (!value_must_coerce_to_target (fromval))
747 fromval = coerce_array (fromval);
750 CHECK_TYPEDEF (type);
752 /* Since modifying a register can trash the frame chain, and
753 modifying memory can trash the frame cache, we save the old frame
754 and then restore the new frame afterwards. */
755 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
757 switch (VALUE_LVAL (toval))
759 case lval_internalvar:
760 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
761 val = value_copy (VALUE_INTERNALVAR (toval)->value);
762 val = value_change_enclosing_type (val,
763 value_enclosing_type (fromval));
764 set_value_embedded_offset (val, value_embedded_offset (fromval));
765 set_value_pointed_to_offset (val,
766 value_pointed_to_offset (fromval));
769 case lval_internalvar_component:
770 set_internalvar_component (VALUE_INTERNALVAR (toval),
771 value_offset (toval),
772 value_bitpos (toval),
773 value_bitsize (toval),
779 const gdb_byte *dest_buffer;
780 CORE_ADDR changed_addr;
782 gdb_byte buffer[sizeof (LONGEST)];
784 if (value_bitsize (toval))
786 /* We assume that the argument to read_memory is in units
787 of host chars. FIXME: Is that correct? */
788 changed_len = (value_bitpos (toval)
789 + value_bitsize (toval)
793 if (changed_len > (int) sizeof (LONGEST))
794 error (_("Can't handle bitfields which don't fit in a %d bit word."),
795 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
797 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
798 buffer, changed_len);
799 modify_field (buffer, value_as_long (fromval),
800 value_bitpos (toval), value_bitsize (toval));
801 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
802 dest_buffer = buffer;
806 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
807 changed_len = TYPE_LENGTH (type);
808 dest_buffer = value_contents (fromval);
811 write_memory (changed_addr, dest_buffer, changed_len);
812 if (deprecated_memory_changed_hook)
813 deprecated_memory_changed_hook (changed_addr, changed_len);
819 struct frame_info *frame;
822 /* Figure out which frame this is in currently. */
823 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
824 value_reg = VALUE_REGNUM (toval);
827 error (_("Value being assigned to is no longer active."));
829 if (gdbarch_convert_register_p
830 (current_gdbarch, VALUE_REGNUM (toval), type))
832 /* If TOVAL is a special machine register requiring
833 conversion of program values to a special raw
835 gdbarch_value_to_register (current_gdbarch, frame,
836 VALUE_REGNUM (toval), type,
837 value_contents (fromval));
841 if (value_bitsize (toval))
844 gdb_byte buffer[sizeof (LONGEST)];
846 changed_len = (value_bitpos (toval)
847 + value_bitsize (toval)
851 if (changed_len > (int) sizeof (LONGEST))
852 error (_("Can't handle bitfields which don't fit in a %d bit word."),
853 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
855 get_frame_register_bytes (frame, value_reg,
856 value_offset (toval),
857 changed_len, buffer);
859 modify_field (buffer, value_as_long (fromval),
860 value_bitpos (toval),
861 value_bitsize (toval));
863 put_frame_register_bytes (frame, value_reg,
864 value_offset (toval),
865 changed_len, buffer);
869 put_frame_register_bytes (frame, value_reg,
870 value_offset (toval),
872 value_contents (fromval));
876 if (deprecated_register_changed_hook)
877 deprecated_register_changed_hook (-1);
878 observer_notify_target_changed (¤t_target);
883 error (_("Left operand of assignment is not an lvalue."));
886 /* Assigning to the stack pointer, frame pointer, and other
887 (architecture and calling convention specific) registers may
888 cause the frame cache to be out of date. Assigning to memory
889 also can. We just do this on all assignments to registers or
890 memory, for simplicity's sake; I doubt the slowdown matters. */
891 switch (VALUE_LVAL (toval))
896 reinit_frame_cache ();
898 /* Having destroyed the frame cache, restore the selected
901 /* FIXME: cagney/2002-11-02: There has to be a better way of
902 doing this. Instead of constantly saving/restoring the
903 frame. Why not create a get_selected_frame() function that,
904 having saved the selected frame's ID can automatically
905 re-find the previously selected frame automatically. */
908 struct frame_info *fi = frame_find_by_id (old_frame);
918 /* If the field does not entirely fill a LONGEST, then zero the sign
919 bits. If the field is signed, and is negative, then sign
921 if ((value_bitsize (toval) > 0)
922 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
924 LONGEST fieldval = value_as_long (fromval);
925 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
928 if (!TYPE_UNSIGNED (type)
929 && (fieldval & (valmask ^ (valmask >> 1))))
930 fieldval |= ~valmask;
932 fromval = value_from_longest (type, fieldval);
935 val = value_copy (toval);
936 memcpy (value_contents_raw (val), value_contents (fromval),
938 deprecated_set_value_type (val, type);
939 val = value_change_enclosing_type (val,
940 value_enclosing_type (fromval));
941 set_value_embedded_offset (val, value_embedded_offset (fromval));
942 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
947 /* Extend a value VAL to COUNT repetitions of its type. */
950 value_repeat (struct value *arg1, int count)
954 if (VALUE_LVAL (arg1) != lval_memory)
955 error (_("Only values in memory can be extended with '@'."));
957 error (_("Invalid number %d of repetitions."), count);
959 val = allocate_repeat_value (value_enclosing_type (arg1), count);
961 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
962 value_contents_all_raw (val),
963 TYPE_LENGTH (value_enclosing_type (val)));
964 VALUE_LVAL (val) = lval_memory;
965 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
971 value_of_variable (struct symbol *var, struct block *b)
974 struct frame_info *frame = NULL;
977 frame = NULL; /* Use selected frame. */
978 else if (symbol_read_needs_frame (var))
980 frame = block_innermost_frame (b);
983 if (BLOCK_FUNCTION (b)
984 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
985 error (_("No frame is currently executing in block %s."),
986 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
988 error (_("No frame is currently executing in specified block"));
992 val = read_var_value (var, frame);
994 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
999 /* Return one if VAL does not live in target memory, but should in order
1000 to operate on it. Otherwise return zero. */
1003 value_must_coerce_to_target (struct value *val)
1005 struct type *valtype;
1007 /* The only lval kinds which do not live in target memory. */
1008 if (VALUE_LVAL (val) != not_lval
1009 && VALUE_LVAL (val) != lval_internalvar)
1012 valtype = check_typedef (value_type (val));
1014 switch (TYPE_CODE (valtype))
1016 case TYPE_CODE_ARRAY:
1017 case TYPE_CODE_STRING:
1024 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1025 strings are constructed as character arrays in GDB's storage, and this
1026 function copies them to the target. */
1029 value_coerce_to_target (struct value *val)
1034 if (!value_must_coerce_to_target (val))
1037 length = TYPE_LENGTH (check_typedef (value_type (val)));
1038 addr = allocate_space_in_inferior (length);
1039 write_memory (addr, value_contents (val), length);
1040 return value_at_lazy (value_type (val), addr);
1043 /* Given a value which is an array, return a value which is a pointer
1044 to its first element, regardless of whether or not the array has a
1045 nonzero lower bound.
1047 FIXME: A previous comment here indicated that this routine should
1048 be substracting the array's lower bound. It's not clear to me that
1049 this is correct. Given an array subscripting operation, it would
1050 certainly work to do the adjustment here, essentially computing:
1052 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1054 However I believe a more appropriate and logical place to account
1055 for the lower bound is to do so in value_subscript, essentially
1058 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1060 As further evidence consider what would happen with operations
1061 other than array subscripting, where the caller would get back a
1062 value that had an address somewhere before the actual first element
1063 of the array, and the information about the lower bound would be
1064 lost because of the coercion to pointer type.
1068 value_coerce_array (struct value *arg1)
1070 struct type *type = check_typedef (value_type (arg1));
1072 /* If the user tries to do something requiring a pointer with an
1073 array that has not yet been pushed to the target, then this would
1074 be a good time to do so. */
1075 arg1 = value_coerce_to_target (arg1);
1077 if (VALUE_LVAL (arg1) != lval_memory)
1078 error (_("Attempt to take address of value not located in memory."));
1080 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1081 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1084 /* Given a value which is a function, return a value which is a pointer
1088 value_coerce_function (struct value *arg1)
1090 struct value *retval;
1092 if (VALUE_LVAL (arg1) != lval_memory)
1093 error (_("Attempt to take address of value not located in memory."));
1095 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1096 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
1100 /* Return a pointer value for the object for which ARG1 is the
1104 value_addr (struct value *arg1)
1108 struct type *type = check_typedef (value_type (arg1));
1109 if (TYPE_CODE (type) == TYPE_CODE_REF)
1111 /* Copy the value, but change the type from (T&) to (T*). We
1112 keep the same location information, which is efficient, and
1113 allows &(&X) to get the location containing the reference. */
1114 arg2 = value_copy (arg1);
1115 deprecated_set_value_type (arg2,
1116 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1119 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1120 return value_coerce_function (arg1);
1122 /* If this is an array that has not yet been pushed to the target,
1123 then this would be a good time to force it to memory. */
1124 arg1 = value_coerce_to_target (arg1);
1126 if (VALUE_LVAL (arg1) != lval_memory)
1127 error (_("Attempt to take address of value not located in memory."));
1129 /* Get target memory address */
1130 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1131 (VALUE_ADDRESS (arg1)
1132 + value_offset (arg1)
1133 + value_embedded_offset (arg1)));
1135 /* This may be a pointer to a base subobject; so remember the
1136 full derived object's type ... */
1137 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1138 /* ... and also the relative position of the subobject in the full
1140 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1144 /* Return a reference value for the object for which ARG1 is the
1148 value_ref (struct value *arg1)
1152 struct type *type = check_typedef (value_type (arg1));
1153 if (TYPE_CODE (type) == TYPE_CODE_REF)
1156 arg2 = value_addr (arg1);
1157 deprecated_set_value_type (arg2, lookup_reference_type (type));
1161 /* Given a value of a pointer type, apply the C unary * operator to
1165 value_ind (struct value *arg1)
1167 struct type *base_type;
1170 arg1 = coerce_array (arg1);
1172 base_type = check_typedef (value_type (arg1));
1174 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1176 struct type *enc_type;
1177 /* We may be pointing to something embedded in a larger object.
1178 Get the real type of the enclosing object. */
1179 enc_type = check_typedef (value_enclosing_type (arg1));
1180 enc_type = TYPE_TARGET_TYPE (enc_type);
1182 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1183 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1184 /* For functions, go through find_function_addr, which knows
1185 how to handle function descriptors. */
1186 arg2 = value_at_lazy (enc_type,
1187 find_function_addr (arg1, NULL));
1189 /* Retrieve the enclosing object pointed to */
1190 arg2 = value_at_lazy (enc_type,
1191 (value_as_address (arg1)
1192 - value_pointed_to_offset (arg1)));
1194 /* Re-adjust type. */
1195 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1196 /* Add embedding info. */
1197 arg2 = value_change_enclosing_type (arg2, enc_type);
1198 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1200 /* We may be pointing to an object of some derived type. */
1201 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1205 error (_("Attempt to take contents of a non-pointer value."));
1206 return 0; /* For lint -- never reached. */
1209 /* Create a value for an array by allocating space in GDB, copying
1210 copying the data into that space, and then setting up an array
1213 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1214 is populated from the values passed in ELEMVEC.
1216 The element type of the array is inherited from the type of the
1217 first element, and all elements must have the same size (though we
1218 don't currently enforce any restriction on their types). */
1221 value_array (int lowbound, int highbound, struct value **elemvec)
1225 unsigned int typelength;
1227 struct type *rangetype;
1228 struct type *arraytype;
1231 /* Validate that the bounds are reasonable and that each of the
1232 elements have the same size. */
1234 nelem = highbound - lowbound + 1;
1237 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1239 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1240 for (idx = 1; idx < nelem; idx++)
1242 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1244 error (_("array elements must all be the same size"));
1248 rangetype = create_range_type ((struct type *) NULL,
1250 lowbound, highbound);
1251 arraytype = create_array_type ((struct type *) NULL,
1252 value_enclosing_type (elemvec[0]),
1255 if (!current_language->c_style_arrays)
1257 val = allocate_value (arraytype);
1258 for (idx = 0; idx < nelem; idx++)
1260 memcpy (value_contents_all_raw (val) + (idx * typelength),
1261 value_contents_all (elemvec[idx]),
1267 /* Allocate space to store the array, and then initialize it by
1268 copying in each element. */
1270 val = allocate_value (arraytype);
1271 for (idx = 0; idx < nelem; idx++)
1272 memcpy (value_contents_writeable (val) + (idx * typelength),
1273 value_contents_all (elemvec[idx]),
1278 /* Create a value for a string constant by allocating space in the
1279 inferior, copying the data into that space, and returning the
1280 address with type TYPE_CODE_STRING. PTR points to the string
1281 constant data; LEN is number of characters.
1283 Note that string types are like array of char types with a lower
1284 bound of zero and an upper bound of LEN - 1. Also note that the
1285 string may contain embedded null bytes. */
1288 value_string (char *ptr, int len)
1291 int lowbound = current_language->string_lower_bound;
1292 struct type *rangetype = create_range_type ((struct type *) NULL,
1295 len + lowbound - 1);
1296 struct type *stringtype
1297 = create_string_type ((struct type *) NULL, rangetype);
1300 if (current_language->c_style_arrays == 0)
1302 val = allocate_value (stringtype);
1303 memcpy (value_contents_raw (val), ptr, len);
1308 /* Allocate space to store the string in the inferior, and then copy
1309 LEN bytes from PTR in gdb to that address in the inferior. */
1311 addr = allocate_space_in_inferior (len);
1312 write_memory (addr, (gdb_byte *) ptr, len);
1314 val = value_at_lazy (stringtype, addr);
1319 value_bitstring (char *ptr, int len)
1322 struct type *domain_type = create_range_type (NULL,
1325 struct type *type = create_set_type ((struct type *) NULL,
1327 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1328 val = allocate_value (type);
1329 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1333 /* See if we can pass arguments in T2 to a function which takes
1334 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1335 a NULL-terminated vector. If some arguments need coercion of some
1336 sort, then the coerced values are written into T2. Return value is
1337 0 if the arguments could be matched, or the position at which they
1340 STATICP is nonzero if the T1 argument list came from a static
1341 member function. T2 will still include the ``this'' pointer, but
1344 For non-static member functions, we ignore the first argument,
1345 which is the type of the instance variable. This is because we
1346 want to handle calls with objects from derived classes. This is
1347 not entirely correct: we should actually check to make sure that a
1348 requested operation is type secure, shouldn't we? FIXME. */
1351 typecmp (int staticp, int varargs, int nargs,
1352 struct field t1[], struct value *t2[])
1357 internal_error (__FILE__, __LINE__,
1358 _("typecmp: no argument list"));
1360 /* Skip ``this'' argument if applicable. T2 will always include
1366 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1369 struct type *tt1, *tt2;
1374 tt1 = check_typedef (t1[i].type);
1375 tt2 = check_typedef (value_type (t2[i]));
1377 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1378 /* We should be doing hairy argument matching, as below. */
1379 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1381 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1382 t2[i] = value_coerce_array (t2[i]);
1384 t2[i] = value_ref (t2[i]);
1388 /* djb - 20000715 - Until the new type structure is in the
1389 place, and we can attempt things like implicit conversions,
1390 we need to do this so you can take something like a map<const
1391 char *>, and properly access map["hello"], because the
1392 argument to [] will be a reference to a pointer to a char,
1393 and the argument will be a pointer to a char. */
1394 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1395 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1397 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1399 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1400 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1401 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1403 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1405 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1407 /* Array to pointer is a `trivial conversion' according to the
1410 /* We should be doing much hairier argument matching (see
1411 section 13.2 of the ARM), but as a quick kludge, just check
1412 for the same type code. */
1413 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1416 if (varargs || t2[i] == NULL)
1421 /* Helper function used by value_struct_elt to recurse through
1422 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1423 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1424 TYPE. If found, return value, else return NULL.
1426 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1427 fields, look for a baseclass named NAME. */
1429 static struct value *
1430 search_struct_field (char *name, struct value *arg1, int offset,
1431 struct type *type, int looking_for_baseclass)
1434 int nbases = TYPE_N_BASECLASSES (type);
1436 CHECK_TYPEDEF (type);
1438 if (!looking_for_baseclass)
1439 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1441 char *t_field_name = TYPE_FIELD_NAME (type, i);
1443 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1446 if (TYPE_FIELD_STATIC (type, i))
1448 v = value_static_field (type, i);
1450 error (_("field %s is nonexistent or has been optimised out"),
1455 v = value_primitive_field (arg1, offset, i, type);
1457 error (_("there is no field named %s"), name);
1463 && (t_field_name[0] == '\0'
1464 || (TYPE_CODE (type) == TYPE_CODE_UNION
1465 && (strcmp_iw (t_field_name, "else") == 0))))
1467 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1468 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1469 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1471 /* Look for a match through the fields of an anonymous
1472 union, or anonymous struct. C++ provides anonymous
1475 In the GNU Chill (now deleted from GDB)
1476 implementation of variant record types, each
1477 <alternative field> has an (anonymous) union type,
1478 each member of the union represents a <variant
1479 alternative>. Each <variant alternative> is
1480 represented as a struct, with a member for each
1484 int new_offset = offset;
1486 /* This is pretty gross. In G++, the offset in an
1487 anonymous union is relative to the beginning of the
1488 enclosing struct. In the GNU Chill (now deleted
1489 from GDB) implementation of variant records, the
1490 bitpos is zero in an anonymous union field, so we
1491 have to add the offset of the union here. */
1492 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1493 || (TYPE_NFIELDS (field_type) > 0
1494 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1495 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1497 v = search_struct_field (name, arg1, new_offset,
1499 looking_for_baseclass);
1506 for (i = 0; i < nbases; i++)
1509 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1510 /* If we are looking for baseclasses, this is what we get when
1511 we hit them. But it could happen that the base part's member
1512 name is not yet filled in. */
1513 int found_baseclass = (looking_for_baseclass
1514 && TYPE_BASECLASS_NAME (type, i) != NULL
1515 && (strcmp_iw (name,
1516 TYPE_BASECLASS_NAME (type,
1519 if (BASETYPE_VIA_VIRTUAL (type, i))
1522 struct value *v2 = allocate_value (basetype);
1524 boffset = baseclass_offset (type, i,
1525 value_contents (arg1) + offset,
1526 VALUE_ADDRESS (arg1)
1527 + value_offset (arg1) + offset);
1529 error (_("virtual baseclass botch"));
1531 /* The virtual base class pointer might have been clobbered
1532 by the user program. Make sure that it still points to a
1533 valid memory location. */
1536 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1538 CORE_ADDR base_addr;
1541 VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1542 if (target_read_memory (base_addr,
1543 value_contents_raw (v2),
1544 TYPE_LENGTH (basetype)) != 0)
1545 error (_("virtual baseclass botch"));
1546 VALUE_LVAL (v2) = lval_memory;
1547 VALUE_ADDRESS (v2) = base_addr;
1551 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1552 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1553 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1554 set_value_offset (v2, value_offset (arg1) + boffset);
1555 if (VALUE_LVAL (arg1) == lval_memory && value_lazy (arg1))
1556 set_value_lazy (v2, 1);
1558 memcpy (value_contents_raw (v2),
1559 value_contents_raw (arg1) + boffset,
1560 TYPE_LENGTH (basetype));
1563 if (found_baseclass)
1565 v = search_struct_field (name, v2, 0,
1566 TYPE_BASECLASS (type, i),
1567 looking_for_baseclass);
1569 else if (found_baseclass)
1570 v = value_primitive_field (arg1, offset, i, type);
1572 v = search_struct_field (name, arg1,
1573 offset + TYPE_BASECLASS_BITPOS (type,
1575 basetype, looking_for_baseclass);
1582 /* Helper function used by value_struct_elt to recurse through
1583 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1584 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1587 If found, return value, else if name matched and args not return
1588 (value) -1, else return NULL. */
1590 static struct value *
1591 search_struct_method (char *name, struct value **arg1p,
1592 struct value **args, int offset,
1593 int *static_memfuncp, struct type *type)
1597 int name_matched = 0;
1598 char dem_opname[64];
1600 CHECK_TYPEDEF (type);
1601 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1603 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1604 /* FIXME! May need to check for ARM demangling here */
1605 if (strncmp (t_field_name, "__", 2) == 0 ||
1606 strncmp (t_field_name, "op", 2) == 0 ||
1607 strncmp (t_field_name, "type", 4) == 0)
1609 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1610 t_field_name = dem_opname;
1611 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1612 t_field_name = dem_opname;
1614 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1616 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1617 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1620 check_stub_method_group (type, i);
1621 if (j > 0 && args == 0)
1622 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1623 else if (j == 0 && args == 0)
1625 v = value_fn_field (arg1p, f, j, type, offset);
1632 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1633 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1634 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1635 TYPE_FN_FIELD_ARGS (f, j), args))
1637 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1638 return value_virtual_fn_field (arg1p, f, j,
1640 if (TYPE_FN_FIELD_STATIC_P (f, j)
1642 *static_memfuncp = 1;
1643 v = value_fn_field (arg1p, f, j, type, offset);
1652 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1656 if (BASETYPE_VIA_VIRTUAL (type, i))
1658 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1659 const gdb_byte *base_valaddr;
1661 /* The virtual base class pointer might have been
1662 clobbered by the user program. Make sure that it
1663 still points to a valid memory location. */
1665 if (offset < 0 || offset >= TYPE_LENGTH (type))
1667 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1668 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1669 + value_offset (*arg1p) + offset,
1670 tmp, TYPE_LENGTH (baseclass)) != 0)
1671 error (_("virtual baseclass botch"));
1675 base_valaddr = value_contents (*arg1p) + offset;
1677 base_offset = baseclass_offset (type, i, base_valaddr,
1678 VALUE_ADDRESS (*arg1p)
1679 + value_offset (*arg1p) + offset);
1680 if (base_offset == -1)
1681 error (_("virtual baseclass botch"));
1685 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1687 v = search_struct_method (name, arg1p, args, base_offset + offset,
1688 static_memfuncp, TYPE_BASECLASS (type, i));
1689 if (v == (struct value *) - 1)
1695 /* FIXME-bothner: Why is this commented out? Why is it here? */
1696 /* *arg1p = arg1_tmp; */
1701 return (struct value *) - 1;
1706 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1707 extract the component named NAME from the ultimate target
1708 structure/union and return it as a value with its appropriate type.
1709 ERR is used in the error message if *ARGP's type is wrong.
1711 C++: ARGS is a list of argument types to aid in the selection of
1712 an appropriate method. Also, handle derived types.
1714 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1715 where the truthvalue of whether the function that was resolved was
1716 a static member function or not is stored.
1718 ERR is an error message to be printed in case the field is not
1722 value_struct_elt (struct value **argp, struct value **args,
1723 char *name, int *static_memfuncp, char *err)
1728 *argp = coerce_array (*argp);
1730 t = check_typedef (value_type (*argp));
1732 /* Follow pointers until we get to a non-pointer. */
1734 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1736 *argp = value_ind (*argp);
1737 /* Don't coerce fn pointer to fn and then back again! */
1738 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1739 *argp = coerce_array (*argp);
1740 t = check_typedef (value_type (*argp));
1743 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1744 && TYPE_CODE (t) != TYPE_CODE_UNION)
1745 error (_("Attempt to extract a component of a value that is not a %s."), err);
1747 /* Assume it's not, unless we see that it is. */
1748 if (static_memfuncp)
1749 *static_memfuncp = 0;
1753 /* if there are no arguments ...do this... */
1755 /* Try as a field first, because if we succeed, there is less
1757 v = search_struct_field (name, *argp, 0, t, 0);
1761 /* C++: If it was not found as a data field, then try to
1762 return it as a pointer to a method. */
1764 if (destructor_name_p (name, t))
1765 error (_("Cannot get value of destructor"));
1767 v = search_struct_method (name, argp, args, 0,
1768 static_memfuncp, t);
1770 if (v == (struct value *) - 1)
1771 error (_("Cannot take address of method %s."), name);
1774 if (TYPE_NFN_FIELDS (t))
1775 error (_("There is no member or method named %s."), name);
1777 error (_("There is no member named %s."), name);
1782 if (destructor_name_p (name, t))
1786 /* Destructors are a special case. */
1787 int m_index, f_index;
1790 if (get_destructor_fn_field (t, &m_index, &f_index))
1792 v = value_fn_field (NULL,
1793 TYPE_FN_FIELDLIST1 (t, m_index),
1797 error (_("could not find destructor function named %s."),
1804 error (_("destructor should not have any argument"));
1808 v = search_struct_method (name, argp, args, 0,
1809 static_memfuncp, t);
1811 if (v == (struct value *) - 1)
1813 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1817 /* See if user tried to invoke data as function. If so, hand it
1818 back. If it's not callable (i.e., a pointer to function),
1819 gdb should give an error. */
1820 v = search_struct_field (name, *argp, 0, t, 0);
1821 /* If we found an ordinary field, then it is not a method call.
1822 So, treat it as if it were a static member function. */
1823 if (v && static_memfuncp)
1824 *static_memfuncp = 1;
1828 error (_("Structure has no component named %s."), name);
1832 /* Search through the methods of an object (and its bases) to find a
1833 specified method. Return the pointer to the fn_field list of
1834 overloaded instances.
1836 Helper function for value_find_oload_list.
1837 ARGP is a pointer to a pointer to a value (the object).
1838 METHOD is a string containing the method name.
1839 OFFSET is the offset within the value.
1840 TYPE is the assumed type of the object.
1841 NUM_FNS is the number of overloaded instances.
1842 BASETYPE is set to the actual type of the subobject where the
1844 BOFFSET is the offset of the base subobject where the method is found.
1847 static struct fn_field *
1848 find_method_list (struct value **argp, char *method,
1849 int offset, struct type *type, int *num_fns,
1850 struct type **basetype, int *boffset)
1854 CHECK_TYPEDEF (type);
1858 /* First check in object itself. */
1859 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1861 /* pai: FIXME What about operators and type conversions? */
1862 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1863 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1865 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1866 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1872 /* Resolve any stub methods. */
1873 check_stub_method_group (type, i);
1879 /* Not found in object, check in base subobjects. */
1880 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1883 if (BASETYPE_VIA_VIRTUAL (type, i))
1885 base_offset = value_offset (*argp) + offset;
1886 base_offset = baseclass_offset (type, i,
1887 value_contents (*argp) + base_offset,
1888 VALUE_ADDRESS (*argp) + base_offset);
1889 if (base_offset == -1)
1890 error (_("virtual baseclass botch"));
1892 else /* Non-virtual base, simply use bit position from debug
1895 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1897 f = find_method_list (argp, method, base_offset + offset,
1898 TYPE_BASECLASS (type, i), num_fns,
1906 /* Return the list of overloaded methods of a specified name.
1908 ARGP is a pointer to a pointer to a value (the object).
1909 METHOD is the method name.
1910 OFFSET is the offset within the value contents.
1911 NUM_FNS is the number of overloaded instances.
1912 BASETYPE is set to the type of the base subobject that defines the
1914 BOFFSET is the offset of the base subobject which defines the method.
1918 value_find_oload_method_list (struct value **argp, char *method,
1919 int offset, int *num_fns,
1920 struct type **basetype, int *boffset)
1924 t = check_typedef (value_type (*argp));
1926 /* Code snarfed from value_struct_elt. */
1927 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1929 *argp = value_ind (*argp);
1930 /* Don't coerce fn pointer to fn and then back again! */
1931 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1932 *argp = coerce_array (*argp);
1933 t = check_typedef (value_type (*argp));
1936 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1937 && TYPE_CODE (t) != TYPE_CODE_UNION)
1938 error (_("Attempt to extract a component of a value that is not a struct or union"));
1940 return find_method_list (argp, method, 0, t, num_fns,
1944 /* Given an array of argument types (ARGTYPES) (which includes an
1945 entry for "this" in the case of C++ methods), the number of
1946 arguments NARGS, the NAME of a function whether it's a method or
1947 not (METHOD), and the degree of laxness (LAX) in conforming to
1948 overload resolution rules in ANSI C++, find the best function that
1949 matches on the argument types according to the overload resolution
1952 In the case of class methods, the parameter OBJ is an object value
1953 in which to search for overloaded methods.
1955 In the case of non-method functions, the parameter FSYM is a symbol
1956 corresponding to one of the overloaded functions.
1958 Return value is an integer: 0 -> good match, 10 -> debugger applied
1959 non-standard coercions, 100 -> incompatible.
1961 If a method is being searched for, VALP will hold the value.
1962 If a non-method is being searched for, SYMP will hold the symbol
1965 If a method is being searched for, and it is a static method,
1966 then STATICP will point to a non-zero value.
1968 Note: This function does *not* check the value of
1969 overload_resolution. Caller must check it to see whether overload
1970 resolution is permitted.
1974 find_overload_match (struct type **arg_types, int nargs,
1975 char *name, int method, int lax,
1976 struct value **objp, struct symbol *fsym,
1977 struct value **valp, struct symbol **symp,
1980 struct value *obj = (objp ? *objp : NULL);
1981 /* Index of best overloaded function. */
1983 /* The measure for the current best match. */
1984 struct badness_vector *oload_champ_bv = NULL;
1985 struct value *temp = obj;
1986 /* For methods, the list of overloaded methods. */
1987 struct fn_field *fns_ptr = NULL;
1988 /* For non-methods, the list of overloaded function symbols. */
1989 struct symbol **oload_syms = NULL;
1990 /* Number of overloaded instances being considered. */
1992 struct type *basetype = NULL;
1996 struct cleanup *old_cleanups = NULL;
1998 const char *obj_type_name = NULL;
1999 char *func_name = NULL;
2000 enum oload_classification match_quality;
2002 /* Get the list of overloaded methods or functions. */
2006 obj_type_name = TYPE_NAME (value_type (obj));
2007 /* Hack: evaluate_subexp_standard often passes in a pointer
2008 value rather than the object itself, so try again. */
2009 if ((!obj_type_name || !*obj_type_name)
2010 && (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
2011 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
2013 fns_ptr = value_find_oload_method_list (&temp, name,
2015 &basetype, &boffset);
2016 if (!fns_ptr || !num_fns)
2017 error (_("Couldn't find method %s%s%s"),
2019 (obj_type_name && *obj_type_name) ? "::" : "",
2021 /* If we are dealing with stub method types, they should have
2022 been resolved by find_method_list via
2023 value_find_oload_method_list above. */
2024 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2025 oload_champ = find_oload_champ (arg_types, nargs, method,
2027 oload_syms, &oload_champ_bv);
2031 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
2033 /* If we have a C++ name, try to extract just the function
2036 func_name = cp_func_name (qualified_name);
2038 /* If there was no C++ name, this must be a C-style function.
2039 Just return the same symbol. Do the same if cp_func_name
2040 fails for some reason. */
2041 if (func_name == NULL)
2047 old_cleanups = make_cleanup (xfree, func_name);
2048 make_cleanup (xfree, oload_syms);
2049 make_cleanup (xfree, oload_champ_bv);
2051 oload_champ = find_oload_champ_namespace (arg_types, nargs,
2058 /* Check how bad the best match is. */
2061 classify_oload_match (oload_champ_bv, nargs,
2062 oload_method_static (method, fns_ptr,
2065 if (match_quality == INCOMPATIBLE)
2068 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2070 (obj_type_name && *obj_type_name) ? "::" : "",
2073 error (_("Cannot resolve function %s to any overloaded instance"),
2076 else if (match_quality == NON_STANDARD)
2079 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2081 (obj_type_name && *obj_type_name) ? "::" : "",
2084 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2090 if (staticp != NULL)
2091 *staticp = oload_method_static (method, fns_ptr, oload_champ);
2092 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2093 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ,
2096 *valp = value_fn_field (&temp, fns_ptr, oload_champ,
2101 *symp = oload_syms[oload_champ];
2106 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
2107 && (TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR
2108 || TYPE_CODE (value_type (*objp)) == TYPE_CODE_REF))
2110 temp = value_addr (temp);
2114 if (old_cleanups != NULL)
2115 do_cleanups (old_cleanups);
2117 switch (match_quality)
2123 default: /* STANDARD */
2128 /* Find the best overload match, searching for FUNC_NAME in namespaces
2129 contained in QUALIFIED_NAME until it either finds a good match or
2130 runs out of namespaces. It stores the overloaded functions in
2131 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2132 calling function is responsible for freeing *OLOAD_SYMS and
2136 find_oload_champ_namespace (struct type **arg_types, int nargs,
2137 const char *func_name,
2138 const char *qualified_name,
2139 struct symbol ***oload_syms,
2140 struct badness_vector **oload_champ_bv)
2144 find_oload_champ_namespace_loop (arg_types, nargs,
2147 oload_syms, oload_champ_bv,
2153 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2154 how deep we've looked for namespaces, and the champ is stored in
2155 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2158 It is the caller's responsibility to free *OLOAD_SYMS and
2162 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2163 const char *func_name,
2164 const char *qualified_name,
2166 struct symbol ***oload_syms,
2167 struct badness_vector **oload_champ_bv,
2170 int next_namespace_len = namespace_len;
2171 int searched_deeper = 0;
2173 struct cleanup *old_cleanups;
2174 int new_oload_champ;
2175 struct symbol **new_oload_syms;
2176 struct badness_vector *new_oload_champ_bv;
2177 char *new_namespace;
2179 if (next_namespace_len != 0)
2181 gdb_assert (qualified_name[next_namespace_len] == ':');
2182 next_namespace_len += 2;
2184 next_namespace_len +=
2185 cp_find_first_component (qualified_name + next_namespace_len);
2187 /* Initialize these to values that can safely be xfree'd. */
2189 *oload_champ_bv = NULL;
2191 /* First, see if we have a deeper namespace we can search in.
2192 If we get a good match there, use it. */
2194 if (qualified_name[next_namespace_len] == ':')
2196 searched_deeper = 1;
2198 if (find_oload_champ_namespace_loop (arg_types, nargs,
2199 func_name, qualified_name,
2201 oload_syms, oload_champ_bv,
2208 /* If we reach here, either we're in the deepest namespace or we
2209 didn't find a good match in a deeper namespace. But, in the
2210 latter case, we still have a bad match in a deeper namespace;
2211 note that we might not find any match at all in the current
2212 namespace. (There's always a match in the deepest namespace,
2213 because this overload mechanism only gets called if there's a
2214 function symbol to start off with.) */
2216 old_cleanups = make_cleanup (xfree, *oload_syms);
2217 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2218 new_namespace = alloca (namespace_len + 1);
2219 strncpy (new_namespace, qualified_name, namespace_len);
2220 new_namespace[namespace_len] = '\0';
2221 new_oload_syms = make_symbol_overload_list (func_name,
2223 while (new_oload_syms[num_fns])
2226 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2227 NULL, new_oload_syms,
2228 &new_oload_champ_bv);
2230 /* Case 1: We found a good match. Free earlier matches (if any),
2231 and return it. Case 2: We didn't find a good match, but we're
2232 not the deepest function. Then go with the bad match that the
2233 deeper function found. Case 3: We found a bad match, and we're
2234 the deepest function. Then return what we found, even though
2235 it's a bad match. */
2237 if (new_oload_champ != -1
2238 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2240 *oload_syms = new_oload_syms;
2241 *oload_champ = new_oload_champ;
2242 *oload_champ_bv = new_oload_champ_bv;
2243 do_cleanups (old_cleanups);
2246 else if (searched_deeper)
2248 xfree (new_oload_syms);
2249 xfree (new_oload_champ_bv);
2250 discard_cleanups (old_cleanups);
2255 gdb_assert (new_oload_champ != -1);
2256 *oload_syms = new_oload_syms;
2257 *oload_champ = new_oload_champ;
2258 *oload_champ_bv = new_oload_champ_bv;
2259 discard_cleanups (old_cleanups);
2264 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2265 the best match from among the overloaded methods or functions
2266 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2267 The number of methods/functions in the list is given by NUM_FNS.
2268 Return the index of the best match; store an indication of the
2269 quality of the match in OLOAD_CHAMP_BV.
2271 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2274 find_oload_champ (struct type **arg_types, int nargs, int method,
2275 int num_fns, struct fn_field *fns_ptr,
2276 struct symbol **oload_syms,
2277 struct badness_vector **oload_champ_bv)
2280 /* A measure of how good an overloaded instance is. */
2281 struct badness_vector *bv;
2282 /* Index of best overloaded function. */
2283 int oload_champ = -1;
2284 /* Current ambiguity state for overload resolution. */
2285 int oload_ambiguous = 0;
2286 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2288 *oload_champ_bv = NULL;
2290 /* Consider each candidate in turn. */
2291 for (ix = 0; ix < num_fns; ix++)
2294 int static_offset = oload_method_static (method, fns_ptr, ix);
2296 struct type **parm_types;
2300 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2304 /* If it's not a method, this is the proper place. */
2305 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2308 /* Prepare array of parameter types. */
2309 parm_types = (struct type **)
2310 xmalloc (nparms * (sizeof (struct type *)));
2311 for (jj = 0; jj < nparms; jj++)
2312 parm_types[jj] = (method
2313 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2314 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2317 /* Compare parameter types to supplied argument types. Skip
2318 THIS for static methods. */
2319 bv = rank_function (parm_types, nparms,
2320 arg_types + static_offset,
2321 nargs - static_offset);
2323 if (!*oload_champ_bv)
2325 *oload_champ_bv = bv;
2328 else /* See whether current candidate is better or worse than
2330 switch (compare_badness (bv, *oload_champ_bv))
2332 case 0: /* Top two contenders are equally good. */
2333 oload_ambiguous = 1;
2335 case 1: /* Incomparable top contenders. */
2336 oload_ambiguous = 2;
2338 case 2: /* New champion, record details. */
2339 *oload_champ_bv = bv;
2340 oload_ambiguous = 0;
2351 fprintf_filtered (gdb_stderr,
2352 "Overloaded method instance %s, # of parms %d\n",
2353 fns_ptr[ix].physname, nparms);
2355 fprintf_filtered (gdb_stderr,
2356 "Overloaded function instance %s # of parms %d\n",
2357 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2359 for (jj = 0; jj < nargs - static_offset; jj++)
2360 fprintf_filtered (gdb_stderr,
2361 "...Badness @ %d : %d\n",
2363 fprintf_filtered (gdb_stderr,
2364 "Overload resolution champion is %d, ambiguous? %d\n",
2365 oload_champ, oload_ambiguous);
2372 /* Return 1 if we're looking at a static method, 0 if we're looking at
2373 a non-static method or a function that isn't a method. */
2376 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2378 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2384 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2386 static enum oload_classification
2387 classify_oload_match (struct badness_vector *oload_champ_bv,
2393 for (ix = 1; ix <= nargs - static_offset; ix++)
2395 if (oload_champ_bv->rank[ix] >= 100)
2396 return INCOMPATIBLE; /* Truly mismatched types. */
2397 else if (oload_champ_bv->rank[ix] >= 10)
2398 return NON_STANDARD; /* Non-standard type conversions
2402 return STANDARD; /* Only standard conversions needed. */
2405 /* C++: return 1 is NAME is a legitimate name for the destructor of
2406 type TYPE. If TYPE does not have a destructor, or if NAME is
2407 inappropriate for TYPE, an error is signaled. */
2409 destructor_name_p (const char *name, const struct type *type)
2411 /* Destructors are a special case. */
2415 char *dname = type_name_no_tag (type);
2416 char *cp = strchr (dname, '<');
2419 /* Do not compare the template part for template classes. */
2421 len = strlen (dname);
2424 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2425 error (_("name of destructor must equal name of class"));
2432 /* Given TYPE, a structure/union,
2433 return 1 if the component named NAME from the ultimate target
2434 structure/union is defined, otherwise, return 0. */
2437 check_field (struct type *type, const char *name)
2441 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2443 char *t_field_name = TYPE_FIELD_NAME (type, i);
2444 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2448 /* C++: If it was not found as a data field, then try to return it
2449 as a pointer to a method. */
2451 /* Destructors are a special case. */
2452 if (destructor_name_p (name, type))
2454 int m_index, f_index;
2456 return get_destructor_fn_field (type, &m_index, &f_index);
2459 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2461 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2465 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2466 if (check_field (TYPE_BASECLASS (type, i), name))
2472 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2473 return the appropriate member (or the address of the member, if
2474 WANT_ADDRESS). This function is used to resolve user expressions
2475 of the form "DOMAIN::NAME". For more details on what happens, see
2476 the comment before value_struct_elt_for_reference. */
2479 value_aggregate_elt (struct type *curtype,
2480 char *name, int want_address,
2483 switch (TYPE_CODE (curtype))
2485 case TYPE_CODE_STRUCT:
2486 case TYPE_CODE_UNION:
2487 return value_struct_elt_for_reference (curtype, 0, curtype,
2489 want_address, noside);
2490 case TYPE_CODE_NAMESPACE:
2491 return value_namespace_elt (curtype, name,
2492 want_address, noside);
2494 internal_error (__FILE__, __LINE__,
2495 _("non-aggregate type in value_aggregate_elt"));
2499 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2500 return the address of this member as a "pointer to member" type.
2501 If INTYPE is non-null, then it will be the type of the member we
2502 are looking for. This will help us resolve "pointers to member
2503 functions". This function is used to resolve user expressions of
2504 the form "DOMAIN::NAME". */
2506 static struct value *
2507 value_struct_elt_for_reference (struct type *domain, int offset,
2508 struct type *curtype, char *name,
2509 struct type *intype,
2513 struct type *t = curtype;
2515 struct value *v, *result;
2517 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2518 && TYPE_CODE (t) != TYPE_CODE_UNION)
2519 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2521 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2523 char *t_field_name = TYPE_FIELD_NAME (t, i);
2525 if (t_field_name && strcmp (t_field_name, name) == 0)
2527 if (TYPE_FIELD_STATIC (t, i))
2529 v = value_static_field (t, i);
2531 error (_("static field %s has been optimized out"),
2537 if (TYPE_FIELD_PACKED (t, i))
2538 error (_("pointers to bitfield members not allowed"));
2541 return value_from_longest
2542 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2543 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2544 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2545 return allocate_value (TYPE_FIELD_TYPE (t, i));
2547 error (_("Cannot reference non-static field \"%s\""), name);
2551 /* C++: If it was not found as a data field, then try to return it
2552 as a pointer to a method. */
2554 /* Destructors are a special case. */
2555 if (destructor_name_p (name, t))
2557 error (_("member pointers to destructors not implemented yet"));
2560 /* Perform all necessary dereferencing. */
2561 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2562 intype = TYPE_TARGET_TYPE (intype);
2564 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2566 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2567 char dem_opname[64];
2569 if (strncmp (t_field_name, "__", 2) == 0
2570 || strncmp (t_field_name, "op", 2) == 0
2571 || strncmp (t_field_name, "type", 4) == 0)
2573 if (cplus_demangle_opname (t_field_name,
2574 dem_opname, DMGL_ANSI))
2575 t_field_name = dem_opname;
2576 else if (cplus_demangle_opname (t_field_name,
2578 t_field_name = dem_opname;
2580 if (t_field_name && strcmp (t_field_name, name) == 0)
2582 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2583 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2585 check_stub_method_group (t, i);
2587 if (intype == 0 && j > 1)
2588 error (_("non-unique member `%s' requires type instantiation"), name);
2592 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2595 error (_("no member function matches that type instantiation"));
2600 if (TYPE_FN_FIELD_STATIC_P (f, j))
2603 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2609 return value_addr (read_var_value (s, 0));
2611 return read_var_value (s, 0);
2614 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2618 result = allocate_value
2619 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2620 cplus_make_method_ptr (value_type (result),
2621 value_contents_writeable (result),
2622 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2624 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2625 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2627 error (_("Cannot reference virtual member function \"%s\""),
2633 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2638 v = read_var_value (s, 0);
2643 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2644 cplus_make_method_ptr (value_type (result),
2645 value_contents_writeable (result),
2646 VALUE_ADDRESS (v), 0);
2652 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2657 if (BASETYPE_VIA_VIRTUAL (t, i))
2660 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2661 v = value_struct_elt_for_reference (domain,
2662 offset + base_offset,
2663 TYPE_BASECLASS (t, i),
2665 want_address, noside);
2670 /* As a last chance, pretend that CURTYPE is a namespace, and look
2671 it up that way; this (frequently) works for types nested inside
2674 return value_maybe_namespace_elt (curtype, name,
2675 want_address, noside);
2678 /* C++: Return the member NAME of the namespace given by the type
2681 static struct value *
2682 value_namespace_elt (const struct type *curtype,
2683 char *name, int want_address,
2686 struct value *retval = value_maybe_namespace_elt (curtype, name,
2691 error (_("No symbol \"%s\" in namespace \"%s\"."),
2692 name, TYPE_TAG_NAME (curtype));
2697 /* A helper function used by value_namespace_elt and
2698 value_struct_elt_for_reference. It looks up NAME inside the
2699 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2700 is a class and NAME refers to a type in CURTYPE itself (as opposed
2701 to, say, some base class of CURTYPE). */
2703 static struct value *
2704 value_maybe_namespace_elt (const struct type *curtype,
2705 char *name, int want_address,
2708 const char *namespace_name = TYPE_TAG_NAME (curtype);
2710 struct value *result;
2712 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2713 get_selected_block (0),
2718 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2719 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2720 result = allocate_value (SYMBOL_TYPE (sym));
2722 result = value_of_variable (sym, get_selected_block (0));
2724 if (result && want_address)
2725 result = value_addr (result);
2730 /* Given a pointer value V, find the real (RTTI) type of the object it
2733 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2734 and refer to the values computed for the object pointed to. */
2737 value_rtti_target_type (struct value *v, int *full,
2738 int *top, int *using_enc)
2740 struct value *target;
2742 target = value_ind (v);
2744 return value_rtti_type (target, full, top, using_enc);
2747 /* Given a value pointed to by ARGP, check its real run-time type, and
2748 if that is different from the enclosing type, create a new value
2749 using the real run-time type as the enclosing type (and of the same
2750 type as ARGP) and return it, with the embedded offset adjusted to
2751 be the correct offset to the enclosed object. RTYPE is the type,
2752 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
2753 by value_rtti_type(). If these are available, they can be supplied
2754 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
2755 NULL if they're not available. */
2758 value_full_object (struct value *argp,
2760 int xfull, int xtop,
2763 struct type *real_type;
2767 struct value *new_val;
2774 using_enc = xusing_enc;
2777 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2779 /* If no RTTI data, or if object is already complete, do nothing. */
2780 if (!real_type || real_type == value_enclosing_type (argp))
2783 /* If we have the full object, but for some reason the enclosing
2784 type is wrong, set it. */
2785 /* pai: FIXME -- sounds iffy */
2788 argp = value_change_enclosing_type (argp, real_type);
2792 /* Check if object is in memory */
2793 if (VALUE_LVAL (argp) != lval_memory)
2795 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
2796 TYPE_NAME (real_type));
2801 /* All other cases -- retrieve the complete object. */
2802 /* Go back by the computed top_offset from the beginning of the
2803 object, adjusting for the embedded offset of argp if that's what
2804 value_rtti_type used for its computation. */
2805 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2806 (using_enc ? 0 : value_embedded_offset (argp)));
2807 deprecated_set_value_type (new_val, value_type (argp));
2808 set_value_embedded_offset (new_val, (using_enc
2809 ? top + value_embedded_offset (argp)
2815 /* Return the value of the local variable, if one exists.
2816 Flag COMPLAIN signals an error if the request is made in an
2817 inappropriate context. */
2820 value_of_local (const char *name, int complain)
2822 struct symbol *func, *sym;
2825 struct frame_info *frame;
2828 frame = get_selected_frame (_("no frame selected"));
2831 frame = deprecated_safe_get_selected_frame ();
2836 func = get_frame_function (frame);
2840 error (_("no `%s' in nameless context"), name);
2845 b = SYMBOL_BLOCK_VALUE (func);
2846 if (dict_empty (BLOCK_DICT (b)))
2849 error (_("no args, no `%s'"), name);
2854 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2855 symbol instead of the LOC_ARG one (if both exist). */
2856 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2860 error (_("current stack frame does not contain a variable named `%s'"),
2866 ret = read_var_value (sym, frame);
2867 if (ret == 0 && complain)
2868 error (_("`%s' argument unreadable"), name);
2872 /* C++/Objective-C: return the value of the class instance variable,
2873 if one exists. Flag COMPLAIN signals an error if the request is
2874 made in an inappropriate context. */
2877 value_of_this (int complain)
2879 if (!current_language->la_name_of_this)
2881 return value_of_local (current_language->la_name_of_this, complain);
2884 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
2885 elements long, starting at LOWBOUND. The result has the same lower
2886 bound as the original ARRAY. */
2889 value_slice (struct value *array, int lowbound, int length)
2891 struct type *slice_range_type, *slice_type, *range_type;
2892 LONGEST lowerbound, upperbound;
2893 struct value *slice;
2894 struct type *array_type;
2896 array_type = check_typedef (value_type (array));
2897 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2898 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2899 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2900 error (_("cannot take slice of non-array"));
2902 range_type = TYPE_INDEX_TYPE (array_type);
2903 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2904 error (_("slice from bad array or bitstring"));
2906 if (lowbound < lowerbound || length < 0
2907 || lowbound + length - 1 > upperbound)
2908 error (_("slice out of range"));
2910 /* FIXME-type-allocation: need a way to free this type when we are
2912 slice_range_type = create_range_type ((struct type *) NULL,
2913 TYPE_TARGET_TYPE (range_type),
2915 lowbound + length - 1);
2916 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2920 slice_type = create_set_type ((struct type *) NULL,
2922 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2923 slice = value_zero (slice_type, not_lval);
2925 for (i = 0; i < length; i++)
2927 int element = value_bit_index (array_type,
2928 value_contents (array),
2931 error (_("internal error accessing bitstring"));
2932 else if (element > 0)
2934 int j = i % TARGET_CHAR_BIT;
2935 if (gdbarch_bits_big_endian (current_gdbarch))
2936 j = TARGET_CHAR_BIT - 1 - j;
2937 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2940 /* We should set the address, bitssize, and bitspos, so the
2941 slice can be used on the LHS, but that may require extensions
2942 to value_assign. For now, just leave as a non_lval.
2947 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2949 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2951 slice_type = create_array_type ((struct type *) NULL,
2954 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2956 slice = allocate_value (slice_type);
2957 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
2958 set_value_lazy (slice, 1);
2960 memcpy (value_contents_writeable (slice),
2961 value_contents (array) + offset,
2962 TYPE_LENGTH (slice_type));
2964 if (VALUE_LVAL (array) == lval_internalvar)
2965 VALUE_LVAL (slice) = lval_internalvar_component;
2967 VALUE_LVAL (slice) = VALUE_LVAL (array);
2969 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2970 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2971 set_value_offset (slice, value_offset (array) + offset);
2976 /* Create a value for a FORTRAN complex number. Currently most of the
2977 time values are coerced to COMPLEX*16 (i.e. a complex number
2978 composed of 2 doubles. This really should be a smarter routine
2979 that figures out precision inteligently as opposed to assuming
2980 doubles. FIXME: fmb */
2983 value_literal_complex (struct value *arg1,
2988 struct type *real_type = TYPE_TARGET_TYPE (type);
2990 val = allocate_value (type);
2991 arg1 = value_cast (real_type, arg1);
2992 arg2 = value_cast (real_type, arg2);
2994 memcpy (value_contents_raw (val),
2995 value_contents (arg1), TYPE_LENGTH (real_type));
2996 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2997 value_contents (arg2), TYPE_LENGTH (real_type));
3001 /* Cast a value into the appropriate complex data type. */
3003 static struct value *
3004 cast_into_complex (struct type *type, struct value *val)
3006 struct type *real_type = TYPE_TARGET_TYPE (type);
3008 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3010 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3011 struct value *re_val = allocate_value (val_real_type);
3012 struct value *im_val = allocate_value (val_real_type);
3014 memcpy (value_contents_raw (re_val),
3015 value_contents (val), TYPE_LENGTH (val_real_type));
3016 memcpy (value_contents_raw (im_val),
3017 value_contents (val) + TYPE_LENGTH (val_real_type),
3018 TYPE_LENGTH (val_real_type));
3020 return value_literal_complex (re_val, im_val, type);
3022 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3023 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3024 return value_literal_complex (val,
3025 value_zero (real_type, not_lval),
3028 error (_("cannot cast non-number to complex"));
3032 _initialize_valops (void)
3034 add_setshow_boolean_cmd ("overload-resolution", class_support,
3035 &overload_resolution, _("\
3036 Set overload resolution in evaluating C++ functions."), _("\
3037 Show overload resolution in evaluating C++ functions."),
3039 show_overload_resolution,
3040 &setlist, &showlist);
3041 overload_resolution = 1;