1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
36 #include "complaints.h"
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
43 #include "stabsread.h" /* Our own declarations */
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
56 struct nextfield *next;
58 /* This is the raw visibility from the stab. It is not checked
59 for being one of the visibilities we recognize, so code which
60 examines this field better be able to deal. */
65 struct next_fnfieldlist
67 struct next_fnfieldlist *next;
68 struct fn_fieldlist fn_fieldlist;
73 dbx_alloc_type PARAMS ((int [2], struct objfile *));
75 static long read_huge_number PARAMS ((char **, int, int *));
77 static struct type *error_type PARAMS ((char **));
80 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
84 fix_common_block PARAMS ((struct symbol *, int));
87 read_type_number PARAMS ((char **, int *));
90 read_range_type PARAMS ((char **, int [2], struct objfile *));
93 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
96 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
99 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
102 rs6000_builtin_type PARAMS ((int));
105 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
109 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
113 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
117 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
121 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
124 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
128 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
131 read_array_type PARAMS ((char **, struct type *, struct objfile *));
133 static struct type **
134 read_args PARAMS ((char **, int, struct objfile *));
137 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
140 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
141 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
143 /* Define this as 1 if a pcc declaration of a char or short argument
144 gives the correct address. Otherwise assume pcc gives the
145 address of the corresponding int, which is not the same on a
146 big-endian machine. */
148 #ifndef BELIEVE_PCC_PROMOTION
149 #define BELIEVE_PCC_PROMOTION 0
152 struct complaint invalid_cpp_abbrev_complaint =
153 {"invalid C++ abbreviation `%s'", 0, 0};
155 struct complaint invalid_cpp_type_complaint =
156 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
158 struct complaint member_fn_complaint =
159 {"member function type missing, got '%c'", 0, 0};
161 struct complaint const_vol_complaint =
162 {"const/volatile indicator missing, got '%c'", 0, 0};
164 struct complaint error_type_complaint =
165 {"debug info mismatch between compiler and debugger", 0, 0};
167 struct complaint invalid_member_complaint =
168 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
170 struct complaint range_type_base_complaint =
171 {"base type %d of range type is not defined", 0, 0};
173 struct complaint reg_value_complaint =
174 {"register number too large in symbol %s", 0, 0};
176 struct complaint vtbl_notfound_complaint =
177 {"virtual function table pointer not found when defining class `%s'", 0, 0};
179 struct complaint unrecognized_cplus_name_complaint =
180 {"Unknown C++ symbol name `%s'", 0, 0};
182 struct complaint rs6000_builtin_complaint =
183 {"Unknown builtin type %d", 0, 0};
185 struct complaint stabs_general_complaint =
188 /* Make a list of forward references which haven't been defined. */
190 static struct type **undef_types;
191 static int undef_types_allocated;
192 static int undef_types_length;
194 /* Check for and handle cretinous stabs symbol name continuation! */
195 #define STABS_CONTINUE(pp) \
197 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
201 /* Look up a dbx type-number pair. Return the address of the slot
202 where the type for that number-pair is stored.
203 The number-pair is in TYPENUMS.
205 This can be used for finding the type associated with that pair
206 or for associating a new type with the pair. */
209 dbx_lookup_type (typenums)
212 register int filenum = typenums[0];
213 register int index = typenums[1];
215 register int real_filenum;
216 register struct header_file *f;
219 if (filenum == -1) /* -1,-1 is for temporary types. */
222 if (filenum < 0 || filenum >= n_this_object_header_files)
224 static struct complaint msg = {"\
225 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
227 complain (&msg, filenum, index, symnum);
235 /* Caller wants address of address of type. We think
236 that negative (rs6k builtin) types will never appear as
237 "lvalues", (nor should they), so we stuff the real type
238 pointer into a temp, and return its address. If referenced,
239 this will do the right thing. */
240 static struct type *temp_type;
242 temp_type = rs6000_builtin_type(index);
246 /* Type is defined outside of header files.
247 Find it in this object file's type vector. */
248 if (index >= type_vector_length)
250 old_len = type_vector_length;
253 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
254 type_vector = (struct type **)
255 malloc (type_vector_length * sizeof (struct type *));
257 while (index >= type_vector_length)
259 type_vector_length *= 2;
261 type_vector = (struct type **)
262 xrealloc ((char *) type_vector,
263 (type_vector_length * sizeof (struct type *)));
264 memset (&type_vector[old_len], 0,
265 (type_vector_length - old_len) * sizeof (struct type *));
267 return (&type_vector[index]);
271 real_filenum = this_object_header_files[filenum];
273 if (real_filenum >= n_header_files)
275 struct type *temp_type;
276 struct type **temp_type_p;
278 warning ("GDB internal error: bad real_filenum");
281 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
282 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
283 *temp_type_p = temp_type;
287 f = &header_files[real_filenum];
289 f_orig_length = f->length;
290 if (index >= f_orig_length)
292 while (index >= f->length)
296 f->vector = (struct type **)
297 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
298 memset (&f->vector[f_orig_length], 0,
299 (f->length - f_orig_length) * sizeof (struct type *));
301 return (&f->vector[index]);
305 /* Make sure there is a type allocated for type numbers TYPENUMS
306 and return the type object.
307 This can create an empty (zeroed) type object.
308 TYPENUMS may be (-1, -1) to return a new type object that is not
309 put into the type vector, and so may not be referred to by number. */
312 dbx_alloc_type (typenums, objfile)
314 struct objfile *objfile;
316 register struct type **type_addr;
318 if (typenums[0] == -1)
320 return (alloc_type (objfile));
323 type_addr = dbx_lookup_type (typenums);
325 /* If we are referring to a type not known at all yet,
326 allocate an empty type for it.
327 We will fill it in later if we find out how. */
330 *type_addr = alloc_type (objfile);
336 /* for all the stabs in a given stab vector, build appropriate types
337 and fix their symbols in given symbol vector. */
340 patch_block_stabs (symbols, stabs, objfile)
341 struct pending *symbols;
342 struct pending_stabs *stabs;
343 struct objfile *objfile;
353 /* for all the stab entries, find their corresponding symbols and
354 patch their types! */
356 for (ii = 0; ii < stabs->count; ++ii)
358 name = stabs->stab[ii];
359 pp = (char*) strchr (name, ':');
363 pp = (char *)strchr(pp, ':');
365 sym = find_symbol_in_list (symbols, name, pp-name);
368 /* On xcoff, if a global is defined and never referenced,
369 ld will remove it from the executable. There is then
370 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
371 sym = (struct symbol *)
372 obstack_alloc (&objfile->symbol_obstack,
373 sizeof (struct symbol));
375 memset (sym, 0, sizeof (struct symbol));
376 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
377 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
379 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
381 if (*(pp-1) == 'F' || *(pp-1) == 'f')
383 /* I don't think the linker does this with functions,
384 so as far as I know this is never executed.
385 But it doesn't hurt to check. */
387 lookup_function_type (read_type (&pp, objfile));
391 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
393 add_symbol_to_list (sym, &global_symbols);
398 if (*(pp-1) == 'F' || *(pp-1) == 'f')
401 lookup_function_type (read_type (&pp, objfile));
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
413 /* Read a number by which a type is referred to in dbx data,
414 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
415 Just a single number N is equivalent to (0,N).
416 Return the two numbers by storing them in the vector TYPENUMS.
417 TYPENUMS will then be used as an argument to dbx_lookup_type.
419 Returns 0 for success, -1 for error. */
422 read_type_number (pp, typenums)
424 register int *typenums;
430 typenums[0] = read_huge_number (pp, ',', &nbits);
431 if (nbits != 0) return -1;
432 typenums[1] = read_huge_number (pp, ')', &nbits);
433 if (nbits != 0) return -1;
438 typenums[1] = read_huge_number (pp, 0, &nbits);
439 if (nbits != 0) return -1;
445 /* To handle GNU C++ typename abbreviation, we need to be able to
446 fill in a type's name as soon as space for that type is allocated.
447 `type_synonym_name' is the name of the type being allocated.
448 It is cleared as soon as it is used (lest all allocated types
451 static char *type_synonym_name;
455 define_symbol (valu, string, desc, type, objfile)
460 struct objfile *objfile;
462 register struct symbol *sym;
463 char *p = (char *) strchr (string, ':');
468 /* We would like to eliminate nameless symbols, but keep their types.
469 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
470 to type 2, but, should not create a symbol to address that type. Since
471 the symbol will be nameless, there is no way any user can refer to it. */
475 /* Ignore syms with empty names. */
479 /* Ignore old-style symbols from cc -go */
489 /* If a nameless stab entry, all we need is the type, not the symbol.
490 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
491 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
493 sym = (struct symbol *)
494 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
495 memset (sym, 0, sizeof (struct symbol));
497 if (processing_gcc_compilation)
499 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
500 number of bytes occupied by a type or object, which we ignore. */
501 SYMBOL_LINE(sym) = desc;
505 SYMBOL_LINE(sym) = 0; /* unknown */
508 if (string[0] == CPLUS_MARKER)
510 /* Special GNU C++ names. */
514 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
515 &objfile -> symbol_obstack);
518 case 'v': /* $vtbl_ptr_type */
519 /* Was: SYMBOL_NAME (sym) = "vptr"; */
523 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
524 &objfile -> symbol_obstack);
528 /* This was an anonymous type that was never fixed up. */
532 complain (&unrecognized_cplus_name_complaint, string);
533 goto normal; /* Do *something* with it */
539 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
540 SYMBOL_NAME (sym) = (char *)
541 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
542 /* Open-coded memcpy--saves function call time. */
543 /* FIXME: Does it really? Try replacing with simple strcpy and
544 try it on an executable with a large symbol table. */
545 /* FIXME: considering that gcc can open code memcpy anyway, I
546 doubt it. xoxorich. */
548 register char *p1 = string;
549 register char *p2 = SYMBOL_NAME (sym);
557 /* If this symbol is from a C++ compilation, then attempt to cache the
558 demangled form for future reference. This is a typical time versus
559 space tradeoff, that was decided in favor of time because it sped up
560 C++ symbol lookups by a factor of about 20. */
562 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
566 /* Determine the type of name being defined. */
568 /* Getting GDB to correctly skip the symbol on an undefined symbol
569 descriptor and not ever dump core is a very dodgy proposition if
570 we do things this way. I say the acorn RISC machine can just
571 fix their compiler. */
572 /* The Acorn RISC machine's compiler can put out locals that don't
573 start with "234=" or "(3,4)=", so assume anything other than the
574 deftypes we know how to handle is a local. */
575 if (!strchr ("cfFGpPrStTvVXCR", *p))
577 if (isdigit (*p) || *p == '(' || *p == '-')
586 /* c is a special case, not followed by a type-number.
587 SYMBOL:c=iVALUE for an integer constant symbol.
588 SYMBOL:c=rVALUE for a floating constant symbol.
589 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
590 e.g. "b:c=e6,0" for "const b = blob1"
591 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
594 SYMBOL_CLASS (sym) = LOC_CONST;
595 SYMBOL_TYPE (sym) = error_type (&p);
596 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
597 add_symbol_to_list (sym, &file_symbols);
608 /* FIXME-if-picky-about-floating-accuracy: Should be using
609 target arithmetic to get the value. real.c in GCC
610 probably has the necessary code. */
612 /* FIXME: lookup_fundamental_type is a hack. We should be
613 creating a type especially for the type of float constants.
614 Problem is, what type should it be?
616 Also, what should the name of this type be? Should we
617 be using 'S' constants (see stabs.texinfo) instead? */
619 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
622 obstack_alloc (&objfile -> symbol_obstack,
623 TYPE_LENGTH (SYMBOL_TYPE (sym)));
624 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
625 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
626 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
631 /* Defining integer constants this way is kind of silly,
632 since 'e' constants allows the compiler to give not
633 only the value, but the type as well. C has at least
634 int, long, unsigned int, and long long as constant
635 types; other languages probably should have at least
636 unsigned as well as signed constants. */
638 /* We just need one int constant type for all objfiles.
639 It doesn't depend on languages or anything (arguably its
640 name should be a language-specific name for a type of
641 that size, but I'm inclined to say that if the compiler
642 wants a nice name for the type, it can use 'e'). */
643 static struct type *int_const_type;
645 /* Yes, this is as long as a *host* int. That is because we
647 if (int_const_type == NULL)
649 init_type (TYPE_CODE_INT,
650 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
652 (struct objfile *)NULL);
653 SYMBOL_TYPE (sym) = int_const_type;
654 SYMBOL_VALUE (sym) = atoi (p);
655 SYMBOL_CLASS (sym) = LOC_CONST;
659 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
660 can be represented as integral.
661 e.g. "b:c=e6,0" for "const b = blob1"
662 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
664 SYMBOL_CLASS (sym) = LOC_CONST;
665 SYMBOL_TYPE (sym) = read_type (&p, objfile);
669 SYMBOL_TYPE (sym) = error_type (&p);
674 /* If the value is too big to fit in an int (perhaps because
675 it is unsigned), or something like that, we silently get
676 a bogus value. The type and everything else about it is
677 correct. Ideally, we should be using whatever we have
678 available for parsing unsigned and long long values,
680 SYMBOL_VALUE (sym) = atoi (p);
685 SYMBOL_CLASS (sym) = LOC_CONST;
686 SYMBOL_TYPE (sym) = error_type (&p);
689 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
690 add_symbol_to_list (sym, &file_symbols);
694 /* The name of a caught exception. */
695 SYMBOL_TYPE (sym) = read_type (&p, objfile);
696 SYMBOL_CLASS (sym) = LOC_LABEL;
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 SYMBOL_VALUE_ADDRESS (sym) = valu;
699 add_symbol_to_list (sym, &local_symbols);
703 /* A static function definition. */
704 SYMBOL_TYPE (sym) = read_type (&p, objfile);
705 SYMBOL_CLASS (sym) = LOC_BLOCK;
706 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
707 add_symbol_to_list (sym, &file_symbols);
708 /* fall into process_function_types. */
710 process_function_types:
711 /* Function result types are described as the result type in stabs.
712 We need to convert this to the function-returning-type-X type
713 in GDB. E.g. "int" is converted to "function returning int". */
714 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
717 /* This code doesn't work -- it needs to realloc and can't. */
718 /* Attempt to set up to record a function prototype... */
719 struct type *new = alloc_type (objfile);
721 /* Generate a template for the type of this function. The
722 types of the arguments will be added as we read the symbol
724 *new = *lookup_function_type (SYMBOL_TYPE(sym));
725 SYMBOL_TYPE(sym) = new;
726 TYPE_OBJFILE (new) = objfile;
727 in_function_type = new;
729 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
732 /* fall into process_prototype_types */
734 process_prototype_types:
735 /* Sun acc puts declared types of arguments here. We don't care
736 about their actual types (FIXME -- we should remember the whole
737 function prototype), but the list may define some new types
738 that we have to remember, so we must scan it now. */
741 read_type (&p, objfile);
746 /* A global function definition. */
747 SYMBOL_TYPE (sym) = read_type (&p, objfile);
748 SYMBOL_CLASS (sym) = LOC_BLOCK;
749 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
750 add_symbol_to_list (sym, &global_symbols);
751 goto process_function_types;
754 /* For a class G (global) symbol, it appears that the
755 value is not correct. It is necessary to search for the
756 corresponding linker definition to find the value.
757 These definitions appear at the end of the namelist. */
758 SYMBOL_TYPE (sym) = read_type (&p, objfile);
759 i = hashname (SYMBOL_NAME (sym));
760 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
761 global_sym_chain[i] = sym;
762 SYMBOL_CLASS (sym) = LOC_STATIC;
763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
764 add_symbol_to_list (sym, &global_symbols);
767 /* This case is faked by a conditional above,
768 when there is no code letter in the dbx data.
769 Dbx data never actually contains 'l'. */
771 SYMBOL_TYPE (sym) = read_type (&p, objfile);
772 SYMBOL_CLASS (sym) = LOC_LOCAL;
773 SYMBOL_VALUE (sym) = valu;
774 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
775 add_symbol_to_list (sym, &local_symbols);
780 /* pF is a two-letter code that means a function parameter in Fortran.
781 The type-number specifies the type of the return value.
782 Translate it into a pointer-to-function type. */
786 = lookup_pointer_type
787 (lookup_function_type (read_type (&p, objfile)));
790 SYMBOL_TYPE (sym) = read_type (&p, objfile);
792 /* Normally this is a parameter, a LOC_ARG. On the i960, it
793 can also be a LOC_LOCAL_ARG depending on symbol type. */
794 #ifndef DBX_PARM_SYMBOL_CLASS
795 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
798 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
799 SYMBOL_VALUE (sym) = valu;
800 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
802 /* This doesn't work yet. */
803 add_param_to_type (&in_function_type, sym);
805 add_symbol_to_list (sym, &local_symbols);
807 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
808 /* On little-endian machines, this crud is never necessary, and,
809 if the extra bytes contain garbage, is harmful. */
811 #else /* Big endian. */
812 /* If it's gcc-compiled, if it says `short', believe it. */
813 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
816 #if !BELIEVE_PCC_PROMOTION
818 /* This is the signed type which arguments get promoted to. */
819 static struct type *pcc_promotion_type;
820 /* This is the unsigned type which arguments get promoted to. */
821 static struct type *pcc_unsigned_promotion_type;
823 /* Call it "int" because this is mainly C lossage. */
824 if (pcc_promotion_type == NULL)
826 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
829 if (pcc_unsigned_promotion_type == NULL)
830 pcc_unsigned_promotion_type =
831 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
832 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
834 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
835 /* This macro is defined on machines (e.g. sparc) where
836 we should believe the type of a PCC 'short' argument,
837 but shouldn't believe the address (the address is
838 the address of the corresponding int).
840 My guess is that this correction, as opposed to changing
841 the parameter to an 'int' (as done below, for PCC
842 on most machines), is the right thing to do
843 on all machines, but I don't want to risk breaking
844 something that already works. On most PCC machines,
845 the sparc problem doesn't come up because the calling
846 function has to zero the top bytes (not knowing whether
847 the called function wants an int or a short), so there
848 is little practical difference between an int and a short
849 (except perhaps what happens when the GDB user types
850 "print short_arg = 0x10000;").
853 actually produces the correct address (we don't need to fix it
854 up). I made this code adapt so that it will offset the symbol
855 if it was pointing at an int-aligned location and not
856 otherwise. This way you can use the same gdb for 4.0.x and
859 If the parameter is shorter than an int, and is integral
860 (e.g. char, short, or unsigned equivalent), and is claimed to
861 be passed on an integer boundary, don't believe it! Offset the
862 parameter's address to the tail-end of that integer. */
864 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
865 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
866 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
868 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
869 - TYPE_LENGTH (SYMBOL_TYPE (sym));
873 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
875 /* If PCC says a parameter is a short or a char,
876 it is really an int. */
877 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
878 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
881 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
882 ? pcc_unsigned_promotion_type
883 : pcc_promotion_type;
887 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
889 #endif /* !BELIEVE_PCC_PROMOTION. */
890 #endif /* Big endian. */
893 /* acc seems to use P to delare the prototypes of functions that
894 are referenced by this file. gdb is not prepared to deal
895 with this extra information. FIXME, it ought to. */
898 read_type (&p, objfile);
899 goto process_prototype_types;
904 /* Parameter which is in a register. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_REGPARM;
907 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
908 if (SYMBOL_VALUE (sym) >= NUM_REGS)
910 complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
911 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
913 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
914 add_symbol_to_list (sym, &local_symbols);
918 /* Register variable (either global or local). */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_CLASS (sym) = LOC_REGISTER;
921 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
922 if (SYMBOL_VALUE (sym) >= NUM_REGS)
924 complain (®_value_complaint, SYMBOL_SOURCE_NAME (sym));
925 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
927 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
930 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
931 name to represent an argument passed in a register.
932 GCC uses 'P' for the same case. So if we find such a symbol pair
933 we combine it into one 'P' symbol.
934 Note that this code illegally combines
935 main(argc) int argc; { register int argc = 1; }
936 but this case is considered pathological and causes a warning
937 from a decent compiler. */
939 && local_symbols->nsyms > 0)
941 struct symbol *prev_sym;
942 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
943 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
944 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
946 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
947 /* Use the type from the LOC_REGISTER; that is the type
948 that is actually in that register. */
949 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
950 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
955 add_symbol_to_list (sym, &local_symbols);
958 add_symbol_to_list (sym, &file_symbols);
962 /* Static symbol at top level of file */
963 SYMBOL_TYPE (sym) = read_type (&p, objfile);
964 SYMBOL_CLASS (sym) = LOC_STATIC;
965 SYMBOL_VALUE_ADDRESS (sym) = valu;
966 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
967 add_symbol_to_list (sym, &file_symbols);
971 SYMBOL_TYPE (sym) = read_type (&p, objfile);
973 /* For a nameless type, we don't want a create a symbol, thus we
974 did not use `sym'. Return without further processing. */
975 if (nameless) return NULL;
977 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
978 SYMBOL_VALUE (sym) = valu;
979 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
980 /* C++ vagaries: we may have a type which is derived from
981 a base type which did not have its name defined when the
982 derived class was output. We fill in the derived class's
983 base part member's name here in that case. */
984 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
985 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
986 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
987 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
990 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
991 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
992 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
993 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
996 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
998 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
999 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1001 /* If we are giving a name to a type such as "pointer to
1002 foo" or "function returning foo", we better not set
1003 the TYPE_NAME. If the program contains "typedef char
1004 *caddr_t;", we don't want all variables of type char
1005 * to print as caddr_t. This is not just a
1006 consequence of GDB's type management; PCC and GCC (at
1007 least through version 2.4) both output variables of
1008 either type char * or caddr_t with the type number
1009 defined in the 't' symbol for caddr_t. If a future
1010 compiler cleans this up it GDB is not ready for it
1011 yet, but if it becomes ready we somehow need to
1012 disable this check (without breaking the PCC/GCC2.4
1017 Fortunately, this check seems not to be necessary
1018 for anything except pointers or functions. */
1021 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1024 add_symbol_to_list (sym, &file_symbols);
1028 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1029 by 't' which means we are typedef'ing it as well. */
1030 synonym = *p == 't';
1035 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1036 strlen (SYMBOL_NAME (sym)),
1037 &objfile -> symbol_obstack);
1039 /* The semantics of C++ state that "struct foo { ... }" also defines
1040 a typedef for "foo". Unfortunately, cfront never makes the typedef
1041 when translating C++ into C. We make the typedef here so that
1042 "ptype foo" works as expected for cfront translated code. */
1043 else if (current_subfile->language == language_cplus)
1046 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1047 strlen (SYMBOL_NAME (sym)),
1048 &objfile -> symbol_obstack);
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1053 /* For a nameless type, we don't want a create a symbol, thus we
1054 did not use `sym'. Return without further processing. */
1055 if (nameless) return NULL;
1057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1060 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1061 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1062 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1063 add_symbol_to_list (sym, &file_symbols);
1067 /* Clone the sym and then modify it. */
1068 register struct symbol *typedef_sym = (struct symbol *)
1069 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1070 *typedef_sym = *sym;
1071 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1072 SYMBOL_VALUE (typedef_sym) = valu;
1073 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1074 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1075 TYPE_NAME (SYMBOL_TYPE (sym))
1076 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1077 add_symbol_to_list (typedef_sym, &file_symbols);
1082 /* Static symbol of local scope */
1083 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1084 SYMBOL_CLASS (sym) = LOC_STATIC;
1085 SYMBOL_VALUE_ADDRESS (sym) = valu;
1086 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1087 add_symbol_to_list (sym, &local_symbols);
1091 /* Reference parameter */
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1094 SYMBOL_VALUE (sym) = valu;
1095 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1096 add_symbol_to_list (sym, &local_symbols);
1100 /* This is used by Sun FORTRAN for "function result value".
1101 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1102 that Pascal uses it too, but when I tried it Pascal used
1103 "x:3" (local symbol) instead. */
1104 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1105 SYMBOL_CLASS (sym) = LOC_LOCAL;
1106 SYMBOL_VALUE (sym) = valu;
1107 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1108 add_symbol_to_list (sym, &local_symbols);
1112 SYMBOL_TYPE (sym) = error_type (&p);
1113 SYMBOL_CLASS (sym) = LOC_CONST;
1114 SYMBOL_VALUE (sym) = 0;
1115 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1116 add_symbol_to_list (sym, &file_symbols);
1120 /* When passing structures to a function, some systems sometimes pass
1121 the address in a register, not the structure itself.
1123 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1124 to LOC_REGPARM_ADDR for structures and unions. */
1126 #if !defined (REG_STRUCT_HAS_ADDR)
1127 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1130 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1131 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1132 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1133 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1134 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1140 /* Skip rest of this symbol and return an error type.
1142 General notes on error recovery: error_type always skips to the
1143 end of the symbol (modulo cretinous dbx symbol name continuation).
1144 Thus code like this:
1146 if (*(*pp)++ != ';')
1147 return error_type (pp);
1149 is wrong because if *pp starts out pointing at '\0' (typically as the
1150 result of an earlier error), it will be incremented to point to the
1151 start of the next symbol, which might produce strange results, at least
1152 if you run off the end of the string table. Instead use
1155 return error_type (pp);
1161 foo = error_type (pp);
1165 And in case it isn't obvious, the point of all this hair is so the compiler
1166 can define new types and new syntaxes, and old versions of the
1167 debugger will be able to read the new symbol tables. */
1169 static struct type *
1173 complain (&error_type_complaint);
1176 /* Skip to end of symbol. */
1177 while (**pp != '\0')
1182 /* Check for and handle cretinous dbx symbol name continuation! */
1183 if ((*pp)[-1] == '\\')
1185 *pp = next_symbol_text ();
1192 return (builtin_type_error);
1196 /* Read type information or a type definition; return the type. Even
1197 though this routine accepts either type information or a type
1198 definition, the distinction is relevant--some parts of stabsread.c
1199 assume that type information starts with a digit, '-', or '(' in
1200 deciding whether to call read_type. */
1203 read_type (pp, objfile)
1205 struct objfile *objfile;
1207 register struct type *type = 0;
1211 char type_descriptor;
1213 /* Size in bits of type if specified by a type attribute, or -1 if
1214 there is no size attribute. */
1217 /* Read type number if present. The type number may be omitted.
1218 for instance in a two-dimensional array declared with type
1219 "ar1;1;10;ar1;1;10;4". */
1220 if ((**pp >= '0' && **pp <= '9')
1224 if (read_type_number (pp, typenums) != 0)
1225 return error_type (pp);
1227 /* Type is not being defined here. Either it already exists,
1228 or this is a forward reference to it. dbx_alloc_type handles
1231 return dbx_alloc_type (typenums, objfile);
1233 /* Type is being defined here. */
1240 /* It might be a type attribute or a member type. */
1241 if (isdigit (*p) || *p == '(' || *p == '-')
1246 /* Type attributes. */
1249 /* Skip to the semicolon. */
1250 while (*p != ';' && *p != '\0')
1254 return error_type (pp);
1256 /* Skip the semicolon. */
1262 type_size = atoi (attr + 1);
1267 /* Ignore unrecognized type attributes, so future compilers
1268 can invent new ones. */
1273 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1278 /* 'typenums=' not present, type is anonymous. Read and return
1279 the definition, but don't put it in the type vector. */
1280 typenums[0] = typenums[1] = -1;
1284 type_descriptor = (*pp)[-1];
1285 switch (type_descriptor)
1289 enum type_code code;
1291 /* Used to index through file_symbols. */
1292 struct pending *ppt;
1295 /* Name including "struct", etc. */
1299 char *from, *to, *p;
1301 /* Set the type code according to the following letter. */
1305 code = TYPE_CODE_STRUCT;
1308 code = TYPE_CODE_UNION;
1311 code = TYPE_CODE_ENUM;
1315 /* Complain and keep going, so compilers can invent new
1316 cross-reference types. */
1317 static struct complaint msg =
1318 {"Unrecognized cross-reference type `%c'", 0, 0};
1319 complain (&msg, (*pp)[0]);
1320 code = TYPE_CODE_STRUCT;
1325 p = strchr(*pp, ':');
1327 return error_type (pp);
1333 return error_type (pp);
1336 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1338 /* Copy the name. */
1344 /* Set the pointer ahead of the name which we just read, and
1349 /* Now check to see whether the type has already been declared. */
1350 /* This is necessary at least in the case where the
1351 program says something like
1353 The compiler puts out a cross-reference; we better find
1354 set the length of the structure correctly so we can
1355 set the length of the array. */
1356 for (ppt = file_symbols; ppt; ppt = ppt->next)
1357 for (i = 0; i < ppt->nsyms; i++)
1359 struct symbol *sym = ppt->symbol[i];
1361 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1362 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1363 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1364 && STREQ (SYMBOL_NAME (sym), type_name))
1366 obstack_free (&objfile -> type_obstack, type_name);
1367 type = SYMBOL_TYPE (sym);
1372 /* Didn't find the type to which this refers, so we must
1373 be dealing with a forward reference. Allocate a type
1374 structure for it, and keep track of it so we can
1375 fill in the rest of the fields when we get the full
1377 type = dbx_alloc_type (typenums, objfile);
1378 TYPE_CODE (type) = code;
1379 TYPE_TAG_NAME (type) = type_name;
1380 INIT_CPLUS_SPECIFIC(type);
1381 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1383 add_undefined_type (type);
1387 case '-': /* RS/6000 built-in type */
1401 if (read_type_number (pp, xtypenums) != 0)
1402 return error_type (pp);
1404 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1405 /* It's being defined as itself. That means it is "void". */
1406 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1409 struct type *xtype = *dbx_lookup_type (xtypenums);
1411 /* This can happen if we had '-' followed by a garbage character,
1414 return error_type (pp);
1416 /* The type is being defined to another type. So we copy the type.
1417 This loses if we copy a C++ class and so we lose track of how
1418 the names are mangled (but g++ doesn't output stabs like this
1421 type = alloc_type (objfile);
1422 memcpy (type, xtype, sizeof (struct type));
1424 /* The idea behind clearing the names is that the only purpose
1425 for defining a type to another type is so that the name of
1426 one can be different. So we probably don't need to worry much
1427 about the case where the compiler doesn't give a name to the
1429 TYPE_NAME (type) = NULL;
1430 TYPE_TAG_NAME (type) = NULL;
1432 if (typenums[0] != -1)
1433 *dbx_lookup_type (typenums) = type;
1436 /* In the following types, we must be sure to overwrite any existing
1437 type that the typenums refer to, rather than allocating a new one
1438 and making the typenums point to the new one. This is because there
1439 may already be pointers to the existing type (if it had been
1440 forward-referenced), and we must change it to a pointer, function,
1441 reference, or whatever, *in-place*. */
1444 type1 = read_type (pp, objfile);
1445 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1448 case '&': /* Reference to another type */
1449 type1 = read_type (pp, objfile);
1450 type = make_reference_type (type1, dbx_lookup_type (typenums));
1453 case 'f': /* Function returning another type */
1454 type1 = read_type (pp, objfile);
1455 type = make_function_type (type1, dbx_lookup_type (typenums));
1458 case 'k': /* Const qualifier on some type (Sun) */
1459 type = read_type (pp, objfile);
1460 /* FIXME! For now, we ignore const and volatile qualifiers. */
1463 case 'B': /* Volatile qual on some type (Sun) */
1464 type = read_type (pp, objfile);
1465 /* FIXME! For now, we ignore const and volatile qualifiers. */
1468 /* FIXME -- we should be doing smash_to_XXX types here. */
1469 case '@': /* Member (class & variable) type */
1471 struct type *domain = read_type (pp, objfile);
1472 struct type *memtype;
1475 /* Invalid member type data format. */
1476 return error_type (pp);
1479 memtype = read_type (pp, objfile);
1480 type = dbx_alloc_type (typenums, objfile);
1481 smash_to_member_type (type, domain, memtype);
1485 case '#': /* Method (class & fn) type */
1486 if ((*pp)[0] == '#')
1488 /* We'll get the parameter types from the name. */
1489 struct type *return_type;
1492 return_type = read_type (pp, objfile);
1493 if (*(*pp)++ != ';')
1494 complain (&invalid_member_complaint, symnum);
1495 type = allocate_stub_method (return_type);
1496 if (typenums[0] != -1)
1497 *dbx_lookup_type (typenums) = type;
1501 struct type *domain = read_type (pp, objfile);
1502 struct type *return_type;
1506 /* Invalid member type data format. */
1507 return error_type (pp);
1511 return_type = read_type (pp, objfile);
1512 args = read_args (pp, ';', objfile);
1513 type = dbx_alloc_type (typenums, objfile);
1514 smash_to_method_type (type, domain, return_type, args);
1518 case 'r': /* Range type */
1519 type = read_range_type (pp, typenums, objfile);
1520 if (typenums[0] != -1)
1521 *dbx_lookup_type (typenums) = type;
1524 case 'b': /* Sun ACC builtin int type */
1525 type = read_sun_builtin_type (pp, typenums, objfile);
1526 if (typenums[0] != -1)
1527 *dbx_lookup_type (typenums) = type;
1530 case 'R': /* Sun ACC builtin float type */
1531 type = read_sun_floating_type (pp, typenums, objfile);
1532 if (typenums[0] != -1)
1533 *dbx_lookup_type (typenums) = type;
1536 case 'e': /* Enumeration type */
1537 type = dbx_alloc_type (typenums, objfile);
1538 type = read_enum_type (pp, type, objfile);
1539 if (typenums[0] != -1)
1540 *dbx_lookup_type (typenums) = type;
1543 case 's': /* Struct type */
1544 case 'u': /* Union type */
1545 type = dbx_alloc_type (typenums, objfile);
1546 if (!TYPE_NAME (type))
1548 TYPE_NAME (type) = type_synonym_name;
1550 type_synonym_name = NULL;
1551 switch (type_descriptor)
1554 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1557 TYPE_CODE (type) = TYPE_CODE_UNION;
1560 type = read_struct_type (pp, type, objfile);
1563 case 'a': /* Array type */
1565 return error_type (pp);
1568 type = dbx_alloc_type (typenums, objfile);
1569 type = read_array_type (pp, type, objfile);
1573 --*pp; /* Go back to the symbol in error */
1574 /* Particularly important if it was \0! */
1575 return error_type (pp);
1580 warning ("GDB internal error, type is NULL in stabsread.c\n");
1581 return error_type (pp);
1584 /* Size specified in a type attribute overrides any other size. */
1585 if (type_size != -1)
1586 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1591 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1592 Return the proper type node for a given builtin type number. */
1594 static struct type *
1595 rs6000_builtin_type (typenum)
1598 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1599 #define NUMBER_RECOGNIZED 30
1600 /* This includes an empty slot for type number -0. */
1601 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1602 struct type *rettype = NULL;
1604 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1606 complain (&rs6000_builtin_complaint, typenum);
1607 return builtin_type_error;
1609 if (negative_types[-typenum] != NULL)
1610 return negative_types[-typenum];
1612 #if TARGET_CHAR_BIT != 8
1613 #error This code wrong for TARGET_CHAR_BIT not 8
1614 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1615 that if that ever becomes not true, the correct fix will be to
1616 make the size in the struct type to be in bits, not in units of
1623 /* The size of this and all the other types are fixed, defined
1624 by the debugging format. If there is a type called "int" which
1625 is other than 32 bits, then it should use a new negative type
1626 number (or avoid negative type numbers for that case).
1627 See stabs.texinfo. */
1628 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1631 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1634 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1637 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1640 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1641 "unsigned char", NULL);
1644 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1647 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1648 "unsigned short", NULL);
1651 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1652 "unsigned int", NULL);
1655 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1658 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1659 "unsigned long", NULL);
1662 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1665 /* IEEE single precision (32 bit). */
1666 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1669 /* IEEE double precision (64 bit). */
1670 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1673 /* This is an IEEE double on the RS/6000, and different machines with
1674 different sizes for "long double" should use different negative
1675 type numbers. See stabs.texinfo. */
1676 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1679 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1682 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1685 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1688 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1691 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1694 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1698 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1702 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1706 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1710 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1714 /* Complex type consisting of two IEEE single precision values. */
1715 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1718 /* Complex type consisting of two IEEE double precision values. */
1719 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1722 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1725 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1728 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1731 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1734 negative_types[-typenum] = rettype;
1738 /* This page contains subroutines of read_type. */
1740 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1741 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1742 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1743 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1745 /* Read member function stabs info for C++ classes. The form of each member
1748 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1750 An example with two member functions is:
1752 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1754 For the case of overloaded operators, the format is op$::*.funcs, where
1755 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1756 name (such as `+=') and `.' marks the end of the operator name.
1758 Returns 1 for success, 0 for failure. */
1761 read_member_functions (fip, pp, type, objfile)
1762 struct field_info *fip;
1765 struct objfile *objfile;
1769 /* Total number of member functions defined in this class. If the class
1770 defines two `f' functions, and one `g' function, then this will have
1772 int total_length = 0;
1776 struct next_fnfield *next;
1777 struct fn_field fn_field;
1779 struct type *look_ahead_type;
1780 struct next_fnfieldlist *new_fnlist;
1781 struct next_fnfield *new_sublist;
1785 /* Process each list until we find something that is not a member function
1786 or find the end of the functions. */
1790 /* We should be positioned at the start of the function name.
1791 Scan forward to find the first ':' and if it is not the
1792 first of a "::" delimiter, then this is not a member function. */
1804 look_ahead_type = NULL;
1807 new_fnlist = (struct next_fnfieldlist *)
1808 xmalloc (sizeof (struct next_fnfieldlist));
1809 make_cleanup (free, new_fnlist);
1810 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1812 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1814 /* This is a completely wierd case. In order to stuff in the
1815 names that might contain colons (the usual name delimiter),
1816 Mike Tiemann defined a different name format which is
1817 signalled if the identifier is "op$". In that case, the
1818 format is "op$::XXXX." where XXXX is the name. This is
1819 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1820 /* This lets the user type "break operator+".
1821 We could just put in "+" as the name, but that wouldn't
1823 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1824 char *o = opname + 3;
1826 /* Skip past '::'. */
1829 STABS_CONTINUE (pp);
1835 main_fn_name = savestring (opname, o - opname);
1841 main_fn_name = savestring (*pp, p - *pp);
1842 /* Skip past '::'. */
1845 new_fnlist -> fn_fieldlist.name = main_fn_name;
1850 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1851 make_cleanup (free, new_sublist);
1852 memset (new_sublist, 0, sizeof (struct next_fnfield));
1854 /* Check for and handle cretinous dbx symbol name continuation! */
1855 if (look_ahead_type == NULL)
1858 STABS_CONTINUE (pp);
1860 new_sublist -> fn_field.type = read_type (pp, objfile);
1863 /* Invalid symtab info for member function. */
1869 /* g++ version 1 kludge */
1870 new_sublist -> fn_field.type = look_ahead_type;
1871 look_ahead_type = NULL;
1881 /* If this is just a stub, then we don't have the real name here. */
1883 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1885 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1886 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1887 new_sublist -> fn_field.is_stub = 1;
1889 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1892 /* Set this member function's visibility fields. */
1895 case VISIBILITY_PRIVATE:
1896 new_sublist -> fn_field.is_private = 1;
1898 case VISIBILITY_PROTECTED:
1899 new_sublist -> fn_field.is_protected = 1;
1903 STABS_CONTINUE (pp);
1906 case 'A': /* Normal functions. */
1907 new_sublist -> fn_field.is_const = 0;
1908 new_sublist -> fn_field.is_volatile = 0;
1911 case 'B': /* `const' member functions. */
1912 new_sublist -> fn_field.is_const = 1;
1913 new_sublist -> fn_field.is_volatile = 0;
1916 case 'C': /* `volatile' member function. */
1917 new_sublist -> fn_field.is_const = 0;
1918 new_sublist -> fn_field.is_volatile = 1;
1921 case 'D': /* `const volatile' member function. */
1922 new_sublist -> fn_field.is_const = 1;
1923 new_sublist -> fn_field.is_volatile = 1;
1926 case '*': /* File compiled with g++ version 1 -- no info */
1931 complain (&const_vol_complaint, **pp);
1940 /* virtual member function, followed by index.
1941 The sign bit is set to distinguish pointers-to-methods
1942 from virtual function indicies. Since the array is
1943 in words, the quantity must be shifted left by 1
1944 on 16 bit machine, and by 2 on 32 bit machine, forcing
1945 the sign bit out, and usable as a valid index into
1946 the array. Remove the sign bit here. */
1947 new_sublist -> fn_field.voffset =
1948 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1952 STABS_CONTINUE (pp);
1953 if (**pp == ';' || **pp == '\0')
1955 /* Must be g++ version 1. */
1956 new_sublist -> fn_field.fcontext = 0;
1960 /* Figure out from whence this virtual function came.
1961 It may belong to virtual function table of
1962 one of its baseclasses. */
1963 look_ahead_type = read_type (pp, objfile);
1966 /* g++ version 1 overloaded methods. */
1970 new_sublist -> fn_field.fcontext = look_ahead_type;
1979 look_ahead_type = NULL;
1985 /* static member function. */
1986 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1987 if (strncmp (new_sublist -> fn_field.physname,
1988 main_fn_name, strlen (main_fn_name)))
1990 new_sublist -> fn_field.is_stub = 1;
1996 complain (&member_fn_complaint, (*pp)[-1]);
1997 /* Fall through into normal member function. */
2000 /* normal member function. */
2001 new_sublist -> fn_field.voffset = 0;
2002 new_sublist -> fn_field.fcontext = 0;
2006 new_sublist -> next = sublist;
2007 sublist = new_sublist;
2009 STABS_CONTINUE (pp);
2011 while (**pp != ';' && **pp != '\0');
2015 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2016 obstack_alloc (&objfile -> type_obstack,
2017 sizeof (struct fn_field) * length);
2018 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2019 sizeof (struct fn_field) * length);
2020 for (i = length; (i--, sublist); sublist = sublist -> next)
2022 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2025 new_fnlist -> fn_fieldlist.length = length;
2026 new_fnlist -> next = fip -> fnlist;
2027 fip -> fnlist = new_fnlist;
2029 total_length += length;
2030 STABS_CONTINUE (pp);
2035 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2036 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2037 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2038 memset (TYPE_FN_FIELDLISTS (type), 0,
2039 sizeof (struct fn_fieldlist) * nfn_fields);
2040 TYPE_NFN_FIELDS (type) = nfn_fields;
2041 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2047 /* Special GNU C++ name.
2049 Returns 1 for success, 0 for failure. "failure" means that we can't
2050 keep parsing and it's time for error_type(). */
2053 read_cpp_abbrev (fip, pp, type, objfile)
2054 struct field_info *fip;
2057 struct objfile *objfile;
2062 struct type *context;
2072 /* At this point, *pp points to something like "22:23=*22...",
2073 where the type number before the ':' is the "context" and
2074 everything after is a regular type definition. Lookup the
2075 type, find it's name, and construct the field name. */
2077 context = read_type (pp, objfile);
2081 case 'f': /* $vf -- a virtual function table pointer */
2082 fip->list->field.name =
2083 obconcat (&objfile->type_obstack, vptr_name, "", "");
2086 case 'b': /* $vb -- a virtual bsomethingorother */
2087 name = type_name_no_tag (context);
2090 complain (&invalid_cpp_type_complaint, symnum);
2093 fip->list->field.name =
2094 obconcat (&objfile->type_obstack, vb_name, name, "");
2098 complain (&invalid_cpp_abbrev_complaint, *pp);
2099 fip->list->field.name =
2100 obconcat (&objfile->type_obstack,
2101 "INVALID_CPLUSPLUS_ABBREV", "", "");
2105 /* At this point, *pp points to the ':'. Skip it and read the
2111 complain (&invalid_cpp_abbrev_complaint, *pp);
2114 fip->list->field.type = read_type (pp, objfile);
2116 (*pp)++; /* Skip the comma. */
2122 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2126 /* This field is unpacked. */
2127 fip->list->field.bitsize = 0;
2128 fip->list->visibility = VISIBILITY_PRIVATE;
2132 complain (&invalid_cpp_abbrev_complaint, *pp);
2133 /* We have no idea what syntax an unrecognized abbrev would have, so
2134 better return 0. If we returned 1, we would need to at least advance
2135 *pp to avoid an infinite loop. */
2142 read_one_struct_field (fip, pp, p, type, objfile)
2143 struct field_info *fip;
2147 struct objfile *objfile;
2149 fip -> list -> field.name =
2150 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2153 /* This means we have a visibility for a field coming. */
2157 fip -> list -> visibility = *(*pp)++;
2161 /* normal dbx-style format, no explicit visibility */
2162 fip -> list -> visibility = VISIBILITY_PUBLIC;
2165 fip -> list -> field.type = read_type (pp, objfile);
2170 /* Possible future hook for nested types. */
2173 fip -> list -> field.bitpos = (long)-2; /* nested type */
2179 /* Static class member. */
2180 fip -> list -> field.bitpos = (long) -1;
2186 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2190 else if (**pp != ',')
2192 /* Bad structure-type format. */
2193 complain (&stabs_general_complaint, "bad structure-type format");
2197 (*pp)++; /* Skip the comma. */
2201 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2204 complain (&stabs_general_complaint, "bad structure-type format");
2207 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2210 complain (&stabs_general_complaint, "bad structure-type format");
2215 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2217 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2218 it is a field which has been optimized out. The correct stab for
2219 this case is to use VISIBILITY_IGNORE, but that is a recent
2220 invention. (2) It is a 0-size array. For example
2221 union { int num; char str[0]; } foo. Printing "<no value>" for
2222 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2223 will continue to work, and a 0-size array as a whole doesn't
2224 have any contents to print.
2226 I suspect this probably could also happen with gcc -gstabs (not
2227 -gstabs+) for static fields, and perhaps other C++ extensions.
2228 Hopefully few people use -gstabs with gdb, since it is intended
2229 for dbx compatibility. */
2231 /* Ignore this field. */
2232 fip -> list-> visibility = VISIBILITY_IGNORE;
2236 /* Detect an unpacked field and mark it as such.
2237 dbx gives a bit size for all fields.
2238 Note that forward refs cannot be packed,
2239 and treat enums as if they had the width of ints. */
2241 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2242 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2244 fip -> list -> field.bitsize = 0;
2246 if ((fip -> list -> field.bitsize
2247 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2248 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2249 && (fip -> list -> field.bitsize
2254 fip -> list -> field.bitpos % 8 == 0)
2256 fip -> list -> field.bitsize = 0;
2262 /* Read struct or class data fields. They have the form:
2264 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2266 At the end, we see a semicolon instead of a field.
2268 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2271 The optional VISIBILITY is one of:
2273 '/0' (VISIBILITY_PRIVATE)
2274 '/1' (VISIBILITY_PROTECTED)
2275 '/2' (VISIBILITY_PUBLIC)
2276 '/9' (VISIBILITY_IGNORE)
2278 or nothing, for C style fields with public visibility.
2280 Returns 1 for success, 0 for failure. */
2283 read_struct_fields (fip, pp, type, objfile)
2284 struct field_info *fip;
2287 struct objfile *objfile;
2290 struct nextfield *new;
2292 /* We better set p right now, in case there are no fields at all... */
2296 /* Read each data member type until we find the terminating ';' at the end of
2297 the data member list, or break for some other reason such as finding the
2298 start of the member function list. */
2302 STABS_CONTINUE (pp);
2303 /* Get space to record the next field's data. */
2304 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2305 make_cleanup (free, new);
2306 memset (new, 0, sizeof (struct nextfield));
2307 new -> next = fip -> list;
2310 /* Get the field name. */
2313 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2314 unless the CPLUS_MARKER is followed by an underscore, in
2315 which case it is just the name of an anonymous type, which we
2316 should handle like any other type name. We accept either '$'
2317 or '.', because a field name can never contain one of these
2318 characters except as a CPLUS_MARKER (we probably should be
2319 doing that in most parts of GDB). */
2321 if ((*p == '$' || *p == '.') && p[1] != '_')
2323 if (!read_cpp_abbrev (fip, pp, type, objfile))
2328 /* Look for the ':' that separates the field name from the field
2329 values. Data members are delimited by a single ':', while member
2330 functions are delimited by a pair of ':'s. When we hit the member
2331 functions (if any), terminate scan loop and return. */
2333 while (*p != ':' && *p != '\0')
2340 /* Check to see if we have hit the member functions yet. */
2345 read_one_struct_field (fip, pp, p, type, objfile);
2349 /* chill the list of fields: the last entry (at the head) is a
2350 partially constructed entry which we now scrub. */
2351 fip -> list = fip -> list -> next;
2356 /* The stabs for C++ derived classes contain baseclass information which
2357 is marked by a '!' character after the total size. This function is
2358 called when we encounter the baseclass marker, and slurps up all the
2359 baseclass information.
2361 Immediately following the '!' marker is the number of base classes that
2362 the class is derived from, followed by information for each base class.
2363 For each base class, there are two visibility specifiers, a bit offset
2364 to the base class information within the derived class, a reference to
2365 the type for the base class, and a terminating semicolon.
2367 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2369 Baseclass information marker __________________|| | | | | | |
2370 Number of baseclasses __________________________| | | | | | |
2371 Visibility specifiers (2) ________________________| | | | | |
2372 Offset in bits from start of class _________________| | | | |
2373 Type number for base class ___________________________| | | |
2374 Visibility specifiers (2) _______________________________| | |
2375 Offset in bits from start of class ________________________| |
2376 Type number of base class ____________________________________|
2378 Return 1 for success, 0 for (error-type-inducing) failure. */
2381 read_baseclasses (fip, pp, type, objfile)
2382 struct field_info *fip;
2385 struct objfile *objfile;
2388 struct nextfield *new;
2396 /* Skip the '!' baseclass information marker. */
2400 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2403 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2409 /* Some stupid compilers have trouble with the following, so break
2410 it up into simpler expressions. */
2411 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2412 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2415 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2418 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2419 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2423 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2425 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2427 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2428 make_cleanup (free, new);
2429 memset (new, 0, sizeof (struct nextfield));
2430 new -> next = fip -> list;
2432 new -> field.bitsize = 0; /* this should be an unpacked field! */
2434 STABS_CONTINUE (pp);
2438 /* Nothing to do. */
2441 SET_TYPE_FIELD_VIRTUAL (type, i);
2444 /* Unknown character. Complain and treat it as non-virtual. */
2446 static struct complaint msg = {
2447 "Unknown virtual character `%c' for baseclass", 0, 0};
2448 complain (&msg, **pp);
2453 new -> visibility = *(*pp)++;
2454 switch (new -> visibility)
2456 case VISIBILITY_PRIVATE:
2457 case VISIBILITY_PROTECTED:
2458 case VISIBILITY_PUBLIC:
2461 /* Bad visibility format. Complain and treat it as
2464 static struct complaint msg = {
2465 "Unknown visibility `%c' for baseclass", 0, 0};
2466 complain (&msg, new -> visibility);
2467 new -> visibility = VISIBILITY_PUBLIC;
2474 /* The remaining value is the bit offset of the portion of the object
2475 corresponding to this baseclass. Always zero in the absence of
2476 multiple inheritance. */
2478 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2483 /* The last piece of baseclass information is the type of the
2484 base class. Read it, and remember it's type name as this
2487 new -> field.type = read_type (pp, objfile);
2488 new -> field.name = type_name_no_tag (new -> field.type);
2490 /* skip trailing ';' and bump count of number of fields seen */
2499 /* The tail end of stabs for C++ classes that contain a virtual function
2500 pointer contains a tilde, a %, and a type number.
2501 The type number refers to the base class (possibly this class itself) which
2502 contains the vtable pointer for the current class.
2504 This function is called when we have parsed all the method declarations,
2505 so we can look for the vptr base class info. */
2508 read_tilde_fields (fip, pp, type, objfile)
2509 struct field_info *fip;
2512 struct objfile *objfile;
2516 STABS_CONTINUE (pp);
2518 /* If we are positioned at a ';', then skip it. */
2528 if (**pp == '=' || **pp == '+' || **pp == '-')
2530 /* Obsolete flags that used to indicate the presence
2531 of constructors and/or destructors. */
2535 /* Read either a '%' or the final ';'. */
2536 if (*(*pp)++ == '%')
2538 /* The next number is the type number of the base class
2539 (possibly our own class) which supplies the vtable for
2540 this class. Parse it out, and search that class to find
2541 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2542 and TYPE_VPTR_FIELDNO. */
2547 t = read_type (pp, objfile);
2549 while (*p != '\0' && *p != ';')
2555 /* Premature end of symbol. */
2559 TYPE_VPTR_BASETYPE (type) = t;
2560 if (type == t) /* Our own class provides vtbl ptr */
2562 for (i = TYPE_NFIELDS (t) - 1;
2563 i >= TYPE_N_BASECLASSES (t);
2566 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2567 sizeof (vptr_name) - 1))
2569 TYPE_VPTR_FIELDNO (type) = i;
2573 /* Virtual function table field not found. */
2574 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2579 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2590 attach_fn_fields_to_type (fip, type)
2591 struct field_info *fip;
2592 register struct type *type;
2596 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2598 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2600 /* @@ Memory leak on objfile -> type_obstack? */
2603 TYPE_NFN_FIELDS_TOTAL (type) +=
2604 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2607 for (n = TYPE_NFN_FIELDS (type);
2608 fip -> fnlist != NULL;
2609 fip -> fnlist = fip -> fnlist -> next)
2611 --n; /* Circumvent Sun3 compiler bug */
2612 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2617 /* Create the vector of fields, and record how big it is.
2618 We need this info to record proper virtual function table information
2619 for this class's virtual functions. */
2622 attach_fields_to_type (fip, type, objfile)
2623 struct field_info *fip;
2624 register struct type *type;
2625 struct objfile *objfile;
2627 register int nfields = 0;
2628 register int non_public_fields = 0;
2629 register struct nextfield *scan;
2631 /* Count up the number of fields that we have, as well as taking note of
2632 whether or not there are any non-public fields, which requires us to
2633 allocate and build the private_field_bits and protected_field_bits
2636 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2639 if (scan -> visibility != VISIBILITY_PUBLIC)
2641 non_public_fields++;
2645 /* Now we know how many fields there are, and whether or not there are any
2646 non-public fields. Record the field count, allocate space for the
2647 array of fields, and create blank visibility bitfields if necessary. */
2649 TYPE_NFIELDS (type) = nfields;
2650 TYPE_FIELDS (type) = (struct field *)
2651 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2652 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2654 if (non_public_fields)
2656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2658 TYPE_FIELD_PRIVATE_BITS (type) =
2659 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2660 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2662 TYPE_FIELD_PROTECTED_BITS (type) =
2663 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2664 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2666 TYPE_FIELD_IGNORE_BITS (type) =
2667 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2668 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2671 /* Copy the saved-up fields into the field vector. Start from the head
2672 of the list, adding to the tail of the field array, so that they end
2673 up in the same order in the array in which they were added to the list. */
2675 while (nfields-- > 0)
2677 TYPE_FIELD (type, nfields) = fip -> list -> field;
2678 switch (fip -> list -> visibility)
2680 case VISIBILITY_PRIVATE:
2681 SET_TYPE_FIELD_PRIVATE (type, nfields);
2684 case VISIBILITY_PROTECTED:
2685 SET_TYPE_FIELD_PROTECTED (type, nfields);
2688 case VISIBILITY_IGNORE:
2689 SET_TYPE_FIELD_IGNORE (type, nfields);
2692 case VISIBILITY_PUBLIC:
2696 /* Unknown visibility. Complain and treat it as public. */
2698 static struct complaint msg = {
2699 "Unknown visibility `%c' for field", 0, 0};
2700 complain (&msg, fip -> list -> visibility);
2704 fip -> list = fip -> list -> next;
2709 /* Read the description of a structure (or union type) and return an object
2710 describing the type.
2712 PP points to a character pointer that points to the next unconsumed token
2713 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2714 *PP will point to "4a:1,0,32;;".
2716 TYPE points to an incomplete type that needs to be filled in.
2718 OBJFILE points to the current objfile from which the stabs information is
2719 being read. (Note that it is redundant in that TYPE also contains a pointer
2720 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2723 static struct type *
2724 read_struct_type (pp, type, objfile)
2727 struct objfile *objfile;
2729 struct cleanup *back_to;
2730 struct field_info fi;
2735 back_to = make_cleanup (null_cleanup, 0);
2737 INIT_CPLUS_SPECIFIC (type);
2738 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2740 /* First comes the total size in bytes. */
2744 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2746 return error_type (pp);
2749 /* Now read the baseclasses, if any, read the regular C struct or C++
2750 class member fields, attach the fields to the type, read the C++
2751 member functions, attach them to the type, and then read any tilde
2752 field (baseclass specifier for the class holding the main vtable). */
2754 if (!read_baseclasses (&fi, pp, type, objfile)
2755 || !read_struct_fields (&fi, pp, type, objfile)
2756 || !attach_fields_to_type (&fi, type, objfile)
2757 || !read_member_functions (&fi, pp, type, objfile)
2758 || !attach_fn_fields_to_type (&fi, type)
2759 || !read_tilde_fields (&fi, pp, type, objfile))
2761 do_cleanups (back_to);
2762 return (error_type (pp));
2765 do_cleanups (back_to);
2769 /* Read a definition of an array type,
2770 and create and return a suitable type object.
2771 Also creates a range type which represents the bounds of that
2774 static struct type *
2775 read_array_type (pp, type, objfile)
2777 register struct type *type;
2778 struct objfile *objfile;
2780 struct type *index_type, *element_type, *range_type;
2785 /* Format of an array type:
2786 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2789 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2790 for these, produce a type like float[][]. */
2792 index_type = read_type (pp, objfile);
2794 /* Improper format of array type decl. */
2795 return error_type (pp);
2798 if (!(**pp >= '0' && **pp <= '9'))
2803 lower = read_huge_number (pp, ';', &nbits);
2805 return error_type (pp);
2807 if (!(**pp >= '0' && **pp <= '9'))
2812 upper = read_huge_number (pp, ';', &nbits);
2814 return error_type (pp);
2816 element_type = read_type (pp, objfile);
2825 create_range_type ((struct type *) NULL, index_type, lower, upper);
2826 type = create_array_type (type, element_type, range_type);
2828 /* If we have an array whose element type is not yet known, but whose
2829 bounds *are* known, record it to be adjusted at the end of the file. */
2831 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2833 add_undefined_type (type);
2840 /* Read a definition of an enumeration type,
2841 and create and return a suitable type object.
2842 Also defines the symbols that represent the values of the type. */
2844 static struct type *
2845 read_enum_type (pp, type, objfile)
2847 register struct type *type;
2848 struct objfile *objfile;
2853 register struct symbol *sym;
2855 struct pending **symlist;
2856 struct pending *osyms, *syms;
2860 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2861 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2862 to do? For now, force all enum values to file scope. */
2863 if (within_function)
2864 symlist = &local_symbols;
2867 symlist = &file_symbols;
2869 o_nsyms = osyms ? osyms->nsyms : 0;
2871 /* Read the value-names and their values.
2872 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2873 A semicolon or comma instead of a NAME means the end. */
2874 while (**pp && **pp != ';' && **pp != ',')
2877 STABS_CONTINUE (pp);
2879 while (*p != ':') p++;
2880 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2882 n = read_huge_number (pp, ',', &nbits);
2884 return error_type (pp);
2886 sym = (struct symbol *)
2887 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2888 memset (sym, 0, sizeof (struct symbol));
2889 SYMBOL_NAME (sym) = name;
2890 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2891 SYMBOL_CLASS (sym) = LOC_CONST;
2892 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2893 SYMBOL_VALUE (sym) = n;
2894 add_symbol_to_list (sym, symlist);
2899 (*pp)++; /* Skip the semicolon. */
2901 /* Now fill in the fields of the type-structure. */
2903 TYPE_LENGTH (type) = sizeof (int);
2904 TYPE_CODE (type) = TYPE_CODE_ENUM;
2905 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2906 TYPE_NFIELDS (type) = nsyms;
2907 TYPE_FIELDS (type) = (struct field *)
2908 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2909 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2911 /* Find the symbols for the values and put them into the type.
2912 The symbols can be found in the symlist that we put them on
2913 to cause them to be defined. osyms contains the old value
2914 of that symlist; everything up to there was defined by us. */
2915 /* Note that we preserve the order of the enum constants, so
2916 that in something like "enum {FOO, LAST_THING=FOO}" we print
2917 FOO, not LAST_THING. */
2919 for (syms = *symlist, n = 0; syms; syms = syms->next)
2924 for (; j < syms->nsyms; j++,n++)
2926 struct symbol *xsym = syms->symbol[j];
2927 SYMBOL_TYPE (xsym) = type;
2928 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2929 TYPE_FIELD_VALUE (type, n) = 0;
2930 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2931 TYPE_FIELD_BITSIZE (type, n) = 0;
2938 /* This screws up perfectly good C programs with enums. FIXME. */
2939 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2940 if(TYPE_NFIELDS(type) == 2 &&
2941 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2942 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2943 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2944 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2945 TYPE_CODE(type) = TYPE_CODE_BOOL;
2951 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2952 typedefs in every file (for int, long, etc):
2954 type = b <signed> <width>; <offset>; <nbits>
2955 signed = u or s. Possible c in addition to u or s (for char?).
2956 offset = offset from high order bit to start bit of type.
2957 width is # bytes in object of this type, nbits is # bits in type.
2959 The width/offset stuff appears to be for small objects stored in
2960 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2963 static struct type *
2964 read_sun_builtin_type (pp, typenums, objfile)
2967 struct objfile *objfile;
2982 return error_type (pp);
2986 /* For some odd reason, all forms of char put a c here. This is strange
2987 because no other type has this honor. We can safely ignore this because
2988 we actually determine 'char'acterness by the number of bits specified in
2994 /* The first number appears to be the number of bytes occupied
2995 by this type, except that unsigned short is 4 instead of 2.
2996 Since this information is redundant with the third number,
2997 we will ignore it. */
2998 read_huge_number (pp, ';', &nbits);
3000 return error_type (pp);
3002 /* The second number is always 0, so ignore it too. */
3003 read_huge_number (pp, ';', &nbits);
3005 return error_type (pp);
3007 /* The third number is the number of bits for this type. */
3008 type_bits = read_huge_number (pp, 0, &nbits);
3010 return error_type (pp);
3012 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3013 type_bits / TARGET_CHAR_BIT,
3014 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3018 static struct type *
3019 read_sun_floating_type (pp, typenums, objfile)
3022 struct objfile *objfile;
3028 /* The first number has more details about the type, for example
3030 details = read_huge_number (pp, ';', &nbits);
3032 return error_type (pp);
3034 /* The second number is the number of bytes occupied by this type */
3035 nbytes = read_huge_number (pp, ';', &nbits);
3037 return error_type (pp);
3039 if (details == NF_COMPLEX || details == NF_COMPLEX16
3040 || details == NF_COMPLEX32)
3041 /* This is a type we can't handle, but we do know the size.
3042 We also will be able to give it a name. */
3043 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3045 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3048 /* Read a number from the string pointed to by *PP.
3049 The value of *PP is advanced over the number.
3050 If END is nonzero, the character that ends the
3051 number must match END, or an error happens;
3052 and that character is skipped if it does match.
3053 If END is zero, *PP is left pointing to that character.
3055 If the number fits in a long, set *BITS to 0 and return the value.
3056 If not, set *BITS to be the number of bits in the number and return 0.
3058 If encounter garbage, set *BITS to -1 and return 0. */
3061 read_huge_number (pp, end, bits)
3081 /* Leading zero means octal. GCC uses this to output values larger
3082 than an int (because that would be hard in decimal). */
3089 upper_limit = LONG_MAX / radix;
3090 while ((c = *p++) >= '0' && c < ('0' + radix))
3092 if (n <= upper_limit)
3095 n += c - '0'; /* FIXME this overflows anyway */
3100 /* This depends on large values being output in octal, which is
3107 /* Ignore leading zeroes. */
3111 else if (c == '2' || c == '3')
3137 /* Large decimal constants are an error (because it is hard to
3138 count how many bits are in them). */
3144 /* -0x7f is the same as 0x80. So deal with it by adding one to
3145 the number of bits. */
3157 /* It's *BITS which has the interesting information. */
3161 static struct type *
3162 read_range_type (pp, typenums, objfile)
3165 struct objfile *objfile;
3171 struct type *result_type;
3172 struct type *index_type;
3174 /* First comes a type we are a subrange of.
3175 In C it is usually 0, 1 or the type being defined. */
3176 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3177 not just a type number. */
3178 if (read_type_number (pp, rangenums) != 0)
3179 return error_type (pp);
3180 self_subrange = (rangenums[0] == typenums[0] &&
3181 rangenums[1] == typenums[1]);
3183 /* A semicolon should now follow; skip it. */
3187 /* The remaining two operands are usually lower and upper bounds
3188 of the range. But in some special cases they mean something else. */
3189 n2 = read_huge_number (pp, ';', &n2bits);
3190 n3 = read_huge_number (pp, ';', &n3bits);
3192 if (n2bits == -1 || n3bits == -1)
3193 return error_type (pp);
3195 /* If limits are huge, must be large integral type. */
3196 if (n2bits != 0 || n3bits != 0)
3198 char got_signed = 0;
3199 char got_unsigned = 0;
3200 /* Number of bits in the type. */
3203 /* Range from 0 to <large number> is an unsigned large integral type. */
3204 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3209 /* Range from <large number> to <large number>-1 is a large signed
3210 integral type. Take care of the case where <large number> doesn't
3211 fit in a long but <large number>-1 does. */
3212 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3213 || (n2bits != 0 && n3bits == 0
3214 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3221 if (got_signed || got_unsigned)
3223 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3224 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3228 return error_type (pp);
3231 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3232 if (self_subrange && n2 == 0 && n3 == 0)
3233 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3235 /* If n3 is zero and n2 is not, we want a floating type,
3236 and n2 is the width in bytes.
3238 Fortran programs appear to use this for complex types also,
3239 and they give no way to distinguish between double and single-complex!
3241 GDB does not have complex types.
3243 Just return the complex as a float of that size. It won't work right
3244 for the complex values, but at least it makes the file loadable. */
3246 if (n3 == 0 && n2 > 0)
3248 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3251 /* If the upper bound is -1, it must really be an unsigned int. */
3253 else if (n2 == 0 && n3 == -1)
3255 /* It is unsigned int or unsigned long. */
3256 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3257 compatibility hack. */
3258 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3259 TYPE_FLAG_UNSIGNED, NULL, objfile);
3262 /* Special case: char is defined (Who knows why) as a subrange of
3263 itself with range 0-127. */
3264 else if (self_subrange && n2 == 0 && n3 == 127)
3265 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3267 /* We used to do this only for subrange of self or subrange of int. */
3271 /* n3 actually gives the size. */
3272 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3275 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3277 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3279 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3280 "unsigned long", and we already checked for that,
3281 so don't need to test for it here. */
3283 /* I think this is for Convex "long long". Since I don't know whether
3284 Convex sets self_subrange, I also accept that particular size regardless
3285 of self_subrange. */
3286 else if (n3 == 0 && n2 < 0
3288 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3289 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3290 else if (n2 == -n3 -1)
3293 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3295 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3296 if (n3 == 0x7fffffff)
3297 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3300 /* We have a real range type on our hands. Allocate space and
3301 return a real pointer. */
3303 /* At this point I don't have the faintest idea how to deal with
3304 a self_subrange type; I'm going to assume that this is used
3305 as an idiom, and that all of them are special cases. So . . . */
3307 return error_type (pp);
3309 index_type = *dbx_lookup_type (rangenums);
3310 if (index_type == NULL)
3312 /* Does this actually ever happen? Is that why we are worrying
3313 about dealing with it rather than just calling error_type? */
3315 static struct type *range_type_index;
3317 complain (&range_type_base_complaint, rangenums[1]);
3318 if (range_type_index == NULL)
3320 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3321 0, "range type index type", NULL);
3322 index_type = range_type_index;
3325 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3326 return (result_type);
3329 /* Read in an argument list. This is a list of types, separated by commas
3330 and terminated with END. Return the list of types read in, or (struct type
3331 **)-1 if there is an error. */
3333 static struct type **
3334 read_args (pp, end, objfile)
3337 struct objfile *objfile;
3339 /* FIXME! Remove this arbitrary limit! */
3340 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3346 /* Invalid argument list: no ','. */
3347 return (struct type **)-1;
3349 STABS_CONTINUE (pp);
3350 types[n++] = read_type (pp, objfile);
3352 (*pp)++; /* get past `end' (the ':' character) */
3356 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3358 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3360 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3361 memset (rval + n, 0, sizeof (struct type *));
3365 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3367 memcpy (rval, types, n * sizeof (struct type *));
3371 /* Common block handling. */
3373 /* List of symbols declared since the last BCOMM. This list is a tail
3374 of local_symbols. When ECOMM is seen, the symbols on the list
3375 are noted so their proper addresses can be filled in later,
3376 using the common block base address gotten from the assembler
3379 static struct pending *common_block;
3380 static int common_block_i;
3382 /* Name of the current common block. We get it from the BCOMM instead of the
3383 ECOMM to match IBM documentation (even though IBM puts the name both places
3384 like everyone else). */
3385 static char *common_block_name;
3387 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3388 to remain after this function returns. */
3391 common_block_start (name, objfile)
3393 struct objfile *objfile;
3395 if (common_block_name != NULL)
3397 static struct complaint msg = {
3398 "Invalid symbol data: common block within common block",
3402 common_block = local_symbols;
3403 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3404 common_block_name = obsavestring (name, strlen (name),
3405 &objfile -> symbol_obstack);
3408 /* Process a N_ECOMM symbol. */
3411 common_block_end (objfile)
3412 struct objfile *objfile;
3414 /* Symbols declared since the BCOMM are to have the common block
3415 start address added in when we know it. common_block and
3416 common_block_i point to the first symbol after the BCOMM in
3417 the local_symbols list; copy the list and hang it off the
3418 symbol for the common block name for later fixup. */
3421 struct pending *new = 0;
3422 struct pending *next;
3425 if (common_block_name == NULL)
3427 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3432 sym = (struct symbol *)
3433 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3434 memset (sym, 0, sizeof (struct symbol));
3435 SYMBOL_NAME (sym) = common_block_name;
3436 SYMBOL_CLASS (sym) = LOC_BLOCK;
3438 /* Now we copy all the symbols which have been defined since the BCOMM. */
3440 /* Copy all the struct pendings before common_block. */
3441 for (next = local_symbols;
3442 next != NULL && next != common_block;
3445 for (j = 0; j < next->nsyms; j++)
3446 add_symbol_to_list (next->symbol[j], &new);
3449 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3450 NULL, it means copy all the local symbols (which we already did
3453 if (common_block != NULL)
3454 for (j = common_block_i; j < common_block->nsyms; j++)
3455 add_symbol_to_list (common_block->symbol[j], &new);
3457 SYMBOL_NAMESPACE (sym) = (enum namespace)((long) new);
3459 /* Should we be putting local_symbols back to what it was?
3462 i = hashname (SYMBOL_NAME (sym));
3463 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3464 global_sym_chain[i] = sym;
3465 common_block_name = NULL;
3468 /* Add a common block's start address to the offset of each symbol
3469 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3470 the common block name). */
3473 fix_common_block (sym, valu)
3477 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3478 for ( ; next; next = next->next)
3481 for (j = next->nsyms - 1; j >= 0; j--)
3482 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3488 /* What about types defined as forward references inside of a small lexical
3490 /* Add a type to the list of undefined types to be checked through
3491 once this file has been read in. */
3494 add_undefined_type (type)
3497 if (undef_types_length == undef_types_allocated)
3499 undef_types_allocated *= 2;
3500 undef_types = (struct type **)
3501 xrealloc ((char *) undef_types,
3502 undef_types_allocated * sizeof (struct type *));
3504 undef_types[undef_types_length++] = type;
3507 /* Go through each undefined type, see if it's still undefined, and fix it
3508 up if possible. We have two kinds of undefined types:
3510 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3511 Fix: update array length using the element bounds
3512 and the target type's length.
3513 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3514 yet defined at the time a pointer to it was made.
3515 Fix: Do a full lookup on the struct/union tag. */
3517 cleanup_undefined_types ()
3521 for (type = undef_types; type < undef_types + undef_types_length; type++)
3523 switch (TYPE_CODE (*type))
3526 case TYPE_CODE_STRUCT:
3527 case TYPE_CODE_UNION:
3528 case TYPE_CODE_ENUM:
3530 /* Check if it has been defined since. */
3531 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3533 struct pending *ppt;
3535 /* Name of the type, without "struct" or "union" */
3536 char *typename = TYPE_TAG_NAME (*type);
3538 if (typename == NULL)
3540 static struct complaint msg = {"need a type name", 0, 0};
3544 for (ppt = file_symbols; ppt; ppt = ppt->next)
3546 for (i = 0; i < ppt->nsyms; i++)
3548 struct symbol *sym = ppt->symbol[i];
3550 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3551 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3552 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3554 && STREQ (SYMBOL_NAME (sym), typename))
3556 memcpy (*type, SYMBOL_TYPE (sym),
3557 sizeof (struct type));
3565 case TYPE_CODE_ARRAY:
3567 struct type *range_type;
3570 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3572 if (TYPE_NFIELDS (*type) != 1)
3574 range_type = TYPE_FIELD_TYPE (*type, 0);
3575 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3578 /* Now recompute the length of the array type, based on its
3579 number of elements and the target type's length. */
3580 lower = TYPE_FIELD_BITPOS (range_type, 0);
3581 upper = TYPE_FIELD_BITPOS (range_type, 1);
3582 TYPE_LENGTH (*type) = (upper - lower + 1)
3583 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3590 static struct complaint msg = {"\
3591 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3592 complain (&msg, TYPE_CODE (*type));
3597 undef_types_length = 0;
3600 /* Scan through all of the global symbols defined in the object file,
3601 assigning values to the debugging symbols that need to be assigned
3602 to. Get these symbols from the minimal symbol table. */
3605 scan_file_globals (objfile)
3606 struct objfile *objfile;
3609 struct minimal_symbol *msymbol;
3610 struct symbol *sym, *prev;
3612 if (objfile->msymbols == 0) /* Beware the null file. */
3615 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3621 /* Get the hash index and check all the symbols
3622 under that hash index. */
3624 hash = hashname (SYMBOL_NAME (msymbol));
3626 for (sym = global_sym_chain[hash]; sym;)
3628 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3629 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3631 /* Splice this symbol out of the hash chain and
3632 assign the value we have to it. */
3635 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3639 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3642 /* Check to see whether we need to fix up a common block. */
3643 /* Note: this code might be executed several times for
3644 the same symbol if there are multiple references. */
3646 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3648 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3652 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3657 sym = SYMBOL_VALUE_CHAIN (prev);
3661 sym = global_sym_chain[hash];
3667 sym = SYMBOL_VALUE_CHAIN (sym);
3673 /* Initialize anything that needs initializing when starting to read
3674 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3682 /* Initialize anything that needs initializing when a completely new
3683 symbol file is specified (not just adding some symbols from another
3684 file, e.g. a shared library). */
3687 stabsread_new_init ()
3689 /* Empty the hash table of global syms looking for values. */
3690 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3693 /* Initialize anything that needs initializing at the same time as
3694 start_symtab() is called. */
3698 global_stabs = NULL; /* AIX COFF */
3699 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3700 n_this_object_header_files = 1;
3701 type_vector_length = 0;
3702 type_vector = (struct type **) 0;
3704 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3705 common_block_name = NULL;
3708 /* Call after end_symtab() */
3714 free ((char *) type_vector);
3717 type_vector_length = 0;
3718 previous_stab_code = 0;
3722 finish_global_stabs (objfile)
3723 struct objfile *objfile;
3727 patch_block_stabs (global_symbols, global_stabs, objfile);
3728 free ((PTR) global_stabs);
3729 global_stabs = NULL;
3733 /* Initializer for this module */
3736 _initialize_stabsread ()
3738 undef_types_allocated = 20;
3739 undef_types_length = 0;
3740 undef_types = (struct type **)
3741 xmalloc (undef_types_allocated * sizeof (struct type *));