1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #include <sys/ioctl.h>
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
50 /*#include <sys/user.h> After a.out.h */
53 #include <machine/psl.h>
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71 static int compare_unwind_entries PARAMS ((struct unwind_table_entry *,
72 struct unwind_table_entry *));
73 static void read_unwind_info PARAMS ((struct objfile *));
74 static void internalize_unwinds PARAMS ((struct objfile *,
75 struct unwind_table_entry *,
76 asection *, unsigned int,
80 /* Routines to extract various sized constants out of hppa
83 /* This assumes that no garbage lies outside of the lower bits of
87 sign_extend (val, bits)
90 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
93 /* For many immediate values the sign bit is the low bit! */
96 low_sign_extend (val, bits)
99 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
101 /* extract the immediate field from a ld{bhw}s instruction */
104 get_field (val, from, to)
105 unsigned val, from, to;
107 val = val >> 31 - to;
108 return val & ((1 << 32 - from) - 1);
112 set_field (val, from, to, new_val)
113 unsigned *val, from, to;
115 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
116 return *val = *val & mask | (new_val << (31 - from));
119 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
124 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
127 extract_5_load (word)
130 return low_sign_extend (word >> 16 & MASK_5, 5);
133 /* extract the immediate field from a st{bhw}s instruction */
136 extract_5_store (word)
139 return low_sign_extend (word & MASK_5, 5);
142 /* extract the immediate field from a break instruction */
145 extract_5r_store (word)
148 return (word & MASK_5);
151 /* extract the immediate field from a {sr}sm instruction */
154 extract_5R_store (word)
157 return (word >> 16 & MASK_5);
160 /* extract an 11 bit immediate field */
166 return low_sign_extend (word & MASK_11, 11);
169 /* extract a 14 bit immediate field */
175 return low_sign_extend (word & MASK_14, 14);
178 /* deposit a 14 bit constant in a word */
181 deposit_14 (opnd, word)
185 unsigned sign = (opnd < 0 ? 1 : 0);
187 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
190 /* extract a 21 bit constant */
200 val = GET_FIELD (word, 20, 20);
202 val |= GET_FIELD (word, 9, 19);
204 val |= GET_FIELD (word, 5, 6);
206 val |= GET_FIELD (word, 0, 4);
208 val |= GET_FIELD (word, 7, 8);
209 return sign_extend (val, 21) << 11;
212 /* deposit a 21 bit constant in a word. Although 21 bit constants are
213 usually the top 21 bits of a 32 bit constant, we assume that only
214 the low 21 bits of opnd are relevant */
217 deposit_21 (opnd, word)
222 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
224 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
226 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
228 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
230 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
234 /* extract a 12 bit constant from branch instructions */
240 return sign_extend (GET_FIELD (word, 19, 28) |
241 GET_FIELD (word, 29, 29) << 10 |
242 (word & 0x1) << 11, 12) << 2;
245 /* extract a 17 bit constant from branch instructions, returning the
246 19 bit signed value. */
252 return sign_extend (GET_FIELD (word, 19, 28) |
253 GET_FIELD (word, 29, 29) << 10 |
254 GET_FIELD (word, 11, 15) << 11 |
255 (word & 0x1) << 16, 17) << 2;
259 /* Compare the start address for two unwind entries returning 1 if
260 the first address is larger than the second, -1 if the second is
261 larger than the first, and zero if they are equal. */
264 compare_unwind_entries (a, b)
265 struct unwind_table_entry *a;
266 struct unwind_table_entry *b;
268 if (a->region_start > b->region_start)
270 else if (a->region_start < b->region_start)
277 internalize_unwinds (objfile, table, section, entries, size)
278 struct objfile *objfile;
279 struct unwind_table_entry *table;
281 unsigned int entries, size;
283 /* We will read the unwind entries into temporary memory, then
284 fill in the actual unwind table. */
289 char *buf = alloca (size);
291 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
293 /* Now internalize the information being careful to handle host/target
295 for (i = 0; i < entries; i++)
297 table[i].region_start = bfd_get_32 (objfile->obfd,
300 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
308 table[i].reserved1 = (tmp >> 26) & 0x1;
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
318 table[i].Ada_Region = (tmp >> 9) & 0x1;
319 table[i].reserved2 = (tmp >> 5) & 0xf;
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
324 table[i].Cleanup_defined = tmp & 0x1;
325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
330 table[i].reserved4 = (tmp >> 27) & 0x3;
331 table[i].Total_frame_size = tmp & 0x7ffffff;
336 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
337 the object file. This info is used mainly by find_unwind_entry() to find
338 out the stack frame size and frame pointer used by procedures. We put
339 everything on the psymbol obstack in the objfile so that it automatically
340 gets freed when the objfile is destroyed. */
343 read_unwind_info (objfile)
344 struct objfile *objfile;
346 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
347 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
348 unsigned index, unwind_entries, elf_unwind_entries;
349 unsigned stub_entries, total_entries;
350 struct obj_unwind_info *ui;
352 ui = obstack_alloc (&objfile->psymbol_obstack,
353 sizeof (struct obj_unwind_info));
359 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
360 section in ELF at the moment. */
361 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
362 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".hppa_unwind");
363 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365 /* Get sizes and unwind counts for all sections. */
368 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
369 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
379 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
380 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
385 elf_unwind_entries = 0;
390 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
391 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
395 stub_unwind_size = 0;
399 /* Compute total number of unwind entries and their total size. */
400 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
401 total_size = total_entries * sizeof (struct unwind_table_entry);
403 /* Allocate memory for the unwind table. */
404 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
405 ui->last = total_entries - 1;
407 /* Internalize the standard unwind entries. */
409 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
410 unwind_entries, unwind_size);
411 index += unwind_entries;
412 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
413 elf_unwind_entries, elf_unwind_size);
414 index += elf_unwind_entries;
416 /* Now internalize the stub unwind entries. */
417 if (stub_unwind_size > 0)
420 char *buf = alloca (stub_unwind_size);
422 /* Read in the stub unwind entries. */
423 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
424 0, stub_unwind_size);
426 /* Now convert them into regular unwind entries. */
427 for (i = 0; i < stub_entries; i++, index++)
429 /* Clear out the next unwind entry. */
430 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
432 /* Convert offset & size into region_start and region_end.
433 Stuff away the stub type into "reserved" fields. */
434 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
437 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
440 ui->table[index].region_end
441 = ui->table[index].region_start + 4 *
442 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
448 /* Unwind table needs to be kept sorted. */
449 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
450 compare_unwind_entries);
452 /* Keep a pointer to the unwind information. */
453 objfile->obj_private = (PTR) ui;
456 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
457 of the objfiles seeking the unwind table entry for this PC. Each objfile
458 contains a sorted list of struct unwind_table_entry. Since we do a binary
459 search of the unwind tables, we depend upon them to be sorted. */
461 static struct unwind_table_entry *
462 find_unwind_entry(pc)
465 int first, middle, last;
466 struct objfile *objfile;
468 ALL_OBJFILES (objfile)
470 struct obj_unwind_info *ui;
472 ui = OBJ_UNWIND_INFO (objfile);
476 read_unwind_info (objfile);
477 ui = OBJ_UNWIND_INFO (objfile);
480 /* First, check the cache */
483 && pc >= ui->cache->region_start
484 && pc <= ui->cache->region_end)
487 /* Not in the cache, do a binary search */
492 while (first <= last)
494 middle = (first + last) / 2;
495 if (pc >= ui->table[middle].region_start
496 && pc <= ui->table[middle].region_end)
498 ui->cache = &ui->table[middle];
499 return &ui->table[middle];
502 if (pc < ui->table[middle].region_start)
507 } /* ALL_OBJFILES() */
511 /* Called to determine if PC is in an interrupt handler of some
515 pc_in_interrupt_handler (pc)
518 struct unwind_table_entry *u;
519 struct minimal_symbol *msym_us;
521 u = find_unwind_entry (pc);
525 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
526 its frame isn't a pure interrupt frame. Deal with this. */
527 msym_us = lookup_minimal_symbol_by_pc (pc);
529 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
532 /* Called when no unwind descriptor was found for PC. Returns 1 if it
533 appears that PC is in a linker stub. */
536 pc_in_linker_stub (pc)
539 int found_magic_instruction = 0;
543 /* If unable to read memory, assume pc is not in a linker stub. */
544 if (target_read_memory (pc, buf, 4) != 0)
547 /* We are looking for something like
549 ; $$dyncall jams RP into this special spot in the frame (RP')
550 ; before calling the "call stub"
553 ldsid (rp),r1 ; Get space associated with RP into r1
554 mtsp r1,sp ; Move it into space register 0
555 be,n 0(sr0),rp) ; back to your regularly scheduled program
558 /* Maximum known linker stub size is 4 instructions. Search forward
559 from the given PC, then backward. */
560 for (i = 0; i < 4; i++)
562 /* If we hit something with an unwind, stop searching this direction. */
564 if (find_unwind_entry (pc + i * 4) != 0)
567 /* Check for ldsid (rp),r1 which is the magic instruction for a
568 return from a cross-space function call. */
569 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
571 found_magic_instruction = 1;
574 /* Add code to handle long call/branch and argument relocation stubs
578 if (found_magic_instruction != 0)
581 /* Now look backward. */
582 for (i = 0; i < 4; i++)
584 /* If we hit something with an unwind, stop searching this direction. */
586 if (find_unwind_entry (pc - i * 4) != 0)
589 /* Check for ldsid (rp),r1 which is the magic instruction for a
590 return from a cross-space function call. */
591 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
593 found_magic_instruction = 1;
596 /* Add code to handle long call/branch and argument relocation stubs
599 return found_magic_instruction;
603 find_return_regnum(pc)
606 struct unwind_table_entry *u;
608 u = find_unwind_entry (pc);
619 /* Return size of frame, or -1 if we should use a frame pointer. */
621 find_proc_framesize (pc)
624 struct unwind_table_entry *u;
625 struct minimal_symbol *msym_us;
627 u = find_unwind_entry (pc);
631 if (pc_in_linker_stub (pc))
632 /* Linker stubs have a zero size frame. */
638 msym_us = lookup_minimal_symbol_by_pc (pc);
640 /* If Save_SP is set, and we're not in an interrupt or signal caller,
641 then we have a frame pointer. Use it. */
642 if (u->Save_SP && !pc_in_interrupt_handler (pc)
643 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
646 return u->Total_frame_size << 3;
649 /* Return offset from sp at which rp is saved, or 0 if not saved. */
650 static int rp_saved PARAMS ((CORE_ADDR));
656 struct unwind_table_entry *u;
658 u = find_unwind_entry (pc);
662 if (pc_in_linker_stub (pc))
663 /* This is the so-called RP'. */
671 else if (u->stub_type != 0)
673 switch (u->stub_type)
677 case PARAMETER_RELOCATION:
688 frameless_function_invocation (frame)
691 struct unwind_table_entry *u;
693 u = find_unwind_entry (frame->pc);
698 return (u->Total_frame_size == 0 && u->stub_type == 0);
702 saved_pc_after_call (frame)
707 ret_regnum = find_return_regnum (get_frame_pc (frame));
709 return read_register (ret_regnum) & ~0x3;
713 frame_saved_pc (frame)
716 CORE_ADDR pc = get_frame_pc (frame);
717 struct unwind_table_entry *u;
719 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
720 at the base of the frame in an interrupt handler. Registers within
721 are saved in the exact same order as GDB numbers registers. How
723 if (pc_in_interrupt_handler (pc))
724 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
726 /* Deal with signal handler caller frames too. */
727 if (frame->signal_handler_caller)
730 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
735 if (frameless_function_invocation (frame))
739 ret_regnum = find_return_regnum (pc);
741 /* If the next frame is an interrupt frame or a signal
742 handler caller, then we need to look in the saved
743 register area to get the return pointer (the values
744 in the registers may not correspond to anything useful). */
746 && (frame->next->signal_handler_caller
747 || pc_in_interrupt_handler (frame->next->pc)))
749 struct frame_info *fi;
750 struct frame_saved_regs saved_regs;
752 fi = get_frame_info (frame->next);
753 get_frame_saved_regs (fi, &saved_regs);
754 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
755 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
757 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
760 pc = read_register (ret_regnum) & ~0x3;
764 int rp_offset = rp_saved (pc);
766 /* Similar to code in frameless function case. If the next
767 frame is a signal or interrupt handler, then dig the right
768 information out of the saved register info. */
771 && (frame->next->signal_handler_caller
772 || pc_in_interrupt_handler (frame->next->pc)))
774 struct frame_info *fi;
775 struct frame_saved_regs saved_regs;
777 fi = get_frame_info (frame->next);
778 get_frame_saved_regs (fi, &saved_regs);
779 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
780 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
782 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
784 else if (rp_offset == 0)
785 pc = read_register (RP_REGNUM) & ~0x3;
787 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
790 /* If PC is inside a linker stub, then dig out the address the stub
792 u = find_unwind_entry (pc);
793 if (u && u->stub_type != 0)
799 /* We need to correct the PC and the FP for the outermost frame when we are
803 init_extra_frame_info (fromleaf, frame)
805 struct frame_info *frame;
810 if (frame->next && !fromleaf)
813 /* If the next frame represents a frameless function invocation
814 then we have to do some adjustments that are normally done by
815 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
818 /* Find the framesize of *this* frame without peeking at the PC
819 in the current frame structure (it isn't set yet). */
820 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
822 /* Now adjust our base frame accordingly. If we have a frame pointer
823 use it, else subtract the size of this frame from the current
824 frame. (we always want frame->frame to point at the lowest address
827 frame->frame = read_register (FP_REGNUM);
829 frame->frame -= framesize;
833 flags = read_register (FLAGS_REGNUM);
834 if (flags & 2) /* In system call? */
835 frame->pc = read_register (31) & ~0x3;
837 /* The outermost frame is always derived from PC-framesize
839 One might think frameless innermost frames should have
840 a frame->frame that is the same as the parent's frame->frame.
841 That is wrong; frame->frame in that case should be the *high*
842 address of the parent's frame. It's complicated as hell to
843 explain, but the parent *always* creates some stack space for
844 the child. So the child actually does have a frame of some
845 sorts, and its base is the high address in its parent's frame. */
846 framesize = find_proc_framesize(frame->pc);
848 frame->frame = read_register (FP_REGNUM);
850 frame->frame = read_register (SP_REGNUM) - framesize;
853 /* Given a GDB frame, determine the address of the calling function's frame.
854 This will be used to create a new GDB frame struct, and then
855 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
857 This may involve searching through prologues for several functions
858 at boundaries where GCC calls HP C code, or where code which has
859 a frame pointer calls code without a frame pointer. */
864 struct frame_info *frame;
866 int my_framesize, caller_framesize;
867 struct unwind_table_entry *u;
868 CORE_ADDR frame_base;
870 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
871 are easy; at *sp we have a full save state strucutre which we can
872 pull the old stack pointer from. Also see frame_saved_pc for
873 code to dig a saved PC out of the save state structure. */
874 if (pc_in_interrupt_handler (frame->pc))
875 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
876 else if (frame->signal_handler_caller)
878 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
881 frame_base = frame->frame;
883 /* Get frame sizes for the current frame and the frame of the
885 my_framesize = find_proc_framesize (frame->pc);
886 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
888 /* If caller does not have a frame pointer, then its frame
889 can be found at current_frame - caller_framesize. */
890 if (caller_framesize != -1)
891 return frame_base - caller_framesize;
893 /* Both caller and callee have frame pointers and are GCC compiled
894 (SAVE_SP bit in unwind descriptor is on for both functions.
895 The previous frame pointer is found at the top of the current frame. */
896 if (caller_framesize == -1 && my_framesize == -1)
897 return read_memory_integer (frame_base, 4);
899 /* Caller has a frame pointer, but callee does not. This is a little
900 more difficult as GCC and HP C lay out locals and callee register save
901 areas very differently.
903 The previous frame pointer could be in a register, or in one of
904 several areas on the stack.
906 Walk from the current frame to the innermost frame examining
907 unwind descriptors to determine if %r3 ever gets saved into the
908 stack. If so return whatever value got saved into the stack.
909 If it was never saved in the stack, then the value in %r3 is still
912 We use information from unwind descriptors to determine if %r3
913 is saved into the stack (Entry_GR field has this information). */
917 u = find_unwind_entry (frame->pc);
921 /* We could find this information by examining prologues. I don't
922 think anyone has actually written any tools (not even "strip")
923 which leave them out of an executable, so maybe this is a moot
925 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
929 /* Entry_GR specifies the number of callee-saved general registers
930 saved in the stack. It starts at %r3, so %r3 would be 1. */
931 if (u->Entry_GR >= 1 || u->Save_SP
932 || frame->signal_handler_caller
933 || pc_in_interrupt_handler (frame->pc))
941 /* We may have walked down the chain into a function with a frame
944 && !frame->signal_handler_caller
945 && !pc_in_interrupt_handler (frame->pc))
946 return read_memory_integer (frame->frame, 4);
947 /* %r3 was saved somewhere in the stack. Dig it out. */
950 struct frame_info *fi;
951 struct frame_saved_regs saved_regs;
953 fi = get_frame_info (frame);
954 get_frame_saved_regs (fi, &saved_regs);
955 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
960 /* The value in %r3 was never saved into the stack (thus %r3 still
961 holds the value of the previous frame pointer). */
962 return read_register (FP_REGNUM);
967 /* To see if a frame chain is valid, see if the caller looks like it
968 was compiled with gcc. */
971 frame_chain_valid (chain, thisframe)
975 struct minimal_symbol *msym_us;
976 struct minimal_symbol *msym_start;
977 struct unwind_table_entry *u, *next_u = NULL;
983 u = find_unwind_entry (thisframe->pc);
988 /* We can't just check that the same of msym_us is "_start", because
989 someone idiotically decided that they were going to make a Ltext_end
990 symbol with the same address. This Ltext_end symbol is totally
991 indistinguishable (as nearly as I can tell) from the symbol for a function
992 which is (legitimately, since it is in the user's namespace)
993 named Ltext_end, so we can't just ignore it. */
994 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
995 msym_start = lookup_minimal_symbol ("_start", NULL);
998 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1001 next = get_next_frame (thisframe);
1003 next_u = find_unwind_entry (next->pc);
1005 /* If this frame does not save SP, has no stack, isn't a stub,
1006 and doesn't "call" an interrupt routine or signal handler caller,
1007 then its not valid. */
1008 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1009 || (thisframe->next && thisframe->next->signal_handler_caller)
1010 || (next_u && next_u->HP_UX_interrupt_marker))
1013 if (pc_in_linker_stub (thisframe->pc))
1020 * These functions deal with saving and restoring register state
1021 * around a function call in the inferior. They keep the stack
1022 * double-word aligned; eventually, on an hp700, the stack will have
1023 * to be aligned to a 64-byte boundary.
1029 register CORE_ADDR sp;
1030 register int regnum;
1034 /* Space for "arguments"; the RP goes in here. */
1035 sp = read_register (SP_REGNUM) + 48;
1036 int_buffer = read_register (RP_REGNUM) | 0x3;
1037 write_memory (sp - 20, (char *)&int_buffer, 4);
1039 int_buffer = read_register (FP_REGNUM);
1040 write_memory (sp, (char *)&int_buffer, 4);
1042 write_register (FP_REGNUM, sp);
1046 for (regnum = 1; regnum < 32; regnum++)
1047 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1048 sp = push_word (sp, read_register (regnum));
1052 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1054 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1055 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1057 sp = push_word (sp, read_register (IPSW_REGNUM));
1058 sp = push_word (sp, read_register (SAR_REGNUM));
1059 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1060 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1061 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1062 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1063 write_register (SP_REGNUM, sp);
1066 find_dummy_frame_regs (frame, frame_saved_regs)
1067 struct frame_info *frame;
1068 struct frame_saved_regs *frame_saved_regs;
1070 CORE_ADDR fp = frame->frame;
1073 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1074 frame_saved_regs->regs[FP_REGNUM] = fp;
1075 frame_saved_regs->regs[1] = fp + 8;
1077 for (fp += 12, i = 3; i < 32; i++)
1081 frame_saved_regs->regs[i] = fp;
1087 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1088 frame_saved_regs->regs[i] = fp;
1090 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1091 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1092 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1093 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1094 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1095 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1101 register FRAME frame = get_current_frame ();
1102 register CORE_ADDR fp;
1103 register int regnum;
1104 struct frame_saved_regs fsr;
1105 struct frame_info *fi;
1108 fi = get_frame_info (frame);
1110 get_frame_saved_regs (fi, &fsr);
1112 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1113 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1114 restore_pc_queue (&fsr);
1117 for (regnum = 31; regnum > 0; regnum--)
1118 if (fsr.regs[regnum])
1119 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1121 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1122 if (fsr.regs[regnum])
1124 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1125 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1128 if (fsr.regs[IPSW_REGNUM])
1129 write_register (IPSW_REGNUM,
1130 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1132 if (fsr.regs[SAR_REGNUM])
1133 write_register (SAR_REGNUM,
1134 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1136 /* If the PC was explicitly saved, then just restore it. */
1137 if (fsr.regs[PCOQ_TAIL_REGNUM])
1138 write_register (PCOQ_TAIL_REGNUM,
1139 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1141 /* Else use the value in %rp to set the new PC. */
1143 target_write_pc (read_register (RP_REGNUM));
1145 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1147 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1148 write_register (SP_REGNUM, fp - 48);
1150 write_register (SP_REGNUM, fp);
1152 flush_cached_frames ();
1153 set_current_frame (create_new_frame (read_register (FP_REGNUM),
1158 * After returning to a dummy on the stack, restore the instruction
1159 * queue space registers. */
1162 restore_pc_queue (fsr)
1163 struct frame_saved_regs *fsr;
1165 CORE_ADDR pc = read_pc ();
1166 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1168 struct target_waitstatus w;
1171 /* Advance past break instruction in the call dummy. */
1172 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1173 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1176 * HPUX doesn't let us set the space registers or the space
1177 * registers of the PC queue through ptrace. Boo, hiss.
1178 * Conveniently, the call dummy has this sequence of instructions
1183 * So, load up the registers and single step until we are in the
1187 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1188 write_register (22, new_pc);
1190 for (insn_count = 0; insn_count < 3; insn_count++)
1192 /* FIXME: What if the inferior gets a signal right now? Want to
1193 merge this into wait_for_inferior (as a special kind of
1194 watchpoint? By setting a breakpoint at the end? Is there
1195 any other choice? Is there *any* way to do this stuff with
1196 ptrace() or some equivalent?). */
1198 target_wait (inferior_pid, &w);
1200 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1202 stop_signal = w.value.sig;
1203 terminal_ours_for_output ();
1204 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1205 target_signal_to_name (stop_signal),
1206 target_signal_to_string (stop_signal));
1207 gdb_flush (gdb_stdout);
1211 target_terminal_ours ();
1212 (current_target->to_fetch_registers) (-1);
1217 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1222 CORE_ADDR struct_addr;
1224 /* array of arguments' offsets */
1225 int *offset = (int *)alloca(nargs * sizeof (int));
1229 for (i = 0; i < nargs; i++)
1231 /* Coerce chars to int & float to double if necessary */
1232 args[i] = value_arg_coerce (args[i]);
1234 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1236 /* value must go at proper alignment. Assume alignment is a
1238 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1239 if (cum % alignment)
1240 cum = (cum + alignment) & -alignment;
1243 sp += max ((cum + 7) & -8, 16);
1245 for (i = 0; i < nargs; i++)
1246 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1247 TYPE_LENGTH (VALUE_TYPE (args[i])));
1250 write_register (28, struct_addr);
1255 * Insert the specified number of args and function address
1256 * into a call sequence of the above form stored at DUMMYNAME.
1258 * On the hppa we need to call the stack dummy through $$dyncall.
1259 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1260 * real_pc, which is the location where gdb should start up the
1261 * inferior to do the function call.
1265 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1274 CORE_ADDR dyncall_addr, sr4export_addr;
1275 struct minimal_symbol *msymbol;
1276 int flags = read_register (FLAGS_REGNUM);
1277 struct unwind_table_entry *u;
1279 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1280 if (msymbol == NULL)
1281 error ("Can't find an address for $$dyncall trampoline");
1283 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1285 /* FUN could be a procedure label, in which case we have to get
1286 its real address and the value of its GOT/DP. */
1289 /* Get the GOT/DP value for the target function. It's
1290 at *(fun+4). Note the call dummy is *NOT* allowed to
1291 trash %r19 before calling the target function. */
1292 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1294 /* Now get the real address for the function we are calling, it's
1296 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1299 /* If we are calling an import stub (eg calling into a dynamic library)
1300 then have sr4export call the magic __d_plt_call routine which is linked
1301 in from end.o. (You can't use _sr4export to call the import stub as
1302 the value in sp-24 will get fried and you end up returning to the
1303 wrong location. You can't call the import stub directly as the code
1304 to bind the PLT entry to a function can't return to a stack address.) */
1305 u = find_unwind_entry (fun);
1306 if (u && u->stub_type == IMPORT)
1309 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1310 if (msymbol == NULL)
1311 error ("Can't find an address for __d_plt_call trampoline");
1313 /* This is where sr4export will jump to. */
1314 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1316 /* We have to store the address of the stub in __shlib_funcptr. */
1317 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1318 (struct objfile *)NULL);
1319 if (msymbol == NULL)
1320 error ("Can't find an address for __shlib_funcptr");
1322 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1327 /* We still need sr4export's address too. */
1328 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1329 if (msymbol == NULL)
1330 error ("Can't find an address for _sr4export trampoline");
1332 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1334 store_unsigned_integer
1335 (&dummy[9*REGISTER_SIZE],
1337 deposit_21 (fun >> 11,
1338 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1340 store_unsigned_integer
1341 (&dummy[10*REGISTER_SIZE],
1343 deposit_14 (fun & MASK_11,
1344 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1346 store_unsigned_integer
1347 (&dummy[12*REGISTER_SIZE],
1349 deposit_21 (sr4export_addr >> 11,
1350 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1352 store_unsigned_integer
1353 (&dummy[13*REGISTER_SIZE],
1355 deposit_14 (sr4export_addr & MASK_11,
1356 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1359 write_register (22, pc);
1361 /* If we are in a syscall, then we should call the stack dummy
1362 directly. $$dyncall is not needed as the kernel sets up the
1363 space id registers properly based on the value in %r31. In
1364 fact calling $$dyncall will not work because the value in %r22
1365 will be clobbered on the syscall exit path. */
1369 return dyncall_addr;
1373 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1378 int flags = read_register (FLAGS_REGNUM);
1381 return read_register (31) & ~0x3;
1382 return read_register (PC_REGNUM) & ~0x3;
1385 /* Write out the PC. If currently in a syscall, then also write the new
1386 PC value into %r31. */
1391 int flags = read_register (FLAGS_REGNUM);
1393 /* If in a syscall, then set %r31. Also make sure to get the
1394 privilege bits set correctly. */
1396 write_register (31, (long) (v | 0x3));
1398 write_register (PC_REGNUM, (long) v);
1399 write_register (NPC_REGNUM, (long) v + 4);
1402 /* return the alignment of a type in bytes. Structures have the maximum
1403 alignment required by their fields. */
1409 int max_align, align, i;
1410 switch (TYPE_CODE (arg))
1415 return TYPE_LENGTH (arg);
1416 case TYPE_CODE_ARRAY:
1417 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1418 case TYPE_CODE_STRUCT:
1419 case TYPE_CODE_UNION:
1421 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1423 /* Bit fields have no real alignment. */
1424 if (!TYPE_FIELD_BITPOS (arg, i))
1426 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1427 max_align = max (max_align, align);
1436 /* Print the register regnum, or all registers if regnum is -1 */
1438 pa_do_registers_info (regnum, fpregs)
1442 char raw_regs [REGISTER_BYTES];
1445 for (i = 0; i < NUM_REGS; i++)
1446 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1448 pa_print_registers (raw_regs, regnum, fpregs);
1449 else if (regnum < FP0_REGNUM)
1450 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1451 REGISTER_BYTE (regnum)));
1453 pa_print_fp_reg (regnum);
1456 pa_print_registers (raw_regs, regnum, fpregs)
1463 for (i = 0; i < 18; i++)
1464 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1466 *(int *)(raw_regs + REGISTER_BYTE (i)),
1468 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1470 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1472 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1475 for (i = 72; i < NUM_REGS; i++)
1476 pa_print_fp_reg (i);
1482 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1483 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1485 /* Get 32bits of data. */
1486 read_relative_register_raw_bytes (i, raw_buffer);
1488 /* Put it in the buffer. No conversions are ever necessary. */
1489 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1491 fputs_filtered (reg_names[i], gdb_stdout);
1492 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1493 fputs_filtered ("(single precision) ", gdb_stdout);
1495 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1496 1, 0, Val_pretty_default);
1497 printf_filtered ("\n");
1499 /* If "i" is even, then this register can also be a double-precision
1500 FP register. Dump it out as such. */
1503 /* Get the data in raw format for the 2nd half. */
1504 read_relative_register_raw_bytes (i + 1, raw_buffer);
1506 /* Copy it into the appropriate part of the virtual buffer. */
1507 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1508 REGISTER_RAW_SIZE (i));
1510 /* Dump it as a double. */
1511 fputs_filtered (reg_names[i], gdb_stdout);
1512 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1513 fputs_filtered ("(double precision) ", gdb_stdout);
1515 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1516 1, 0, Val_pretty_default);
1517 printf_filtered ("\n");
1521 /* Figure out if PC is in a trampoline, and if so find out where
1522 the trampoline will jump to. If not in a trampoline, return zero.
1524 Simple code examination probably is not a good idea since the code
1525 sequences in trampolines can also appear in user code.
1527 We use unwinds and information from the minimal symbol table to
1528 determine when we're in a trampoline. This won't work for ELF
1529 (yet) since it doesn't create stub unwind entries. Whether or
1530 not ELF will create stub unwinds or normal unwinds for linker
1531 stubs is still being debated.
1533 This should handle simple calls through dyncall or sr4export,
1534 long calls, argument relocation stubs, and dyncall/sr4export
1535 calling an argument relocation stub. It even handles some stubs
1536 used in dynamic executables. */
1539 skip_trampoline_code (pc, name)
1544 long prev_inst, curr_inst, loc;
1545 static CORE_ADDR dyncall = 0;
1546 static CORE_ADDR sr4export = 0;
1547 struct minimal_symbol *msym;
1548 struct unwind_table_entry *u;
1550 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1555 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1557 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1564 msym = lookup_minimal_symbol ("_sr4export", NULL);
1566 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1571 /* Addresses passed to dyncall may *NOT* be the actual address
1572 of the funtion. So we may have to do something special. */
1575 pc = (CORE_ADDR) read_register (22);
1577 /* If bit 30 (counting from the left) is on, then pc is the address of
1578 the PLT entry for this function, not the address of the function
1579 itself. Bit 31 has meaning too, but only for MPE. */
1581 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1583 else if (pc == sr4export)
1584 pc = (CORE_ADDR) (read_register (22));
1586 /* Get the unwind descriptor corresponding to PC, return zero
1587 if no unwind was found. */
1588 u = find_unwind_entry (pc);
1592 /* If this isn't a linker stub, then return now. */
1593 if (u->stub_type == 0)
1594 return orig_pc == pc ? 0 : pc & ~0x3;
1596 /* It's a stub. Search for a branch and figure out where it goes.
1597 Note we have to handle multi insn branch sequences like ldil;ble.
1598 Most (all?) other branches can be determined by examining the contents
1599 of certain registers and the stack. */
1605 /* Make sure we haven't walked outside the range of this stub. */
1606 if (u != find_unwind_entry (loc))
1608 warning ("Unable to find branch in linker stub");
1609 return orig_pc == pc ? 0 : pc & ~0x3;
1612 prev_inst = curr_inst;
1613 curr_inst = read_memory_integer (loc, 4);
1615 /* Does it look like a branch external using %r1? Then it's the
1616 branch from the stub to the actual function. */
1617 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1619 /* Yup. See if the previous instruction loaded
1620 a value into %r1. If so compute and return the jump address. */
1621 if ((prev_inst & 0xffe00000) == 0x20202000)
1622 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1625 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1626 return orig_pc == pc ? 0 : pc & ~0x3;
1630 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1631 branch from the stub to the actual function. */
1632 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1633 || (curr_inst & 0xffe0e000) == 0xe8000000)
1634 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1636 /* Does it look like bv (rp)? Note this depends on the
1637 current stack pointer being the same as the stack
1638 pointer in the stub itself! This is a branch on from the
1639 stub back to the original caller. */
1640 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1642 /* Yup. See if the previous instruction loaded
1644 if (prev_inst == 0x4bc23ff1)
1645 return (read_memory_integer
1646 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1649 warning ("Unable to find restore of %%rp before bv (%%rp).");
1650 return orig_pc == pc ? 0 : pc & ~0x3;
1654 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1655 the original caller from the stub. Used in dynamic executables. */
1656 else if (curr_inst == 0xe0400002)
1658 /* The value we jump to is sitting in sp - 24. But that's
1659 loaded several instructions before the be instruction.
1660 I guess we could check for the previous instruction being
1661 mtsp %r1,%sr0 if we want to do sanity checking. */
1662 return (read_memory_integer
1663 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1666 /* Haven't found the branch yet, but we're still in the stub.
1672 /* For the given instruction (INST), return any adjustment it makes
1673 to the stack pointer or zero for no adjustment.
1675 This only handles instructions commonly found in prologues. */
1678 prologue_inst_adjust_sp (inst)
1681 /* This must persist across calls. */
1682 static int save_high21;
1684 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1685 if ((inst & 0xffffc000) == 0x37de0000)
1686 return extract_14 (inst);
1689 if ((inst & 0xffe00000) == 0x6fc00000)
1690 return extract_14 (inst);
1692 /* addil high21,%r1; ldo low11,(%r1),%r30)
1693 save high bits in save_high21 for later use. */
1694 if ((inst & 0xffe00000) == 0x28200000)
1696 save_high21 = extract_21 (inst);
1700 if ((inst & 0xffff0000) == 0x343e0000)
1701 return save_high21 + extract_14 (inst);
1703 /* fstws as used by the HP compilers. */
1704 if ((inst & 0xffffffe0) == 0x2fd01220)
1705 return extract_5_load (inst);
1707 /* No adjustment. */
1711 /* Return nonzero if INST is a branch of some kind, else return zero. */
1741 /* Return the register number for a GR which is saved by INST or
1742 zero it INST does not save a GR.
1744 Note we only care about full 32bit register stores (that's the only
1745 kind of stores the prologue will use). */
1748 inst_saves_gr (inst)
1751 /* Does it look like a stw? */
1752 if ((inst >> 26) == 0x1a)
1753 return extract_5R_store (inst);
1755 /* Does it look like a stwm? */
1756 if ((inst >> 26) == 0x1b)
1757 return extract_5R_store (inst);
1762 /* Return the register number for a FR which is saved by INST or
1763 zero it INST does not save a FR.
1765 Note we only care about full 64bit register stores (that's the only
1766 kind of stores the prologue will use). */
1769 inst_saves_fr (inst)
1772 if ((inst & 0xfc1fffe0) == 0x2c101220)
1773 return extract_5r_store (inst);
1777 /* Advance PC across any function entry prologue instructions
1778 to reach some "real" code.
1780 Use information in the unwind table to determine what exactly should
1781 be in the prologue. */
1788 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1790 struct unwind_table_entry *u;
1792 u = find_unwind_entry (pc);
1796 /* If we are not at the beginning of a function, then return now. */
1797 if ((pc & ~0x3) != u->region_start)
1800 /* This is how much of a frame adjustment we need to account for. */
1801 stack_remaining = u->Total_frame_size << 3;
1803 /* Magic register saves we want to know about. */
1804 save_rp = u->Save_RP;
1805 save_sp = u->Save_SP;
1807 /* Turn the Entry_GR field into a bitmask. */
1809 for (i = 3; i < u->Entry_GR + 3; i++)
1811 /* Frame pointer gets saved into a special location. */
1812 if (u->Save_SP && i == FP_REGNUM)
1815 save_gr |= (1 << i);
1818 /* Turn the Entry_FR field into a bitmask too. */
1820 for (i = 12; i < u->Entry_FR + 12; i++)
1821 save_fr |= (1 << i);
1823 /* Loop until we find everything of interest or hit a branch.
1825 For unoptimized GCC code and for any HP CC code this will never ever
1826 examine any user instructions.
1828 For optimzied GCC code we're faced with problems. GCC will schedule
1829 its prologue and make prologue instructions available for delay slot
1830 filling. The end result is user code gets mixed in with the prologue
1831 and a prologue instruction may be in the delay slot of the first branch
1834 Some unexpected things are expected with debugging optimized code, so
1835 we allow this routine to walk past user instructions in optimized
1837 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1839 status = target_read_memory (pc, buf, 4);
1840 inst = extract_unsigned_integer (buf, 4);
1846 /* Note the interesting effects of this instruction. */
1847 stack_remaining -= prologue_inst_adjust_sp (inst);
1849 /* There is only one instruction used for saving RP into the stack. */
1850 if (inst == 0x6bc23fd9)
1853 /* This is the only way we save SP into the stack. At this time
1854 the HP compilers never bother to save SP into the stack. */
1855 if ((inst & 0xffffc000) == 0x6fc10000)
1858 /* Account for general and floating-point register saves. */
1859 save_gr &= ~(1 << inst_saves_gr (inst));
1860 save_fr &= ~(1 << inst_saves_fr (inst));
1862 /* Quit if we hit any kind of branch. This can happen if a prologue
1863 instruction is in the delay slot of the first call/branch. */
1864 if (is_branch (inst))
1874 /* Put here the code to store, into a struct frame_saved_regs,
1875 the addresses of the saved registers of frame described by FRAME_INFO.
1876 This includes special registers such as pc and fp saved in special
1877 ways in the stack frame. sp is even more special:
1878 the address we return for it IS the sp for the next frame. */
1881 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
1882 struct frame_info *frame_info;
1883 struct frame_saved_regs *frame_saved_regs;
1886 struct unwind_table_entry *u;
1887 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1892 /* Zero out everything. */
1893 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
1895 /* Call dummy frames always look the same, so there's no need to
1896 examine the dummy code to determine locations of saved registers;
1897 instead, let find_dummy_frame_regs fill in the correct offsets
1898 for the saved registers. */
1899 if ((frame_info->pc >= frame_info->frame
1900 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
1901 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
1903 find_dummy_frame_regs (frame_info, frame_saved_regs);
1905 /* Interrupt handlers are special too. They lay out the register
1906 state in the exact same order as the register numbers in GDB. */
1907 if (pc_in_interrupt_handler (frame_info->pc))
1909 for (i = 0; i < NUM_REGS; i++)
1911 /* SP is a little special. */
1913 frame_saved_regs->regs[SP_REGNUM]
1914 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
1916 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
1921 /* Handle signal handler callers. */
1922 if (frame_info->signal_handler_caller)
1924 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
1928 /* Get the starting address of the function referred to by the PC
1929 saved in frame_info. */
1930 pc = get_pc_function_start (frame_info->pc);
1933 u = find_unwind_entry (pc);
1937 /* This is how much of a frame adjustment we need to account for. */
1938 stack_remaining = u->Total_frame_size << 3;
1940 /* Magic register saves we want to know about. */
1941 save_rp = u->Save_RP;
1942 save_sp = u->Save_SP;
1944 /* Turn the Entry_GR field into a bitmask. */
1946 for (i = 3; i < u->Entry_GR + 3; i++)
1948 /* Frame pointer gets saved into a special location. */
1949 if (u->Save_SP && i == FP_REGNUM)
1952 save_gr |= (1 << i);
1955 /* Turn the Entry_FR field into a bitmask too. */
1957 for (i = 12; i < u->Entry_FR + 12; i++)
1958 save_fr |= (1 << i);
1960 /* The frame always represents the value of %sp at entry to the
1961 current function (and is thus equivalent to the "saved" stack
1963 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
1965 /* Loop until we find everything of interest or hit a branch.
1967 For unoptimized GCC code and for any HP CC code this will never ever
1968 examine any user instructions.
1970 For optimzied GCC code we're faced with problems. GCC will schedule
1971 its prologue and make prologue instructions available for delay slot
1972 filling. The end result is user code gets mixed in with the prologue
1973 and a prologue instruction may be in the delay slot of the first branch
1976 Some unexpected things are expected with debugging optimized code, so
1977 we allow this routine to walk past user instructions in optimized
1979 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1981 status = target_read_memory (pc, buf, 4);
1982 inst = extract_unsigned_integer (buf, 4);
1988 /* Note the interesting effects of this instruction. */
1989 stack_remaining -= prologue_inst_adjust_sp (inst);
1991 /* There is only one instruction used for saving RP into the stack. */
1992 if (inst == 0x6bc23fd9)
1995 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
1998 /* Just note that we found the save of SP into the stack. The
1999 value for frame_saved_regs was computed above. */
2000 if ((inst & 0xffffc000) == 0x6fc10000)
2003 /* Account for general and floating-point register saves. */
2004 reg = inst_saves_gr (inst);
2005 if (reg >= 3 && reg <= 18
2006 && (!u->Save_SP || reg != FP_REGNUM))
2008 save_gr &= ~(1 << reg);
2010 /* stwm with a positive displacement is a *post modify*. */
2011 if ((inst >> 26) == 0x1b
2012 && extract_14 (inst) >= 0)
2013 frame_saved_regs->regs[reg] = frame_info->frame;
2016 /* Handle code with and without frame pointers. */
2018 frame_saved_regs->regs[reg]
2019 = frame_info->frame + extract_14 (inst);
2021 frame_saved_regs->regs[reg]
2022 = frame_info->frame + (u->Total_frame_size << 3)
2023 + extract_14 (inst);
2028 /* GCC handles callee saved FP regs a little differently.
2030 It emits an instruction to put the value of the start of
2031 the FP store area into %r1. It then uses fstds,ma with
2032 a basereg of %r1 for the stores.
2034 HP CC emits them at the current stack pointer modifying
2035 the stack pointer as it stores each register. */
2037 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2038 if ((inst & 0xffffc000) == 0x34610000
2039 || (inst & 0xffffc000) == 0x37c10000)
2040 fp_loc = extract_14 (inst);
2042 reg = inst_saves_fr (inst);
2043 if (reg >= 12 && reg <= 21)
2045 /* Note +4 braindamage below is necessary because the FP status
2046 registers are internally 8 registers rather than the expected
2048 save_fr &= ~(1 << reg);
2051 /* 1st HP CC FP register store. After this instruction
2052 we've set enough state that the GCC and HPCC code are
2053 both handled in the same manner. */
2054 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2059 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2060 = frame_info->frame + fp_loc;
2065 /* Quit if we hit any kind of branch. This can happen if a prologue
2066 instruction is in the delay slot of the first call/branch. */
2067 if (is_branch (inst))
2075 #ifdef MAINTENANCE_CMDS
2078 unwind_command (exp, from_tty)
2086 struct unwind_table_entry *u;
2089 /* If we have an expression, evaluate it and use it as the address. */
2091 if (exp != 0 && *exp != 0)
2092 address = parse_and_eval_address (exp);
2096 xxx.u = find_unwind_entry (address);
2100 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2104 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2107 #endif /* MAINTENANCE_CMDS */
2110 _initialize_hppa_tdep ()
2112 #ifdef MAINTENANCE_CMDS
2113 add_cmd ("unwind", class_maintenance, unwind_command,
2114 "Print unwind table entry at given address.",
2115 &maintenanceprintlist);
2116 #endif /* MAINTENANCE_CMDS */