1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24 /* Target system byte order. */
26 #define TARGET_BYTE_ORDER BIG_ENDIAN
28 /* Get at various relevent fields of an instruction word. */
32 #define MASK_14 0x3fff
33 #define MASK_21 0x1fffff
35 /* This macro gets bit fields using HP's numbering (MSB = 0) */
37 #define GET_FIELD(X, FROM, TO) \
38 ((X) >> 31 - (TO) & (1 << ((TO) - (FROM) + 1)) - 1)
40 /* Watch out for NaNs */
44 /* When passing a structure to a function, GCC passes the address
45 in a register, not the structure itself. */
47 /* FIXME: I believe this is wrong. I believe passing the address
48 depends only on the size of the argument being > 8, not on its type
49 (which is a much more sane way than the REG_STRUCT_HAS_ADDR way,
50 IMHO). Also, as far as I know it is not dependent on it being
51 passed in a register. This should be verified before changing
52 anything (in fact, printing structure arguments of
53 2,4,6,8,12,16,and 20 bytes should all be in the test suite). */
55 #define REG_STRUCT_HAS_ADDR(gcc_p) (1)
57 /* Offset from address of function to start of its code.
58 Zero on most machines. */
60 #define FUNCTION_START_OFFSET 0
62 /* Advance PC across any function entry prologue instructions
63 to reach some "real" code. */
65 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
66 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
68 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
70 /* If PC is in some function-call trampoline code, return the PC
71 where the function itself actually starts. If not, return NULL. */
73 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
75 /* Return non-zero if we are in some sort of a trampoline. */
77 #define IN_SOLIB_TRAMPOLINE(pc, name) skip_trampoline_code (pc, name)
79 /* Immediately after a function call, return the saved pc.
80 Can't go through the frames for this because on some machines
81 the new frame is not set up until the new function executes
84 #undef SAVED_PC_AFTER_CALL
85 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
87 /* Stack grows upward */
92 /* Sequence of bytes for breakpoint instruction. */
94 /*#define BREAKPOINT {0x00, 0x00, 0x00, 0x00}*/
95 #ifdef KERNELDEBUG /* XXX */
96 #define BREAKPOINT {0x00, 0x00, 0xa0, 0x00}
98 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
101 /* Amount PC must be decremented by after a breakpoint.
102 This is often the number of bytes in BREAKPOINT
105 Not on the PA-RISC */
107 #define DECR_PC_AFTER_BREAK 0
109 /* return instruction is bv r0(rp) or bv,n r0(rp)*/
111 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
113 /* Return 1 if P points to an invalid floating point value. */
115 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
117 /* Largest integer type */
120 /* Name of the builtin type for the LONGEST type above. */
121 #define BUILTIN_TYPE_LONGEST builtin_type_long
123 /* Say how long (ordinary) registers are. This is a piece of bogosity
124 used in push_word and a few other places; REGISTER_RAW_SIZE is the
125 real way to know how big a register is. */
127 #define REGISTER_SIZE 4
129 /* Number of machine registers */
133 /* Initializer for an array of names of registers.
134 There should be NUM_REGS strings in this initializer. */
136 #define REGISTER_NAMES \
137 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
138 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
139 "r20", "r21", "r22", "arg3", "arg2", "arg1", "arg0", "dp", "ret0", "ret1", \
140 "sp", "r31", "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", \
141 "eiem", "iir", "isr", "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", \
142 "sr3", "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", "cr13", \
143 "cr24", "cr25", "cr26", "mpsfu_high", "mpsfu_low", "mpsfu_ovflo", "pad", \
144 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
145 "fr4", "fr5", "fr6", "fr7", "fr8", \
146 "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
147 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
148 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31"}
150 /* Register numbers of various important registers.
151 Note that some of these values are "real" register numbers,
152 and correspond to the general registers of the machine,
153 and some are "phony" register numbers which are too large
154 to be actual register numbers as far as the user is concerned
155 but do serve to get the desired values when passed to read_register. */
157 #define FLAGS_REGNUM 0 /* Various status flags */
158 #define RP_REGNUM 2 /* return pointer */
159 #define FP_REGNUM 4 /* Contains address of executing stack */
161 #define SP_REGNUM 30 /* Contains address of top of stack */
162 #define SAR_REGNUM 32 /* shift amount register */
163 #define IPSW_REGNUM 41 /* processor status word. ? */
164 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
165 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
166 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
167 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
168 #define FP0_REGNUM 64 /* floating point reg. 0 */
169 #define FP4_REGNUM 72
171 /* compatibility with the rest of gdb. */
172 #define PC_REGNUM PCOQ_HEAD_REGNUM
173 #define NPC_REGNUM PCOQ_TAIL_REGNUM
175 /* When fetching register values from an inferior or a core file,
176 clean them up using this macro. BUF is a char pointer to
177 the raw value of the register in the registers[] array. */
179 #define CLEAN_UP_REGISTER_VALUE(regno, buf) \
181 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
185 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
186 of register dumps. */
188 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
190 /* PA specific macro to see if the current instruction is nullified. */
191 #define INSTRUCTION_NULLIFIED ((int)read_register (IPSW_REGNUM) & 0x00200000)
193 /* Total amount of space needed to store our copies of the machine's
194 register state, the array `registers'. */
195 #define REGISTER_BYTES (32 * 4 + 11 * 4 + 8 * 4 + 12 * 4 + 4 + 32 * 8)
197 /* Index within `registers' of the first byte of the space for
200 #define REGISTER_BYTE(N) \
201 ((N) >= FP4_REGNUM ? ((N) - FP4_REGNUM) * 8 + 288 : (N) * 4)
203 /* Number of bytes of storage in the actual machine representation
204 for register N. On the PA-RISC, all regs are 4 bytes
205 except the floating point regs which are 8 bytes. */
207 #define REGISTER_RAW_SIZE(N) ((N) < FP4_REGNUM ? 4 : 8)
209 /* Number of bytes of storage in the program's representation
212 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
214 /* Largest value REGISTER_RAW_SIZE can have. */
216 #define MAX_REGISTER_RAW_SIZE 8
218 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
220 #define MAX_REGISTER_VIRTUAL_SIZE 8
222 /* Return the GDB type object for the "standard" data type
223 of data in register N. */
225 #define REGISTER_VIRTUAL_TYPE(N) \
226 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_double)
228 /* Store the address of the place in which to copy the structure the
229 subroutine will return. This is called from call_function. */
231 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
233 /* Extract from an array REGBUF containing the (raw) register state
234 a function return value of type TYPE, and copy that, in virtual format,
237 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
238 memcpy (VALBUF, (REGBUF) + REGISTER_BYTE(TYPE_LENGTH(TYPE) > 4 ? \
239 FP4_REGNUM :28), TYPE_LENGTH (TYPE))
241 /* Write into appropriate registers a function return value
242 of type TYPE, given in virtual format. */
244 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
245 write_register_bytes ((TYPE_LENGTH(TYPE) > 4 \
246 ? REGISTER_BYTE (FP4_REGNUM) \
247 : REGISTER_BYTE (28)), \
248 (VALBUF), TYPE_LENGTH (TYPE))
250 /* Extract from an array REGBUF containing the (raw) register state
251 the address in which a function should return its structure value,
252 as a CORE_ADDR (or an expression that can be used as one). */
254 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)((REGBUF) + 28))
257 * This macro defines the register numbers (from REGISTER_NAMES) that
258 * are effectively unavailable to the user through ptrace(). It allows
259 * us to include the whole register set in REGISTER_NAMES (inorder to
260 * better support remote debugging). If it is used in
261 * fetch/store_inferior_registers() gdb will not complain about I/O errors
262 * on fetching these registers. If all registers in REGISTER_NAMES
263 * are available, then return false (0).
266 #define CANNOT_STORE_REGISTER(regno) \
268 ((regno) == PCSQ_HEAD_REGNUM) || \
269 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
270 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
272 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
274 /* Describe the pointer in each stack frame to the previous stack frame
277 /* FRAME_CHAIN takes a frame's nominal address
278 and produces the frame's chain-pointer.
280 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
281 and produces the nominal address of the caller frame.
283 However, if FRAME_CHAIN_VALID returns zero,
284 it means the given frame is the outermost one and has no caller.
285 In that case, FRAME_CHAIN_COMBINE is not used. */
287 /* In the case of the PA-RISC, the frame's nominal address
288 is the address of a 4-byte word containing the calling frame's
289 address (previous FP). */
291 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
293 #define FRAME_CHAIN_VALID(chain, thisframe) \
294 frame_chain_valid (chain, thisframe)
296 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
298 /* Define other aspects of the stack frame. */
300 /* A macro that tells us whether the function invocation represented
301 by FI does not have a frame on the stack associated with it. If it
302 does not, FRAMELESS is set to 1, else 0. */
303 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
304 (FRAMELESS) = frameless_function_invocation(FI)
306 #define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
308 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
310 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
311 /* Set VAL to the number of args passed to frame described by FI.
312 Can set VAL to -1, meaning no way to tell. */
314 /* We can't tell how many args there are
315 now that the C compiler delays popping them. */
316 #define FRAME_NUM_ARGS(val,fi) (val = -1)
318 /* Return number of bytes at start of arglist that are not really args. */
320 #define FRAME_ARGS_SKIP 0
322 /* Put here the code to store, into a struct frame_saved_regs,
323 the addresses of the saved registers of frame described by FRAME_INFO.
324 This includes special registers such as pc and fp saved in special
325 ways in the stack frame. sp is even more special:
326 the address we return for it IS the sp for the next frame. */
328 /* Deal with dummy functions later. */
330 #define STW_P(INSN) (((INSN) & 0xfc000000) == 0x68000000)
331 #define ADDIL_P(INSN) (((INSN) & 0xfc000000) == 0x28000000)
332 #define LDO_P(INSN) (((INSN) & 0xfc00c000) == 0x34000000)
334 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
335 { register int regnum; \
336 register CORE_ADDR next_addr; \
337 register CORE_ADDR pc; \
338 unsigned this_insn; \
341 memset (&frame_saved_regs, '\0', sizeof frame_saved_regs); \
342 if ((frame_info->pc >= (frame_info)->frame \
343 && (frame_info)->pc <= ((frame_info)->frame + CALL_DUMMY_LENGTH \
344 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8 \
346 find_dummy_frame_regs ((frame_info), &(frame_saved_regs)); \
348 { pc = get_pc_function_start ((frame_info)->pc); \
349 if (read_memory_integer (pc, 4) == 0x6BC23FD9) \
350 { (frame_saved_regs).regs[RP_REGNUM] = (frame_info)->frame - 20;\
353 if (read_memory_integer (pc, 4) != 0x8040241) goto lose; \
354 pc += 8; /* skip "copy 4,1; copy 30, 4" */ \
355 /* skip either "stw 1,0(4);addil L'fsize,30;ldo R'fsize(1),30" \
356 or "stwm 1,fsize(30)" */ \
357 if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) \
362 { this_insn = read_memory_integer(pc, 4); \
363 if (STW_P (this_insn)) /* stw */ \
364 { regnum = GET_FIELD (this_insn, 11, 15); \
365 if (!regnum) goto lose; \
366 (frame_saved_regs).regs[regnum] = (frame_info)->frame + \
367 extract_14 (this_insn); \
370 else if (ADDIL_P (this_insn)) /* addil */ \
372 next_insn = read_memory_integer(pc + 4, 4); \
373 if (STW_P (next_insn)) /* stw */ \
374 { regnum = GET_FIELD (this_insn, 6, 10); \
375 if (!regnum) goto lose; \
376 (frame_saved_regs).regs[regnum] = (frame_info)->frame +\
377 (extract_21 (this_insn) << 11) + extract_14 (next_insn);\
388 this_insn = read_memory_integer (pc, 4); \
389 if (LDO_P (this_insn)) \
390 { next_addr = (frame_info)->frame + extract_14 (this_insn); \
393 else if (ADDIL_P (this_insn)) \
394 { next_addr = (frame_info)->frame + (extract_21 (this_insn) << 11)\
395 + extract_14 (read_memory_integer (pc + 4, 4)); \
399 { this_insn = read_memory_integer (pc, 4); \
400 if ((this_insn & 0xfc001fe0) == 0x2c001220) /* fstds,ma */ \
401 { regnum = GET_FIELD (this_insn, 27, 31); \
402 (frame_saved_regs).regs[regnum + FP0_REGNUM] = next_addr; \
410 (frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
411 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame -4; \
414 /* Things needed for making the inferior call functions. */
416 /* Push an empty stack frame, to record the current PC, etc. */
418 #define PUSH_DUMMY_FRAME push_dummy_frame ()
420 /* Discard from the stack the innermost frame,
421 restoring all saved registers. */
422 #define POP_FRAME hppa_pop_frame ()
424 /* This sequence of words is the instructions
426 ; Call stack frame has already been built by gdb. Since we could be calling
427 ; a varargs function, and we do not have the benefit of a stub to put things in
428 ; the right place, we load the first 4 word of arguments into both the general
439 fldds -12(0, r1), fr7
440 ldil 0, r22 ; target will be placed here.
443 ldil 0, r1 ; _sr4export will be placed here.
446 combt,=,n r3, r19, text_space ; If target is in data space, do a
447 ble 0(sr5, r22) ; "normal" procedure call
452 text_space ; Otherwise, go through _sr4export,
453 ble (sr4, r1) ; which will return back here.
459 The dummy decides if the target is in text space or data space. If
460 it's in data space, there's no problem because the target can
461 return back to the dummy. However, if the target is in text space,
462 the dummy calls the secret, undocumented routine _sr4export, which
463 calls a function in text space and can return to any space. Instead
464 of including fake instructions to represent saved registers, we
465 know that the frame is associated with the call dummy and treat it
468 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
469 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
470 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A3,\
471 0x20200000, 0x34210000, 0x002010b3, 0x82632022,\
472 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
473 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
474 0x00151820, 0xe6c00002}
476 #define CALL_DUMMY_LENGTH 104
477 #define CALL_DUMMY_START_OFFSET 0
480 * Insert the specified number of args and function address
481 * into a call sequence of the above form stored at DUMMYNAME.
483 * On the hppa we need to call the stack dummy through $$dyncall.
484 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
485 * real_pc, which is the location where gdb should start up the
486 * inferior to do the function call.
489 #define FIX_CALL_DUMMY hppa_fix_call_dummy
491 CORE_ADDR hppa_fix_call_dummy();
493 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
494 sp = hppa_push_arguments(nargs, args, sp, struct_return, struct_addr)
496 /* Symbol files have two symbol tables. Rather than do this right,
497 like the ELF symbol reading code, massive hackery was added
498 to dbxread.c and partial-stab.h. This flag turns on that
499 hackery, which should all go away FIXME FIXME FIXME FIXME now. */
501 #define GDB_TARGET_IS_HPPA
503 #define BELIEVE_PCC_PROMOTION 1
506 * Unwind table and descriptor.
509 struct unwind_table_entry {
510 unsigned int region_start;
511 unsigned int region_end;
513 unsigned int Cannot_unwind : 1;
514 unsigned int Millicode : 1;
515 unsigned int Millicode_save_sr0 : 1;
516 unsigned int Region_description : 2;
517 unsigned int reserverd1 : 1;
518 unsigned int Entry_SR : 1;
519 unsigned int Entry_FR : 4; /* number saved */
520 unsigned int Entry_GR : 5; /* number saved */
521 unsigned int Args_stored : 1;
522 unsigned int Variable_Frame : 1;
523 unsigned int Separate_Package_Body : 1;
524 unsigned int Frame_Extension_Millicode:1;
525 unsigned int Stack_Overflow_Check : 1;
526 unsigned int Two_Instruction_SP_Increment:1;
527 unsigned int Ada_Region : 1;
528 unsigned int reserved2 : 4;
529 unsigned int Save_SP : 1;
530 unsigned int Save_RP : 1;
531 unsigned int Save_MRP_in_frame : 1;
532 unsigned int extn_ptr_defined : 1;
533 unsigned int Cleanup_defined : 1;
535 unsigned int MPE_XL_interrupt_marker: 1;
536 unsigned int HP_UX_interrupt_marker: 1;
537 unsigned int Large_frame : 1;
538 unsigned int reserved4 : 2;
539 unsigned int Total_frame_size : 27;
542 /* Info about the unwind table associated with an object file. This is hung
543 off of the objfile->obj_private pointer, and is allocated in the objfile's
544 psymbol obstack. This allows us to have unique unwind info for each
545 executable and shared library that we are debugging. */
547 struct obj_unwind_info {
548 struct unwind_table_entry *table; /* Pointer to unwind info */
549 struct unwind_table_entry *cache; /* Pointer to last entry we found */
550 int last; /* Index of last entry */
553 #define OBJ_UNWIND_INFO(obj) ((struct obj_unwind_info *)obj->obj_private)
555 extern CORE_ADDR target_read_pc PARAMS ((void));
556 extern void target_write_pc PARAMS ((CORE_ADDR));
558 #define TARGET_READ_PC() target_read_pc ()
559 #define TARGET_WRITE_PC(v) target_write_pc (v)