1 /* Implementation of the GDB variable objects API.
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "exceptions.h"
22 #include "expression.h"
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
36 #include "gdbthread.h"
40 #include "python/python.h"
41 #include "python/python-internal.h"
46 /* Non-zero if we want to see trace of varobj level stuff. */
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
56 /* String representations of gdb's format codes. */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
60 /* String representations of gdb's known languages. */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
67 varobj_enable_pretty_printing (void)
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
82 /* Block for which this expression is valid. */
83 struct block *valid_block;
85 /* The frame for this expression. This field is set iff valid_block is
87 struct frame_id frame;
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame. */
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
105 /* Language info for this variable and its children. */
106 struct language_specific *lang;
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
111 /* Next root variable */
112 struct varobj_root *next;
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
121 /* Alloc'd name of the variable for this object. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
135 /* Index of this variable in its parent or -1. */
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
149 /* The number of (immediate) children this variable has. */
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
155 /* Children of this object. */
156 VEC (varobj_p) *children;
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
162 int children_requested;
164 /* Description of the root variable. Points to root variable for
166 struct varobj_root *root;
168 /* The format of the output for this object. */
169 enum varobj_display_formats format;
171 /* Was this variable updated via a varobj_set_value operation. */
174 /* Last print value. */
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
202 /* The iterator returned by the printer's 'children' method, or NULL
204 PyObject *child_iter;
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
217 struct cpstack *next;
220 /* A list of varobjs */
228 /* Private function prototypes */
230 /* Helper functions for the above subcommands. */
232 static int delete_variable (struct cpstack **, struct varobj *, int);
234 static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
237 static int install_variable (struct varobj *);
239 static void uninstall_variable (struct varobj *);
241 static struct varobj *create_child (struct varobj *, int, char *);
243 static struct varobj *
244 create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
247 /* Utility routines */
249 static struct varobj *new_variable (void);
251 static struct varobj *new_root_variable (void);
253 static void free_variable (struct varobj *var);
255 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
257 static struct type *get_type (struct varobj *var);
259 static struct type *get_value_type (struct varobj *var);
261 static struct type *get_target_type (struct type *);
263 static enum varobj_display_formats variable_default_display (struct varobj *);
265 static void cppush (struct cpstack **pstack, char *name);
267 static char *cppop (struct cpstack **pstack);
269 static int install_new_value (struct varobj *var, struct value *value,
272 /* Language-specific routines. */
274 static enum varobj_languages variable_language (struct varobj *var);
276 static int number_of_children (struct varobj *);
278 static char *name_of_variable (struct varobj *);
280 static char *name_of_child (struct varobj *, int);
282 static struct value *value_of_root (struct varobj **var_handle, int *);
284 static struct value *value_of_child (struct varobj *parent, int index);
286 static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
289 static char *value_get_print_value (struct value *value,
290 enum varobj_display_formats format,
293 static int varobj_value_is_changeable_p (struct varobj *var);
295 static int is_root_p (struct varobj *var);
299 static struct varobj *varobj_add_child (struct varobj *var,
301 struct value *value);
303 #endif /* HAVE_PYTHON */
305 /* C implementation */
307 static int c_number_of_children (struct varobj *var);
309 static char *c_name_of_variable (struct varobj *parent);
311 static char *c_name_of_child (struct varobj *parent, int index);
313 static char *c_path_expr_of_child (struct varobj *child);
315 static struct value *c_value_of_root (struct varobj **var_handle);
317 static struct value *c_value_of_child (struct varobj *parent, int index);
319 static struct type *c_type_of_child (struct varobj *parent, int index);
321 static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
324 /* C++ implementation */
326 static int cplus_number_of_children (struct varobj *var);
328 static void cplus_class_num_children (struct type *type, int children[3]);
330 static char *cplus_name_of_variable (struct varobj *parent);
332 static char *cplus_name_of_child (struct varobj *parent, int index);
334 static char *cplus_path_expr_of_child (struct varobj *child);
336 static struct value *cplus_value_of_root (struct varobj **var_handle);
338 static struct value *cplus_value_of_child (struct varobj *parent, int index);
340 static struct type *cplus_type_of_child (struct varobj *parent, int index);
342 static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
345 /* Java implementation */
347 static int java_number_of_children (struct varobj *var);
349 static char *java_name_of_variable (struct varobj *parent);
351 static char *java_name_of_child (struct varobj *parent, int index);
353 static char *java_path_expr_of_child (struct varobj *child);
355 static struct value *java_value_of_root (struct varobj **var_handle);
357 static struct value *java_value_of_child (struct varobj *parent, int index);
359 static struct type *java_type_of_child (struct varobj *parent, int index);
361 static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
364 /* The language specific vector */
366 struct language_specific
369 /* The language of this variable. */
370 enum varobj_languages language;
372 /* The number of children of PARENT. */
373 int (*number_of_children) (struct varobj * parent);
375 /* The name (expression) of a root varobj. */
376 char *(*name_of_variable) (struct varobj * parent);
378 /* The name of the INDEX'th child of PARENT. */
379 char *(*name_of_child) (struct varobj * parent, int index);
381 /* Returns the rooted expression of CHILD, which is a variable
382 obtain that has some parent. */
383 char *(*path_expr_of_child) (struct varobj * child);
385 /* The ``struct value *'' of the root variable ROOT. */
386 struct value *(*value_of_root) (struct varobj ** root_handle);
388 /* The ``struct value *'' of the INDEX'th child of PARENT. */
389 struct value *(*value_of_child) (struct varobj * parent, int index);
391 /* The type of the INDEX'th child of PARENT. */
392 struct type *(*type_of_child) (struct varobj * parent, int index);
394 /* The current value of VAR. */
395 char *(*value_of_variable) (struct varobj * var,
396 enum varobj_display_formats format);
399 /* Array of known source language routines. */
400 static struct language_specific languages[vlang_end] = {
401 /* Unknown (try treating as C). */
404 c_number_of_children,
407 c_path_expr_of_child,
416 c_number_of_children,
419 c_path_expr_of_child,
428 cplus_number_of_children,
429 cplus_name_of_variable,
431 cplus_path_expr_of_child,
433 cplus_value_of_child,
435 cplus_value_of_variable}
440 java_number_of_children,
441 java_name_of_variable,
443 java_path_expr_of_child,
447 java_value_of_variable}
450 /* A little convenience enum for dealing with C++/Java. */
453 v_public = 0, v_private, v_protected
458 /* Mappings of varobj_display_formats enums to gdb's format codes. */
459 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
461 /* Header of the list of root variable objects. */
462 static struct varobj_root *rootlist;
464 /* Prime number indicating the number of buckets in the hash table. */
465 /* A prime large enough to avoid too many colisions. */
466 #define VAROBJ_TABLE_SIZE 227
468 /* Pointer to the varobj hash table (built at run time). */
469 static struct vlist **varobj_table;
471 /* Is the variable X one of our "fake" children? */
472 #define CPLUS_FAKE_CHILD(x) \
473 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
476 /* API Implementation */
478 is_root_p (struct varobj *var)
480 return (var->root->rootvar == var);
484 /* Helper function to install a Python environment suitable for
485 use during operations on VAR. */
487 varobj_ensure_python_env (struct varobj *var)
489 return ensure_python_env (var->root->exp->gdbarch,
490 var->root->exp->language_defn);
494 /* Creates a varobj (not its children). */
496 /* Return the full FRAME which corresponds to the given CORE_ADDR
497 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
499 static struct frame_info *
500 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
502 struct frame_info *frame = NULL;
504 if (frame_addr == (CORE_ADDR) 0)
507 for (frame = get_current_frame ();
509 frame = get_prev_frame (frame))
511 /* The CORE_ADDR we get as argument was parsed from a string GDB
512 output as $fp. This output got truncated to gdbarch_addr_bit.
513 Truncate the frame base address in the same manner before
514 comparing it against our argument. */
515 CORE_ADDR frame_base = get_frame_base_address (frame);
516 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
518 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
519 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
521 if (frame_base == frame_addr)
529 varobj_create (char *objname,
530 char *expression, CORE_ADDR frame, enum varobj_type type)
533 struct cleanup *old_chain;
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
539 if (expression != NULL)
541 struct frame_info *fi;
542 struct frame_id old_id = null_frame_id;
545 enum varobj_languages lang;
546 struct value *value = NULL;
548 /* Parse and evaluate the expression, filling in as much of the
549 variable's data as possible. */
551 if (has_stack_frames ())
553 /* Allow creator to specify context of variable. */
554 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
555 fi = get_selected_frame (NULL);
557 /* FIXME: cagney/2002-11-23: This code should be doing a
558 lookup using the frame ID and not just the frame's
559 ``address''. This, of course, means an interface
560 change. However, with out that interface change ISAs,
561 such as the ia64 with its two stacks, won't work.
562 Similar goes for the case where there is a frameless
564 fi = find_frame_addr_in_frame_chain (frame);
569 /* frame = -2 means always use selected frame. */
570 if (type == USE_SELECTED_FRAME)
571 var->root->floating = 1;
575 block = get_frame_block (fi, 0);
578 innermost_block = NULL;
579 /* Wrap the call to parse expression, so we can
580 return a sensible error. */
581 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
583 do_cleanups (old_chain);
587 /* Don't allow variables to be created for types. */
588 if (var->root->exp->elts[0].opcode == OP_TYPE)
590 do_cleanups (old_chain);
591 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
592 " as an expression.\n");
596 var->format = variable_default_display (var);
597 var->root->valid_block = innermost_block;
598 var->name = xstrdup (expression);
599 /* For a root var, the name and the expr are the same. */
600 var->path_expr = xstrdup (expression);
602 /* When the frame is different from the current frame,
603 we must select the appropriate frame before parsing
604 the expression, otherwise the value will not be current.
605 Since select_frame is so benign, just call it for all cases. */
608 /* User could specify explicit FRAME-ADDR which was not found but
609 EXPRESSION is frame specific and we would not be able to evaluate
610 it correctly next time. With VALID_BLOCK set we must also set
611 FRAME and THREAD_ID. */
613 error (_("Failed to find the specified frame"));
615 var->root->frame = get_frame_id (fi);
616 var->root->thread_id = pid_to_thread_id (inferior_ptid);
617 old_id = get_frame_id (get_selected_frame (NULL));
621 /* We definitely need to catch errors here.
622 If evaluate_expression succeeds we got the value we wanted.
623 But if it fails, we still go on with a call to evaluate_type(). */
624 if (!gdb_evaluate_expression (var->root->exp, &value))
626 /* Error getting the value. Try to at least get the
628 struct value *type_only_value = evaluate_type (var->root->exp);
630 var->type = value_type (type_only_value);
633 var->type = value_type (value);
635 install_new_value (var, value, 1 /* Initial assignment */);
637 /* Set language info */
638 lang = variable_language (var);
639 var->root->lang = &languages[lang];
641 /* Set ourselves as our root. */
642 var->root->rootvar = var;
644 /* Reset the selected frame. */
645 if (frame_id_p (old_id))
646 select_frame (frame_find_by_id (old_id));
649 /* If the variable object name is null, that means this
650 is a temporary variable, so don't install it. */
652 if ((var != NULL) && (objname != NULL))
654 var->obj_name = xstrdup (objname);
656 /* If a varobj name is duplicated, the install will fail so
658 if (!install_variable (var))
660 do_cleanups (old_chain);
665 discard_cleanups (old_chain);
669 /* Generates an unique name that can be used for a varobj. */
672 varobj_gen_name (void)
677 /* Generate a name for this object. */
679 obj_name = xstrprintf ("var%d", id);
684 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
685 error if OBJNAME cannot be found. */
688 varobj_get_handle (char *objname)
692 unsigned int index = 0;
695 for (chp = objname; *chp; chp++)
697 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
700 cv = *(varobj_table + index);
701 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
705 error (_("Variable object not found"));
710 /* Given the handle, return the name of the object. */
713 varobj_get_objname (struct varobj *var)
715 return var->obj_name;
718 /* Given the handle, return the expression represented by the object. */
721 varobj_get_expression (struct varobj *var)
723 return name_of_variable (var);
726 /* Deletes a varobj and all its children if only_children == 0,
727 otherwise deletes only the children; returns a malloc'ed list of
728 all the (malloc'ed) names of the variables that have been deleted
729 (NULL terminated). */
732 varobj_delete (struct varobj *var, char ***dellist, int only_children)
736 struct cpstack *result = NULL;
739 /* Initialize a stack for temporary results. */
740 cppush (&result, NULL);
743 /* Delete only the variable children. */
744 delcount = delete_variable (&result, var, 1 /* only the children */ );
746 /* Delete the variable and all its children. */
747 delcount = delete_variable (&result, var, 0 /* parent+children */ );
749 /* We may have been asked to return a list of what has been deleted. */
752 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
756 *cp = cppop (&result);
757 while ((*cp != NULL) && (mycount > 0))
761 *cp = cppop (&result);
764 if (mycount || (*cp != NULL))
765 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
774 /* Convenience function for varobj_set_visualizer. Instantiate a
775 pretty-printer for a given value. */
777 instantiate_pretty_printer (PyObject *constructor, struct value *value)
779 PyObject *val_obj = NULL;
782 val_obj = value_to_value_object (value);
786 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
793 /* Set/Get variable object display format. */
795 enum varobj_display_formats
796 varobj_set_display_format (struct varobj *var,
797 enum varobj_display_formats format)
804 case FORMAT_HEXADECIMAL:
806 var->format = format;
810 var->format = variable_default_display (var);
813 if (varobj_value_is_changeable_p (var)
814 && var->value && !value_lazy (var->value))
816 xfree (var->print_value);
817 var->print_value = value_get_print_value (var->value, var->format, var);
823 enum varobj_display_formats
824 varobj_get_display_format (struct varobj *var)
830 varobj_get_display_hint (struct varobj *var)
835 struct cleanup *back_to = varobj_ensure_python_env (var);
837 if (var->pretty_printer)
838 result = gdbpy_get_display_hint (var->pretty_printer);
840 do_cleanups (back_to);
846 /* Return true if the varobj has items after TO, false otherwise. */
849 varobj_has_more (struct varobj *var, int to)
851 if (VEC_length (varobj_p, var->children) > to)
853 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
854 && var->saved_item != NULL);
857 /* If the variable object is bound to a specific thread, that
858 is its evaluation can always be done in context of a frame
859 inside that thread, returns GDB id of the thread -- which
860 is always positive. Otherwise, returns -1. */
862 varobj_get_thread_id (struct varobj *var)
864 if (var->root->valid_block && var->root->thread_id > 0)
865 return var->root->thread_id;
871 varobj_set_frozen (struct varobj *var, int frozen)
873 /* When a variable is unfrozen, we don't fetch its value.
874 The 'not_fetched' flag remains set, so next -var-update
877 We don't fetch the value, because for structures the client
878 should do -var-update anyway. It would be bad to have different
879 client-size logic for structure and other types. */
880 var->frozen = frozen;
884 varobj_get_frozen (struct varobj *var)
889 /* A helper function that restricts a range to what is actually
890 available in a VEC. This follows the usual rules for the meaning
891 of FROM and TO -- if either is negative, the entire range is
895 restrict_range (VEC (varobj_p) *children, int *from, int *to)
897 if (*from < 0 || *to < 0)
900 *to = VEC_length (varobj_p, children);
904 if (*from > VEC_length (varobj_p, children))
905 *from = VEC_length (varobj_p, children);
906 if (*to > VEC_length (varobj_p, children))
907 *to = VEC_length (varobj_p, children);
915 /* A helper for update_dynamic_varobj_children that installs a new
916 child when needed. */
919 install_dynamic_child (struct varobj *var,
920 VEC (varobj_p) **changed,
921 VEC (varobj_p) **new,
922 VEC (varobj_p) **unchanged,
928 if (VEC_length (varobj_p, var->children) < index + 1)
930 /* There's no child yet. */
931 struct varobj *child = varobj_add_child (var, name, value);
935 VEC_safe_push (varobj_p, *new, child);
941 varobj_p existing = VEC_index (varobj_p, var->children, index);
943 if (install_new_value (existing, value, 0))
946 VEC_safe_push (varobj_p, *changed, existing);
949 VEC_safe_push (varobj_p, *unchanged, existing);
954 dynamic_varobj_has_child_method (struct varobj *var)
956 struct cleanup *back_to;
957 PyObject *printer = var->pretty_printer;
960 back_to = varobj_ensure_python_env (var);
961 result = PyObject_HasAttr (printer, gdbpy_children_cst);
962 do_cleanups (back_to);
969 update_dynamic_varobj_children (struct varobj *var,
970 VEC (varobj_p) **changed,
971 VEC (varobj_p) **new,
972 VEC (varobj_p) **unchanged,
979 struct cleanup *back_to;
982 PyObject *printer = var->pretty_printer;
984 back_to = varobj_ensure_python_env (var);
987 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
989 do_cleanups (back_to);
993 if (update_children || !var->child_iter)
995 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1000 gdbpy_print_stack ();
1001 error (_("Null value returned for children"));
1004 make_cleanup_py_decref (children);
1006 if (!PyIter_Check (children))
1007 error (_("Returned value is not iterable"));
1009 Py_XDECREF (var->child_iter);
1010 var->child_iter = PyObject_GetIter (children);
1011 if (!var->child_iter)
1013 gdbpy_print_stack ();
1014 error (_("Could not get children iterator"));
1017 Py_XDECREF (var->saved_item);
1018 var->saved_item = NULL;
1023 i = VEC_length (varobj_p, var->children);
1025 /* We ask for one extra child, so that MI can report whether there
1026 are more children. */
1027 for (; to < 0 || i < to + 1; ++i)
1032 /* See if there was a leftover from last time. */
1033 if (var->saved_item)
1035 item = var->saved_item;
1036 var->saved_item = NULL;
1039 item = PyIter_Next (var->child_iter);
1043 /* Normal end of iteration. */
1044 if (!PyErr_Occurred ())
1047 /* If we got a memory error, just use the text as the
1049 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1051 PyObject *type, *value, *trace;
1052 char *name_str, *value_str;
1054 PyErr_Fetch (&type, &value, &trace);
1055 value_str = gdbpy_exception_to_string (type, value);
1061 gdbpy_print_stack ();
1065 name_str = xstrprintf ("<error at %d>", i);
1066 item = Py_BuildValue ("(ss)", name_str, value_str);
1071 gdbpy_print_stack ();
1079 /* Any other kind of error. */
1080 gdbpy_print_stack ();
1085 /* We don't want to push the extra child on any report list. */
1086 if (to < 0 || i < to)
1091 struct cleanup *inner;
1092 int can_mention = from < 0 || i >= from;
1094 inner = make_cleanup_py_decref (item);
1096 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1098 gdbpy_print_stack ();
1099 error (_("Invalid item from the child list"));
1102 v = convert_value_from_python (py_v);
1104 gdbpy_print_stack ();
1105 install_dynamic_child (var, can_mention ? changed : NULL,
1106 can_mention ? new : NULL,
1107 can_mention ? unchanged : NULL,
1108 can_mention ? cchanged : NULL, i, name, v);
1109 do_cleanups (inner);
1113 Py_XDECREF (var->saved_item);
1114 var->saved_item = item;
1116 /* We want to truncate the child list just before this
1125 if (i < VEC_length (varobj_p, var->children))
1130 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1131 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1132 VEC_truncate (varobj_p, var->children, i);
1135 /* If there are fewer children than requested, note that the list of
1136 children changed. */
1137 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1140 var->num_children = VEC_length (varobj_p, var->children);
1142 do_cleanups (back_to);
1146 gdb_assert (0 && "should never be called if Python is not enabled");
1151 varobj_get_num_children (struct varobj *var)
1153 if (var->num_children == -1)
1155 if (var->pretty_printer)
1159 /* If we have a dynamic varobj, don't report -1 children.
1160 So, try to fetch some children first. */
1161 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1165 var->num_children = number_of_children (var);
1168 return var->num_children >= 0 ? var->num_children : 0;
1171 /* Creates a list of the immediate children of a variable object;
1172 the return code is the number of such children or -1 on error. */
1175 varobj_list_children (struct varobj *var, int *from, int *to)
1178 int i, children_changed;
1180 var->children_requested = 1;
1182 if (var->pretty_printer)
1184 /* This, in theory, can result in the number of children changing without
1185 frontend noticing. But well, calling -var-list-children on the same
1186 varobj twice is not something a sane frontend would do. */
1187 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1189 restrict_range (var->children, from, to);
1190 return var->children;
1193 if (var->num_children == -1)
1194 var->num_children = number_of_children (var);
1196 /* If that failed, give up. */
1197 if (var->num_children == -1)
1198 return var->children;
1200 /* If we're called when the list of children is not yet initialized,
1201 allocate enough elements in it. */
1202 while (VEC_length (varobj_p, var->children) < var->num_children)
1203 VEC_safe_push (varobj_p, var->children, NULL);
1205 for (i = 0; i < var->num_children; i++)
1207 varobj_p existing = VEC_index (varobj_p, var->children, i);
1209 if (existing == NULL)
1211 /* Either it's the first call to varobj_list_children for
1212 this variable object, and the child was never created,
1213 or it was explicitly deleted by the client. */
1214 name = name_of_child (var, i);
1215 existing = create_child (var, i, name);
1216 VEC_replace (varobj_p, var->children, i, existing);
1220 restrict_range (var->children, from, to);
1221 return var->children;
1226 static struct varobj *
1227 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1229 varobj_p v = create_child_with_value (var,
1230 VEC_length (varobj_p, var->children),
1233 VEC_safe_push (varobj_p, var->children, v);
1237 #endif /* HAVE_PYTHON */
1239 /* Obtain the type of an object Variable as a string similar to the one gdb
1240 prints on the console. */
1243 varobj_get_type (struct varobj *var)
1245 /* For the "fake" variables, do not return a type. (It's type is
1247 Do not return a type for invalid variables as well. */
1248 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1251 return type_to_string (var->type);
1254 /* Obtain the type of an object variable. */
1257 varobj_get_gdb_type (struct varobj *var)
1262 /* Return a pointer to the full rooted expression of varobj VAR.
1263 If it has not been computed yet, compute it. */
1265 varobj_get_path_expr (struct varobj *var)
1267 if (var->path_expr != NULL)
1268 return var->path_expr;
1271 /* For root varobjs, we initialize path_expr
1272 when creating varobj, so here it should be
1274 gdb_assert (!is_root_p (var));
1275 return (*var->root->lang->path_expr_of_child) (var);
1279 enum varobj_languages
1280 varobj_get_language (struct varobj *var)
1282 return variable_language (var);
1286 varobj_get_attributes (struct varobj *var)
1290 if (varobj_editable_p (var))
1291 /* FIXME: define masks for attributes. */
1292 attributes |= 0x00000001; /* Editable */
1298 varobj_pretty_printed_p (struct varobj *var)
1300 return var->pretty_printer != NULL;
1304 varobj_get_formatted_value (struct varobj *var,
1305 enum varobj_display_formats format)
1307 return my_value_of_variable (var, format);
1311 varobj_get_value (struct varobj *var)
1313 return my_value_of_variable (var, var->format);
1316 /* Set the value of an object variable (if it is editable) to the
1317 value of the given expression. */
1318 /* Note: Invokes functions that can call error(). */
1321 varobj_set_value (struct varobj *var, char *expression)
1325 /* The argument "expression" contains the variable's new value.
1326 We need to first construct a legal expression for this -- ugh! */
1327 /* Does this cover all the bases? */
1328 struct expression *exp;
1329 struct value *value;
1330 int saved_input_radix = input_radix;
1331 char *s = expression;
1333 gdb_assert (varobj_editable_p (var));
1335 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1336 exp = parse_exp_1 (&s, 0, 0);
1337 if (!gdb_evaluate_expression (exp, &value))
1339 /* We cannot proceed without a valid expression. */
1344 /* All types that are editable must also be changeable. */
1345 gdb_assert (varobj_value_is_changeable_p (var));
1347 /* The value of a changeable variable object must not be lazy. */
1348 gdb_assert (!value_lazy (var->value));
1350 /* Need to coerce the input. We want to check if the
1351 value of the variable object will be different
1352 after assignment, and the first thing value_assign
1353 does is coerce the input.
1354 For example, if we are assigning an array to a pointer variable we
1355 should compare the pointer with the array's address, not with the
1357 value = coerce_array (value);
1359 /* The new value may be lazy. gdb_value_assign, or
1360 rather value_contents, will take care of this.
1361 If fetching of the new value will fail, gdb_value_assign
1362 with catch the exception. */
1363 if (!gdb_value_assign (var->value, value, &val))
1366 /* If the value has changed, record it, so that next -var-update can
1367 report this change. If a variable had a value of '1', we've set it
1368 to '333' and then set again to '1', when -var-update will report this
1369 variable as changed -- because the first assignment has set the
1370 'updated' flag. There's no need to optimize that, because return value
1371 of -var-update should be considered an approximation. */
1372 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1373 input_radix = saved_input_radix;
1379 /* A helper function to install a constructor function and visualizer
1383 install_visualizer (struct varobj *var, PyObject *constructor,
1384 PyObject *visualizer)
1386 Py_XDECREF (var->constructor);
1387 var->constructor = constructor;
1389 Py_XDECREF (var->pretty_printer);
1390 var->pretty_printer = visualizer;
1392 Py_XDECREF (var->child_iter);
1393 var->child_iter = NULL;
1396 /* Install the default visualizer for VAR. */
1399 install_default_visualizer (struct varobj *var)
1401 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1402 if (CPLUS_FAKE_CHILD (var))
1405 if (pretty_printing)
1407 PyObject *pretty_printer = NULL;
1411 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1412 if (! pretty_printer)
1414 gdbpy_print_stack ();
1415 error (_("Cannot instantiate printer for default visualizer"));
1419 if (pretty_printer == Py_None)
1421 Py_DECREF (pretty_printer);
1422 pretty_printer = NULL;
1425 install_visualizer (var, NULL, pretty_printer);
1429 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1430 make a new object. */
1433 construct_visualizer (struct varobj *var, PyObject *constructor)
1435 PyObject *pretty_printer;
1437 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1438 if (CPLUS_FAKE_CHILD (var))
1441 Py_INCREF (constructor);
1442 if (constructor == Py_None)
1443 pretty_printer = NULL;
1446 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1447 if (! pretty_printer)
1449 gdbpy_print_stack ();
1450 Py_DECREF (constructor);
1451 constructor = Py_None;
1452 Py_INCREF (constructor);
1455 if (pretty_printer == Py_None)
1457 Py_DECREF (pretty_printer);
1458 pretty_printer = NULL;
1462 install_visualizer (var, constructor, pretty_printer);
1465 #endif /* HAVE_PYTHON */
1467 /* A helper function for install_new_value. This creates and installs
1468 a visualizer for VAR, if appropriate. */
1471 install_new_value_visualizer (struct varobj *var)
1474 /* If the constructor is None, then we want the raw value. If VAR
1475 does not have a value, just skip this. */
1476 if (var->constructor != Py_None && var->value)
1478 struct cleanup *cleanup;
1480 cleanup = varobj_ensure_python_env (var);
1482 if (!var->constructor)
1483 install_default_visualizer (var);
1485 construct_visualizer (var, var->constructor);
1487 do_cleanups (cleanup);
1494 /* Assign a new value to a variable object. If INITIAL is non-zero,
1495 this is the first assignement after the variable object was just
1496 created, or changed type. In that case, just assign the value
1498 Otherwise, assign the new value, and return 1 if the value is
1499 different from the current one, 0 otherwise. The comparison is
1500 done on textual representation of value. Therefore, some types
1501 need not be compared. E.g. for structures the reported value is
1502 always "{...}", so no comparison is necessary here. If the old
1503 value was NULL and new one is not, or vice versa, we always return 1.
1505 The VALUE parameter should not be released -- the function will
1506 take care of releasing it when needed. */
1508 install_new_value (struct varobj *var, struct value *value, int initial)
1513 int intentionally_not_fetched = 0;
1514 char *print_value = NULL;
1516 /* We need to know the varobj's type to decide if the value should
1517 be fetched or not. C++ fake children (public/protected/private)
1518 don't have a type. */
1519 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1520 changeable = varobj_value_is_changeable_p (var);
1522 /* If the type has custom visualizer, we consider it to be always
1523 changeable. FIXME: need to make sure this behaviour will not
1524 mess up read-sensitive values. */
1525 if (var->pretty_printer)
1528 need_to_fetch = changeable;
1530 /* We are not interested in the address of references, and given
1531 that in C++ a reference is not rebindable, it cannot
1532 meaningfully change. So, get hold of the real value. */
1534 value = coerce_ref (value);
1536 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1537 /* For unions, we need to fetch the value implicitly because
1538 of implementation of union member fetch. When gdb
1539 creates a value for a field and the value of the enclosing
1540 structure is not lazy, it immediately copies the necessary
1541 bytes from the enclosing values. If the enclosing value is
1542 lazy, the call to value_fetch_lazy on the field will read
1543 the data from memory. For unions, that means we'll read the
1544 same memory more than once, which is not desirable. So
1548 /* The new value might be lazy. If the type is changeable,
1549 that is we'll be comparing values of this type, fetch the
1550 value now. Otherwise, on the next update the old value
1551 will be lazy, which means we've lost that old value. */
1552 if (need_to_fetch && value && value_lazy (value))
1554 struct varobj *parent = var->parent;
1555 int frozen = var->frozen;
1557 for (; !frozen && parent; parent = parent->parent)
1558 frozen |= parent->frozen;
1560 if (frozen && initial)
1562 /* For variables that are frozen, or are children of frozen
1563 variables, we don't do fetch on initial assignment.
1564 For non-initial assignemnt we do the fetch, since it means we're
1565 explicitly asked to compare the new value with the old one. */
1566 intentionally_not_fetched = 1;
1568 else if (!gdb_value_fetch_lazy (value))
1570 /* Set the value to NULL, so that for the next -var-update,
1571 we don't try to compare the new value with this value,
1572 that we couldn't even read. */
1578 /* Below, we'll be comparing string rendering of old and new
1579 values. Don't get string rendering if the value is
1580 lazy -- if it is, the code above has decided that the value
1581 should not be fetched. */
1582 if (value && !value_lazy (value) && !var->pretty_printer)
1583 print_value = value_get_print_value (value, var->format, var);
1585 /* If the type is changeable, compare the old and the new values.
1586 If this is the initial assignment, we don't have any old value
1588 if (!initial && changeable)
1590 /* If the value of the varobj was changed by -var-set-value,
1591 then the value in the varobj and in the target is the same.
1592 However, that value is different from the value that the
1593 varobj had after the previous -var-update. So need to the
1594 varobj as changed. */
1599 else if (! var->pretty_printer)
1601 /* Try to compare the values. That requires that both
1602 values are non-lazy. */
1603 if (var->not_fetched && value_lazy (var->value))
1605 /* This is a frozen varobj and the value was never read.
1606 Presumably, UI shows some "never read" indicator.
1607 Now that we've fetched the real value, we need to report
1608 this varobj as changed so that UI can show the real
1612 else if (var->value == NULL && value == NULL)
1615 else if (var->value == NULL || value == NULL)
1621 gdb_assert (!value_lazy (var->value));
1622 gdb_assert (!value_lazy (value));
1624 gdb_assert (var->print_value != NULL && print_value != NULL);
1625 if (strcmp (var->print_value, print_value) != 0)
1631 if (!initial && !changeable)
1633 /* For values that are not changeable, we don't compare the values.
1634 However, we want to notice if a value was not NULL and now is NULL,
1635 or vise versa, so that we report when top-level varobjs come in scope
1636 and leave the scope. */
1637 changed = (var->value != NULL) != (value != NULL);
1640 /* We must always keep the new value, since children depend on it. */
1641 if (var->value != NULL && var->value != value)
1642 value_free (var->value);
1645 value_incref (value);
1646 if (value && value_lazy (value) && intentionally_not_fetched)
1647 var->not_fetched = 1;
1649 var->not_fetched = 0;
1652 install_new_value_visualizer (var);
1654 /* If we installed a pretty-printer, re-compare the printed version
1655 to see if the variable changed. */
1656 if (var->pretty_printer)
1658 xfree (print_value);
1659 print_value = value_get_print_value (var->value, var->format, var);
1660 if ((var->print_value == NULL && print_value != NULL)
1661 || (var->print_value != NULL && print_value == NULL)
1662 || (var->print_value != NULL && print_value != NULL
1663 && strcmp (var->print_value, print_value) != 0))
1666 if (var->print_value)
1667 xfree (var->print_value);
1668 var->print_value = print_value;
1670 gdb_assert (!var->value || value_type (var->value));
1675 /* Return the requested range for a varobj. VAR is the varobj. FROM
1676 and TO are out parameters; *FROM and *TO will be set to the
1677 selected sub-range of VAR. If no range was selected using
1678 -var-set-update-range, then both will be -1. */
1680 varobj_get_child_range (struct varobj *var, int *from, int *to)
1686 /* Set the selected sub-range of children of VAR to start at index
1687 FROM and end at index TO. If either FROM or TO is less than zero,
1688 this is interpreted as a request for all children. */
1690 varobj_set_child_range (struct varobj *var, int from, int to)
1697 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1700 PyObject *mainmod, *globals, *constructor;
1701 struct cleanup *back_to;
1703 back_to = varobj_ensure_python_env (var);
1705 mainmod = PyImport_AddModule ("__main__");
1706 globals = PyModule_GetDict (mainmod);
1707 Py_INCREF (globals);
1708 make_cleanup_py_decref (globals);
1710 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1714 gdbpy_print_stack ();
1715 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1718 construct_visualizer (var, constructor);
1719 Py_XDECREF (constructor);
1721 /* If there are any children now, wipe them. */
1722 varobj_delete (var, NULL, 1 /* children only */);
1723 var->num_children = -1;
1725 do_cleanups (back_to);
1727 error (_("Python support required"));
1731 /* Update the values for a variable and its children. This is a
1732 two-pronged attack. First, re-parse the value for the root's
1733 expression to see if it's changed. Then go all the way
1734 through its children, reconstructing them and noting if they've
1737 The EXPLICIT parameter specifies if this call is result
1738 of MI request to update this specific variable, or
1739 result of implicit -var-update *. For implicit request, we don't
1740 update frozen variables.
1742 NOTE: This function may delete the caller's varobj. If it
1743 returns TYPE_CHANGED, then it has done this and VARP will be modified
1744 to point to the new varobj. */
1746 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1749 int type_changed = 0;
1752 VEC (varobj_update_result) *stack = NULL;
1753 VEC (varobj_update_result) *result = NULL;
1755 /* Frozen means frozen -- we don't check for any change in
1756 this varobj, including its going out of scope, or
1757 changing type. One use case for frozen varobjs is
1758 retaining previously evaluated expressions, and we don't
1759 want them to be reevaluated at all. */
1760 if (!explicit && (*varp)->frozen)
1763 if (!(*varp)->root->is_valid)
1765 varobj_update_result r = {0};
1768 r.status = VAROBJ_INVALID;
1769 VEC_safe_push (varobj_update_result, result, &r);
1773 if ((*varp)->root->rootvar == *varp)
1775 varobj_update_result r = {0};
1778 r.status = VAROBJ_IN_SCOPE;
1780 /* Update the root variable. value_of_root can return NULL
1781 if the variable is no longer around, i.e. we stepped out of
1782 the frame in which a local existed. We are letting the
1783 value_of_root variable dispose of the varobj if the type
1785 new = value_of_root (varp, &type_changed);
1788 r.type_changed = type_changed;
1789 if (install_new_value ((*varp), new, type_changed))
1793 r.status = VAROBJ_NOT_IN_SCOPE;
1794 r.value_installed = 1;
1796 if (r.status == VAROBJ_NOT_IN_SCOPE)
1798 if (r.type_changed || r.changed)
1799 VEC_safe_push (varobj_update_result, result, &r);
1803 VEC_safe_push (varobj_update_result, stack, &r);
1807 varobj_update_result r = {0};
1810 VEC_safe_push (varobj_update_result, stack, &r);
1813 /* Walk through the children, reconstructing them all. */
1814 while (!VEC_empty (varobj_update_result, stack))
1816 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1817 struct varobj *v = r.varobj;
1819 VEC_pop (varobj_update_result, stack);
1821 /* Update this variable, unless it's a root, which is already
1823 if (!r.value_installed)
1825 new = value_of_child (v->parent, v->index);
1826 if (install_new_value (v, new, 0 /* type not changed */))
1833 /* We probably should not get children of a varobj that has a
1834 pretty-printer, but for which -var-list-children was never
1836 if (v->pretty_printer)
1838 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1839 int i, children_changed = 0;
1844 if (!v->children_requested)
1848 /* If we initially did not have potential children, but
1849 now we do, consider the varobj as changed.
1850 Otherwise, if children were never requested, consider
1851 it as unchanged -- presumably, such varobj is not yet
1852 expanded in the UI, so we need not bother getting
1854 if (!varobj_has_more (v, 0))
1856 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1858 if (varobj_has_more (v, 0))
1863 VEC_safe_push (varobj_update_result, result, &r);
1868 /* If update_dynamic_varobj_children returns 0, then we have
1869 a non-conforming pretty-printer, so we skip it. */
1870 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1871 &children_changed, 1,
1874 if (children_changed || new)
1876 r.children_changed = 1;
1879 /* Push in reverse order so that the first child is
1880 popped from the work stack first, and so will be
1881 added to result first. This does not affect
1882 correctness, just "nicer". */
1883 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1885 varobj_p tmp = VEC_index (varobj_p, changed, i);
1886 varobj_update_result r = {0};
1890 r.value_installed = 1;
1891 VEC_safe_push (varobj_update_result, stack, &r);
1893 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1895 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1899 varobj_update_result r = {0};
1902 r.value_installed = 1;
1903 VEC_safe_push (varobj_update_result, stack, &r);
1906 if (r.changed || r.children_changed)
1907 VEC_safe_push (varobj_update_result, result, &r);
1909 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1910 has been put into the result vector. */
1911 VEC_free (varobj_p, changed);
1912 VEC_free (varobj_p, unchanged);
1918 /* Push any children. Use reverse order so that the first
1919 child is popped from the work stack first, and so
1920 will be added to result first. This does not
1921 affect correctness, just "nicer". */
1922 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1924 varobj_p c = VEC_index (varobj_p, v->children, i);
1926 /* Child may be NULL if explicitly deleted by -var-delete. */
1927 if (c != NULL && !c->frozen)
1929 varobj_update_result r = {0};
1932 VEC_safe_push (varobj_update_result, stack, &r);
1936 if (r.changed || r.type_changed)
1937 VEC_safe_push (varobj_update_result, result, &r);
1940 VEC_free (varobj_update_result, stack);
1946 /* Helper functions */
1949 * Variable object construction/destruction
1953 delete_variable (struct cpstack **resultp, struct varobj *var,
1954 int only_children_p)
1958 delete_variable_1 (resultp, &delcount, var,
1959 only_children_p, 1 /* remove_from_parent_p */ );
1964 /* Delete the variable object VAR and its children. */
1965 /* IMPORTANT NOTE: If we delete a variable which is a child
1966 and the parent is not removed we dump core. It must be always
1967 initially called with remove_from_parent_p set. */
1969 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1970 struct varobj *var, int only_children_p,
1971 int remove_from_parent_p)
1975 /* Delete any children of this variable, too. */
1976 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1978 varobj_p child = VEC_index (varobj_p, var->children, i);
1982 if (!remove_from_parent_p)
1983 child->parent = NULL;
1984 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1986 VEC_free (varobj_p, var->children);
1988 /* if we were called to delete only the children we are done here. */
1989 if (only_children_p)
1992 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1993 /* If the name is null, this is a temporary variable, that has not
1994 yet been installed, don't report it, it belongs to the caller... */
1995 if (var->obj_name != NULL)
1997 cppush (resultp, xstrdup (var->obj_name));
1998 *delcountp = *delcountp + 1;
2001 /* If this variable has a parent, remove it from its parent's list. */
2002 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2003 (as indicated by remove_from_parent_p) we don't bother doing an
2004 expensive list search to find the element to remove when we are
2005 discarding the list afterwards. */
2006 if ((remove_from_parent_p) && (var->parent != NULL))
2008 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2011 if (var->obj_name != NULL)
2012 uninstall_variable (var);
2014 /* Free memory associated with this variable. */
2015 free_variable (var);
2018 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2020 install_variable (struct varobj *var)
2023 struct vlist *newvl;
2025 unsigned int index = 0;
2028 for (chp = var->obj_name; *chp; chp++)
2030 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2033 cv = *(varobj_table + index);
2034 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2038 error (_("Duplicate variable object name"));
2040 /* Add varobj to hash table. */
2041 newvl = xmalloc (sizeof (struct vlist));
2042 newvl->next = *(varobj_table + index);
2044 *(varobj_table + index) = newvl;
2046 /* If root, add varobj to root list. */
2047 if (is_root_p (var))
2049 /* Add to list of root variables. */
2050 if (rootlist == NULL)
2051 var->root->next = NULL;
2053 var->root->next = rootlist;
2054 rootlist = var->root;
2060 /* Unistall the object VAR. */
2062 uninstall_variable (struct varobj *var)
2066 struct varobj_root *cr;
2067 struct varobj_root *prer;
2069 unsigned int index = 0;
2072 /* Remove varobj from hash table. */
2073 for (chp = var->obj_name; *chp; chp++)
2075 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2078 cv = *(varobj_table + index);
2080 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2087 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2092 ("Assertion failed: Could not find variable object \"%s\" to delete",
2098 *(varobj_table + index) = cv->next;
2100 prev->next = cv->next;
2104 /* If root, remove varobj from root list. */
2105 if (is_root_p (var))
2107 /* Remove from list of root variables. */
2108 if (rootlist == var->root)
2109 rootlist = var->root->next;
2114 while ((cr != NULL) && (cr->rootvar != var))
2121 warning (_("Assertion failed: Could not find "
2122 "varobj \"%s\" in root list"),
2129 prer->next = cr->next;
2135 /* Create and install a child of the parent of the given name. */
2136 static struct varobj *
2137 create_child (struct varobj *parent, int index, char *name)
2139 return create_child_with_value (parent, index, name,
2140 value_of_child (parent, index));
2143 static struct varobj *
2144 create_child_with_value (struct varobj *parent, int index, const char *name,
2145 struct value *value)
2147 struct varobj *child;
2150 child = new_variable ();
2152 /* Name is allocated by name_of_child. */
2153 /* FIXME: xstrdup should not be here. */
2154 child->name = xstrdup (name);
2155 child->index = index;
2156 child->parent = parent;
2157 child->root = parent->root;
2158 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2159 child->obj_name = childs_name;
2160 install_variable (child);
2162 /* Compute the type of the child. Must do this before
2163 calling install_new_value. */
2165 /* If the child had no evaluation errors, var->value
2166 will be non-NULL and contain a valid type. */
2167 child->type = value_type (value);
2169 /* Otherwise, we must compute the type. */
2170 child->type = (*child->root->lang->type_of_child) (child->parent,
2172 install_new_value (child, value, 1);
2179 * Miscellaneous utility functions.
2182 /* Allocate memory and initialize a new variable. */
2183 static struct varobj *
2188 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2190 var->path_expr = NULL;
2191 var->obj_name = NULL;
2195 var->num_children = -1;
2197 var->children = NULL;
2201 var->print_value = NULL;
2203 var->not_fetched = 0;
2204 var->children_requested = 0;
2207 var->constructor = 0;
2208 var->pretty_printer = 0;
2209 var->child_iter = 0;
2210 var->saved_item = 0;
2215 /* Allocate memory and initialize a new root variable. */
2216 static struct varobj *
2217 new_root_variable (void)
2219 struct varobj *var = new_variable ();
2221 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2222 var->root->lang = NULL;
2223 var->root->exp = NULL;
2224 var->root->valid_block = NULL;
2225 var->root->frame = null_frame_id;
2226 var->root->floating = 0;
2227 var->root->rootvar = NULL;
2228 var->root->is_valid = 1;
2233 /* Free any allocated memory associated with VAR. */
2235 free_variable (struct varobj *var)
2238 if (var->pretty_printer)
2240 struct cleanup *cleanup = varobj_ensure_python_env (var);
2241 Py_XDECREF (var->constructor);
2242 Py_XDECREF (var->pretty_printer);
2243 Py_XDECREF (var->child_iter);
2244 Py_XDECREF (var->saved_item);
2245 do_cleanups (cleanup);
2249 value_free (var->value);
2251 /* Free the expression if this is a root variable. */
2252 if (is_root_p (var))
2254 xfree (var->root->exp);
2259 xfree (var->obj_name);
2260 xfree (var->print_value);
2261 xfree (var->path_expr);
2266 do_free_variable_cleanup (void *var)
2268 free_variable (var);
2271 static struct cleanup *
2272 make_cleanup_free_variable (struct varobj *var)
2274 return make_cleanup (do_free_variable_cleanup, var);
2277 /* This returns the type of the variable. It also skips past typedefs
2278 to return the real type of the variable.
2280 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2281 except within get_target_type and get_type. */
2282 static struct type *
2283 get_type (struct varobj *var)
2289 type = check_typedef (type);
2294 /* Return the type of the value that's stored in VAR,
2295 or that would have being stored there if the
2296 value were accessible.
2298 This differs from VAR->type in that VAR->type is always
2299 the true type of the expession in the source language.
2300 The return value of this function is the type we're
2301 actually storing in varobj, and using for displaying
2302 the values and for comparing previous and new values.
2304 For example, top-level references are always stripped. */
2305 static struct type *
2306 get_value_type (struct varobj *var)
2311 type = value_type (var->value);
2315 type = check_typedef (type);
2317 if (TYPE_CODE (type) == TYPE_CODE_REF)
2318 type = get_target_type (type);
2320 type = check_typedef (type);
2325 /* This returns the target type (or NULL) of TYPE, also skipping
2326 past typedefs, just like get_type ().
2328 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2329 except within get_target_type and get_type. */
2330 static struct type *
2331 get_target_type (struct type *type)
2335 type = TYPE_TARGET_TYPE (type);
2337 type = check_typedef (type);
2343 /* What is the default display for this variable? We assume that
2344 everything is "natural". Any exceptions? */
2345 static enum varobj_display_formats
2346 variable_default_display (struct varobj *var)
2348 return FORMAT_NATURAL;
2351 /* FIXME: The following should be generic for any pointer. */
2353 cppush (struct cpstack **pstack, char *name)
2357 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2363 /* FIXME: The following should be generic for any pointer. */
2365 cppop (struct cpstack **pstack)
2370 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2375 *pstack = (*pstack)->next;
2382 * Language-dependencies
2385 /* Common entry points */
2387 /* Get the language of variable VAR. */
2388 static enum varobj_languages
2389 variable_language (struct varobj *var)
2391 enum varobj_languages lang;
2393 switch (var->root->exp->language_defn->la_language)
2399 case language_cplus:
2410 /* Return the number of children for a given variable.
2411 The result of this function is defined by the language
2412 implementation. The number of children returned by this function
2413 is the number of children that the user will see in the variable
2416 number_of_children (struct varobj *var)
2418 return (*var->root->lang->number_of_children) (var);
2421 /* What is the expression for the root varobj VAR? Returns a malloc'd
2424 name_of_variable (struct varobj *var)
2426 return (*var->root->lang->name_of_variable) (var);
2429 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2432 name_of_child (struct varobj *var, int index)
2434 return (*var->root->lang->name_of_child) (var, index);
2437 /* What is the ``struct value *'' of the root variable VAR?
2438 For floating variable object, evaluation can get us a value
2439 of different type from what is stored in varobj already. In
2441 - *type_changed will be set to 1
2442 - old varobj will be freed, and new one will be
2443 created, with the same name.
2444 - *var_handle will be set to the new varobj
2445 Otherwise, *type_changed will be set to 0. */
2446 static struct value *
2447 value_of_root (struct varobj **var_handle, int *type_changed)
2451 if (var_handle == NULL)
2456 /* This should really be an exception, since this should
2457 only get called with a root variable. */
2459 if (!is_root_p (var))
2462 if (var->root->floating)
2464 struct varobj *tmp_var;
2465 char *old_type, *new_type;
2467 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2468 USE_SELECTED_FRAME);
2469 if (tmp_var == NULL)
2473 old_type = varobj_get_type (var);
2474 new_type = varobj_get_type (tmp_var);
2475 if (strcmp (old_type, new_type) == 0)
2477 /* The expression presently stored inside var->root->exp
2478 remembers the locations of local variables relatively to
2479 the frame where the expression was created (in DWARF location
2480 button, for example). Naturally, those locations are not
2481 correct in other frames, so update the expression. */
2483 struct expression *tmp_exp = var->root->exp;
2485 var->root->exp = tmp_var->root->exp;
2486 tmp_var->root->exp = tmp_exp;
2488 varobj_delete (tmp_var, NULL, 0);
2493 tmp_var->obj_name = xstrdup (var->obj_name);
2494 tmp_var->from = var->from;
2495 tmp_var->to = var->to;
2496 varobj_delete (var, NULL, 0);
2498 install_variable (tmp_var);
2499 *var_handle = tmp_var;
2511 return (*var->root->lang->value_of_root) (var_handle);
2514 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2515 static struct value *
2516 value_of_child (struct varobj *parent, int index)
2518 struct value *value;
2520 value = (*parent->root->lang->value_of_child) (parent, index);
2525 /* GDB already has a command called "value_of_variable". Sigh. */
2527 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2529 if (var->root->is_valid)
2531 if (var->pretty_printer)
2532 return value_get_print_value (var->value, var->format, var);
2533 return (*var->root->lang->value_of_variable) (var, format);
2540 value_get_print_value (struct value *value, enum varobj_display_formats format,
2543 struct ui_file *stb;
2544 struct cleanup *old_chain;
2545 gdb_byte *thevalue = NULL;
2546 struct value_print_options opts;
2547 struct type *type = NULL;
2549 char *encoding = NULL;
2550 struct gdbarch *gdbarch = NULL;
2551 /* Initialize it just to avoid a GCC false warning. */
2552 CORE_ADDR str_addr = 0;
2553 int string_print = 0;
2558 stb = mem_fileopen ();
2559 old_chain = make_cleanup_ui_file_delete (stb);
2561 gdbarch = get_type_arch (value_type (value));
2564 PyObject *value_formatter = var->pretty_printer;
2566 varobj_ensure_python_env (var);
2568 if (value_formatter)
2570 /* First check to see if we have any children at all. If so,
2571 we simply return {...}. */
2572 if (dynamic_varobj_has_child_method (var))
2574 do_cleanups (old_chain);
2575 return xstrdup ("{...}");
2578 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2581 struct value *replacement;
2582 PyObject *output = NULL;
2584 hint = gdbpy_get_display_hint (value_formatter);
2587 if (!strcmp (hint, "string"))
2592 output = apply_varobj_pretty_printer (value_formatter,
2597 make_cleanup_py_decref (output);
2599 if (gdbpy_is_lazy_string (output))
2601 gdbpy_extract_lazy_string (output, &str_addr, &type,
2603 make_cleanup (free_current_contents, &encoding);
2609 = python_string_to_target_python_string (output);
2613 char *s = PyString_AsString (py_str);
2615 len = PyString_Size (py_str);
2616 thevalue = xmemdup (s, len + 1, len + 1);
2617 type = builtin_type (gdbarch)->builtin_char;
2622 do_cleanups (old_chain);
2626 make_cleanup (xfree, thevalue);
2629 gdbpy_print_stack ();
2633 value = replacement;
2639 get_formatted_print_options (&opts, format_code[(int) format]);
2643 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2644 else if (string_print)
2645 val_print_string (type, encoding, str_addr, len, stb, &opts);
2647 common_val_print (value, stb, 0, &opts, current_language);
2648 thevalue = ui_file_xstrdup (stb, NULL);
2650 do_cleanups (old_chain);
2655 varobj_editable_p (struct varobj *var)
2659 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2662 type = get_value_type (var);
2664 switch (TYPE_CODE (type))
2666 case TYPE_CODE_STRUCT:
2667 case TYPE_CODE_UNION:
2668 case TYPE_CODE_ARRAY:
2669 case TYPE_CODE_FUNC:
2670 case TYPE_CODE_METHOD:
2680 /* Return non-zero if changes in value of VAR
2681 must be detected and reported by -var-update.
2682 Return zero is -var-update should never report
2683 changes of such values. This makes sense for structures
2684 (since the changes in children values will be reported separately),
2685 or for artifical objects (like 'public' pseudo-field in C++).
2687 Return value of 0 means that gdb need not call value_fetch_lazy
2688 for the value of this variable object. */
2690 varobj_value_is_changeable_p (struct varobj *var)
2695 if (CPLUS_FAKE_CHILD (var))
2698 type = get_value_type (var);
2700 switch (TYPE_CODE (type))
2702 case TYPE_CODE_STRUCT:
2703 case TYPE_CODE_UNION:
2704 case TYPE_CODE_ARRAY:
2715 /* Return 1 if that varobj is floating, that is is always evaluated in the
2716 selected frame, and not bound to thread/frame. Such variable objects
2717 are created using '@' as frame specifier to -var-create. */
2719 varobj_floating_p (struct varobj *var)
2721 return var->root->floating;
2724 /* Given the value and the type of a variable object,
2725 adjust the value and type to those necessary
2726 for getting children of the variable object.
2727 This includes dereferencing top-level references
2728 to all types and dereferencing pointers to
2731 Both TYPE and *TYPE should be non-null. VALUE
2732 can be null if we want to only translate type.
2733 *VALUE can be null as well -- if the parent
2736 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2737 depending on whether pointer was dereferenced
2738 in this function. */
2740 adjust_value_for_child_access (struct value **value,
2744 gdb_assert (type && *type);
2749 *type = check_typedef (*type);
2751 /* The type of value stored in varobj, that is passed
2752 to us, is already supposed to be
2753 reference-stripped. */
2755 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2757 /* Pointers to structures are treated just like
2758 structures when accessing children. Don't
2759 dererences pointers to other types. */
2760 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2762 struct type *target_type = get_target_type (*type);
2763 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2764 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2766 if (value && *value)
2768 int success = gdb_value_ind (*value, value);
2773 *type = target_type;
2779 /* The 'get_target_type' function calls check_typedef on
2780 result, so we can immediately check type code. No
2781 need to call check_typedef here. */
2786 c_number_of_children (struct varobj *var)
2788 struct type *type = get_value_type (var);
2790 struct type *target;
2792 adjust_value_for_child_access (NULL, &type, NULL);
2793 target = get_target_type (type);
2795 switch (TYPE_CODE (type))
2797 case TYPE_CODE_ARRAY:
2798 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2799 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2800 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2802 /* If we don't know how many elements there are, don't display
2807 case TYPE_CODE_STRUCT:
2808 case TYPE_CODE_UNION:
2809 children = TYPE_NFIELDS (type);
2813 /* The type here is a pointer to non-struct. Typically, pointers
2814 have one child, except for function ptrs, which have no children,
2815 and except for void*, as we don't know what to show.
2817 We can show char* so we allow it to be dereferenced. If you decide
2818 to test for it, please mind that a little magic is necessary to
2819 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2820 TYPE_NAME == "char". */
2821 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2822 || TYPE_CODE (target) == TYPE_CODE_VOID)
2829 /* Other types have no children. */
2837 c_name_of_variable (struct varobj *parent)
2839 return xstrdup (parent->name);
2842 /* Return the value of element TYPE_INDEX of a structure
2843 value VALUE. VALUE's type should be a structure,
2844 or union, or a typedef to struct/union.
2846 Returns NULL if getting the value fails. Never throws. */
2847 static struct value *
2848 value_struct_element_index (struct value *value, int type_index)
2850 struct value *result = NULL;
2851 volatile struct gdb_exception e;
2852 struct type *type = value_type (value);
2854 type = check_typedef (type);
2856 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2857 || TYPE_CODE (type) == TYPE_CODE_UNION);
2859 TRY_CATCH (e, RETURN_MASK_ERROR)
2861 if (field_is_static (&TYPE_FIELD (type, type_index)))
2862 result = value_static_field (type, type_index);
2864 result = value_primitive_field (value, 0, type_index, type);
2876 /* Obtain the information about child INDEX of the variable
2878 If CNAME is not null, sets *CNAME to the name of the child relative
2880 If CVALUE is not null, sets *CVALUE to the value of the child.
2881 If CTYPE is not null, sets *CTYPE to the type of the child.
2883 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2884 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2887 c_describe_child (struct varobj *parent, int index,
2888 char **cname, struct value **cvalue, struct type **ctype,
2889 char **cfull_expression)
2891 struct value *value = parent->value;
2892 struct type *type = get_value_type (parent);
2893 char *parent_expression = NULL;
2902 if (cfull_expression)
2904 *cfull_expression = NULL;
2905 parent_expression = varobj_get_path_expr (parent);
2907 adjust_value_for_child_access (&value, &type, &was_ptr);
2909 switch (TYPE_CODE (type))
2911 case TYPE_CODE_ARRAY:
2914 = xstrdup (int_string (index
2915 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2918 if (cvalue && value)
2920 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2922 gdb_value_subscript (value, real_index, cvalue);
2926 *ctype = get_target_type (type);
2928 if (cfull_expression)
2930 xstrprintf ("(%s)[%s]", parent_expression,
2932 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2938 case TYPE_CODE_STRUCT:
2939 case TYPE_CODE_UNION:
2941 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2943 if (cvalue && value)
2945 /* For C, varobj index is the same as type index. */
2946 *cvalue = value_struct_element_index (value, index);
2950 *ctype = TYPE_FIELD_TYPE (type, index);
2952 if (cfull_expression)
2954 char *join = was_ptr ? "->" : ".";
2956 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2957 TYPE_FIELD_NAME (type, index));
2964 *cname = xstrprintf ("*%s", parent->name);
2966 if (cvalue && value)
2968 int success = gdb_value_ind (value, cvalue);
2974 /* Don't use get_target_type because it calls
2975 check_typedef and here, we want to show the true
2976 declared type of the variable. */
2978 *ctype = TYPE_TARGET_TYPE (type);
2980 if (cfull_expression)
2981 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2986 /* This should not happen. */
2988 *cname = xstrdup ("???");
2989 if (cfull_expression)
2990 *cfull_expression = xstrdup ("???");
2991 /* Don't set value and type, we don't know then. */
2996 c_name_of_child (struct varobj *parent, int index)
3000 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3005 c_path_expr_of_child (struct varobj *child)
3007 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3009 return child->path_expr;
3012 /* If frame associated with VAR can be found, switch
3013 to it and return 1. Otherwise, return 0. */
3015 check_scope (struct varobj *var)
3017 struct frame_info *fi;
3020 fi = frame_find_by_id (var->root->frame);
3025 CORE_ADDR pc = get_frame_pc (fi);
3027 if (pc < BLOCK_START (var->root->valid_block) ||
3028 pc >= BLOCK_END (var->root->valid_block))
3036 static struct value *
3037 c_value_of_root (struct varobj **var_handle)
3039 struct value *new_val = NULL;
3040 struct varobj *var = *var_handle;
3041 int within_scope = 0;
3042 struct cleanup *back_to;
3044 /* Only root variables can be updated... */
3045 if (!is_root_p (var))
3046 /* Not a root var. */
3049 back_to = make_cleanup_restore_current_thread ();
3051 /* Determine whether the variable is still around. */
3052 if (var->root->valid_block == NULL || var->root->floating)
3054 else if (var->root->thread_id == 0)
3056 /* The program was single-threaded when the variable object was
3057 created. Technically, it's possible that the program became
3058 multi-threaded since then, but we don't support such
3060 within_scope = check_scope (var);
3064 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3065 if (in_thread_list (ptid))
3067 switch_to_thread (ptid);
3068 within_scope = check_scope (var);
3074 /* We need to catch errors here, because if evaluate
3075 expression fails we want to just return NULL. */
3076 gdb_evaluate_expression (var->root->exp, &new_val);
3080 do_cleanups (back_to);
3085 static struct value *
3086 c_value_of_child (struct varobj *parent, int index)
3088 struct value *value = NULL;
3090 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3094 static struct type *
3095 c_type_of_child (struct varobj *parent, int index)
3097 struct type *type = NULL;
3099 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3104 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3106 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3107 it will print out its children instead of "{...}". So we need to
3108 catch that case explicitly. */
3109 struct type *type = get_type (var);
3111 /* If we have a custom formatter, return whatever string it has
3113 if (var->pretty_printer && var->print_value)
3114 return xstrdup (var->print_value);
3116 /* Strip top-level references. */
3117 while (TYPE_CODE (type) == TYPE_CODE_REF)
3118 type = check_typedef (TYPE_TARGET_TYPE (type));
3120 switch (TYPE_CODE (type))
3122 case TYPE_CODE_STRUCT:
3123 case TYPE_CODE_UNION:
3124 return xstrdup ("{...}");
3127 case TYPE_CODE_ARRAY:
3131 number = xstrprintf ("[%d]", var->num_children);
3138 if (var->value == NULL)
3140 /* This can happen if we attempt to get the value of a struct
3141 member when the parent is an invalid pointer. This is an
3142 error condition, so we should tell the caller. */
3147 if (var->not_fetched && value_lazy (var->value))
3148 /* Frozen variable and no value yet. We don't
3149 implicitly fetch the value. MI response will
3150 use empty string for the value, which is OK. */
3153 gdb_assert (varobj_value_is_changeable_p (var));
3154 gdb_assert (!value_lazy (var->value));
3156 /* If the specified format is the current one,
3157 we can reuse print_value. */
3158 if (format == var->format)
3159 return xstrdup (var->print_value);
3161 return value_get_print_value (var->value, format, var);
3171 cplus_number_of_children (struct varobj *var)
3174 int children, dont_know;
3179 if (!CPLUS_FAKE_CHILD (var))
3181 type = get_value_type (var);
3182 adjust_value_for_child_access (NULL, &type, NULL);
3184 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3185 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3189 cplus_class_num_children (type, kids);
3190 if (kids[v_public] != 0)
3192 if (kids[v_private] != 0)
3194 if (kids[v_protected] != 0)
3197 /* Add any baseclasses. */
3198 children += TYPE_N_BASECLASSES (type);
3201 /* FIXME: save children in var. */
3208 type = get_value_type (var->parent);
3209 adjust_value_for_child_access (NULL, &type, NULL);
3211 cplus_class_num_children (type, kids);
3212 if (strcmp (var->name, "public") == 0)
3213 children = kids[v_public];
3214 else if (strcmp (var->name, "private") == 0)
3215 children = kids[v_private];
3217 children = kids[v_protected];
3222 children = c_number_of_children (var);
3227 /* Compute # of public, private, and protected variables in this class.
3228 That means we need to descend into all baseclasses and find out
3229 how many are there, too. */
3231 cplus_class_num_children (struct type *type, int children[3])
3233 int i, vptr_fieldno;
3234 struct type *basetype = NULL;
3236 children[v_public] = 0;
3237 children[v_private] = 0;
3238 children[v_protected] = 0;
3240 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3241 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3243 /* If we have a virtual table pointer, omit it. Even if virtual
3244 table pointers are not specifically marked in the debug info,
3245 they should be artificial. */
3246 if ((type == basetype && i == vptr_fieldno)
3247 || TYPE_FIELD_ARTIFICIAL (type, i))
3250 if (TYPE_FIELD_PROTECTED (type, i))
3251 children[v_protected]++;
3252 else if (TYPE_FIELD_PRIVATE (type, i))
3253 children[v_private]++;
3255 children[v_public]++;
3260 cplus_name_of_variable (struct varobj *parent)
3262 return c_name_of_variable (parent);
3265 enum accessibility { private_field, protected_field, public_field };
3267 /* Check if field INDEX of TYPE has the specified accessibility.
3268 Return 0 if so and 1 otherwise. */
3270 match_accessibility (struct type *type, int index, enum accessibility acc)
3272 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3274 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3276 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3277 && !TYPE_FIELD_PROTECTED (type, index))
3284 cplus_describe_child (struct varobj *parent, int index,
3285 char **cname, struct value **cvalue, struct type **ctype,
3286 char **cfull_expression)
3288 struct value *value;
3291 char *parent_expression = NULL;
3299 if (cfull_expression)
3300 *cfull_expression = NULL;
3302 if (CPLUS_FAKE_CHILD (parent))
3304 value = parent->parent->value;
3305 type = get_value_type (parent->parent);
3306 if (cfull_expression)
3307 parent_expression = varobj_get_path_expr (parent->parent);
3311 value = parent->value;
3312 type = get_value_type (parent);
3313 if (cfull_expression)
3314 parent_expression = varobj_get_path_expr (parent);
3317 adjust_value_for_child_access (&value, &type, &was_ptr);
3319 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3320 || TYPE_CODE (type) == TYPE_CODE_UNION)
3322 char *join = was_ptr ? "->" : ".";
3324 if (CPLUS_FAKE_CHILD (parent))
3326 /* The fields of the class type are ordered as they
3327 appear in the class. We are given an index for a
3328 particular access control type ("public","protected",
3329 or "private"). We must skip over fields that don't
3330 have the access control we are looking for to properly
3331 find the indexed field. */
3332 int type_index = TYPE_N_BASECLASSES (type);
3333 enum accessibility acc = public_field;
3335 struct type *basetype = NULL;
3337 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3338 if (strcmp (parent->name, "private") == 0)
3339 acc = private_field;
3340 else if (strcmp (parent->name, "protected") == 0)
3341 acc = protected_field;
3345 if ((type == basetype && type_index == vptr_fieldno)
3346 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3348 else if (match_accessibility (type, type_index, acc))
3355 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3357 if (cvalue && value)
3358 *cvalue = value_struct_element_index (value, type_index);
3361 *ctype = TYPE_FIELD_TYPE (type, type_index);
3363 if (cfull_expression)
3365 = xstrprintf ("((%s)%s%s)", parent_expression,
3367 TYPE_FIELD_NAME (type, type_index));
3369 else if (index < TYPE_N_BASECLASSES (type))
3371 /* This is a baseclass. */
3373 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3375 if (cvalue && value)
3376 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3380 *ctype = TYPE_FIELD_TYPE (type, index);
3383 if (cfull_expression)
3385 char *ptr = was_ptr ? "*" : "";
3387 /* Cast the parent to the base' type. Note that in gdb,
3390 will create an lvalue, for all appearences, so we don't
3391 need to use more fancy:
3394 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3396 TYPE_FIELD_NAME (type, index),
3403 char *access = NULL;
3406 cplus_class_num_children (type, children);
3408 /* Everything beyond the baseclasses can
3409 only be "public", "private", or "protected"
3411 The special "fake" children are always output by varobj in
3412 this order. So if INDEX == 2, it MUST be "protected". */
3413 index -= TYPE_N_BASECLASSES (type);
3417 if (children[v_public] > 0)
3419 else if (children[v_private] > 0)
3422 access = "protected";
3425 if (children[v_public] > 0)
3427 if (children[v_private] > 0)
3430 access = "protected";
3432 else if (children[v_private] > 0)
3433 access = "protected";
3436 /* Must be protected. */
3437 access = "protected";
3444 gdb_assert (access);
3446 *cname = xstrdup (access);
3448 /* Value and type and full expression are null here. */
3453 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3458 cplus_name_of_child (struct varobj *parent, int index)
3462 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3467 cplus_path_expr_of_child (struct varobj *child)
3469 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3471 return child->path_expr;
3474 static struct value *
3475 cplus_value_of_root (struct varobj **var_handle)
3477 return c_value_of_root (var_handle);
3480 static struct value *
3481 cplus_value_of_child (struct varobj *parent, int index)
3483 struct value *value = NULL;
3485 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3489 static struct type *
3490 cplus_type_of_child (struct varobj *parent, int index)
3492 struct type *type = NULL;
3494 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3499 cplus_value_of_variable (struct varobj *var,
3500 enum varobj_display_formats format)
3503 /* If we have one of our special types, don't print out
3505 if (CPLUS_FAKE_CHILD (var))
3506 return xstrdup ("");
3508 return c_value_of_variable (var, format);
3514 java_number_of_children (struct varobj *var)
3516 return cplus_number_of_children (var);
3520 java_name_of_variable (struct varobj *parent)
3524 name = cplus_name_of_variable (parent);
3525 /* If the name has "-" in it, it is because we
3526 needed to escape periods in the name... */
3529 while (*p != '\000')
3540 java_name_of_child (struct varobj *parent, int index)
3544 name = cplus_name_of_child (parent, index);
3545 /* Escape any periods in the name... */
3548 while (*p != '\000')
3559 java_path_expr_of_child (struct varobj *child)
3564 static struct value *
3565 java_value_of_root (struct varobj **var_handle)
3567 return cplus_value_of_root (var_handle);
3570 static struct value *
3571 java_value_of_child (struct varobj *parent, int index)
3573 return cplus_value_of_child (parent, index);
3576 static struct type *
3577 java_type_of_child (struct varobj *parent, int index)
3579 return cplus_type_of_child (parent, index);
3583 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3585 return cplus_value_of_variable (var, format);
3588 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3589 with an arbitrary caller supplied DATA pointer. */
3592 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3594 struct varobj_root *var_root, *var_root_next;
3596 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3598 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3600 var_root_next = var_root->next;
3602 (*func) (var_root->rootvar, data);
3606 extern void _initialize_varobj (void);
3608 _initialize_varobj (void)
3610 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3612 varobj_table = xmalloc (sizeof_table);
3613 memset (varobj_table, 0, sizeof_table);
3615 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3617 _("Set varobj debugging."),
3618 _("Show varobj debugging."),
3619 _("When non-zero, varobj debugging is enabled."),
3620 NULL, show_varobjdebug,
3621 &setlist, &showlist);
3624 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3625 defined on globals. It is a helper for varobj_invalidate. */
3628 varobj_invalidate_iter (struct varobj *var, void *unused)
3630 /* Floating varobjs are reparsed on each stop, so we don't care if the
3631 presently parsed expression refers to something that's gone. */
3632 if (var->root->floating)
3635 /* global var must be re-evaluated. */
3636 if (var->root->valid_block == NULL)
3638 struct varobj *tmp_var;
3640 /* Try to create a varobj with same expression. If we succeed
3641 replace the old varobj, otherwise invalidate it. */
3642 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3644 if (tmp_var != NULL)
3646 tmp_var->obj_name = xstrdup (var->obj_name);
3647 varobj_delete (var, NULL, 0);
3648 install_variable (tmp_var);
3651 var->root->is_valid = 0;
3653 else /* locals must be invalidated. */
3654 var->root->is_valid = 0;
3657 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3658 are defined on globals.
3659 Invalidated varobjs will be always printed in_scope="invalid". */
3662 varobj_invalidate (void)
3664 all_root_varobjs (varobj_invalidate_iter, NULL);